Old Dominion University
ODU Digital Commons

Linear Dependency for the Difference in Exponential Regression

Indika Sathish

Norou Diawara

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs
Part of the Probability Commons, Statistical Models Commons, and the Survival Analysis Commons

。
 invelvea journal of mathematics

Linear dependency for the difference in exponential regression
Indika Sathish and Diawara Norou

Linear dependency for the difference in exponential regression

Indika Sathish and Diawara Norou
(Communicated by Kenneth S. Berenhaut)

Abstract

In the field of reliability, a lot has been written on the analysis of phenomena that are related. Estimation of the difference of two population means have been mostly formulated under the no-correlation assumption. However, in many situations, there is a correlation involved. This paper addresses this issue. A sequential estimation method for linearly related lifetime distributions is presented. Estimations for the scale parameters of the exponential distribution are given under square error loss using a sequential prediction method. Optimal stopping rules are discussed using concepts of mean criteria, and numerical results are presented.

1. Introduction

In recent years, there has been a great deal of interest in looking at parameters and characterization of linearly related lifetime distributions, and more specifically of exponential types distributions. In the literature, estimation of the parameters using the sequential prediction method can be found in many areas such as statistical sciences, industrial quality control, communication science, computer simulations, genetics and many more. The sequential analysis method is carried out to determine improvements on the estimators and reduce noises related to the lifetime distributions. However, in many cases, when a pair of distributions are considered, the assumption of independence is assumed. There are contexts in which the assumption of independence is not realistic, such as in [Carpenter et al. 2006]. This paper extends the results that are proposed by including a correlation in estimating the difference parameter between two exponentially distributed functions. It is organized as follows. In Section 2, we present the basic results and the problem of interest. In Section 3, we present the sequential analysis method for the estimation of the difference of the scale parameters. Many works, such as [Mukhopadhyay and Hamdy 1984], have addressed the estimation of the difference

[^0]of the location parameters of two distributions. Lai [2001] gives a thorough review of the sequential analysis technique along with challenges. The sections that follow are about the stopping rule technique and simulations.

2. Preliminaries and problem of interest

We consider the class of exponential family type probability distributions on the real line from [McCullagh and Nelder 1983]. The class is defined by the family of densities \mathscr{G} with respect to the Lebesgue measure as

$$
\begin{equation*}
f(x ; \theta, \varphi)=\exp \left\{\frac{\theta T(x)-b(\theta)}{a(\varphi)}+c(x, \varphi)\right\}, \tag{1}
\end{equation*}
$$

where

- $f \in \mathscr{G}$,
- φ is a constant scale parameter, typically called the nuisance parameter,
- θ is a location parameter,
- $a(\varphi)$ and $c(x, \varphi)$ are specific functions of the scale parameter, and
- $b(\theta)$ and $T(x)$ are functions of the location parameter and variable x, respectively.

In fact, this exponential family density in (1) is a reformulation of the form given in [McCullagh and Nelder 1983] as they simplify $T(x)$ in (1) to simply x. Also, the expression (1) generalizes the exponential family type of distributions as described in [Terbeche et al. 2005] in the sense that

- if φ is known, (1) is the linear exponential family with canonical parameter θ;
- if φ is unknown, (1) may be used as a 2-parameter exponential family type.

As described in [McCullagh and Nelder 1983], this family includes the normal, exponential, gamma, and Poisson types of distributions. In this setting,

$$
\begin{equation*}
U=U(\theta)=\frac{\partial \log L(\theta, x)}{\partial \theta}=\frac{\partial f(x, \theta) / \partial \theta}{f(x, \theta)} \tag{2}
\end{equation*}
$$

is the score function. Note that

- $E(U)=0$,
- $\operatorname{Var}(U)=E\left(U^{2}\right)=-E(\partial U / \partial \theta)=I(\theta)$, known as Fisher's information.

In the exponential family case, as in (1),

$$
\begin{aligned}
l(\theta, \varphi, x) & =\log L(\theta, \varphi, x)=\frac{\theta T(x)-b(\theta)}{a(\varphi)}+c(x, \varphi), \\
U & =\frac{\partial l}{\partial \theta}=\frac{T(x)-\partial b(\theta) / \partial \theta}{a(\varphi)} \\
E(U) & =0 \Longrightarrow E(T(x))=\frac{\partial b(\theta)}{\partial \theta}=b^{\prime}(\theta)
\end{aligned}
$$

Based on some index set I, we now consider two classes of exponential families of random variables called $\mathbf{X}=\left(X_{i}\right)_{i \in I}$ and $\mathbf{Y}=\left(Y_{i}\right)_{i \in I}$, with densities

$$
\begin{align*}
& f\left(x_{i} ; \theta, \varphi\right)=\exp \left\{\frac{\theta T\left(x_{i}\right)-b(\theta)}{a(\varphi)}+c\left(x_{i}, \varphi\right)\right\} \tag{3}\\
& f\left(y_{i} ; \tilde{\theta}, \tilde{\varphi}\right)=\exp \left\{\frac{\tilde{\theta} T\left(y_{i}\right)-\tilde{b}(\tilde{\theta})}{\tilde{a}(\tilde{\varphi})}+\tilde{c}\left(y_{i}, \tilde{\varphi}\right)\right\} \tag{4}
\end{align*}
$$

in the classes $\mathscr{\varphi}_{X}$ and \mathscr{G}_{Y}, with the linear relationship

$$
\begin{equation*}
Y_{i}=a X_{i}+Z_{i} \tag{5}
\end{equation*}
$$

where $i \in I, a$ is a fixed positive constant, and the Z_{i} are unknown random variables whose means are of interest.

The set I is an index countable set that could be finite or infinite. The linear relation described in (5) of association of random variables is not new, but is still a challenging problem. In fact, many authors [Carpenter et al. 2006; Iyer et al. 2002; 2004] have suggested its importance in applications.

Our goal is to estimate the parameter

$$
\begin{equation*}
\lambda=E_{\tilde{\theta}}[T(\mathbf{Y})]-a E_{\theta}[T(\mathbf{X})], \tag{6}
\end{equation*}
$$

with square error loss. When $a=1$, this equation reduces to the difference between two dependent exponential family of distributions. The dependence concept is the innovation here as in many cases independence is assumed, even if it is known that there is great cost associated with that independence assumption.

3. Sequential analysis

We use the sequential estimation procedure to estimate the mean of the difference of two exponential families distributions with conjugate priors of the gamma or Bernoulli or Poisson types. This procedure helps address the problem in the small sample size case, maintaining a high power. The approach we use is Bayesian and we assume that $\pi_{1}(\theta)$ and $\pi_{2}(\tilde{\theta})$ are the conjugate priors given by

$$
\pi_{1}(\theta) \propto \exp \left[t\left(\mu_{1} \theta-\varphi(\theta)\right)\right], \quad \pi_{2}(\tilde{\theta}) \propto \exp \left[s\left(\mu_{2} \tilde{\theta}-\tilde{\varphi}(\tilde{\theta})\right)\right] .
$$

This is not a new idea; Diaconis and Ylvisaker [1979] adopted this alternative to the maximum likelihood estimation regarding the parameter θ as a random variable with prior distribution, and the inference was based on the posterior distribution. They used this setting in the exponential family with conjugate prior distribution of the parameter θ given as

$$
\begin{equation*}
\pi(\theta)=\frac{\exp \{t(\mu \theta-\phi(\theta))\}}{\int \exp \{t(\mu \theta-\phi(\theta))\} d \theta}, \tag{7}
\end{equation*}
$$

where $\theta \in \Theta, t$ can be thought as prior sample size, and μ is the mean parameter. See also [Annis 2007].

In that regard, we see that $\mu_{1}=E_{\pi_{1}}\left[\varphi^{\prime}(\theta)\right]$ and $\mu_{2}=E_{\pi_{2}}\left[\tilde{\varphi}^{\prime}(\tilde{\theta})\right]$ are prior estimators of $E_{\theta}[T(\mathbf{X})]$ and $E_{\tilde{\theta}}[T(\mathbf{Y})]$, respectively.

Hence, following an idea from [Terbeche et al. 2005], the Bayes estimate of λ, based on a random sample of size n of $X_{1}, X_{2}, \ldots, X_{n}$ of \mathbf{X}, and $Y_{1}, Y_{2}, \ldots, Y_{n}$ of \mathbf{Y} is given by

$$
\begin{aligned}
\hat{\lambda} & =\hat{\lambda}(\mathbf{X}, \mathbf{Y})=\hat{\lambda}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right) \\
& =E\left[\lambda \mid X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right] \\
& =E\left[\tilde{b}^{\prime}(\tilde{\theta}) \mid Y_{1}, \ldots, Y_{n}\right]-a E\left[b^{\prime}(\theta) \mid X_{1}, \ldots, X_{n}\right],
\end{aligned}
$$

where

$$
\begin{equation*}
E\left[b^{\prime}(\theta) \mid X_{1}, \ldots, X_{n}\right]=\frac{n \bar{T}_{n}^{\mathbf{X}}+t \mu_{1}}{n+t}, \quad E\left[\tilde{b}^{\prime}(\tilde{\theta}) \mid Y_{1}, \ldots, Y_{n}\right]=\frac{n \bar{T}_{n}^{\mathbf{Y}}+s \mu_{2}}{n+s} \tag{8}
\end{equation*}
$$

with

$$
\bar{T}_{n}^{\mathbf{X}}=\frac{T\left(X_{1}\right)+\ldots+T\left(X_{n}\right)}{n}, \quad \bar{T}_{n}^{\mathbf{Y}}=\frac{T\left(Y_{1}\right)+\ldots+T\left(Y_{n}\right)}{n} .
$$

Hence,

$$
\begin{equation*}
\hat{\lambda}=\frac{n \bar{T}_{n}^{\mathbf{Y}}+s \mu_{2}}{n+s}-a \frac{n \bar{T}_{n}^{\mathbf{X}}+t \mu_{1}}{n+t} . \tag{9}
\end{equation*}
$$

The asymptotic estimate for the parameter as $n \longrightarrow \infty$ is

$$
\begin{equation*}
\hat{\lambda}=\bar{T}_{n}^{\mathbf{Y}}-a \bar{T}_{n}^{\mathbf{X}} . \tag{10}
\end{equation*}
$$

A criteria for stopping the estimation of λ is developed. When $t=s$,

$$
\hat{\lambda}=\frac{n\left(\bar{T}_{n}^{\mathbf{Y}}-a \bar{T}_{n}^{\mathbf{X}}\right)+t\left(\mu_{2}-a \mu_{1}\right)}{n+t}=\frac{n}{n+t}\left(\bar{T}_{n}^{\mathbf{Y}}-a \bar{T}_{n}^{\mathbf{x}}\right)+\frac{t}{n+t}\left(\mu_{2}-a \mu_{1}\right) .
$$

When $t=s=n$,

$$
\begin{equation*}
\hat{\lambda}=\frac{\left(\bar{T}_{n}^{\mathbf{Y}}-a \bar{T}_{n}^{\mathbf{X}}\right)+\left(\mu_{2}-a \mu_{1}\right)}{2} \tag{11}
\end{equation*}
$$

In the sequential analysis idea, the sample size is not predetermined. Hence, a natural question to ask is when is the sample size large enough to make conclusions.

4. Stopping rules

The Bayes risk of the estimate $\hat{\lambda}$ of λ with respect to the prior $\pi(\theta)$ in (7) is

$$
r(\theta, \hat{\lambda})=E[R(\theta, \hat{\lambda})],
$$

where $R(\theta, \hat{\lambda})=E[L(\theta, \hat{\lambda})]$ and $L(\theta, \hat{\lambda})=(\lambda-\hat{\lambda})^{2}$ is the loss function.
In this setting, the Bayes risk is given by

$$
\begin{aligned}
r\left(\pi_{1}, \pi_{2}\right) & =r(\hat{\lambda}(\mathbf{X}, \mathbf{Y})) \\
& =E_{(\mathbf{X Y})}\left[E_{\lambda \mid(\mathbf{X}, \mathbf{Y})}(\hat{\lambda}(\mathbf{X}, \mathbf{Y})-\lambda)^{2}\right] \\
& =E_{(\mathbf{X}, \mathbf{Y})}[\operatorname{Var}(\lambda \mid(\mathbf{X}, \mathbf{Y}))] \\
& =E_{(\mathbf{X}, \mathbf{Y})}\left[\operatorname{Var}\left(\tilde{b}^{\prime}(\tilde{\theta})-a b^{\prime}(\theta) \mid(\mathbf{X}, \mathbf{Y})\right)\right] \\
& =E_{(\mathbf{X}, \mathbf{Y})}\left[\operatorname{Var}\left(\tilde{b}^{\prime}(\tilde{\theta})\right)+a^{2} \operatorname{Var}\left(b^{\prime}(\theta)\right)-2 a \rho \sqrt{\operatorname{Var}\left(\tilde{b}^{\prime}(\tilde{\theta})\right)} \sqrt{\operatorname{Var}\left(b^{\prime}(\theta)\right)}\right]
\end{aligned}
$$

and the upper bound is achieved using the idea of Equation (4) in [Terbeche et al. 2005]. It is given by

$$
\begin{equation*}
r\left(\pi_{1}, \pi_{2}\right)=E_{\mathbf{Y}}\left[E_{\tilde{\theta} \mid \mathbf{Y}}\left|\frac{\tilde{b}^{\prime \prime}(\tilde{\theta})}{n+s}\right|\right]+a^{2} E_{\mathbf{X}}\left[E_{\theta \mid \mathbf{X}}\left|\frac{b^{\prime \prime}(\theta)}{n+t}\right|\right], \tag{12}
\end{equation*}
$$

with equality achieved in (12) when $\rho=\operatorname{corr}\left(\tilde{b}^{\prime}(\tilde{\theta}), b^{\prime}(\theta)\right)=\operatorname{corr}(\mathbf{X}, \mathbf{Y}) \geq 0$ is minimized.

Considering the loss function

$$
\begin{equation*}
L(\lambda, \hat{\lambda}, n)=(\lambda-\hat{\lambda})^{2}+c n \tag{13}
\end{equation*}
$$

where c can be looked at as the cost of sampling, and the decision rule $\Delta=(\tau, \delta)$, where $\tau=\tau_{n}(\mathbf{x}, \mathbf{y})$ is the stopping rule and $\delta=\delta_{n}(\mathbf{x}, \mathbf{y})$ is the decision rule, we have that the Bayes risk to minimize from a suitable sample size n obtained sequentially given by

$$
\begin{aligned}
& r\left(\tau, \pi_{1}, \pi_{2}\right)= E_{(\mathbf{X}, \mathbf{Y}, \tau)}\left[\frac{U_{n}}{n+t}+\frac{V_{n}}{n+s}-2 a \rho \sqrt{\left[\operatorname{Var}\left(\tilde{b}^{\prime}(\tilde{\theta})\right)\right]} \sqrt{\left[\operatorname{Var}\left(b^{\prime}(\theta)\right)\right]}+c n\right] \\
&= E_{(\mathbf{Y}, \tau)}\left[\frac{U_{n}}{n+t}\right] \\
&+E_{(\mathbf{X}, \tau)}\left[\frac{V_{n}}{n+s}\right] \\
&+E_{(\mathbf{X}, \mathbf{Y}, \tau)}\left[-2 a \rho \sqrt{\left[\operatorname{Var}\left(\tilde{b}^{\prime}(\tilde{\theta})\right)\right]} \sqrt{\left[\operatorname{Var}\left(b^{\prime}(\theta)\right)\right]}+c n\right]
\end{aligned}
$$

where $U_{n}=E_{\mathbf{Y}, \tau}\left|\tilde{b}^{\prime \prime}(\tilde{\theta})\right|$ and $V_{n}=E_{\mathbf{X}, \tau}\left|b^{\prime \prime}(\theta)\right|$.
Using ideas in [Terbeche et al. 2005] to achieve the upper bound in (12), the stopping rule criteria can be expressed as if

$$
U_{n} \leq c(n+t)^{2} \quad \text { or } \quad V_{n} \leq c(n+s)^{2}
$$

Figure 1. Graph of the bias from ρ for $c=0$.
then take another pair of observations. Otherwise, stop the collection process. That is the estimation of the difference of the two exponential distributions can be evaluated from the available informative sample. In other words, the stopping variable is defined by the quantity

$$
\begin{equation*}
n \geq \min \left\{\sqrt{\frac{U_{n}}{c}}-t, \sqrt{\frac{V_{n}}{c}}-s\right\} \tag{14}
\end{equation*}
$$

In order to study the optimized stopping rule in (14) and its efficiency, a numerical simulation technique is provided in Section 5. We consider two exponentially related distributions with gamma priors.

5. Simulation

We have described a methodology to compare the mean difference between two exponential distributions that are linearly related. In this section, we show an example of a simulation data of the related bivariate exponential distribution with the different values of the correlations ρ.

Since we consider two dependent random variables, we create one exponential random variable and create the other one with the desired correlation ρ. We generate sample data of size 50 . We assume a coefficient of linear relationship $a=1$ of simultaneous occurrence as described in [Marshall and Olkin 1967], and $c=0$ and $c=0.25$ in (13) over 5000 runs. The simulation was carried out using SAS.

The results of the two figures show that data does not need to be large to achieve convergence. The pattern is the same regardless of the number of runs. Figures 1 and 2 give the bias of the mean difference for $c=0$ and $c=0.25$, respectively. The convergence is justified by the maximal error we allowed to reach based on the stopping rule, when the data generation and bias are computed at three and five

Figure 2. Graph of the bias from ρ for $c=0.25$.
decimal places (circles and dots, respectively). The algorithm performs very well even when the sample size is small, showing great robustness.

The resulting plot of the bias is very helpful in explaining the effectiveness of the estimator. When the correlation is present, this new estimator should be considered. Furthermore, the choice of the cost of resampling c does not affect significantly in the error estimation. Setting $c=0.25$ as in Figure 2 shows the same trend as for Figure 1. The risk is then minimized considerably when the correlation is significant.

6. Conclusion

The proposed sequential parametric procedure in the estimation of the difference of two exponential distribution is quite useful and relevant. This sequential estimation for the bivariate distributions of the exponential type families is used to get an estimate of the mean difference. It is more efficient in terms of bias.

Acknowledgements

The authors are grateful to the referees for their detailed suggestions, comments and insights, which improved the quality of the paper considerably.

References

[Annis 2007] D. H. Annis, "A note on quasi-likelihood for exponential families", Statist. Probab. Lett. 77:4 (2007), 431-437. MR 2339048 Zbl 1108.62022
[Carpenter et al. 2006] M. Carpenter, N. Diawara, and Y. Han, "A new class of bivariate survival and reliability models", Amer. J. Math. Management Sci. 26:1-2 (2006), 163-184. MR 2007m:62144 Zbl 1154.62337
[Diaconis and Ylvisaker 1979] P. Diaconis and D. Ylvisaker, "Conjugate priors for exponential families", Ann. Statist. 7:2 (1979), 269-281. MR 80f:62016 Zbl 0405.62011
[Iyer and Manjunath 2004] S. K. Iyer and D. Manjunath, "Correlated bivariate sequences for queueing and reliability applications", Comm. Statist. Theory Methods 33:2 (2004), 331-350. MR 2045319 Zbl 1066.62054
[Iyer et al. 2002] S. K. Iyer, D. Manjunath, and R. Manivasakan, "Bivariate exponential distributions using linear structures", Sankhyā Ser. A 64:1 (2002), 156-166. MR 1968380
[Lai 2001] T. L. Lai, "Sequential analysis: some classical problems and new challenges", Statist. Sinica 11:2 (2001), 303-408. MR 2002d:62001 Zbl 1037.62081
[Marshall and Olkin 1967] A. W. Marshall and I. Olkin, "A multivariate exponential distribution", J. Amer. Statist. Assoc. 62 (1967), 30-44. MR 35 \#6241 Zbl 0147.38106
[McCullagh and Nelder 1983] P. McCullagh and J. A. Nelder, Generalized linear models, Monographs on Statistics and Applied Probability 37, Chapman \& Hall, London, 1983. MR 85k:62161 Zbl 0588.62104
[Mukhopadhyay and Hamdy 1984] N. Mukhopadhyay and H. I. Hamdy, "On estimating the difference of location parameters of two negative exponential distributions", Canad. J. Statist. 12:1 (1984), 67-76. MR 86b:62139 Zbl 0543.62061
[Terbeche et al. 2005] M. Terbeche, B. O. Oluyede, and A. Barbour, "On sequential and fixed designs for estimation with comparisons and applications", SORT 29:2 (2005), 217-233. MR 2208558 Zbl 05633857

Received: 2009-11-09 Revised: 2010-03-26 Accepted: 2010-04-18

sindika@odu.edu	Old Dominion University, Department of Mathematics and Statistics, ndiawara@odu.edu 4700 Elkhorn Avenue, Norfolk, VA 23529, United States Old Dopartmention University, 4700 Elkhorn Avenue, Norfolk, VA 23529, United States http://www.odu.edu/~ndiawara

involve

pjm.math.berkeley.edu/involve
EDITORS
Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors

John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	A Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Ken Ono	University of Wisconsin, USA ono@math.wisc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Karen Kafadar	University of Colorado, USA karen.kafadar@cudenver.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
David Larson	Texas A\&M University, USA larson@math.tamu.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu

PRODUCTION

Silvio Levy, Scientific Editor
Sheila Newbery, Senior Production Editor
Cover design: ©2008 Alex Scorpan
See inside back cover or http://pjm.math.berkeley.edu/involve for submission instructions.
The subscription price for 2010 is US $\$ 100 /$ year for the electronic version, and $\$ 120 /$ year ($+\$ 20$ shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94704-3840, USA.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\mathrm{TM}}$ from Mathematical Sciences Publishers.

PUBLISHED BY

E. mathematical sciences publishers
http://www.mathscipub.org
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$

involve
 2010 vol. 3 no. 2

Recursive sequences and polynomial congruences 129J. Larry Lehman and Christopher Triola
The Gram determinant for plane curves 149
Józef H. Przytycki and Xiaoqi Zhu
The cardinality of the value sets modulo n of $x^{2}+x^{-2}$ and $x^{2}+y^{2}$ 171
Sara Hanrahan and Mizan Khan
Minimal k-rankings for prism graphs 183
Juan Ortiz, Andrew Zemke, Hala King, Darren Narayan and Mirko HorŇÁk
An unresolved analogue of the Littlewood Conjecture 191
Clarice Ferolito
Mapping the discrete logarithm 197
Daniel Cloutier and Joshua Holden
Linear dependency for the difference in exponential regression 215
Indika Sathish and Diawara Norou
The probability of relatively prime polynomials in $\mathbb{Z}_{p^{k}}[x]$ 223
thomas R. Hagedorn and Jeffrey Hatley
\mathbb{G}-planar abelian groups 233
Andrea DeWitt, Jillian Hamilton, Alys Rodriguez and Jennifer Daniel

[^0]: MSC2000: primary 60-00; secondary 60-08.
 Keywords: survival, stopping rule, bivariate exponential.

