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Linear dependency for the difference
in exponential regression
Indika Sathish and Diawara Norou

(Communicated by Kenneth S. Berenhaut)

In the field of reliability, a lot has been written on the analysis of phenomena
that are related. Estimation of the difference of two population means have
been mostly formulated under the no-correlation assumption. However, in many
situations, there is a correlation involved. This paper addresses this issue. A se-
quential estimation method for linearly related lifetime distributions is presented.
Estimations for the scale parameters of the exponential distribution are given
under square error loss using a sequential prediction method. Optimal stopping
rules are discussed using concepts of mean criteria, and numerical results are
presented.

1. Introduction

In recent years, there has been a great deal of interest in looking at parameters
and characterization of linearly related lifetime distributions, and more specifi-
cally of exponential types distributions. In the literature, estimation of the param-
eters using the sequential prediction method can be found in many areas such as
statistical sciences, industrial quality control, communication science, computer
simulations, genetics and many more. The sequential analysis method is carried
out to determine improvements on the estimators and reduce noises related to the
lifetime distributions. However, in many cases, when a pair of distributions are
considered, the assumption of independence is assumed. There are contexts in
which the assumption of independence is not realistic, such as in [Carpenter et al.
2006]. This paper extends the results that are proposed by including a correlation
in estimating the difference parameter between two exponentially distributed func-
tions. It is organized as follows. In Section 2, we present the basic results and
the problem of interest. In Section 3, we present the sequential analysis method
for the estimation of the difference of the scale parameters. Many works, such as
[Mukhopadhyay and Hamdy 1984], have addressed the estimation of the difference
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of the location parameters of two distributions. Lai [2001] gives a thorough review
of the sequential analysis technique along with challenges. The sections that follow
are about the stopping rule technique and simulations.

2. Preliminaries and problem of interest

We consider the class of exponential family type probability distributions on the
real line from [McCullagh and Nelder 1983]. The class is defined by the family of
densities G with respect to the Lebesgue measure as

f (x; θ, ϕ)= exp
{
θT (x)− b(θ)

a(ϕ)
+ c(x, ϕ)

}
, (1)

where

• f ∈ G,

• ϕ is a constant scale parameter, typically called the nuisance parameter,

• θ is a location parameter,

• a(ϕ) and c(x, ϕ) are specific functions of the scale parameter, and

• b(θ) and T (x) are functions of the location parameter and variable x , respec-
tively.

In fact, this exponential family density in (1) is a reformulation of the form
given in [McCullagh and Nelder 1983] as they simplify T (x) in (1) to simply x .
Also, the expression (1) generalizes the exponential family type of distributions as
described in [Terbeche et al. 2005] in the sense that

• if ϕ is known, (1) is the linear exponential family with canonical parameter θ ;

• if ϕ is unknown, (1) may be used as a 2-parameter exponential family type.

As described in [McCullagh and Nelder 1983], this family includes the normal,
exponential, gamma, and Poisson types of distributions. In this setting,

U =U (θ)=
∂ log L(θ, x)

∂θ
=
∂ f (x, θ)/∂θ

f (x, θ)
(2)

is the score function. Note that

• E(U )= 0,

• Var(U )= E(U 2)=−E(∂U/∂θ)= I (θ), known as Fisher’s information.
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In the exponential family case, as in (1),

l(θ, ϕ, x)= log L(θ, ϕ, x)=
θT (x)− b(θ)

a(ϕ)
+ c(x, ϕ),

U =
∂l
∂θ
=

T (x)− ∂b(θ)/∂θ
a(ϕ)

,

E(U )= 0 H⇒ E
(
T (x)

)
=
∂b(θ)
∂θ
= b′(θ).

Based on some index set I , we now consider two classes of exponential families
of random variables called X= (X i )i∈I and Y= (Yi )i∈I , with densities

f (xi ; θ, ϕ)= exp
{
θT (xi )− b(θ)

a(ϕ)
+ c(xi , ϕ)

}
, (3)

f (yi ; θ̃ , ϕ̃)= exp
{
θ̃T (yi )− b̃(θ̃)

ã(ϕ̃)
+ c̃(yi , ϕ̃)

}
. (4)

in the classes GX and GY , with the linear relationship

Yi = aX i + Zi , (5)

where i ∈ I , a is a fixed positive constant, and the Zi are unknown random variables
whose means are of interest.

The set I is an index countable set that could be finite or infinite. The linear
relation described in (5) of association of random variables is not new, but is still a
challenging problem. In fact, many authors [Carpenter et al. 2006; Iyer et al. 2002;
2004] have suggested its importance in applications.

Our goal is to estimate the parameter

λ= Eθ̃ [T (Y)] − aEθ [T (X)] , (6)

with square error loss. When a=1, this equation reduces to the difference between
two dependent exponential family of distributions. The dependence concept is the
innovation here as in many cases independence is assumed, even if it is known that
there is great cost associated with that independence assumption.

3. Sequential analysis

We use the sequential estimation procedure to estimate the mean of the difference
of two exponential families distributions with conjugate priors of the gamma or
Bernoulli or Poisson types. This procedure helps address the problem in the small
sample size case, maintaining a high power . The approach we use is Bayesian and
we assume that π1(θ) and π2(θ̃) are the conjugate priors given by

π1(θ)∝ exp[t (µ1θ −ϕ(θ))], π2(θ̃)∝ exp[s(µ2θ̃ − ϕ̃(θ̃ ))].
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This is not a new idea; Diaconis and Ylvisaker [1979] adopted this alternative to
the maximum likelihood estimation regarding the parameter θ as a random variable
with prior distribution, and the inference was based on the posterior distribution.
They used this setting in the exponential family with conjugate prior distribution
of the parameter θ given as

π(θ)=
exp{t (µθ −φ(θ))}∫
exp{t (µθ −φ(θ))}dθ

, (7)

where θ ∈2, t can be thought as prior sample size, and µ is the mean parameter.
See also [Annis 2007].

In that regard, we see that µ1 = Eπ1[ϕ
′(θ)] and µ2 = Eπ2[ϕ̃

′(θ̃)] are prior
estimators of Eθ [T (X)] and Eθ̃ [T (Y)], respectively.

Hence, following an idea from [Terbeche et al. 2005], the Bayes estimate of λ,
based on a random sample of size n of X1, X2, . . . , Xn of X, and Y1, Y2, . . . , Yn

of Y is given by

λ̂= λ̂(X,Y)= λ̂(X1, . . . , Xn, Y1, . . . , Yn)

= E[λ|X1, . . . , Xn, Y1, . . . , Yn]

= E[b̃′(θ̃)|Y1, . . . , Yn] − aE[b′(θ)|X1, . . . , Xn],

where

E[b′(θ)|X1, . . . , Xn] =
nT̄ X

n + tµ1

n+ t
, E[b̃′(θ̃)|Y1, . . . , Yn] =

nT̄ Y
n + sµ2

n+ s
, (8)

with

T̄ X
n =

T (X1)+ . . .+ T (Xn)

n
, T̄ Y

n =
T (Y1)+ . . .+ T (Yn)

n
.

Hence,

λ̂=
nT̄ Y

n + sµ2

n+ s
− a

nT̄ X
n + tµ1

n+ t
. (9)

The asymptotic estimate for the parameter as n −→∞ is

λ̂= T̄ Y
n − aT̄ X

n . (10)

A criteria for stopping the estimation of λ is developed. When t = s,

λ̂=
n(T̄ Y

n − aT̄ X
n )+ t (µ2− aµ1)

n+ t
=

n
n+ t

(T̄ Y
n − aT̄ X

n )+
t

n+ t
(µ2− aµ1).

When t = s = n,

λ̂=
(T̄ Y

n − aT̄ X
n )+ (µ2− aµ1)

2
. (11)

In the sequential analysis idea, the sample size is not predetermined. Hence, a
natural question to ask is when is the sample size large enough to make conclusions.
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4. Stopping rules

The Bayes risk of the estimate λ̂ of λ with respect to the prior π(θ) in (7) is

r(θ, λ̂)= E[R(θ, λ̂)],

where R(θ, λ̂)= E[L(θ, λ̂)] and L(θ, λ̂)= (λ− λ̂)2 is the loss function.
In this setting, the Bayes risk is given by

r(π1, π2)= r(λ̂(X,Y))

= E(XY)[Eλ|(X,Y)(λ̂(X,Y)− λ)2]

= E(X,Y)[Var(λ|(X,Y))]

= E(X,Y)
[
Var(b̃′(θ̃)− ab′(θ)|(X,Y))

]
= E(X,Y)

[
Var(b̃′(θ̃))+ a2 Var(b′(θ))− 2aρ

√
Var(b̃′(θ̃))

√
Var(b′(θ))

]
,

and the upper bound is achieved using the idea of Equation (4) in [Terbeche et al.
2005]. It is given by

r(π1, π2)= EY

[
Eθ̃ |Y

∣∣∣ b̃′′(θ̃)
n+ s

∣∣∣]+ a2 EX

[
Eθ |X

∣∣∣b′′(θ)
n+ t

∣∣∣], (12)

with equality achieved in (12) when ρ = corr(b̃′(θ̃), b′(θ)) = corr(X,Y) ≥ 0 is
minimized.

Considering the loss function

L(λ, λ̂, n)= (λ− λ̂)2+ cn, (13)

where c can be looked at as the cost of sampling, and the decision rule 1= (τ, δ),
where τ = τn(x, y) is the stopping rule and δ= δn(x, y) is the decision rule, we have
that the Bayes risk to minimize from a suitable sample size n obtained sequentially
given by

r(τ, π1, π2)= E(X,Y,τ )

[
Un

n+t
+

Vn
n+s
− 2aρ

√
[Var(b̃′(θ̃))]

√
[Var(b′(θ))] + cn

]
= E(Y,τ )

[ Un
n+t

]
+ E(X,τ )

[ Vn
n+s

]
+E(X,Y,τ )

[
−2aρ

√
[Var(b̃′(θ̃))]

√
[Var(b′(θ))] + cn

]
,

where Un = EY,τ |b̃′′(θ̃)| and Vn = EX,τ |b′′(θ)|.
Using ideas in [Terbeche et al. 2005] to achieve the upper bound in (12), the

stopping rule criteria can be expressed as if

Un ≤ c(n+ t)2 or Vn ≤ c(n+ s)2,
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Figure 1. Graph of the bias from ρ for c = 0.

then take another pair of observations. Otherwise, stop the collection process.
That is the estimation of the difference of the two exponential distributions can
be evaluated from the available informative sample. In other words, the stopping
variable is defined by the quantity

n ≥min
{√

Un
c
− t,

√
Vn
c
− s

}
. (14)

In order to study the optimized stopping rule in (14) and its efficiency, a numer-
ical simulation technique is provided in Section 5. We consider two exponentially
related distributions with gamma priors.

5. Simulation

We have described a methodology to compare the mean difference between two
exponential distributions that are linearly related. In this section, we show an ex-
ample of a simulation data of the related bivariate exponential distribution with the
different values of the correlations ρ.

Since we consider two dependent random variables, we create one exponential
random variable and create the other one with the desired correlation ρ. We gen-
erate sample data of size 50. We assume a coefficient of linear relationship a = 1
of simultaneous occurrence as described in [Marshall and Olkin 1967], and c = 0
and c = 0.25 in (13) over 5000 runs. The simulation was carried out using SAS.

The results of the two figures show that data does not need to be large to achieve
convergence. The pattern is the same regardless of the number of runs. Figures 1
and 2 give the bias of the mean difference for c = 0 and c = 0.25, respectively.
The convergence is justified by the maximal error we allowed to reach based on
the stopping rule, when the data generation and bias are computed at three and five
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Figure 2. Graph of the bias from ρ for c = 0.25.

decimal places (circles and dots, respectively). The algorithm performs very well
even when the sample size is small, showing great robustness.

The resulting plot of the bias is very helpful in explaining the effectiveness
of the estimator. When the correlation is present, this new estimator should be
considered. Furthermore, the choice of the cost of resampling c does not affect
significantly in the error estimation. Setting c = 0.25 as in Figure 2 shows the
same trend as for Figure 1. The risk is then minimized considerably when the
correlation is significant.

6. Conclusion

The proposed sequential parametric procedure in the estimation of the difference of
two exponential distribution is quite useful and relevant. This sequential estimation
for the bivariate distributions of the exponential type families is used to get an
estimate of the mean difference. It is more efficient in terms of bias.
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