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Computational fluid dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel

grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision

2030 Study to increase the capacity and capability of CFD simulation. The study also cautions that computer

architectures are undergoing a radical change, and dramatic increases in algorithm concurrency will be required

to exploit full performance. This paper reviews four different methods to parallel anisotropic grid adaptation. They

coverboth ends of the spectrum: 1) using existing state-of-the-art software optimized for a single core andmodifying it

for parallel platforms, and 2) designing and implementing scalable software with incomplete but rapidly maturing

functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for

multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a

unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric

evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation.

Nomenclature

C�⋅� = complexity of a metric field
jkj = volume of a tetrahedron in evaluated metric Mmean

La = Euclidean edge length evaluated in themetric of vertexa
M = continuous metric field
M = discrete metric field defined at the vertices of a grid
Mmean = metric tensor interpolated at the centroidof a tetrahedron
Qk = mean ratio shape measure
te2e = total end-to-end time for grid adaptation

I. Introduction

PARALLEL anisotropic grid generation and adaptation methods
modify an existing mesh to conform to a specified anisotropic

metric field. This metric field is constructed to specify a new grid that
reduces errors estimated on the current grid and solution. Robust grid
adaptation mechanics that produce and modify anisotropic elements
with aspect ratios on the order of tens of thousands are required for
high-Reynolds-number viscous flows. Grid adaptationmethods have
made dramatic improvements in the last decade. Alauzet and Loseille
[1] showed the evolution of solution-adaptive methods that include
anisotropy to resolve simulations with shocks and boundary layers.
Park et al. [2] documented the current state of solution-based

anisotropic grid adaptation and motivated further development for
aerospace analysis and design in the broader context of the “CFD
Vision 2030 Study” by Slotnick et al. [3]. The CFD Vision 2030
Study provides a number of case studies to illustrate the current state
of computational fluid dynamics (CFD) capability and capacity as
well as the potential impact of emerging high-performance comput-
ing (HPC) environments forecasted to be available by the year 2030.
Parallel adaptive and anisotropic grid generation is at early stages of

research and development compared to parallel isotropic grid gener-
ation. In terms of concurrency, communication, and synchronization
aspects, the codes for both types of gridgeneration sharemanycommon
characteristics. Existing massively parallel isotropic grid generation
and adaptation procedures for current and emerging HPC platforms
often (over-)decompose the original grid generation problem into n
smaller subproblems, which are solved (i.e., meshed) concurrently
using n ≫ p cores [4]. The subproblems can be formulated to be either
tightly coupled, partially coupled, weakly coupled, or decoupled. The
coupling of the subproblems determines the intensity of the communi-
cation and the amount/type of synchronization required to maintain
correctness and grid quality. For example, a tightly coupled approach
requires each subproblem to constantly maintain consistency with
adjacent subproblems. A decoupled approach decomposes the grid
generation task in a way that eliminates the need for synchronization.
Four different parallel anisotropic grid adaptation methods are

presented with different communication and synchronization
requirements. The methods are evaluated with a number of qualita-
tive and quantitative criteria introduced by the Unstructured Grid
Adaptation Working Group (UGAWG) in their first benchmark [5],
which focused on evaluating adaptive grid mechanics for analytic
metric fields on planar and simple curved domains. The UGAWG is
an informal group that has been formed to mature unstructured grid
adaptation technology. The first UGAWGbenchmark article contains
a list of future directions: among them is parallel execution, which is
the focus of this paper.

II. Parallel Strategies

The following parallel grid generation and adaptivity attributes are
embodied to varying degrees by the software evaluated in this study.
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They range from attributes that are crucial to success in parallel

execution to attributes that ensure longevity to enhance the adapt-

ability of software for emerging computer concurrency architectures.
1) Stability is the requirement that the quality of the grid generated

in parallelmust be comparable to that of a grid generated sequentially.
The quality is defined in terms of the density and shape of the
elements evaluated in the metric field, as well as the number of the
elements (fewer is better for the same level of metric conformity).
2) Reproducibility is separated into two forms by Chrisochoides

et al. [6]. Strong reproducibility requires that the grid generation
code, when executed with the same input, produces identical results
under the following modes of execution: 1) continuous without
restarts, and 2) with restarts and reconstructions of the internal data
structures. Weak reproducibility requires that the grid generation
code, when executed with the same input, produces results of the
same quality under the following modes of execution: 1) continuous
without restarts, and 2) with restarts and reconstructions of the
internal data structures.
3) Robustness is the ability of the software to correctly and effi-

ciently process any input data. Automation is critical for massively
parallel computations because operator intervention is impractical.
4) Scalability is the ratio of the time taken by the best sequential

implementation to the time taken by the parallel implementation.
Amdahl’s law [7] suggests that the speedup is always limited by the
inverse of the sequential fraction of the software. Therefore, all
nontrivial stages of the computation must be parallelized to leverage
the current and emerging architectures designed to deliver a million-
to billion-way concurrency.
5)Code reuse is a result of amodular design of the parallel software

that builds upon previously designed sequential or parallel meshing
code such that it can be replaced and/or updatedwith aminimal effort.
Code reuse is feasible only if the code satisfies the reproducibility
criterion.

There are two common approaches for parallel grid generation and

adaptation development, where these development approaches try to

satisfy the aforementioned attributes. The first approach uses existing

state-of-the-art serial software (i.e., fully functional, and thus maxi-

mum code reuse) and modifies it for parallel execution, which will

be referred as the functionality-first approach. This paper briefly

introduces and presents data from two such codes: EPIC and Feflo.a.

The second approach designs and implements scalable software

(by definition, no code reuse) with an initially incomplete function-

ality and the intention of completing functionality as it is needed,

which will be referred to as the scalability-first approach. This paper
briefly introduces and presents data from two such codes: refine and
CDT3D. In this paper, we focus only on stability and scalability,
given that robustness and reproducibility are addressed elsewhere:
for CDT3D in Ref. [8] and for the other codes in Refs. [9–11].

The grid adaptation tools used in this study leverage the paralle-
lization methods of data decomposition, domain decomposition, or a
combination of both. Chrisochoides [12] describes the telescopic
approach, which applies a combination of decomposition techniques
for current and emerging architectures with multiple memory/
network hierarchies as shown in Fig. 1. The implementation of the
telescopic approach is part of a long-term goal for parallel grid
generation and adaptation at the Center for Real-Time Computing
(CRTC) to achieve and sustain a billion-way concurrency over the
next 12 years. To achieve this goal, concurrency is exploited at
different scales (levels) corresponding to the latency and the band-
width of different network/memory hierarchies in order to orchestrate
communication and synchronization as well as (in the future) power
consumption.
The implementation of the telescopic approach relies on multiple

abstractions used in the parallel grid generation community over the
last 25 years [4]: element, cavity, data region, and subdomain. These
abstract data types vary in granularity and complexity (i.e., type and
size of the data structures) and type/intensity of communication/
synchronization required to implement their basic operations. The
intensity/type of communication/synchronization determines their
mapping to different layers of memory/network hierarchy. For exam-
ple, concurrency at the element or cavity level using edge swapping is
permitted only in the shared memory of the cores within a single-
chip, bulk, and locally synchronous exchange of data among data
regions is permitted only within the distributed shared memory of a
few nodes; and asynchronous communication of data buffers is
permitted over the distributed memory of several hundreds of nodes
and/or tens of racks. Given these constraints, from the chip to the
node levels, the telescopic approach deploys 1) parallel optimistic
(PO) methods similar to those presented in Refs. [8,13,14], and
2) parallel data refinement (PDR) methods similar to those presented
in Refs. [6,15]; whereas on supernodes and/or racks, it could use
3) parallel constrained (PC) methods similar to those presented in
Ref. [16] and/or loosely coupled [17,18] methods.
A survey of experience with isotropic grid generation can be used

to forecast the performance of future enhancements to the anisotropic
algorithms. PO anisotropic grid generation codes like CDT3D on

Fig. 1 The telescopic approach.
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current and emerging distributed shared-memory (DSM) machines
are expected to scale up to 150 to 200 cores due to memory manage-
ment issues similar to ones observed with parallel optimistic
Delaunay meshing (PODM) [14]. The use of sophisticated memory
pools can help to sustain scaling but do not significantly extend the
practical concurrency. Locality-aware parallel implementations can
help with better data affinity but have limited impact due to the
dynamic memory management aspects. For example, locality aware
parallel Delaunay (LAPD) [19] can improve performance for up to
200 to 250 cores; see Fig. 2 (right).
These two studies [14,19] and the data in Fig. 2 (right) suggest that

one has to explore nested parallelism at both fine- and coarse-grain
levels in order to improve performance for up to 900 to 1000 cores.
Namely, data from isotropic grid generation implementations indi-
cate that the application of the PDR on PODM (PDR.PODM) on
both DSM [20] and distributed memory machines using hybrid
Message Passing Interface (MPI� threads) programming models
[21] can improve the overall performance.
However, Fig. 2 indicates that such improvements are expected to

have limited impact (i.e., about 66% parallel efficiency) on higher
than 3600 to 6000 cores due to local synchronization and volume of
data migration. Parallel metric-based adaptive anisotropic codes are
expected to have the same behavior since they are very similar to
isotropic ones when it comes to concurrency, communication, and
synchronization. Load balancing is a big factor in adaptive codes, but
all data depicted in Fig. 2 do not use load balancing.
TheCRTC team plans to address the load balancing problem using

a parallel runtime software system designed and implemented for
load balancing [18]. However, even with load balancing for a large
number of cores (≫ 10,000), communication/synchronization over-
heads are addressed by using remaining levels of telescopic approach
(i.e., PC and loosely coupled methods that rely on a lower volume of
asynchronous communication). Anisotropic grid adaptation tools use
one or more levels of this hierarchy as described in the following
subsections.

A. CDT3D from Old Dominion University

CDT3D implements a tightly coupled approach and exploits fine-
grain parallelism at the cavity level using data decomposition. Its
current implementation targets shared-memory multicore nodes
using multithreaded execution at the chip level. CDT3D is designed
for scalability with maximum code reuse. Specifically, it is designed
to simplify the implementation requirements for the communication
and synchronization of both data and domain decomposition layers
of the telescopic approach. This design is expected to be able to
achieve high speed at the core level and tolerate costs due to gather/
scatter operations in order to meet scalability requirements. The
stability, robustness, and reproducibility are constantly reinforced
with the parallelization of any new operation included in CDT3D.
At the chip level, CDT3D performs concurrently multiple (but

same) grid operations (e.g., edge/face swapping) on different data by

using fast atomic lock instructions to guarantee correctness. The

pipeline of CDT3D can be divided into three main steps: grid

preprocessing, grid refinement, and grid quality optimization; see

Fig. 3. In the first stage, edges longer than a user-defined threshold are

collapsed in parallel, Grid adaptation introduces points iteratively

into the grid using a centroid point creation scheme and direct

insertion. After each point creation iteration, the grid is optimized

in parallel using a fine-grained topological scheme for local recon-

nection [8], optimizing metric-based criteria. Once the refinement

has been completed, a final edge-collapse pass is performed to

suppress any small edges created during the refinement. In the last

stage, the grid quality is further improved using a combination of

local reconnection and vertex smoothing. Onemajor improvement of

CDT3D in this work is that it adapts both the boundary and the

volume of the grid at the same time that, together with the introduc-

tion of the edge-collapse operation, improve the quality of the grid by

three orders ofmagnitude in comparison to the results presented in an

earlier form of this work [22]. Moreover, the advancing front point

creation strategy that was replaced with computing the centroids of

elements with at least one edge longer than the target size offers a

significant improvement toward the scalability of the method.

B. EPIC from The Boeing Company

EPIC uses a partially coupled approach that exploits coarse-grain

parallelism at the subdomain level in a distributed memory environ-

ment. Given the initial mesh, EPIC partitions the mesh into subdo-

mains and performs a complete mesh operator pass consisting of

refinement, coarsening, element reconnection, and smoothing oper-

ations on the interior of each subdomain while temporarily freezing

the mesh at partition boundaries. After each mesh operator pass,

EPIC updates the decomposition by shifting elements between sub-

domains. Subdomain rebalancing uses an optimization technique

that attempts to maintain an equal work-load balance between sub-

domains while ensuring that frozen mesh edges near partition boun-

daries aremoved to the interior of a subdomainwith each rebalancing

step. Multithreading can be used to parallelize the mesh operators at

the subdomain level but has only been implemented for a subset of

mesh operations. This incomplete multithreading implementation

has seen limited use to date.

Fig. 2 Data on the first two layers of the telescopic approach applied on isotropic imaged-based grid generation.

Fig. 3 The CDT3D grid generation pipeline (Seq = sequential opera-
tion).
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The EPIC anisotropic grid adaptation process [23] provides a
modular framework for anisotropic unstructured grid adaptation that
can be linkedwith external flow solvers. EPIC relies on repeated use of
mesh operator passes to modify a grid such that element edge lengths
match a given anisotropic metric tensor field. The metric field on the
adapted grid is continuously interpolated from the initial metric field.
Several methods are available to preprocess the metric to limit mini-
mum and maximum local metric sizes, control metric stretching rates
and/or anisotropy, and ensure smoothness of the resulting distribution.
In addition, the metric distribution can be limited relative to the initial
grid and/or to the local geometry surface curvature. The surface grid is
maintained on an Initial Graphics Exchange Specification (IGES)
geometry definition with geometric projections and a local regridding.
EPIC is routinely used on production applications at The Boeing
Company and has been applied on several workshop cases where
the parallel implementationmakes it practical for large-scale problems
[9,10]. Throughout this study, EPIC grids using three operations are
presented: insertion, collapse and swap (EPIC-ICS).

C. refine from NASA

The refine code relies on the implementation of a partially coupled
approach that exploits coarse-grain parallelism at the subdomain level
usingdomaindecompositionand ahomogeneousprogrammingmodel
in a distributed memory environment. The parallel execution strategy
is described by Park and Darmofal [24]. The interior portion of each
subdomain is modified in parallel while the border regions between
subdomains are fixed. Elements that span boundaries and need to be
modified to improve metric conformity are marked for future refine-
ment. A combined load balancing and migration are performed to
equalize the number of nodes on each partition while penalizing
elements marked for modification that span subdomains after migra-
tion. The repartitioning step provides edgeweights to either ParMETIS
[25] orZoltan [26] graph-basedpartitioning libraries.The current load-
balancing and migration approach has improved parallel scaling prop-
erties over the transcript approach described in Ref. [24].
The refine code is designed to output a unit grid [27] for a given

metric field.** A combination of edge split and collapse operations
proposed by Michal and Krakos [23] is used to modify long and short
edges toward unity length in themetric.Node relocation isperformed to
improve adjacent element shape. A new ideal node location of the node
is created for each adjacent element. A convex combination of these
ideal node locations is chosen to yield a new node location update that
improves the element shape measure in the anisotropic metric [28].
Moreover, the refine code uses pliant smoothing [29], improving
significantly over the results presented in Ref. [22]. Geometry is
accessed through theEngineeringGeometryAerospaceDesignSystem
(EGADS) [30] and EGADSlite [31] application program interface.

D. Feflo.a from National Institute for Research in Computer Science
and Automation

Feflo.a employs a partially coupled coarse-grained approach that
exploits parallelism at the subdomain level in a shared-memory
environment. The initial grid is decomposed in multiple levels (i.e.,
domain decomposition). The initial volume is split and adapted in
parallel while treating the interface between subdomains as a con-
strained surface. Once the initial subdomains are complete, a new set
of subdomains are constructed entirely of the constrained interface
elements of the previous subdomains. This process recurses until all
the constrained elements are adapted [32].
Feflo.a is an adaptation code developed at the National Institute for

Research in Computer Science and Automation (INRIA) that can
process a manifold or nonmanifold surface and/or volume grids
composed of simplicial elements. It creates a unit grid [33,34] in
two steps. The first step improves the edge length distribution with
respect to the input metric field. Only classical edge-based operators
(insertion and collapse) are used during this step. The second step is
the optimization of grid element shape measures with node smooth-

ing as well as tetrahedra edge and face swaps. For the surface grid
adaptation, a dedicated surface metric is used to control the deviation
of the metric and surface curvature. This surface metric is then
combined with the input metric. New points created on the surface
are evaluated on a (fine) background surface grid and optionally on a
geometry model via the EGADS application program interface.
The classical edge-based operators are implemented by a unique

cavity-based operator [32,35]. This cavity-based operator simplifies
code maintenance, increases the success rate of grid modifications,
has a constant execution time formany different local operations, and
robustly inserts boundary-layer grids [36]. When the cavity operator
is combined with advancing-point techniques, it outputs metric-
aligned and metric-orthogonal grids [37].

III. Experimental Evaluation

A. Method

A series of experiments are performed to evaluate the parallel
strategies defined in the previous section. In each experiment, a given
grid is adapted to conform to an anisotropic metric fieldM. Loseille
and Alauzet [27] provide a thorough introduction of the definition
and properties of the metric tensor field. The complexity C of a
continuous metric fieldM is defined as the integral

C�M� �
Z
Ω

�����������������������
det�M�x��

p
dx (1)

Complexity is computed on the discrete grid by samplingM at each
vertex i as the discrete metric field M:

C�M� ≡
XN
i�1

����������������
det�Mi�

p
Vi (2)

where Vi is the volume of the Voronoi dual surrounding each node.
The relationship between C and the number of vertices and elements
in the adapted grid is shown theoretically by Ref. [27] and exper-
imentally by Refs. [38,39]. The complexity has a linear dependency
with respect to the number of vertices and tetrahedra, where the
vertices are approximately 2C and tetrahedra are approximately 12C.
The complexity of a metric can be scaled to create a uniformly

refined (or coarsened) grid with the same relative distribution of
element density and shape. The metric tensor MCT

that corresponds
to the target complexity CT is evaluated by Ref. [27]:

MCT
�

�
CT

C�M�
�
2∕3

M (3)

where M is the metric tensor before the scaling, and C�M� is the
complexity of the discrete metric before scaling.
During mesh adaptation, the metric tensor values are known only

on the vertices of the discrete mesh. However, the evaluation of
quantities like edge length and mean ratio (see the following) require
the ability to evaluate the metric at any point of the domain. This gap
is filled by the use of metric interpolation. All methods presented in
this work use the log-Euclidean framework for metric interpolation
presented in Ref. [40]. According to the framework given a set of
points �xi�i�1;: : : ;n and their corresponding metric values

Mi ≡ �M�xi��i�1;: : : ;n

then for a point

x �
Xn
i�1

ai ⋅ xi

with

Xn
i�1

ai � 1**The refine code is available at https://github.com/NASA/refine under the
Apache 2.0 open-source license.
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the interpolated metric is defined by

M�x� � exp

�Xn
i�1

ai lnMi

�
(4)

The objective of the evaluation is to support the parallel anisotropic
grid adaptation method development. Two evaluation methods are
used: 1) quantitative with respect to parallel performance of the
codes, and 2) qualitative with respect to metric conformity of the
adapted grid. The goal of metric conformity is to create a unit grid
[27], where the edges are unit length and the elements are unit volume
with respect to the given metric. Computing an edge length in a
continuous metric field requires an integral. If assumptions are made
about the interpolation of the metric between vertex a and vertex b of
the grid, an analytical expression for the edge length Le in the metric
is available as [41]

Le �

8>>><
>>>:

La − Lb

log�La∕Lb�
jLa − Lbj > 0.001

La � Lb

2
otherwise

La � �vTeMave�1∕2; Lb � �vTeMbve�1∕2 (5)

where ve is the vector along edgeab. Themean ratio shapemeasure is
also approximated in the discrete metric:

Qk �
36

31∕3

�
jkj �����������������������

det�Mmean�
p �

2∕3

P
e∈k v

T
eMmeanve

(6)

where ve is the vector along the edge e of element k, and Mmean is
the interpolated metric tensor evaluated at the centroid of element k.
The parallel performance is evaluated in terms of traditional metrics,
like strong and weak speedup.
A cubewith an analytically definedmetric field, a deltawingwith a

solution-basedmetric field in laminar flow, and a box-shaped domain
with a solution-based metric field corresponding to a spherical blast
problem are examined. These three simple geometries focus on the
details of parallel execution without the difficulty of evaluating
curved geometries. The complexities used scale up to 10,000,000,
which corresponds to about 20,000,000 vertices, which is a typical
size for day-to-day workflows involving analytic metrics or flows
over simple straight-line geometries like the delta-wing case.††

Sections III.C–III.F present results on those three geometries.

B. Experimental Setup

Both the refine and CDT3D codes were compiled using the intel
19.0.4.243 compiler, and data were collected on Old Dominion
University’s Wahab‡‡ cluster using dual socket nodes, with each
one featuring two Intel® Xeon® Gold 6148 CPUs at 2.40 GHz (20
slots) and with 368 GB of memory. Feflo.a data for Secs. III.C and
III.D were collected on a dual socket machine equipped with two
Intel Xeon E5-2697 v2 CPUs at 2.70 GHz (12 slots); whereas for
Secs. III.E and III.F on a dual socketmachinewith two Intel XeonE5-
2680 v2 CPUs at 2.80 GHz (20 slots). The execution times and
hardware specifications are omitted for the EPIC results to protect
proprietary data. This might seem contrary to open discussions in
forums like this, but the authors feel that this real-life constraint does
not affect the lessons learned. In fact, the value of including the
normalized scaling andmetric conformity evaluations of an industrial
code exceeds the minor limitation of an incomplete comparison.
Before delving into the details of the experimental results, it should

be noted that, currently, there is no formally proven optimal grid
adaptationmethod. All presentedmethods (asmost of the anisotropic

metric-basedgrid adaptationmethods) useheuristics built aroundbasic
grid operations like point insertion, edge collapse, edge-face swaps,
and vertex smoothing. A study of the effect of different scheduling
policies for these grid operations on the metric conformity appears in
Ref. [42] and inmore detail inRef. [43]. Eachof the presentedmethods
has different tradeoffs in speed, quality, and robustness that stemout of
the different foci of each group, as has been seen in Secs. II.A–II.D.

C. Cube

The first geometry is a cube with an analytically defined metric
field M referred to as polar-2 in the first UGAWG benchmark [5],
where a cube–cylinder geometry was specified. Here, a unit cube is
used; see Fig. 4. The metric is defined as

M�
2
4cos�t� −sin�t� 0

sin�t� cos�t� 0

0 0 1

3
5
2
4h−2r 0 0

0 h−2t 0

0 0 h−2z

3
5
2
4 cos�t� sin�t� 0

−sin�t� cos�t� 0

0 0 1

3
5
(7)

where r �
����������������
x2 � y2

p
; t � atan2�y; x�; hz � 0.1; h0 � 0.001, and

hr � h0 � 2�0.1 − h0�jr − 0.5j. The subscript t is in the θ direction,
and subscript r is the radial direction. The spacing in the tangential
direction is defined by

d � 10�0.6 − r� and ht �
�
0.1 if d < 0

d∕40� 0.1�1 − d� if d ≥ 0

(8)

Thismetric field represents a curved shear layer. This polar distribution
has low gradation and is possible to satisfy with high-quality elements
by resolving curvature in the tangential direction near the layer. Its
complexity as defined by Eq. (2) is evaluated on the grid vertices and
then scaled using formula (3) in order to match the target number.
The initial grid conforms to the polar-2metric with a complexity of

7600. The polar-2 metric field is scaled to a 500,000 complexity for
this test. Adapted grids with approximately 1,000,000 vertices and
6,000,000 tetrahedra are expected, which is a relatively small exam-
ple based on the size of a typical fluid simulation. This small size
makes the strong scaling tests a challenge for a large number of cores
since the computation time per core becomes very small and the
communication overhead dominates the running time. The scaling
results obtained using the refine, CDT3D, and EPIC codes to adapt
the initial 7600 complexity grids to conform to the 500,000 complex-
ity as a function of the number of cores is shown in Fig. 5. Feflo.a is
excluded from the scaling results since the speedup gain is too small.
This is due to the high startup cost of the decomposition method,
which is not amortized for a small mesh. More details for this cost

Fig. 4 Cube with polar-2 analytic metric and complexity of 7600.

††Materials for these three cases are available at https://github.com/
UGAWG [retrieved 1 September 2020].

‡‡https://wiki.hpc.odu.edu/en/Cluster/Wahab [retrieved 5 July 2021].
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appear in Sec. III.F. All three methods exhibit linear scaling in a low

number of cores. At higher core numbers, the speedup becomes

constant for both EPIC and refine codes.

Metric conformity, characterized by element shape measure

and edge length histograms of the generated grids, is shown in Figs. 6

and 7. The mean ratio is bounded between one and zero, where a

mean ratio near one indicates better metric conformity than a mean

ratio near zero. In linear scale, all methods appear to exhibit good

overall quality, with the refine code generating the highest number of

elements in the range �0.8; 1.0�. The log scale makes the differences

Fig. 5 Speedup for the cube case adapted from 7600 to 500,000 complexity (left), and zoom-in view of the data for up to 40 cores (right). (Base case is the
sequential time of each software.) ODU denotes Old Dominion University.

Fig. 6 Comparison of the mean ratio of the generated grids for the cube case in linear and logarithmic scales.

Fig. 7 Comparison of the edge lengths of the generated grids for the cube case in linear and logarithmic scales.
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more prevalent. The refine code produces elements with the highest
minimum mean ratio of 0.4, CDT3D has the second-best quality
result, whereas the lowest mean ratio is around 0.01 for EPIC and
Feflo.a. The ideal edge length distribution is clustered tightly around
unity. Figure 7 (left) reveals that the refine, CDT3D, and EPIC codes
generated edges with less variance, whereas Feflo.a produced both
the shortest edges and the largest edges.

D. Delta Wing

The second geometry (Fig. 8) is a delta wing constructed of planar
facets. A multiscale metric [44] is constructed based on the Mach
field of this subsonic laminar flow. The initial grid is adapted to a
specified complexity of 50,000, and details of the verification of the
delta wing/grid adaptation process are provided by Park et al. [45].
The multiscale metric is scaled to have a complexity of 500,000 for
the input to the adaptation evaluation. Adapted grids with approx-
imately 1,000,000 vertices and 6,000,000 tetrahedra are expected. In
the second set of data, the complexity is scaled to 10,000,000, which
produces approximately 20,000,000 vertices; these grid sizes are
close to themaximumof theverification studyperformed inRef. [45].
Exploring more complicated flows over complex geometries may
require higher complexities, and thus larger grids, but this is outside
the scope of this paper.

1. Strong Scaling and Quality Data

The initial grid conforms to themetricwith a complexity of 50,000.
The speedup of the refine, CDT3D, and EPIC codes when adapting
the initial 50,000 complexity grid to conform to a 500,000 complex-
itymetric field as a function of the number of cores is shown in Fig. 9.
Similar to the previous case, Feflo.a results are omitted for the lower
complexity case. At high core numbers, both EPIC and refine codes
exhibit improved scaling over the performance of the cube case due to
the larger size of the initial grid for the delta wing. At lower core
counts, the refine code exhibits the best scaling, whereas CDT3D
falls between the EPIC and refine codes. The superlinear scaling of
the refine code is a result of the fact that the refine code has opti-
mizations like reordering of the nodes for cache efficiency within
each partition, which have a computational complexity higher that
O�n�, where n is the number of vertices in a partition. These opti-
mizations favor configurations of many cores but cause significant
overhead to the sequential performance. However, they allow the
refine code to be within 10% of simulation time for inviscid simu-
lations and 1%of the time for viscous simulations when coupledwith
FUN3D in a distributed memory setting, which is also its target
configuration. Moreover, the refine code offers an “early termina-
tion” detection mechanism, which is turned off for this case since it
produces a lot of noise in the results. The total time for the refine code
for one core is 12,604 s and for 120 cores is 90 s, whereas on a node of
the same cluster, CDT3D requires 794 s for one core and 29 s for 40.
When the complexity of the target grid is scaled to 10,000,000,

EPIC retains the same scalability with the previous case as shown in
Fig. 10. CDT3D exhibitsminor superlinear speedup up until 30 cores
and linear between 30 and 40. The origin of the superlinear speedup
could be attributed to the increased throughput achieved by using the
cache memory shared among the hardware threads. Feflo.a’s scaling
becomes constant at eight cores, which is a result of the high startup
cost of the decompositionmethod.More details for this cost appear in
Sec. III.F. The refine code’s results are omitted from the graphs
because they exhibit the same issue as before, with the sequential
performance skewing the results to highly superlinear trends.
Returning to the 500,000 complexity target metric, metric con-

formity (characterized by element shape measure and edge length
histograms of the generated grids) is shown in Figs. 11 and 12,
respectively. On a linear scale, all methods appear to exhibit good
overall quality. The log scale makes the differences more prevalent.
The refine code’s grid quality exhibits the best lower bound in the
mean ratiomeasure and the distributionwith the smallest deviation in
the edge length measure.

2. Stability

The concepts of stability and reproducibility were introduced in
Sec. II. Adherence to these attributes is measured by evaluating the

Fig. 8 Delta wing with multiscale metric in laminar flow: 50,000
complexity.

Fig. 9 Speedup data for delta wing adapted from 50,000 to 500,000 complexity (left) and zoom-in view of the data for up to 40 cores (right). (Base case is
the sequential time of each software.)
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metric conformity of the same case with different numbers of cores.

Histograms of the edge length in the metric are evaluated for three

codes for execution with different numbers of cores in Fig. 13. The

refine, CDT3D, and EPIC codes show an almost perfect overlap of

the histograms, but they do not produce the same grid (i.e., they offer

a weak form of the reproducibility attribute). Producing metric

conformity that is independent of the number of cores satisfies the

requirement of stability. Themean ratio histograms result in the same

conclusion: that metric conformity is independent of the number of

cores for these tools; and the mean ratio plot is omitted for brevity.

Fig. 10 Speedup data for the delta wing adapted from 50,000 to 10,000,000 complexity (left) and zoom-in view of the data for up to 40 cores (right).

Fig. 11 Comparison of the mean ratio of the generated grids for the delta wing 500,000 complexity case in linear and logarithmic scales.

Fig. 12 Comparison of the edge lengths of the generated grids for the delta wing 500,000 complexity case in linear and logarithmic scales.

TSOLAKIS ETAL. 4771

D
ow

nl
oa

de
d 

by
 O

L
D

 D
O

M
IN

IO
N

 U
N

IV
E

R
SI

T
Y

 o
n 

Fe
br

ua
ry

 2
, 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
06

02
70

 

140 

120 

100 

C. 
::, 

80 "O 
(IJ 
(IJ 
C. 
u, 

60 

40 

20 

6 

5 

c 
::, 

4 0 
u 
"O 
(IJ 

.'::' 

"' 3 
E 
0 
z 

2 

1 

3.5 

3.0 

-C 2.5 ::, 
0 
u 
"O 
(IJ 2.0 

.'::' 
-;;; 
E 
0 1.5 
z 

1.0 

0.5 

-+- EPIC-ICS (Boeing) 

ideal 

20 40 60 80 
Cores 

100 120 140 

refine (NASA) 
EPIC_ICS (Boeing) 

CDT3D (ODU) 

' ' ' ---------------,---------------r----------------,-------
! ! i-+ 
! ! r--- : 
I I I I 

! ! ! f : 
1 : : : I ! 

Fefloa.a (INRIA) 

i i i t-1- 1 : 
-------------i---------------J.---------------i--------------1J.--- r--- ------- ,-------

] ! i •! . : 
: : : i--- ~ - - -L : 

-------------+-------------+------------+---------H f [ _ ---i---1-------
: : : I I 1: I T I ! 
] : : 

1 l: I I I ! 
l : : ,--& _ , : I I I ! 
1 , , 1 r , 1 I I I 

-------------+--------------f--------------1----~---'--- , -· ,I-• ---l---- r---1-------
] ! ! j- I 1! I- -; I 

1 ! ~ _J .. :: ! 
_____________ J ______________ L---------, ~-----t------'- · l----------L- -------

! ! _,. i" r • ,-~ ! : 

0.5 

i i _ ... ~ 1-t-r· i ·--
: - . -F-" ,- ! 

0.2 

1.0 

0.4 0.6 

Mean Ratio 

1.5 2.0 2.5 

Edge Length 

0.8 1.0 

3.0 3.5 4.0 

C. 
::, 

"O 
(IJ 
(IJ 
C. 
u, 

c 
::, 
0 
u 
"O 
(IJ 
_'::' 

"' E 
0 
z 

-C 
::, 
0 
u 
"O 
(IJ 

.'::' 
-;;; 
E 
0 z 

40 .,,.✓ 
/ 

-+- EPIC-ICS (Boeing) 
/ 

-+- CDT3D (ODU) - Xeon-6148 
/ 

/ 
35 Feflo.a (INRIA) / 

/ 

ideal 
/ 

/ 
/ 

30 
/ 

25 
,_ 

20 

15 

10 

5 

5 10 15 20 25 30 35 40 
Cores 

;. 

10° 

10- 1 

10- 2 

10- 3 

10-• 

refine (NASA) i I 
EPIC ICS (Boeing) : •I 1• I 

1 - •- CDT3D (ODU) ----------t--------------------------- i" _f-- I ._ 

Fefloa.a (INRIA) : r' r:•' ' : ~,.,,., r 
: ..1' 

r--------------------------------------T---------------:>,.- ir ------ -
' ' .,.,, -, l_________________________________ ...4'.------- ...--------------Li----------- _ : : ....... r I 

! ~•~~ r • : .r: ..!' .,-ir.•r·· •11 "'- : .r .l I~" ·-.. .. ' I ~..l-1--t rl 1,l.-~------ - ----------------' ---------------------l ----•------------ -
:.& I 1-' : j 1 

i• ·-: i r' r :: u, : ,, : 
:, I : t:f"' -~ --+r----------- ---------------------+------------- f-f- .---------1-------------- -
:1 1 i .it.Ji. I 
: • I : "' I :• : .... 11, ,.. 
:, I :, I I II I ij 

10- 5 -'-t'------------~+~~= --~1--1----~-+' 

10° 

10- 1 

10- 2 

10- 3 

10- • 

10- 5 

10- 2 10- 1 10° 

Mean Ratio (log scale) 

refine (NASA) ''\ 

-, -•- EPIC_ICS (Boeing) ------------- ,i"° ,"i, 1 ----------------------- ,-

CDT3D (ODU) :.: ! '!,I" : 
Fefloa.a (INRIA) JI' ' I ' 

I "1 ! 1 i ! i .!.._ ~ i l'i'f 7 
' ' I ' " I ' i •~ i I l j i 
I I I I I I ________________ J __________________ ;i ... ___ ______ J _____ !..,._, ______________________ J_ 
I I I I I I 

! ,l I ! : I j ! 
: I Mfl : I I I : 

' If " ' • " I, ' ---------------- ~------ / -- ;-:.l ---------+----~ :-------------------- ~-
: ,lfl f : I I : 

: I r jll : : , :, : 
------------- !::J-~------- r-1-' --------------~-------~--'•~------------------~-

- .. , 11 , .. I T , 

ii~ I I 1 ... :" .r: i : It &- i r .. ,1 !1 ff M I : I I I : 
! I 11 II I I ! I !,. 1 ! 

10- 1 10° 

Edge Length (log scale) 

101 



E. Spherical Blast

To complement the previous two caseswhere grid refinement is the
main operation, the following case focuses mainly on coarsening
operations. It corresponds to the numerical solution (at one time step)
of a spherical blast problem [46]. The target metric complexity is
49,013, which corresponds to about 98,000 vertices in the final grid.
As initial input, a uniform tetrahedral grid of 1,900,000 vertices is
provided. The adapted grid in shown in Fig. 14.
For the refine code, the number of sweeps was fixed and set to 40.

This value was selected because it allowed all cores to complete the
adaptationwhile creating less noise in the timings since no case could
exit earlier skewing, and thus the results. CDT3D was configured
with a higher collapse limit for thegrid preprocessing step (seeFig. 3).
This configuration was selected because it gives more flexibility in

the subsequent refining step and yields better quality in the final grid.
A similar approach is used in Ref. [37] for generating an almost

empty, grid and subsequently a metric-orthogonal grid.
Figure 15 depicts the strong scaling performance of Feflo.a,

CDT3D, and refine codes. The refine code exhibits superlinear
scalability for a low number of cores (less than 80) and is almost
linear for the rest of the cases. In contrast, the speedup of CDT3D
stagnates after 20 cores, which indicates that there is not enoughwork
to keep the additional cores busy. The same issue arises in Feflo.a,
with the speedup stagnating at an earlier stage. Table 1 presents
the total time for this experiment in a shared-memory setting (40
cores); for the refine code, we include distributed memory results (up
to 400 cores). A direct comparison of the times is not possible
because, as is mentioned in Sec. III.B, the results of refine and

Fig. 13 Stability data for the delta wing 50,000 to 500,000 complexity case using refine, EPIC, and CDT3D codes.

Fig. 14 Adapted grid of the spherical blast case: crosscut of the domain (left) and zoom-in of the extracted part of the core (right).

Fig. 15 Speedup data for the blast case (left) and zoom-in view of the data for up to 40 cores (right). (Base case is the sequential time of each software.)
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CDT3D codes were collected on the same machine; whereas for
Feflo.a, a different machine was used. Still, the table reveals that

Feflo.a is faster than CDT3D and refine codes using one core.
However, using more than 10 cores, CDT3D is 50% faster; and on
40 cores, it is more than twice faster Feflo.a. On the other hand, the

refine code achieves a speedup of 67 on 40 cores and 328 on 400

cores; the superlinear speedup occurs due to the reasons discussed in

Sec. III.D.1. The breakdown of the running time of Feflo.a in Table 2
reveals that the main inefficiency is the subdomain creation step,

which takes a constant amount of time for all five runs. Moreover,

Feflo.a uses a cavity-based collapse operation [35], which always
results in an edge collapse; whereas the standard collapse algorithm

used by CDT3D and refine codes rejects a fair amount of configura-

tions, which revisits in a subsequent step.
Figures 16 and 17 depict the quality of the grids generated by the

refine, CDT3D and Feflo.a codes. The quality of the generated grids is

in accordancewith the results of the cases discussed earlier. The refine

code achieves the smallest variance in edge lengths and a mean length
of 0.9. Feflo.a follows a similar distribution with a tighter lower limit.

CDT3D delivers a wider distribution and few edges between two and

four, as well as a small number of edges below 0.1. For the mean ratio,

the refine code delivers a grid with a minimum mean ratio quality of
0.3; for Feflo.a, the minimum is 0.2; whereas for CDT3D, it is 0.1.

F. Weak Scaling

The presented timing information provides limited insight on the

potential behavior of the parallel methods for extreme-scale current
and emerging architectures. Amdahl’s law predicts that the serial

fraction of the code reduces the potential for parallel speedup as the

number of cores grows. Traditionally, this issue is resolved by using
weak scaling, also known as scaled speedup, for evaluating the

performance of a parallel grid generation code by increasing the size

Table 1 Total running times of Feflo.a,
CDT3D, and refine codes for the blast case

No. of cores Feflo.a, s CDT3D, s refine, s

1 62.82 152.41 62,574.51
2 50.57 73.76 5,311.00
10 30.41 22.02 1,814.63
20 26.45 14.49 1,252.03
40 27.42 13.46 921.39
200 — — — — 332.17
400 — — — — 190.36

Table 2 Breakdown of total running time for Feflo.a

No. of cores Total time Subdomain creation Grid adaptation

1 62.82 —— 62.82
2 50.57 11.32 38.66
10 30.41 11.29 17.13
20 26.45 11.22 12.22
40 27.42 11.26 11.49

Fig. 16 Comparison of the edge lengths of the generated grids for the spherical blast case in linear and logarithmic scales.

Fig. 17 Comparison of the mean ratio of the generated grids for the spherical blast case in linear and logarithmic scales.
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of the grid linearly to the number of cores; see, for example, Ref. [16].
However, this approach does not reflect the workflow of a simulation
using metric-based adaptation. A typical metric-based adaptation pass
involves coarsening that decreases the number of elements and node
movement, which can be crucial to improving the quality but, depend-
ing on the algorithm,may not affect the topology, and thus the number
of elements of the grid. In an attempt to overcome these issues, we
focus on the original definition of the scaled speedup,which is that “the
problem size scales with the number of processors” [47].
In this work, we define the problem size to be the complexity of the

target metric rather than the number of elements in the grid. More-
over,we do not use a constant step for increasing the complexity since
it is common for metric adaptive simulations to use a bigger step for
the first iteration [45].
Performing a fully adaptive simulation is out of the scope of this

work. Instead, we simulate each solver→ error-estimation→metric-
construction step by artificially scaling up the complexity of the input
metric. In particular, the starting grid and metric are the same as in
Sec. III.D, and they are the input to the first “iteration” using one core.
The input of the second iteration is created by increasing the com-
plexity of the output grid of the previous step by a constant amount
using formula (3) at every vertex of the grid. The same procedurewas
applied for the rest of the steps. Table 3 presents the results.
The refine and CDT3D codes retain almost constant times of

approximately 10,000 and 1000 s, respectively, as the problem size
increases, which indicates a good weak scaling speedup. Feflo.a is
the fastest among the methods, even when considering the difference
between the machines that were tested. On the other hand, it does not
scale linearly as the size of the problem increases. Similar to the
previous case, the overhead of domain decomposition and distribu-
tion is a considerable amount for Feflo.a, scaling from 6 s at 2 cores to
108 s at 40 cores, which corresponds to 30%of the total running time.
All three codes approach the expected number of elements, with

the refine code being closer. The difference in the number of elements
could be attributed to the different adaptation strategies as well as to
the nature of the artificially scaled metric.

IV. Future Work

Designing and implementing scalable software from the ground up
leads to short-term incomplete but rapidly maturing functionality.
Evidence from this group’s experience suggests that scalability-first
methods like CDT3D with proper design decisions can accelerate
efforts to extend functionality [48] and improve element quality.
Work remains for both approaches, but sharing experiences from
very targeted efforts like this paper will aid all parties. For example,
scalability-first methods like CDT3D can improve conformity of the
metric by targeting and prioritizing areas of interest suggested by
functionality-first software like EPIC, which has been optimized to
meet industrial needs. Functionality-first methods like EPIC could
benefit by using a tightly coupled and telescopic approach adopted by
CDT3D to improve scalability on current and emerging hardware.
The pluralism in the different methods and their implementation

(evenwhen they belong to the classification presented in Ref. [4]) is a
mutual benefit to this community. The main contribution of the
lessons learned in this paper is to identify very specific improvements

for both functionality-first and scalability-first methods in a labor-
efficient way. Given that grid adaptation (and, specifically, parallel
grid adaptation) is a labor-intensive task, our hope is that this study
(and follow-up studies) will provide insight to meet the challenges
stated in the CFD Vision 2030 Study.
In the near future, a follow-up study could extend the presented

results by evaluating the four codes on a series of cases that include
complex geometrical models at high complexity numbers that will
justify larger grid sizes. This type of casewill contribute significantly
toward studying the robustness of each approach in real-world
configurations.
Given the trends of the upcoming exascale machines that include a

massive number of GPU cores§§ and others focused on power effi-
ciency and different processor architectures,¶¶ more research is
needed toward this direction. Although Graphics Proccesing Unit
(GPU)-capable mesh adaptation efforts like Ref. [49] exist, these
methodswere built from the ground up, having inmind the efficiency
on GPU architectures that favors structured data structures and
regular memory accesses. Moreover, one of the main difficulties is
to address dynamic data structure modifications on GPUs. Dynamic
data structure modifications are required by operations like edge flips
that modify the grid topology. On the other hand, smoothing GPU
kernels are easier to implement since they only modify vertex coordi-
nates. For methods like CDT3D that use heavily pointer-based data
structures and exhibit highly irregular memory access, a direct transi-
tion to GPUwould bemore challenging. However, a combination with
Old Dominion University’s runtime system [18] may enable the use of
GPUkernels as “plug-ins” for specificparts of the code that exhibit high
floating-point operation intensity. Preliminary results of CDT3D using
the runtime system appear***. On the other hand, Feflo.a and refine
codes that use mainly array-based structures may be more suitable for
this kind of transition. In either case, more research is needed toward
identifying an efficient way (both in terms of parallel efficiency and
code reuse) for enabling GPU usage for the presented codes.
The unique mix of the high number of floating-point operations

with frequent and irregular memory access could be profiled for
power consumption. Based on our previous experience with Delau-
nay-based methods [50], the gains of optimizing for power diminish
once we move to a newer CPUmodel. However, the pluralism of the
different approaches here may exhibit different behavior, especially
on the latest generations of processors.
The effort started by theUGAWGhas already returned value to the

participants and wider grid adaptation community. The general con-
sensus of the UGAWG is that parallel anisotropic grid adaptation
codes could improve their scalability by exploring concurrency at
several nested levels of abstractions like the telescopic approach
depicted in Fig. 1 for isotropic methods.

Table 3 Weak scaling performance of refine, CDT3D, and Feflo.a codes for complexities between
50,000 and 20,000,000

refine CDT3D Feflo.a

Cores Complexity No. of vertices te2e No. of vertices te2e No. of vertices te2e

1 50k → 500k 927,390 9,256.41 871,402 1,211.51 835,123 64.83

2 500k → 1m 1,853,974 10,136.44 1,633,955 919.39 1,777,724 78.77

4 1m → 2m 3,694,187 10,482.89 3,271,567 1,055.28 3,516,645 101.28

8 2m → 4m 7,358,456 12,188.41 6,477,760 1,080.14 6,980,611 147.43

16 4m → 8m 14,694,593 13,915.35 12,831,874 1,190.72 13,511,085 193.31

32 8m → 16m 29,333,956 14,254.48 25,539,415 1,451.30 26,885,124 288.47

40 16m → 20m 35,767,590 10,469.66 30,539,328 1,509.98 33,498,896 340.82

“k” denotes thousands and “m” denotes million.

§§Data available online at https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/ [retrieved 8 March 2021].

¶¶Data available online at https://www.top500.org/news/japan-captures-
top500-crown-arm-powered-supercomputer [retrieved 8 March 2021].

***Tsolakis, C., Thomadakis, P., and Chrisochoides, N., “Exascale-Era
Parallel Adaptive Mesh Generation and Runtime Software System Activities
at the Center for Real-Time Computing,” (presentation), Oct. 2020, https://
epcced.github.io/ELEMENT/workshops.html [retrieved 8 March 2021].
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V. Conclusions

This paper presents four parallel anisotropic grid generation and
adaptation methods from both ends of the spectrum for parallel grid
adaptation: functionality first (i.e., EPIC and Feflo.a) and scalability
first (i.e., refine and CDT3D). In the rest of this section, the lessons
learned with respect to the five criteria defined in Sec. II are summa-
rized. The experimental data from EPIC, refine, Feflo.a, and CDT3D
codes suggest the following:

A. Stability

For the target geometries, all four codes exhibit stability as
depicted throughout the quality plots and in Fig. 13. These codes
are tested in a large set of geometries independently and experience
the same behavior in terms of their stability.

B. Reproducibility

There is high cost for delivering strong reproducibility, but weak
reproducibility can be attained at a lower cost. Weak reproducibility
is sufficient for most flow solvers and adaptive grid processes.

C. Robustness

No special effort is made to test robustness. However, independent
of this study, there is evidence [8–11] that these codes are robust,
which is not a trivial task, especially for the methods that rely on
discrete domain decomposition. Unexpected artifacts on the surfaces
of discrete domain decomposition can disrupt boundary recovery.

D. Scalability

The scalability results on shared-memorynodeswith a lower number
of cores are encouraging. Strong speedupdata from theEPIC and refine
codes suggest high-end user productivity. Weak scaling speedup data
for a low number of cores (Table 3) suggest similar end-user produc-
tivity and promising scalability at a higher number of cores.

E. Code Reuse

By design, all four codes leverage code reuse at different levels. For
example, EPIC andFeflo.a rely on existing sequential fine-tunedhighly
optimized, fully functional code. The current version of the refine code
is structured to reuse low-level data structures based on experience and
code from an earlier version with lower scalability potential. CDT3D is
designed from thegroundup tomeet all the requirements for each of the
layers of the telescopic approach and is expected to accomplish this
with more than 95% code reuse, which is a lower bound from CRTC’s
experience with TetGen [6] and PODM [20].
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