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Abstract 

 

In 2020, U.S. electric utilities installed more than 94 million advanced meters, 

which brought the percentage of residential customers equipped with smart meters to 75%. 

This significant investment allows collecting extensive customer data at the distribution 

level, however, the data are not currently leveraged effectively to help with system 

operations. This dissertation aims to use the smart meters’ data to improve the grid’s 

reliability, stability, and controllability by solving two of the most challenging problems at 

the distribution level, namely distribution network phase identification and outage 

identification. 

Distribution networks have typically been the least observable and most dynamic 

and locally controlled elements in the power grid. Complete information about the network 

topology is continuously changing and is not always readily available when needed. Lack 

of phase connectivity information is a challenge, especially when rebalancing the grid and 

also in the aftermath of outages caused by extreme events. Traditionally, phase 

identification is executed manually. In this dissertation, a machine learning-based data 

mining method for accurate and efficient phase identification of residential customers is 

proposed by leveraging power consumption data collected through smart meters. The 

proposed method uses a high-pass filter to remove the redundant and irrelevant segments 
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of the power consumption time series, and accordingly identifies the residential customers’ 

phase connectivity through a modified clustering algorithm.  

Accurate connectivity information among customers is essential for outage 

identification and management in distribution networks. Extreme weather events can cause 

significant damage to electric power grid infrastructure and lead to widespread power 

outages. The frequency and the intensity of these events are continuously increasing as a 

direct result of climate change. Identifying grid components that are damaged is the first 

step to recovering from extreme weather-related power outages. An effective data mining 

method in identifying distribution network line outages is presented in this dissertation by 

leveraging data collected through AMI. The line outage identification method is developed 

based on a Multi-Label Support Vector Machine (ML-SVM) classification scheme that 

utilizes the status of customers’ smart meters as input data and identifies the 

outage/operational status of distribution lines.  

Numerical simulations demonstrate the effectiveness of the proposed models and 

their respective viability in achieving the targeted operational objectives. 
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1 Chapter One: Introduction 

Utilities are upgrading their networks from the manually-read analog meters to new 

technologies such as advanced metering infrastructure (AMI) or smart meters, which 

provide a great opportunity for increasing observability and controllability of the 

distribution network. More than 94 million smart meters were installed in the U.S. in 2020, 

in which 88% are smart residential meters [1]. Fig. 1.1 shows the percentage of installed 

smart meters in the US in 2021. Although extensive data is collected at the distribution 

level, they are not used effectively in advanced applications to support system operations. 

 

Fig. 1.1: Smart meter deployment in the US in 2021 [2]. 

Smart meters measure and record customers’ electricity usage frequently and at 

given intervals (every 15 min, 30 min, or 1 h). This dissertation aims to use the smart 



 

 2  

meters’ data and provide a solution for two of the most challenging problems at the 

distribution level, which are distribution network phase identification and outage 

identification. Utilities can leverage the proposed solutions to improve the reliability, 

stability, and controllability of the distribution grid. 

Distribution networks have typically been the least observable and most dynamic 

and locally controlled element in the power grid. Complete information about the network 

topology is continuously changing and is not always readily available when needed. 

A distribution network is used to deliver electricity at medium voltages to end-use 

customers spread over vast geographical areas. Electricity is commonly generated as 3-

phase AC and is injected into the high voltage transmission network, which is subsequently 

stepped down to be delivered to the distribution network. Residential customers are mostly 

single-phase and are distributed across the network. Automated monitoring and control in 

the grid have traditionally been mostly deployed in the transmission networks. At the 

distribution level, however, there are not as many integrated solutions, and the monitoring 

has been limited to distribution automation (DA) and, most recently, advanced metering 

infrastructure (AMI). As the distribution network is the least observable and most dynamic 

and locally controlled element in the grid, utilities may not have access to reliable and 

complete updated information about the distribution network, such as the phase to which 

each customer is connected [1]. Lack of phase connectivity information is a challenge, 

especially when it comes to rebalancing the grid and outage identification and 

management.  
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Phase identification and network rebalancing are a hard, costly, and time-

consuming task for electric utilities; however, it is of great importance to future grid 

planning and advanced distribution management system (ADMS) as well as outage 

management system (OMS) type operations. 

As a part of distribution planning, electric utilities annually review phase balancing 

of all the feeders under peak load conditions. However, even a balanced network would 

become unbalanced over time [3] because of the addition of new customers, maintenance, 

restoration, reconfiguration, and change in customers’ consumption patterns. For instance, 

after weather events such as storms, customers will be connected to a phase that leads to 

the fastest restoration, thus potentially distorting the phase balance. Unbalanced loading 

can cause several problems for the network, including but not limited to poor power quality 

such as unbalanced service voltages and over/under voltages, increased power losses, 

reducing the lifetime of grid assets like transformers, overheating, reduced distributed 

generation hosting capacity [4]-[6], and delayed power restoration and subsequently longer 

outage-time [7]. Additionally, accurate connectivity information is required for efficient 

renewable energy sources’ integration [8], [9], loss reduction, operational improvements, 

and rebalancing [5], as well as outage identification and management in low voltage 

distribution networks [9]. 

Phase identification is traditionally executed manually, although there are existing 

voltage measurement-based methods that are not always reliable. 

Phase identification is traditionally implemented either manually or through signal 

injection [10]-[11], both of which are costly, labor-intensive, time-consuming, and error-
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prone. In addition, wrong phase identification causes errors in topology detection, state 

estimation, and fault location detection [1].  

Accurate connectivity information among consumers as a part of topology 

identification is essential for outage identification and management in low voltage 

distribution networks. 

Extreme weather events can cause significant damage to electric power grid 

infrastructure and lead to widespread power outages. The frequency and the intensity of 

these events is continuously increasing as a direct result of climate change [12]. From 2002 

to 2015, extreme weather events have caused more than 87% of major power outages 

involving 50,000 or more customers in the U.S. [13]. 

The identification of grid components that are damaged is the first step to 

recovering from extreme weather-related power outages. These components can be easily 

identified in the generation and transmission levels; however, this is not the case for 

distribution level components. Traditionally, the distribution grid has not been fully 

observable to grid operators, causing outage location identification a challenging task. This 

task is currently performed by investigating the feeder configuration map and the 

protection design manual to identify the overall outage locations [14], i.e., an expert-

experience-based method. Although the expert-experience-based method may be able to 

achieve highly accurate solutions, it is proved to be laborious, costly, and time-consuming 

[15], [16]. Time is of particular essence in this case. As the outage duration increases, the 

associated outage cost will increase almost exponentially. The estimated outage cost for 

residential customers during interruptions of 1 min, 20 min, 1 h, 4 h and 8 h is quantified 
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as 0.001, 0.093, 0.482, 4.914, and 15.690 $/kW, respectively [17]. An automated method 

with a short computation time would be significantly useful in this case, especially for 

larger networks. 

In this dissertation, a machine learning-based data mining method for accurately 

and efficiently identifying the phase of each residential customer in a distribution network 

is proposed. The proposed method leverages power consumption data collected through 

the AMI and uses a high-pass filter to remove the redundant and irrelevant parts of the 

power consumption time series. It then identifies the residential customers’ phase 

connectivity by proposing a modified clustering algorithm.  

In addition, to solve the outage identification problem, a machine learning-based 

data mining method is presented to quickly and efficiently identify distribution lines 

outages in response to extreme events and by leveraging smart meter data collected through 

AMI. 

1.1 Dissertation Overview  

The main body of this dissertation is based on the collection of articles published 

during the Ph.D. studies. The rest of this dissertation is organized as follows.  

Chapter 2 focuses on distribution phase identification as one of the most 

challenging problems in distribution networks. At first, the existing literature in phase 

identification is reviewed and the problem statement and phase identification model outline 

are presented. The effectiveness of the proposed method is investigated under complete 

and incomplete data scenarios as well as in the presence of residential solar PVs and a brief 

discussion based on the cases studied concludes this chapter. 
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Chapter 3 focuses on distribution outage identification and presents a multi-label 

support vector machine (ML-SVM) scheme to identify distribution lines outages in 

response to extreme weather events by leveraging AMI data. The effective and acceptable 

performance of the proposed scheme is validated through numerical simulations for both 

small and relatively large test systems. The accuracy of the proposed method is then 

examined in case of lost last gasp signals in the distribution system. Utility companies can 

reap the benefits of this intelligent method to accelerate the process of grid response and 

recovery and consequently, decrease the associated outage durations and costs. 
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2 Chapter Two: Distribution Phase Identification 

2.1 Introduction 

Distribution networks, as the last element of a power system, are used to deliver 

electricity at medium voltages to end-use customers spread over vast geographical areas. 

Fig. 2.1 demonstrates a big picture of a power system. Electricity is commonly generated 

as 3-phase AC and is injected to the high voltage transmission network, which is 

subsequently stepped down to be delivered to the distribution network, where residential 

customers are mostly single-phase and are distributed across the network. 

 

Fig. 2.1: A big picture of a power system containing generation, transmission, and distribution networks. 

At the distribution level, there are not as many integrated solutions for automated 

monitoring and control and the monitoring has been limited to distribution automation 
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(DA) and, most recently, AMI. As the distribution network is the least observable and most 

dynamic and locally controlled element in the grid, utilities may not have access to reliable 

and complete updated information about the distribution network, such as the phase to 

which each customer is connected [1]. However, accurate connectivity information among 

consumers as a part of topology identification is essential for efficient renewable energy 

sources’ integration [7], [8], loss reduction, operational improvements, and rebalancing [5], 

as well as outage identification and management in low voltage distribution networks [9]. 

This dissertation aims to propose an efficient data-driven method to identify phase 

connectivity of residential customers in distribution networks. 

2.2 Literature Review 

The literature available for phase identification is limited. In general, two common 

methods are available to identify the phase connectivity of residential customers, including 

hardware-based methods and software-based methods. Hardware-based methods focus on 

using specially-designed devices [18], PLC smart meters [19], signal injection methods 

[10]-[11], and micro-synchrophasors [1]. Hardware-based methods are costly because of 

the additional devices that need to be installed in the network, as well as the cost of labor 

to deploy such devices. On the other hand, software-based methods are becoming more 

popular due to the increasing deployment of AMI. One of the most popular methods to 

identify the phase that each customer is connected to is to use the time series of voltage 

measurements. It is shown that the time series of voltage measurement of each residential 

customer has the highest correlation to the voltage series of the connected phase at its 

respective substation. Based on this, a study in [1] proposes an algorithm to analyze cross-
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correlation coefficients over-voltage magnitudes by considering phase angle differences 

on different phases. The proposed algorithm uses data from high-precision phasor 

measurement units (micro-synchrophasors or uPMUs) to compare correlations of the 

residential customers with measured voltage at the substation for each phase. This method 

may, however, be impractical for smart meters due to the significant difference in interval 

reads of smart meters (30 min) versus uPMUs’ measurements (potentially hundreds per 

cycle). Similarly, authors in [3] and [20]-[23] use correlation of voltage measurements to 

identify phase connectivity. The study in [24] uses linear regression and correlation on 

voltage measurements as well as kilowatt-hour measurements from AMI to estimate 

secondary connectivity and primary-side voltage profiles. There are a few studies that use 

clustering methods and voltage measurements for phase identification. For instance, based 

on the voltage correlation, a constraint-driven hybrid clustering (CHC) algorithm [25], k-

means clustering [23], spectral clustering [26], and a combined feature-based clustering 

approach with principal component analysis (PCA) [27] are developed to identify the phase 

that each residential customer is connected to. Other approaches which use voltage 

measurements are also available in the literature, such as using the Tabu search method 

[28] for estimating the phasing of laterals by using circuit measurements and load flow 

information. 

The lack of adequate historical voltage measurements can emerge as a major 

disadvantage of using voltage-based methods. In this respect, a few studies focus on using 

power measurements instead of voltage measurements for phase identification. For 

instance, the study in [29] uses an integer programming and branch and bound search 



 

 10  

algorithm on the power measurements collected from residential customers to identify 

residential customer-connected phases. As this method uses integer programming to model 

the problem, the number of customers should be known. Authors in [30] use similar setup 

and assumptions as to the previous study. The power measurements are used to set up a 

system of linear equations based on the principle of conservation of energy. These 

equations are then analyzed to estimate a tree network that optimally fits the power 

measurements. This method needs the number of customers to optimize the number of 

required measurements. The study in [31] uses grouped smart meter power data to detect 

mixed-phase groups in a case that individual smart meter data for customers is not 

available. Authors in [32] also use power measurements and present a spectral and saliency 

analysis for phase identification. The proposed method needs more than one month of 

customers’ data. In addition, this method requires other customers’ data. In other words, 

by decreasing the smart meter penetration in the network, i.e., losing the data of a portion 

of customers, the accuracy of the proposed method would decrease. The study in [33] 

proposes a data-driven approach based on PCA and its graph-theoretic interpretations. In 

addition to requiring a number of connected customers to each phase, the proposed method 

is not able to identify phase connectivity in the presence of unmetered loads in the network. 

The proposed method in this dissertation identifies the phase connectivity of the 

residential customers by leveraging data collected through smart meters. The phase 

identification method is developed based on a combination of filtering and a modified 

clustering algorithm that utilizes the power consumption time series of customers. It is 

further made sure that the proposed method works effectively for scenarios with 
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incomplete data [34]. The advantages and contributions of the proposed method compared 

to the existing methods are summarized as follows: 

• No additional hardware, monitoring tools, or signal injection devices are 

required; 

• Unlike the existing methods, the proposed method does not need to collect 

voltage and current measurements; instead, the power consumption profiles, which are 

recorded and kept by the utility, are used; 

• The number of total customers can be unknown, which enables partial phase 

identification for any selected part of the network. In other words, the number of total 

customers is not a decisive factor in this method; 

• Using the proposed method, the phase connectivity of each customer is 

individually identifiable without requiring other customers’ data; 

• The proposed method is unsupervised, so a labeled dataset is not required; 

• The topology of the network is not required to be known; 

• As the proposed method applies a preprocessing step to the dataset for 

removing redundant parts of the power measurement time series, the length of the required 

time series is significantly shortened; 

• The proposed method is highly efficient in terms of the computation time; 

• As the proposed method is applicable for each individual residential 

customer, it is robust against the unmetered loads in the network; 

• The proposed method is applicable to both balanced and unbalanced 

networks; 
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• The proposed method can identify residential customers’ phase connectivity 

in networks consisting of both three-phase and single-phase nodes; and 

• The proposed method can identify residential customers’ phase connectivity 

under incomplete data scenarios. 

2.3 Model Outline and Formulation 

Consider a set of N single-phase residential customers in a distribution feeder. The 

phase that each residential customer is connected to is unknown. The number of residential 

customers that are connected to each phase is also unknown. Time series of residential 

customers’ power consumptions are recorded frequently and at given intervals (commonly 

every 15 min, 30 min, or 1 h) [35]. In the same fashion, the aggregated power consumptions 

are recorded for each phase at the associated substation. A two-step 

preprocessing/clustering approach is proposed to identify the phase connectivity of the 

residential customers in the feeder. In the first step, by applying a high-pass filter to the 

residential customers’ power consumption time series, as well as the phases’ aggregated 

power consumption time series, the low-frequency parts of the time series are removed to 

avoid redundancy in the computations. The preprocessed dataset is then fed to the second 

step, which executes a modified clustering model. Fig. 2.2 shows the overall framework of 

the proposed phase identification method, which is further elaborated in the following 

subsections. The two-step preprocessing/clustering approach is then followed by a 

postprocessing step to check the network’s phase mapping. In this regard, the identified 

phase connectivity is compared to the current network’s phase mapping and the potential 
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discrepancies, i.e., wrong phase connectivity information in the current network’s phase 

mapping, are identified and corrected. 

 

Fig. 2.2: Proposed phase identification method. 

2.3.1 Filtering 

In the clustering approach, the input dataset, here called the objects, has a set of 

potentially unknown features while the label of each object is also not available. The goal 

is to cluster the data merely based on information found in the data that describes the 
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objects and their relationships. However, some of the features or information contained in 

the data are redundant, which means these features provide no additional information about 

the data. Data redundancy leads to data anomalies and corruption and should generally be 

removed from the data. In other words, important features can help in creating proper 

clusters, while redundant features may lead to increasing error. In this respect, a set of 

feature selections are mostly needed to be applied to the data. Feature selection can also 

reduce the required data size for efficient and accurate clustering [36]. Therefore, a 

preprocessing step is considered to remove irrelevant and/or redundant features from the 

data.  

The proposed method uses time series of power measurements. Power consumption 

of the residential customers is always available as the utilities keep the data for billing 

purposes. Power consumption time series have variations which are resulted from 

customers’ behaviors and lifestyles. Slow-varying components of power consumption 

follow a similar pattern among residential customers, while fast-varying components are 

different from customer to customer. In other words, customers are better distinguishable 

from each other by their high-frequency parts of the power consumption data, i.e., fast-

varying components, rather than their low-frequency parts. Using raw power consumption 

data without preprocessing makes the clustering task to be arduous, as all the customers’ 

power consumption data have similar slow-varying components in their patterns. In 

contrast, keeping the high-frequency part of the data helps in extracting power consumption 

patterns. Thus, clustering approach can easily identify each customer’s pattern within the 

aggregated power consumption data of its associated phase. The proposed method uses a 
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high-pass filter to remove low-frequency part of the time series. Fig. 2.3 shows the Bode 

magnitude and phase plots of the frequency response of a high-pass filter. The cutoff 

frequency of a filter is a frequency that describes a boundary between a passband and a 

stopband. In other words, the magnitude of the filter’s frequency response at the cutoff 

frequency is -3 dB of its nominal passband magnitude, where a fall of -3 dB leads to a fall 

of one-half of the passband power. As it is shown in Fig. 2.3, the magnitude of the filter’s 

frequency response before the cutoff frequency is less than -3 dB, then by applying this 

filter to the data, the data’s frequency band below the cutoff frequency will be practically 

stopped instead of being passed by the filter which means that part will be eliminated from 

the data. 

 

Fig. 2.3: Bode magnitude and phase plots of a high-pass filter. 

2.3.2 Modified Clustering Algorithm 

Data clustering is an unsupervised and statistical data analysis method for 

classifying objects with similar features into a homogeneous cluster while objects with 
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dissimilar features are grouped in different clusters. By discovering hidden patterns and 

relationships associated with the dataset, the clustering algorithm could efficiently classify 

the objects in proper clusters [37]. Data clustering can be defined as an optimization 

problem where the objective is to simultaneously maximize the similarity of the objects at 

the same cluster and minimize the similarity of the objects that belong to different clusters. 

Similarity can be represented by a proper distance definition, so the optimization can be 

rewritten as minimizing the intra-cluster distances and simultaneously maximizing the 

inter-cluster distances as defined in Fig. 2.4. 

 

Fig. 2.4: Intra- and inter-cluster distances in feature space for an illustrative clustering example with two 

clusters. 

The traditional K-means clustering algorithm, as a popular data clustering method, 

divides N objects into K clusters. In this algorithm, initial clusters’ centers called centroids 

are randomly chosen and the similarity between the objects and the centroids is evaluated 

based on a proper distance formulation such as Euclidean distance. The centroids are 

accordingly updated by calculating the mean of the previously clustered objects. K-means 
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clustering algorithm can be presented as the optimization problem in (2.1) where xi is ith 

object, ck is the centroid of the kth cluster, and fD is the proper distance formulation. 

𝑚𝑖𝑛 ∑ ∑ 𝑓𝐷(𝑥𝑖, 𝑐𝑘)𝑁
𝑗=1

𝐾
𝑘=1                                                     (2.1) 

The traditional K-means clustering algorithm is limited to specific applications. 

However, in this dissertation, a modified clustering algorithm is proposed. Given the fact 

that the electricity consumption of each residential customer is related to the aggregated 

electricity consumption of the connected phase at the substation, the correlation concept is 

utilized to present similarity of the residential customers (2.2), where Djk is the distance 

between jth residential customer and kth cluster’s centroid. In addition, the Corr function 

returns the pairwise linear correlation coefficient between xj and ck. In this dissertation, the 

Pearson type in (2.3) is used, as it leads to higher accuracy when compared to other types 

of correlation, where 𝜎𝑥𝑗
 and 𝜎𝑐𝑘

 are the standard deviations of xj and ck, respectively. 

𝐷𝑗𝑘 = 1 − 𝐶𝑜𝑟𝑟(𝑥𝑗 , 𝑐𝑘)                                  (2.2) 

𝜌(𝑥𝑗 , 𝑐𝑘) =
𝑐𝑜𝑣(𝑥𝑗,𝑐𝑘)

𝜎𝑥𝑗
𝜎𝑐𝑘

                        (2.3) 

The proposed modified clustering algorithm consists of three parts, including 

initializing centroids, distance calculations, and centroids’ updates as demonstrated in 

Table 2.1. 

In the proposed method, instead of randomly initializing the centroids, the 

aggregated power consumptions of the phases are set as the initial centroids. Then all the 

residential customers’ distances to the three centroids are calculated based on (2.2), and the 
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residential customer with the lowest distance to one of the centroids is selected as the first 

measurement for phase identification. The minimization in this step is calculated over all 

clusters and residential customers. On the other hand, compared to other residential 

customers, the selected residential customer in this step has the least distance to one of the 

clusters, which means it can be clustered by a high level of confidence. In Step 3, the 

distances of the selected measurement, i.e.; j’th measurement, to the three centroids are 

evaluated and the minimum distance is found. The selected measurement belongs to the 

cluster whose centroid is closest to the measurement. As the selected measurement is 

clustered, it will be eliminated from the data, and the centroids are updated by subtracting 

the selected measurement from the previous centroids, as in Steps 4 and 5. By repeating 

these steps for all N residential customers, the entire distribution network will be clustered. 

Table 2.1: Modified clustering algorithm. 

Modified Clustering Algorithm 

Inputs: 

Sit: The aggregated power consumption of phase i at the substation, 

Pnt: The power consumption time series of residential customer n, 

Parameters: 

t = 1, …, T: Index for time, 

i and k = 1, …, K: Index for cluster, where in this problem K is 3. 

n, j, and j’ = 1, …, N: Index for residential customer/measurement, 

N: Total number of residential customers (unknown), 



 

 19  

Mnt: nth measurement, 

Cit: The centroid of cluster i, 

Algorithm: 

Step 1) Set Sit as the centroids: 

                        𝐶𝑖𝑡 = 𝑆𝑖𝑡 

Step 2) Calculate distances between all residential customers and centroids: 

                        𝐷𝑗𝑖 = 𝑓𝐷(𝑀𝑗𝑡 , 𝐶𝑖𝑡)∀𝑗, ∀𝑖 

Step 3) Find the residential customer j with the least distance to one of the centroids. 

This residential customer has the smallest distance to one of the centroids, which means 

with high possibility, it belongs to the associated cluster. Select the jth residential 

customer’s power consumption time series as the j’th measurement to be clustered: 

                        𝑚𝑖𝑛
                                   𝑗,𝑖

(𝐷𝑗𝑖) 

                        𝑀𝑗′𝑡 = 𝑃𝑗𝑡 

Step 4) Assign the proper cluster to the j’th measurement taking into account that the 

centroid of the appropriate cluster has the minimum distance to the j’th measurement. 

The j’th measurement is clustered in the kth cluster, so: 

                        𝑚𝑖𝑛
                              𝑖

(𝐷𝑗′𝑖) 

                        𝐿𝑗′ = 𝑘 

Step 5) Remove the j’th residential customer from the residential customers’ set. 

Step 6) Update the centroids: 

                        𝑖𝑓     𝑖 = 𝑘 → 𝐶𝑖𝑡 = 𝑆𝑖𝑡 − 𝑀𝑗′𝑡 
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                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       𝐶𝑖𝑡 = 𝑆𝑖𝑡 

Step 7) Go to step 2 and repeat the loop until all N residential customers are clustered. 

Outputs: 

Lj: The assigned cluster to the jth residential customer. 

2.3.3 Phase Identification in the Presence of Residential Solar PVs 

The global environmental concern regarding the use of fossil fuels in electricity 

generation has motivated many countries to deploy higher levels of renewable energy 

resources. Among renewable energy resources, solar photovoltaic (PV) is envisioned to be 

a major player in future power systems and a viable enabler of sustainable power 

generation. Solar energy is clean, widely available, and relatively low maintenance. 

Moreover, unlike traditional power generation resources, which are installed in a 

centralized manner, solar energy resources can be easily deployed as a distributed 

generation resource [38]-[42]. Solar energy resources have attracted consumers who are 

willing to make up part of their electricity consumption or even economically benefit from 

a local power generation [43], [44]. The dropping cost of solar technology and the state 

and government incentives have made the path for rapid growth of solar generation. More 

than 7 GW of solar PV was installed in the U.S. in 2016, where residential PV with over 2 

GW represented the biggest segment [45], [46]. All in all, solar generation is making fast 

inroads in power systems [47]-[49].  

Solar photovoltaic (PV) is facing a significant cost reduction due to the technical 

advances in its technology combined with increased market demand. As a result, PV 
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penetration is growing across the world [47], [50]. The positive public support for installing 

PV units is one of the motivations to introduce supportive policies for solar energy in many 

regions of the U.S. This increasing demand further leads to a decline in the costs associated 

with the PV installation. Fig. 2.5 shows the residential solar PV installations and forecasts 

for 2015-2024. 

 

Fig. 2.5: Residential solar PV installations and forecasts for 2015-2024 [51]. 

Growing penetration of non-dispatchable energy resources, i.e., PV units, causes 

technical and operational challenges for the utilities and distribution grids [43], [47]. 

Integrating solar systems into the current distribution grids may add additional difficulties 

regarding the phase identification task. However, the proposed phase identification method 

is designed to handle residential solar PVs in the distribution network.  
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2.4 Numerical Studies 

The proposed method is applied to both small and relatively large networks under 

scenarios of complete and incomplete data. In Case 1, by considering complete data to 

evaluate the scalability of the proposed method, the proposed method is tested on the IEEE 

25-bus test system and a 450-bus distribution network with unknown topology. The IEEE 

123-bus distribution test system is further used in Case 2 to examine the ability of the 

proposed method in case of incomplete data. Similarly, Case 3 uses the IEEE 123-bus 

distribution test system to evaluate the effectiveness of the proposed method in the presence 

of residential solar PVs. The power consumption data is borrowed from [52], which is 

publicly available. However, based on the network topology for each case (25-bus, 123-

bus, or 450-bus), the aggregated power consumption for each phase has been manually 

calculated and by using power flow simulation, the effect of loss and the network 

configuration has been applied to the data. Calculations were done in MATLAB [53] and 

GAMS [54]. Solar power data used in Case 3 is a modified version of data publicly 

available in [55]. In this regard, a set of scaling and preprocessing has been applied to the 

solar power data based on the peak load of each residential customer. Preprocessed solar 

power data has been then added to the selected residential customer’s power consumption 

as well as to the aggregated power consumption of the corresponding phase. Moreover, the 

effect of loss and the network configuration has been applied to the final data, as previously 

explained. 
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Case 1: Phase identification based on complete data 

The proposed method is tested on the IEEE 25-bus distribution test system as well 

as a 450-bus distribution network with an unknown topology. Power consumption of the 

residential customers is collected at 30-min time intervals, while the aggregated power 

consumption of the three phases at the substation is also available for the same time 

intervals. A high-pass filter is applied to the recorded time series. In this dissertation, the 

high-pass filter is designed in MATLAB as a 50th-order high-pass window-based FIR 

(finite impulse response) filter, as shown in Fig. 2.6. As the sampling frequency 

(sample/sec) of the power consumption time series is low, the normalized cutoff frequency 

is considered to be 0.35 (× π rad/sample), to remove the lower frequency band while 

avoiding losing the useful portions of the data. It should be noted that by using the Nyquist 

frequency (half of the sampling frequency), the normalized frequency can be obtained.  

 

Fig. 2.6: Bode plot of the used high-pass filter. 
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2.4.1 IEEE 25-Bus Distribution Test System 

Fig. 2.7 shows the IEEE 25-bus distribution test system. All 25 buses in this system 

are unbalanced three-phase, and in this case, it is assumed that all three phases are balanced 

in terms of the number of connected residential customers. In this respect, among the total 

number of residential customers, i.e., 75 residential customers, 25 random customers are 

connected to each phase. Based on the available data, the average loads over the 30-day 

time period for phases A, B, and C are measured as 11.30 MW, 14.62 MW, and 13.11 MW, 

respectively. 

 

Fig. 2.7: IEEE 25-bus distribution test system. 

Residential customers’ power consumptions are collected in 30-min time intervals 

through smart meters installed at each residential customer. The aggregated power 

consumptions at all three phases at the substation are also available. At the first step, 

ineffective and redundant parts of the power consumption time series are removed by 

filtering the low-frequency part of the time series for each residential customer, as well as 
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for each phase. Fig. 2.8 shows the power consumption of one of the residential customers 

in the time domain and its single-sided spectrum in the frequency domain before and after 

filtering. As shown in this figure, the low-frequency portion of the data is eliminated to 

remove redundant parts. 

 

Fig. 2.8: (a) Power consumption of a residential customer in the time domain and (b) its single-sided 

spectrum in the frequency domain before and after filtering. 

The preprocessed power consumption time series of the residential customers and 

three phases are then applied to the modified clustering algorithm. The preprocessed power 
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consumption time series of each residential customer is strongly correlated to the 

preprocessed aggregated power consumption time series of the connected phase at the 

substation. In other words, the distance of a residential customer’s power consumption to 

the connected phase is smaller than its distance to other phases. 

 

Fig. 2.9: Phase identification method’s accuracy by increasing the number of days of available data for the 

IEEE 25-bus distribution test system. 

Fig. 2.9 shows the solution accuracy by increasing the number of days of available 

data for the IEEE 25-bus distribution test system. As shown, the phase connectivity of all 

the residential customers in the IEEE 25-bus distribution test system is identifiable by 

having at least 210 samples, which is equal to 4 days and 9 hours of 30-min power 

consumption measurements. However, the length of the required data is related to the 

network size, and by increasing the size of the network, the length of required data for 

phase identification needs to be adequately large. On the other hand, by increasing the 

resolution, i.e., reducing the recording time interval, the length of required data will be 

reduced. 
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2.4.2 450-Bus Distribution Network 

In this case, it is assumed that the topology of the network is unknown. The network 

includes 450 residential customers where 200, 100, and 150 residential customers are 

connected to phases A, B, and C, respectively. It is assumed that the network is large and 

extremely unbalanced where the average loads over the 30-day time period for phases A, 

B, and C are 183.99 MW, 120.72 MW, and 84.77 MW, respectively. To demonstrate the 

effectiveness of the proposed preprocessing step, the proposed method is applied to this 

system in two scenarios of (i) ignoring and (ii) considering the preprocessing step. The 

available data is assumed to change from 1 day to 30 days by steps of 1 hours. Fig. 2.10 

shows the accuracy of the proposed method in these two scenarios. 

 

Fig. 2.10: Phase identification method’s accuracy for 450-bus distribution network by ignoring and 

considering preprocessing step. 

As shown in Fig. 2.10, the preprocessing step significantly improves the phase 

identification results. When more than 24 days of power consumption data are available 

for the studied network, applying preprocessing step to the data leads to phase 
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identification with the accuracy of 100%, while without preprocessing step, it will remain 

below 85%. 

It should be mentioned that the computation times for identifying the phase 

connectivity of residential customers by the proposed method for the IEEE 25-bus 

distribution test system and the 450-bus distribution network are 0.25 s and 4.55 s, 

respectively. In addition, the results in Case 1 show that by increasing the network size or 

decreasing the resolution, the amount of required data would considerably increase, 

however, the proposed method is scalable and capable of finding the phase connectivity of 

customers for much larger systems, whether balanced or not, in a relatively short amount 

of time. 

Case 2: Phase identification based on incomplete data 

The power consumption data of a residential customer recorded by a smart meter 

can be lost for various reasons. For example, the communication for a group of residential 

customers in a feeder could be disconnected. As a result, the power consumption data of 

mentioned residential customers could be lost for specific time intervals. In case of data 

loss, the power consumption at known time intervals is replaced with zero. However, the 

aggregated power consumption data recorded for each phase at the substation is accurate 

and complete. While the proposed method is able to identify each customer’s phase 

connectivity individually without having the other residential customers’ information, the 

impacts of incomplete data can be investigated for a single residential customer as well as 

a group of residential customers. In this respect, by considering the IEEE 123-bus test 
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system, two kinds of incompleteness are considered, i.e., random and consecutive 

incompleteness. 

 

Fig. 2.11: IEEE 123-bus distribution test system. 

Fig. 2.11 shows the schematic diagram of the IEEE 123-bus distribution test 

system. Among 123 buses in this system, 85 buses are load buses in which 5 are unbalanced 

three-phase and the rest are single-phase. It is assumed that 30, 25, and 40 of the residential 

customers are connected to phases A, B, and C, respectively. Based on the available data, 

the average loads over the 30-day time period for phases A, B, and C are 17.89 MW, 17.39 

MW, and 12.39 MW, respectively. In this case, by accessing at least 6 days of power 

consumption data of residential customers without any incompleteness for the test system, 
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the proposed method is able to identify phase connectivity of residential customers by the 

accuracy of 100%. 

2.4.3 Random Incompleteness 

In this case, it is assumed that the power consumptions of a set of residential 

customers are not recorded by the associated smart meter in random time intervals. 

Randomness is modeled by a uniformly distributed pseudorandom integer producer. 

Sensitivity analysis with respect to the percentage of incomplete time intervals and the 

percentage of residential customers with incomplete data is performed for the IEEE 123-

bus test system. It is considered that 14 days of 30-min power consumption data for 

residential customers as well as for each phase at the substation are available. The 

percentage of incompleteness changes from 0% to 20% by steps of 2%, while the number 

of residential customers with incomplete data increases from 10% to 100% by steps of 

10%. Fig. 2.12 shows the real power consumption time series of a residential customer for 

14 days as well as recorded data with 20% random incompleteness. In this case, data at 134 

random time intervals out of total 672 time intervals are not sent because of the lack of 

communication during those time intervals. 

The results of sensitivity analysis are summarized in Table 2.2. As it is expected, 

in the case of random incompleteness, when the percentage of random incompleteness in 

each residential customer increases from 0% to 20%, accuracy is slightly decreased. On 

the other hand, when the number of residential customers with incomplete data increases 

from 10% (10 out of 95 residential customers) to 100% (all 95 residential customers), the 



 

 31  

accuracy of the proposed method varies between 100% and 80%. However, the proposed 

method is capable of identifying residential customers’ phases with acceptable accuracy. 

 

Fig. 2.12: Real power consumption time series of a residential customer for 14 days and recorded data with 

20% random incompleteness. 

Table 2.2: Accuracy of proposed method (%) with respect to the number of residential customers with 

incomplete data and percentage of random incompleteness. 

 
Number of residential customers with incomplete data (%) 

10 20 30 40 50 60 70 80 90 100 

Random 

incompleteness 

for each 

residential 

customer (%) 

0 100 100 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 98.95 100 98.95 97.89 100 

4 100 100 100 100 100 97.89 95.79 98.95 96.84 94.74 

6 100 97.89 100 97.89 96.84 93.68 95.79 94.74 94.74 93.68 

8 98.95 97.89 98.95 100 93.68 95.79 95.79 97.89 90.53 94.74 

10 100 100 96.84 96.84 93.68 93.68 90.53 87.37 88.42 96.84 

12 98.95 95.79 97.89 96.84 96.84 90.53 90.53 90.53 93.68 85.26 

14 98.95 97.89 97.89 96.84 95.79 92.63 91.58 94.74 86.32 88.42 

16 98.95 96.84 93.68 92.63 89.47 92.63 88.42 90.53 92.63 89.47 

18 95.79 97.89 95.79 97.89 89.47 89.47 91.58 88.42 85.26 84.21 

20 100 95.79 91.58 97.89 93.68 90.53 90.53 91.58 83.16 83.16 
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2.4.4 Consecutive Incompleteness 

In this case, consecutive incompleteness in recorded power consumption of a set of 

residential customers is considered. Similar to the previous scenario, sensitivity analysis 

with respect to the percentage of incompleteness is performed for the IEEE 123-bus test 

system. The percentage of incompleteness changes from 0% to 20% by steps of 2%, while 

the number of residential customers with incomplete data increases from 10% to 100%. 

Fig. 2.13 shows the real power consumption time series of a residential customer for 14 

days as well as recorded data with 20% random incompleteness. 

 

Fig. 2.13: Real power consumption time series of a residential customer for 14 days and recorded data with 

20% consecutive incompleteness. 

The results of sensitivity analysis are summarized in Table 2.3. Compared to the 

previous scenario, in this scenario, incompleteness is limited to a consecutive time interval 

and the residential customers’ power consumption for other time intervals is not extremely 

affected by the missing data. As a result, the proposed method is able to effectively identify 
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residential customers’ phases almost for all possible scenarios with an accuracy of more 

than 94.74%. The worst-case scenario occurs when all residential customers are 

experiencing 20% of consecutive incompleteness, however, the proposed method is still 

able to correctly identify phase connectivity of 90 out of 95 residential customers. 

Table 2.3: Accuracy of proposed method (%) with respect to the number of residential customers with 

incomplete data and percentage of consecutive incompleteness. 

 
Number of residential customers with incomplete data (%) 

10 20 30 40 50 60 70 80 90 100 

Consecutive 

incompleteness 

for each 

residential 

customer (%) 

0 100 100 100 100 100 100 100 100 100 100 

2 100 100 100 100 100 100 98.95 97.89 100 100 

4 100 100 100 100 100 100 98.95 100 100 100 

6 100 100 100 100 100 98.95 98.95 100 98.95 100 

8 100 100 97.89 98.95 97.89 98.95 97.89 98.95 98.95 97.89 

10 100 100 100 98.95 98.95 97.89 100 97.89 100 98.95 

12 100 100 98.95 100 98.95 98.95 100 95.79 97.89 95.79 

14 100 100 100 98.95 98.95 98.95 100 97.89 97.89 96.84 

16 100 100 98.95 98.95 98.95 97.89 94.74 97.89 97.89 96.84 

18 98.95 100 100 97.89 97.89 97.89 97.89 97.89 95.79 96.84 

20 100 98.95 100 97.89 97.89 95.79 97.89 95.79 98.95 94.74 

To get a step further, random and consecutive incompleteness are applied to a larger 

portion of the power consumption data of residential customers. In this regard, the 

sensitivity analysis is studied with respect to the percentage of incompleteness changes 

from 0% to 90% by steps of 2%, while the number of residential customers with incomplete 

data increases from 10% to 100%. Fig. 2.14 and Fig. 2.15 summarize the results for 

consecutive and random incompleteness, respectively. 
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Fig. 2.14: The range of phase identification method’s accuracy with respect to the number of residential 

customers with incomplete data and percentage of consecutive incompleteness. 

 

Fig. 2.15: The range of phase identification method’s accuracy with respect to the number of residential 

customers with incomplete data and percentage of random incompleteness. 
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As Fig. 2.14 shows, by increasing the number of residential customers with 

consecutive incomplete data, the accuracy of the proposed slightly drops, however, even 

in the worst-case scenario, when all residential customers are experiencing incompleteness 

of 10% up to roughly 90%, the proposed method is capable of identifying the phase 

connectivity. This is the case for random incompleteness shown in Fig. 2.15. However, as 

previously mentioned, as incompleteness in consecutive type is limited to a consecutive 

time interval and the residential customers’ power consumption for other time intervals is 

not extremely affected by the missing data, the proposed method has a better performance 

compared to random incompleteness. This can be seen by comparing the results in the last 

two figures, where by increasing the number of residential customers with random 

incomplete data in each scenario, the accuracy of the proposed method decreases slightly 

faster than in case of consecutive incomplete data. 

 

Case 3: Phase identification considering residential solar PVs 

Integrating solar systems into the current distribution grids may add additional 

difficulties regarding the phase identification task. The proposed phase identification 

method in the presence of residential solar PVs is evaluated in this dissertation. In this 

regard, the IEEE 123-bus test system is used while considering PV installation in selected 

buses. 

2.4.5 Distribution Test System with Residential Solar PVs 

In this case, it is assumed that a set of random residential customers are equipped 

with solar PVs. Randomness is modeled by a uniformly distributed pseudorandom integer 
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producer. Sensitivity analysis with respect to the length of available data and the percentage 

of residential customers with solar PV installation is performed for the IEEE 123-bus test 

system. It is considered that 30-min power consumption data for residential customers as 

well as for each phase at the substation are available. The length of available data is 

increased from 1 day to 10 days by steps of 1 day, while the number of residential 

customers with solar PVs increases from 0% to 50% by steps of 10%. 

The results of sensitivity analysis are summarized in Table 2.4. As shown, by 

having at least 7 days of data, the accuracy of the proposed method reaches its max of 

100%. As it is expected, as the PV installation is a behind-the-meter energy resource, the 

net load metered by the smart meter remains unchanged. As a result, the proposed method 

is efficiently capable of identifying the phase connectivity of the customers in this case. 

Table 2.4: Accuracy of the proposed method (%) with respect to the number of residential customers with 

solar PVs and the number of available data. 

 

 
Number of available data (day) 

1 2 3 4 5 6 7 8 9 10 

Number of 

residential 

customers 

with solar PVs 

(%) 

0 47.37 65.26 73.68 94.74 98.95 100 100 100 100 100 

10 46.32 74.74 74.74 97.89 100 100 100 100 100 100 

20 38.95 66.32 77.89 92.63 100 100 100 100 100 100 

30 48.42 56.84 75.79 93.68 98.95 100 100 100 100 100 

40 41.05 52.63 75.79 93.68 97.89 100 100 100 100 100 

50 45.26 64.21 76.84 94.74 97.89 98.95 100 100 100 100 
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2.4.6 Discussion 

Several interesting points can be derived regarding the proposed method based on 

the studied cases: 

• As it can be seen in Tables 2.2 and 2.3, in each column, by increasing the 

percentage of incompleteness, the accuracy does not monotonically decrease. The reason 

is that to evaluate the capability of the proposed method in case of incomplete data, in each 

step the selected residential customers carrying incomplete data are chosen randomly to 

make sure most of the possible combinations are tested. In other words, in each cell of each 

column in Tables 2.2 and 2.3, the residential customers with incomplete data are selected 

randomly and the samples lost in each power consumption time series are also chosen 

randomly. This way, the accuracy of each step of the sensitivity analysis is independent of 

the accuracy of previous steps. 

• As it is expected, increasing the network’s size leads to an increase in the 

length of required data for phase identification. 

• Increasing the percentage of incompleteness in the recorded power 

consumption of residential customers leads to a decrease in the proposed method’s 

accuracy, which can be compensated by increasing the length of the available data. 

• Increasing the number of residential customers with incomplete data also 

leads to a decrease in the proposed method’s accuracy, which again can be offset by 

increasing the length of the available data. 
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• Power consumption is considered to be recorded in a timely manner at 30-

min time intervals. Recording data in shorter time intervals could decrease the length of 

required data while expediting the clustering. 

• There is no assumption that the dataset should be complete. However, by 

accessing to a priori information regarding the residential customers with incomplete data 

and modifying the proposed method, the results could be improved. This can be achieved 

through dividing the proposed method to two steps, one for the residential customers with 

complete data and the next for those with incomplete data. 

• As it can be seen in Tables 2.4, the proposed method is efficiently capable 

of identifying the phase connectivity of the residential customers in the presence of solar 

PVs. Smart meters collect and report the net load consumed by the residential customer. 

On the other hand, the meters installed at the substation also record the net load by all the 

customers connected to each phase. The proposed phase identification method uses the net 

load recorded by the smart meters, so the method is capable of identifying the phase 

connectivity of the residential customers in the presence of PV or any other behind-the-

meter energy resource such as batteries or EVs.  
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2.5 Conclusion 

An innovative data-based phase identification method was proposed in this 

dissertation. The proposed method consisted of two steps of preprocessing and clustering. 

In the preprocessing step, redundant and useless parts of the power consumption time series 

were removed by using a high-pass filter. The preprocessed data were then applied to the 

clustering algorithm. An efficient clustering algorithm was also developed starting from 

the aggregated power consumption of the three phases at the substation as the initial 

centroids, where the residential customers were accordingly assigned to the corresponding 

clusters. In addition, by applying the postprocessing step, the proposed method identified 

and corrected the wrong phase connectivity information in the current network’s phase 

mapping available at the electric utility.  

The effectiveness of the proposed method to identify the residential customers’ 

phases in case of incomplete data was evaluated by considering two possible scenarios of 

incomplete data, i.e., random and consecutive. In addition, the performance of the proposed 

method in the presence of residential solar PVs was analyzed. Numerical results showed 

that the proposed method could identify the phase connectivity of the residential customers 

individually and accurately. The proposed phase identification method can be utilized by 

electric utilities to improve observability and controllability of the distribution grid as an 

important part of topology identification for different economic and operational reasons, 

including but not limited to rebalancing, phase mapping connection, loss reduction, 

operational improvements, and hosting capacity calculations. 
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3 Chapter Three: Distribution Outage Identification 

3.1 Introduction 

Extreme weather events can cause significant damage to electric power grid 

infrastructure and lead to widespread power outages. The frequency and the intensity of 

these events are continuously increasing as a direct result of climate change [12]. From 

2002 to 2015, extreme weather events have caused more than 87% of major power outages, 

involving 50,000 or more customers, in the U.S. [13]. Fig. 3.1 shows the most common 

causes of the outages in the US in 2020, where more than 43% of them were weather- or 

natural disaster-related. 

 

Fig. 3.1: Common cause of electricity outages in the US in 2020 [56]. 
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The identification of grid components that are damaged is the first step to 

recovering from extreme weather-related power outages. These components can be easily 

identified in the generation and transmission levels; however, this is not the case for 

distribution level components. Traditionally, the distribution grid has not been fully 

observable to grid operators, causing outage location identification a challenging task. This 

task is currently performed by investigating the feeder configuration map and the 

protection design manual to identify the overall outage locations [14], i.e., an expert-

experience-based method. Although the expert-experience-based method may be able to 

achieve highly accurate solutions, it is proved to be laborious, costly, and time-consuming 

[15], [16].  

 

Fig. 3.2: Outage cost vs. outage duration. 

Time is of particular essence in this case. As the outage duration increases, the 

associated outage cost will increase almost exponentially, as shown in Fig. 3.2. An 
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automated method with a short computation time would be significantly useful in this case, 

especially for larger networks. 

Consider a distribution network in which one or more lines are disconnected due to 

an extreme weather event. Because of the radial structure of the network, multiple 

customers will experience a power outage. Assuming each customer is equipped with a 

smart meter, a signal (commonly known as the “last gasp”, hinting that the meter will go 

offline after this signal) will be instantaneously sent to the electric utility company. Once 

these last gasp signals are received, the utility company should figure out the exact 

location(s) of the damaged line(s) and accordingly proceed to restore the distribution grid 

in the shortest possible time. The key challenge here is that depending on the distribution 

grid topology, discovering the exact locations of damaged lines can be a complicated and 

time-consuming task.  

An important issue regarding weather-related outages in distribution grids is that 

several lines may be damaged simultaneously in various locations, where some noteworthy 

methods, such as in [57] and [58], are proposed for identifying multiple simultaneous 

outages. Fig. 3.3 depicts an illustrative example in a 13-bus radial distribution grid. As 

illustrated, customers on buses 8 to 13 are experiencing power outages which are 

automatically reported to the utility company by smart meters. The challenge here is that a 

power outage can result from damage to any of the upstream distribution lines. For 

example, for a power outage in bus 13, any of the seven upstream lines can be damaged, 

while for an outage in bus 8 this number is eight. This example advocates that the damaged 
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lines can be mapped into multiple target labels. The idea in this dissertation is to figure out 

the exact lines that cause the observed power outages [7].  

 

Fig. 3.3: Example of simultaneous power outages in a radial network.    

3.2 Proposed Solution 

Considering the potentially large amount of data that will be involved in this 

process and the frequency of these events, utility companies could reap the benefits of a 

machine learning-based data mining method in locating the damaged lines. Fig. 3.4 depicts 

the proposed solution, which consists of four steps; data synthesis, training, testing, and 

evaluation. Through data synthesis, the historical network topology and the outage status 

of smart meters are used to label the actually damaged lines. By leveraging a large portion 

of the synthesized data, the second step reaps the benefit of several binary SVMs to train a 

multi-label classifier and generate the associated SVM parameters for the test step. The 

rest of the synthesized data, along with the generated SVM parameters, are employed in 

the last step to evaluate the effectiveness of the proposed method.  
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Fig. 3.4: The input and output vector data for the ML-SVM classifier.  

3.2.1. Multi-Label SVM Classifier  

SVM, which has been widely used in various areas of research [59], was originally 

designed as a binary classifier. However, a set of independent binary SVMs can be 

employed to perform multi-label classification [59]. The binary SVM classification is an 

optimization problem based on finding a hyperplane. The optimal hyperplane minimizes 
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the distance among the training samples which belong to the same class while maximizing 

the distance among the samples of different classes. As shown in Fig. 3.5, the separating 

distance between two classes is called a margin, and the closest samples to the hyperplane 

are called the support vectors [60].  

 

Fig. 3.5: The binary SVM classifier. 

The hyperplane can be defined as (3.1): 

𝑤. 𝑥 + 𝑏 = 0                                                                              (3.1)  

where w and b are the SVM model parameters, and x is the input training data.  

Consider a multi-label training set D = {(xi, yi)}, where xi is a B-dimensional input 

vector representing the outage status of the smart meters. B is the number of smart meters, 

and xid = 1 means d-th smart meter is in service, while xid = 0 indicates this smart meter is 

reporting a power outage. On the other hand, yi is the status of the lines as a label vector. 

Each yi has L arrays which correspond to lines. If yil = 1, line l is on outage; otherwise, if 
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yil = -1, this line is in service. By defining ξil as a nonnegative slack variable, and c as a 

tradeoff parameter, the ML-SVM classifier can be written as an optimization for each class 

(3.2): 

min
1

2
‖𝑤𝑙‖

2 + 𝑐 ∑ 𝜉𝑖𝑙
𝑁
𝑖=1             (3.2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑦𝑖𝑙(𝑤𝑙
𝑇𝑥𝑖 + 𝑏𝑙) ≥ 1 − 𝜉𝑖𝑙,     𝑙 = 1, … , 𝐿  

N and L are the number of training data and the number of classes, respectively 

[60]. The optimization problem returns a binary SVM model for every individual class as 

in (3.3).  

𝑓𝑙(𝑥𝑖) = 𝑤𝑙
𝑇𝑥𝑖 + 𝑏𝑙

                                                  
                       (3.3) 

3.2.2. Nonlinear Classification  

Although the original SVM algorithm is a linear classifier, by applying a kernel 

function to the algorithm, the nonlinear SVM classifier can be achieved [61]. The mapping 

function 𝜑(𝒙𝑖) transforms the input vector to a higher-dimension space. Fig. 3.6 Shows 

the transformation from a linear to nonlinear input space. 

The nonlinear SVM classifier maximizes the margin by finding the hyperplane in 

the transformed feature space. The kernel function, i.e.,  𝐾(𝒙𝑖, 𝒙𝑗) is a function of  𝜑(𝒙𝑖) 

as shown in (3.4). 

𝐾(𝒙𝑖, 𝒙𝑗) = 𝜑(𝒙𝑖)
𝑇𝜑(𝒙𝑗)        (3.4) 
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There are several kernel functions used in SVM, including but not limited to linear 

[61], [62], polynomial [63], and radial basis function (RBF) [64], [65], which are 

represented as in (3.5)-(3.7): 

𝐾𝐿𝑖𝑛𝑒𝑎𝑟(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗        (3.5) 

𝐾𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙(𝒙𝑖, 𝒙𝑗) = (𝛾𝑝𝒙𝑖
𝑇𝒙𝑗 + 𝑟)

𝑑′

      (3.6) 

𝐾𝑅𝐵𝐹(𝒙𝑖, 𝒙𝑗) = 𝑒(−𝛾𝑟‖𝒙𝑖−𝒙𝑗‖
2

)
       (3.7) 

where both γp and γr are positive parameters, r is a nonnegative parameter, and d’ 

is the degree of the polynomial kernel [60].  

 

Fig. 3.6: Kernel transformation. 

3.2.3. Model Evaluation  

A confusion matrix is used to evaluate the performance of the proposed classifier. 

The predicted label for each sample could acquire four possible states, including True 

Negative (TN), True Positive (TP), False Negative (FN), and False Positive (FP), as shown 

in Table 3.1. The diagonal components demonstrate the number of samples which are 
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correctly classified, while the off-diagonal components represent errors. The FN 

component is referred to as error type I (EI), and it illustrates the number of damaged lines 

which are wrongly classified as in service. The FP component is called error type II (EII), 

denoting the number of in-service lines which are wrongly categorized as on outage.  

Table 3.1: Confusion matrix 

 
Predicted Class 

-1 (In service) 1 (On outage) 

Actual Class 
-1 (In service) TN FP 

1 (On outage) FN TP 

It is interesting to note that based on the problem definition, these errors have 

different meanings: 

• EI means that the time of outage in some locations will be longer, as no 

repair personnel will be sent out to those locations 

• EII translates into futile restoration efforts, as some repair personnel will be 

sent out to incorrect locations.  

Various measures can be defined to evaluate the classifier performance from the 

confusion matrix, including Fβ-score as adopted in this dissertation (3.8): 

𝐹𝛽 − 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+(
𝛽2

1+𝛽2)𝐸𝐼+(
1

1+𝛽2)𝐸𝐼𝐼

0 ≤ 𝛽 ≤ +∞     (3.8) 

As formulated in (3.8), when β < 1, the effect of EII will be greater than EI, for β = 

1, the impact of these two errors is equal to each other, and when β > 1, the effect of EI will 

be greater than EII. In other words, by adjusting β it can be decided whether the focus will 

be on fast recovery of the damaged lines or on minimizing the cost of repair crew 
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dispatched to damaged locations. The Fβ-score can be written as a percentage value, where 

Fβ-score = 100% means the classifier has no error, and Fβ-score = 0% means the classifier 

cannot correctly identify any of the line outages. 

3.2.4. Incompleteness in Data 

The last gasp signals may not be sent out or received to be utilized in the proposed 

method. In this respect, the performance of the proposed method under the presence of 

incomplete signals will be investigated by preprocessing them in a step named data 

preprocessing. The incomplete signals could be categorized into two different classes: 

semi-incomplete and pure-incomplete. In what follows, these two classes of incomplete 

signals will be first defined and further comprehensively preprocessed to be utilized in the 

proposed method. 

Semi-incomplete signals are such kinds of signals which their statuses could be 

exactly determined through the last gasp signals received by their prior and subsequent 

smart meters. As shown in Fig. 3.7, the last gasp signals of three smart meters connected 

to buses 2, 3, and 13, are not sent out or received. These incomplete signals are classified 

as semi-incomplete as their statuses can be exactly determined by investigating their 

adjacent smart meter statuses. The preprocessing step is employed to determine the semi-

incomplete signals statuses. In this step, by investigating the statuses of prior and 

subsequent smart meters, the statuses of the missed smart meters will be specified. In Fig. 

3.7, for buses 2 and 3, as the subsequent smart meters from bus 4 to bus 7 are in service, 

the smart meters in buses 2 and 3 are determined to be in service. For bus 13, as the prior 
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smart meter’s status in bus 12 is on outage, the smart meter in bus 13 is governed to be on 

outage. Thus, this class of incomplete signals, i.e., semi-incomplete, can be precisely 

resolved based on this preprocessing step, and further utilized in the proposed method. 

 

Fig. 3.7: An illustrative example of preprocessing step to determine semi-incomplete data. 

On the other hand, pure-incomplete signals are that kind of smart meter statuses 

that are not possible to be identified via the last gasp signals received by their adjacent 

smart meters. As demonstrated in Fig. 3.8, the last gasp signals of two smart meters 

connected to buses 7 and 13 are not sent out or received, and these incomplete signals are 

categorized as pure-incomplete since their statuses cannot be determined by their adjacent 

smart meters. Regrading bus 7, as the prior smart meters are in service and the subsequent 

smart meter in bus 8 is on outage, the status of the smart meter is not clear. This is the case 

for the smart meter in bus 13, as the prior smart meters are in service and there is no 

evidence to define the status of the smart meter in bus 13.  

The smart meter statuses associated with these pure-incomplete signals could be 

considered either as in service or on outage. As mentioned in section III of the dissertation, 
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two types of error are defined. Error type I or False Negative means an on outage smart 

meter is not identified correctly and it leads to longer outage time in that location. Error 

type II or False Positive means an in-service smart meter is classified as an on outage one 

wrongly, which leads to sending unnecessary repair personnel to the location. In the case 

of pure-incomplete signals, by considering them as in service, the Error type I may be 

increased which means some of the damaged lines are wrongly classified as in service. On 

the other hand, if they are regarded to be on outage, the Error type II EII may be increased, 

denoting some of in-service lines are wrongly classified as on outage. Nevertheless, as the 

proposed method prefers to restore outages in the shortest time at the expense of the extra 

cost of sending additional repair crew to damaged sites, the pure-incomplete signals 

associated with smart meters are set to be on outage. By doing this, the proposed method 

can achieve its quick restoration goal in the shortest possible time. 

 

Fig. 3.8: An illustrative example of preprocess step to determine pure-incomplete data. 
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3.3 Numerical Studies 

The proposed outage identification method is applied to both small and relatively 

large networks to check its accuracy and scalability. In Case 1, the proposed method is 

tested on the IEEE 33-bus test system. The IEEE 123-bus distribution test system is further 

used in Case 2 to examine the ability of the proposed method in case of a relatively large 

network. Calculations were done in MATLAB. Case 3 uses IEEE 123-bus test system to 

evaluate the effectiveness of the proposed method in case of incompleteness in the data, 

i.e., lost last gasp signals of smart meters. 

3.3.1. IEEE 33-Bus Distribution Test System 

The IEEE 33-bus radial distribution network is used to evaluate the proposed ML-

SVM classifier for line outage identification. Fig. 3.9 shows the IEEE 33-bus distribution 

test system. The training input vector xi is a 32-dimensional vector, corresponding to the 

number of reporting smart meters. The connecting lines between the buses are considered 

as classes in the ML-SVM classifier, so the number of the classes based on the network 

topology is 32. 

 

Fig. 3.9: IEEE 33-bus distribution test system. 
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A set of 385 scenarios based on the network topology is generated to synthesize the 

data, of which 80% and 20% of the generated data are respectively employed to train and 

test the ML-SVM classifier. For the test samples, 1517 outages are reported by the smart 

meters, which are correspondingly caused by 239 damaged lines. It should be noted that 

the mentioned numbers for outages and damaged lines are extracted from all generated 

scenarios associated with the test samples. The proposed multi-label scheme with linear, 

polynomial, and RBF kernels is performed to locate the damaged lines. Based on trial and 

error, the associated parameters for the polynomial kernel, i.e., γp, r and d are set as 1, 10, 

and 3, respectively. In a similar fashion, γr is found to be 0.1 in the RBF kernel. The goal 

here is to reduce EI, rather than EII, as utility companies mostly try to restore power in the 

shortest possible time while overlooking the potential costs. Without loss of generality, β 

will be considered as 2 in this study. 

The mentioned kernels represent various results in terms of confusion matrix, F2-

score, and computation time as tabulated in Table 3.2. The ML-SVM classifier with the 

polynomial kernel correctly locates 238 damaged lines out of 239 actual damaged ones, 

and 2224 out of 2225 of lines are correctly classified as in service. The classifiers with the 

linear and RBF kernels, respectively, identify 226 and 202 damaged lines. As shown in 

Table 3.2, the EI is smaller than the EII for all three kernel functions, which means the 

proposed method focuses on restoration in the shortest time at the expense of the extra cost 

of sending additional repair crew to damage sites.  

F2-score and computation time are considered as two decisive factors in selecting 

the best kernels. The calculated F2-scores for the ML-SVM with linear, polynomial, and 
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RBF kernels are calculated as 96.17%, 99.58%, and 89.62%, respectively. The polynomial 

kernel has the highest F2-score and the least computation time compared to the other two 

kernels, so it can be considered as the most suitable classification method for the proposed 

problem. 

Table 3.2: Comparison of various kernels of ML-SVM for 33-bus network 

Kernel Confusion Matrix F2-Score (%) Computation time (s) 

Linear 
2217 13 

96.17 25.7 
8 226 

Polynomial 
2224 1 

99.58 18.6 
1 238 

RBF 
2205 37 

89.62 21.7 
20 202 

Fig. 3.10 provides the graphical result of the ML-SVM classifier with a polynomial 

kernel for one test data as a sample. The proposed method correctly identifies lines 3-4, 

21-22, and 23-24 as damaged ones. The result advocates the fact that even though 

numerous outages are reported by the related smart meters, only three damaged lines are 

the sources of these outages. 
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Fig. 3.10: The graphical result of ML-SVM classifier with polynomial kernel for one test data as a sample 

in the IEEE 33-bus. 

3.3.2. IEEE 123-Bus Distribution Test System 

To evaluate the scalability of the proposed method, the ML-SVM is tested on the 

IEEE 123-bus distribution network. As shown in Table 3.3, while the size of the network 

is increased, the efficiency of the proposed method is still high, and the solution is obtained 

in around 1 min. It should be mentioned that if the low voltage networks are included, the 

number of measurements would considerably increase, however, as demonstrated, the 

proposed method is scalable and capable of finding the solution for much larger systems 

in a relatively short amount of time. 

Table 3.3: Comparison of various kernels of ML-SVM for 123-bus network 

Kernel Confusion Matrix F2-Score (%) Computation time (s) 

Linear 
16278 125 

94.91 68.3 
76 1601 

Polynomial 
16322 39 

98.06 58.1 
32 1687 

RBF 
16211 197 

90.86 60.8 
143 1529 
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3.3.3. Lost Last gasp Signals 

The last gasp signals may not be sent out or received to be utilized in the proposed 

method. In this respect, the performance of the proposed method under the presence of 

incomplete signals is investigated by data preprocessing on the IEEE 123-bus test system.  

In this case, it is assumed that the last gasp signals of a set of random buses in the 

network are not received by the utility. Randomness is modeled by a uniformly distributed 

pseudorandom integer producer. Sensitivity analysis with respect to the percentage of lost 

last gasp signals in the test dataset is performed for the IEEE 123-bus test system. The 

percentage of lost last gasp signals changes from 10% to 50% by steps of 10%, while three 

kernels, namely linear, polynomial, and RBF are used for the ML-SVM classifier. 

Fig. 3.11 shows an example scenario of the IEEE 33-bus test system with 20% of 

buses experiencing missing last gasp signals before and after the proposed preprocessing 

step. It should be noted that 20% of the buses in this system are roughly equal to 7 out of 

33 buses.  
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Fig. 3.11: An illustrative example of the IEEE 33-bus test system with 20% lost last gasp signals, (a) before 

and (b) after the preprocessing step. 
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As this figure illustrates, this example contains both pure-incomplete as well as 

semi-incomplete data, where bus 33 contains pure-incompleteness while buses 5, 11, 12, 

15, 18, and 27 are examples of semi-incompleteness. Based on the proposed methodology 

in this dissertation, for the example shown in the figure, six buses containing semi-

incomplete data would be easily identified and replaced with their actual expected last gasp 

signals. In other words, as the smart meters prior to buses 11, 12, 15, and 18 are reporting 

outage, the corrected last gasp signals for the mentioned buses would be on outage. On the 

other hand, the status of buses 5 and 27 would be replaced by in-service status, as their 

subsequent buses are in-service ones. The only bus unidentified would be bus 33, which 

would be dealt by as pure-incomplete data in the proposed method. Therefore, the proposed 

preprocessing step reduces the incompleteness from 20% to only 3% in this example. 

However, as the goal of the proposed method is to identify all the potential outages in order 

to have a fast power recovery, “on outage” status would be assigned to the pure-incomplete 

data. 

The results of sensitivity analysis for the IEEE 123-bus test system are 

demonstrated in Fig. 3.12. The percentage of lost last gasp signals changes from 10% to 

50% by steps of 10%, while three kernels, namely linear, polynomial, and RBF are used 

for the ML-SVM classifier. As shown, in the case of lost last gasp signals, when the 

percentage of random buses with missing last gasp signal increase from 10% to 50%, 

accuracy is slightly decreased. Among the three studied kernels, RBF has the least 

robustness in case of missing data, while the polynomial kernel shows a high performance 



 

 59  

in handling incompleteness in data. However, this case validates that the proposed method 

is capable of identifying residential customers’ phases with acceptable accuracy. 

 

Fig. 3.12: The accuracy of the outage identification method in case of lost last gasp signals based on 

different kernels. 
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3.4 Conclusion 

A novel scheme was proposed in this dissertation to identify distribution lines 

outages in response to extreme weather events by leveraging AMI data. The proposed 

method benefits from an ML-SVM classification method and by using the last gasp signals 

collected through AMIs, the proposed method identifies the outage locations in the 

distribution network. The proposed ML-SVM solution consists of four steps; data 

synthesis, training, testing, and evaluation. Through data synthesis, the historical network 

topology and the outage status of smart meters are used to label the actual damaged lines, 

while the second step utilizes a large portion of the synthesized data and several binary 

SVMs to train a multi-label classifier and generate the associated SVM parameters for the 

test step. The rest of the synthesized data, along with the generated SVM parameters, are 

employed in the evaluation step. 

The effective and acceptable performance of the proposed scheme was validated 

through numerical simulations by considering small and large distribution networks. In 

addition, the proposed method was evaluated in the case of lost last gasp signals. Numerical 

simulations demonstrated that the proposed AMI-based distribution outage identification 

was fast, accurate, and could efficiently identify the line outages. Utility companies can 

reap the benefits of this intelligent method to accelerate the process of grid response and 

recovery and consequently, decrease the associated outage durations and costs. 
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