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Abstract: We apply the Distillation spatial smearing program to the extraction of
the unpolarized isovector valence PDF of the nucleon. The improved volume sampling
and control of excited-states afforded by distillation leads to a dramatically improved
determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-
twist effects is subsequently explored by extending the Wilson line length present in our
non-local operators to one half the spatial extent of the lattice ensemble considered. The
valence PDF is extracted by analyzing both the matched Ioffe-time Distribution (ITD),
as well as a direct matching of the pITD to the PDF. Through development of a novel
prescription to obtain the PDF from the pITD, we establish a concerning deviation of the
pITD from the expected DGLAP evolution of the pseudo-PDF. The presence of DGLAP
evolution is observed once more following introduction of a discretization term into the PDF
extractions. Observance and correction of this discrepancy further highlights the utility of
distillation in such structure studies.
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1 Introduction

Elucidation of the dynamical properties of quarks and gluons and their collective emergent
phenomena is the principal charge of contemporary hadronic physics and is a central compo-
nent of the precision phenomenology program at the Large Hadron Collider (LHC). Crucial
for the interpretation and prediction of inclusive and semi-inclusive scattering processes,
such as deep inelastic scattering (DIS) and semi-inclusive DIS, are the parton distribution
functions (PDFs) which emerge in the QCD factorization [1] of such inclusive cross sections.
PDFs capture the collinear momentum distribution of partons within a fast moving hadron
with pµ =

(
p+,m2/2p+,0⊥

)
, and offer a probabilistic interpretation featured at leading-

twist. Despite complementing the growing hadron tomography efforts both theoretically
and at upcoming facilities such as the Electron Ion Collider, determination of PDFs remains
a high priority as they are often large sources of hadronic error in collider experiments and
thereby affect the precision measurements of an array of Standard Model parameters [2].

The numerical tool of lattice field theory enables the quantitative study of strongly-
coupled theories, such as Quantum Chromodynamics (QCD), from first-principles. As PDFs
accumulate information on the infrared structure of a hadron, they would seem ideal objects
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to target in lattice QCD (LQCD) calculations. However, the Euclidean metric of LQCD
precludes direct access to the light-like bilinears required to define PDFs and other light-cone
distributions. Attempts to circumvent this preclusion date to early efforts to access the
hadronic tensor [3, 4], forward Compton amplitude [5], and light-cone distributions of
exclusive processes [6, 7] from suitably constructed Euclidean correlation functions.

The recent cascade of research into the light-cone structure of hadrons from LQCD
followed from X. Ji’s proposed connection between matrix elements of space-like separated
parton bilinears and their light-like counterparts [8]. When analyzed with respect to the
space-like extent, the resulting distribution of parton longitudinal space-like momenta,
or quasi-PDF, can be factorized into the light-cone PDFs f

(
x, µ2) in the limit of large

space-like momenta [9]. Since then, substantial effort has been invested in extracting PDFs
from the quasi-distribution formalism [10–20] and the interplay with lattice systematics has
been explored [21, 22]. In the forward limit, quasi-distributions have recently been extended
to access distribution amplitudes [23–25] and PDFs of explicit higher-twist [26]. The reader
is directed to [27, 28] for details on community progress. An alternative coordinate space
interpretation, the pseudo-distribution formalism expounded upon in section 2, developed
in [29] shares the same matrix elements with quasi-distributions, but its Lorentz-invariant
amplitudes factorize in the short-distance space-like regime into PDFs and perturbatively
calculable coefficient functions. In this manner, pseudo-distributions are a special case of
Good Lattice Cross Sections [30, 31], which has offered complementary information on pion
structure [32, 33]. Regardless of the methodology adopted, high-momenta is a requirement
in order to access the regime of low momentum fraction.

The remainder of this manuscript is organized as follows. In the interest of self-
containment, we begin in section 2 with a summary of the pseudo-distribution formalism
and how its application to certain space-like matrix elements illuminates the forward
lightcone structure of hadrons. After introducing the lattice ensemble employed in this
work, we proceed in section 3 with a recapitulation of the Distillation spatial smearing
program, a recent extension of the method to high-momentum observables, and argue why
its utilization is essential in such structure calculations. Methods for matrix element and
subsequent PDF extraction from our lattice data, especially in light of lattice artifacts, are
developed subsequently. Results of these protocols are presented in section 4, followed by
discussion and concluding remarks in section 6.

2 PDFs and Ioffe-time pseudo-distributions

Consider the non-local quark bilinear ψ (z) γαΦ(f)
ẑ ({z, 0})ψ (0) connected with a straight

z-separated Wilson line Φ(f)
ẑ ({z, 0}) in the fundamental representation of SU(3). Lorentz

invariance dictates the forward helicity-averaged matrix element of this operator decomposes
according to

Mα (p, z) = 〈h (p)|ψ (z) γαΦ(f)
ẑ ({z, 0})ψ (0)︸ ︷︷ ︸
O̊[γµ]

WL (z)

|h (p)〉 (2.1)

= 2pαM
(
ν, z2

)
+ 2zαN

(
ν, z2

)
, (2.2)

– 2 –
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with ν ≡ p ·z and z2 the Ioffe-time [34, 35] and invariant interval, respectively, of the process.
For a fast-moving hadron, the usual unpolarized PDFs are defined with light-cone coordinates
where α = +, pα =

(
p+,

m2
h

2p+ ,0⊥
)

and zα = (0, z−,0⊥). In this scenario M+ (p, z) only
receives contributions fromM

(
p+z−, 0

)
. Provided the logarithmic singularity that arises

for z2 = 0 is regularized (typically in MS),M
(
p+z−, 0

)
defines the Ioffe-time distribution

(ITD) [35]:

M
(
p+z−, 0

)
µ2
≡ Q

(
ν, µ2

)
=
∫ 1

−1
dx eiνxfq/h

(
x, µ2

)
, (2.3)

and obviates the Fourier transform of (2.1) to momentum space which defines the conven-
tional PDFs. Lorentz invariance implies the ν-dependence ofM

(
p+z−, 0

)
µ2 can be computed

in any frame, and with any choice of {z, α} that may be convenient. A particular choice
amenable to calculation with lattice QCD is α = 0, pα = (E,0⊥, pz) and zα = (0,0⊥, z3),
which excludes the contamination from the pure higher-twist term N

(
ν, z2). The remaining

termM
(
ν, z2 6= 0

)
is deemed the Ioffe-time Pseudo-distribution [29] or pseudo-ITD. In ad-

dition to the twist-2 contributions, the pseudo-ITD also contains higher-twist contributions
O(z2Λ2

QCD) that vanish only in the light-cone limit. Furthermore, for all relevant Feynman
diagrams [36], the Fourier transform of the pseudo-ITD with respect to ν has support only
on the canonical parton momentum fraction interval x ∈ [−1, 1]. The challenge numerically
is to extract the leading-twist dependence amongst contributing O

(
z2) higher-twist terms.

A considerable challenge of using this non-local parton bilinear is the appearance of
additional ultraviolet (UV) divergences for space-like separations. Prior to taking the
continuum limit, the UV divergences must be regularized and removed. In perturbation
theory, such divergences appear first, as power-like z/a [37] terms in the gauge-link self-
energy corrections, with a being a UV regulator. These exponentiate to all orders [38, 39]
producing the factor Zlink (z3, a) ' e−A|z3|/a. Second, there are logarithmic ln(−z2/a2)
UV corrections present both in the link self-energy and in the vertex link corrections [40].
As these unwanted UV divergences are multiplicative [40–43], and independent of the
Ioffe-time, combining into an overall factor ZUV (z3, a), we construct the so-called reduced
pseudo-ITD [29]

M
(
ν, z2

)
= M

(
ν, z2)

M (0, z2) . (2.4)

Since the rest-frame pseudo-ITDM
(
0, z2) has the same UV divergences associated with the

gauge link, by forming the reduced pseudo-ITD we cancel the divergent factors Zlink (z3, a)
and ZUV (z3, a), thereby ensuring a finite continuum limit. The choice to construct the RG
invariant reduced pseudo-ITD withM

(
0, z2) is especially straightforward, asM

(
0, z2) is

simply the bare vector charge Z−1
V in the light-cone limit thereby leaving the OPE unaltered.

Motivation for the reduced pseudo-ITD also extends to the mitigation of higher-twist
O(z2Λ2

QCD) effects [44]. An alternative has recently been proposed that makes use of a
vacuum matrix element of the space-like parton bilinear [45] (see also ref. [46]).

Following removal of the UV divergences produced by the space-like Wilson line, the
remaining singularities in (2.4) stem from ln(−z2) contributions in QCD. These terms
generate the perturbative evolution of the collinear PDFs and complicate the naive z2 → 0

– 3 –
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limit. The reduced pseudo-ITD M
(
ν, z2) factorizes in the perturbative small-z2 regime

into PDFs with perturbatively calculable hard coefficients. The factorization relationship
has been computed to NLO [47–49] and recently NNLO [46, 50]. The NLO relationship
that matches the MS ITD Q

(
ν, µ2) to the reduced pseudo-ITD M

(
ν, z2) reads

M
(
ν, z2

)
=
∫ 1

0
du C

(
u, z2µ2, αs (µ)

)
Q
(
uν, µ2

)
+
∞∑
k=1
Bk (ν)

(
z2
)k
, (2.5)

where Q
(
ν, µ2) is the lightcone ITD at a factorization scale µ2. The matching kernel

C
(
u, z2µ2, αs (µ)

)
= δ (1− u)− αs

2πCF
[
ln
(
e2γE+1

4 z2µ2
)
B (u) + L (u)

]
, (2.6)

involves a scale-independent kernel L (u) =
[
4 ln(1−u)

1−u − 2 (1− u)
]

+
that matches the lattice

and MS regularization schemes, and a scale-dependent kernel that relates the z2 and µ2

scales through the flavor non-singlet DGLAP evolution kernel B (u) =
[

1+u2

1−u

]
+

[51–53].

The factorization is valid in so far as the polynomial corrections Bk (ν)
(
z2)k can be

mitigated. We follow in this work the plus-prescription defined by
∫ 1

0 du G (u)+ f (ux) =∫ 1
0 du G (u) [f (ux)− f (x)].

3 Numerical methods

The pseudo-distribution formalism has been leveraged in several lattice calculations of
partonic structure of hadrons, including the valence quark content of the pion [54], and the
unpolarized valence quark [44, 55–58] and recently gluon [59] contents of the nucleon. Even
though each calculation makes use of standard spatial and momentum smearing techniques,
considerable statistical fluctuations are met for Ioffe-times in excess of ν & 5 (and at even
smaller values for gluonic matrix elements).

Motivated by the demonstrable success of the union of the distillation paradigm and the
momentum smearing idea [60], we apply for the first time the distillation spatial smearing
program to the extraction of PDFs from lattice QCD. We employ a 349 configuration
isotropic clover ensemble generated by the JLab/W&M/LANL collaboration [61], featuring
2⊕1 quark flavors within a 323×64 lattice volume. The inverse coupling was set to β = 6.3,
from which the lattice spacing a ' 0.094 fm was obtained from the Wilson-flow scale w0 [62],
which yields a pion mass mπ = 358MeV. The reader is referred to [63, 64] for further details
of this ensemble, denoted a094m358 and summarized in table 1. A single application of
the stout smearing kernel [65] yields a tadpole-improved tree-level clover coefficient csw
near the value determined non-perturbatively from the Schrödinger functional method [61]
a posteriori.

3.1 Distillation

The Jacobi smearing kernel Jσ,nσ (T ) =
(
1 + σ∇2 (T )

)nσ [66] featured in a variety of lattice
calculations is but one method with which point-like interpolating fields can be spatially

– 4 –
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ID a (fm) mπ (MeV) L3 ×Nt Ncfg Nsrcs RD

a094m358 0.094(1) 358(3) 323 × 64 349 4 64

Table 1. Lattice ensemble employed in this work. The number of distinct source positions Nsrcs
per configuration and the distillation space rank RD are also indicated. We note the resulting
number of measurements Nmeas = Ncfg × Nsrcs = 1396 is kept fixed for all two- and three-point
functions computed in this work, regardless of momentum boost, source-sink separation and Wilson
line length.

smeared and made more sensitive to confinement scale physics. This low-mode filter can be
made explicit by identifying eigenvectors of the three-dimensional gauge-covariant Laplacian

−∇2 (T ) ξ(k) (T ) = λ(k) (T ) ξ(k) (T ) (3.1)

and ordering solutions according to the eigenvalue magnitude λ(k) (T ). Forming the outer
product of equal-time eigenvectors defines the distillation [67] smearing kernel

� (~x, ~y;T )ab =
RD∑
k=1

ξ(k)
a (~x, T ) ξ(k)†

b (~y, T ) , (3.2)

where RD is the desired distillation space rank and color indices {a, b} are made explicit.
Two-point correlation functions formed by Wick-contracting quark fields smeared via (3.2)
can be recast into a trace over distinct reusable objects constructed within the distillation
space, the so-called elementals and perambulators. The elementals encode the interpolator
construction, which in the case of baryons read

Φ(i,j,k)
αβγ (T ) = εabc

(
D1ξ

(i)
)a (
D2ξ

(j)
)b (
D3ξ

(k)
)c

(T )Sαβγ , (3.3)

where Di are covariant derivatives, and Sαβγ encode the patterns of subduction of a
continuum interpolator across irreducible representations (irreps) of a hypercubic lattice
and its associated little groups. Quark propagation between distillation spaces is captured
by the perambulators

τ
(l,k)
αβ (Tf , T0) = ξ(l)† (Tf )M−1

αβ (Tf , T0) ξ(k) (T0) , (3.4)

with M the Dirac operator. In the case of three-point correlation functions, an additional
computational unit appears. The generalized perambulator, or genprop for short, carries the
same external indices as a standard perambulator, but includes an intermediate operator
insertion. In the case of the Wilson-line operator specific to this work, the genprop reads

Ξ(l,k)
αβ (Tf , T0; τ, z3) =

∑
~y

ξ(l)† (Tf )M−1
ασ (Tf , τ ; ~y + z3ẑ)

[
γ4
]
σρ

× Φ(f)
ẑ ({~y + z3ẑ, ~y})M−1

ρβ (τ, T0; ~y) ξ(k) (T0) , (3.5)

where the unpolarized PDFs are selected with the Dirac matrix γ4, and the sum over the
initial spatial coordinates of the Wilson line ~y ensures a zero 3-momentum projection. We

– 5 –

I I I I I I 



J
H
E
P
1
1
(
2
0
2
1
)
1
4
8

Tf T0

(a)

z

Γ

Tf T0

⊗

(b)

Figure 1. (a) Two-point and (b) Wilson-line type three-point correlation functions factorized into
distinct elementals (blue), perambulators (green) and generalized perambulators (red).

remark the factorization of correlation functions made manifest by distillation allows for
an efficient implementation of the variational method with an extended basis of operators.
These factorizations are shown diagrammatically in figure 1.

The viability of the pseudo-distribution formalism hinges on the space-like quark bilin-
ear remaining in a perturbative, or short-distance, regime. To then minimize the impact
of polynomial-z2 corrections when mapping the ν-dependence of the reduced pseudo-ITD,
the matrix elements (2.1) must be isolated in frames of varying external nucleon boosts.
Increasing the 3-momentum of a hadronic interpolator not only leads to exponentially
worsening statistical fluctuations, but also reduces the efficacy of spatially-smeared interpo-
lators to overlap onto the desired hadronic states. An improvement program capable of
increasing interpolator-state overlaps in boosted frames, now known as momentum smearing
was first established in [68]. Momentum smearing effectively shifts the operator-ground-
state overlap peak in momentum space; crucially, this shift also improves the overlap of
a boosted interpolator onto neighboring excited-states. In anticipation of an increasingly
dense nucleon spectrum in boosted frames, we adopt in this work a modification of the
distillation paradigm [60] which simultaneously leverages the momentum smearing heuristic
with improved control over excited-states. In the interest of self-containment, we now
summarize this procedure.

The momentum smearing idea is incorporated within distillation by applying spatially-
varying phases to a pre-computed eigenvector basis

ξ̃(k) (~z, T ) ≡ ei~ζ·~zξ(k) (~z, T ) , (3.6)

where we designate the modified eigenvectors as phased. As the eigenvector basis already
reflects the periodicity of the spatial lattice, the phase factors introduced in this manner
are restricted to allowed lattice momenta. This requirement was not found to be limiting,
but rather offered broad improvement of momentum space overlaps for a range of nucleon
momenta [60]. All distillation components must then be reconstructed on each new modified
basis. In the interest of compute cycles and storage, we adopt three eigenvector bases: the
pre-computed basis (3.1) for the nucleon at rest and with small ẑ-momenta (|apz| ≤ 3 [2π/L]),
while two additional bases are formed according to

ξ
(k)
± (~z, T ) ≡ ei~ζ±·~zξ(k) (~z, T ) (3.7)

– 6 –
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where ~ζ± = ±2 · 2π
L ẑ. These phased bases were found to be sufficient to resolve the ground-

state nucleon in ẑ-boosted frames |apz| > 3 [2π/L], respectively [60]. We employ RD = 64
eigenvectors within each basis.

3.2 Matrix element isolation

Interpolator construction. The breaking of rotational symmetry by a hypercubic lattice
entails baryons appear in lattice calculations according to definite patterns of subduction
across the finite number of irreps Λ of the octahedral group double-cover ODh . We elect to use
a single spatially local, non-relativistic nucleon interpolating operator constructed according
to [69, 70]. The paradigm established in [71] is adopted herein to ensure our interpolator
transforms irreducibly under the appropriate little group irreps. A forthcoming calculation
will leverage an extended basis of interpolators to extract these same matrix elements.

The space-like matrix element (2.1) is isolated in a flavor isovector combination according
to the kinematics highlighted in section 2, and requires computation of standard two-point

C2 (pz, T ) = 〈N (−pz, T )N (pz, 0)〉 =
∑
n

|An|2 e−EnT (3.8)

and three-point correlation functions featuring the unrenormalized Wilson line operator
O̊[γ4]

WL (z3, τ)

C3 (pz, T, τ ; z3) = V3 〈N (−pz, T ) O̊[γ4]
WL (z3, τ)N (pz, 0)〉

= V3
∑
n,n′

〈N |n′〉 〈n|N 〉 〈n′| O̊[γ4]
WL (z3, τ) |n〉 e−En′ (T−τ)e−EnT , (3.9)

where energy eigenstate contributions are denoted, and the nucleon interpolating fields
N that are smeared with distillation are separated by a Euclidean time T . The explicit
momentum projection built into the genprop (3.5) leads to an overall spatial volume factor
V3 in the forward case. The Wilson line operator is inserted for 0 < τ < T . These correlators
and the factorization manifest through distillation are illustrated in figure 1.

The spectral representations of (3.8) and (3.9) indicate the desired ground-state matrix
element follows from ratios of three-point to two-point correlation functions, which plateau
asymptotically for 0� τ � T . The contamination from excited-states is reduced further in
this calculation by extracting the matrix elements using the Summation method [72, 73],
whereby the time slice τ on which O̊[γ4]

WL (z3) is introduced is summed over

R (pz, z3;T ) =
T−1∑
τ=1

C3 (pz, T, τ ; z3)
C2 (pz, T ) . (3.10)

Note any contact terms are explicitly excluded. Excited-states in (3.10) scale as exp [−∆ET ],
while in plateau and multi-state fits these effects scale as exp [−∆ET/2]. As the ground-
excited state gap ∆E is generally large at low-momenta, the gains afforded by the summation
method over plateau/multi-state fits are modest. However, at high-momenta ∆E becomes
small and the summation method offers considerable suppression of excited-states relative

– 7 –
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(a)
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R (pz, z3;T )

(b)

Figure 2. (a) Real and (b) imaginary summation data R (p3, z3;T ) for p3 ' 0.82GeV and z/a = 10,
together with the linear fit (3.11) applied for different time series. The slope of each linear fit yields
the bare matrix element, which is seen to be consistently determined for varied fitting windows.

to plateau and multi-state fits. The geometric series resulting from (3.10) depends linearly
on the targeted matrix element M4 (pz, z3), for which we implement the fitting functional

Rfit (pz, z3;T ) = A+M4 (pz, z3)T +O
(
e−∆ET

)
. (3.11)

We note in practice, the excited-state term O
(
e−∆ET

)
is found to have no impact on our

summation fits and is hence omitted from our results.
The two- and three-point functions are computed on four temporal source origins per

configuration with T/a ∈ {4, 6, 8, 10, 12, 14} ∼ 0.38–1.32 fm. This number of source-sink
separations is chosen to filter out any excited-states that are not captured by the combined
effect of distillation and the summation method, and to ensure our linear fits (3.11) do not
over fit our data as signal-to-noise problems become unavoidable. We consider nucleon
momenta up to |pz| = 6 × [2π/aL] ∼ 2.47GeV and Wilson line lengths up to z3/a = 16,
although only z3/a ≤ 12 will be subsequently used in our analysis. As stated in table 1,
the number of temporal origins and configurations is held fixed for all computed matrix
elements regardless of T/a, pz and z3. A representative set of R (p3, z3;T ) and applied
linear fits are shown in figures 2 and 3. Repeating the matrix element extraction for all
momenta and displacements, we gather the real/imaginary components of the unpolarized
reduced pseudo-ITD in figures 4a and 4b.

Our adoption of distillation in this calculation is justified numerically by making a direct
comparison in appendix A with an earlier calculation of the nucleon’s unpolarized PDF [58],
which instead used spatial Jacobi smearing on the same ensemble. A cost comparison
between the two approaches is also presented, making a strong case for distillation in future
calculations of hadronic structure.
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Figure 3. (a) Real and (b) imaginary summation data R (p3, z3;T ) for p3 ' 2.47GeV and z/a = 4,
together with the linear fit (3.11) applied for different time series. The slope of each linear fit yields
the bare matrix element. Slight tension in the extracted matrix element is observed as the fitting
window is altered. Although minor, this stems jointly from the lack of constraint provided by the
T/a = 12, 14 data and the greater flexibility afforded to each fit as the minimum T/a is increased.
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Figure 4. (a) Real and (b) imaginary component of the unpolarized reduced pseudo-ITD on the
a094m358 ensemble with Wilson line extents z/a < 13.

4 Extraction of unpolarized nucleon PDFs

As PDFs are determined phenomenologically at a factorization scale µ2 in MS to renormalize
the associated collinear divergences, the nucleon unpolarized reduced pseudo-ITD shown
in figure 4a and 4b must be matched to a common scale in MS prior to any meaningful
comparisons. At one-loop and without loss of generality, negating the sign of the O (αs)
correction and interchanging the ITD and reduced pseudo-ITD in (2.5) one obtains the
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factorization relationship that matches the reduced pseudo-ITD to the ITD:

Q
(
ν,µ2

)
=M

(
ν,z2

)
+αsCF

2π

∫ 1

0
du

[
ln
(
e2γE+1

4 z2µ2
)
B (u)+L(u)

]
M
(
uν,z2

)
. (4.1)

This relationship describes the evolution of each distinct set of M
(
ν, z2) data at a given

z2 to a common scale µ2 in MS. Regardless of whether the evolution and matching steps
are done separately or in one step, a smooth and continuous description of the reduced
pseudo-ITD for each z2 in the interval [0, ν] is required. It is common in the literature to find
polynomials in Ioffe-time fit to each set of distinct z2 data in order to build M

(
uν, z2) [56–

58, 74]. Interpolations are also common, and when used have been found to be consistent
with polynomial fits [57, 58].

A polynomial in ν is perhaps a dubious choice, as it cannot capture the correct limiting
behavior of the ITD at large-ν. To understand this, consider a simple nucleon valence PDF
ansatz

fqv/N (x) = Γ (α+ β + 2)
Γ (α+ 1) Γ (β + 1)x

α (1− x)β . (4.2)

The cosine transform of this ansatz with respect to Ioffe-time is given by

Re Q(ν,α,β) = πΓ(2+α+β)
21+α+β 2F3

(
1+α

2 ,
2+α

2 ; 1
2 ,

2+α+β
2 ,

3+α+β
2 ;−ν

2

4

)
, (4.3)

with 2F3 a generalized hypergeometric function and α, β > −1. In the large Ioffe-time
regime (4.3) behaves as

Re Q (ν) ' β cos
(
π

2α
) Γ (α+ 2)

να+2 − sin
(
π

2α
) Γ (α+ 1)

να+1 . (4.4)

For the real component of the ITD to correspond to a valence PDF with a finite sum rule,
the ITD must then vanish for asymptotically large-ν (i.e. α > −1). This suggests the
usefulness of a smooth polynomial in ν extends only so far as interpolating the discrete
pseudo-ITD data, and should not be used as a measure of the moments of the pseudo-PDFs
given their divergent behavior at large-ν. This motivates methods to directly extract the
PDFs from the reduced pseudo-ITD, thereby obviating the need for a continuous description
of M

(
ν, z2) in order to perform the evolution/matching steps. This will be developed in

sections 4.2 and 4.3.
To get a handle on the scale dependence of our data and ground the ensuing discussion,

we nonetheless start with a provisional sixth order polynomial fit in Ioffe-time to the reduced
pseudo-ITD for constant z2:

M
(
ν, z2

)
= 1 +

3∑
n=1

(
c2n ν

2n + i c2n−1 ν
2n−1

)
. (4.5)

The even (odd) powers of the polynomial are applied to jackknife samples of the real
(imaginary) component of M

(
ν, z2) given in figures 4a and 4b. Higher order polynomials

were considered, but were found to be unconstrained by the data. With the polynomial fits
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Figure 5. Convolutions needed to evolve (upper) and match (lower) the real component of the
reduced pseudo-ITD to a common scale of 2GeV in MS. The NLO prefactor αsCF /2π is included in
these data, but omitted from the labels for clarity. The convolutions were performed up to z/a = 16,
but data for z/a > 9 are generally noisy and not shown.

in hand, we perform the evolution and scheme conversion convolutions (4.1) in a single step.
The matched MS scale µ = 2GeV was chosen, and the strong coupling αs (2GeV) ' 0.303
was adopted from LHAPDF6 [75]. The scale µ = 2GeV corresponds to the reduced
pseudo-ITD being evolved to the common scale z2

0 = 4e−2γE−1 (2GeV)−2 ' 0.12GeV−2

or z−1
0 ' 2.94GeV. On this ensemble a094m358, this common scale then equates to

z2
0/a

2 ' 0.511. The computed evolution and scheme matching convolutions are depicted
in figure 5 and figure 6 for the real and imaginary components, respectively. It is curious
the evolution and matching convolutions appear to be nearly equal in magnitude but
opposite in sign. This feature of the pseudo-distributions has been observed in independent
calculations [56, 57] and hints an NNLO matching relation may not be needed. Nonetheless,
a future study will explore to what effect the matching relation (2.5), truncated at NLO in
this work, can be improved at NNLO [46].

When the scale and scheme conversion are incorporated, we observe in figure 7a and
figure 7b a dramatic collapse of the reduced pseudo-ITD onto a common curve for z/a . 10.
The lack of residual z2-dependence is particularly striking in the real component of the
ITD, but less so in the imaginary component. This confirms the formation of the reduced
ratio (2.4) indeed cancels much of the z2-dependence in the pseudo-ITD, with any remaining
at small-z2 ideally described by the coordinate-space DGLAP evolution [29].
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Figure 6. Convolutions needed to (upper) evolve and (lower) match the imaginary component
of the reduced pseudo-ITD to a common scale of 2GeV in MS. The NLO prefactor αsCF /2π is
included in these data, but omitted from the labels for clarity. The convolutions were performed up
to z/a = 16, but data for z/a > 9 are generally noisy and not shown.
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Figure 7. (a) Real and (b) imaginary component of the unpolarized ITD at a scale of 2GeV in
MS obtained from the matching relation (4.1), where a smooth and continuous description of the
M
(
ν, z2) data is provided by a polynomial fit for each z2. Data are shown for Wilson line extents

z/a ≤ 12; extents z/a > 12 are considerably uncertain, and thus excluded from our ensuing analysis.
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4.1 An ill-posed inverse

The Fourier transform relating the x-dependence of the PDF to the ν-dependence of the ITD

Q
(
ν, µ2

)
=
∫ 1

−1
dx eiνxfa/h

(
x, µ2

)
(4.6)

is an ill-posed inverse problem, as the ITD is computed in a discrete and limited range of
Ioffe-time. Regularization at this stage is however numerically cheap and more stable relative
to a direct matching of the {x, µ2} dependencies of the PDF to the {ν, z2} dependencies
of the reduced pseudo-ITD. A direct inversion of (4.6) is satisfied by an infinite number of
solutions, each of which having little predictive or postdictive credibility. The futility of direct
inversions has been demonstrated in a few LCS calculations [57, 58], wherein each inversion
yielded unstable PDFs with spurious oscillations. The limited range of Ioffe-time accessible
to present PDF calculations only compounds the need for refined extraction methods.

This inversion problem is shared with other lattice formalisms that rely on QCD
factorization, and indeed the global analysis of inclusive/semi-inclusive processes. Although
different in character, this problem pervades the quantitative sciences and even impacts
the image reconstruction of black holes [76]. Arguably the most serious systematic that
must then be confronted in LCS studies is how to reliably extract a targeted distribution,
while minimizing numerical artifacts and bias. Numerous sophisticated methods, such
as the Backus-Gilbert [77], maximum entropy [78], and Bayesian reconstruction methods
have been explored as tools to aid in PDF extractions [57, 79] and other observables more
generally [80, 81].

A common heuristic to regularize the inverse problem at hand, both in the global
fitting of inclusive scattering data [82–87] and analogous lattice calculations, is to supply
additional information in the form of physically motivated PDF parameterizations. In
particular, a parametric form can incorporate the known divergence/convergence of PDFs at
small-/large-x and enforce any parton sum rules explicitly. We note parametric frameworks
in the literature generally differ in what functional form is used to smoothly connect the
two limiting x-space regimes. Inspired by the phenomenological forms of the global fitting
community and to establish a benchmark for the alternate extraction methods that follow,
we opt to first regularize the inverse problem by parameterizing the valence/plus quark
distributions according to

fqv/N

(
x, µ2

)
= fq/N

(
x, µ2

)
− fq̄/N

(
x, µ2

)
= Nvx

α (1− x)β P (x) (4.7)

fq+/N

(
x, µ2

)
= fqv/N

(
x, µ2

)
+ 2fq̄/N

(
x, µ2

)
= N+x

α+ (1− x)β+ P (x) , (4.8)

where P (x) is a smooth interpolating polynomial and N−1
v =

[
B (α+ 1, β + 1)+∑k λkB

(
α+

1 + k+1
2 , β + 1

)]
ensures the valence quark sum rule

∫ 1
0 dx fqv/N

(
x, µ2) = 1 is satisfied; the

normalization of fq+/N

(
x, µ2) is not fixed by a sum rule, and is left to float in our fits.

Given the limited range of Ioffe-time in our results, we will find the simplest 2-parameter
ansatz with P (x) = 1 cannot be avoided. Where possible, the bias introduced by this
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Figure 8. (a) The real component of the matched ITD at µ = 2GeV in MS fit by cosine transforms
of two- and three-parameter model PDFs (4.9). Data has been fit for z/a ≤ 12, and correlations
have been neglected. The resulting PDF parameters and figure of merit are gathered in table 2.
(b) The nucleon unpolarized valence quark PDF at 2GeV in MS determined from the uncorrelated
cosine transform fits (4.9) applied to real component of the matched ITD. Comparisons are made
with the NLO global analyses of CJ15 [82] and JAM20 [88], and the NNLO analyses of MSTW [89]
and NNPDF [87] at the same scale.

highly-constraining choice will be studied by supplementing P (x) with additional half-
integer powers of x: P (x) = 1 + ∑

k λkx
(k+1)/2, thereby increasing the flexibility of our

parameterizations beyond the nominal PDF behavior xα (1− x)β .
We start with two- and three-parameter PDF parameterizations, where in the latter

we take P (x) = 1 + δx. The cosine/sine transforms of the PDF forms (4.7) and (4.8)

Re Q
(
ν, µ2

)
=
∫ 1

0
dx cos (νx) fqv/N

(
x, µ2

)
(4.9)

Im Q
(
ν, µ2

)
=
∫ 1

0
dx sin (νx) fq+/N

(
x, µ2

)
(4.10)

are fit to the real/imaginary ITD data using first an uncorrelated least-squares regression

χ2 =
νmax∑
νmin

[
Q
(
ν, µ2)−Qfit

(
ν, µ2)]2

σ2
Q

, (4.11)

with σ2
Q the variance of the ITD, and {νmin, νmax} representing potential cuts on the data.

These uncorrelated fits include all z/a ∈ {1, · · · , 12} and apz ∈ {1, · · · , 6} × 2π/L. For
ease of later reference, this method of extraction is denoted type-C. The fits to the real
and imaginary components of the ITD are shown in figure 8a and figure 9a. The resulting
valence and plus quark PDFs are juxtaposed with phenomenological determinations in
figure 8b and figure 9b. The phenomenological PDFs are three flavor NLO determinations
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Figure 9. (a) The imaginary component of the matched ITD at µ = 2GeV in MS fit by the sine
transform of a two-parameter model PDF (4.10). Data has been fit for z/a ≤ 12, and correlations
have been neglected. The resulting PDF parameters and figure of merit are gathered in table 2.
(b) The nucleon unpolarized plus quark PDF at 2GeV in MS determined from the uncorrelated
sine transform fits (4.10) applied to the imaginary component of the matched ITD. Comparisons
are made with the NLO global analyses of CJ15 [82] and JAM20 [88], and the NNLO analyses of
MSTW [89] and NNPDF [87] at the same scale.

by the CJ [82] and JAM [88] collaborations, and three flavor NNLO determinations of
MSTW [89] and NNPDF [87].1

Apart from the z/a ≥ 9 data, such an uncorrelated fit would seem to well describe
the Re Q

(
ν, µ2) data and lead to valence PDFs that feature many structural similarities

with phenomenological determinations at the same scale. The statistically consistent figure
of merit for the two- and three-parameter fits tabulated in table 2, however indicates the
data cannot distinguish between these models. The two-parameter fit to Im Q

(
ν, µ2) is

clearly more heavily constrained by the z/a . 7 data, and all but avoids points of the ITD
originating from larger separations. Above x ∼ 0.4 the extracted fq+/N

(
x, µ2)n=2

C result
likewise shares structural similarities with the shown phenomenological results. The lack
of any large-ν constraint provided by Im Q

(
ν, µ2) entails a generally unconstrained fitted

PDF in the small-x regime, although this relation is not bijective.

4.2 Direct extraction of PDFs from reduced pseudo-ITDs

A separate, though in principle equivalent, route to extract PDFs from these data is to
directly apply the factorized relationship (2.5) having substituted the definition of the
ITD (4.6):

M
(
ν,z2

)
=
∫ 1

−1
dx

∫ 1

0
du C

(
u,z2µ2,αs

(
µ2
))
eixνfq/N

(
x,µ2

)
+
∞∑
k=1
Bk (ν)

(
z2
)k
. (4.12)

1LHAPDF set names: CJ15 — CJ15nlo, JAM20 — JAM20-SIDIS_PDF_proton_nlo,
MSTW — MSTW2008nnlo68cl_nf4, NNPDF — NNPDF31_nnlo_pch_as_0118_mc_164.
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Nparam Nv/+ α β δ χ2
r

2 — −0.006(98) 2.754(285) − 2.183(483)
3 — 0.019(98) 2.212(291) −0.737(12) 2.192(490)
2 3.616(2.260) −0.077(275) 2.983(606) − 2.780(806)

Table 2. Unpolarized nucleon valence and plus quark PDF parameters obtained from performing
uncorrelated cosine/sine transform fits to the real/imaginary component of the matched ITD at
2GeV in MS. Results for the plus quark PDF are only shown for Nparam = 2, where the smooth
polynomial P (x) = 1, as higher numbers of parameters led to uncontrolled fits. The uncorrelated
figure of merit is also shown.

By assuming a PDF parameterization and performing a maximum likelihood regression of
the double convolution and M

(
ν, z2), the introduction of additional systematic errors from

the evolution/matching steps and a potentially incorrect functional description of M
(
ν, z2)

when interpolating its ν-dependence (e.g. eq. (4.5)) can all be avoided. The direct matching
relationship between the PDFs and the reduced pseudo-ITD is given by{

Re

Im

}
M
(
ν, z2

)
=
∫ 1

0
dx

{
Kv
(
xν, z2µ2) fqv/N

(
x, µ2)

K+
(
xν, z2µ2) fq+/N

(
x, µ2)

}
+
∞∑
k=1
Bk (ν)

(
z2
)k
, (4.13)

where the one-loop kernels that match the {x, µ2}-dependencies of the valence/plus quark
PDFs to the reduced pseudo-ITD are given by

Kv
(
xν, z2µ2

)
= cos (xν)− αsCF

2π

[
ln
(
e2γE+1

4 z2µ2
)
B̃v (xν) + D̃v (xν)

]

K+
(
xν, z2µ2

)
= sin (xν)− αsCF

2π

[
ln
(
e2γE+1

4 z2µ2
)
B̃+ (xν) + D̃+ (xν)

]
, (4.14)

with the Altarelli-Parisi and scheme matching kernels modified to

B̃v (y) = 1− cos (y)
y2 + 3− 4γE

2 cos (y) + 2 sin (y) ySi (y)− 1
y

+ 2 cos (y) [Ci (y)− ln (y)]

B̃+ (y) = −sin (y) + y

y2 + 3− 4γE
2 sin (y)− 2 cos (y) ySi (y)− 1

y
+ 2 sin (y) [Ci (y)− ln (y)]

D̃v (y) = −4yIm
[
eix 3F3 (111; 222;−iy)

]
+
[
cos (y)

(
1 + 2

y2

)
− 2
y2

]
D̃+ (y) = 4yRe

[
eix 3F3 (111; 222;−iy)

]
+
[
sin (y)

(
1 + 2

y2

)
− 2
y

]
,

and Si (y) /Ci (y) are the integral sine/cosine functions and 3F3 (111; 222;−iy) is a general-
ized hypergeometric function [47, 90]. A notable challenge of this direct approach is that
accurate computation of the generalized hypergeometric function requires multi-precision
arithmetic, which is computationally inefficient and invariably slows the parameter opti-
mization. PDFs extracted by directly performing parametric fits (4.13) to the reduced
pseudo-ITD data are denoted type-K.
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(a) (b)

Figure 10. Two-parameter valence (a) and plus (b) quark PDF resulting from type-C (red) and
type-K (indigo) fits to the unpolarized nucleon ITD and reduced pseudo-ITD, respectively. The
direct matching fits are consistent with the cosine/sine transform of the model PDF fit to the ITD.

N = 2v/+ Nv/+ α β χ2
r

2v — −0.030(96) 2.601(277) 7.364(761)
2+ 5.131(3.405) 0.091(299) 3.244(638) 4.536(902)

Table 3. Unpolarized nucleon valence and plus quark PDF parameters obtained from type-K fits
to the real/imaginary component of M

(
ν, z2).

Simple two-parameter PDFs obtained from uncorrelated type-K fits are shown in
figure 10a and figure 10b, together with the same phenomenological determinations and the
uncorrelated type-C two-parameter PDF fits. The type-C and type-K fits are statistically
consistent. This is confirmed by comparing the type-K fit results in table 3 to the type-C
results in table 2. However, the central values of the type-K fits suggest that at small-x the
fqv/N (x) is more divergent and the fq+/N (x) is instead convergent for small-x at the scale
µ = 2GeV. The factor of two or three increase in the figure of merit when switching from
type-C to type-K fits is the first indication of puzzling behavior in M

(
ν, z2). We reiterate

the naive two-parameter fits capture the known limiting regimes of the PDFs. The poor
figures of merit in the type-K fits hint that M

(
ν, z2) at this stage apparently does not align

well with expectations from the direct matching (4.13). This is a potentially disastrous
conclusion. To gain some insight, we now consider the data correlations.

4.2.1 Data correlation

The data featured in this work, and indeed any lattice calculation, naturally are correlated.
By beginning this subsection with uncorrelated fits, we highlight that without knowledge
or through the simple neglect of data correlations, which appears to be common in the
literature, one might incorrectly assume an adequate description of the data has been
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(a) (b)

Figure 11. (a) Real component of the matched ITD at µ = 2GeV in MS fit by the cosine transform
of a two-parameter model PDF (4.7). Data have been fit for z/a ≤ 12 and data correlations have
been incorporated. The fit clearly misses each point of the ITD. The derived CJ15 ITD at the same
scale is shown for reference. (b) Focus is given to the small-ν region. The correlated two-parameter
fit is seen to deviate appreciably from the precise small-ν data.

achieved. These correlations must be taken into account in order to provide a rigorous
accounting of mutual fluctuations in the data and thus an agnostic PDF determination.

Simply repeating the two-parameter fit to ReQ
(
ν, µ2), only this time accounting for

the data covariance Cov

χ2
r =

νmax∑
i,j=νmin

q>i Cov−1
ij qj , (4.15)

with qk = Q
(
ν, µ2)

k − Qfit
(
ν, µ2)

k, we arrive at a much different conclusion shown in
figure 11a. The visual discrepancy between the ITD and two-parameter fit is stark, and
leads to a correlated figure of merit of O (40). Although the fit misses nearly all of the
moderate to large-z points, figure 11b illustrates the large increase in the figure of merit is
primarily due to the slight deviation from the very precise z/a . 4 data.

Visualizing the data covariance in the real component in figure 12a, it is clear the
low-momentum data apz ≤ 4π/L are strongly correlated amongst each other and correlate
weakly with the apz ≥ 8π/L data; some mild correlation is visible with the apz = 6π/L
data with z/a ≤ 6. Within the apz ≤ 4π/L channels the strongest correlation can be found
in the shortest Wilson line data. These observations provide an explanation for the poor
correlated two-parameter fit in figure 11a — the strongest correlation is with the most
precise data in our calculation causing any correlated fit to favor the small-ν data. Indeed
strong correlation is also observed amongst the momentum channels apz = {4, 5, 6} × 2π/L,
but the signal-to-noise degradation for these high-momentum data minimizes their effect on
any fit. It is interesting this delineation corresponds to the transition from an unphased
to phased eigenvector basis. The data covariance in the imaginary component, shown in
figure 12b, shows the strongest correlations within each momentum channel and between
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Figure 12. Data covariance in the real (a) and imaginary (b) components of the matched ITD at
2GeV, normalized according to Covij/

√
CoviiCovjj . Within each lattice momentum block, entries

are ordered in ascending Wilson line lengths.

adjacent Wilson line lengths (e.g. z/a = 4 and z/a = 5). It is then no surprise that a
correlated two-parameter PDF parameterization of Im Q

(
ν, µ2) is also met with a poor

figure of merit. The non-trivial structures of correlation evident in these data are indicative
of our simple PDF parameterizations (4.7) and (4.8) being inappropriate for these data.
The above puzzling, and indeed worrisome, conclusions are given a deeper quantitative
understanding in the following sections.

4.3 Classical orthogonal polynomials

The phenomenological parameterizations we have considered thus far are but one way
to regulate the ill-posed inverse relation between the ITD/reduced pseudo-ITD and the
corresponding PDF. These parameterizations nevertheless introduce a model dependence
into the extracted PDF. Any PDF faithfully reported from a lattice calculation should take
into account the space of functions that smoothly connects the x→ 0 and x→ 1 limits. As
an alternative means to describe the valence/plus quark sectors and minimize model bias, we
propose to parameterize the PDFs by a complete basis of classical orthogonal polynomials [55].
The leveraging of orthogonal polynomials to obtain an unknown distribution is not unique to
this work. The approach we adopt parallels efforts to extract PDFs from phenomenological
fits of inclusive processes [84, 91], as well as distribution amplitudes [92–94] and inelastic
scattering cross sections [95] from matrix elements calculated in lattice QCD.

Consider the Jacobi (hypergeometric) polynomials

P (α,β)
n (z) = Γ (α+ n+ 1)

n!Γ (α+ β + n+ 1) ×
n∑
j=0

(
n

j

)
Γ (α+ β + n+ j + 1)

Γ (α+ j + 1)

(
z − 1

2

)j
, (4.16)
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which for α, β > −1 form a basis of orthogonal polynomials on the interval [−1, 1] with
respect to the metric (1− z)α (1 + z)β . Under the mapping z 7→ 1− 2x the shifted Jacobi
polynomials

Ω(α,β)
n (x) =

n∑
j=0

ω
(α,β)
n,j xj (4.17)

form a complete basis of orthogonal polynomials on the interval [0, 1] with respect to the
metric xα (1− x)β . In eq. (4.17) we have defined

ω
(α,β)
n,j = Γ (α+ n+ 1)

n!Γ (α+ β + n+ 1)

(
n

j

)
(−1)j Γ (α+ β + n+ j + 1)

Γ (α+ j + 1) . (4.18)

As the set of polynomials {Ω(α,β)
n } span x ∈ [0, 1], a PDF can be expressed generically as

fa/h (x) = xα (1− x)β
∞∑
n=0

C(α,β)
a,n Ω(α,β)

n (x) , (4.19)

with expansion coefficients C(α,β)
a,n . The parameters {α, β} lose their familiar characterization

of the x → 0/x → 1 PDF behaviors in place of delineating between different choices of
bases. The expansion in Jacobi polynomials in eq. (4.19) is thus entirely generic and
model-independent. However, the series of Jacobi polynomials must in practice be truncated
at some finite order, n. The bias then introduced may be studied by fixing the order
of truncation and determining the optimum {α, β}, or tuning {α, β} to capture generic
properties of a PDF and subsequently optimize the order of truncation — we will adopt
the former.

Our strategy to parameterize the reduced pseudo-ITD using a set of Ω(α,β)
n (x) will be

met by similar numerical difficulties as the type-K fits discussed above. The numerical effort
is lessened by considering a Taylor series expansion in ν for fixed separations z2 of the
direct matching kernels Kv/+

(
xν, z2µ2) and eq. (4.19). The contribution of an nth-order

Jacobi polynomial Ω(α,β)
n (x) to Re M

(
ν, z2) and Im M

(
ν, z2) is given by

σ(α,β)
n

(
ν, z2µ2

)
= Re

∫ 1

0
dx Kv

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x)

η(α,β)
n

(
ν, z2µ2

)
= Im

∫ 1

0
dx K+

(
xν, z2µ2

)
xα (1− x)β Ω(α,β)

n (x) .

Expanding the direct matching kernels Kv/+
(
xν, z2µ2) in even/odd powers of ν one finds

σ(α,β)
n

(
ν,z2µ2

)
=

n∑
j=0

∞∑
k=0

(−1)k

(2k)! c2k
(
z2µ2

)
ω

(α,β)
n,j B (α+2k+j+1,β+1)ν2k (4.20)

η(α,β)
n

(
ν,z2µ2

)
=

n∑
j=0

∞∑
k=0

(−1)k

(2k+1)!c2k+1
(
z2µ2

)
ω

(α,β)
n,j B (α+2k+j+2,β+1)ν2k+1, (4.21)

where
cn
(
z2µ2

)
= 1− αsCF

2π

[
γn ln

(
e2γE+1

4 z2µ2
)

+ dn

]
(4.22)
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and the constants γn and dn are the leading order moments of the Altarelli-Parisi and
scheme matching kernels derived in [96], respectively. The sum over k is to be performed
to assure convergence for a given value of ν — we have identified kmax = 75 as providing
more than adequate numerical precision, in reasonable computation time. With the above
definitions, the leading-twist valence and plus quark PDFs describe the reduced pseudo-ITD
components according to

Re Mlt
(
ν, z2

)
=
∞∑
n=0

σ(α,β)
n

(
ν, z2µ2

)
C lt(α,β)

v,n (4.23)

Im Mlt
(
ν, z2

)
=
∞∑
n=0

η(α,β)
n

(
ν, z2µ2

)
C
lt(α,β)
+,n , (4.24)

where the C lt (α,β)
v/+,n are the Jacobi polynomial expansion coefficients.

Since the space-like matrix element (2.1) is on-shell and given our choice of an O (a)
improved lattice QCD formulation, any contaminating effects of this calculation must scale
as a2Λ2

QCD, z2Λ2
QCD, and as some ratio of the lattice spacing a and Wilson line length

z. Apart from the Ioffe-time ν = p · z, these terms are the only possible dimensionless
combinations of dimensionful parameters in this calculation, embodying discretization errors
of the reduced pseudo-ITD that vanish in the continuum limit and higher-twist errors that
survive the continuum limit. Since this calculation has been performed at only a single
lattice spacing, the a2Λ2

QCD effect cannot be quantified, leaving the nominal polynomial
corrections to the short-distance factorization of the reduced pseudo-ITD (2.5) and the
short-distance error arising from the bilocal operator O̊[γ4]

WL (z) as the only systematic effects
these data are sensitive to. A reliable determination of the leading-twist PDF then depends
on parameterization and removal of these effects. The precise form of the short-distance
discretization effect can be deduced by deferring to the equalities

M (p, z) = M (p,−z)∗ = M (−p, z)∗ = M (−p,−z) . (4.25)

The leading discretization effect to the real component of M
(
ν, z2) must then scale as either

O
(
a2/z2) or O (a/ |z|), while in the imaginary component the effect must arise at O (a/ |z|).

Rather than make a selection for the form of a potential discretization effect, we allow our
data to dictate the precise form. This shall be discussed in the ensuing paragraphs.

As the Fourier transform in ν of the reduced pseudo-ITD only has support on the
momentum fraction interval x ∈ [−1, 1] [36], the contaminating effects we have discussed
must also only have support in this interval. By construction, these corrections must be
functions of ν2 and ν in the real and imaginary components of M

(
ν, z2), respectively. The

same basis of Jacobi polynomials in (4.23) and (4.24) can then be used to parameterize
the Ioffe-time dependence of these contaminating effects, with x-space distributions of the
same form as (4.19) but with distinct expansion coefficients. We denote the coefficients of
the corrections as C corr (α,β)

τ,n , with τ = {v,+} indicating whether the effect arises in the
valence/plus quark PDFs. Supposing, for simplicity, these effects enter at tree-level, their
contributions to the reduced pseudo-ITD signals with σ

(α,β)
0,n ≡ σ

(α,β)
n

(
ν, z2µ2) |αs=0 and
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Figure 13. The eight lowest-order σ(α,β)
0,n (a) and η(α,β)

0,n (b) polynomials for an arbitrarily chosen
basis α = 0.125 and β = 2.85. Each polynomial features an extremum in a range of Ioffe-time
accessible in our lattice calculation, and asymptotically approaches zero for ν →∞.

η
(α,β)
0,n ≡ η(α,β)

n
(
ν, z2µ2) |αs=0 are then

Re Mcorr
(
ν, z2

)
= κcorr

∞∑
n=1

σ
(α,β)
0,n Ccorr (α,β)

v,n (4.26)

Im Mcorr
(
ν, z2

)
= κcorr

∞∑
n=0

η
(α,β)
0,n C

corr (α,β)
+,n , (4.27)

where κcorr is the dimensionless parameter which describes the scaling of each correction (e.g.
κcorr = z2Λ2

QCD). Visualizing the Taylor-expanded matching kernels (4.20) and (4.21) at
tree-level across a range of Ioffe-times in figure 13a and figure 13b, it is seen the polynomials
σ

(α,β)
0,n , η

(α,β)
0,n reach an extremum in Ioffe-time commensurate with the polynomial order and

asymptotically approach zero. This conveniently reflects the correct large-ν behavior of the
ITD in the same limit (see eq. (4.4)). Since M

(
0, z2) = 1 by construction, all corrections

must vanish at zero Ioffe-time. Of the Jacobi polynomials used to describe the corrections
at tree-level, only σ(α,β)

0,0 (0) 6= 0 (blue curve of figure 13a). Hence the corrections to the real
component of M

(
ν, z2) shown in eq. (4.26) are restricted to order n ≥ 1.

The complete functional forms we apply to each component of M
(
ν, z2) are:

ReMfit
(
ν, z2

)
=
∞∑
n=0

σ(α,β)
n

(
ν, z2µ2

)
C lt (α,β)

v,n + a

|z|

∞∑
n=1

σ
(α,β)
0,n (ν)Caz (α,β)

v,n (4.28)

+ z2Λ2
QCD

∞∑
n=1

σ
(α,β)
0,n (ν)Ct4 (α,β)

v,n + z4Λ4
QCD

∞∑
n=1

σ
(α,β)
0,n (ν)Ct6 (α,β)

v,n

ImMfit
(
ν, z2

)
=
∞∑
n=0

η(α,β)
n

(
ν, z2µ2

)
C
lt (α,β)
+,n + a

|z|

∞∑
n=0

η
(α,β)
0,n (ν)Caz (α,β)

+,n (4.29)

+ z2Λ2
QCD

∞∑
n=0

η
(α,β)
0,n (ν)Ct4 (α,β)

+,n + z4Λ4
QCD

∞∑
n=0

η
(α,β)
0,n (ν)Ct6 (α,β)

+,n .
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The leading-twist (C ltτ,n) and discretization (Cazτ,n) corrections are accompanied by twist-
4 (Ct4τ,n) and twist-6 (Ct6τ,n) corrections, where we note each higher-twist correction is a
hypercubic invariant. The twist-6 corrections have been included for exploration purposes
despite the likelihood of their effect being minimal in the range of Ioffe-time for which we
have statistically clean data (ν ∼ 10). We point out the discretization effect in (4.28) we
adopt herein scales as a/ |z|; the correlated figure-of-merit of this fit to Re M

(
ν, z2) was

found to be several times smaller when a/ |z| was used in place of a2/z2. In this sense, the
reduced pseudo-ITD data was found to favor a short-distance discretization effect of the
form a/ |z| in both real and imaginary components. Indeed other correlations of the lattice
spacing with z (e.g. a2/z2) may be present in our data, but are evidently sub-leading to
a/ |z| which we consider for the remainder of this work.

There are further sources of systematic error in M
(
ν, z2) that have been neglected by

our parameterizations (4.28) and (4.29). Were the full NLO coordinate space matching
kernel considered in the expansion of each correction in Jacobi polynomials (cf. eq. (4.26)
& (4.27)), it becomes clear the discretization and higher-twist corrections we consider would
enter at NLO with a more complicated dependence on z, namely an additional logarithmic
dependence on z2. These additional terms, however, each receive a further suppression by a
factor of O (αs/π) ∼ 0.1, and are on the order of a few percent in the range of ν for which
we have computed M

(
ν, z2). Only for considerably large-z will the O (αs) components of

σ
(α,β)
n and η(α,β)

n , that is σ(α,β)
n −σ(α,β)

0,n and η(α,β)
n −η(α,β)

0,n , become relevant. These additional
sources of z2 contamination are avoided, and hence excluded from (4.28) and (4.29), by
noting the short-distance factorization (2.5) would be invalidated by such large separations.

4.3.1 PDF results with Jacobi polynomials

In the fits we perform according to (4.28) and (4.29), we elect to fix the order of truncation
for the leading-twist and each type of correction, and numerically search for the optimal
{α, β, Ccorr

τ,n }. Treating each fitted parameter as non-linear in a maximum likelihood fit
leads to wildly unstable results. The way forward is to recognize α, β are the only fitted
parameters that are truly non-linear; the correction coefficients Ccorr

τ,n are all linear. A
maximum likelihood fit of the posterior distribution of the linear terms is then Gaussian
and cheap to obtain.

The reduced pseudo-ITD fits of eq. (4.28) and eq. (4.29) are implemented with the help
of the Variable Projection (VarPro) algorithm [97] for separable non-linear optimization
problems. This reduces the dimension of the non-linear optimization from d = Ncorr + 2 to
d = 2, where Ncorr are the number of linear correction coefficients. In our case, minimization
is performed in the d = 2 Jacobi polynomial basis {α, β}, and any correction terms Ccorr (α,β)

τ,n

are solved for exactly in terms of the non-linear basis functions {σ(α,β)
n , σ

(α,β)
0,n , η

(α,β)
n , η

(α,β)
0,n }.

We note without VarPro, optimizations with Ncorr ≥ 4 are numerically unstable, regardless
of the type of correction included in the model.

Care needs to be taken as correction terms are included in eqs. (4.28) and (4.29), as
physical insight can quickly be replaced with over fitting. The first sensible restriction to
impose is for all x-space corrections O (a/ |z|), O(z2Λ2

QCD) and O(z4Λ4
QCD) to be sub-leading

relative to the leading-twist PDF. It would be alarming to obtain, say, a twist-4 contribution
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Figure 14. Parameter covariances in Jacobi polynomial fits with [nlt, naz, nt4, nt6] = [6342] to
the real (a) and imaginary (b) components of the unpolarized reduced pseudo-ITD for z/a ≤ 12.
Entries are normalized according to Covij/

√
CoviiCovjj .

that is larger than the leading-twist PDF, given that the short-distance factorization of the
pseudo-distributions implies leading-twist dominance. Such disastrous scenarios are avoided
with several Bayesian constraints of a Gaussian form. So as to allow the reduced pseudo-ITD
to dictate the best fit results, all Bayesian priors are fixed to zero. The hierarchy we desire
is realized with the following prior widths:

• Leading-twist:

δC
lt (α,β)
τ,0 = 1.1, δC

lt (α,β)
τ,1 = 0.75, δC

lt (α,β)
τ,2 = 0.5,

δC
lt (α,β)
τ,3 = 0.25, δC

lt (α,β)
τ,4 = 0.125, δC

lt (α,β)
τ,5 = 0.1,

δC
lt (α,β)
τ,6 = 0.05, δC

lt (α,β)
τ,7 = 0.025

• Corrections:

δC
corr (α,β)
τ,n∈Z3

= 0.25, δC
corr (α,β)
τ,n=3,4,5 = 0.125, δC

corr (α,β)
τ,n=6,7 = 0.1.

The validity of the entire Jacobi polynomial parameterization is guaranteed using shifted
log-normally distributed priors to ensure α, β > −1. In practice, the log-normal prior on
beta is shifted to β = 0 to secure β > 0 and hence convergent PDFs at x = 1.

As leading-twist and correction terms are added, the question becomes at which order
each series of Jacobi polynomials should be truncated. We address this by scanning over
all possible combinations of truncation orders for nlt ∈ {3, 4, 5, 6}, naz ∈ Z4, nt4 ∈ Z5,
nt6 ∈ Z3, where n∗ are the orders of truncation in the fits (4.28) and (4.29). Figure 14
illustrates, for a rather large number of Jacobi polynomials {nlt, naz, nt4, nt6} = {6, 3, 4, 2},
the covariances of α, β and each linear correction term C

corr (α,β)
τ,n in fits to the real (4.28)
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and imaginary (4.29) reduced pseudo-ITD components for Wilson line lengths z/a ≤ 12.
The covariance of each pair of fitted parameters is estimated via jackknife resampling

Covij '
N − 1
N

N∑
n=1

(
fn,i − f̄i

) (
fn,j − f̄j

)
, (4.30)

where fit parameters associated with jackknife sample n are denoted by fn,k, with jackknife
average f̄k. Without observing the quality of agreement between each fit and the reduced
pseudo-ITD, it is clear several parameters correlate weakly or not at all with other parameters
in the fit. This implies these weakly correlated parameters are not well-constrained by the
data, and their removal will not affect the information content of the fit. For instance, the
real component fit parameter covariances, shown in figure 14a, suggest the leading-twist
expansion coefficients C ltnlt are constrained by the data for nlt ≤ 3, while C lt4 , C lt5 weakly
correlate with the remaining parameters. The discretization, twist-4 and twist-6 corrections
exhibit mild correlation for Caz1 , Ct42 , C

t4
3 , C

t6
1 , with the remaining correction parameters

largely unconstrained. In the imaginary component, the fit parameter covariances shown
in figure 14b suggest a more nuanced pattern of correlation. Several leading-twist Jacobi
polynomials appear to be well-constrained by the data, while the relative correlation
between the Caz and Ct4, Ct6 parameters is increased relative to the corresponding entries
in figure 14a.

This exercise demonstrates an important point. Although the VarPro implementation
of the Jacobi polynomial fits allows for arbitrarily many leading-twist and correction
coefficients, the reduced pseudo-ITD data simply do not contain enough information to
constrain so many parameters. One should then expect the likelihood function is maximized
for the real component of the reduced pseudo-ITD with truncation orders nlt ∼ 3 and
naz ∼ 1− 2, and nlt ∼ 3 and naz ∼ 3 for the imaginary component.

By scanning over the order of truncation for the leading-twist and correction terms
parameterized by Jacobi polynomials, we find the likelihood of the functional (4.28) to
describe Re M

(
ν, z2) with z/a ≤ 12 to be maximized for {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v.

Likewise, the likelihood of the functional (4.29) to describe Im M
(
ν, z2) with z/a ≤ 12

is maximized for {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. The fit results for each and their
respective figures-of-merit are given in table 4. The Jacobi polynomial fits of orders
{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ applied to the real
and imaginary components of M

(
ν, z2) are presented in figure 15 and figure 16, respectively.

Considering first the real component fit, each set of Re M
(
ν, z2) for z/a ≤ 8 are well

represented by the expansion in Jacobi polynomials. The main exception is the highest
momentum point pz = 6 × (2π/aL) ∼ 2.47GeV. The Re M

(
ν, z2) data for z/a > 8 are

also reasonably well described, however the highest two momenta are seen to deviate. This
behavior is not surprising despite the twist-4 and twist-6 corrections, which capture large-z2

deviations, as the highest momentum data are subject to loss of signal in both the two-
and three-point functions. The associated fit parameter covariances shown in figure 17a
demonstrate the leading-twist, discretization and twist-4 corrections are well constrained by
the Re M

(
ν, z2) data; as expected, the twist-6 corrections are only weakly constrained.
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{nlt, naz , nt4, nt6}v/+ {4, 1, 3, 2}v {4, 0, 3, 2}v {3, 3, 1, 0}+ {3, 0, 1, 0}+ {6, 3, 4, 2}v {6, 3, 4, 2}+

α −0.209(147) −0.376(37) −0.328(20) −0.331(31) −0.264(117) −0.326(20)
β 1.330(415) 2.032(496) 2.361(243) 3.227(297) 1.438(404) 2.051(260)

Cltτ,0 1.606(257) 1.340(165) 2.041(108) 1.156(83) 1.489(213) 1.954(107)

Cltτ,1 0.427(752) 0.335(261) 0.123(248) 0.161(243) 0.174(620) 0.404(213)

Cltτ,2 −0.880(409) −0.125(100) −0.464(121) 0.700(98) −1.002(301) −0.241(118)

Cltτ,3 −0.675(122) −0.651(140) − − −0.568(118) −0.018(79)

Cltτ,4 − − − − 0.089(28) 0.020(27)

Cltτ,5 − − − − 0.020(12) −0.023(10)

Cazτ,0 − − −0.001(43) − − 0.054(35)

Cazτ,1 −0.279(48) − −0.338(39) − −0.226(53) −0.219(46)

Cazτ,2 − − 0.434(74) − 0.209(67) 0.283(67)

Cazτ,3 − − − − −0.164(48) −

Ct4τ,0 − − 0.170(28) 0.391(46) − 0.185(47)

Ct4τ,1 0.052(53) −0.090(52) − − 0.060(50) 0.032(68)

Ct4τ,2 −0.371(106) −0.112(77) − − −0.341(93) −0.200(79)

Ct4τ,3 −0.407(122) 0.274(99) − − −0.397(131) 0.076(29)

Ct4τ,4 − − − − 0.088(30) −

Ct6τ,0 − − − − − −0.067(34)

Ct6τ,1 −0.045(37) 0.011(39) − − −0.045(36) −0.079(53)

Ct6τ,2 0.228(52) 0.397(84) − − 0.227(53) −

χ2
r 2.620(345) 45.68(1.72) 2.845(387) 123.16(2.73) 2.809(374) 3.110(431)

Table 4. Various Jacobi polynomial fits to the real and imaginary components of the unpolarized
reduced pseudo-ITD for z/a ≤ 12. Each column represents distinct orders of truncation in the
Jacobi polynomial expansions to the leading-twist, discretization, twist-4 and twist-6 corrections.
The real and imaginary component fits were found to have the highest likelihoods of describing the
data with truncation orders {4, 1, 3, 2}v and {3, 3, 1, 0}+, respectively. The dramatic effect even a
single discretization term has on each fit is shown in the columns {4, 0, 3, 2}v and {3, 0, 1, 0}+.

The resultant leading-twist PDF fqv/N (x) and x-space distributions corresponding
to the {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial fit are gathered in figure 18b.
As expected, the corrections in x-space are sub-leading to the leading-twist PDF. The
Jacobi-parameterized leading-twist PDF, however, features many structural differences with
the included phenomenological PDFs and the uncorrelated two-parameter PDF fit. Most
evident is the softer approach to x = 1. Due to the valence quark sum rule, this enhances
the low- to moderate-x region and leads to further tension with the phenomenological
results. By evaluating the cosine transform of the pure leading-twist component, we see
in figure 18a that the z/a & 7 ITD data deviate successively further from the derived
leading-twist ITD shown in purple. Whereas the uncorrelated two-parameter ITD fit shown
in red attempts to capture all the z/a ≤ 12 data and indeed the unwanted impact from
higher-twist effects, the Jacobi polynomial parameterization has effectively isolated and
removed these polynomial-z2 effects, leaving the pure leading-twist contribution.
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Figure 15. Fit to the real component of the unpolarized reduced pseudo-ITD where the leading-
twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials
up to order {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v. Starting from the upper left panel and traversing
horizontally, the leading-twist plus corrections are shown for each z/a ≤ 12.

The quality of the Jacobi polynomial fit to the imaginary component of the reduced
pseudo-ITD shown in figure 16 is more puzzling. The z/a ≤ 4 appear reasonably well
represented by the expansion in Jacobi polynomials, but by z/a = 5 it is evident the data for
a given z2 segregate into two distinct groups — one for lattice momenta platt ∈ {1, 2, 3} and
another for platt ∈ {4, 5, 6}. This distinction coincides with the switch from an unphased
eigenvector basis to the phased bases ~ζ± defined in eq. (3.7). The fit parameter covariances
shown in figure 17b demonstrate a milder constraint of the first and second order leading-
twist Jacobi polynomials compared to the best fit of the real component. The discretization
and twist-4 corrections are also seen to be well constrained by the data. The resultant
leading-twist plus quark PDF fq+/N (x) and x-space distributions corresponding to the
{nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ Jacobi polynomial fit are illustrated in figure 19b. As in
the real component fit, the corrections are sub-leading to the leading-twist PDF, which
in this case is in agreement with the NNPDF result [87] for x ≥ 0.5. At small values
of x, the leading-twist PDF parameterized by Jacobi polynomials is generally consistent
with the two-parameter uncorrelated PDF fit. The sine transform of the pure leading-
twist component is shown in figure 19a together with the Im Q

(
ν, µ2) data at 2GeV.
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Figure 16. Fit to the imaginary component of the unpolarized reduced pseudo-ITD where
the leading-twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi
polynomials up to order {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. Starting from the upper left panel and
traversing horizontally, the leading-twist plus corrections are shown for each z/a ≤ 12.

Unlike the real component of the derived leading-twist ITD in figure 18a, the derived
imaginary component of the leading-twist ITD does not agree with the Im Q

(
ν, µ2) data

for any of the apz & 4π/L data with z/a & 7. As the imaginary component of M
(
ν, z2)

is optimally fit with three discretization corrections and only one higher-twist term, the
{nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ fit would suggest the imaginary component of the ITD is
susceptible to less higher-twist effects in exchange for greater discretization effects. This is
a tenuous conclusion, however, in light of the segregation of the Im M

(
ν, z2) data into two

distinct clusters, a low- and high-momentum set, for large Wilson line lengths. A future
study exploring the side effects of phased distillation is warranted.

By far the biggest indicator of a reasonable description of the reduced pseudo-ITD data
via Jacobi polynomials is a discretization term. Repeating the above Jacobi polynomial fits
but leaving out any discretization corrections, namely {nlt, naz, nt4, nt6}v = {4, 0, 3, 2}v and
{nlt, naz, nt4, nt6}+ = {3, 0, 1, 0}+, the correlated figures of merit increase considerably to
unacceptable values (see table 4). This same conclusion is reached when cuts on momentum
and Wilson line lengths are made. Since the discretization term we have included is of
O (a/ |z|), its effect is most pronounced at short distances. This is precisely the regime
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Figure 17. Parameter covariances of the optimal Jacobi polynomial fit to the real (a) and the
imaginary (b) component of the unpolarized reduced pseudo-ITD for z/a ≤ 12 with truncation orders
{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+, respectively. Entries are
normalized according to Covij/

√
CoviiCovjj .
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Figure 18. (a) The real component of the leading-twist ITD (purple) at 2GeV derived from the
Jacobi polynomial expansion of the reduced pseudo-ITD for z/a ≤ 12 with {nlt, naz, nt4, nt6}v =
{4, 1, 3, 2}v. The result is compared with the uncorrelated 2-parameter phenomenological form
of eq. (4.7) shown in red. (b) The valence quark leading-twist PDF (purple) obtained from the
{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial expansion of the reduced pseudo-ITD. The
a/ |z| (orange), twist-4 (brown), and twist-6 (navy) x-space distributions are also shown and seen to
be sub-leading. The distributions are compared with the uncorrelated 2-parameter phenomenological
fit of eq. (4.7) (red), as well as the NLO global analyses of CJ15 [82] and JAM20 [88], and the
NNLO analyses of MSTW [89] and NNPDF [87] at the same scale.
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Figure 19. (a) The imaginary component of the leading-twist ITD (purple) at 2GeV derived from
the Jacobi polynomial expansion of the reduced pseudo-ITD for z/a ≤ 12 with {nlt, naz, nt4, nt6}+ =
{3, 3, 1, 0}+. The result is compared with the uncorrelated 2-parameter phenomenological form
of eq. (4.8) shown in red. (b) The plus quark leading-twist PDF (purple) obtained from the
{nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ Jacobi polynomial expansion of the reduced pseudo-ITD. The
a/ |z| (orange) and twist-4 (brown) x-space distributions are also shown and seen to be sub-leading.
The distributions are compared with the uncorrelated 2-parameter phenomenological fit of eq. (4.8)
(red), as well as the NLO global analyses of CJ15 [82] and JAM20 [88], and the NNLO analyses of
MSTW [89] and NNPDF [87] at the same scale.

wherein the short distance factorization (4.1), or equivalently (4.12), is applicable. This
motivates a more detailed look at the short-distance behavior of the computed reduced
pseudo-ITD.

5 On the numerical consistency with DGLAP

The one-loop matching relationship between the ITD and the reduced pseudo-ITD (4.1)
implies that Q

(
ν, µ2) = M

(
ν, z2) at tree-level. The scatter that exists for a given z2

should ideally be compensated at O (αs) by the ln z2-dependence produced by the DGLAP
evolution, up to large-z2 higher-twist corrections. In this section we study the z2-dependence
of M

(
ν, z2) more closely, and investigate whether the observed dependence is numerically

consistent with DGLAP, thus yielding a truly z2-independent ITD.
We begin by focusing on the real component of the reduced pseudo-ITD. The depen-

dence of Re M
(
ν, z2) on the invariant space-like interval z2 can be most easily visualized

by parameterizing the valence pseudo-PDF Pv
(
x, z2;α, β

)
by a simple two-parameter

phenomenological form

Pv
(
x, z2;α, β

)
= Γ (2 + α+ β)

Γ (1 + α) Γ (1 + β)x
α (1− x)β , (5.1)

and fitting its cosine-transform to Re M
(
ν, z2) separately for each z2. In order to more

readily expose the role of the Altarelli-Parisi kernel, we impose the added restriction β = 3.
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Figure 20. Cosine transform of the model pseudo-PDF in eq. (5.1) fit separately to Re M
(
ν, z2)

for distinct z2; data correlations have been included in each fit. Starting from the upper left panel
and traversing horizontally, z/a increases from unity. The correlated figure of merit for each separate
fit is also indicated.

This choice not only captures the naive x → 1 behavior of the nucleon’s valence quark
PDF [98], but also forces α to reflect any z-dependence in the reduced distribution; further,
this value of β is in statistical agreement with those obtained from the uncorrelated ITD
fits (see table 2).

Figure 20 illustrates the cosine-transform of the model valence pseudo-PDF (5.1)
fit separately to each z2 of the real component of the reduced pseudo-ITD. The cosine-
transforms of Pv

(
x, z2;α, β = 3

)
are seen to describe Re M

(
ν, z2) quite well for z/a . 10,

with the greatest tension seen for the highest momentum point for each separation. The
fits for z/a ≥ 13 are also shown for completeness, but are clearly noise dominated. Also
noteworthy, the highest figures-of-merit are observed for the smallest separations, with a
somewhat monotonic reduction until z/a ' 11. The dependence of the fitted values of
α on the separation z/a is visualized for Re M

(
ν, z2) in figure 21. As a function of z/a,

α decreases with the Wilson line length, matching expectations from the Altarelli-Parisi
evolution of the pseudo-PDF. However, it is clear Re M

(
ν, z2) depends linearly on z/a for

z/a . 12, most notably for small-z.
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Figure 21. The fitted value of α as a function of z/a resulting from the cosine-transform of the
model pseudo-PDF in eq. (5.1) fit to Re M

(
ν, z2). The decrease of α with z/a is in agreement with

expectations from the Altarelli-Parisi evolution of the pseudo-PDF. This dependence is however
clearly linear.

This manifest lack of ln z2 behavior of Re M
(
ν, z2) at short distances immediately

suggests tension with the presumed DGLAP evolution of the pseudo-PDF. To determine if
this z2-dependence in Re M

(
ν, z2) is nevertheless numerically consistent with DGLAP, the

one-loop matching relationship between the reduced pseudo-ITD and ITD is applied. In the
ideal scenario where the z2-dependence of Re M

(
ν, z2) is exactly described by DGLAP, the

matched ITD will be independent of the interval z2 up to polynomial corrections for large-z2.
Rather than perform the matching step to a common scale in MS using a smooth polynomial
in Ioffe-time (e.g. eq. (4.5)) as was done in section 4, we leverage the cosine-transform
of the model pseudo-PDF (5.1) as the smooth and continuous description of the reduced
pseudo-ITD data. That is, we perform the matching of Re M

(
ν, z2) to a common scale in

MS according to

Re Q
(
ν,µ2

)
=Re M

(
ν,z2

)
+αsCF

2π

∫ 1

0
du P

(
uν,z2;α,β= 3

)[
ln
(
z2µ2e2γE+1

4

)
B (u)+L(u)

]
,

(5.2)
whereP

(
uν,z2;α,β= 3

)
is the cosine-transform of the model pseudo-PDF Pv

(
x,z2;α,β= 3

)
expressed in a closed form by a generalized hypergeometric function

P
(
ν, z2;α, β = 3

)
= 2F3

(
1 + α

2 ,
2 + α

2 ; 1
2 ,

5 + α

2 ,
6 + α

2 ;−ν
2

4

)
. (5.3)

For an explicit, albeit crude, conversion to MS, we set α = 0.2 in eq. (5.3).
Our strategy to expose any z-dependence in the ITD Q

(
ν, µ2) remains identical to

the reduced distribution above. The resultant matched ITD at 2GeV in MS is once more
fit using the two-parameter form in eq. (5.1) independently for each z2 and with β = 3.
The parameterized distribution in this case is of course no longer the valence pseudo-PDF,
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Figure 22. Cosine transform of the two-parameter model PDF, with the same functional form
as (5.1), fit separately to each z2 of the matched ITD. The ITD was obtained using (5.3) for the
evolution/matching step. Data correlations have been included in each fit. Starting from the upper
left panel and traversing horizontally, z/a increases from unity. The correlated figure of merit for
each separate fit is also indicated.

but rather the valence PDF itself. As illustrated in figure 22, each z2 of the matched
ITD is well described by the simple two-parameter form. The poorest figures-of-merit
are again observed for the smallest (z/a . 3) and largest (z/a & 13) separations. The
dependence of the fitted values of α on the separation z/a for Re Q

(
ν, µ2) is illustrated

in figure 23. For 4 . z/a . 11 the fitted value of α is observed to be independent of z/a
and hence numerically consistent with DGLAP in said interval. Remarkably, however, the
values of α for the shortest separations, namely z/a . 4, deviate increasingly from this
constancy as z/a → 1. A subsequent analysis of the imaginary component of both the
reduced pseudo-ITD and matched ITD arrived at a similar conclusion, but has been omitted
for brevity.

5.1 Jacobi polynomial corrections — discretization effects

The findings above rigorously demonstrate the reduced pseudo-ITD is numerically inconsis-
tent with DGLAP in the small-z regime. Whether matching the reduced pseudo-ITD to
the light-cone ITD or directly to the light-cone PDF, the presence of the Altarelli-Parisi
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Figure 23. The fitted values of α from the cosine-transform of the two-parameter PDF func-
tional form (5.1) fit to each z2 of the matched ITD. The latter was obtained using (5.3) for the
evolution/matching step. The values of α are statistically constant for 4 . z/a . 11, with sharp
deviations for small-z/a.

evolution kernel should in principle capture and remove the ln z2 scatter that theoretically
exists in M

(
ν, z2) for small-z. As M

(
ν, z2) was found to depend only linearly on the

separation z (figure 21), the Altarelli-Parisi kernel effectively introduces a ln z2-dependence
into the small-z ITD and thus explains the dependence of α on z/a in figure 23. Despite
this concerning conclusion, a broad subset of M

(
ν, z2) remains consistent with DGLAP; the

statistically constant value of α (z/a) observed in the ITD fits in the interval 4 . z/a . 11
(e.g. figure 23) validates the nice collapse of the M

(
ν, z2) data onto a common curve

(figure 7a) when matched to a common scale in MS.
To gain further insight into the regions wherein DGLAP is not respected, we return to the

optimal Jacobi polynomial fits {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ =
{3, 3, 1, 0}+. The reader is reminded section 4 concluded with the realization that a suitable
description of M

(
ν, z2) was only possible with the nominal inclusion of an O (a/ |z|)

correction in eq. (4.28) and eq. (4.29). The discretization effect parameterized by each of
these fits is given by

Maz
(
ν, z2

)
= a

|z|
×

C
az (α,β)
v,1 σ

(α,β)
0,1 (ν) for {4, 1, 3, 2}v∑2

n=0C
az (α,β)
+,n η

(α,β)
0,n (ν) for {3, 3, 1, 0}+

, (5.4)

and visualized in figure 24. The discretization effect Re Maz
(
ν, z2) is seen to be strictly

negative in the interval of Ioffe-time in which M
(
ν, z2) has been computed. By comparison,

the discretization effect Im Maz
(
ν, z2) involves three Jacobi polynomials and suggests the

Im M
(
ν, z2) data are subject to a discretization effect that is opposite in sign at small and

large values of Ioffe-time.
We now justify the necessity of the O (a/ |z|) discretization correction by considering

the removal of the Re Maz
(
ν, z2) effect from the computed Re M

(
ν, z2) data, which we
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Figure 24. Visualization of the discretization effects determined by the optimal Jacobi polynomial
fits {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v (a) and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ (b) for z/a ≤ 7.

denote Re M ′(ν, z2) ≡ Re M
(
ν, z2) −Re Maz

(
ν, z2). Based on figure 24a, the removal

should shift the small-z points of Re M
(
ν, z2) to larger values, with the largest impact

for ν ∼ 4.5. Figure 25 juxtaposes the original Re M
(
ν, z2) and discretization corrected

Re M ′(ν, z2) in the interval ν ∈ [0, 2.5]. Although the differences are numerically small, at
small Ioffe-times Re M ′(ν, z2) is noticeably larger than the uncorrected reduced pseudo-
ITD. The importance of removing this discretization effect is quantitatively discerned by
repeating the DGLAP investigation for Re M ′(ν, z2).

Parameterizing the discretization corrected valence pseudo-PDF P ′v
(
x, z2) with the

two-parameter form in eq. (5.1) and fitting its cosine-transform to Re M ′(ν, z2) with β = 3,
the z-dependence of Re M ′(ν, z2) is once more reflected in the variation of α with z/a. As
illustrated in figure 26a, α now varies non-linearly with z/a for z/a . 4 and linearly for
4 . z/a . 11. Whether this markedly distinct z-dependence (cf. figure 21) is numerically
consistent with DGLAP is once again checked by performing the matching to a common
scale in MS using eq. (5.3), and repeating the two-parameter fits to the discretization
corrected ITD Re Q′

(
ν, µ2) for each z2 and with β = 3. The resulting fitted values of α

are presented in figure 26b. Relative to the z-dependence of the uncorrected ITD shown in
figure 23, the variation of α with z/a is considerably more constant for z/a . 11. In other
words, the ITD is seen to fall into better agreement with DGLAP in the short-distance
regime following removal of the O (a/ |z|) effect. That the optimal Jacobi polynomial fits
{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+ provide the best
description of M

(
ν, z2) can now be quantitatively explained by the compensating effect

the O (a/ |z|) term provides. The poor quality of the correlated phenomenological fits to
the matched ITD, as well as the correlated Jacobi polynomial fits to M

(
ν, z2) without any

corrections, are a direct result of attempting to fit a singular function in z to data that
do not exhibit singular behavior. By excluding z/a . 4 and z/a & 11, the short-distance
tension and any large-z polynomial effects can be removed yielding reduced pseudo-ITD
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Figure 25. Juxtaposition of the raw Re M
(
ν, z2) and discretization corrected Re M ′(ν, z2)

distributions, represented by circles and wedges respectively. The Re M ′(ν, z2) data is shifted
horizontally for legibility.

or matched ITD data that are well in line with theoretical expectations. Such cuts are
common in the literature, however their nominal effect is to neglect deviating behavior.

Although the DGLAP investigation has been shown for the real component of the
reduced pseudo-ITD, the considerable reduction in the correlated figure-of-merit when
discretization effects are included in fits to ImM

(
ν,z2) (e.g. {nlt,naz,nt4,nt6}+ = {3,3,1,0}+

versus {nlt,naz,nt4,nt6}+ = {3,0,1,0}+ in table 4) indicates the imaginary component of the
raw reduced pseudo-ITD likewise deviates from expectations of DGLAP at short-distances.
The central question left for future research is the origin of this discretization effect.

6 Conclusions

In this work we presented in detail the first lattice calculation of the unpolarized nucleon
PDF in the distillation framework, showing its efficacy and emphasizing in detail the
advantages of this smearing technique. We have observed that distillation can yield a
pseudo-distribution of superior quality, addressing one of the principal components limiting
the competitiveness of contemporary lattice QCD calculations of PDFs with respect to
precision phenomenological extractions. For the unpolarized PDF, the impact of this lattice
calculation on global fits was found to be rather marginal. The quality of data, however,
hints that a future calculation of a distribution less constrained by experiment may benefit
from the use of distillation. By validating the distillation method in the unpolarized nucleon
PDF, our study opens new avenues of synergy between lattice and phenomenology in
the spirit of [11, 99, 100]. We performed a careful study of the correct extraction of the
matrix elements that yield the pseudo-ITD and we analyzed in detail its real and imaginary
components. This was followed by a discussion of correlations of lattice data and how
the commonly used uncorrelated fits can yield erroneous results and can severely flaw the
extraction of the PDFs. We regulate the ill-posed inverse problem that relates the ITD to the
PDF with the use of Jacobi polynomials, and stress the necessity of removing discretization
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Figure 26. (a) The variation of α with z/a resulting from the cosine-transform of the model pseudo-
PDF in eq. (5.1) fit to Re M ′(ν, z2) for each z2. The discretization effect captured by the optimal
Jacobi polynomial expansion {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v is subtracted from Re M

(
ν, z2)

prior to performing each fit. (b) The variation of α with z/a resulting from the cosine-transform
of the two-parameter PDF form in eq. (5.1) fit to the discretization corrected and matched ITD
Re Q′

(
ν, z2) for each z2. The discretization corrected ITD is considerably more independent of the

interval z2.

errors as well as higher twist effects in order to ensure a trustworthy extraction of the PDF.
The quality of the results herein bolsters confidence that distillation is the natural path to
be pursued in these types of hadron structure calculations. We soon plan to extend these
analyses to include the extrapolation to the physical pion mass and the continuum limit.
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A Comparison of distillation with conventional smearing

The results of this work clearly demonstrate the utility of distillation in the calculation of
the collinear structure of hadrons, and how dramatically improved data quality facilitated
by distillation has led to invaluable insight into the pseudo-distribution formalism. In this
appendix, we touch on the numerical cost of distillation compared to conventional spatial
smearing schemes, making direct comparisons to an earlier calculation by some of the
authors herein that made use of Jacobi smearing.
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The inversion cost present in lattice calculations that implement a standard spatial
smearing kernel must solve for the Green’s function represented by

S (~x, ~z)βαba =
∑
~y,γ,c

D−1 (~x, ~y)βγbc δ (~y − ~z) δγαδca, (A.1)

where D is the chosen discretization of the Dirac operator, and the Nc color and Ns spinor
components are denoted by Latin and Greek indices. Such point-to-all propagators stand
in contrast to the so-called solution vectors required of a distillation based calculation:

S(k) (~x, t′; t)βαc =
∑
~y,b

D−1 (~x, t′; ~y, t)βαcb ξ(k) (~y, t)b , (A.2)

where ξ(k) is an eigenvector of the gauge covariant Laplacian with kth largest eigenvalue. The
separation of the elemental (interpolator) construction from the solution vector computation
with distillation implies the total inversion cost per configuration needed to realize matrix
elements sensitive to the Ioffe-time pseudo-distribution is given by

Ndist
inv /cfg = (1 +Ntsep)NeigsNζNsrcNc, (A.3)

where Neigs is the rank of the distillation space, Ntsep the number of three-point source-sink
separations, Nζ the number of phased eigenvector bases (including unphased), and Nsrc
the number of temporal source origins. In this calculation we have selected Ntsep = 6,
Neigs = 64, Nζ = 3, and Nsrc = 4, for which Ndist

inv /cfg = 16128. We invite the reader
to compare this inversion cost with that needed to isolate matrix elements when using
sequential source methods (discussed, for example, in ref. [109]), which are common cost
saving measures when exploiting standard spatial smearing kernels.

One aim of this body of work was to demonstrate the benefits distillation can provide in
calculations of hadronic structure. An earlier calculation of the isovector unpolarized valence
quark content of the nucleon using the pseudo-distribution formalism on the a094m358
ensemble used in this work was presented in ref. [58]; this previous calculation instead used
Jacobi smearing. Figures 27 and 28 overlay the real and imaginary components, respectively,
ofM

(
ν, z2) reported in ref. [58] with our results first presented in figures 4a and 4b. Evidently

the pseudo-ITD obtained with distillation is considerably more precise than the Jacobi
smeared data of ref. [58], with improvement factors at times exceeding an order of magnitude.

The data from ref. [58] was obtained using the sequential operator technique, for which
the number of inversions needed per configuration is given by

NSeq.Op
inv /cfg = (1 +Nzsep)NζNsrcNcNs, (A.4)

with Nzsep the number of Wilson line lengths. With Nzsep = 17 and Nζ = 5 in ref. [58], it
follows NSeq.Op

inv /cfg = 8640. In other words, by roughly doubling the number of inversions
per configuration, a step quite feasible with contemporary computing resources, we have
achieved with distillation a reduction in error far greater than the naive 1/

√
2 reduction

factor. Furthermore, we have relied on Ncfg ×Nsrcs = 349× 4 = 1396 measurements, while
Ncfg×Nsrcs = 417× 8 = 3336 measurements were used in ref. [58]. The reader is directed to
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Figure 27. (a) The real component of the Ioffe-time pseudo-distribution computed in this work
(circles) compared with the results of ref. [58] using Jacobi smearing (crosses). (b) Focusing on the
small-ν region, the improvements afforded by distillation are seen to be considerable. Data from
ref. [58] has been shifted horizontally for legibility.
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Figure 28. (a) The imaginary component of the Ioffe-time pseudo-distribution computed in this
work (circles) compared with the results of ref. [58] using Jacobi smearing (crosses). (b) Focusing
on the small-ν region, the improvements afforded by distillation are seen to be considerable. Data
from ref. [58] has been shifted horizontally for legibility.

ref. [109] for further comparisons between distillation and Jacobi smearing in the calculation
of nucleon charges.

An alternate inversion strategy, but no less ubiquitous, is that of the sequential propa-
gator approach. In this case the source and sink interpolating operators are held fixed, with
the series of inversions beginning at the source and running through the sink. In this manner,
matrix elements of a variety of operator insertions and momentum transfers can be computed
without additional inversions. The number of inversions needed per configuration is given by

NSeq.Inv.
inv /cfg = (1 + 2Ntsep)NcN

′
sNmomNsrcNprojNop, (A.5)
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where Ntsep are the number of source-sink separations, Nmom the number of momentum pro-
jections at the sink, Nproj the number of spin projectors applied to the nucleon interpolating
field, N ′s the number of open spinor indices after projection of the nucleon interpolator,
and Nop the number of distinct interpolators at the sink. As standard three-point func-
tions enforce three-momentum conservation on an ensemble average by performing explicit
momentum projections only at the operator insertion and sink interpolator, the sequential
propagator cost (A.5) only scales linearly with Nmom and Nop rather than also with the
number of interpolators and momentum projections at the source. The factor of two in
eq. (A.5) designates one sequential propagator for each of the two quark flavors in the
nucleon. Translating these factors into our calculation with distillation using a single
unpolarized non-relativistic nucleon interpolator, in the sequential propagator framework
one would have Nop = 1, Nproj = 1 and N ′s = 2 for a total of NSeq.Inv.

inv /cfg = 4056. Indeed
the sequential propagator strategy is often favored in place of the sequential operator
framework discussed above and featured in ref. [58], as the inversion cost is roughly half
and should produce identical correlation functions on an ensemble average.

Implicit in the sequential operator cost (A.4) is the added cost per operator insertion
and momentum transfer:

(
1 +NzsepNinsN~q

)
which reduces to (1 +Nzsep) in the case of the

unpolarized PDF. The fixed inversion overhead for distillation represented by eq. (A.3)
means the unpolarized, helicity and transversity PDFs are simultaneously accessible with
the same set of inversions, while the inversion cost with the sequential operator method
would increase by a factor of 1+3Nzsep

1+Nzsep
. Conventional smearing and the associated sequential

inversion methods are then far outpaced by distillation when one is interested in off-forward
observables — the sequential operator approach would require an additional 1+NzsepNinsN~q

1+Nzsep
inversions from the unpolarized PDF case, while the sequential propagator method would
require a prohibitive multiplicative increase by a factor Nmom for the number of distinct
sink momenta. In an analogous fashion, were one interested in a variational analysis of a
matrix of three point correlators, the sequential propagator method would require a further
multiplicative increase by a factor Nops, while the cost increase with the sequential operator
method would manifest in additional contractions rather than inversions. This paradigm
bears considerable weight on the few calculations of Generalized Parton Distributions (GPDs)
from lattice QCD (e.g. [110–112]) present in the literature, wherein a large set of momenta
and conceivably operator bases are required to map out the multi-dimensional structure of
GPDs while effectively controlling excited-states. The cost of sequential inversion methods
used in tandem with conventional smearing clearly grows rapidly in the off-forward regime,
while the inversion cost with distillation remains fixed at (A.3).

The numerical benefits presented herein and the cost saving prospects possible with
distillation, especially in GPD calculations, strongly motivates its continued use in future
calculations of hadronic structure.
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