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Abstract  
Driven by a growing requirement during the 21st century for the integration of rigorous statistical analyses in 
engineering research, there has been a movement within the statistics and quality communities to evolve a unified 
statistical engineering body of knowledge (Hoerl & Snee, 2010). Systems Statistical Engineering research seeks to 
integrate causal Bayesian hierarchical modeling (Pearl, 2009) and cybernetic control theory within Beer's Viable 
System Model (S Beer, 1972; Stafford Beer, 1979, 1985) and the Complex Systems Governance framework (Keating, 
2014; Keating & Katina, 2015, 2016) to produce multivariate systemic models for robust dynamic systems mission 
performance. (Cotter & Quigley, 2018) set forth the Bayesian systemic hierarchical constraint propagation theoretical 
basis for modeling the amplification and attenuation effects of environmental constraints propagated into systemic 
variability and variety. In their theoretical development, they simplified the analysis to only deterministic constraints, 
which models only the effect of statistical risks of failure. Imprecision and uncertainty in the assessment of 
environmental constraints will induce additional variance components in systemic variability and variety. To make 
causal Bayesian hierarchical modeling more capable of capturing and representing the imprecise and uncertain nature 
of environments, we must incorporate rough or fuzzy functions and boundaries to model imprecision and grey 
boundaries to model uncertainty in constraint propagation at each system level to measure the overall impact on the 
organization variability and variety.  This paper sets forth a proposed research method to incorporate rough, fuzzy, 
and Grey set theories into Systems Statistical Engineering causal Bayesian hierarchical constraints modeling. 
 
Keywords 
Fuzzy Hierarchical Systems, Causal Bayesian Hierarchical Models, Systems Statistical Engineering. 
Introduction 
Many of the world's most challenging statistical problems are large, complex, and unstructured. Statistical engineering 
has been proposed to guide the integration of multiple statistical methods to address these large, complex, and 
unstructured problems (Hoerl & Snee, 2010). Statistical engineering was initially defined as: "The study of how to 
best use statistical concepts, methods, and integrate them with information technology and other relevant disciplines, 
to achieve enhanced results." (Hoerl & Snee, 2010). It involves the integration of statistical thinking (often at the 
strategic level) with the application of statistical methods and tools (at the operational level). It has the potential to 
provide the missing tactical link that will drive the proper application of statistical methods based on a solid 
understanding of statistical thinking principles. Statistical Engineering typically involves the appropriate selection and 
use of multiple statistical tools integrated with other relevant tools into a comprehensive approach to solving complex 
problems.  

In literature, (Cotter, 2012) summarized previous studies that led to the proposal for statistical engineering, 
identified the gaps in knowledge that statistical engineering needs to address, explored additional gaps in knowledge 
not addressed in the prior works, and proposed a working definition of and body of knowledge for statistical 
engineering. In this paper, the author mentioned that rapid development in statistics and quality management cause 
failure to contribute to both academic and industrial domains. Quality experts do not seem to be using the latest 
published research, and scientists do not sufficiently inscribe the potential problems experienced by practitioners.  In 
addition, (Cotter, 2012) stated that it is vital to verify that the empirical statistical model correctly represents the 
physics of the practical problem definition and validates the model's predictive capability against actual systemic 
problem behavior. In other words, the closer the empirical statistical model represents actual systemic behavior, the 
more accurate and precise its predictive capability.  
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The Statistical System Engineering Causal Bayesian Hierarchal Model 
To achieve this goal, (Cotter, 2015) argued that continuing using the general linear model (GLM) to frame statistical 
engineering is not the right choice and has several drawbacks.  For example, (Tahami et al., 2016) explained that 
conditional dependencies in statistical engineering could not be addressed in the GLM framework, results in models 
that are hard to fit or that may not converge to a unique solution. They may not enhance the understanding of causal 
physical processes in dynamic stochastic systems (Tahami et al., 2019). To address this gap, that is, integrating 
deterministic engineering models within stochastic models to better capture the uncertainty, the author proposed that 
causal hierarchical Bayesian networks can be used as a framework to model joint deterministic-stochastic dynamic 
causal effects in engineering models.  

The limitation of (Cotter, 2015) was that the author did not explicitly develop the modeling methodology that 
can be used to predict the socio-technical systemic performance of statistical engineering models. Using the concept 
of Hierarchical Bayesian Networks (Cotter, 2016) specified the modeling methodology to address this gap and 
proposed the initial theoretical foundation for the method. The author stated that after developing such a method of 
accurately address the economic, environmental, political, social, legal, and technical aspects of any socio-technical 
system, it is vital to decompose the systemic constraints to subsystems, modules, and components level. In doing so, 
(Cotter, 2017) stated that to accurately decompose the economic, environmental, political, social, legal, and technical 
constraints to subsystems and modules and then accurately predict systemic mission performance, the systems 
statistical engineering dimension should be considered as a hierarchical constraint propagation. Towards this end, the 
author developed a methodology for the decomposition of systemic models using a causal Bayesian hierarchal 
modeling approach.  

In their joint work, (Cotter & Quigley, 2018) presented constraint propagation theory, systems theory, and 
Bayesian constrained regression theory related to the problem of systemic hierarchical constraint propagation and 
established the primary method for their integration into the systems statistical engineering body of knowledge.  Their 
proposed constraint propagation was based on causal Bayesian hierarchal model, 
 

Min YTotal = f(w′(Ypred – T))          (1) 
s.t. 

Y = F(pai, uxi)β + F(paj, uzj)γ + ε 
LBX ≤ F(pai, uxi) ≤ UBX 

possibly                 LBZ ≤ F(paj, uzj) ≤ UBZ 
 
Where YTotal is the vector or matrix of systemic performance variables, f(w′(•)) is a vector or matrix of normalized 
weighting functions that admit tradeoffs among the (Ypred – T) differences, and T is the vector or matrix of identified 
systemic mission performance targets.  F(pai, uxi) is a matrix of functional relationships of the X predictors, and F(paj, 
uzj) ) is a matrix of functional relationships of the Z within and cross-layer covariates, respectively to the Ypred variables 
performance levels.  Where the functional relationship has an unknown form, fi(pai, uxi) = xi observed data and fj(paj, 
uzj) = zj observed covariate values, the residual error accumulates in the ε term.  The β response parameters of Ypred to 
X and the γ response parameters of Ypred to Z are constant coefficients to be determined. 

Previous studies in the Systems Statistical Engineering domain simplified the analysis to only deterministic 
constraints, which models only the effect of statistical risks of failure (Tahami & Fakhravar, 2020b). However, 
imprecision and uncertainty in the assessment of environmental constraints will induce additional variance 
components in systemic variability and variety that need to be considered. To make causal Bayesian hierarchical 
modeling more capable of capturing and representing the imprecise and uncertain nature of environments, we must 
incorporate rough or fuzzy boundaries to model imprecision and grey boundaries to model uncertainty in constraint 
propagation at each system level to measure the overall impact on the organization variability and variety (Tahami & 
Fakhravar, 2020a).  In other words, what has not been researched is how deterministic and stochastic engineering 
models can be integrated into state space, non-recursive causal Bayesian hierarchical models of structural, stochastic, 
fuzzy, rough, and grey components to model the response of purposeful systemic causal variety to environmental 
constraining causal variety to design robust dynamic systems mission performance. This research sets forth a proposed 
method to incorporate rough, fuzzy, and Grey set theories into Systems Statistical Engineering causal Bayesian 
hierarchical constraints modeling. 
 
Proposed Research Modeling Methodology  
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All assessments of systemic variation and variety require measurement or assessment of Ypred, LBX ≤ F(pai, uxi) ≤ 
UBX, and LBZ ≤ F(paj, uzj) ≤ UBZ respectively.  Ypred, F(pai, •), and F(paj, •j)  may be measured or assessed with 
some level of accuracy and precision admitting probabilistic models or subjectively admitting some level of fuzzy, 
rough, or grey uncertainty depending on the data type. F(•, uxi), and F(•, uzj)  may be assessed only imprecisely or 
with uncertainty.  Definitions of risk, imprecision, and uncertainty are: 
 

Risk is observed in those situations in which the potential outcomes can be described by well-known 
probability distributions. 
Imprecision is observed in those situations in which the potential outcomes cannot be described by 
well-known probability distributions but can be estimated by subjective probabilities. 
Uncertainty is observed in those situations in which the potential outcomes cannot be described by 
well-known probability distributions and cannot be estimated by subjective probabilities but can be 
estimated by statements of ambiguity. 

 
Exhibit 1 sets forth a mapping of risk, imprecision, and uncertainty modeling to data type and measurement or 
assessment type. 
 

Exhibit 1.  Mapping of uncertainty type to data type and measurement/assessment. 
 

  Measurement/Assessment 
Uncertainty Type Data type Objective Subjective 
Risk Discrete Probabilistic Rough sets 
 Continuous Probabilistic Fuzzy sets 
Imprecision Discrete Rough sets Fuzzy-Rough sets 
 Continuous Grey sets Fuzzy sets; Grey sets 
Uncertainty Discrete Rough sets; Grey sets Fuzzy sets; Grey sets 
 Continuous Gray sets Fuzzy sets; Grey sets 

 
The problem of constraint propagation within the proposed SSE causal Bayesian hierarchal model is one of 

integrating these differing forms of uncertainties into a unified variance component representation of equation (1). 
Generally, there are three possibilities that need to be investigated based on what type of data we are dealing with: 

• Risk probabilistic data: Cotter (2018) presented constraint propagation theory, systems theory, and 
Bayesian constrained regression theory related to the problem of systemic hierarchical constraint 
propagation and established the primary method for their integration into the systems statistical 
engineering body of knowledge. 

• Fuzzy and rough data: To deal with uncertainty, there are several approaches that can be considered. The 
first possible method is to consider fuzzy sets. By definition, fuzzy set 𝐴𝐴 is a set of ordered pairs 
{〈𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥)〉|𝑥𝑥 ∈ 𝕌𝕌} where 𝕌𝕌 is a universe of discourse and 𝜇𝜇𝐴𝐴:𝕌𝕌 → [0,1] is the membership function of 
𝐴𝐴 and 𝜇𝜇𝐴𝐴(𝑥𝑥) is the grade of belongingness of 𝑥𝑥 in 𝐴𝐴. The second approach is to extend fuzzy sets to 
rough sets. Generally, rough sets take a different route from fuzzy sets in representing uncertainties. It 
represents an uncertain set by means of approximations in information systems. A rough approach is 
with regards to ambiguity and a lack of information, whereas a fuzzy approach is more associated with 
vagueness and a lack of definable boundaries. For defining rough sets, first, we need to define an 
approximation of a set. (Khuman 2015; Yang and Hinde 2010) 
Let Λ = (𝕌𝕌,𝐴𝐴) is a given information system, where 𝕌𝕌 is a non-empty, finite set of objects called the 
universe, and 𝐴𝐴 is a non-empty, finite set of attributes. Also, consider 𝑋𝑋 ⊆ 𝕌𝕌 and 𝐵𝐵 ⊆ 𝐴𝐴. The set 𝑋𝑋 is 
approximate with two sets 𝐵𝐵∗(𝑋𝑋) and 𝐵𝐵∗(𝑋𝑋) as follows: 
 

𝐵𝐵∗(𝑋𝑋) = �{𝐵𝐵(𝑥𝑥) ∶ 𝐵𝐵(𝑥𝑥) ⊆ 𝑋𝑋}
𝑥𝑥∈℧

, 

𝐵𝐵∗(𝑋𝑋) = �{𝐵𝐵(𝑥𝑥) ∶ 𝐵𝐵(𝑥𝑥) ∩ 𝑋𝑋 ≠ 𝜙𝜙}
𝑥𝑥∈℧

. 
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𝐵𝐵∗(𝑋𝑋) and 𝐵𝐵∗(𝑋𝑋) are a lower and upper approximation set, respectively. The lower approximation is the 
set of all objects that absolutely belong to set 𝑋𝑋 with respect to 𝐵𝐵, and the upper approximation is the set 
of all objects which can be classified as being possible members of set 𝑋𝑋 with respect to 𝐵𝐵. 
Knowing the approximation definition, let the pair 𝑎𝑎𝑎𝑎𝑎𝑎 = (𝕌𝕌,𝐵𝐵) be an approximation space on 𝕌𝕌 and 
𝕌𝕌/𝐵𝐵 denotes the set of all equivalence classes of 𝐵𝐵. The family of all definable sets in approximation 
space 𝑎𝑎𝑎𝑎𝑎𝑎 is denoted by 𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎𝑎𝑎). Given two subsets 𝐴𝐴,𝐴𝐴 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷(𝑎𝑎𝑎𝑎𝑎𝑎), with 𝐴𝐴 ⊆ 𝐴𝐴 , the pair (𝐴𝐴,𝐴𝐴 ) 
is called a rough set. (Yang & Hinde, 2010) 
Various uncertainties in real-world applications can bring difficulties in determining the crisp 
membership functions of fuzzy sets, and various approaches have been developed to accommodate the 
uncertainties in fuzzy membership values, such as interval-valued fuzzy sets where the membership of 
an individual element is characterized as an interval instead of a single value in fuzzy sets, Atanassov 
intuitionistic fuzzy sets where a degree of membership and degree of non-membership are presented, 
shadowed sets where the evaluation of membership is scored as either (1), (0) or belonging to the 
shadowed region [0, 1] and type-2 fuzzy sets where the secondary grade membership function itself is a 
type-1 fuzzy set. In addition to the aforementioned approaches, the R-fuzzy sets use rough sets to 
approximate the membership function of fuzzy sets. R-fuzzy sets are an extension of fuzzy set theory 
that allows for the uncertain fuzzy membership value to be encapsulated within the bounds of an upper 
and lower rough approximation. (Khuman, 2016) 
Utilizing the notion of R-fuzzy sets, by referring to equation 1, the rough sets are used to address the 
uncertainty in the boundaries (LBX, UBX, LBZ, UBZ), and fuzzy sets are used for the functions (F(pai, 
uxi), F(paj, uzj)). 

• Grey data: As a different model for uncertainty representation, grey systems provide another route to 
uncertainty modeling. In grey systems, the information is classified into three categories: white with 
completely certain information, grey with insufficient information, and black with totally unknown 
information. When Combining fuzzy sets and grey systems, grey sets were proposed as a general model 
for uncertainty representation. By definition, for a set 𝐴𝐴 ⊆ 𝕌𝕌, if the characteristic function value of 𝑥𝑥 
with respect to 𝐴𝐴 can be expressed with a continuous grey number 𝑣𝑣± = [𝑣𝑣−, 𝑣𝑣+] ∈ 𝐷𝐷[0,1]± or a discrete 
gray number 𝑣𝑣± = {𝑣𝑣−, 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘 ,𝑣𝑣+} ∈ 𝐷𝐷[0,1]±, then 𝐴𝐴 is a grey set. Also, a grey number is a 
number with clear upper and lower FHboundaries but which has an unknown position within the 
boundaries. It is different from an interval or a set in that it is a single number represented by an interval 
or a set.  
In the case of dealing with grey sets, by referring to equation 1, to encapsulate uncertainty, Fuzzy sets 
are used for the boundaries (LBX, UBX, LBZ, UBZ), and grey sets are used for the functions (F(pai, uxi), 
F(paj, uzj)). 

 
Application of Fuzzy Constraints to Engineering Management 
The primary contribution of hierarchical fuzzy constraint propagation within the systems Bayesian hierarchical model 
(1) to engineering management is to EMBOK Domain 6: Quality Management System and Domain 9: Systems 
Engineering.  In general, there are several standard practices to specify qualitative product characteristics such as 
visual standards or written specifications of two or three-dimensional size or depth or effect on final product 
functionality. However, currently, practitioners mostly consider deterministic limits to set these visual and written 
specifications (Erudural, 2006). In their article (Brenneman & Myers, 2003) discussed that qualitative product and 
process parameters had been measured as 0-1 factors in general. However, due to the inherent complexity and 
uncertainty that exists in product design and thus in determining the qualitative product characteristics, modeling these 
parameters as 0-1 factors cannot capture the uncertainty and does not result in accurate outcomes. To address this 
issue, (Wang & Tong, 2003) utilized grey relational analysis from system theory. They proposed a procedure to 
consider uncertainty and variation in the quality design of products and eventually determine the qualitative 
specifications effectively. 

In this paper,  we proposed a methodology that directly incorporates appropriate fuzzy, rough, and grey sets 
models in assessing the propagation effects of environmental factors on product performance. We utilized fuzzy set, 
rough set, or grey set theory within the context of hierarchical Bayesian analysis to model the imprecision and 
uncertainty nature of environments and to measure the overall impact on the organization's variability and variety. By 
directly incorporating appropriate fuzzy, rough, and grey sets models, engineering managers of product design and 
production processes will have a better understanding of the impact of environmental factors on resultant product 
performance. 



Fakhravar & Tahami 

5 
Copyright, American Society for Engineering Management, 2021 

 
Conclusions  
Previous studies in the Systems Statistical Engineering domain simplified the analysis to only deterministic 
constraints, which models only the effect of statistical risks of failure. However, imprecision and uncertainty in the 
assessment of environmental constraints will induce additional variance components in systemic variability and 
variety that need to be considered. To make causal Bayesian hierarchical modeling more capable of capturing and 
representing the imprecise and uncertain nature of environments, we must incorporate rough or fuzzy boundaries to 
model imprecision and grey boundaries to model uncertainty in constraint propagation at each system level to measure 
the overall impact on the organization variability and variety. This research sets forth a proposed method to incorporate 
rough, fuzzy, and Grey set theories into Systems Statistical Engineering causal Bayesian hierarchical constraints 
modeling. 

For future research, the authors are going to develop the mathematical formulation of integrating Fuzzy set 
theory, Rough set theory, and Grey set theory for the hierarchical mapping of systemic constraints. In addition, in 
terms of developing Systems Statistical Engineering body of knowledge, as it was stated in Cotter (2018), other aspects 
could be considered to develop a more accurate representation of the model which are not implemented yet in the 
literature, such as considering Technical-economic versus human preference constraints or considering systems with 
non-recursive directed acyclic graph feedback loops. 
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