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Abstract: The complex demand pattern of ride-sourcing 
remains to be a challenge to transportation modeling 
practitioners due to the infancy and the inherently dynamic 
nature of the ride-sourcing system. Spatial effects exploration 
and analysis protocols can provide informative insights on the 
underlying structure of demand and trip characteristics. Those 
protocols can be thought of as an opportunistic strategy to 
alleviate the complexity and help specifying the appropriate 
econometric models for the system. Spatial effects exploration 
is comparable to point pattern analysis, in which, signals from 
spatial entities, like census tracts, can be analyzed statistically 
to reveal whether a specific phenomenon respective signal 
distribution is a completely random process or if it follows some 
regular pattern. The results of such analysis help to explore the 
investigated phenomenon and conceptualize its causal forces. 
In this paper, we apply spatial pattern analysis edge methods 
integrated into a visual analytics framework to: (1) test the null 
hypothesis of system demand complete randomness; (2) 
further analyze and explain this demand in terms of the origin-
destination (OD) flow and trips characteristics, i.e., length and 
duration; and (3) develop a pattern profile of the demand and 
trip characteristics to provide potential directions to modeling 
and predictive analytics approaches. This framework helps 
explain the ride-sourcing system demand and trip 
characteristics in space and time to fill the gap in integrating the 
system in multimodal transportation frameworks. We use the 
ride-sourcing trip dataset released from the City of Chicago, 
USA, for the year 2019 to showcase the proposed methods and 
their novelty in capturing such effects as well as explaining the 
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underlying complexities in a streamlined workflow. The ride-
sourcing demand hotspots were explored and identified in the 
city’s central business district. A novel method to capture and 
analyze the origin-destination flowlines was developed and 
implemented. Finally, a complementary trip characteristics 
pattern analysis was conducted to fully comprehend the system 
and validate the findings from the system demand points and 
OD-flowlines. 

Keywords: ride-sourcing, transportation network companies 
(TNCs), visual analytics, principal component analysis, Getis-
Ord Gi* and Local Anselin Moran’s I. 

1. Introduction 

The transportation market is no exception to the evolving trend of sharing economy, as the 
relatively newly introduced family of transportation services known as shared mobility has witnessed 
a wide acceptance and adoption among users, especially in highly urbanized areas and metro cities 
(Roukouni & Homem de Almeida Correia, 2020). Amongst the controversial modes of shared mobility 
is ride-sourcing, which enables users to have access to the mobility-as-a-service model on an as-needed 
basis (Shaheen, Chan, Bansal, & Cohen, 2015). Ride-sourcing transportation services, provided by 
companies like Uber and Lyft, also known as Transportation Network Companies (TNCs), are 
considered a revolutionary trend in mobility and urban travel, involving a high level of real-time 
computations and matching algorithms, equipped with seamless payment and surge-pricing, solving a 
good number of mobility and travel problems (e.g., first and last trip mile). The service runs on top of a 
set of system enablers, including smartphone application that pairs riders and community drivers (in 
non-commercial vehicles) given their spatial and temporal constraints, online transactions (e-payment) 
to guarantee seamless payment method, and a cloud-based surge-pricing scheme matching the supply 
with the demand (Shaheen et al., 2015). The service is either offered in the form of sequential trips, i.e., 
serving individual riders, or concurrently to several riders in a ride- and fare-splitting fashion (e.g., Uber 
Pool and Lyft Line). 

Since the inauguration of Uber early in the past decade, the implications of the newly introduced 
shared, on-demand, and potentially automated mobility services are significant, especially in the way 
people make their choices on: what activities to do and where and when to do such activities. The 
demand for TNCs ride-sourcing services is growing exponentially, with evidence from Uber rides that 
reached 1-billion in approximately six years in late 2015, and only six more months to reach the 2-billion 
rides (Uber, 2017). This positions ride-sourcing as a game-changer in the transportation market. 
However, there is a lack of information about the impact such smart mobility services will have on the 
planning, operation, and management of existing and future transportation networks. It is not yet made 
clear how people make their mode choice for ride-sourcing, nor whether this demand is induced (Rayle, 
Shaheen, & Chan, 2014) or shifted from other modes. In either case, research reveals that it has 
implications on congestion (Erhardt et al., 2019) and transit ridership (Erhardt et al., 2021). In their 
exploration of TNCs’ ride-sourcing impact on congestion intensity and duration, a study (Diao, Kong, & 
Zhao, 2021) reported increases of 0.9% and 4.5%, respectively, in consistence with the findings of 
(Erhardt et al., 2019). A decline of 8.9% was reported as related to the ride-sourcing impact on transit 
ridership, again consistent with the finding in (Erhardt et al., 2021). Moreover, in (HENAO, 2017), the 
author drove for Uber and Lyft as part of the data collection course and concluded similar findings in 
terms of increased Vehicle Miles Traveled (VMT) and congestion. 

Despite the relief TNCs offered to some accessibility and mobility chronic issues (e.g., impaired 
driving, first and last-mile connections to public transit, and late-night services), recently released 
reports and studies suggest that these newly introduced services accounted for approximately 50% of 
the increase in congestion in San Francisco between 2010 and 2016 (Castiglione et al., 2018). These 
figures on VMT and transit ridership can even get more significant when considering zero-occupied 
vehicles in an unmanned-autonomous-vehicles (UAV) ecosystem. Other research concluded that Uber 
boosts public transit ridership by five percent after two years of introduction in an average transit 
agency area (Hall, Palsson, & Price, 2018). Henao et al. (2019) (Henao, Marshall, & Janson, 2019) signal 
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other impacts on travel behavior and parking demand, and transportation equity. Confirming the ride-
sourcing controversial nature as a disruptive transportation service with uncertain impacts, Jin et al., 
2018 (Jin, Kong, Wu, & Sui, 2018) perceive ride-sourcing as positively impacting the economy and as a 
chance rather than a threat to transit. While they remain uncertain of its impact on car ownership, 
energy consumption and greenhouse gas emissions, they affirm the exacerbated digital division and 
exclusion from an equity standpoint.  

Therefore, it was a non-trivial challenge when transportation scientists and practitioners were 
confronted with the newly introduced mode of TNCs ride-sourcing services with no sufficient data to 
integrate this mode in the current state of the practice and modeling framework. They relied on state-
of-the-art conceptual and simulation-based frameworks to provide a preliminary understanding on the 
mode without resorting to real-world ride-sourcing trip data (F. Alemi & Rodier, 2016; Basu et al., 2018; 
Kelleny & Ishak, 2018; Winter, Cats, Martens, & van Arem, 2020). Other endeavors depend on data 
fusion approach between a relatively small ride-sourcing trip dataset or small to medium scale survey 
(Farzad Alemi, 2018; Hermawan, 2018) injected in the proposed modeling framework along with more 
generalized and more enormous datasets (Oviedo, Granada, & Perez-Jaramillo, 2020; Reck & Axhausen, 
2020). Stated-preferences (Sperling, Young, Garikapati, Duvall, & Beck, 2019) and household travel 
revealed preferences surveys also contributed to form an initial understanding of ride-sourcing users’ 
perceived utility (Azimi, Rahimi, Asgari, & Jin, 2020; Dias et al., 2017). The first real-world TNCs ride-
sourcing trip data was released in 2014 on Uber along with other for-hire vehicle pick-ups from New 
York City. The data was limited to pick-up locations only and obfuscated for privacy, yet it was useful to 
conceptualize analytical spatial and temporal methods (Correa, Xie, & Ozbay, 2017; Faghih, Shah, Wang, 
Safikhani, & Kamga, 2020) on the first exposure to real-world ride-sourcing trip data.  

At this stage of the system’s maturation of understanding, a crucial dimension remains underrated 
and unexplored, which is the system’s underlying spatial characteristics and effects. Given the inherent 
similarities between ride-sourcing and futuristic shared unmanned autonomous vehicles (SUAV), this 
spatial exploration and segmentation is so pertinent to SUAV-hubs planning and deployment and is very 
timely. Research should provide answers to questions on: (1) how ride-sourcing trip demand can be 
analytically and spatiotemporally analyzed; (2) do the demand patterns portrait any forms of clusters 
or urban pockets, or they are completely random processes? and (3) do the trip characteristics 
constituting this demand exhibit also a specific pattern of clusters? Capturing those patterns and their 
spatial effects significance is pivotal to integrating the system into regional multimodal transportation 
modeling frameworks, and to providing a coherent understanding of the way the system’s trip demand 
and characteristics are spatially being shaped and growing.  

Developing such spatial effects exploration protocols, perceived as a research gap in ride-
sourcing, is essentially data-driven and would be meaningless if conducted without resorting to real-
world data. Therefore, and to fill this gap on the ride-sourcing system research and analysis, we propose 
the spatial exploration and visualization framework developed in this paper, and we utilize the City of 
Chicago TNC trip dataset (City of Chicago, 2021) obtained at the census tracts level to showcase the 
workflow, results, and findings. The rest of this paper is organized in the following fashion to answer 
the afore-asked questions and attain those very objectives: (1) literature review on the spatial effects 
methods in different transportation modal domains; (2) case study data and the pipeline on 
preprocessing, handling and synthesizing their spatial structure and trend mining protocols; (3) 
methodological aspects of ride-sourcing spatial effects exploration proposed in this work; and finally 
(4) the implementation remarks and results. The conclusions section will set the future direction to 
advance this research. 

2. Literature review 

The term “spatial effects” refers to an observed pattern of dependence (or autocorrelation) in a 
spatial phenomenon (L. Anselin, 1988; Luc Anselin, 1999; Beron & Vijverberg, 2004). That 
heterogeneous pattern is typically governed by the underlying fabric, such as socioeconomic or 
demographic structure in urban phenomena. The integration of spatial effects in transportation 
planning and modeling remains to be an unbeaten track (Lopes, Brondino, & Silva, 2014), and a 
challenge to areas of advanced modeling, e.g., Spatial Agent-Based Models, in which contextualizing the 
spatial effect in the agents set of rules and relationships still remains a challenge (Heppenstall & Crooks, 
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2019), especially in shared mobility and ride-sourcing context (Kelleny & Ishak, 2018). Even for 
conventional transportation models, ecological fallacy and spatial dependence were amongst the key 
methodological issues discussed (Wang, Quddus, Ryley, Enoch, & Davison, 2012).  Failing to detect, 
assess and account for those effects prior to modeling the phenomenon could lead to misspecified linear 
spatial regression models (Florax & Nijkamp, 2005). In a regression context, spatial heterogeneity is 
comparable to “non-constant error variances (heteroskedasticity)” (Luc Anselin, 1999). However, in an 
exploratory analysis context, as such in this research, it refers to agglomerations of spatial entities of 
phenomenal (high or low) values of the explored system, i.e., ride-sourcing pick-ups and drop-offs 
(Florax & Nijkamp, 2005).  

Spatial effects exploration is comparable to point pattern analysis, in which, signals from spatial 
entities, like census tracts, can be analyzed statistically to reveal whether the signal distribution is a 
completely random process or if it follows some regular pattern (Bailey & Gatrell, 1995). The results of 
this analysis help to narrow down the investigated phenomenon “causal forces” (Boots & Getls, 1988). 
Correa  et al. (2017) (Correa et al., 2017) is amongst the early endeavor to account for spatial effects in 
modeling ride-sourcing demand. Global Moran I (Moran, 1950) was used just to test for spatial 
dependence existence in the demand data of Uber and Taxi, which gave rise to adopting spatial lag and 
spatial error models along with linear models. However, no further exploration on such spatially 
dependent pattern was conducted in terms of highlighting the associated urban pockets or exploring 
the effects in trip characteristics. Yu and Peng (2019) (Yu & Peng, 2019) used the same Global Moran I 
metric on spatial autocorrelation to capture the heterogeneous pattern of ride-sourcing trip demand 
data prior to developing a Geographic Weighted Poisson Regression model. Soria and Stathopoulos 
(2021) (Soria & Stathopoulos, 2021), in their work on solo and pooled trips behavior modeling, 
implemented a spatial Durbin model to account for the so-called “spatial spillover”, or the impact of 
neighboring entities induced into their ride-splitting behavior. 

In a transit ridership context and using GPS trajectories and smart card data, a study (Tu et al., 
2018) highlighted the limitations of ordinary least square (OLS) globally fitted regression models in 
capturing spatially variant (heteroscedastic) demand, and therefore, proposed a Geographically 
Weighted Regression model (GWR). However, the GWR implementation was justified only by the 
clustered pattern of the dependent variable and regressors through visuals and quantified by the GWR 
outperformance at the expense of the OLS global model. No statistical protocols were utilized to assert 
such a pattern. Also (Liu, Sun, Sun, & Gao, 2020) adopted the same GWR modeling approach to control 
for the spatial effects in some of the regressors. In this work, the urban pockets breeding such 
heterogeneity, referred to as hotspots, were explored by means of Kernel density estimation (KDE), 
since the trip data was delivered in GPS trajectories format. However, no further elaboration on the 
statistical significance of those hotspots was provided in this work.  

In a rail trip demand setting, a study (Cordera, Sañudo, dell’Olio, & Ibeas, 2018) introduced the 
Spatial Filtering approach to control for spatial effects in the demand driving variables to two models, 
namely, Poisson regression and gravity, to estimate the demand distribution between rail stations. The 
spatial effects accounted for by the gravity model exhibited significantly better performance, yet the 
models’ performance metrics were the only gauge on spatial dependence. In their “exploratory analysis 
on freight trip attraction” (Sánchez-Díaz, Holguín-Veras, & Wang, 2016), the authors utilized the 
traditional Global Moran’s I referred to earlier, but with a localized implementation using Local 
Indicators of Spatial Association, also known as Local Anselin Moran’s I (Luc Anselin, 1995) to reveal 
the pattern of association in the proposed freight model explanatory variables related clusters. The 
explorative framework for spatial effects then gave rise to adopting a spatial econometric model that 
outperformed the OLS fitted model. 

The framework proposed in this paper makes two major contributions in the ride-sourcing 
research area: (1) conceptual contribution: on incorporating spatial effects and heterogeneity in trips 
data prior to model specification and development; (2) methodological contribution: on analyzing TNC 
trip data and providing guidance to researchers and practitioners on spatial effects exploration and 
identification in such type of data to integrate it into multimodal transportation frameworks. The 
implications of this research can be extended to informed policy-making, particularly congestion 
pricing. Identifying the demand hotspots and the heavily trafficked OD-pairs can help better implement 
measures like cordon and/or corridor-based congestion pricing mechanisms to regulate and mitigate 
the impacts of TNCs on congestion. 
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3. Research methods 

The research framework presented in this paper is data-driven, i.e., we pair our proposed 
methodological aspects of ride-sourcing spatial effects exploration and identification with a case study 
to showcase the workflow, results, and findings. Therefore, it would be indispensable to discuss the 
background of the data we utilize in this section, along with the cleaning and rebuilding protocols. Thus, 
the first sub-section is organized to include: (1) trip ends, i.e., pick-up and drop-off, cleaning and 
preprocessing; (2) trip data spatial structure and pattern mining and exploration; and (3) origin-
destination flowlines cleaning and preprocessing. In the second sub-section, we focus on the 
development of the methods. 

3.1. Trip data description, cleaning, and preprocessing 

Starting from November 2018, all TNCs operating in the City of Chicago were required by 
ordinance to report all their trips regularly, and the TNC trip data has been made publicly available 
through the Chicago Data Portal and updated on a quarterly basis. We chose to work with the year 2019 
data to avoid any potential flaws in data reporting or packaging at the start of the initiative in 2018, and 
not to delve into odd travel behavior associated with the 2020 COVID-19 pandemic hit. The 2019 data 
has more than 97 million trip records. The variables relevant to this research are summarized in Table 
1, along with their type, description, and cleaning and rebuilding protocols, if any. Trips start or end in 
either of the airports’ census tracts, O’Hare International Airport and Chicago Midway International 
Airport, are eliminated from this analysis, too, since the airports’ demand is not within the scope of this 
study due to their distinctive nature. Trips with a length of more than 50 miles are excluded, since they 
are not compatible with the extent of the study area. 
 
Table 1: City of Chicago TNC Trip Dataset- Key Variables Glossary 

Variable Type and Description Cleaning or Rebuilding Protocol 
Trip ID Text; a unique identifier to the trip No missing data; no further cleaning was needed. 
Trip Start 
Timestamp 

Date & Time; when the trip started, 
rounded to the nearest 15 minutes 

Eliminate entire trip record for missing record 

Trip End 
Timestamp 

Date & Time; when the trip ended, rounded 
to the nearest 15 minutes 

Eliminate entire trip record for missing record 

Trip Seconds Number; time of the trip in seconds Missing entries were estimated by querying similar 
trips of the same start timestamp of 1-Hour window 
and same pickup and dropoff census tracts and 
compute the average   

Trip Miles Number; distance of the trip in miles Same estimation protocol used for trip seconds 
Pickup Census 
Tract 

Text; the Census Tract where the trip 
began. 

Missing records were rebuilt by spatially join the 
pickup centroid location to the City of Chicago census 
tracts shapefile 

Dropoff Census 
Tract 

Text; the Census Tract where the trip 
ended. 

Same rebuilding protocol used for pickup census 
tracts 

Pickup Centroid 
Location 

Point (Geometry); the location of the center 
of the pickup census tract (longitude, 
latitude) 

If entry is missing along with the pickup census tract, 
the entire trip record is removed 

Dropoff Centroid 
Location 

Point (Geometry); the location of the center 
of the dropoff census tract (longitude, 
latitude) 

If entry is missing along with the dropoff census 
tract, the entire trip record is removed 

Source: (City of Chicago, 2021) 
 
The trip characteristics distribution depicted in Figure 1-a and Figure 1-b shows more dense likeability 
of short trips. However, erroneous observations appear to exist in the data, as can be seen in the studied 
relation between trips’ lengths and durations as shown in Figure 1-c. Treating these erroneous values 
as outliers would result in losing a considerable portion of the data on trip characteristics. Moreover, 
intuitive scrutinizing of those outliers leads to a strong belief that they are the outcome of errors in 
measurements or handling. For example, some observations have the length of several miles, yet the 
duration is a fraction of the second. This is a typical case of data contamination, in which data reduction 
can be a good remedy (Serneels & Verdonck, 2008), especially with the low-dimensionality space dealt 
with in this section. Since we are attempting to reduce the dimensions of the trip length-duration data 



ISSN 2520-2979                           Journal of Sustainable Development of Transport and Logistics, 6(2), 2021 

 

‹ 11 › 

while refraining from distorting the variance in the pattern we are studying in the first place, the 
principal component analysis (PCA) can be a good candidate. The PCA has been a key player in this 
application area due to its protocol for minimizing the variance loss (Jolliffe & Cadima, 2016). 
 

Figure 1-a: Trip Length Distribution 

 

Figure 1-b: Trip Duration Distribution 

 
 

Figure 1-c: Trip Duration versus Length 

 

 

Figure 1-d: LDPC Distribution 

 
 

A key concern for applying PCA to the trip characteristics is the impact of the outliers on the 
quality of the process as discussed in (Sapra, 2010), for which robust variants of the PCA were proposed 
and developed. This concern is magnified in high-dimensional applications, which is not typically the 
case tackled here. Moreover, the two features reduced here can be readily assumed to be correlated, and 
therefore, the impact of the outliers would be mitigated by the contribution of the common surface from 
correlation. Therefore, a classic PCA is experimented to reduce the trip lengths and durations into one 
component, while adopting the explained variance ratio as the determinant metric on the approach 
performance and validity. The trip characteristics data were not standardized prior to implementing the 
PCA since the PCA workflow in the exploited Python Machine Learning Library Scikit-learn (Pedregosa 
et al., 2011) already standardizes the data before decomposition. The resulting component is then scaled 
to the unit variance as this is found to be consistent with the downstream application of local Anselin’s 
index. An explained variance ratio of 0.9999 is returned from the PCA, which indicates a minimal loss of 
variance in the decomposition, and the distribution of the trips’ length-duration principal component 
(LDPC) is shown in Figure 1-d. The skewness in the distribution of the trips’ LDPC suggests a higher 
frequency of shorter trips. The median, therefore, is chosen to represent the central location of the trips’ 
LDPC of the analyzed census tracts. The geographical context of the trips’ median LDPC is shown in 
Figure 2. The LDPC median range expands from negative fractional values representing very short trips 
in terms of length and duration to positive values greater than 1 for relatively longer trips. 
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Figure 2: Median TNC Trip LDPC at Pick-up and drop-off Census Tracts 

 

3.2. Trip Data Spatial Structure and Trends Mining  

The empirical spatial means (ESM) for the daily pick-ups and drop-offs, μ̂P,S(Si) and μ̂D,S(Si), 
respectively as in (1 and  (2, reveal the dominant magnitude of demand across the investigated 
geography during the analysis period. The denominator in the ESM equations, T, equals the number of 
days in which the corresponding census tract has pick-ups or drop-offs more than zero. As shown in 
Figure 3, daily pick-ups and drop-offs exhibit similar pattern of magnitude concentrated in and around 
the central business district (CBD) census tracts and vanishing in the direction approaching the 
peripheries. It should be denoted that ESM would not necessarily indicate a statistically significant 
hotspot, which is an exercise that should be worked out on its own, as will be shown in the next section.  
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Figure 3: Empirical Spatial Means for Daily Pick-ups and Drop-offs in the Year 2019 

 
 

The demand patterns revealed by means of the ESM may suggest that ride-sourcing system 
demand is not a perfectly random process. Analyzing the empirical spatiotemporal covariance (ESTC) 
can provide a preliminary understanding in this regard. ESTC between two census tracts, Si and Sj, is 

the covariance between the demand time series in both geographies. This ESTC matrix for pick-ups and 
drop-offs can be constructed as shown in (3 and (4, respectively. A pairwise census tracts’ Euclidean 
Distance (ED) Matrix is constructed to study the interdependencies between the census tracts’ demand 
co-variability, i.e., ESTC  and the respective ED,. . One can notice an exponentially decaying trend 
between the ESTC and the ED shown in Figure 4, which may again suggest for spatial effects in the 
system. 
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Figure 4: TNC Demand Empirical Spatial Covariance and Euclidean Distance 

 

3.3. OD Flow Data Cleaning and Preprocessing 

The OD flow data had to undergo some cleaning and preprocessing protocols so that their 
magnitude could be analyzed and the underlying spatial effects could be explored and evaluated 
statistically. The study area comprised initially 638,401 OD-pairs, excluding the two airports census 
tracts. They are visualized by means of the total year trips encoded to the respective flowline in Figure 
5 and weighted by 2x10-5 to reduce the visual clutter and emphasize the heavily trafficked OD flowlines. 
The trip ends of the census tracts’ internal trips, i.e., trips that started and ended within the same census 
tracts and ended up having both trip ends assigned to the census tract centroid, were assigned to two 
random geolocations within the respective census tract polygon (see Handling Internal Trips in Figure 
5(a)). Thus, heavily trafficked internal OD-flowlines would be captured in this analysis too. Figure 5(b) 
depicts high OD intensity near the CBD area.  

Only 25% of the aggregated OD pairs accumulated more than 17 trips during the entire analysis 
year. Figure 6 offers a better depiction of the skewness and the kurtosis of the aggregated OD flow. This 
long-tailed thin distributional shape, along with the exponentially decaying trend of the relation 
between the flow and the Euclidean length of the OD-pairs depicted in Figure 7, both suggest a 
remarkable less likeability of flow between distant origin and destination census tracts. Therefore, to 
conduct a conclusive analysis on the magnitude of the OD flow between census tracts in the study area, 
an OD-flow sampling protocol is recommended in this study. We propose an arbitrary number of 2000 
of aggregated trips as the threshold for OD-pairs to be further considered. After Filtering the data using 
that threshold, we remain only with 7142 OD-pairs. 
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Despite the significant portion of the pairs masked by that threshold, this approach should be 
acceptable in the context of capturing and analyzing the magnitude of the OD flow between census 
tracts. Following this step, a mesh of cell size of approximately 300 x 300 feet is constructed to 
summarize and compute the density of the OD flow. This visual analytic method is inspired by the work 
proposed in (Wood, Dykes, & Slingsby, 2010), and known as cell-based symbolization, in which the local 
number of flows is captured within each cell of the mesh, enabling further analytics to be performed on 
the flow. To elaborate, the scope of the analysis is to capture spatial heterogeneity and spatial 
dependence in the pattern of the OD flow; thus, any loss in the granularity of the pairs’ flow magnitude 
would hinder such attainment. The OD map visual analytic method allows for reducing the visual clutter 
as well as capturing the analytical component on the flow. However, amongst the limitations of the 
method is the inability to discern the direction of the flow, yet that is not a barrier in this spatial analysis 
while focusing on the heterogeneity and dependence of the flow magnitude. 
 

Figure 5: 2019 Ride-sourcing OD-flow 

 
  

r Clen 

Des Plaines Mo1lon 
Grove 

Niles Skokie 

Berwyn 

Burbank 

I 

I 

1

: E,<\Q9~,cy Map, Coe<abo<o" c,cy of· 
i-- Ch1cago. Esn WI~, Un, HtRt G,umin, 

SMeGraph, INCREMENT P, MHI/NASA, USGS, 
EPA, NPS, US Census Bureau, USDA 

Frankfort 

- OD-flow (total trips x 2e-5) 

A 

Oak Lawn 

Alsip-' 

k Foresl 

Oyer 

City of Chicago, Un Cam'M8~! HERE. Gaim1n. SafeGtaph. Mfll/NASA, 
USGS, EPA. NPS. USDA 

Crete 



ISSN 2520-2979                           Journal of Sustainable Development of Transport and Logistics, 6(2), 2021 

 

‹ 16 › 

Figure 6: The Year 2019 Aggregated OD Flow 

Between Chicago Census Tracts 

 

Figure 7: Relation between OD-pair Euclidean 

Distance and Total Year Flow 

 
 

3.4. Methodological aspects of ride-sourcing spatial effects exploration 

We focus on two aspects of the underlying pattern: (1) hotspot areas; and (2) clusters and outliers. 
Hotspot analysis can provide key insights on ride-sourcing trip demand and OD-flow spatial 
heterogeneity with rigorous statistical tests on significance as developed by Getis and Ord (Getis & Ord, 
2010) and known as “Getis-Ord Gi*” (Esri Inc., 2021b). Getis and Ord developed the basic statistic to test 
the spatial association between significantly high and low weighted values with respect to their spatial 
relations. The definition of this spatial weight incorporated in the test statistic is pivotal. Based on the 
findings from the visual representation of the ESTC and ED in the previous section, an inverse Euclidean 
squared distance between the census tracts’ centroids is selected to tune the association tested. The Z-
values, essentially the standard deviation of the Getis-Ord Gi* (see (5) (Esri Inc., 2021b; Getis & Ord, 

2010), test the null hypothesis that the ith tested spatial entity is not a significant hot or cold spot. High 
Z-values, i.e., above 1.65, 1.96, and 2.58, and their respective low p-values, i.e., 0.1, 0.05, and 0.01 will 
result in rejecting such hypothesis and identify the spatial entity as a hot or cold spot at confidence levels 
of 90%, 95%, and 99%, respectively. 

 

Zi =
Gi(d) − E[Gi(d)]

√Var Gi(d)
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∑ wi,j
n
j=1 xj − X̅ ∑ wi,j

n
j=1

S√n ∑ w2
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n
i′=1 )

2n
j=1

n − 1

 
 (5) 

Where:d is a defined distance; and j ∈ {1, … n = 799}    

X̅ =
∑ xj

n
j=1

n
   

S = √
∑ xj

2n
j=1

n
− (X̅)2   

The signal xj is the pattern value in geography j;  j ∈ {1, … n = 799} , namely the ESM μ̂P,S(Si) for 

the daily pick-ups, and the ESM μ̂D,S(Si) for drop-offs. As for the wi,j, it is the spatial weight; the inverse 

Euclidean distance squared between the geographies’ centroids. It is noteworthy that the signal value 
of the target geography xi is not included in the global format of Getis-Ord General G (Getis & Ord, 2010). 
This absence of the target geography from the scoring process allows for capturing the spatial effect, if 
any, on the adjacent geographies in a presumably exponentially decaying weight, i.e., to evaluate the 
signal from the hypothetically significant cluster against the global signal value. This should be 
emphasized here because the approach adopted to analyze the pick-ups and drop-offs pattern, although 
local, is adapted from a global one to reveal the existence of significant value clusters.  Whilst for the 
analysis that will be conducted on the trips’ LDPC in a later section, an explicit local approach is adopted, 
in which the statistical test will be performed on a signal-to-signal basis.   

The cluster and outlier analysis proposed for exploring the spatial effects in the trips’ LDPC is 
predicated on Anselin Local Moran’s I (Luc Anselin, 1995) and is proposed to reveal how the spatial 
pattern of trip characteristics complements the findings from the hotspot analysis and provides a full 
image on the system’s spatial pattern. This cluster and outlier analysis approach should be distinguished 
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from the hotspot analysis approach, though. Albeit both approaches evaluate local signals, the first one, 
i.e., Getis-Ord Gi* does that against the average global signal, whilst the Anselin’s Local index looks into 
the way the signals vary from one geography to another. This is found to be more harmonious with the 
tested signal, i.e., the trip LDPC, to see how hot or cold spots, if any, constituted by urban pockets of trips, 
are spatially clustered by their LDPC. The test statistic, therefore, is not calculated directly for the signal, 
but rather each geography is assigned an index, that is, the Anselin Local Moran’s I, derived from the 
signal (see (6) (Luc Anselin, 1995; Esri Inc., 2021c), which is thereafter used for the Z test statistic (see 
(7). The null hypothesis in this analysis is that the system is an outcome of a complete spatial random 
process. 

Ii =
xi − X̅

Si
2 ∑ wi,j(xj − X̅)

n

j=1,j≠i

  (6) 

Where: i, j ∈ {1, … n = 799};   

X̅ =
∑ xi

n
i=1

n
;   

Si
2 =

∑ (xj − X̅)n
j=1,j≠i

n − 1
   

 
The z-score: 

ZIi
=

Ii − E[Ii]

√V[Ii]
 

 (7) 

Where: E[Ii] is the mean and V[Ii] is the 
variance,computed as: 
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n
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n − 1
 

  

V[Ii] = E[I2
i] − E[Ii]

2   
And E[I2
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) ∑ w2
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(2b2i

− n) ∑ ∑ wi,kwi,h
n
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n
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(n − 1)(n − 2)
 

  

b2i
=

∑ (xi − X̅)4n
i=1,i≠j

(∑ (xi − X)̅̅ ̅2n
i=1,i≠j )2

 
  

4. Implementation remarks, results and discussion 

The proposed methods are implemented using the Hot Spot Analysis (Getis-Ord Gi*) module in 
ArcGIS Pro spatial statistics toolbox (Esri Inc., 2021b). The results on TNC ESM pick-ups and drop-offs 
shown in Figure 8 support the existence of a hotspot of ride-sourcing demand in the CBD area, consistent 
with the early findings from the visuals in Figure 3. Nearly all census tracts outside the CBD cordon 
exhibit non-significant demand patterns comparable to the magnitude and concentration of the CBD 
one. The existence of such a hotspot flags heterogeneity in ride-sourcing demand. 
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Figure 8: Daily Pick-ups and Drop-offs Hotspot Analysis Using Getis-Ord Gi* Statistics 

 
 

The hotspot analysis on the OD-flow is conducted on the OD-summarizing cells explained earlier 
by means of the Hot Spot Analysis (Getis-Ord Gi*) module in ArcGIS Pro spatial statistics toolbox (Esri 
Inc., 2021b). The spatial relationship between the OD-summarizing cells is conceptualized as an 
exponentially decaying relation, i.e., inverse Euclidean distance squared, as it is elicited from the trend 
observed in Figure 7. The cell-based OD mapping process shown in Figure 9 (a) shows prevailing OD flow 
activities in the CBD and extended into the northwest census tracts. The OD hotspot analysis results 
shown in Figure 9 (b) reveals similar findings with the hotspot cells concentrated around the CBD and 
dissipating into thin traces toward the northwest.  

Examined visually, the trips’ LDPC pattern shown in Figure 2 suggests the earlier elicited 
hypothesis on the hot demand spots in the CBD area that they are driven by longer trips from peripheral 
census tracts and relatively shorter trips from the CBD and the adjacent census tracts. Yet this remains 
a hypothesis until tested using the robust Anselin Local Moran’s I process on cluster and outlier analysis. 
The conceptualization of the spatial relationship in this analysis is based on the inverse of the mere 
distance between the census tracts, unlike the inverse squared distance adopted in the hotspot analysis 
on pick-ups and drop-offs and the subsequent analysis on OD-flow, for which, there was a strong belief 
supported by evidence on an exponentially decaying trend with distance. 

From the input signal on trips’ LDPC, the Anselin Local Moran’s I, and the respective Z-scores are 
calculated as explained earlier. The Z-score and p-value reveal the statistical significance in the context 
of the hypothesis tested. Higher Z-scores and p-values indicate the presence of spatial association of 
high or low signals and will lead to rejecting the null hypothesis, and the outcome on the cluster type 
will label the statistically significant geographies whether they are significant in high or low signal 
magnitude. This elaborated workflow highlights why this analysis should better answer the question on 
the existence of spatial effects in trip characteristics than other global or semi-global approaches, e.g., 
Getis-Ord Gi*, due to the locality of the test statistic of location-by-location basis. Thus, a propagation 
pattern from the CBD on trip characteristics, if existing, can be observed and highlighted. 
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Figure 9: Chicago TNC Trips OD Map (Pairs’ Flow > 2000 trips): (a) Flow Density – Edges/Cell; 

(b) OD-Pairs- Flow Hot Spots 

 
 

The cluster and outlier analysis process was conducted using the ArcGIS Pro module on cluster 
and outlier analysis (Esri Inc., 2021a). The null hypothesis presumes the complete spatial random 
property of the system’s examined signal, in this case, the trips’ LDPC. Thus, the pattern of the census 
tracts trips’ LDPC, and consequently the Anselin’s Local I, is rearranged permutationally around each 
signal location to test the null hypothesis on complete randomness against the hypothesis on 
pronounced cluster pattern. In this sequence, a pseudo p-value instead of the conventional p-value is 
the basis for statistical significance.  A pseudo p-value is the proportion of the random permutations in 
which the respective Anselin’s Local Moran-I reflected a more pronounced clustering pattern than the 
real I. To elaborate, in a randomization process that comprises N-permutations, each census tract will 
develop a random distribution of Local Moran-I consisting of N-random variables computed during the 
permutations, and this will result in a “conditional permutation at each location” (Luc Anselin, 2016). 
The real I, obtained from the actual pattern, will then be compared against each conditional permutation 
I, using the ZIi

, and in every time ZIin
 from a permutation  n ∈ N exhibits a more significant clustering 

pattern than ZIi
 for the real Ii, this will count toward the pseudo p-value proportion. Lastly, at a 

confidence level of 95%, if pseudo p-value is less than 0.05, we reject the null hypothesis on complete 
randomness.   

The precision of the experiment in accepting or rejecting the hypothesis is governed by the 
number of the permutations performed. Noting that  the entire dependence upon the analytical 
approximation of the index (Local Moran-I) is expected to inferentially underperform (Luc Anselin, 
2016), i.e., ill-conceived hypotheses. Thus, an arbitrary number of 799 permutations, equals to the 
number of census tracts in the study area, is chosen to conduct the analysis. However, testing multiple 
hypotheses raises concerns on alpha-error inflation, i.e., false-positive or type-I error. Therefore, a false 
discovery rate (FDR) correction is adopted, as developed in (Benjamini & Hochberg, 1995) to control 
for the false positives.   

The cluster and outlier analysis results in five types of clusters and outliers, as shown in Figure 
10, and can be interpreted as follows: 
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census tracts with remarkably higher trips’ length-duration median component 
2) High-Low Outlier: census tracts that have their trips’ length-duration component 

comparatively low but fall within the significantly identified High-High cluster 
3) Low-Low Cluster: statistically significant cluster of pronounced small signal values, i.e., 

census tracts with remarkably smaller trips’ length-duration median component 
4) Low-High Outlier: census tracts that have their trips’ length-duration component 

comparatively high but fall within the significantly identified Low-Low cluster 
5) Not Significant: census tracts with their trips’ length-duration component median 

statistically neither significant high nor significant low and found to be unidentifiable in 
terms of signal value 

 

Figure 10: Cluster and Outlier Analysis of TNC Trips' Length-Duration Principal Component 

 
 
The results align exactly with the initial observation made on the short trips concentrated in and 

around the CBD, and longer trips in the peripheral census tracts. There is a clear buffer of not significant 
census tracts separating the two extremely significant clusters, with a trivial number of outliers as the 
exception that proves the rule. 

Conclusions 

The workflow of the analysis conducted in this paper adopted two spatial statistical methods to 
reveal the underlying effects in ride-sourcing trip demand, OD-flow, and trip characteristics; (1) Getis-
Ord Gi*; and (2) Local Anselin Moran’s I, in their respective domain of implementation. The key findings 
from the Getis-Ord Gi* implementation on trip ends and OD-flow hotspot analysis can be summarized 
as follows: (1) TNC Trip Ends, i.e., pick-ups and drop-offs, both show spatial heterogeneity of statistically 
significant high rates concentrated within and around the CBD area; (2) TNC OD-flow analysis shows a 
strong exponentially decaying trend between the OD flow and the Euclidean distance (OD length); and 
(3) TNC OD-pairs show spatial heterogeneity, statistically significant too, with a larger footprint 
extending from the CBD toward the northwest census tracts. That agglomerations of demand in the 
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census tracts of Chicago’s CBD and its surroundings, represented in the significantly identified hotspots 
of pick-ups and drop-offs, along with the hot OD-flowlines concentrated in the CBD and vanishing 
toward the peripheral areas, should be further explored in predictive analytics framework on ride-
sourcing spatially contextualized pick-ups and drop-offs, as well as city-wide OD-flow modeling. 

As for the Local Anselin Moran’s I implementation on the clusters and outliers of trip length and 
duration characteristics, the results flag another key finding on the significantly shorter trips associated 
with that hot demand in the CBD, and longer trips, significant too, concentrated in the less demanding 
peripheral census tracts. Those findings on the system trip ends, and OD flow provide a clear image on 
the existence of spatial effects in the ride-sourcing system from a demand perspective as well as trip 
characteristics and would require further analysis to explore whether such pattern exists in willingness-
to-share and mile-price. Moreover, the findings of this paper can typically be further utilized to fill two 
current practice and research gaps regarding: (1) standardizing ride-souring trip data handling 
protocols; and (2) incorporating spatial effects into agent-based modeling frameworks of ride-sourcing 
systems. The latter is considered in the critical component of social networking and interaction present 
in agent-based models, and their pertinence to spatial effects. 
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