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ABSTRACT

A COPULA MODEL APPROACH TO IDENTIFY THE DIFFERENTIAL
GENE EXPRESSION

Prasansha Liyanaarachchi
Old Dominion University, 2021
Director: Dr. N. Rao Chaganty

Deoxyribonucleic acid, more commonly known as DNA, is a complex double helix-shaped
molecule present in all living organisms and hosts thousands of genes. However, only a few
genes exhibit differential expression and play a vital role in a particular disease such as
breast cancer. Microarray technology is one of the modern technologies developed to study
these gene expressions. There are two major microarray technologies available for expression
analysis: Spotted cDNA array and oligonucleotide array. The focus of our research is the
statistical analysis of data that arises from the spotted cDNA microarray. Numerous models
have been proposed in the literature to identify differentially expressed genes from the red
and green intensities measured by the cDNA microarrays. Motivated by the Bayesian models
described in Newton et al. (2001) and Mav and Chaganty (2004), we propose two models for
the joint distribution of the red and green intensities using a Gaussian copula, which accounts
for the dependence. In both models, we assume the marginals are distributed as gamma.
The differentially expressed genes were identified by calculating the Bayes estimates of the
differential expression under the first proposed copula model. The second copula model
incorporates a latent Bernoulli variable, which indicates differential expression. The EM
algorithm is applied to calculate the posterior probabilities of differential expression for the
second model. The posterior probabilities rank the genes. We conducted two simulation
studies to check the parameter estimation for the Gaussian copula-based models. We show
that our models improve the models given in Newton et al. (2001) and Mav and Chaganty
(2004). We have also studied the use of Weibull distribution instead of gamma distribution
for the marginals. Our analysis shows that the copula models with Weibull marginals provide
a better fit and improve the identification of genes. Finally, we illustrate the application of
our models on samples of Escherichia coli microarrays data.
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CHAPTER 1

BIOLOGICAL BACKGROUND

1.1 INTRODUCTION

Microarray technology is one of the latest approaches used for research fields such as
medical science and basic biology. There has been a rapid increment in the number of
microarray studies over the last decade. For instance, the number of publications exceeds
more than 150,000 in PubMed search for “microarray” in November 2021. In this section,
we describe briefly about microarray technology that we use in this dissertation.

1.2 BACKGROUND OF MICROARRAY TECHNOLOGY

There are two major microarray technologies available for expression analysis: Spotted
cDNA array and oligonucleotide array. Dr. Patrick Brown and colleagues developed the
spotted cDNA microarray at Stanford University in 1995 (Schena et al. (1995)), and the
oligonucleotide array was first commercially released (using the trade name GeneChip) in
1996 by Affymetrix Corporation (Santa Clara, CA). For cDNA microarrays, both the tar-
gets and probes are the cDNA molecules, while for the oligonucleotide arrays, the targets
are cDNA molecules and the probes are well-chosen small segments of cDNA, known as oli-
gos. Thus, even though the primary concern of this dissertation will be the spotted cDNA
microarray, the methods illustrated here may be adapted to analyze data produced by the
Affymetrix chip.

1.2.1 DNA, PROTEINS AND CENTRAL DOGMA

Here we briefly review basic genetic notions and microarray technology and experiments.
An excellent treatise is in the books by Baldi and Hatfield (2002), Schena (2003), and
Speed (2003). A complex molecule containing all the information required for an organism
to develop, maintain, and reproduce is called Deoxyribonucleic acid, more commonly known
as DNA. It is also considered the primary unit of heredity in an organism.

DNA molecule is a double-stranded polymer with a double helix structure consisting of
four basic molecular units called nucleotides. They are adenine (A), guanine (G), cytosine
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(C), and thymine (T), usually referred to as "bases" (see Figure 1). The nucleotides always
pair together in the same way, A with T, C with G. This establishment between bases is
called complementary bases.

Figure 1. Double standard helix structure of DNA.

A DNA molecule is divided up into functional units called genes. Proteins are the func-
tional products of most known genes. The Central Dogma of Molecular Biology establishes
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the correspondence between the DNA and the amino acid sequence of a protein.
Many genes provide instructions for building protein, and this process takes place in

two stages known as transcription and translation (see Figure 2). During the transcription
stage, the information stored in the gene’s DNA is transferred to a similar molecule called
ribonucleic acid (RNA), and this process is called gene expression. The expression level of a
gene indicates the approximate number of copies of RNA, the gene produces in a cell. The
type of RNA that consists of the instructions to make a protein is called messenger RNA
(mRNA). The translation stage is the process of producing proteins from the instructions
stored on an mRNA. This mRNA can be converted into complementary DNA via reverse
transcription, which usually serves as samples in microarray experiments.

Figure 2. The stages of protein synthesis.

1.2.2 NUCLEIC ACIDS HYBRIDIZATION

A nucleic acid hybridization is a fundamental tool in molecular genetics. Combining two
complementary single-stranded nucleic acid molecules and letting them establish a single,
double-stranded molecule through base pairing is defined as hybridization. This tool can
determine the degree of sequence identity between nucleic acids and can capture the specific
sequences.

Hybridization has been used to identify genes in cellular DNA for more than four decades
now (Alwine et al. (1977)). Microarrays are based on the same principle but differ in quantity.
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While traditional hybridization techniques, such as "Southern blot" can detect one gene at a
time, microarrays are intended to do the same with thousands of genes in a single experiment.

1.3 DNA MICROARRAYS

DNA microarray, also known as a gene chip or DNA chip, is a standard laboratory tool
for detecting thousands of gene expressions or mutations in a single experiment. In a DNA
microarray, thousands of strands of polynucleotide (probes) are located on microscope slides
or silicon chips, or nylon membranes. One tiny spot on this slides represents a known DNA
sequence or a gene.

These days DNA sequencing technology is used for some tests for which microarrays were
used in the past. However, microarray is less expensive than DNA sequencing technology,
so they are still used for very large studies and clinical tests.

1.3.1 MICROARRAY TECHNOLOGY

There are two types of microarray experiments: cDNA and oligonucleotide microarrays.
First, RNA is extracted from the subject cells to start a microarray experiment. Next, some
of its molecules are substituted by others containing a fluorescent dye. The resulting labeled
transcripts are called targets. For cDNA microarrays, both the targets and probes are the
cDNA molecules, while for the oligonucleotide arrays, the targets are cDNA molecules and
the probes are well-chosen small segments of cDNA, known as oligos.

A two-channel array is a term commonly used to refer to a cDNA microarray. In this
technique (see Figure 3), samples are prepared from both the experimental sample and a
reference sample and labeled using two fluorescent dyes (Cyanine 3 or Cy3 (green) and
Cyanine 5 or Cy5 (red)) on a chip. Usually, the experimental sample is labeled with Cy5
(Liu et al. (2010)). There are thousands of spots on a chip, and each spot represents a gene.
The brightness of each fluorescent site can be measured using a laser microscope scanner.
The colored spots denote genes expressed in one of the samples or may be both, while grey
areas reveal the genes expressed in neither type of sample.

In oligonucleotide chips techniques, the Affymetrix system hybridized only one sample
per chip (see Figure 4), which means the sample is labeled with one fluorescent dye. This
requires more slides per experiment and does not enjoy the advantage of using competitive
hybridization; however, it simplifies experimental design and is based on more sensitive tech-
nology.
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Figure 3. Two color cDNA chip.
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Figure 4. One color affymetrix chips.

1.3.2 PREPROCESSING OF MICROARRAY DATA

A microarray experiment produces a set of images transformed into numerical values
representing absolute or relative intensities. Before the analysis, it is necessary to perform
some additional operations on the data. Reducing data dimensionality and variability are
the two main goals of data preprocessing (Sebastiani et al. (2003)). In this thesis, we mainly
focus on the cDNA microarray. Hence the most common preprocessing steps based on cDNA
microarray data will be discussed in this section.

• Normalization aims to correct for systematic differences between genes or array. For
example, in a two-channel cDNA microarray experiment, several noise sources create
recurring sources of biases which causes experimental errors. These experimental
errors can be removed using normalization techniques.

• Nonlinear Transformations: Usually, the corrected intensity values are highly
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skewed. It is common to pass intensity values through a nonlinear function. Log-
transforming the raw data is strongly recommended as it usually produces normally
distributed data.

• Filtering: Even before or after normalization, it is common to have some genes with
negative or small-expression levels. This step can reduce the data dimensionality and
variability by removing those gene measurements that are not sufficiently accurate
or not adequately differentiated. The elimination of these genes is done if those
measurements fail to satisfy some simple criteria. Commonly used criteria include
a minimum threshold for the standard deviation of the expression values and a
threshold on the maximum percentage of missing values.

1.4 DIFFERENTIALLY EXPRESSED GENES (DEG)

Microarray technology is one of the latest approaches used for research fields such as
cancer research, medical science, and basic biology. Basically, microarray data consists of
thousands of genes, but a small number of informative differentially expressed genes may be
critical elements for a disease such as cancer. Hence it is essential to select those differentially
expressed genes out of numerous genes. Several methods for the identification of differentially
expressed gene exists in the literature.

1.4.1 SINGLE-SLIDE METHODS

In single-slide experiments, there are two fluorescent intensity measurements (R, G), for
each gene or spot, representing the expression level of the gene in the red (Cy5) and green
(Cy3) labeled mRNA samples, respectively. Thus, many methods were proposed for the
detection of DEG in single-slide cDNA microarray experiments.

The fold-change method is one approach used in the early analysis of microarray data
(Schena et al. (1995, 1996); DeRisi et al. (1996)). This simple approach relied on some
specified threshold on fold change to capture the DEG. However, under a few conditions,
such as data is not correctly normalized, this method is subject to being biased (Sreekumar
(2008)), and because of not considering the statistical variation, the procedure is unreliable.

Later the approaches based on probabilistic modeling of R and G were used to find DEGs.
In this approach, a rule was derived based on distributional assumptions of (R, G) to identify
the differential expression of a gene. Chen et al. (1997) have proposed a data-dependent rule



8

for choosing a threshold for the ratio R/G based on distributional assumptions, including
normality and constant coefficient of variation. This method’s major drawback is that it has
ignored the information contained in the product RG.

To avoid this problem, Newton et al. (2001) suggested a hierarchical model
(Gamma–Gamma–Bernoulli) to capture DEGs based on the posterior odds of change (the
odds are functions of R + G and RG). This method assumes that R and G are independent
and approximately normally distributed.

Mav and Chaganty (2004) have shown that the R and G are positively correlated. To
incorporate the dependence, they have built a bivariate distribution with gamma marginals
and a positive correlation between R and G. They also incorporated a latent Bernoulli
variable. Finally, the EM algorithm was applied to calculate the posterior probabilities. The
higher posterior probabilities identify the DEGs.

1.4.2 MULTIPLE-SLIDE METHODS

Statistical methods for identifying DEGs in multiple-slide experiments have dragged little
attention relative to the single-slide experiments. However, cluster analysis methods are a
common approach that can apply to multiple-slide experiments. In cluster analysis methods,
genes are grouped with correlated expression profiles across experimental conditions (Ross
et al. (2000); Alizadeh et al. (2000)). Then, the DEGs are identified based on visual inspec-
tion of the resulting cluster. Hierarchical clustering, K-means, and SOM’s (Self-Organizing
Maps) are the most commonly used cluster algorithms. Hierarchical clustering was the first
algorithm used in microarray research to cluster genes (Eisen et al. (1998)). We cite the work
of Tavazoie et al. (1999) on the K–means algorithm and the work of Tamayo et al. (1999),
the first use of SOM’s for gene clustering from microarrays. Such methods are called ’unsu-
pervised’ since the expression profiles can be clustered together without using covariates or
responses for the samples hybridized to the slide.

Supervised methods can further be classified as parametric, nonparametric, and semi-
parametric statistical methods. The t-test for two samples is a more direct and appropriate
parametric approach that exists in the literature. The two-sample t-statistic is the most
common statistic for testing for the mean difference of two samples, and these t-tests may be
either equal variance or unequal variance. However, there will always be some genes in the
microarray, with small sum of squares across replicates, which leads the absolute t-values to
be large regardless of whether their averages are large or not. To avoid this difficulty, Tusher
et al. (2001) have proposed a modified t-statistic.
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In nonparametric methods, the distribution of random errors is estimated without any
parametric assumption. Tusher et al. (2001) have used the method of statistical analysis of
microarrays (SAM) to determine the genes with statistically significant changes in expression.
A score is assigned to each gene based on a change in gene expression relative to the standard
deviation of repeated measures to perform SAM. The genes with scores greater than an
adjustable threshold are considered potentially significant. The percentage of such genes
determined by chance is the false discovery rate (FDR). This nonparametric approach can be
applicable for small sample sizes. The nonparametric Empirical Bayes (EB) was introduced
by Efron et al. (2001) to identify DEGs. They have avoided the parametric assumption about
gene expression by using a simple nonparametric mixture before modeling the population
of affected and unaffected genes. This method allows the analyst to handle multiple testing
issues that arise when dealing with many simultaneous tests, establishing a close connection
between the estimated posterior probabilities and a local version of the FDR. Lee et al.
(2003) applied a nonparametric statistical approach, mixture model method (MMM), as a
solution to the unstable selection process of DEGs due to the small sample size and a large
number of variables.

Semiparametric models can be much more flexible than parametric models while enjoying
the interpretability not shared by nonparametric models. Cox proportional hazards model
(Gui and Li (2005); Ma et al. (2009) ), Additive risk model (Ma and Huang (2007)) and AFT
model (Engler and Li (2009)) are the three most extensively used semiparametric prognosis
models to analyze gene expression.

1.5 REAL DATA EXAMPLES

The source for the data is the experiment designed to study gene expression levels in
Escherichia coli (E. coli), initially described in Richmond et al. (1999). The E. coli genome
consists of approximately 4.6 million base pairs (Mbp) but is suspected of encoding only
about forty-two hundred genes. To study differential gene expressions in E. coli, Richmond
et al. (1999) used two traditional treatments which affect gene expression levels. The first
treatment is induction with isopropyl-β-D-thiogalactopyranoside (IPTG), which provides a
simple test of the methods since only a few gene transcripts are expected to change, and
secondly, the Heat Shock treatment, which allows global regulatory effects to be observed.
A single colony of E. coli K-12 was divided into five samples for the experiments.

IPTG treatment was performed independently on two samples (IPTG-A and IPTG-
B), while one sample (control) was untreated. Heat Shock induction was carried out by



10

treating the culture to a 500C shaking water bath for seven minutes on the remaining two
samples (Heat Shock-A and Heat Shock-B). Following hybridization of the samples on E. coli
microarrays, signal intensities for each spot were determined using ScanAlyze software. The
average fluorescence intensity for each site was measured, and background was determined
as the median pixel intensity in a square surrounding each spot. The red and green signal
intensities were recalculated and normalized after background subtraction. The E. coli data
was made publicly available by Newton et al. (2001). We are interested in proposing a
Gaussian copula-based joint distribution of red and green intensities.

1.6 OVERVIEW OF THE DISSERTATION

This dissertation proposes and develops two Bayesian Gaussian copula models to identify
differentially expressed genes in cDNA microarray. In Chapter 2, we present a brief review
of copulas and Gaussian copula as a particular case of interest. Further, we discuss the
applications of copulas in different fields in the last section of Chapter 2.

In Chapter 3, we extend the work done in Newton et al. (2001) and Mav and Chaganty
(2004) by replacing the joint probability distribution of intensities with a Gaussian copula-
based joint distribution. The differentially expressed genes can be identified by calculating
the Bayes estimate of the differential expression under this model. Moreover, the relationship
between the copula parameter and the linear correlation is derived. In this chapter, we
conduct two simulation methods to evaluate the parameter estimation procedure. First, we
apply the proposed Gaussian copula model to study the differential gene expressions in E.
coli (Richmond et al. (1999)). Finally, we show that this model is an improvement over
the models given in Newton et al. (2001) and Mav and Chaganty (2004), by comparing the
log-likelihood values.

Motivated by the models described in the papers by Newton et al. (2001) and Mav and
Chaganty (2004), we propose another Gaussian copula model which incorporates a latent
Bernoulli variable, which can be applied to capture differentially expressed genes, in Chapter
4. We use the EM algorithm to calculate the posterior probabilities. The higher posterior
probabilities identify the differentially expressed genes. We present two simulation studies
to check our parameter estimation methods. The proposed Gaussian copula model with a
latent Bernoulli variable is applied on E. coli (Richmond et al. (1999)) and a comparison
of the log-likelihood values to the model introduced in Mav and Chaganty (2004). We end
the chapter by selecting the Gaussian copula model incorporated with a latent Bernoulli
variable over the model discussed in Chapter 3 as the best model after studying the AICs



11

for both models.
The model proposed in Chapter 4 uses gamma marginals for the red and green intensities.

In Chapter 5, we consider the same model in Chapter 4 but with Weibull marginals. The
extreme flexibility of the Weibull distribution allows it to model symmetric, left-skewed, and
right-skewed data. We also cover the same topics we covered in the previous chapter.

In Chapter 6, we present a summary of results obtained in this dissertation. Finally, the
Appendix section contains important R programs that we developed for this dissertation.
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CHAPTER 2

BRIEF INTRODUCTION TO COPULAS

2.1 INTRODUCTION

In this chapter we review the basics concepts of copulas, and discuss the most important
copula, namely the Gaussian copula that is related to the multivariate normal distribution.
Later, we will use the bivariate Gaussian copula to model the dependence and to construct
a joint distribution for the red and green intensities that arise in cDNA microarrays.

2.2 COPULAS

Copula functions are useful for constructing bivariate or in general multivariate distribu-
tions with given marginal distributions. The term “copula” was first used by Sklar (1959)
meaning that it “ties” the marginal uniform distributions to create a joint distribution func-
tion. Since its introduction, the literature and applications of the copulas has grown rapidly.
Some classic books on the topic include Joe (1997), Nelsen (1996), and Nelsen (2006)). Joe
(1997) investigated the dependence concepts for bivariate and multivariate random variables.
He discussed the fundamental properties of the bivariate and multivariate copulas. A more
comprehensive coverage of copula models and their applications is given in Joe (2015).

Definition 1. A d-dimensional copula is a function C : [0, 1]d → [0, 1] with the following
properties:

1. C(1, . . . , 1, ui, 1, . . . , 1) = ui, ∀ i = 1, 2, . . . , d and ui ∈ [0, 1].

2. C(u1, u2, . . . , ud) = 0 if at least one ui = 0 for 1 ≤ i ≤ d.

3. For any ui1 , ui2 ∈ [0, 1] with ui1 ≤ ui2 , for i = 1, 2, . . . , d,

2∑
j1=1

2∑
j2=1

· · ·
2∑

jd=1
(−1)j1+j2+···+jdC(u1j1 , u2j2 . . . , udjd

) ≥ 0.
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2.2.1 EXAMPLES OF COPULAS

There are numerous copulas available in the literature. Some well known copulas are
listed below.

Example 1. The first and simplest is the Independence Copula given by

C(u1, u2, . . . , ud) =
d∏

j=1
uj. (1)

Example 2. The Multivariate Gaussian Copula with latent correlation matrix R is a func-
tion given by

C(u1, u2, . . . , ud; R) = Φd(Φ−1(u1), Φ−1(u2), . . . , Φ−1(ud); 0, R), (2)

where Φ is the cumulative distribution function of standard normal and Φd(.; µ, Σ) is the
cumulative distribution function of a d-variate normal with mean µ and covariance matrix Σ.
Note that d-dimensional Gaussian copula reduces to the Independence Copula when Σ = I,
the identity matrix.

Theorem 1. (Sklar’s Theorem). Let X1, X2, . . . , Xd be random variables with marginal
distribution functions F1, F2, . . . , Fd respectively. Suppose F is joint cumulative distribution
function.

1. Then there exists a function C such that for all x1, x2, . . . , xd ∈ (−∞, ∞)

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)), (3)

Conversely, if ui = Fi(xi) then xi = F −1
i (ui), and the copula function can be extracted

from (3) as

C(u1, u2, . . . , ud) = F (F −1
1 (u1), F −1

2 (u2), . . . , F −1
d (ud)). (4)

2. If X1, X2, . . . , Xd are continuous random variables defined on real line, then C

is unique. Otherwise, C is uniquely determined on the d-dimensional rectangle
Range(F1) × Range(F2) × Range(Fd).

Equations (3), (4) are the basis for the construction of multivariate distributions using cop-
ulas.
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2.2.2 MULTIVARIATE PROBABILITY DENSITY FUNCTIONS

Suppose Fi is the marginal cumulative distribution function of Xi, i = 1, 2, . . . , d. For a
copula model, the joint cumulative distribution function for the vector X = (X1, X2, . . . , Xd)
is given by

F (x) = C(F1(x1), F2(x2), . . . , Fd(xd)), (5)

where C a d-dimensional copula. If X is continuous then its probability density function is

f(x) = c(F1(x1), F2(x2), . . . , Fd(xd))
d∏

i=1
fi(xi), (6)

where fi(x) is the marginal probability density function of Xi and

c(u1, u2, . . . , ud) = ∂dC(u1, u2, . . . , ud)
∂u1 ∂u2 . . . ∂ud

,

is the density of the copula C. On the other hand, if X is a discrete random vector then the
d-dimensional joint probability mass function is given by

f(x1, x2, . . . , xd) =
2∑

j1=1

2∑
j2=1

· · ·
2∑

jd=1
(−1)j1+j2+···+jdC(u1j1 , u2j2 , . . . , udjd

), (7)

where ui1(xi) = Fi(xi
−) and ui2(xi) = Fi(xi). Fi(xi

−) is the left hand limit of Fi at xi.

2.3 BIVARIATE COPULA DISTRIBUTIONS

Here we present some examples of copulas in the bivariate case (d = 2). Some of these
have natural extensions to the multivariate case. The first and simplest is the independent
copula given by C(u1, u2) = u1 u2, 0 ≤ ui ≤ 1 for i = 1, 2. Clearly this corresponds to the
case where the two uniformly distributed randomly variables are independent. Next, a very
popular copula is the bivariate Gaussian copula. It is given by

C(u1, u2; γ) = Φ2(Φ−1(u1), Φ−1(u2); γ), ui ∈ [0, 1] for i = 1, 2, (8)

where Φ is the cumulative distribution function of standard normal and Φ2 is the cumulative
distribution function of a standard bivariate normal distribution with correlation γ. Taking
the partial derivatives of (8) we get the probability density function of the Gaussian copula
as

c(u1, u2) = 1√
1 − γ2 exp

[
− 1

2

(
γ2(z2

1 + z2
2) − 2 γ z1 z2

1 − γ2

)]
, (9)
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where zi = Φ−1(ui), for i = 1, 2.
Let R1 and R2 be two non-negative random variables with cumulative distribution func-

tions F1(r1) and F2(r2) respectively. A copula based joint cumulative distribution function
for R1 and R2 is given by

F (r1, r2) = C(F1(r1), F2(r2); γ), for r1 > 0, r2 > 0, (10)

where C is the Gaussian copula given in (8). The density function is given by

f(r1, r2) = c(F1(r1), F2(r2); γ) f1(r1) f2(r2)
= c(u1, u2; γ) f1(r1) f2(r2), (11)

where ui = Fi(ri), c(u1, u2; γ) as in (9) and fi(ri) is the probability density function of Ri.

2.4 APPLICATIONS OF COPULA IN DIFFERENT FIELDS

Copula models are an important and vigorously growing modeling tools applicable in
many fields where the main interest is the dependence between random variables of any
type. For example, copulas were widely used in the field of finance. The approach of
Clayton canonical vine copula to analyze systemic risk in financial markets by Low (2018)
is a recent example of the financial application of copulas.

Engineering is another major field that has successfully employed copula functions. Some
applications of copulas can be found in the paper by Yang et al. (2017) on the reliability
of tower and tower-line systems under spatiotemporally changing wind or earthquake loads.
Zhang et al. (2015) used copulas to study on long-term performance assessment and design
of offshore structures.

Copulas have had a growing impact in the field of meteorology and climate research lately.
Numerous successful applications can be found over the last decade in the climate research
field. For example, Mesbahzadeh et al. (2019) has discussed copulas for joint modeling of
precipitation and temperature, which are two main climatic factors impacting agricultural
production, meteorological and hydrological phenomena. Cong and Brady (2012) presents a
copula modeling framework to model the interdependence of rainfall and temperature. Few
of the copula-based approaches can be found in the field of Geodesy. As an example, Modiri
et al. (2018, 2020) have combined copula with singular spectrum analysis for polar motion
prediction and to improve the accuracy of the forecasted length of day.

Bayesian nonparametric conditional copula estimation has been used to analyze the in-
fluence of socioeconomic status on the relationship between twins’ cognitive abilities. See
Valle et al. (2017) for examples of copula applications in social sciences.
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Copulas are also being used in the field of medicine. For example, a high dimensional
latent Gaussian copula model for mixed data in imaging genetics (Zhang et al. (2018)) is
an excellent example of the copula in the field of magnetic resonance imaging (MRI). Brain
research (Qian et al. (2017)) and oncology (Bao et al. (2009)) are some other areas of medicine
where copulas are used.

Bioinformatics is another field where copula methods that have been widely applied.
Owzar et al. (2007) have incorporated copulas to detect prognostic genes associated with
survival outcomes in microarray studies. Yuan et al. (2008) proposed a semiparametric
copula method for microarray-SNP genomewide association analysis using pedigree data.
A unified copula VC approach that allows the analysis of traits with a variety of distri-
butions was developed by Li et al. (2006). Escarela and Carriere (2003) proposed a fully
parametric model for the analysis of competing risks data where the types of failure may
not be independent. They have shown that with the proposed copula model, more accurate
inferences can be obtained than using a simpler model. Most recently, Kasa et al. (2020)
have published a paper about Gaussian mixture copulas for high-dimensional clustering and
dependency-based subtyping.

Only a few works in the literature demonstrate copula methods applications in microar-
ray data for gene selection. For instance, Chaba (2006) has developed a semi-parametric
copula-based algorithm for gene selection that does not depend on the distributions of the
covariates. They assumed marginal distributions are continuous and have validated the re-
sult in a melanoma dataset. Furthermore, a clustering algorithm based on copula functions
on microarray data, called ’CoClust’ was proposed by Di Lascio (2008). This dissertation
addresses the need for a copula-based approach in microarray data to identify differentially
expressed genes, which has not been addressed so far in the scientific literature.
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CHAPTER 3

BAYESIAN COPULA MODEL

3.1 INTRODUCTION

In Chapter 2, we presented a brief review of copulas. This chapter develops a Gaussian
copula-based model for the joint distribution of cDNA microarrays’ red and green intensities.
As an application, we apply the model to real data sets to identify differentially expressed
genes.

3.2 MOTIVATION

Escherichia coli (E. coli) is a bacteria that generally live in the intestines of people and
animals. The source of data for this dissertation is the experiment designed to study gene
expression levels in E. coli, initially described in Richmond et al. (1999). The E. coli genome
consists of approximately 4.6 million base pairs (Mbp) but is suspected of encoding only
about forty-two hundred genes. To study differential gene expressions in E. coli, Richmond
et al. (1999) used two traditional treatments which affect gene expression levels. The first
treatment is induction with isopropyl-β-D-thiogalactopyranoside (IPTG), which provides a
simple test of the methods since only a few gene transcripts are expected to change, and
secondly, the Heat Shock treatment, which allows global regulatory effects to be observed.
A single colony of E. coli K-12 was divided into five samples for the experiments.

IPTG treatment was performed independently on two samples (IPTG-A and IPTG-
B), while one sample (control) was untreated. Heat Shock induction was carried out by
treating the culture to a 500C shaking water bath for seven minutes on the remaining two
samples (Heat Shock-A and Heat Shock-B). Following hybridization of the samples on E.
coli microarrays, signal intensities for each spot were determined using ScanAlyze software.
The average fluorescence intensity for each spot was measured, and background was chosen
as the median pixel intensity in a square surrounding each spot. The red and green signal
intensities were recalculated and normalized after background subtraction. The E. coli data
was made publicly available by Newton et al. (2001).

Newton et al. (2001) have proposed a Bayesian hierarchical model with a latent variable
to identify differentially expressed genes. Here the marginal distributions of red and green
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intensities were modeled as gamma distributions with common shape parameter but different
scale parameters. Newton et al. (2001) assumed that the red and green intensities measured
on the same gene are independent. They have applied the suggested hierarchical model on
E. coli data.

Figure 7 contains the scatter plots of red (R1) and green (R2) intensities. Clearly the
uncorrelated assumption is not true. Mav and Chaganty (2004) have remodeled the red and
green intensities by a bivariate distribution with gamma marginals and a positive correlation
between the variables. By applying the new model on the same E. coli data, they have shown
that their model is an improvement over the model given in the Newton et al. (2001).

In this chapter, we extend and replace the bivariate distribution in the Bayesian model
proposed by Mav and Chaganty (2004) with Gaussian Copula joint distribution with gamma
marginals. The performance of our extended model in terms of log-likelihood analysis is
assessed via applying on E. coli data.

3.3 BAYESIAN COPULA MODEL FOR EXPRESSION LEVEL

The typical objective when analyzing data arising from microarray experiments is to
identify genes that are differentially expressed. In this section, we will propose a Bayesian
copula model that can filter the differentially expressed genes.

Consider a microarray consisting of n genes. Let R1j and R2j denote the red and green
intensities of gene j, respectively. In literature, the concepts based on the red and green
intensity ratio have been widely used to identify differentially expressed genes. Some of
those were discussed briefly in section 1.4.1. To filter the differentially expressed genes, we
will use the ratio of expected expression levels which are given by ηj = E(R1j)/E(R2j) for
j = 1, . . . , n.

As explained in section 3.2, this study is mainly based on the E. coli data. Empirical
plots show the gamma distribution is an appropriate model for the marginal distributions
of red and green intensities. For the model simplicity purposes we assume Rij and R2j are
gamma distributions with common shape parameterα but different scale parameters 1/θ1j

and 1/θ2j for j = 1, 2, . . . , n. The probability density function of Rij is given by

fi(rij; θij, α) = 1
Γ(α) θ α

ij rα−1
ij exp (−θij rij), i = 1, 2; j = 1, . . . , n. (12)

To model the dependence between two intensities, we assume the joint distribution of
(R1j, R2j) is given by the bivariate Gaussian copula (11) , which can be written as

f(r1j, r2j; θ1j, θ2j, α, γ) = c(u1j, u2j; γ) f1(r1j) f2(r2j), (13)
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where uij = Fi(rij) and Fi(.) is the cumulative distribution function of a gamma distribution
with parameters (α, 1/θij). Note that

c(u1j, u2j; γ) = 1√
1 − γ2 exp

[
−1

2

(
γ2(z2

1j + z2
2j) − 2γz1jz2j

1 − γ2

)]
, (14)

where zij = Φ−1(Fi(rij)) = Φ−1(uij) and γ is the parameter for the copula density. To
simplify the notation, we write c(u1j, u2j) in place of c(u1j, u2j; γ) from now on.

The model stated in (13) consists of 2n + 2 unknown parameters that needs to be es-
timated. Since there are too many unknown parameters, we adopt the empirical Bayes
approach to make the model parsimonious. This requires specification of prior distributions
for the gene specific parameters θ1j and θ2j’s. We assume independent gamma distributions
with parameters α0 and 1/ν as the prior distributions for θij’s. The prior density π(θij) is

π(θij; ν, α0) = 1
Γ(α0)

ν α0 θ α0−1
ij exp (−νθij), for i = 1, 2; j = 1, . . . , n. (15)

Multiplying (13) and (15) we get the joint density of (R1j, R2j) and (θ1j, θ2j) as

f(r1j, r2j, θ1j, θ2j; Υ) =
(

να0

Γ(α) Γ(α0)

)2

c(u1j, u2j)
2∏

i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
,

(16)

where Υ = (α, α0, ν, γ) is the vector of model parameters. Recall, this model has gene
specific parameters (θ1j, θ2j) for j = 1, . . . , n. The marginal density of Rj = (R1j, R2j) is

fm(r1j, r2j; Υ) =
∫ ∞

0

∫ ∞

0
f(r1j, r2j; θ1j, θ2j; Υ) dθ1j dθ2j

=
(

να0

Γ(α) Γ(α0)

)2 ∫ ∞

0

∫ ∞

0
c(F1(r1j), F2(r2j)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
dθ1j dθ2j. (17)

Here Fi(rij) is the cumulative distribution function of gamma with parameters α and 1/θij

for i = 1, 2 and j = 1, 2, . . . , n.

The double integral in equation (17) does not simplify because of the presence of the
Gaussian copula function c(u1j, u2j) in the integrand. Numerical computation of (17) is also
challenging. To compute the double integral we could use the R libraries such as cubature by
Narasimhan et al. (2021) or pracma by Borchers (2021). We were not successful with these



20

packages and encountered numerous errors with the functions embedded in these packages
to evaluate the double integral iteratively. To overcome the computational problems we have
developed our own R code to evaluate the double integral and obtain the marginal density
of (R1j, R2j). This R code is given in Appendix A.

3.4 PARAMETER ESTIMATION PROCEDURE

The marginal bivariate density of red and green intensities given in (17) has four unknown
parameters given by the vector Υ = (α, α0, ν, γ). The maximum likelihood is the efficient
method for estimating these parameters. This method entails maximizing the likelihood or
alternatively the log-likelihood, which is the logarithm of the likelihood function. For n genes
the log-likelihood is given by

l (Υ) =
n∑

j=1
log fm(r1j, r2j; Υ)

=
n∑

j=1
log

( να0

Γ(α) Γ(α0)

)2 ∫ ∞

0

∫ ∞

0
c(F1(r1j), F2(r2j)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
dθ1j dθ2j



= 2n [α0 log(ν) − log (Γ(α) Γ(α0))] +
n∑

j=1
log

 ∫ ∞

0

∫ ∞

0
c(F1(r1j), F2(r2j)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
dθ1j dθ2j

. (18)

Maximizing (18) will yield the maximum likelihood estimate of the unknown parameter
vector Υ.

3.4.1 ESTIMATION

A numerical optimization routine is required to obtain the maximum likelihood estimator
of Υ = (α, α0, ν, γ), since the log-likelihood (18) is highly nonlinear. The quasi-Newton (or
variable metric) algorithm given in Nash (1979) is an ideal choice for this situation. The
algorithm can be described as follows:
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Step 1 Start with an initial estimate Υ̂int of Υ.

Step 2 At the i th step compute Υ̂i+1 = Υ̂i − c B(Υ̂i)g(Υ̂i) where g(Υ) = ∂l(Υ)/∂Υ and
B(Υ) is an approximation to the inverse of Hessian matrix, [∂2l(Υ)/∂Υj∂Υk]−1,
and c is a constant.

Step 3 Repeat Step 2 until Υ̂i+1 ∼= Υ̂i and take Υ̂ = Υ̂i+1 as the MLE of Υ.

The function optim in the R package stats provides algorithms for general purpose optimiza-
tion. We used the quasi-Newton method "BFGS", which was published simultaneously by
Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970). The estimation of gradi-
ent function is carried out using finite-difference approximation. The Hessian matrix is the
square matrix of second order partial derivatives given by

∂2l(Υ)
∂Υ∂Υ′ =



∂2l(Υ)
∂α2

∂2l(Υ)
∂α∂α0

∂2l(Υ)
∂α∂ν

∂2l(Υ)
∂α∂γ

∂2l(Υ)
∂α0∂α

∂2l(Υ)
∂α02

∂2l(Υ)
∂α0∂ν

∂2l(Υ)
∂α0∂γ

∂2l(Υ)
∂ν∂α

∂2l(Υ)
∂ν∂α0

∂2l(Υ)
∂ν2

∂2l(Υ)
∂ν∂γ

∂2l(Υ)
∂γ∂α

∂2l(Υ)
∂γ∂α0

∂2l(Υ)
∂γ∂ν

∂2l(Υ)
∂γ2

 .

This matrix can be calculated numerically at the point of maximum of the log-likelihood
function using the method "Richardson" of function Hessian in the R package numDeriv by
Gilbert and Varadhan (2019). The square-root of the diagonal elements of inverse Hessian
gives us the standard errors of the maximum likelihood estimates.

3.5 DIFFERENTIALLY EXPRESSED GENES

Our ultimate goal of modeling using (17) is to identify the differentially expressed genes in
cDNA microarray. Recall that we are interested in estimating ηj = E(R1j)/E(R2j) = θ2j/θ1j

for j = 1, . . . , n. Consider the transformation µj = θ1j and ηj = θ2j/θ1j. The inverse
transformation is θ1j = µj and θ2j = ηj µj and the Jacobian is given by

J =
∣∣∣∣∣∣ µj ηj

0 1

∣∣∣∣∣∣ = µj.

By the transformation theorem the joint density of Rj, ηj and µj is given by

g(r1j, r2j, ηj, µj; Υ) = f(r1j, r2j, µj, ηjµj; Υ) µj , ηj , µj > 0.

The conditional posterior distribution of ηj and µj given Rj is

g(ηj, µj|r1j, r2j; Υ) = f(r1j, r2j, µj, ηjµj; Υ) µj

fm(r1j, r2j; Υ) , ηj , µj > 0.
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The Bayes estimate of the differential expression of the jth gene is

E(ηj|r1j, r2j; Υ) =
∫ ∞

0

∫ ∞

0
ηj

f(r1j, r2j, µj, ηjµj; Υ) µj

fm(r1j, r2j; Υ) dηj dµj, (19)

which we can calculate numerically. Let η̃j = E(ηj|r1j, r2j; Υ̂), where Υ̂ is the maximum
likelihood estimate of Υ. We say the j th gene is up-regulated if η̃j is greater than some
specified value and down-regulated if it is less than that value.

3.6 RELATION BETWEEN COPULA PARAMETER AND
CORRELATION COEFFICIENT

It is a well known fact that correlation coefficient of two random variables is the mag-
nitude and the direction of the linear relationship between those two random variables.
However it fails to capture nonlinear dependence. But the copula function is able to capture
nonlinear dependence, specifically, dependence in the tail region for non-normal variables.
In this section we will derive the relationship between linear correlation coefficient ρ between
R1 and R2 and the Gaussian copula parameter γ.

Case 1. Suppose that Ri is distributed as gamma(αi, 1/θi) for i = 1, 2 and the joint
distribution is given by the bivariate Gaussian copula with parameter γ. Note that the
marginal mean and variance of Ri are αi/θi and αi/θi

2 respectively. The joint probability
density function of (R1, R2) is given by

f(r1, r2; θ1, θ2, α1, α2, γ) = c(u1, u2) f1(r1) f2(r2)

= 1√
1 − γ2 exp

[
− 1

2

(
γ2(z2

1 + z2
2) − 2 γ z1 z2

1 − γ2

)]

×
2∏

i=1

1
Γ(α1)

rαi−1
i θαi

i exp (−θiri),

where zi = Φ−1(ui), for i = 1, 2 and ui = Fi(ri), and Fi is the cumulative distribution
function. Therefore the expected value of R1R2 is

E[R1R2] =
∫ ∞

0

∫ ∞

0
r1r2 f(r1, r2; θ1, θ2, α1, α2, γ) dr1 dr2.

If ρ is the correlation coefficient between R1 and R2 then we have

ρ = θ1θ2√
α1α2

∫ ∞

0

∫ ∞

0
r1r2 f(r1, r2; θ1, θ2, α1, α2, γ) dr1 dr2 −

√
α1α2. (20)
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This can be numerically computed for different values of (αi, θi), i = 1, 2, and γ.

Case 2. Suppose that Ri is distributed as gamma(α, 1/θi) and θi is also distributed as
gamma(α0, 1/ν) for i = 1, 2. Then the joint probability distribution of (Ri, θi) is

fi(ri, θi; α, α0, ν) = να0

Γ(α) Γ(α0)
rα−1

i θα+α0−1
i exp[−θi(riν)].

We can show that the marginal probability density function of ri is Beta distribution of the
second type (Beta2) with parameters (ν, α, α0).

fi(ri; α, α0, ν) =
∫ ∞

0
fi(ri, θi; α, α0, ν) dθi

= Γ(α + α0)
Γ(α) Γ(α0)

να0
ri

α−1

(ri + ν)α+α0

∼ Beta2(ν, α, α0). (21)

The marginal mean and the variance of Ri are

E(Ri) =
∫ ∞

0

∫ ∞

0
rifi(ri, θi; α, α0, ν) dri dθi

= α να0

Γ(α0)

∫ ∞

0
θα0−2

i exp(−θiν) dθi

= αν

α0 − 1 ,

V ar(Ri) =
∫ ∞

0

∫ ∞

0
r2

i fi(ri, θi; α, α0, ν) dri dθi −
(

αν

α0 − 1

)2

= α (α + 1) να0

Γ(α0)

∫ ∞

0
θα0−3

i exp(−θiν) dθi −
(

αν

α0 − 1

)2

= α(α + 1)
(α0 − 1)(α0 − 2) ν2 −

(
αν

α0 − 1

)2

= α(α + α0 − 2)
(α0 − 1)2(α0 − 2) ν2. (22)

Note that E(R1) = E(R2) and V ar(R1) = V ar(R2) are functions of (α, α0, ν). Assuming
the joint distribution of (R1, R2) is determined by the Gaussian copula with parameter γ,
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equation (17) gives the marginal density of (R1, R2). The expected value of the product of
R1R2 is given by

E[R1R2] =
∫ ∞

0

∫ ∞

0
r1r2fm(r1, r2; α, α0, ν, γ) dr1dr2

=
(

να0

Γ(α) Γ(α0)

)2 ∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
r1 r2 c(F1(r1), F2(r2)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
dθ1 dθ2 dr1 dr2. (23)

Equation (23) has a double integral with respect to θ1 and θ2, and another additional double
integral with respect to r1 and r2. The function adaptIntegrate in the R package cubature
is useful to numerically evaluate this multidimensional integral. We have developed an R
function that uses adaptIntegrate to calculate (23), and it is given in Appendix A. The
relationship between the copula parameter γ and ρ in this case is given by

ρ = α0 − 2
α + α0 − 2

[
(α0 − 1)2

αν2 E[R1R2] − α

]
. (24)

3.7 SIMULATION STUDY

In this section we check our parameter estimation methods for the Bayesian Gaussian
copula model on simulated data. The data is simulated for two sets of values of Υ =
(α, α0, ν, γ) with three sample sizes n = 100, 500, 3000. The data simulation steps are as
follows.
Fix a value for Υ = (α, α0, ν, γ).

Step 1 Generate n pairs of bivariate normal random variables (x1j, x2j) from standard
bivariate normal distribution (BVN) with correlation parameter γ.

Step 2 Calculate (u1j, u2j) = (Φ(x1j), Φ(x2j)) for j = 1, . . . , n where Φ is the cumulative
distribution function of standard normal.

Step 3 Generate θij from a gamma distribution with parameters (α0, 1/ν) for i = 1, 2 and
j = 1, . . . , n .

Step 4 Calculate (r1j, r2j) =
(
F −1

1j (u1j), F −1
2j (u2j)

)
where Fij is the cumulative distribution

function of a gamma distribution with parameters (α, 1/θij).
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For our first simulation, we have fixed the parameter values as α = 0.5, α0 = 10, ν = 25,

and γ = 0.9. With these parameter values we simulated samples of sizes n = 100, 500,
and 3000. The results of parameter estimation are given in Table 1 and the scatter plots of
simulated data are shown in Figure 5.

In Table 1, ρ is the correlation coefficient calculated from simulated data and ρ̂ is the
correlation coefficient calculated after substituting the estimated values of (α, α0, ν, γ) in
equation (24). The parameter estimates are closer to the true parameter values for large
sample size, and the standard errors get smaller as the sample size increases. The values of
the correlation coefficients ρ and ρ̂ are reasonably close for all sample sizes.

Table 1. Parameter estimates (standard errors) for the simulated data†.

n α̂ α̂0 ν̂ γ̂ ρ ρ̂

100 0.541 8.901 22.043 0.835 0.806 0.713
(0.054) (0.280) (3.829) (0.005)

500 0.506 9.850 25.922 0.910 0.832 0.827
(0.024) (0.102) (1.678) (0.010)

3000 0.540 10.119 25.999 0.890 0.771 0.805
(0.011) (0.016) (0.421) (<0.001)

†True parameter values are α = 0.5, α0 = 10, ν = 25, and γ = 0.9.
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Figure 5. Scatter plots of simulated data with α = 0.5, α0 = 10, ν = 25, and γ = 0.9.
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For our second simulation, we fixed the parameter values as α = 2, α0 = 27, ν = 900, and
γ = 0.8, and as before we took three sample sizes 100, 500 and 3000. Figure 6 shows the
scatter plots of simulated data, and Table 2 consists of parameter estimation results for this
second simulation.
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Figure 6. Scatter plots of simulated data with α = 2, α0 = 27, ν = 900, and γ = 0.8.
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Table 2. Parameter estimates (standard errors) for the simulated data†.

n α̂ α̂0 ν̂ γ̂ ρ ρ̂

100 2.629 31.999 899.216 0.737 0.718 0.485
(0.005) (0.019) (2.772) (0.003)

500 2.018 30.424 898.990 0.706 0.717 0.407
(0.003) (0.026) (1.982) (0.005)

3000 2.187 26.256 898.991 0.863 0.710 0.775
(0.003) (0.002) (0.753) (0.001)

†True parameter values are α = 2, α0 = 27, ν = 900, and γ = 0.8.

For n = 100, 300, the estimate α̂0 is an over estimate of α0, and ρ̂ is terribly an under
estimate of ρ, otherwise the results are consistent with the first simulation. All the parameter
estimates are closer to their true values for lager sample size n = 3000. This is a good news
because in practice n, which represents the number of genes, is in thousands.

3.8 ANALYSIS OF E. COLI DATA

In this section we apply the Bayesian Gaussian copula model that we had developed
in Section 3.3 to some real data obtained from microarray experiments on E. coli. These
data consists of observations from five microarrays. There are two IPTG treated samples
labeled IPTG-A and IPTG-B, and two heatshock samples labeled as Heat Shock-A and
Heat Shock-B and the fifth is a control (untreated). We have described these data earlier in
Section 3.2. There are 4253, 4083, 4141, 4208, and 4071 genes in control, IPTG-A, IPTG-B,
Heat Shock-A and Heat Shock-B samples, respectively. The first 15 observations taken from
control sample E. coli are shown in Table 3. The “Bnumber" is a label associated with the
gene.

The scatter plots for the red and green intensities for the five samples are shown in
Figure 7, along with the sample correlation coefficients. Clearly, there is a high positive
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correlation between red and green intensities in all of the five samples. Figures 8 and 9 show
the histograms of red and green intensities along with the nonparametric kernel density
plots for the five microarray experiments. The positively skewed shape of the density curves
suggest the assumption of gamma marginals is reasonable. Thus following Newton et al.
(2001), as a parsimonious model, we assume the marginal distributions of the red and green
intensities as gamma with common shape parameter but different scale parameters.

Table 3. Sample data for the E. coli example.

Intensity
Obs Bnumber Red (R1) Green (R2)

1 b0001 1.4780 1.4107
2 b0002 13.0661 9.0702
3 b0003 22.4852 15.4512
4 b0004 12.8999 6.7668
5 b0005 4.5915 5.2459
6 b0006 29.8578 30.9245
7 b0007 14.1593 11.0870
8 b0008 157.8423 137.1544
9 b0009 9.5066 8.2216

10 b0010 19.6253 18.3938
11 b0011 7.8186 7.6815
12 b0012 10.7135 7.9901
13 b0013 1.8191 1.6862
14 b0014 36.8106 26.7476
15 b0015 28.1874 22.6589
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Figure 7. Scatter plots of red and green intensities.
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Figure 8. Histogram of red intensities with density plots.
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Figure 9. Histogram of green intensities with density plots.
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Table 4 contains the parameter estimates and their standard errors for the Bayesian
Gaussian copula models for the five microarray samples. The standard errors are small
because the sample sizes are large; more than 4000 in all cases. This suggests the parameter
estimates are fairly accurate.

Table 4. Parameter estimates (standard errors) for the E. coli data.

Microarray α α0 ν γ

Control 0.796 55.245 1529.876 0.9896
(0.001) (0.343) (1.056) (0.003)

IPTG-A 0.743 40.048 1149.604 0.9838
(0.001) (0.127) (1.181) (0.021)

IPTG-B 0.643 27.095 899.997 0.9839
(0.003) (0.059) (0.678) (0.019)

Heat Shock-A 1.777 4.644 24.999 0.8116
(0.039) (0.094) (0.056) (0.013)

Heat Shock-B 1.449 4.613 29.999 0.6507
(0.024) (0.083) (0.102) (0.015)

The empirical density plots along with the fitted density plots are shown in Figures 10
and 11 for the red and green intensities, respectively. The solid curves in Figures 10 and 11
are the fitted gamma marginals and the shaded curves are the empirical plots. Note the
fitted marginals are gamma densities with the estimated parameter values in Table 4. These
figures show the fitted marginals are very good for the IPTG and control samples but there
is some improvement for the heat shock samples, especially the red intensities.



34

Heat Shock−A

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Red Intensity

Heat Shock−B

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Red Intensity

IPTG−A

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Red Intensity

IPTG−B

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Red Intensity

Control

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Red Intensity

Figure 10. Density plots of red intensities.



35

Heat Shock−A

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Green Intensity

Heat Shock−B

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Green Intensity

IPTG−A

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Green Intensity

IPTG−B

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Green Intensity

Control

0 50 100 150 200

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Green Intensity

Figure 11. Density plots of green intensities.
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Figure 12 shows the fitted bivariate density plots obtained using the parameter estimates
in Table 4. In these plots the 450 line indicates equal red and green intensities and the points
that fall on this line correspond to genes that are not differentially expressed. Using this
criteria we can see we can see most of the genes in the control group are not differentially
expressed. For the IPTG samples a few points lie away from the 450 line indicating the
presence of differentially expressed genes in these samples. Finally, for the two Heat Shock
samples a large number of points are away from the 450 line indicating there are a large
number of differentially expressed genes in these samples.

Table 5. True and estimated correlation coefficients.

Microarray ρ ρ̂

Control 0.9712 0.9748
IPTG-A 0.9515 0.9163
IPTG-B 0.9471 0.9799
Heat Shock-A 0.4137 0.4723
Heat Shock-B 0.5147 0.3971

Table 5 displays the observed correlation (ρ) and correlation coefficient (ρ̂) calculated
from the estimated copula parameter as in Table 4 using equation (24). Except for Heat
Shock-B, for all the other four samples the values of ρ and ρ̂ are very close indicating that our
copula model was fairly successful in quantifying the dependence between the two intensities.
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Figure 12. Estimated bivariate density plots of red and green intensities.
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Table 6. Top 20 down-regulated genes.

Control IPTG-A IPTG-B Heat Shock-A Heat Shock-B
# Gene η̃j Gene η̃j Gene η̃j Gene η̃j Gene η̃j

id id id id id
1 b0233 0.52 b4098 0.29 b4119 0.30 b3686 0.00 b3686 0.04
2 b1325 0.53 b4119 0.29 b4120 0.30 b3687 0.00 b3687 0.05
3 b0558 0.56 b4120 0.45 b4149 0.35 b0014 0.02 b4142 0.05
4 b2843 0.58 b0296 0.53 b0341 0.43 b1306 0.03 b0015 0.05
5 b2129 0.60 b4291 0.54 b4291 0.43 b1967 0.03 b0014 0.05
6 b1319 0.60 b1571 0.54 b1785 0.46 b1304 0.03 b3400 0.06
7 b3818 0.61 b0720 0.56 b1020 0.47 b1380 0.03 b1380 0.06
8 b1075 0.64 b1020 0.58 b0648 0.47 b2614 0.04 b2592 0.07
9 b1924 0.65 b3908 0.59 b0558 0.50 b0399 0.04 b1306 0.08

10 b2742 0.66 b1500 0.60 b2260 0.52 b1305 0.04 b0966 0.08
11 b1447 0.67 b0326 0.60 b0705 0.55 b1307 0.04 b4143 0.08
12 b3341 0.68 b3962 0.60 b0720 0.55 b4143 0.04 b1304 0.08
13 b3751 0.68 b4149 0.61 b3489 0.56 b4140 0.05 b1307 0.08
14 b2756 0.68 b0702 0.62 b0302 0.56 b3400 0.05 b1305 0.08
15 b1166 0.68 b1018 0.63 b3342 0.57 b4142 0.05 b2614 0.09
16 b2051 0.68 b4247 0.63 b1166 0.58 b3401 0.05 b0473 0.09
17 b2541 0.68 b1685 0.64 b0805 0.60 b1321 0.05 b0016 0.09
18 b3340 0.69 b2260 0.65 b1681 0.60 b0473 0.05 b3932 0.09
19 b3966 0.70 b0705 0.65 b2843 0.61 b1829 0.06 b1060 0.10
20 b2628 0.70 b0726 0.66 b3508 0.61 b4171 0.07 b1829 0.10
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Table 7. Top 20 up-regulated genes.

Control IPTG-A IPTG-B Heat Shock-A Heat Shock-B
# Gene η̃j Gene η̃j Gene η̃j Gene η̃j Gene η̃j

id id id id id
1 b4325 1.89 b2206 2.32 b1256 2.56 b3556 20.65 b3556 15.68
2 b0657 1.79 b1256 2.30 b2206 2.47 b2094 19.03 b1078 14.71
3 b2740 1.70 b0043 2.22 b0759 2.32 b1076 15.56 b0907 12.44
4 b0542 1.69 b1673 1.97 b4307 2.11 b1077 14.40 b1857 10.89
5 b0679 1.50 b2205 1.95 b1674 2.05 b1075 14.24 b1074 10.28
6 b4314 1.50 b2204 1.95 b2997 2.03 b1857 14.12 b1076 9.91
7 b2418 1.49 b2997 1.94 b2203 2.03 b0754 14.11 b0296 9.87
8 b3616 1.48 b0115 1.90 b2151 2.02 b1074 13.85 b2094 9.51
9 b4243 1.48 b0759 1.89 b0733 2.01 b2926 13.49 b1588 8.81

10 b0185 1.47 b2727 1.89 b0857 2.00 b1073 12.11 b1245 8.22
11 b1084 1.45 b2241 1.83 b2204 1.99 b2935 11.27 b4025 8.18
12 b3834 1.44 b0283 1.81 b2242 1.97 b3544 10.66 b4328 7.97
13 b2860 1.44 b2202 1.80 b2205 1.95 b1078 10.32 b1885 7.89
14 b0729 1.44 b2996 1.80 b2996 1.95 b0907 9.60 b2241 7.17
15 b1083 1.43 b0347 1.78 b2957 1.92 b2416 9.05 b1244 7.12
16 b1064 1.42 b0733 1.78 b2727 1.91 b2092 8.93 b1417 7.03
17 b2283 1.42 b2957 1.78 b2149 1.90 b2286 8.84 b0131 6.70
18 b3147 1.42 b2203 1.76 b2241 1.90 b3357 8.73 b1938 6.63
19 b1674 1.41 b2151 1.75 b0598 1.88 b0893 8.10 b1676 6.57
20 b0698 1.41 b2242 1.74 b0894 1.87 b1244 8.06 b1072 6.53
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Figure 13. Plots of η̃j.
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Figure 14. Plots of differentially expressed gene comparison

We calculated η̃j using equation (19), the Bayes estimate η̃j of ηj which is a measure of
differential expression of the jth gene. Table 6 displays the top twenty down-regulated (η̃j

is small) genes and Table 7 lists the top twenty up-regulated (η̃j is large) genes for all the
five samples.

Plots of ordered η̃j values for the five samples are displayed in Figure 13. These plots
are S-shaped, and the left tails contain the down-regulated genes, whereas the right tails
contain the up-regulated genes. In their paper, Richmond et al. (1999) have listed the genes
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that are significantly affected by Heat Shock and IPTG treatments. According to their
findings, the control sample has none of the differentially expressed genes, IPTG samples
have few, and Heat shock samples have a large number of differentially expressed genes.
Therefore, by considering the number of differentially expressed genes and the plots of η̃j of
five microarrays, η̃j = 2 is a good candidate cut off value to filter up-regulated genes while
η̃j = 0.5 is for down-regulated genes. The horizontal lines in Figure 13 indicate the possible
cut off values to separate the normal genes from the two extremes.

The total number of differentially expressed genes for each microarray is listed in Table 8
along with the total number of differentially expressed genes filtered with the bivariate
gamma model was proposed by Mav and Chaganty (2004).

Table 8. Total number of differentially expressed genes.

Microarray # of Genes for which
η̃j > 2 η̃j < 0.5

Bivariate Gaussian Bivariate Gaussian
Gamma Copula Gamma Copula

Control 0 0 0 0
IPTG-A 10 3 3 3
IPTG-B 21 9 7 8
Heat Shock-A 553 451 1007 439
Heat Shock-B 856 600 590 169

As expected, none of the genes are identified as differentially expressed in the control
sample, and very few in IPTG-A and IPTG-B. Many genes have been filtered as up or
down-regulated from both models for the Heat Shock-A and Heat Shock-B. The number
of genes filtered from the Gaussian copula model is somewhat smaller than that from the
Bivariate gamma model.
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The best model cannot be determined by looking at this total number of genes. Therefore,
the log-likelihoods for the two models under each microarray are compared and shown in
Table 9. The log-likelihood values under our model are larger than that of the bivariate
gamma model, which was proposed by Mav and Chaganty (2004) for each microarray. Hence
we conclude the Bayesian Gaussian copula model has an improvement over the model given
in Mav and Chaganty (2004). Further, the filtered differentially expressed genes of Heat
shock samples by our method are well-matched with the genes are listed in Richmond et al.
(1999). Recall that in Richmond et al. (1999), the control sample had no differentially
expressed genes and IPTG samples had few, which are consistent with our findings.

Table 9. Log-likelihoods for the competitive models.

Microarray Bivariate Gamma Gaussian Copula
Control -28824 -28350
IPTG-A -28320 -27853
IPTG-B -28257 -27885
Heat Shock-A -31936 -30419
Heat Shock-B -31658 -30282

3.9 CONCLUSIONS

Several methods have been proposed to identify differentially expressed genes in the lit-
erature. This chapter develops a Bayesian Gaussian copula model to detect the differentially
expressed genes in a cDNA microarray. The accuracy of model parameter estimations is
shown with two simulation studies with three different sample sizes. We applied the devel-
oped model to the five microarray samples in E. coli separately. The experimentally found
differentially expressed genes in E. coli data have listed in Richmond et al. (1999). The Bayes
estimate of the differential expression is used to filter up-regulated and down-regulated genes.
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Many of the genes identified as down-regulated by our model are matched with the genes
stated in Mav and Chaganty (2004) paper.

However, Mav and Chaganty (2004) have proposed a Bivariate Gamma model for the
same purpose on the same E. coli data. The larger log-likelihood values under our model
with compare to the model of Mav and Chaganty (2004), suggest that our model has an
improvement over the Bivariate Gamma model. Our model’s main advantage is that it can
be applied to any marginal distributions of intensities, while the Biivariate Gamma model is
always based on Gamma marginals. In the next chapter we will study the Bayesian Gaussian
copula model incorporating a latent Bernoulli variable.
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CHAPTER 4

BAYESIAN COPULA MODEL WITH A LATENT VARIABLE

4.1 INTRODUCTION

In Chapter 3 we have developed a Bayesian model that uses a Gaussian copula for the joint
distribution for the red and green intensities that arise in a cDNA microarray. Further, we
assumed both the marginal and prior distributions are gamma. We have used the posterior
estimates of the mean intensities ratios to classify the down and up-regulated genes. In
this chapter, we add another layer to the model by introducing a binary latent variable
that indicates presence and absence of differential expression. For this extended model, we
calculate the posterior probabilities of differential expression and use them to rank order the
genes.

4.2 BAYESIAN COPULA MODEL WITH A LATENT VARIABLE

In this section, we start with the model described in Section 3.3 in the previous chapter.
Recall that, the marginal distributions of red (R1j) and green (R2j) intensities were assumed
to be distributed as gamma with common shape parameter α and different scale parameters
1/θ1j and 1/θ2j. In additional to this assumption, we assumed that the prior distributions for
θij’s are independent gamma distributions with parameters α0 and 1/ν for j = 1, . . . , n and
i = 1, 2. Our goal is to extend this model by assuming that there is an unknown proportion
p of genes that exhibit differential expression in a microarray. To accomplish this goal we
define a latent unobserved Bernoulli variable Wj which indicates whether the j th gene is
differentially expressed,

Wj =


0, if θ1j = θ2j = θj

1, if θ1j ̸= θ2j.

If the j th gene is differentially expressed (Wj = 1), then the marginal density of (R1j, R2j)
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is given by

fde(r1j, r2j; Υ) =
∫ ∞

0

∫ ∞

0
f(r1j, r2j; θ1j, θ2j; Υ) dθ1j dθ2j

=
(

να0

Γ(α) Γ(α0)

)2 ∫ ∞

0

∫ ∞

0
c(F1j(r1j), F2j(r2j)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp (−θij (rij + ν))

]
dθ1j dθ2j. (25)

Here Fij(rij) the cumulative distribution function of a gamma distribution with parameters
(α, 1/θij) for i = 1, 2 and j = 1, 2, . . . , n. For a gene j that is not differentially expressed
(Wj = 0), the marginal density of (R1j, R2j) is given by

fnde(r1j, r2j; Υ) = να0 (r1jr2j)α−1

Γ2(α) Γ(α0)

∫ ∞

0
c(Fj(r1j), Fj(r2j)) ×

θ 2α+α0−1
j exp [−θj(r1j + r2j + ν)] dθj, (26)

where Fj(.) does not depend on i and it is the cumulative distribution function of gamma
with parameters (α, 1/θj). Here c is the bivariate Gaussian copula density function given
by (14) and Υ = (α, α0, ν, γ) is the vector of model parameters.

4.3 PARAMETER ESTIMATION PROCEDURE

In this section we discuss maximum likelihood estimation of the parameters Υ and p in
the model that we described in Section 4.2. Using (25) and (26), we can write the complete
data log-likelihood for a sample of n genes as

l(Υ, p) =
n∑

j=1
log

{
fde(r1j, r2j; Υ)wj fnde(r1j, r2j; Υ)1−wj pwj (1 − p)1−wj

}
. (27)

Recall that wj’s are unobserved latent Bernoulli variables, and therefore, we use expectation
maximization (EM) algorithm to maximize the log-likelihood (27) to obtain the maximum
likelihood estimates of the parameters. The EM algorithm is an iterative procedure that
iterates between an expectation (E) step (to fill the unobserved variables) followed by a
maximization (M) step. In a seminal paper Dempster et al. (1977) introduced this method
to find the maximum likelihood estimates in the presence of latent variables or missing
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data. See McLachlan and Krishnan (1997) for more extensive detailed description of the EM
algorithm and several applications of the method.
In summary the EM algorithm to estimate the parameters Υ = (α, α0, ν, γ) and p goes as
follows.

Step 1 Select initial values α{0}, α0{0}, ν{0}, γ{0}, p{0} for the parameters α, α0, ν, γ and p

respectively.

Step 2 E-step: Calculate ŵj using following equation:

ŵj = E(wj | r1j, r2j) = p{0} fde(r1j, r2j; Υ{0})
p{0} fde(r1j, r2j; Υ{0}) + (1 − p{0}) fnde(r1j, r2j; Υ{0})

.

(28)

Step 3 M-step: Maximize (27) and obtain an updated estimates α{1}, α0{1}, ν{1}, γ{1}, p{1}

of the unknown parameters.

Step 4 Repeat the E-step and the M-step until the parameter estimates converge.

Note that in the M-step involves maximizing the likelihood function and this usually done
solving the likelihood equation ∂l(Ω)/∂Ω = 0, where Ω = (Υ, p). However, analytical
expressions for the first order partial derivatives are very complicated and it is no easy task
to solve the likelihood equation. An alternative is the method that we have described in
Section 3.4.1. We have used the quasi-Newton method "BFGS" in the function optim in
the R package stats to obtain the maximum with respect to the parameter Ω = (Υ, p) =
(α, α0, ν, γ, p) in the M-step.

4.3.1 STANDARD ERRORS FOR ML ESTIMATES

The R routines that we discussed above in Section 4.3 will produce a numerical value for
the Hessian Matrix given by

∂2l(Ω)
∂Ω∂Ω′ =



∂2l(Ω)
∂α2

∂2l(Ω)
∂α∂α0

∂2l(Ω)
∂α∂ν

∂2l(Ω)
∂α∂γ

∂2l(Ω)
∂α∂p

∂2l(Ω)
∂α0∂α

∂2l(Ω)
∂α02

∂2l(Ω)
∂α0∂ν

∂2l(Ω)
∂α0∂γ

∂2l(Ω)
∂α0∂p

∂2l(Ω)
∂ν∂α

∂2l(Ω)
∂ν∂α0

∂2l(Ω)
∂ν2

∂2l(Ω)
∂ν∂γ

∂2l(Ω)
∂ν∂p

∂2l(Ω)
∂γ∂α

∂2l(Ω)
∂γ∂α0

∂2l(Ω)
∂γ∂ν

∂2l(Ω)
∂γ2

∂2l(Ω)
∂γ∂p

∂2l(Ω)
∂p∂α

∂2l(Ω)
∂p∂α0

∂2l(Ω)
∂p∂ν

∂2l(Ω)
∂p∂γ

∂2l(Ω)
∂p2


.
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The square-root of the diagonal elements of the inverse of this matrix are the standard
errors of the parameter estimates.

4.4 DIFFERENTIALLY EXPRESSED GENES

Here we describe our method of identifying differentially expressed genes using the latent
variable model that we discussed. We consider a gene is differentially expressed if it has high
expected posterior probability or simply the posterior probability of differential expression.
Recall that the posterior probability of differential expression of the j th gene is (ŵj), given
by the equation (28). Thus we calculate (ŵj) for every gene in the microarray and rank them
to identify high likely or least likely differentially expressed genes.

4.5 SIMULATION STUDY

We conducted a simulation study to check the parameter estimation method for the
Bayesian Gaussian Copula model with a latent variable. For these simulations we took
Ω = (α, α0, ν, γ, p) = (2, 3, 15, 0.8, 0.04). Random samples of sizes n = 100, 500, 3000 are
taken following the steps given below.

Step 1 Generate n pairs of bivariate normal random variables (x1j, x2j) from standard
bivariate normal distribution (BVN) with correlation parameter γ.

Step 2 Calculate (u1i, u2i) = (Φ(x1i), Φ(x2i)) for j = 1, . . . , n where Φ is the cumulative
distribution function of the standard normal.

Step 3 Generate θij ∼ gamma (α0, 1/ν) for i = 1, 2 and j = 1, . . . , nd and another set
with θj ∼ gamma (α0, 1/ν) for j = 1, . . . , n − nd where nd = np, the number of
differentially expressed genes.

Step 4 Calculate (r1i, r2i) =
(
F −1

1j (u1i), F −1
2j (u2i)

)
where Fij(.) is the cumulative distribution

function of a gamma distribution with parameters (α, 1/θij) for the first nd of pairs of
(u1i, u2i) and with parameters (α, 1/θj) for the remaining (n−nd) pairs observations.

Recall that for simulating the data we chose the parameter values as α = 2, α0 = 3, ν =
15, γ = 0.8 and p = 4%. Unlike the simulations that we did in Chapter 3, the differentially
expressed genes are known in this simulation study. Therefore, the sensitivity of the model
can be calculated as the ratio of the correctly identified differentially expressed genes by the
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model, (say truly identified genes, TI), to the total number of actual differentially expressed
genes (AD). Thus the sensitivity measure is defined as,

Sensitivity = TI

AD
. (29)

The results of applying proposed Bayesian Gaussian copula with a latent variable on the
simulated sample data are given in the Table 10.

Table 10. Parameter estimates (standard errors) for the simulated data†.

n α α0 ν γ p(%) Sensitivity
100 1.66 2.58 16.12 0.83 3.889 0.50

(0.208) (0.347) (3.508) (0.034) (0.148)

500 1.88 2.87 15.52 0.78 4.102 0.75
(0.117) (0.171) (1.143) (0.019) (0.074)

3000 1.94 3.03 14.82 0.80 3.965 0.83
(0.042) (0.075) (0.113) (0.007) (0.034)

†True parameter values are α = 2, α0 = 3, ν = 15, γ = 0.8 and p = 4%.

An examination of the values in Table 10 shows that the estimate of p is close to the true
value for all sample sizes, and the estimates of the other parameters are getting closer to the
true values as the sample size increases. Furthermore, the standard errors are getting smaller
with increased sample size, for example, the standard error of α̂ is 0.028, 0.117 and 0.042
for sample sizes of 100, 300 and 3000, respectively. This implies that the proposed Gaussian
copula model is consistently estimating the model parameters. When the sample size is
bigger, the sensitivity measure is also increasing towards 1.
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Table 11. The mean, MSE and bias of MLE’s of the parameters.

mean MSE Bias
n = 100 1.736 0.2762 0.264

α = 2 n = 500 1.849 0.1757 0.151
n = 3000 1.951 0.0184 0.049

n = 100 2.612 0.4395 0.388
α0 = 3 n = 500 2.789 0.2474 0.211

n = 3000 3.052 0.0696 0.052

n = 100 16.074 3.2717 1.074
ν = 15 n = 500 15.434 1.3233 0.434

n = 3000 14.834 0.1390 0.166

n = 100 0.830 0.0124 0.030
γ = 0.8 n = 500 0.783 0.0141 0.017

n = 3000 0.797 0.0090 0.003

n = 100 3.880 0.2264 0.120
p = 4 n = 500 4.094 0.1334 0.094

n = 3000 4.023 0.0210 0.023
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Figure 15. Boxplots of parameter estimates created using bootstrap samples.
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To study the behavior of bias and mean square error, we took 1000 samples each of size
ns = 30 with replacement from the simulated data. Using these subsamples we computed
the bias and the mean squared error (MSE) and bias for each parameter in the model. The
results are summarized in Table 11 and the boxplots of parameter estimates are shown in
Figure 15. The boxplots are visual evidence to see estimated parameters are getting closer to
the true value and the variation getting smaller when the sample size increases. The results
in Table 11 also confirmed the same fact. Thus, our simulations suggest that the proposed
copula model in this chapter performs better with larger sample sizes.

4.6 ANALYSIS OF E. COLI DATA

We apply the developed Bayesian Gaussian copula model with a latent variable to E. coli
data. This data consists of five samples, control; two IPTG treated samples and two Heat
Shock samples. All these data sets were described in Section 3.2. According to Richmond
et al. (1999), the control sample has none of the differentially expressed genes, IPTG samples
have few, and Heat shock samples have a large number of differentially expressed genes.

Table 12 contains the estimates and the standard errors of those estimates obtained for
the five microarray samples in E. coli data. As expected, a tiny proportion of genes have
differential expression in the control, IPTG-A, and IPTG-B microarrays. In contrast, the
proportion of differentially expressed genes is relatively high for the Heat Shock-A and Heat
Shock-B microarrays. The standard errors of the estimates of the five microarray samples
are relatively small, which suggests the uncertainty associated with each sample statistic is
small.

The empirical and estimated marginal densities obtained from estimated parameters
with the Gaussian copula incorporate latent variable and the Gaussian copula described in
Chapter 3 are superimposed and presented in Figures 16 and 17, separately for red and
green intensities. Curves shown in solid lines are going along with the shaded curves more
than the dashed curves. Note here, the solid curves are for the Gaussian copula incorporate
latent variable, and dashed curves are the Gaussian copula (in Chapter 3). This suggests
an improvement of Bayesian Gaussian copula with latent variable over the model without
latent variable.
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Table 12. Parameter estimates (standard errors) for the E. coli data.

Microarray α α0 ν γ p(%)
Control 2.06 3.75 21.93 0.94 0.0003

(0.022) (0.172) (1.252) (0.012) (<0.001)

IPTG-A 1.26 6.32 67.42 0.95 0.0103
(0.021) (0.022) (2.119) (0.020) (0.023)

IPTG-B 1.10 4.95 50.34 0.94 0.0105
(0.014) (0.064) (1.219) (0.017) (0.048)

Heat Shock-A 2.07 3.50 14.86 0.44 4.0004
(0.064) (0.102) (0.340) (0.016) (0.054)

Heat Shock-B 1.69 2.16 9.97 0.41 3.9908
(0.034) (0.061) (0.355) (0.015) (0.038)
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Figure 16. Density plots of red intensities.
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Figure 17. Density plots of green intensities.
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Figure 18. Estimated bivariate density plots of red and green intensities.
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The estimated bivariate densities for each microarray are plotted and shown in Figure 18.
As mentioned in Chapter 3, the points on the 450 line represent equal red and green inten-
sities. The points that are far from the 450 line correspond to the differentially expressed
genes. Most of the points in control and IPTG samples lie on the 450 line, while Heat Shock
samples have a relatively large number of points away from the 450 line.

Table 13. Top 20 genes with highest posterior probabilities of differentially expression.

Control IPTG-A IPTG-B Heat Shock-A Heat Shock-B
# Gene Prob Gene Prob Gene Prob Gene Prob Gene Prob

id (%) id (%) id (%) id (%) id (%)
1 b0233 36.56 b4098 99.97 b4119 89.42 b3686 99.98 b3686 98.01
2 b1325 3.61 b4119 99.92 b4120 88.33 b3687 99.98 b3687 94.62
3 b4325 2.19 b4120 60.76 b4149 52.77 b0014 99.87 b4142 92.31
4 b0558 0.97 b1256 58.89 b1256 19.41 b4142 99.81 b1321 91.52
5 b1319 0.55 b2206 58.30 b2206 14.72 b0015 99.13 b3400 91.32
6 b0542 0.27 b0043 54.44 b4291 11.06 b3400 98.84 b0015 91.11
7 b0657 0.11 b1673 11.86 b0341 9.83 b2592 98.25 b2614 90.78
8 b2740 0.07 b0296 10.43 b0759 7.43 b0582 97.93 b1076 89.91
9 b2051 0.03 b2205 10.03 b1020 4.28 b4143 97.87 b0966 88.79

10 b2129 0.01 b1571 9.87 b1785 2.27 b3401 97.84 b0016 88.46
11 b1447 0.01 b2204 9.69 b0648 1.76 b1967 97.50 b0017 88.36
12 b2358 0.01 b4291 6.52 b1674 1.73 b0473 96.81 b1060 87.35
13 b2418 0.01 b0759 4.81 b2151 1.48 b0016 96.15 b0014 85.95
14 b3818 0.01 b2727 4.30 b2203 1.38 b0439 95.77 b4140 85.64
15 b2387 0.01 b2997 4.13 b2204 1.15 b4171 95.63 b0315 84.26
16 b3834 0.01 b0283 2.71 b2260 1.13 b0399 95.45 b0400 84.00
17 b0185 0.01 b2202 2.60 b0558 1.05 b4140 94.86 b1829 81.21
18 b3616 0.01 b2996 2.60 b2997 1.02 b1321 94.61 b1967 79.31
19 b0295 0.01 b0347 2.08 b2996 0.93 b1829 94.47 b1380 75.67
20 b0548 0.01 b1020 2.06 b2205 0.85 b1076 93.69 b0473 74.38
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The five microarray samples were ranked by the ŵj’s, the posterior probabilities of differ-
ential expressions. Table 13 shows the top twenty genes found to be differentially expressed
in each microarray. All of the top twenty genes listed under Heat shock samples hold higher
posterior probabilities. In comparison, few of the genes have considerably large posterior
probabilities for the IPTG samples, and none of the top twenty genes in the control sample
exhibits sufficiently large posterior probabilities. These results indicate that the Bayesian
Gaussian copula model with a latent variable performs well on E. coli data. Moreover, the
selection of differentially expressed genes captured by our method is almost identical to those
captured from the method suggested by Mav and Chaganty (2004).

The plots of posterior probabilities ŵj’s for five microarray samples are shown in Fig-
ure 19. A reasonable candidate cut-off value of ŵj seems to be 50% after considering plots
and the fact that the control sample has none of differentially expressed genes. On the other
hand, IPTG samples have few, and Heat shock samples have a more significant number of
differentially expressed genes.

We present in Table 14 the total number of genes identified as differentially expressed by
our Gaussian copula with a latent variable. These numbers are contrasted with the findings
of Mav and Chaganty (2004), who have used a bivariate gamma distribution.

Table 14. Total number of differentially expressed genes.

Microarray # of Genes for which ŵ > 0.5
Bivariate Gamma with Gaussian Copula with

a latent variable a latent variable
Control 0 0
IPTG-A 1 6
IPTG-B 0 3
Heat Shock-A 60 53
Heat Shock-B 42 42
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For the most part all the results are consistent with Richmond et al. (1999)’s hypothesis;
the control group has none, IPTG samples have a few, and Heat Shock samples have a
large number of differential expressed genes. Also, our Gaussian Copula based model could
identify 3 differentially expressed genes in IPTG-B sample, which were not captured by the
bivariate gamma based model of Mav and Chaganty (2004).

Table 15. Log-likelihoods for the competitive models.

Microarray Bivariate Gamma Gaussian Copula with
a latent variable a latent variable

Control -28273 -27781
IPTG-A -27881 -27423
IPTG-B -27929 -27302
Heat Shock-A -31723 -30170
Heat Shock-B -31158 -30085

The log-likelihood analysis of competitive models is shown in Table 15. For each microar-
ray sample, the log-likelihoods for the Gaussian copula-based model are larger than that of
the bivariate gamma model proposed by Mav and Chaganty (2004). Further, the filtered
genes, as differentially expressed, are almost the same genes filtered by Mav and Chaganty
(2004)’s method. All together, we can conclude that our method has better performance
than Mav and Chaganty (2004)’s method.

4.7 MODEL COMPARISONS

Both log-likelihood analyses in Chapter 3 and in this chapter suggest that the Gaussian
copula models outperform the corresponding bivariate gamma models proposed by Mav and
Chaganty (2004). In this section, we compare the two Bayesian Gaussian copula models in
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terms of Akaike Information Criteria (AIC). The AIC is defined as

AIC = 2k − 2 log L

where k is the number of parameters in the model, log L is the maximized value of the log-
likelihood function. The constant 2k in AIC, penalizes models which have more parameters
as a trick to avoid over-fitting. The model with the least AIC is chosen to be the best model.
The AICs for two Bayesian Gaussian copula models are presented in Table 16.

Table 16. AIC for the competitive copula models.

Microarray Gaussian Copula Gaussian Copula with
a latent variable

Control 56708 55572
IPTG-A 55714 54856
IPTG-B 55778 54614
Heat Shock-A 60846 60350
Heat Shock-B 60572 60180

The AIC values under the Bayesian Gaussian copula model with a latent variable are
always smaller than that of the Bayesian Gaussian copula. Thus, we can conclude that the
Bayesian Gaussian copula model with a latent variable performs better than the Bayesian
Gaussian copula model discussed in Chapter 3.

4.8 CONCLUSIONS

In this chapter we proposed another Bayesian Gaussian copula model that includes a
latent variable. Using simulations we have shown that our model is estimating consistently
the model parameters for large sample sizes. Even the sensitivity, that is defined as the ratio
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of identified vs true number of differentially expressed genes, was increasing with sample size
which shows that our model is good.

We applied our model is applied to E. coli samples to capture the differentially expressed
genes. The higher posterior probability values reflect the differentially expressed genes in
this model. The genes filtered as differentially expressed are well-matched with the genes
listed in Richmond et al. (1999)’s study. Finally, we compare our method to the bivariate
gamma distribution with latent variable (proposed by Mav and Chaganty (2004)) with the
genes filtered and the log-likelihood values. The filtered genes were almost the same in
both studies, but the log-likelihood values of our method are larger than that of Mav and
Chaganty (2004)’s method. So we can conclude that Bayesian Gaussian copula with a latent
variable outperforms.

The lower AICs in the Bayesian Gaussian copula with a latent with compared to that of
the Bayesian Gaussian copula (discussed in Chapter 3) confirm the better performance of
the Bayesian Gaussian copula with a latent over the other Gaussian copula model. In the
next chapter, we will explore the use of Weibull marginals in the Bayesian Gaussian copula
with a latent variable.
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CHAPTER 5

BAYESIAN COPULA MODEL WITH WEIBULL MARGINALS

5.1 INTRODUCTION

In Chapter 4, we introduced a Bayesian Gaussian copula model with a latent variable that
is capable of capturing the differentially expressed genes in a cDNA microarray. However,
the discussion was limited to red and green intensities with gamma marginals to compare
the results to the models proposed in Mav and Chaganty (2004). Moreover, we found that
the model discussed in the previous chapter outperformed the Bayesian Gaussian copula
model in Chapter 3. Therefore, in this chapter, we consider the Bayesian Gaussian copula
model with a latent variable with Weibull marginals to study the capability of detecting
differentially expressed genes.

The Weibull distribution is a continuous probability distribution that can fit a variety
of distribution shapes. Its extreme flexibility allows it to model both left- and right-skewed
data. Even it can approximate the normal distribution and many other distributions. Ex-
amples of different distributional shapes are shown in Figure 20. There are two types of
this distribution: the three-parameter Weibull distribution and the two-parameter Weibull
distribution. In this chapter, we use the two-parameter Weibull distribution as the marginals
of the Gaussian copula model. The formula for the probability density function of the two-
parameter general Weibull distribution is:

f(r; α, β) = α

β

(
r

β

)α−1

exp
[
−
(

r

β

)α]
, (30)

where α > 0 is the shape parameter and β > 0 is the scale parameter of the distribution.
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Figure 20. Different distributional shapes of Weibull distribution.

5.2 BAYESIAN COPULA MODEL WITH A LATENT VARIABLE
AND WEIBULL MARGINALS

With the usual notations, we assume the marginal distributions of red (R1j) and
green (R2j) intensities are distributed as Weibull with common shape parameter α and dif-
ferent scale parameters 1/θ1j and 1/θ2j respectively for 1, 2, . . . , n. The probability density
function of (Rij) has the following form
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fi(rij; θij, α) = α θij (rijθij)α−1 exp [−(θij rij)α], i = 1, 2; j = 1, . . . , n. (31)

We also assume the prior distributions for θij’s are independent Weibulls with parameters
α0 and 1/ν, and the prior pdf is given by

π(θij; ν, α0) = α0 ν (θijν)α0−1 exp [−(ν θij)α0 ], i = 1, 2; j = 1, . . . , n. (32)

As before we assume there is an unknown proportion p of genes that exhibit differential ex-
pression. We introduce for the j th gene an unobserved Bernoulli variable Wj that indicates
differential expression as in Section 4.2. With these assumptions for gene j that is differen-
tially expressed (Wj = 1 and θ1j ̸= θ2j), the joint probability density function of intensities
is given by

fde(r1j, r2j; Υ) = (α α0 να0)2
∫ ∞

0

∫ ∞

0
c(F1(r1j), F2(r2j)) ×

2∏
i=1

[
rα−1

ij θα+α0−1
ij exp [−(rijθij)α − (νθij)α0 ]

]
dθ1jdθ2j. (33)

Similarly, if the gene j is not differentially expressed (Wj = 0 and θ1j = θ2j = θj), then the
joint probability density function of intensities is

fnde(r1j, r2j; Υ) = α2 α0 να0 (r1jr2j)α−1
∫ ∞

0
c(F (r1j), F (r2j)) ×

θ2α+α0−1
j exp [−(r1jθj)α − (r2jθj)α − (νθj)α0 ] dθj. (34)

Here Fi(rij) and fi(rij) are the cumulative and densities functions of Weibull(α, 1/θij). And
F (rij) and f(rij) are the cumulative and density functions of Weibull(α, 1/θj) for i = 1, 2
and j = 1, 2, . . . , n respectively.

5.3 PARAMETER ESTIMATION PROCEDURE

For the model described in Section 5.2, the log-likelihood is

l(Υ, p) =
n∑

j=1
log

{
fde(r1j, r2j; Υ)wj fnde(r1j, r2j; Υ)1−wj pwj (1 − p)1−wj

}
, (35)

where (Υ, p) = (α, α0, ν, γ, p) is the parameter vector. Since wj’s are unobserved we use
the EM algorithm to obtain the maximum likelihood estimates of the parameters as in
Section 4.3.
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5.4 DIFFERENTIALLY EXPRESSED GENES

As described in Section 4.4, a gene is considered to be differentially expressed if the
posterior probability ŵj exceeds a threshold value. Recall, as given in (28) the formula
for (ŵj) is

ŵj = E(wj | r1j, r2j) = p̂ fde(r1j, r2j; Υ̂)
p̂ fde(r1j, r2j; Υ̂) + (1 − p̂) fnde(r1j, r2j; Υ̂)

.

As before we calculate (ŵj) for each microarray and rank order them to filter the differentially
expressed genes.

5.5 SIMULATION STUDY

In this section we conduct a simulation study to check the parameter estimation for the
Bayesian Gaussian Copula model with Weibull marginals. We took the parameter values
as Ω = (α, α0, ν, γ, p) = (1.5, 2, 10, 0.7, 0.04) and simulated three random sample of sizes
n = 100, 500, 3000 following the steps outlined below.

Step 1 Generate n pairs of bivariate normal random variables (x1j, x2j) from standard
bivariate normal distribution (BVN) with correlation parameter γ.

Step 2 Calculate (u1i, u2i) = (Φ(x1i), Φ(x2i)) for j = 1, . . . , n where Φ is the cumulative
distribution function of standard normal.

Step 3 Generate θij ∼ Weibull(α0, 1/ν) for i = 1, 2 and j = 1, . . . , nd = np, and another
set with θj ∼ Weibull(α0, 1/ν) for j = 1, . . . , n − nd. Note nd is the number of
differentially expressed genes in the sample of size n.

Step 4 Calculate (r1i, r2i) =
(
F −1

1 (u1i), F −1
2 (u2i)

)
where Fi(.) is the cumulative distribution

function of a Weibull distribution with parameters (α, 1/θij) for the first nd observa-
tions and Weibull with parameters (α, 1/θj) for the remaining n − nd observations.

The results of our simulation are presented in Table 17.
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Table 17. Parameter estimates (standard errors) for the simulated data†.

n α α0 ν γ p(%) Sensitivity
100 1.61 1.86 9.34 0.62 3.847 0.25

(0.358) (0.391) (0.565) (0.187) (0.314)

500 1.51 1.88 9.76 0.65 4.048 0.80
(0.113) (0.206) (0.359) (0.138) (0.116)

3000 1.49 2.08 10.06 0.73 3.984 0.88
(0.093) (0.133) (0.069) (0.104) (0.085)

†True parameter values are α = 1.5, α0 = 2, ν = 10, γ = 0.7 and p = 4%.

The simulation results are similar to what we have observed in Table 10. As the sample
size increases, the estimates are getting closer to the true values and the standard errors are
becoming smaller. The sensitivity in this model seems higher than that of the model with
gamma marginals even for smaller sample size n = 500.

To study the bias and mean squared error (MSE) of the parameter estimates, we took 1000
replicates with sub-samples drawn with replacement of size ns = 30 from the simulated data.
With these replicates we calculated bias and mean square errors of the parameter estimates.
The results are presented in Table 18 and the box plots are in Figure 21. The bias and MSE
for all parameter estimates are decreasing as the sample size increases. This establishes
consistency of the estimation procedure. And thus this simulation study provides evidence
that the Bayesian Gaussian Copula model with Weibull marginals is a good model for large
sample sizes.
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Table 18. The mean, MSE and bias of mle of parameters.

Mean MSE Bias
n = 100 1.682 0.3005 0.182

α = 1.5 n = 500 1.486 0.1560 0.014
n = 3000 1.504 0.1144 0.004

n = 100 1.791 0.4667 0.209
α0 = 2 n = 500 1.887 0.2827 0.113

n = 3000 2.029 0.1357 0.029

n = 100 9.379 0.6138 0.621
ν = 10 n = 500 9.768 0.3029 0.232

n = 3000 10.058 0.1056 0.058

n = 100 0.631 0.2083 0.069
γ = 0.7 n = 500 0.643 0.1520 0.057

n = 3000 0.730 0.1073 0.030

n = 100 3.886 0.4120 0.114
p = 4 n = 500 3.956 0.1031 0.044

n = 3000 4.014 0.0873 0.014

5.6 MISSPECIFICATION STUDY

The objective of this misspecification study is to study the robustness of the models that
we have discussed. In particular, we would be interested in knowing the effect on identifying
differentially expressed genes if the true marginal distributions are gamma but misspecified
as Weibull or vice versa. First we consider the simulated data in Section 4.5 with gamma
marginals with true parameter values as α = 2, α0 = 3, ν = 15, γ = 0.8, p = 4%. We
misspecify and fit the model with Weibull marginals for this simulated data. The results are
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summarized in Table 19 and Figure 22. Note here, the solid curves are for the estimated
densities from generated data (misspecified) with estimated parameters of the Gaussian
Copula in with Weibull marginals, and shaded curves are the empirical densities of simulated
data with gamma marginals with α = 2, α0 = 3, ν = 15, γ = 0.8 and p = 4%.

According to the results in Table 19, the standard errors of the misspecified model with
Weibull marginals are higher compared to the corresponding standard errors of the model
with gamma marginals under each sample size. Moreover, the sensitivity values of the
misspecified model are smaller than that of the correctly specified model. However, the
misspecified model can identify a considerable amount of truly differentially expressed genes
when the sample size is large.

Table 19. The results of misspecification study for the simulated data with gamma
marginals with α = 2, α0 = 3, ν = 15, γ = 0.8 and p = 4%.

n α α0 ν γ p(%) Sensitivity
100 Gamma 1.66 2.58 16.12 0.83 3.889 0.50

(0.208) (0.347) (3.508) (0.034) (0.148)
Weibull 1.41 2.30 9.62 0.75 3.633 0.25

(0.933) (0.589) (3.178) (0.109) (0.235)

500 Gamma 1.88 2.87 15.52 0.78 4.102 0.75
(0.117) (0.171) (1.143) (0.019) (0.074)

Weibull 1.54 2.42 9.71 0.77 3.873 0.45
(0.825) (0.297) (1.889) (0.086) (0.135)

3000 Gamma 1.94 3.03 14.82 0.80 3.965 0.83
(0.042) (0.075) (0.113) (0.007) (0.034)

Weibull 1.31 2.63 9.90 0.82 3.952 0.67
(0.575) (0.111) (0.993) (0.063) (0.091)
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Figure 22. Density plots of simulated data.
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For our second misspecification study, we consider the simulated data generated using
Weibull marginals in Section 5.5. We misspecify and fit the model with gamma marginals.
The results are presented in Table 20 and Figure 23. Note here, the solid curves are for
the estimated densities from generated data (misspecified) with estimated parameters of the
Gaussian Copula in with gamma marginals, and shaded curves are the empirical densities
of simulated data with Weibull marginals with α = 1.5, α0 = 2, ν = 10, γ = 0.7 and p = 4%.
From the Table 20, we can observe a similar behavior of standard errors as in the first
misspecification study.

Table 20. The results of misspecification study for the simulated data with Weibull
marginals with α = 1.5, α0 = 2, ν = 10, γ = 0.7 and p = 4%.

n α α0 ν γ p(%) Sensitivity
100 Weibull 1.61 1.86 9.34 0.62 3.847 0.25

(0.358) (0.391) (0.565) (0.187) (0.314)
Gamma 2.23 2.34 12.45 0.75 3.699 0.00

(0.888) (0.718) (1.356) (0.294) (0.728)

500 Weibull 1.51 1.88 9.76 0.65 4.048 0.80
(0.113 ) (0.206) (0.359) (0.138) (0.116)

Gamma 2.12 2.87 12.30 0.87 3.637 0.15
(0.738 ) (0.685) (1.007) (0.186) (0.645)

3000 Weibull 1.49 2.08 10.06 0.73 3.984 0.88
(0.093) (0.133) (0.069 ) (0.104) (0.085)

Gamma 2.54 3.22 11.71 0.90 3.873 0.34
(0.266) (0.435) (0.854 ) (0.119) (0.321)
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Figure 23. Density plots of simulated data.
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Further, we plot the density curves of the fitted misspecified model with gamma marginals
and the empirical density of simulated data and present in the Figure 23. Those plots also
imply a better fit of the misspecified model with gamma on the simulated data with Weibull
marginals. However, the sensitivity values in Table 20 suggest that the misspecified model
fails to filter truly differentially expressed genes in the simulated sample even with the higher
sample sizes.

In summary, using the Weibull marginals is a robust solution because irrespective of the
true marginals, whether gamma or Weibull, the model can correctly identify a large amount
of differentially expressed genes. This is a good indication of better performance of Weibull
marginals over gamma marginals.

5.7 ANALYSIS OF E. COLI DATA

To illustrate the proposed model with Weibull marginals and compare the results to the
model with Gamma marginals in the previous chapter, we revisit the E. coli data and apply
the model. To recap, the data is from Richmond et al. (1999) and consists of five samples,
control (with no differentially expressed genes), two IPTG samples (with few differentially
expressed genes), and two Heat shock samples (with many differentially expressed genes).

Table 21 provides point estimates and standard errors for the five microarray samples in
E. coli data. The estimated proportions of genes exhibit differential expression (p) under
each microarray sample agree with Richmond et al. (1999)’s findings. Moreover, the standard
errors of estimates are also small, similar to what we observed in Chapter 4.

The visual comparison of the estimated density of the proposed model with Weibull
marginals, the estimated density of the proposed model with gamma marginals (from Chap-
ter 4) to the empirical density is shown in Figure 24 and Figure 25 for red and green intensities
separately. In both sets of density curves, the fitted distributions with Weibull marginals
(solid curves) always go alone with the empirical distributions (shaded curves) more than
that of the fitted distributions with gamma marginals (black dashed curves). Hence, this is
an excellent indication that the copula models with Weibull marginals provide a better fit
for the data.
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Table 21. Parameter estimates (standard errors) for the E. coli data.

Microarray α α0 ν γ p(%)
Control 1.70 2.41 13.52 0.95 0.0012

(0.059) (0.078) (0.545) (0.071) (0.009)

IPTG-A 1.13 2.52 13.01 0.95 0.1030
(0.112) (0.108) (0.823) (0.095) (0.087)

IPTG-B 0.91 2.80 12.73 0.96 0.1050
(0.153) (0.076) (0.754) (0.102) (0.124)

Heat Shock-A 1.31 1.49 11.67 0.53 4.1091
(0.218) (0.109) (0.328) (0.029) (0.057)

Heat Shock-B 1.54 1.22 8.17 0.49 3.9472
(0.023) (0.069) (0.685) (0.081) (0.085)
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Figure 24. Density plots of red intensities.
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Figure 25. Density plots of green intensities.
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Following similar steps in Chapter 4, the posterior probabilities ŵj’s are plotted and
shown in Figure 26. We chose a cut-off value 50% for ŵj to identify the differentially expressed
genes. The twenty genes with higher posterior probabilities (ŵj) listed in Table 22. We
notice that the captured differentially expressed genes after applying the proposed model
on the Heat Shock samples are similar to those captured from the model stated in the
previous chapter. However, the order is slightly different. More importantly, this model can
identify a differentially expressed gene for IPTG samples that the previous models have failed.
When the dataset is double-checked with the genes mentioned as differentially expressed in
Richmond et al. (1999)’s paper, we notice that genes are labeled with b0342, b0343, b0344,

and b3047 are missing in the original dataset. Therefore, this might be a reason for capturing
fewer differentially expressed genes in IPTG samples for every model proposed through this
dissertation. Nevertheless, identifying an additional true differentially expressed gene is a
good indication of better performance of Gaussian copula that incorporates a latent Bernoulli
variable with Weibull marginals.

By considering the interpretations which are obtained from density plots, posterior prob-
ability plots differentially expressed genes listed in Table 22 and the comparison of the total
number of genes captured from the Gaussian copula incorporates a latent Bernoulli vari-
able with Weibull marginals, we can conclude that the proposed Gaussian copula includes
a latent Bernoulli variable with Weibull marginals provides a better fit and improves the
identification of genes.
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Table 22. Top 20 genes with highest posterior probabilities of differentially expression.

Control IPTG-A IPTG-B Heat Shock-A Heat Shock-B
# Gene Prob Gene Prob Gene Prob Gene Prob Gene Prob

id (%) id (%) id (%) id (%) id (%)
1 b0233 19.92 b4098 99.99 b4119 97.12 b0014 99.57 b3686 98.75
2 b4325 5.97 b4119 99.20 b4120 96.25 b3687 99.53 b3687 96.70
3 b1325 3.50 b0043 92.42 b4149 87.61 b3686 99.49 b1076 95.30
4 b0558 1.75 b4120 71.69 b1297 51.63 b4142 98.94 b2614 95.11
5 b0657 0.63 b1571 54.90 b1785 50.64 b0015 96.13 b1321 95.07
6 b0542 0.43 b1297 54.69 b2206 44.32 b2592 94.81 b4142 94.83
7 b1319 0.32 b2206 47.51 b0341 43.25 b3400 94.30 b1060 94.04
8 b2740 0.21 b0296 44.13 b4291 38.23 b0582 93.05 b0015 94.03
9 b1447 0.10 b1673 28.44 b0648 32.28 b4143 91.88 b0016 93.98

10 b2129 0.08 b2205 26.75 b0759 30.66 b3401 91.26 b0017 93.85
11 b2418 0.06 b2204 25.81 b1020 19.83 b0016 91.21 b3400 93.42
12 b3616 0.05 b4291 17.39 b4307 17.26 b0473 90.92 b0315 93.17
13 b0185 0.05 b0283 12.71 b0558 14.56 b0399 90.50 b0400 93.06
14 b0679 0.04 b0759 11.88 b1674 9.50 b1967 88.74 b4140 93.02
15 b2628 0.04 b0347 11.15 b2151 8.89 b0439 87.55 b0966 92.72
16 b3834 0.03 b2202 11.03 b2997 8.30 b4171 86.32 b0014 91.80
17 b3818 0.03 b2996 10.10 b2203 8.00 b1829 85.82 b1967 90.73
18 b1064 0.03 b2727 9.76 b2260 7.11 b4140 84.84 b0473 87.70
19 b2051 0.03 b1020 8.91 b0857 7.10 b1321 84.70 b0399 85.82
20 b3147 0.03 b2203 8.81 b2204 6.77 b1076 84.30 b1829 85.61
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5.8 MODEL COMPARISONS

This section compares the two Bayesian Gaussian copulas that incorporate a latent
Bernoulli variable with Weibull marginals to the same model with gamma marginals de-
scribed in Chapter 4. Both models have five parameters and exact sample sizes. Therefore,
log-likelihood analysis can select the best model among these two candidate Bayesian Gaus-
sian copulas. Table 23 summarizes the results of log-likelihood analysis.

Table 23. Log-likelihoods for the competitive copula models.

Microarray Gaussian copulas incorporates a latent variable with
Gamma marginals Weibull marginals

Control -27781 -27136
IPTG-A -27423 -27025
IPTG-B -27302 -27153
Heat Shock-A -30170 -29891
Heat Shock-B -30085 -29645

For every microarray sample, the differences of log-likelihoods of the competitive models
are relatively small. However, the log-likelihoods for the Gaussian copula model incorporate
a latent Bernoulli variable with Weibull marginals holding higher values than the Gaussian
copula model, including a latent Bernoulli variable with gamma marginals. This implies that
the Gaussian copula model incorporates a latent Bernoulli variable with Weibull marginals
has better performance than the model with gamma marginals.
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5.9 CONCLUSIONS

In summary, in this chapter, we propose a Bayesian Gaussian copula model incorporated
with a latent variable which is quite similar to the previous model in Chapter 4, but with
a Weibull marginal instead of gamma marginal. The Weibull distribution can fit a variety
of distribution shapes like right-skewed, left-skewed, symmetric, and many more. Thus,
this Bayesian Gaussian copula model can be applied to many data sets while assuming
Weibull marginals. Using a simulation study, we show that this Gaussian copula-based
model with Weibull marginals consistently estimates the model parameters for large sample
sizes. Further, we conduct a misspecification study to observe the performance of wrongly
fitted distribution by using the same simulated data in Sections 4.5 and 5.5. We notice that
the misspecified model with Weibull marginals can identify a relatively large amount of truly
differentially expressed genes in the simulated data with gamma marginals.

We illustrate the application of our model on samples of E. coli data. Comparing the
empirical density curve and the fitted density curves of Gaussian copula models with gamma
marginals and Weibull marginals suggests that the copula model with Weibull marginals
provides a better fit to the data. Furthermore, we notice that this particular model is capable
of detecting more differentially expressed genes than the previous model in Chapter 4 with
gamma marginals.

The higher log-likelihood values of the model with Weibull marginals than the model
with gamma marginals is good evidence to conclude that the Bayesian Gaussian copula
incorporates a latent variable with Weibull marginals outperforming and better fit to the
data.
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CHAPTER 6

SUMMARY

Microarray technology is one of the modern technologies developed to identify differen-
tially expressed from thousands of genes on a DNA molecule. There are two major microarray
technologies available for the expression analysis: Spotted cDNA array and oligonucleotide
array. This dissertation focuses on the statistical analysis of data from the spotted cDNA,
also known as two-channel microarray. Numerous models have been proposed in the liter-
ature to identify differentially expressed genes from the red and green intensities measured
by the two-channel microarray.

Motivated by the Bayesian models described in Newton et al. (2001) and Mav and Cha-
ganty (2004), we propose two models for the joint distribution of the red and green intensities
using a Gaussian copula, which accounts for the dependence. The differentially expressed
genes were identified by calculating the Bayes estimates of the differential expression under
the first proposed copula model with gamma marginals (in Chapter 3). The accuracy of the
model parameter estimations is shown with two simulation studies with three different sam-
ple sizes. We applied the model to five microarray samples in E. coli data. The genes filtered
as differentially expressed are matched with the genes have filtered with the model proposed
by Mav and Chaganty (2004). The larger log-likelihood values under our model compare to
the model of Mav and Chaganty (2004) suggest that our model has an improvement.

Then we proposed another Bayesian Gaussian copula model incorporated with a latent
variable, which indicates differential expression. Here also we considered gamma marginals.
The EM algorithm is applied to calculate the posterior probabilities of differential expres-
sion for the second model. The posterior probabilities rank the genes. Using simulation
studies, we show that our Gaussian copula-based models are an improvement in identifying
differential expression over the models given in Newton et al. (2001) and Mav and Chaganty
(2004). To select the best model among our Gaussian models, we conducted an AIC study.
The lower AICs in the Gaussian copula incorporate a latent variable, which suggests that it
is a better fit for the data.

In Chapter 5, we presented our findings of the Gaussian copula incorporated with a
latent variable with Weibull marginals. The ability of the Weibull distribution: fitting a
variety of distributional shapes allows this certain Gaussian copula combined with a latent
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variable to have different forms of continuous data. Furthermore, we noticed that this model
is capable of capturing a higher number of truly differentially expressed genes in E. coli
data. In conclusion, the Gaussian copula incorporated with a latent variable with Weibull
marginals provides a better fit and improves genes’ identification.
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APPENDIX A

SELECTED R CODES

In this section, we provide some of the important R codes we developed. Brief descriptions
of all the important functions are stated below.

A.1 R CODES FOR CHAPTER 3

The following code is used to implement the marginal density of (R1j, R2j) which given in
the equation (17). Here the function cop outputs the probability density function of the
bivariate Gaussian copula in equation (14).

cop <-function (z1 ,z2 ,gam)
{

z1_2=z1^2
z2_2=z2^2
gam_2= gam ^2
gam_2[1-gam2 <1.e -16]=1 -1.e -16
gam_z=gam*z1*z2
exp(-(gam_2*(z1_2+z2_2) -2*gam_z)/(2*(1-gam_2)))/sqrt (1-gam_2)

}

f_m<-function (parameter ,data)
{

r1=data [2]
r2=data [3]
alpha= parameter [1]
alpha_0= parameter [2]
v= parameter [3]
gam= parameter [4]

# constraints on parameters
if(alpha > 0 && alpha_0 >0 && v>0 && gam >0 && gam <1 )
{
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f_t1 <-function (t1) # function of theta1
{

f_t2 <-function (t2) # function of theta2
{

u1=pgamma(r1 ,alpha ,rate=t1) # Gamma CDF of R_1j
u2=pgamma(r2 ,alpha ,rate=t2) # Gamma CDF of R_2j
u1[1-u1 <1.e -5]=1 -1.e-5
u2[1-u2 <1.e -5]=1 -1.e-5
u1[u1 <1.e -5]=1.e-5
u2[u2 <1.e -5]=1.e-5
z1=qnorm(u1) # Standard Normal Inverse CDF of u1
z2=qnorm(u2) # Standard Normal Inverse CDF of u2

cop(z1 ,z2 ,gam)*dgamma(r1 ,alpha ,rate=t1)*dgamma(r2 ,alpha ,rate=
t2)*dgamma(t1 ,alpha_0,rate=v)*dgamma(t2 ,alpha_0,rate=v)

}
int_t2 <- try( integrate (f_t2 , lower =0, upper=Inf), silent =

TRUE) # integrating w.r.t theta2
if( inherits (int_t2 ,’try -error ’))
{

warning (as.vector(int_t2))
int_t2 <- NA_real_

}
else
{

int_t2 <- int_t2$value
}
int_t2

}
f_t1 <- Vectorize (f_t1)
int_t1t2 <- try( integrate (f_t1 , lower =0, upper=Inf), silent =

TRUE) # integrating w.r.t theta1
if( inherits (int_t1t2 ,’try -error ’))
{

warning (as.vector(int_t1t2))
int_t1t2 <- NA_real_

}
else
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{
int_t1t2 <- int_t1t2$value

}
}
else
{

int_t1t2=NA
}
int_t1t2

}
}

Function E_RG evaluates the expected value of R1R2 in equation (23). Note that, adaptIn-
tegrate is a built-in function in the R package cubature.

library ( cubature )

E_RG <-function ( parameter )
{

alpha= parameter [1]
alpha_0= parameter [2]
v= parameter [3]
gam= parameter [4]

frt <-(t)
{

t1=t[1] # theta_1j
t2=t[2] # theta_2j
r1=t[3] # r_1j
r2=t[4] # r_2j
u1=pgamma(r1 ,alpha ,rate=t1) # Gamma CDF of R_1j
u2=pgamma(r2 ,alpha ,rate=t2) # Gamma CDF of R_2j
u1[1-u1 <1.e -5]=1 -1.e-5
u2[1-u2 <1.e -5]=1 -1.e-5
u1[u1 <1.e -5]=1.e-5
u2[u2 <1.e -5]=1.e-5
z1=qnorm(u1) # Standard Normal Inverse CDF of u1
z2=qnorm(u2) # Standard Normal Inverse CDF of u2
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r1*r2*cop(z1 ,z2 ,gam)*dgamma(r1 ,alpha ,rate=t1)* dgamma(r2 ,alpha ,
rate=t2)*dgamma(t1 ,alpha_0,rate=v)*dgamma(t2 ,alpha_0,rate=v)

}
e_rg= adaptIntegrate (frt , c(0 ,0 ,0 ,0), c(Inf ,Inf ,Inf ,Inf))$ integral
e_rg

}

A.2 R CODES FOR CHAPTER 4

The following function calculates the marginal density of (R1j, R2j) for a gene j that is not
differentially expressed (equation (26)). Similarly, the joint marginal density of intensities
for a gene j that is differentially expressed given in equation (25) can be calculated with the
function f_m which stated in A.1, after modifying for five parameters.

f_nde <-function (parameter ,data)
{

r1=data [2]
r2=data [3]
alpha= parameter [1]
alpha_0= parameter [2]
v= parameter [3]
gam= parameter [4]
p= parameter [5]

# constraints on parameters
if(alpha > 0 && alpha_0 >0 && v>0 && gam >0 && gam <1 && p>0 && p

<100)
{

f_t<-function (t) # function of theta
{

u1=pgamma(r1 ,alpha ,rate=t) # Gamma CDF of R_1j
u2=pgamma(r2 ,alpha ,rate=t) # Gamma CDF of R_2j
u1[1-u1 <1.e -5]=1 -1.e-5
u2[1-u2 <1.e -5]=1 -1.e-5
u1[u1 <1.e -5]=1.e-5
u2[u2 <1.e -5]=1.e-5
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z1=qnorm(u1) # Standard Normal Inverse CDF of u1
z2=qnorm(u2) # Standard Normal Inverse CDF of u2

cop(z1 ,z2 ,gam)*dgamma(r1 ,alpha ,rate=t)*dgamma(r2 ,alpha ,rate=t
)*dgamma(t,alpha_0,rate=v)

}
int_t <- try( integrate (f_t, lower =0, upper=Inf), silent = TRUE)

# integrating w.r.t theta
if( inherits (int_t ,’try -error ’))
{

warning (as.vector(int_t))
int_t2 <- NA_real_

}
else
{

int_t <- int_t$value
}

int_t
}

}

We use the function logl to obtain the complete data loglikelihood written in equation (27).
And also the expectation step of EM algorithm mentioned in Chapter 4 equation (28) is
included in this function.

logl <-function (parameter ,data)
{

r1=data [2]
r2=data [3]
alpha= parameter [1]
alpha_0= parameter [2]
v= parameter [3]
gam= parameter [4]
p= parameter [5]

fm=f_m(c(alpha ,alpha_0,v,gam ,p),data)
fnde=f_nde(c(alpha ,alpha_0,v,gam ,p),data)
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if(p>0 && p <100)
{

w=(p*fm/100)/((p*fm/100) +((100 -p)*f0/100)) # posterior probability
llik =(w*(log(fm)+log(p)-log (100)))+((1 -w)*(log(fnde)+log (100 -p)-

log (100))) #the complete data loglikelihood
}
else
{

llik=NA
}
llik

}
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