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Abstract 
 Production functions often study the output of physical products with	
capital and labor inputs. Instead, we use 2004 to 2016 data for 55 In-	
dian multinational companies to assess the production of services. Our	
estimates of flexible production functions yield estimates of scale elasticity	
(SCE) and elasticity of substitution (EOS) for pooled data. A subset of 31	
companies with relatively complete data yields their individual SCE and	
EOS values, revealing their heterogeneity. Sorting the 31 companies by	
their SCE help name scale-efficient (high SCE) and scale inefficient (low	
SCE) multinationals. Similarly, a listing of 31 companies sorted by EOS	
allows us to name companies that are (and are not) robust to input price	
shocks. Using stock market data on these publicly traded companies, we	
report the values of three stock market criteria for top ranking companies	
by SCE. We also study empirical causal paths from the market criteria	
to EOS and SCE, suggesting that SCE and EOS do drive stock market	
indicators implying efficient markets. Our pooled and detailed results	
are relevant for government policy toward the IT sector and corporate	
governance issues. 

	

	

	

	

	



 
 

1 Introduction	

 
A production function helps measure the contribution of individual inputs to	

the creation of output. Consider the production of a tangible product such as		

bushels of corn by a farm. If we have data on farmer’s revenue (quantity ×		

price) and the price of corn per bushel, a deflated revenue  

[(quantity × price)	/(price)], readily gives the desired output quantity.  

A modern firm produces several products and services whose quantities 

cannot be directly aggregated. 

	

Hence, economists define a firm’s ‘value-added’ (V a) as the difference between	

 its total sales revenue and the total cost of components, materials, and services	

 purchased from other firms. Now, a firm’s high V a in a year might have been so	

 because the firm raised the prices. If a firm produces mostly tangible products,	

 it is customary to remove the effect of output price inflation by deflating the V a	

 by a price index as specific to the firm’s output as possible to yield its output	

 quantity. Unfortunately, service-output-specific price index for deflating value-	

 added numbers is unavailable. 

 In this paper, we are concerned with the production of intangible services by	

 Indian multinational firms who sell those services mostly to developed countries.	

 Using a suffix R for rupees, we let V aR stand for the value-added in millions of	

 rupees, deflated by the consumer price index (CPI) in India. Now we define logs	

 of capital and labor inputs, K = log(Asst), where Asst represents total assets in	

 millions of Rupees, making K the log of capital input. Similarly, L = log(Emp),	

 where Emp means the number of employees, making L the log of labor input.	

 Three popular functional forms for a production function with two inputs	

include the Cobb-Douglas, 

y = α0 + α1K + α2L, (1) 



 
 

which is linear in parameters. The trans-log functional form with cross product	

and square terms is 

y = α0 + α1K + α2L + α3K L + α4K2 + α5L2. (2) 

 The constant elasticity of substitution (CES) production function is defined	

as 

y = γ[δK−ρ + (1 − δ)L−ρ]−ν/ρ, (3) 

where γ measures the efficiency, δ measures input intensity, ν measures the 

scale	elasticity (SCE) and ρ measures elasticity of substitution (EOS). 

 The highly nonlinear functional form (3) makes the estimates depend on	

 the optimization algorithm used, which searches in the neighborhood of some	

 starting values for unknown coefficients. In addition to such nonlinear estima-	

 tion difficulties, there is little theoretical or empirical justification for assuming,	

 as the functional form (3) does, that SCE= ν and EOS= ρ should be fixed	

constants for all firms and years. 

 Unfortunately, all three functional forms listed above are not suitable for	

our purposes. The Cobb-Douglas is too restrictive in assuming without evi-	

dence that SCE is a fixed constant and EOS=1. For our data the matrix of		

correlation coefficients {rij} reported in Table 1 between (K, L, KL, K2, L2)		

has all correlations large, {rij} > 0.858, suggesting collinearity. The ordered	

vector of eigenvalues λi, i = 1, 2, . . . 5, for the regressors in (2) are: (4.710,		

0.269, 0.018, 0.002, 0.000). Note that the smallest eigenvalue min(λ) ≈ 0 for		

these data suggest a near-zero determinant and a very high condition 

number,	(max(λi)/min(λi)) → ∞, implying a very ill-conditioned matrix of 

regressors.	Numerical mathematicians have long warned against inverting ill-

conditioned	matrices.	

 

 

	



 
 

	
Table 1: Correlation matrix between variables in a translog production function 

 y K L KL K2 L2	
 y 1.000 0.938 0.928 0.957 0.931 0.928	
 K 0.938 1.000 0.858 0.952 0.991 0.867	
 L 0.928 0.858 1.000 0.960 0.860 0.991	
KL 0.957 0.952 0.960 1.000 0.964 0.974	
 K2 0.931 0.991 0.860 0.964 1.000 0.880	
 L2 0.928 0.867 0.991 0.974 0.880 1.000 

	
The mean squared error, MSE(α̂	) = E(α̂ − α)2, is the expected value of	the  

squared Euclidean distance between the p×1 vector of estimates and true values (α).  

When (E (α̂) = α), we have an unbiased	estimator. Since the ordinary least squares  

(OLS) estimator is unbiased, it	can be shown that the MSE(α̂	) = V ar(α̂	) =  

σ2(λ1−1 + λ−2 1
 . . . + λ−p 1). When we have collinear data, the smallest eigenvalue (min(λi))  

of the covariance (or correlation) matrix is very small, close to zero. Then, 1/min(λi) → ∞  

implying a very high MSE suggesting a highly unreliable OLS estimate (α̂	). Our data  

analysis reveals that the full trans-log form of equation (2) has min(λi) ≈ 0.  

We also find that omitting the square terms (K2, L2) of the trans-	log helps reduce the  

condition number from near infinite to 16.073, solving the	collinearity problem.  

This avoids the use of ridge regressions or other biased estimators, Vinod (1976). 

 We choose a version of the trans-log production function, which remains lin-	

 ear in parameters but includes KL term allowing for limited nonlinearity while	

 omitting (K2, L2) causing the collinearity. It can be proved that the following	

form is non-homogenous and exhibits variable EOS, (VES). We estimate: 

y = α0 + α1K + α2L + α3(K L) + , (4) 

where the notation already uses logs of output, capital, and labor. The Cobb-	

Douglas production function (1) is a particular case when the coefficient of the	

cross-product term α3 = 0 in (4). 

 This production function is non-homogeneous and hence flexible in the sense	

that it lets data determine various elasticities described in the sequel, rather than	

simply fixing their values as known constants. For example, the Cobb-Douglas	



 
 

form sets the elasticity of substitution (EOS) to be unity, irrespective of the	

data. Similarly, constant elasticity of substitution (CES) production function	

sets EOS = η, some constant. Instead, the formulation in equation (4) lets the	

data estimate variable EOS. If the estimated EOS values are indeed nearly con-	

stant, one can always simplify the specification and use a CES functional form.	

We shall see later that our data on Indian multinationals exhibit a considerable	

range of EOS values, far from being a constant. 

	

1.1 Marginal and scale elasticity 
 Output per unit of labor (per employee) V aR/Emp, is a crude but straight-	

 forward measure of labor productivity. The limitation of (V aR/Emp) ratio is	

 that it ignores the contribution of capital, falsely pretending that all output can	

 credited to the labor input. Similarly, one can define (V aR/Asst) ratio as a	

crude measure of capital efficiency. The input productivity is better measured	

by the marginal productivity of capital and labor (MPK , MPL), defined by the	

partial derivative of the output with respect to an input. Unfortunately, the	

MPK , MPL values are sensitive to the units of measurement for assets and em-	

ployees and we cannot conveniently compare MPK with MPL over time, nor	

 can we compare their values across firms. 

 The marginal elasticities of capital and labor, denoted by MEK, MEL, re-	

spectively measure the percent change in the output as an effect of a 1% change	

in capital or labor input, one at a time. Now, percent changes are not sensitive	

to units of measurement and are readily compared over time and across firms.	

In fact, we can compute MEK, MEL as the partial derivatives of the log of out-	

put with respect to (wrt) the log of one input. For the specification in equation	

(4) the MEK (=∂y/∂K) values are defined as: 

MEK = α1 + α3(L) (5) 



 
 

 An empirical estimate of these marginal elasticities requires regression coef-	

ficient estimates. The term (L) or log of labor appearing in the last right-hand	

side terms of (5) represent data on the input, which varies with each observa-	

tion. Hence, MEK estimates will vary with each L. Since one cannot report	

 so many (750 values for 55-firm 13-year data) pooled data MEK estimates, it	

is customary to estimate MEK values at the sample mean or L̄. That is, one	

replaces L in the formula (5) by a single number L̄ for average L in the data.	

 Analogous marginal elasticities of labor (MEL) are also readily computed	

from estimated coefficients and the known sample mean, K̄ . The scale elasticity	

SCE measures the percentage change in output from a one percent increase in	

the scale of operations measured by a one percent change in all inputs. Thus,	

we have: 

SCE = MEK + MEL, (6) 

which is a summary measure of the efficiency of the Indian multinational entity. 

1.2 Elasticity of substitution 
The ratio of marginal productivities of capital and labor, MPK/M PL, is called	

the marginal rate of transformation (MRT). J. R. Hicks first defined elasticity of	

substitution (EOS) as the percent change in MRT in response to a one percent	

change in input ratio K/L. It is best expounded in Ferguson (1971) and partially	

covered in many economics textbooks. Here we are interested in the sign of	

EOS(K,L) between inputs K and L. Assuming the corporate entity producing 

the output is on an output-maximizing ‘expansion path,’ Hicksian theory implies	

that whenever the EOS(K,L) is positive, the gains in output remain positive	

despite adverse input price changes. There is, however, no reason to assume	

that EOS remains constant, EOS = η, for each observation, which is done by	

constant elasticity of substitution (CES) production functions. If our marginal	



 
 

elasticities already vary with each observation, CES’ constancy assumption is	

all the more unrealistic, and hence avoided here. 

 The non-homogeneous production function (4) has the advantage that its	

elasticity of substitution is given by a simple expression 

EOS = SCE/(SCE + 2α3). (7) 

 Since the scale elasticity SCE defined in (6) is easy to estimate, estimating EOS	

 merely needs one to plug in α̂3, an already estimated regression coefficient.	

 The Cobb-Douglas production function is obtained by setting the coefficients	

 of the cross-product term (α3 = 0). A quick check on the validity of (7) is that	

EOS for Cobb-Douglas should be unity. Now, EOS is indeed unity, since it	

becomes EOS = SCE/SCE = 1 for the special case when α3 = 0. 

2 Pooled data production function estimation 
Using the data pooled together for all 55 Indian multinational companies for	

years 2004 to 2016 on logs of outputs and inputs, we first estimate a few versions	

of the non-homogeneous production function: 

y = α0 + α1K + α2L + α3(K L) + α4Y ear + ε, (8) 

 where we have an additional regressor for time (Y ear = 2004, 2005. . . . 2016)	

represents a proxy for technological change, commonly used in the related lit-	

erature. Our results in Table 2 use pooled data, which makes no distinction	

between individual companies. One way to assess whether pooling is appropri-	

ate is to check the quality of its statistical fit. We use the usual F test and a	

newer exogeneity test for this purpose here. 

 Recall that our value-added output variable VaR uses CPI to correct for	

 inflation. Since the Cobb-Douglas scale elasticity, SCE = α1 + α2, is 0.596 +	

0.531 = 1.127, is above unity, these corporations as a whole in pooled data	

enjoy increasing returns to scale, implying general efficiency. All models are	

statistically significant from the reported large F statistics. 



 
 

The statistically significant estimates of (α̂4 = −0.017) in columns (2) and 

(3) suggests that as time increases the output mildly decreases. Since the 

coefficients	of Y ear is rather small it is convenient to exclude the Year as a 

regressor	 in the sequel. Although the coefficient of the cross-product, K L, is 

even smaller, we need to retain it in our VES specification. Otherwise, we are 

implicitly using	 a Cobb-Douglas functional specification, which fixes the 

elasticity of substitu tion to be unity and SCE to be a fixed constant. The 

pooled data estimates in	 Table 3 continue to support our model 

specifications and continue to suggest 

	

Table 2: Cobb-Douglas and non-homogeneous production functions: Indian	

multinationals producing services output measured by ‘Value added’ deflated	

by CPI using pooled data, eq. (8) 

Dependent variable: 
y 

(1) (2) (3) 
K 0.596∗∗∗ 0.604∗∗∗ 0.677∗∗∗ 

(0.028) (0.028) (0.062) 

L 0.531∗∗∗ 0.526∗∗∗ 0.609∗∗∗ 

(0.029) (0.029) (0.069) 

K L −0.009 
(0.007) 

Year −0.017∗∗ −0.017∗∗ 

(0.008) (0.008) 

Constant −1.816∗∗∗ 32.006∗∗ 31.691∗∗ 

(0.126) (15.367) (15.353) 

Observations 374 374 374	
R2 0.937 0.937 0.938	
Adjusted R2 0.936 0.937 0.937	
Resid. Std. Err 0.543 (df = 371) 0.540 (df = 370) 0.539 (df = 369)	
F Statistic 2,736∗∗∗(df=2; 371) 1,844∗∗∗(df=3; 370) 1,387∗∗∗(df=4; 369) 

Note:∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
	



 
 

	
that Indian multinationals are generally efficient (all SCE ≈ 1) and robust with	
respect to price shocks (EOS > 0). The estimates along rows 1 to 3 in Table 3	
are computed from the coefficients reported in columns 1 to 3 of Table 2. 

Table 3: Pooled data various elasticities 

Row Type ME-K ME-L SCE EOS 
1 CobbD 0.596 0.531 1.127 1.000	
2 CobbD-Yr 0.604 0.526 1.130 1.000	
3 VES-Yr 0.607 0.537 1.144 1.016 

2.1 Exogeneity assessment of model regressors 
This subsection hopes to learn whether the VES model specification (4) might	

suffer from the so-called “endogeneity problem,” Koopmans (1950). Generally	

speaking, we want the right-hand side (RHS) variables in our models illustrated	

by eq. (4) to be exogenous, in the sense that they should have independent vari-	

ation and drive the variation in the dependent variable. Correlation coefficients	

between output variable (y) on the left-hand and inputs (K, L) are fairly large	

and positive, implying that when the companies increase the number of em-	

ployees, their ‘value-added’ output increases. However, exogeneity assessment	

requires deeper analysis discussed next. 

 We use the R package called ‘generalCorr’ from Vinod (2016), which contains	

decision rules based on a unanimity index summarizing three criteria (Cr1 to	

Cr3). The theory is explained in software vignettes and Vinod (2019). The	

software readily compares flipped models where one model has an output (y)	

on the one hand and inputs K, L on the other. The decision rules help name	

the variable in the column entitled ‘cause’ and also name the flipped variable	

in the column entitled ‘response.’ Koopmans showed long ago that regressors	

should approximately ‘cause’ the dependent variable. Otherwise, the model	

suffers from the so-called ‘endogeneity problem.’ 

2.2 Description of headings in causal path tables 
We describe the headings of all causal path tables in this paper in this subsection	

for easy reference based on the theory in Vinod (2019). 



 
 

1. cause = name of the causal variable. 

2. response = name of the response variable. 

3. strength = absolute value of the unanimity index (UI) in the range [0,100].	

 If strength is less than 5% the causal path is bidirectional. 

4. corr = the usual correlation coefficient between the two flipped variables. 

5. p-value = p-values for testing the null hypothesis that the population 

correlation coefficient is zero. We generally reject the null if p-value < .05. 

 Table 4 has our causal path results relevant for assessment of exogeneity of	

variables on the right-hand side of (4). The p-values are all near zero in Table	

4, suggesting highly significant correlations. Since the input variables K and L	

are in the ‘response’ column, we do have the endogeneity problem for pooled	

data problems. 

Table 4: Causal paths for exogeneity assessment for pooled data 

 cause response strength corr. p-value	
1 y K 37.008 0.9076 0	
2 y L 100 0.9277 0 

  
We conclude subsection 2.2 by noting that Indian multinationals appear to	

hire their inputs of K, L in response to their profitability measured by their	

value-added output.  Since three regression models reported in Tables 2 are  

statistically significant with plausible coefficients, we can conclude Section 2 by  

noting that pooled data are providing a reasonable picture of the production of  

services by Indian multinationals. Despite the endogeneity problem, the overall  

conclusion is that	SCE ≈ EOS ≈ 1 along all rows of Table 3. The pooled results  

refer to multi-	nationals as a group and are of interest for economic policy toward  

them as a group. We study individual company performance in the next section. 

	

	



 
 

3 Cobb-Douglas function estimates for	
 individual companies 
We estimate separate Cobb-Douglas production functions for each Indian multi-	

national to assess the nature of heterogeneity between the Indian multinationals.	

Only 31 companies out of 55 are selected for reporting. They have at least five	

years of non-missing data for all variables. 

 Table 5 reports two marginal elasticities and their sum as scale elasticity	

using the formulas given in (5) to (6) earlier. Of course, in the absence of	

the cross-product term in a Cobb-Douglas specification, we are implicitly fixing	

α3 = 0. That is, the scale elasticity for Cobb-Douglas is analytically known to	

be SCE = α1 + α2. 

 The column entitled ‘rank’ reports the sorted rank of the company measured	

 by its scale elasticity, with rank=1 indicating the company with the largest SCE.	

 Since we have some negative slope estimates, MEK=α1 < 0, and MEL=α2 < 0,	

in Table 5, it is tempting to conclude that measured capital or labor is an	

unproductive input in producing services of those companies. We need a deeper	

review of possible data errors, nonlinearities missed by the Cobb-Douglas form,	

and of circumstances faced by these companies before we can say that some 

inputs are “unproductive.” Any identification of relatively inefficient firms based	

on SCE = α1 + α2 alone is subject to limitations, simply because the Cobb-	

 Douglas form arbitrarily assumes that SCE is a constant and EOS=1. 

Table 5: Cobb-Douglas Model elasticities for 31 firms sorted by SCE 
rank n MEK MEL SCE EOS R2 Name	
 1 6 4.9527 0.6792 5.6319 1 0.9894 TRIG	
 2 11 1.622 0.5158 2.1378 1 0.3624 APTE	
 3 8 -0.0362 2.095 2.0588 1 0.3837 FINT	
 4 7 0.4079 1.2289 1.6368 1 0.9126 NITT	
 5 13 -0.0412 1.5722 1.531 1 0.1225 TIMK	
 6 10 -0.5765 2.0469 1.4704 1 0.905 MPHA	
 7 12 0.3776 1.0316 1.4093 1 0.6425 CSS	
 8 9 1.076 0.2561 1.3321 1 0.9468 ALLS	
 9 12 0.4343 0.8681 1.3024 1 0.4403 MIT	
 10 13 0.2167 0.9983 1.215 1 0.9069 ASMT 
     11 12 -0.1443 1.2473 1.103 1 0.9505 SONA	
 12 6 0.8365 0.1952 1.0317 1 0.89 MAST	



 
 

 13 7 0.2394 0.7518 0.9912 1 0.9359 OMNI	
 14 13 0.3276 0.5802 0.9078 1 0.9271 HCLT	
 15 8 0.2032 0.7043 0.9075 1 0.9923 MINT	
 16 10 0.2241 0.6357 0.8598 1 0.7445 MIND	
 17 13 -0.2418 1.0919 0.8501 1 0.9622 KPI	
 18 11 0.1886 0.6455 0.8341 1 0.9869 INFS	
 19 8 0.5468 0.2384 0.7853 1 0.9531 ECLE	
 20 13 0.241 0.5301 0.7711 1 0.6498 HEXA	
 21 6 0.0992 0.6476 0.7468 1 0.9904 IGS	
 22 10 0.8599 -0.1896 0.6703 1 0.9944 TCS	
 23 12 0.4479 0.1747 0.6226 1 0.964 WPRO	
 24 8 0.7434 -0.1372 0.6061 1 0.2558 RSI	
 25 12 0.0374 0.545 0.5825 1 0.9043 PFT	
 26 7 0.4723 0.0269 0.4992 1 0.9368 CAMB	
 27 9 -0.2292 0.6554 0.4261 1 0.3915 ONTR	
 28 12 -0.1332 0.457 0.3238 1 0.8649 CMC	
 29 7 0.5478 -0.2988 0.249 1 0.5225 PANO	
 30 11 0.2114 -0.1832 0.0283 1 0.2186 TATA	
 31 8 -0.1506 0.1615 0.0108 1 0.2742 ICRA 

 The Table 5 clearly reveals the heterogeneity of Indian multinationals, when	

one considers the great variability in the range of estimated marginal and scale	

elasticities. These confirm that the companies are heterogeneous with distinct	

production function coefficient estimates. The Cobb-Douglas SCE estimates	

range from 5.6319 for rank 1 Trigyn Tech denoted as ‘TRIG’ to 0.0108 for rank	

31 ‘ICRA’ in Table 5. 

We can surmise that a more general non-homogenous production function	

will also suggest that different Indian multinationals are distinct from one an-	

other. We report estimates after including the cross-product term to incorporate	

nonlinearities arising from the input interactions in the next section. 

4 Percent Compound Growth Rates Compared 
Our data set contains several missing values, especially with stock market in-	

dicators. Our growth rate study in this section considers 31 companies having	

an adequate number of non-missing data. Accordingly, our data covers years	

representing (2004 to 2016). Let X denote the values for a particular company	

from the list of variables (Emp, Asst, VaR, RoaR, ShPr, MktK). We have al-	

ready encountered the notation Emp for employees, Asst for assets, and VaR for	



 
 

value-added in Rupees. Newer variables are ‘rate of return on assets in Rupees,’	

(RoaR), share price (ShPr), and market capitalization (MktK). 

 Let the available data range be X(t1) to X(t2). For example, VaR data for	

KPIT Tech is available from 2004 to 2016. Hence, X(2004), X(2016) will denote	

 VaR values for those years. Now the overall percent compound growth rate r	

 over the included period is given by solving the following equation for the rate	

 X(t2) = X(t1)(1 + r)τ, where τ = (t2 − t1 + 1).                                     (9) 

The percent growth rate is  𝑟 = 100[(𝑋(𝑡!)/𝑋(𝑡"))("/𝜏) − 1]	assuming  

that the denominators τ and X(t1) are nonzero. 

Table 6 reports growth rates of various companies included in the 

study	  

sorted by their asset growth rates ranging from −7.97% for Melstar 

Information	

Tech (MIT) to 45.17% for Eclerx Services (ECLE). See Tables 14 to 16 in the		

Appendix for more detailed names of companies. 
 
 
 

	
Table 6: Percent Growth Rates sorted by Asset growth 

 Emp Asst VaR RoaR ShPr MktK	
 MIT 0.69 -7.97 -3.50 -13.60 -4.48 -4.91	
 APTE -3.27 -2.90 -6.00 -1.20 1.50 3.85	
 PFT 1.77 1.01 2.89 -2.18 0.57 0.91	
 TATA 6.23 1.32 0.01 -4.29 4.81 4.89	
 MAST -2.58 1.91 1.27 -4.23 12.80 -0.88	
 CMC 12.80 6.20 3.55 2.39 11.95 18.64	
 XCS -14.47 7.15 1.64 5.53 39.19 1.86	
 RSI -5.07 7.30 13.61 31.28 -7.47 9.83	
 SONA 10.68 7.45 12.62 7.77 22.79 22.78	
 AKS 9.69 8.40 9.60 14.42 28.58 33.89	
 SCT -5.20 8.68 5.71 7.27 -0.05 -4.11	
 GEO 1.79 9.69 7.94 1.25 -6.55 13.07	
 INTE 2.10 10.52 24.05 -23.62 8.69 1.21	
 HEXA 7.91 10.60 10.80 5.10 -1.84 12.19	
 TIMK 0.95 10.94 3.39 -3.10 19.50 15.63	
 SAKS 1.85 12.65 4.08 4.12 8.02 3.91	
 ICRA 14.52 13.37 7.69 -2.65 21.72 21.14	
 HCLT 18.62 14.29 14.87 3.91 9.58 21.82	
 ABMK 2.12 14.70 19.51 15.00 39.97 39.97	
 PANO 7.31 16.03 4.29 -10.57 -20.20 14.48	
WPRO 9.44 16.32 11.72 -1.60 -6.55 12.07	
 MPHA 14.92 17.50 11.86 -6.74 10.40 13.76	



 
 

 CAMB -9.07 18.74 4.88 -5.80 12.49 10.14	
 INFS 16.65 18.85 13.06 -2.74 -10.21 17.90	
 MINT 16.33 20.36 15.07 -0.26 -2.38 13.45	
 KPI 21.01 21.63 19.42 -1.60 -2.60 27.61	
 INTR 8.31 23.58 14.75 0.95 33.51 33.64	
 VAKR 13.79 26.12 33.67 20.62 3.81 61.22	
 INFE 13.98 33.13 15.07 -9.86 1.25 17.51	
 TCS 19.73 39.60 77.82 21.69 4.82 17.89	
 ECLE 20.12 45.17 34.74 -6.25 20.29 31.08 

 Scatterplots of various pairs of columns in Table 6 (omitted for brevity)	

 show that the relations are not linear. Hence we report generalized correlation	

 coefficients in Table 7 based on the R function gmcmtc0() in R package ‘gen-	

 eralCorr.’ The matrix entries are non-symmetric in that the entry at location	

 [i, j] along row i and column j does not, in general, equal the across-diagonal	

entry at location [j, i]. 

 Comparing across-diagonal entry pairs, the one with the larger magnitude	

	

is identified by the superscript ‘L’ for larger. According to the theory described	

in Vinod (2019) this is Cr3 of three criteria (Cr1 to Cr3) for determination of	

causal paths. That is, the variable named in the column is 33% likely to be the	

cause, since the other two criteria based on residuals of flipped kernel regressions 

may well suggest the opposite causal path.	

 

 For example, consider Table 7 row 2 for Asst and column 1 for Emp has	

0.8833L, which implies that the generalized correlation between the two vari-	

ables is 0.8833. Moreover, the superscript suggests that the column heading	

Emp for employee growth is at least 33% likely to be the ‘cause’ of the row	

heading Asst for growth in assets. The usual Pearson correlation coefficient be-	

tween (Emp, Asst) 0.6015 is a bit smaller than 0.8833. Not surprisingly, Pearson	

correlations (assuming linear relations) are almost always smaller in magnitude	

than generalized correlation coefficients based on nonparametric, nonlinear ker-	

nel regressions. 



 
 

Table 7: Generalized Correlations Between Percent Growth Rates, superscript	
L indicates larger absolute value where column name has the potential cause 

 Emp Asst VaR RoaR ShPr MktK	
 Emp 1 0.6279 0.7719L -0.1241L 0.7776L 0.5651	
 Asst 0.8833L 1 0.7363 0.2393L -0.1584 0.5819	
 VaR 0.6011 0.9014L 1 0.35L -0.0083 0.3996	
 RoaR -0.079 0.2041 0.3303 1 0.1665 0.3609L	
 ShPr 0.0427 -0.4346L -0.0603L 0.6622L 1 0.8033L	
MktK 0.6322L 0.8818L 0.4145L 0.3265 0.4658 1 

 Table 7 reveals positive correlations between MktK growth and all other	

variables in the bottom row. However, growth in ShPr has a negative correlation	

with Asst and VaR. The negative correlation between RoaR and Emp suggests	

that increasing return on assets negatively impacts employee count growth.	

 Instead of focusing causal paths suggested by only one (Cr3) of the three	

criteria (superscript L) as in Table 7, it is better to consider comprehensive	

causal paths (based on unanimity strength index UI) between all pairs of growth	

rates reported in Table 8 with column headings described in Section 2.2. The	

Table 8 reports approximate causal paths based on a (UI) using all three criteria	

(Cr1 to Cr3) for all possible (=15) pairs of growth rates among the six variable. 

	

Table 8: Causal paths between growth rates of variables 

 cause response strength corr. p-value	
1 Emp Asst 100 0.5655 2e-05	
2 Emp VaR 4.724 0.5297 9e-05	
3 RoaR Emp 31.496 -0.0237 0.88945	
4 ShPr Emp 100 0.0041 0.97927	
5 Emp MktK 31.496 0.4425 0.00335	
6 Asst VaR 100 0.7044 0 

 7 RoaR Asst 31.496 0.0436 0.78409	
 8 ShPr Asst 37.008 -0.1616 0.27243	
 9 Asst MktK 100 0.3367 0.02064	
10 RoaR VaR 100 0.3361 0.02955	
11 ShPr VaR 37.008 -0.0036 0.98066	
12 VaR MktK 50.394 0.3228 0.02687	
13 RoaR ShPr 100 0.1863 0.2697	
14 RoaR MktK 21.26 0.2779 0.09589	
15 MktK ShPr 31.496 0.3735 0.01149 

	
First, we list the following plausible causal paths between growth rates:		

 Emp→ Asst, ShPr → Emp, Emp→ MktK, Asst→ VaR, RoaR → Asst,  



 
 

Asst →MktK, RoaR → VaR, VaR→ MktK, RoaR → ShPr, RoaR→ MktK,  

and MktK	→ ShPr. 

 The following causal paths are based on negative correlations suggesting	

that growth in the ‘cause’ reduces the growth in the response variable.  

RoaR	[Neg]→ Emp, ShPr [Neg] → Asst, and ShPr [Neg] → VaR. Their relatively	

 low	‘strength’ values may explain why they are intuitively less plausible. We  

also	find that the following path is most likely bi-directional: Emp↔ VaR,  

because	the unanimity strength index is less than 5%. 

5 Individual company non-homogenous 	
 production function estimates 
This section reports estimates of the non-homogenous (or variable elasticity	

of substitution, VES) production function (4) having the cross-product term.	

Similar to Table 5, we report various elasticities evaluated at the data means	

in Tables 9 and 10 using the VES. Both tables have a column for EOS, except	

that the EOS is always unity in Table 9 for the Cobb-Douglas specification.	

Note that a large firm like TCS with the highest market capitalization (table	

11) ranks low in terms of SCE (table 9), suggesting perhaps it is farther down	

the cost curve with fewer opportunities to exploit scale economies. On the other	

hand, TCS ranks among the top (table 10) in terms of EOS suggesting that the	

firm has greater flexibility to substitute capital for labor and vice versa.	

 Table 9 reports the top 31 companies ranked by their SCE, whereas Table 10	

reports the top 31 companies ranked by their EOS. In addition to elasticities, 

we report the R2 and a four-character abridged name for the company. The	

reader can know the corresponding long names of any company from alphabetic	

lists in Tables 14 to 16 in the Appendix. 

Table 9: Marginal elasticities, scale and substitution elasticities with R2 and n 

for non-missing observation count, sorted by SCE 



 
 

rank n MEK MEL SCE EOS R2 Nam	
 1 6 4.8462 0.4395 5.2858 0.5675 0.9924 TRIG	
 2 12 2.0759 0.6136 2.6895 -0.1578 0.9274 CSS	
 3 8 0.1728 2.0069 2.1797 0.5909 0.3848 FINT	
 4 10 -0.9057 2.8049 1.8993 0.5464 0.9488 MPHA	
 5 11 1.905 -0.0219 1.8831 -0.2973 0.4043 APTE	
 6 13 -0.0268 1.4836 1.4568 0.489 0.1271 TIMK	
 7 7 0.5812 0.8206 1.4018 -0.4972 0.9747 NITT	
 8 12 0.4735 0.9156 1.3891 0.6505 0.4434 MIT	
 9 9 0.9262 0.3106 1.2368 28.6707 0.9601 ALLS	
 10 13 0.2277 0.9819 1.2097 1.0603 0.907 ASMT	
 11 12 -0.6492 1.7555 1.1063 0.3374 0.9731 SONA	
 12 6 0.8585 0.2357 1.0942 0.5913 0.8906 MAST	
 13 7 0.2712 0.6708 0.942 1.1151 0.9365 OMNI	
 14 8 0.1662 0.767 0.9332 0.7955 0.9971 MINT	
 15 13 0.3881 0.5173 0.9055 1.1612 0.9273 HCLT	
 16 13 0.4149 0.4868 0.9017 0.5786 0.6641 HEXA	
 17 10 1.2212 -0.4075 0.8138 0.1052 0.6344 SAKS	
 18 13 -0.1525 0.9306 0.7781 1.5469 0.9776 KPI	
 19 8 1.6482 -0.8881 0.7601 -1.1136 0.9888 ECLE	
 20 6 0.2511 0.4764 0.7275 0.8599 0.9939 IGS	
 21 11 0.6198 0.1078 0.7275 2.3843 0.9943 INFS	
 22 10 1.1223 -0.4933 0.629 1.3125 0.997 TCS	
 23 12 0.1836 0.4445 0.6282 -2.5316 0.9113 PFT	
 24 12 0.4174 0.1321 0.5496 2.7816 0.9743 WPRO	
 25 10 -0.0453 0.5945 0.5492 -0.3335 0.9444 MIND	
 26 8 0.2419 0.2379 0.4798 -0.0485 0.402 RSI	
 27 7 0.439 0.0179 0.4569 2.3336 0.9402 CAMB	
 28 9 -0.2101 0.6299 0.4198 0.4706 0.3949 ONTR	
 29 7 -0.0774 0.3876 0.3101 -0.0836 0.7056 PANO	
 30 12 -0.2096 0.4891 0.2795 -0.7526 0.8833 CMC	
 31 8 0.5712 -0.4029 0.1683 -0.0565 0.8589 ICRA 

 Equation (6) assures us that SCE is an indicator of the productive efficiency	

of inputs. Since the last column of the table contains an abridged company	

name, referring to Tables 14 to 16, the reader can know the full names of rela-	

tively inefficient companies from the bottom parts of the table. The names of	

relatively efficient companies are found in the top part of the table where SCE	

values are positive and large. 

	

Under assumptions of neoclassical production theory, equation (7) assures us	

that EOS measures the robustness of a company’s input mix when the company	

is faced with input price shocks. Positive EOS values are known to be more	

desirable. 



 
 

 Table 10 has identified some Indian multinationals with negative EOS esti-	

mates, which appear to be too sensitive to input price shocks. Since the last	

column of the table contains an abridged company name, the reader can iden-	

tify relatively non-robust input price shock companies from negative EOS values	

near the bottom of the table. Indian companies that are robust against input	

price shocks are named in the top part of Table 10 where the EOS values are	

relatively large. 

 Our marginal elasticity estimates assume that the VES functional form of the	

production function is valid. The coefficient estimates allow us to do thought ex-	

periments on what happens to output when input increases by one percent. One	

can imagine individual company situations where these thought experiments are	

inappropriate. Readers interested in productive efficiency are encouraged to sup-	

plement our production function-based comparisons with the traditional ratio	

comparisons discussed next. 

5.1 Traditional stock market and productivity ratios 
Stock market analysts consider ‘rate of return on assets in Rupees’ (RoaR),	

share price (ShPr), and market capitalization (MktK). Growth rates of these	

variables were already discussed in Section 4. Traditional productivity ratios	

are value-added output per unit of total assets (y/K) and value-added output	

 per employee (y/L). We report in Table 11 the above values for selected 31 pub-	

 licly traded Indian multinationals included in our data set. The 31 companies	

 are chosen because they have relatively large- s c a l e  elasticity (SCE) values, as	

 reported earlier in Table 9. The reader is referred to alphabetically listed long	

 company names and their abbreviations Tables 14 to 16 in the Appendix.	

 The reported numbers are simple averages over the set of 13 years covered	

 in our data set. In some years, some multinationals appear to have suffered net	

 accounting losses resulting in negative rates of return (RoaR). Tables for the	

 remaining companies are omitted for brevity. 



 
 

	

Table 10: Marginal elasticities, scale and substitution elasticities with R2 and		

n for non-missing observation count, sorted by EOS 

rank n MEK MEL SCE EOS R2 Nam	
 1 9 0.9262 0.3106 1.2368 28.6707 0.9601 ALLS	
 2 12 0.4174 0.1321 0.5496 2.7816 0.9743 WPRO	
 3 11 0.6198 0.1078 0.7275 2.3843 0.9943 INFS	
 4 7 0.439 0.0179 0.4569 2.3336 0.9402 CAMB	
 5 13 -0.1525 0.9306 0.7781 1.5469 0.9776 KPI	
 6 10 1.1223 -0.4933 0.629 1.3125 0.997 TCS	
 7 13 0.3881 0.5173 0.9055 1.1612 0.9273 HCLT	
 8 7 0.2712 0.6708 0.942 1.1151 0.9365 OMNI	
 9 13 0.2277 0.9819 1.2097 1.0603 0.907 ASMT	
 10 6 0.2511 0.4764 0.7275 0.8599 0.9939 IGS	
 11 8 0.1662 0.767 0.9332 0.7955 0.9971 MINT	
 12 12 0.4735 0.9156 1.3891 0.6505 0.4434 MIT	
 13 6 0.8585 0.2357 1.0942 0.5913 0.8906 MAST	
 14 8 0.1728 2.0069 2.1797 0.5909 0.3848 FINT	
 15 13 0.4149 0.4868 0.9017 0.5786 0.6641 HEXA	
 16 6 4.8462 0.4395 5.2858 0.5675 0.9924 TRIG	
 17 10 -0.9057 2.8049 1.8993 0.5464 0.9488 MPHA	
 18 13 -0.0268 1.4836 1.4568 0.489 0.1271 TIMK	
 19 9 -0.2101 0.6299 0.4198 0.4706 0.3949 ONTR	
 20 12 -0.6492 1.7555 1.1063 0.3374 0.9731 SONA	
 21 10 1.2212 -0.4075 0.8138 0.1052 0.6344 SAKS	
 22 10 -0.3789 0.288 -0.091 0.0212 0.7163 ACCL	
 23 8 0.2419 0.2379 0.4798 -0.0485 0.402 RSI	
 24 8 0.5712 -0.4029 0.1683 -0.0565 0.8589 ICRA	
 25 7 -0.0774 0.3876 0.3101 -0.0836 0.7056 PANO	
 26 12 2.0759 0.6136 2.6895 -0.1578 0.9274 CSS	
 27 11 1.905 -0.0219 1.8831 -0.2973 0.4043 APTE	
 28 11 0.2146 -0.1863 0.0283 -0.3029 0.2196 TATA	
 29 10 -0.0453 0.5945 0.5492 -0.3335 0.9444 MIND	
 30 7 0.5812 0.8206 1.4018 -0.4972 0.9747 NITT	
 31 12 -0.2096 0.4891 0.2795 -0.7526 0.8833 CMC 

	
	
Table 11: Rate of return on assets, share price, market capitalization, Value	
added output per unit of asset, y/K and output per employee y/L sorted by	
 SCE as in Table 9 

rank RoaR ShPr MktK y/K y/L Name	
 1 0.0473 21 57 0.28308 0.52435 TRIG	
 2 0.0494 16 43 0.19487 0.42958 CSS	
 3 0.1308 930 0.21625 3.78306 FINT	
 4 0.1449 328 7148 0.41391 0.32088 MPHA	
 5 0.0209 101 516 0.16953 0.71148 APTE	
 6 0.1048 186 1358 0.24615 1.37531 TIMK	
 7 0.1479 259 0.51492 0.63205 NITT	
 8 -0.0236 8 12 0.45185 0.27545 MIT	
 9 -0.0111 84 120 0.48903 0.13289 ALLS	
 10 0.1068 59 29 0.67396 0.35541 ASMT	



 
 

Table	11	(Continued)	

rank RoaR ShPr MktK y/K y/L Name	
 11 0.1313 53 557 0.48907 0.61377 SONA	
 12 0.1188 303 589 0.79449 1.21776 MAST	
 13 0.0972 87 154 0.27178 1.69991 OMNI	
 14 0.164 706 4220 0.86683 0.90282 MINT	
 15 0.16 555 44953 0.40239 0.71241 HCLT	
 16 0.1461 198 2958 0.43583 0.4838 HEXA	
 17 0.0851 90 91 0.37515 0.47064 SAKS	
 18 0.1102 163 1409 0.45239 0.45108 KPI	
 19 0.4481 755 2310 0.86843 0.41254 ECLE	
 20 0.1052 0.73792 0.75912 IGS	
 21 0.2363 2561 141079 0.69068 1.5233 INFS	
 22 0.2874 1487 228926 0.82199 1.1119 TCS	
 23 0.1012 145 1435 0.88645 0.75961 PFT	
 24 0.1608 587 92470 0.53045 1.04123 WPRO	
 25 0.0336 32 67 0.26063 0.42662 MIND	
 26 0.0921 106 410 0.49784 0.4901 RSI	
 27 -0.0151 35 51 0.66482 0.36499 CAMB	
 28 0.0047 24 0.13555 0.2579 ONTR	
 29 0.0922 72 115 0.12996 2.89643 PANO	
 30 0.1122 1088 2360 0.3488 0.43895 CMC	
 31 0.1105 1671 1670 0.25241 2.78426 ICRA 

	
6 Causal paths between SCE or EOS and stock	
 market indicators 
This section reports causal path estimates between RoaR, ShPr, and MktK	

separately paired with SCE in Table 12 and with EOS in Table 13. We use	

column headings described in Section 2.2. 

Table 12: causal paths paired with SCE 

 cause response strength corr. p-value	
1 SCE RoaR 31.496 -0.093 0.60666	
2 SCE ShPr 31.496 -0.2518 0.17945	
3 SCE MktK 100 -0.1264 0.50584 

 Table 12 reports causal paths between scale elasticity SCE and stock market	

evaluations, RoaR, ShPr and MktK. The table is similar to our earlier pooled	

data causality Table 4. We find that the scale of the firm measured by SCE	

drives the stock market evaluations. 

 Table 13 reports causal paths between elasticity of substitution EOS and	

stock market evaluations, RoaR, ShPr and MktK. The column headings are	

described in Section 2.2. We find that RoaR drives the EOS, suggesting that	



 
 

the flexibility to input price shocks does not much affect accounting rate of	

return. By contrast, independent variation in EOS does cause ShPr and MktK. 

Table 13: causal paths paired with EOS 

 cause response strength corr. p-value	
1 RoaR EOS 100 -0.219 0.22069	
2 EOS ShPr 31.496 -0.06 0.75284	
3 EOS MktK 100 0.025 0.89577 

7 Final Remarks 
Publicly traded Indian multinationals have clients around the world, mostly	

in advanced countries. They ‘produce’ mostly information and communication	

technology services (ICT). This paper studies certain publicly available data on	

them to look for patterns not only in data levels, but also in percent rates of	

growth. There is a significant number of missing data regarding the number of	

employees and value-added outputs. 

 There are two standard measures of productive efficiency called scale elas-	

ticity or SCE and sensitivity to price shocks by the elasticity of substitution	

(EOS) developed by Hicks and explained by Ferguson (1971). We estimate	

SCE and EOS values for a non-homogeneous VES production function with a	

cross-product term. The analysis using SCE assumes “thought experiments” to 

	

assess what might happen to the output when one or both inputs are increased	

by one percent. The EOS analysis considers even more sophisticated “thought	

experiments” to assess what might happen to marginal rates of transformation	

between the two inputs when relative prices of inputs are changed. 

 Despite heterogeneous firms and missing data, we find plausible estimates	

revealing overall patterns based on pooled data in Table 9 sorted by SCE reveals	

names of efficient firms along the top rows and inefficient firms along bottom	

rows. Similarly, Table 10 sorted by EOS identifies firms with poor flexibility	

against input price shocks in the ICT sector along the bottom rows, especially	



 
 

where EOS values are negative, whereas flexiable ones are named along top	

rows. 

 Our individual company estimation reveals great heterogeneity among the	

firms. The heterogeneity leads to a variety of marginal elasticities, scale elastic-	

ities (SCE), and elasticity of substitution (EOS) among these firms. Focusing	

on 31 companies with relatively complete data, we are able to rank and identify	

by name efficient and price-shock-robust companies in two separate tables.	

 A novel study of causal paths between SCE, the scale elasticity, and stock	

market valuations in terms of individual company rate of return, share price,	

and market capitalization (RoaR, ShPr, and MktK) shows that SCE does drive	

stock market values, supporting the Hicksian production theory and rational	

ranking of these companies by the Indian stock market. We also find that most	

causal paths between growth rates of data are plausible. 

 Among the limitations of our research, we must mention that efficiency and	

price-shock sensitivities can have many unmeasured aspects. Our naming of	

companies should be treated as indicating a need for a further focus on why	

certain companies have high (low) estimated values of SCE and EOS. Our esti-	

mates remain subject to sampling variation. We also report traditional output	

per employee and output per unit of capital. Thus we provide a wealth of	

information regarding the overall health of Indian multinationals, as well as de-	

tailed estimates for several individual companies for potential use by academics,	

investment analysts, and policy-makers. 

	

	

	

	



 
 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

8 Appendix 
We report the long names of the ICT multinationals with their abbreviations in	

the Appendix. Since we have a great many missing data values, only a subset	

of these companies is included in the present study, which will be extended to	

include additional companies at a future date if and when more complete data	

become available. 

 



 
 

Table 14: Alphabetic (A to H) table of abbreviated company names and their	
longer forms 

Row Short Name Long Name	
 1 ABMK A B M Knowledgeware	
 2 ACCL Accel 

3 AKS Accelya Kale Solutions	
4 ALLS Allsec Tech	
5 APTE Aptech 
6 ASMT A S M Tech	
7 BIR Birlasoft 

 8 BRIS Bristlecone India	
 9 CAMB Cambridge Tech	
10 CIGN Cigniti Tech	
11 CMC C M C 
12 CSS Cybertech Systems and Software	
13 DFIN Datamatics Fin 
14 DGS Datamatics Global Services	
15 DPLM 3D P L M Software 
Solutions	
16 ECLE Eclerx Services		
17 FINT Financial Tech	
18 GEO Geometric	
19 HACK Hackett 
20 HCLT H C L Tech 
21 HEAL Healthfore Tech	
22 HEXA Hexaware Tech	
23 HIGH Highbar Tech	
24 HIND Hinduja Global	
25 HMIT Helios and Matheson Info Tech	
26 HOV H O V 

	
	
Table 15: Alphabetic (I to O) table of abbreviated company names and their	
longer forms 

Row Short Name Long Name	
 27 IBPO Infosys B P O	
 28 ICRA I C R A 
29 IGS Igate Global Solutions	
30 IINF 3I Infotech 
31 INCO Infinite Computer	
32 INFE Info Edge	
33 INFS Infosys 
34 INTE Intense Tech	
35 INTR Intrasoft Tech	
36 ITCI I T C Infotech	
37 KPI KPIT Tech 
38 LTI Larsen and Toubro Infotech	
39 MAH Mahindra Eng	
40 MAST Mastek		
41 MIND Mindteck	
42 MINT Mindtree 
43 MIT Melstar Information Tech	
44 MPHA Mphasis		
45 NEIL Neilsoft 



 
 

46 NIIT N I I T Smartserve	
47 NITT N I I T Tech		
48 OBPO Oracle B P O	
49 OMNI Omnitech 
Infosolutions	
50 ONTR Ontrack Systems	
51 ONW Onward Tech 

	
Table 16: Alphabetic (P to Z) table of abbreviated company names and their	
longer forms 

Row Short Name Long Name 
52 PANO Panoramic Universal	
53 PFT Polaris Fin Tech	
54 REL Reliance Mediaworks	
55 RSI R Systems International	
56 RSS R S Software 
57 SAKS Saksoft 
58 SCT Sasken Communication Tech	
59 SONA Sonata Software	
60 STER Steria 
61 SUND Sundaram Infotech	
62 SYNT Syntel 
63 TATA Tata Communications	
64 TCS TCS 
65 TIMK Timken India	
66 TMAH Tech Mahindra	
67 TRIG Trigyn Tech 
68 USH Unisys Softwares and Holding	
69 VAKR Vakrangee 
70 WINF Winfoware Tech	
71 WINF Cades Digitech Pvt	
72 WPRO Wipro 
73 XCS Xchanging Solutions	
74 XRXI Xerox India	
75 ZEN Zensar Tech 
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