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ABSTRACT 

 

Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by the 

disruption of Fragile X Mental Retardation Protein (FMRP) function in neurons, affecting 

nearly 1 in 7,500 individuals. Although FXS typically occurs from a complete loss of 

FMRP expression due to a CGG trinucleotide expansion within the 5’UTR of the FMR1 

gene, single nucleotide polymorphisms (SNPs) within the KH domains of FMRP have been 

shown to severely disrupt FMRP function. FMRP is an RNA-binding translation repressor 

that interacts with ~4% of the neuronal transcriptome. Many target mRNAs encode for 

proteins important for regulating synaptic processes and modulate synaptic plasticity. It is 

likely that FMRP differentially regulates this large subset of mRNAs via its association 

with specific membraneless organelles (MLOs), or granules, that are each involved in 

regulating different processes of the transcript lifecycle. How FMRP forms and interacts 

with different MLOs however, is largely unknown. Here we show that multivalent 

interactions via the two canonical KH domains, KH1 and KH2, and the C-terminal 

intrinsically disordered region (IDR) function cooperatively to promote FMRP granule 

formation in Drosophila S2 cells.  

Two mutations within the KH domains of FMRP have been linked to severe forms 

of FXS. We were interested in determining whether these mutations disrupted the 
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formation or function of FMRP-containing MLOs. Here we studied these missense point 

mutations, by making the orthologous mutations in the fly KH1 (Gly269Glu) and KH2 

(Ile307Asn) domains. Within FRAP experiments of fly S2 cells we found that each of the 

KH point mutants destabilized the dynamic mobile fraction of FMRP granules, while 

having no impact on immobile fractions. The KH1 mutant in particular has an important 

function in granule formation and FMRP association with other MLOs involved in post-

transcriptional regulation including stress granules and RNA Processing-bodies. 

Additionally, we found that the KH1 mutation is defective in FMRP-mediated translation, 

while the KH2 mutant has no effect. 

We also studied the impact of these mutations in Drosophila primary motor neurons 

(MNs) where FMRP associates with neuronal RNA transport granules (NGs). Within NGs 

FMRP is thought to translationally repress transcripts during their active transport from the 

soma out to the synapse. Interestingly, we found that the KH1 mutant severely disrupted 

the nucleation of FMRP-positive NGs. The KH2 mutant on the other hand destabilized 

NGs, impacting NG transport out in neurites. Interestingly, we found that these mutations 

had no impact on camkii transport, a well characterized FMRP target, suggesting that 

FMRP-NG association and RNA transport may not be functionally linked processes. 
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CHAPTER ONE: BACKGROUND AND SIGNIFICANCE 

1.1 Fragile X Syndrome 

1.1.1 Disease occurrence and phenotypes 

Fragile X Syndrome (FXS) is the most common monogenic cause of inherited 

mental and intellectual disability, affecting roughly 1 in 5,000 males and 1 in 10,000 

females (Coffee et al., 2009). This developmental disorder can present various symptoms 

in those affected ranging from mild to severe. This includes developmental delays in 

walking and talking, as well as difficulty learning new tasks (Garber et al., 2008). Social 

and behavioral problems such as difficulty making eye contact, attention deficits, hand 

flapping, hyperactivity, and anxiety are also common in affected individuals. Additionally, 

seizures occur in roughly 15% of affected males and 5% of affected females (Garber et al., 

2008). Physical symptoms typically manifest in individuals with FXS following puberty 

which include distinct facial features such as an enlarged head and ears with a long narrow 

face, prominent jaw and forehead, unusually flexible joints, flat feet, and in males, 

macroorchidism (Neri, 2017). FXS also has a high comorbidity with autism spectrum 
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disorders (ASD), which occurs in roughly 1 out of 3 individuals with FXS (Abbeduto et 

al., 2014).     

1.1.2 Neuronal defects of FXS 

FXS is caused by the disruption of the fragile X mental retardation 1 (FMR1) gene 

which encodes the Fragile X Mental Retardation Protein (FMRP). FMRP is expressed 

throughout the body, but is enriched in the testes, ovaries and throughout the brain (Christie 

et al., 2009). FMRP is an RNA-binding protein (RBP) that interacts with roughly 4% of 

neuronal transcripts, many of which encode for proteins required for synaptic plasticity 

(Ashley et al., 1993; Brown et al., 2001; Sidorov et al., 2013).  

Synaptic plasticity is the dynamic ability of neurons to strengthen or weaken 

connections with other neurons in an activity-dependent manner over time. Activity-

dependent alterations in synaptic strength include: 1) retaining and strengthening synapses 

commonly referred to as long-term potentiation (LTP) and 2) synapse weakening and 

elimination referred to as long-term depression (LTD) (Magee and Grienberger, 2020). 

This orchestration of strengthening and pruning synapses in response to activity is thought 

to be the mechanism underlying learning and memory formation (Nabavi et al., 2014). 

Neurons are capable of regulating synaptic strength cell-wide in response to drastic 

changes in network activity in a process called synaptic scaling (Turrigiano, 2008). On the 

molecular level, this process is carried out via the regulation of receptor trafficking out to 

the synapse (e.g. increased network activity will stimulate the neuron to scale down 

synaptic strength by reducing receptor trafficking out to synaptic sites). FMRP particularly 
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affects new protein synthesis-dependent mechanisms of synaptic plasticity and synaptic 

scaling. Loss of synaptic scaling up in FMR1 KO neurons was able to be rescued with the 

reintroduction of FMRP in the postsynaptic neuron (Soden and Chen, 2010).  

A major phenotype observed in FXS is an overelaboration of immature dendritic 

spines due to aberrant activity-independent translation at synapses (Scotto-Lomassese et 

al., 2011). Loss of FMRP causes an increased density, or overgrowth, of dendritic and 

axonal protrusions which is thought to result from a loss of regulation of some cytoskeletal 

targets of FMRP, such as the microtubule associated protein, futsch (Zhang et al., 2001).  

The mGluR theory of FXS (Figure 1) posits that FMRP modulates synaptic 

plasticity by regulating protein synthesis of postsynaptic transcripts required to maintain 

LTD triggered by group 1 and 5 metabotropic glutamate receptor (mGluR1/5) activation 

(Bear et al., 2004; Stoppel et al., 2017). LTD initiated by mGluR activation is dependent 

on rapid, local translation of synaptic mRNAs. Within the postsynaptic density (PSD) 

phosphorylated FMRP is bound to translationally stalled transcripts. Upon mGluR 

activation FMRP is dephosphorylated, allowing repressed transcripts to re-enter the 

translating pool and for rapid synaptic protein synthesis to occur (Santoro et al., 2012). 

These nascent proteins are then involved in the internalization of α-amino-3-hydroxyl-4-

isoxazole propionic acid (AMPA) receptors and subsequent LTD. AMPA receptors on the 

postsynaptic neuron allow Na+ influx in response to the ligand glutamate binding to the 

receptor and are integral for LTP to occur. In FMRP-deficient neurons however, 

translational “brakes” on these PSD transcripts are removed causing their constitutive 
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overexpression regardless of mGluR activation. Excessive AMPA receptor internalization 

leads to a synaptic imbalance in favor of LTD, resulting in the hyperproduction of 

immature dendritic spines that have a severely reduced function (Dölen et al., 2007; 

Sidorov et al., 2013).   

Naturally, studies looking at mGluR-pathway antagonists promptly followed this 

discovery, in a hope that inhibiting downstream effectors in this pathway may ameliorate 

some of the cognitive and behavioral deficits in FXS. Knockdown of mGluR5 expression 

is capable of rescuing many of these phenotypes in mice, further supporting the mGluR 

theory (Dölen et al., 2007). Additionally, multiple studies using the mGluR5 antagonist 2-

methyl-6-phenylethyl-pyridine (MPEP) have been able to restore proper AMPA receptor 

internalization and dendritic spine morphologies in mice as well as various cognitive and 

behavioral deficits in mice, zebrafish and fly models of FXS (McBride et al., 2005; 

Nakamoto et al., 2007; Tucker et al., 2006; Yan et al., 2018). Recent clinical trials testing 

two mGluR5 antagonists seemed optimistic at first, but rather unexpectedly showed no 

significant efficacy or clinical improvement in FXS patients (Scharf et al., 2015). 

Devastatingly, there are no treatments for FXS and current pharmacotherapy available for 

FXS only treat specific behavioral symptoms, mood disorders or seizures. The search for 

new and effective FXS therapies has been a major push in the field driving the need to 

understand FMRP functions and molecular/cellular targets within the nervous system.  
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Figure 1. The mGLuR theory of FXS 

Used with permission of Annual Reviews, Inc., from [Molecular Mechanisms of Fragile X 

Syndrome: A Twenty-Year Perspective, Michael R. Santoro, Steven M. Bray, and Stephen 

T. Warren, volume 7, and Copyright (2011)]; permission conveyed through Copyright 

Clearance Center, Inc. 

(A) Within the postsynaptic density, phosphorylated FMRP is bound to translationally 
stalled mRNAs. Following mGLuR1/5 activation FMRP is dephosphorylated, allowing 
bound mRNA to reenter the translation pool. De novo protein synthesis following 
mGLuR1/5 activation increases AMPA receptor (AMPAR) internalization, a requirement 
for LTD. (B) Loss of FMRP function in FXS results in the loss of activity dependent 
translation regulation of synaptic mRNAs by FMRP. mRNAs are maintained in a 
translationally active state regardless of mGluR1/5 activation. Aberrant protein synthesis 
causes an excess of AMPAR internalization and amplified LTD.     
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1.1.3 FXS is caused by the disruption of the encoding FMRP protein 

FXS is caused by the transcriptional silencing of the FMR1 gene due to a CGG 

trinucleotide-repeat expansion in its 5’UTR (Figure 2).  Normal repeat numbers range from 

5-49, whereas premutation alleles contain 50-200 repeats and are referred to as such due to 

their proclivity to undergo further expansion and give rise to the full mutations allele (>200 

repeats) in their offspring (Fu et al., 1991). Although the premutation does not cause FXS, 

it puts individuals at a higher risk of developing the neurodegenerative disorder Fragile X-

associated tremor/ataxia syndrome (FXTAS). Females have an additional risk of 

developing Fragile X-Associated Primary Ovarian Insufficiency (FXPOI) which causes 

severely reduced ovary function (Fink et al., 2018). The full mutation triggers a 

hypermethylation event at the FMR1 promoter, preventing FMR1 gene expression (Pieretti 

et al., 1991). Although complete loss of FMRP expression is the primary cause of FXS, 

gene sequencing has led to the identification of over 130 single nucleotide polymorphisms 

(SNPs) within the FMR1 coding region. This study sequenced the FMR1 gene of 963 males 

presenting with FXS-like phenotypes, but had normal CGG repeat numbers (Collins et al., 

2010). In addition to this, there have been upwards of 100 FMR1 deletions that have been 

identified in individuals, which we did not focus on in this study (Coffee et al., 2008). Of 

the 130 SNPs identified, there are a handful of potentially pathogenic mutations that occur 

within the coding region of the FMR1 including 3 mutations of interest that occurred within 

one of the FMRP RNA-binding domains (RBDs). Before describing these point mutations, 
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however, the FMRP domains and their predicted functions must be discussed in order to 

understand how these mutations could be disrupting essential FMRP functions.  
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Figure 2. Fragile X Syndrome is caused by disruption of FMR1 gene expression 

(A) The FMR1 gene on the X chromosome contains a CGG repeat expansion between 6-
49 repeats within its 5’UTR. Under these circumstances, the FMR1 gene is expressed, 
producing a fully functional FMRP protein. Repetitive sequences, such as CGG 
trinucleotide repeats, within the genome are susceptible to DNA-polymerase slippage, 
where it can drastically increase repeat number. (B) CGG repeat lengths between 50-200 
are still able to express the FMR1 gene normally and produce functional FMRP. However, 
males with this premutation have a higher probability of developing the neurodegenerative 
disorder Fragile X Tremor/Ataxia Syndrome and while females have a higher proclivity 
for Fragile X Associated Primary Ovarian Insufficiency. (C) The full, loss of function 
mutation occurs when CGG repeats expand beyond 200 repeats. This expansion causes 
hypermethylation at the FMR1 locus inhibiting gene expression and resulting in loss of 
FMRP protein. (D) However, individuals with missense point mutations within the FMR1 

gene can develop FXS with normal CGG repeat numbers. These mutations are often 
hypomorphic alleles that produce FMRP with reduced function and stability.   
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1.1.4 Drosophila is an established model system to study FXS 

In this study, we used the fruit fly Drosophila melanogaster as our model system 

to study the functions of fly FMRP. FMRP is a multivalent protein with several conserved 

functional domains (Figure 3A) (Siomi et al. 1993). FMRP and the related FXR1P and 

FXR2P proteins are evolutionarily conserved in mammals, with a single FMRP ortholog 

in Drosophila. The fly FMRP ortholog is 60% identical to human FMRP at the amino acid 

level (Wan et al., 2000). Most of the conserved sequence is found within the FMRP RBDs, 

suggesting their importance for FMRP function. Studying FXS and FMRP using flies as a 

genetic model is advantageous as there are no FXR paralogs, which have some redundant 

functions with FMRP and make it difficult to interpret results obtained from FMRP knock-

down/-out experiments in mammalian models (Majumder et al., 2020). Additionally, many 

of the major neural, social and behavioral FXS phenotypes found in FXS patients also 

occur in the FMR1-null fly including: dendritic overelaboration, over-abundance of 

neurotransmitter containing vesicles in the presynaptic space, repetitive behaviors, 

courtship defects, and learning deficiencies (McBride et al., 2005, 2013).  

1.1.5 FMRP domain structure and FXS-causing point mutations 

1.1.5.1 FMRP contains DNA-binding tandem Tudor domains 

At the amino-terminus (N-terminus) of FMRP are two DNA-binding Agenet 

domains, also referred to as tandem Tudor domains (Figure 3A). These domains are 

important for a nuclear function of FMRP in modulating the DNA damage response by 

directly interacting with chromatin (Alpatov et al., 2014). These interactions were found to 
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be important for regulating genomic stability by reducing susceptibility to double stranded 

breaks in DNA undergoing replication (Chakraborty et al., 2020). 

1.1.5.2 FMRP contains three RNA-binding KH domains with elusive binding 

properties 

Following the tandem Tudor domains are three structured hnRNP K homology 

(KH) domains KH0, KH1 and KH2 (Figure 3A). The KH1 and KH2 domains contain the 

highly conserved RNA-binding GXXG loop (Hollingworth et al., 2012). The more recently 

discovered KH0 domain, however, does not contain this conserved sequence suggesting 

that it may not interact with RNA (Hu et al., 2015; Myrick et al., 2015a). Before this region 

was identified as a non-canonical KH domain, it was reported that the KH0 domain was 

responsible for protein-interactions between FMRP and the cytoplasmic FMRP-interacting 

protein 1 (CYFIP1), the FMRP homolog FXR2P, and the polyribosome associated protein 

82-FIP (82 kDa FMRP Interacting Protein) (Bardoni et al., 2003; Schenck et al., 2001; 

Siomi et al., 1996). Interestingly, KH0 has also been shown to bind the non-coding RNA, 

mammalian brain-specific cytoplasmic RNA 1 (BC1), which functions as a molecular 

adaptor linking FMRP with some mRNA targets within neurons (Zalfa et al., 2003).   

An individual with developmental and intellectual disability in addition to 

intractable seizures was found to have an arginine to glutamine missense mutation within 

the KH0 domain (Arg138Gln) (Figure 3A). Studies have indicated this mutation disrupts 

FMRP association with nucleosomes and presynaptic BK channels (high conductance 

calcium- and voltage- dependent potassium channels), although this doesn’t appear to be 
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occurring as a result of any significant structural changes in protein folding (Alpatov et al., 

2014; Myrick et al., 2015a). Presynaptic BK channels are important for regulating action 

potential duration and neurotransmitter release, which is disrupted in Arg138Gln 

hippocampal CA3 pyramidal neurons (Myrick et al., 2015b).  Interestingly, this mutation 

was not found to have any effect on some of the more well-characterized FMRP functions 

such as mRNA binding or translation regulation, suggesting this domain may control novel 

presynaptic FMRP function(s) (Myrick et al., 2015b).  

Missense point mutations in the human KH1 and KH2 domains (Gly266Glu and 

Ile304Asn, respectively) have been identified in two individuals with FXS (De Boulle et 

al., 1993; Myrick et al., 2014). Although RNA-binding targets of the KH1 and KH2 

domains remains largely elusive, these domains essential for polyribosome association 

which is significantly reduced in Ile304Asn and abolished in the (Gly266Glu) mutant 

(Darnell et al., 2005; Feng et al., 1997; Myrick et al., 2014). Interestingly, KH1 Gly266Glu 

introduces a large, hydrophobic residue which sterically clashes with neighboring side 

chains, and is predicted to disrupt KH1 domain structure (Myrick et al., 2014). The KH2 

Ile304Asn mutation also results in a hydrophobic-to-hydrophilic residue mutation and 

occurs within the hydrophobic binding pocket of the KH2 domain, completely disrupting 

KH2 domain folding and is predicted to disrupt RNA-binding (Valverde et al., 2007). 

One of the proposed mechanisms of FMRP-mediated translation regulation is via 

stalling translating ribosomes on target mRNAs (Darnell et al., 2011). The structure of the 

Drosophila FMRP-ribosome complex was solved using cryo-EM wherein the KH1, KH2, 
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and RGG domains were essential for this interaction (Chen et al., 2014). Interestingly, the 

KH domains dock on the 80S ribosome and overlap with the peptidyl site (P-site), which 

is hypothesized to prevent tRNA entry/departure and association of elongation factors, 

effectively halting translation. The two canonical KH domains may function in FMRP-

mediated translation repression via this interaction, explaining how disruption of these 

domains via FXS-causing point mutations have detrimental effects in these individuals. 
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Figure 3. Schematic of Drosophila melanogaster FMRP 

(A) All the functional domains and mutated amino acids are conserved in fly FMRP. FMRP 
contains several interaction domains including: Agenet 1 and Agenet 2 (Age1 and Age2) 
which are important for nuclear FMRP functions including chromatin binding (aka tandem 
Tudor domains). Three hnRNP K homology (KH) domains are conserved RNA-binding 
domains. The non-canonical KH0 domain also contains the nuclear localization sequence 
(NLS) which allows FMRP-nuclear localization. Locations of missense point mutations 
reported in three individuals with Fragile X Syndrome are indicated with red arrowheads 
and annotate the conserved amino acid residue substitution and position in the Drosophila 

melanogaster FMRP protein. A nuclear export sequence (NES) is positioned in between 
the KH2 and intrinsically disordered region (IDR) and permits nucleocytoplasmic shuttling 
of FMRP. The IDR makes up the entire C-terminus of FMRP and is shown in striped 
patterning. In the middle of the IDR is the arginine-glycine-glycine rich or RGG box. The 
RGG box binds G-quadruplex structures in mRNA targets. Note: domain sizes and amino 

acid positions are approximate. (B) Disorder plot aligned with the FMRP protein 
schematic show the C-terminus of FMRP is entirely disordered using IUPRED2. 
Unstructured binding domain predictions were made using ANCHOR2 (Mészáros et al., 
2018). An IUPRED2A score of 0-0.5 is predicted to be structured, whereas scores between 
0.5-1 is predicted to be unstructured.   
   

A. 

B. 
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Identifying mRNA targets and the RNA-recognition elements (RREs) to which the 

KH domains in FMRP are binding has been highly sought after, as FMRP is known to be 

a major translation regulator within neurons, and mutations within these domains cause 

severe FXS. Unfortunately, there has been much disagreement between studies using 

different high-throughput methods to identify FMRP-targeted mRNA motifs, specifically 

for the KH1 and KH2 domains. The RREs WGGA (where W = A or U) and ACUK (where 

K = G or U) were found to be enriched in FMRP RNA targets identified from 

photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation (PAR-

CLIP) and RNA immunoprecipitation followed by microarray (RIP-ChIP) analysis 

(Ascano et al., 2012). WGGA is predicted to be targeted by the KH1 domain, while ACUK 

is the predicted RRE of the KH2 domain. In support of these findings, Tran and others 

identified an enrichment of ACUG motifs in FMRP targets (Tran et al., 2019). GACR 

(where R = A/G) RREs have also been identified as putative FMRP target motifs using the 

in vitro RNAcompete method (Ray et al., 2013). In this assay, the FMRP-KH domains 

were incubated with an assortment of RNAs in molar excess and bound targets were 

identified via microarray analysis. In 2014, Suhl and others conducted a comparative 

analysis on published FMRP RNA-target datasets to determine the degree of consensus of 

RREs enriched in targets identified in these studies (Suhl et al., 2014). Interestingly, they 

found that GACR was the only RRE enriched in all of these datasets, whereas WGGA was 

enriched to a lesser degree and only in some of these datasets. ACUK sequences which are 

found ubiquitously throughout the transcriptome, did not occur with any greater frequency 
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in FMRP targets in this comparative analysis. These previously identified sequences were 

pulled further into question by a recent study in 2020 which quantified FMRP-RNA 

binding affinities via fluorescence anisotropy (Athar and Joseph, 2020). Neither the KH0, 

KH1, nor KH2 domains were capable of binding the WGGA, ACUK, or GACR RREs, 

suggesting that the FMRP KH domains may be interacting instead with more complex 

RREs rather than these short sequence motifs. However, this analysis was performed in 

vitro using minimal FMRP domain-fusions which may not be physiologically relevant.  

The lack of consensus between the different binding motifs identified for the KH 

domains could be due to differences in cell-type specific interactions that are being 

characterized. FMRP is expressed throughout the body and likely regulates different 

transcript populations in a cell-type dependent manner. It will be important to identify 

neuronal transcript targets and RREs identified by these KH domains using more consistent 

analyses in similar tissue/developmental stages in the future in order to gain a better 

understanding of their contribution to FMRP-mediated translation repression.    

1.1.5.3 FMRP is a nucleocytoplasmic shuttling protein 

Within the KH0 domain is a Nuclear Localization Sequence (NLS), which as the 

name suggests, is important for localizing FMRP to the nucleus (Kenny and Ceman, 2016). 

FMRP also contains a Nuclear Export Sequence (NES) between the KH2 domain and the 

C-terminal intrinsically disordered region (IDR), which together with the NLS, permits 

nucleocytoplasmic shuttling of FMRP (Eberhart et al., 1996). In addition to having a 
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function within the nucleus, FMRP is better known for its function in shuttling nascent 

mRNA targets out of the nucleus and into the cytoplasm (Hsu et al., 2019). 

1.1.5.4 The C-terminal RGG box confers FMRP-target specificity 

Following the NES, mammalian FMRP contains an arginine-glycine-glycine rich 

(RGG) box within its C-terminal intrinsically disordered region, or IDR (Figure 3A-

B). The RGG box is an unstructured RBD that interacts with secondary structures in RNA 

targets such as stem loops and G-quadruplexes. These RREs are enriched in many FMRP-

targets and are speculated to be one of the major features specifying FMRP-targets 

(Bechara et al., 2009; Brown et al., 2001; Darnell et al., 2001; Phan et al., 2011; Zhang et 

al., 2014). Interestingly, the RGG domain was recently shown to be important for the 

localization of transcripts containing G-quadruplex structures within their 3’untranslated 

regions (3’UTRs) to neurites (Goering et al., 2020). This supports previous findings 

reporting the enrichment of G-quadruplex structures within 3’UTRs of neuritically 

localized transcripts (Subramanian et al., 2011). Importantly, while the KH domains are 

important for translation repression, the RGG box is thought to contribute an mRNA-

binding/localization function. However, the RGG domain is weakly conserved in 

Drosophila, and it is unclear whether it is capable of binding to G-quadraplex sequences 

in flies (Vasilyev et al., 2015).  



 

 
 

17

1.1.5.5 The C-terminal half of FMRP is intrinsically disordered and is capable of 

promoting liquid-liquid phase separation in vitro 

IDRs, also termed low-complexity domains (LCDs), are regions within a protein 

that have low amino acid complexity, and are typically deficient in bulky hydrophobic 

residues which drive large folding events within proteins (Yang et al., 2019). As such, these 

domains inherently lack a well-defined structure but are sometimes capable of adopting a 

3D structure when the protein is bound to a substrate via other interaction domains. A 

substantial amount of evidence indicate that these sequences are capable of driving the 

formation of membraneless organelles (MLOs) in cells via the process of liquid-liquid 

phase separation (LLPS) (Brangwynne et al., 2009; Shin and Brangwynne, 2017).  

LLPS is the reversible process by which a macromolecular solution spontaneously 

or actively demixes to form two distinct phases that can dynamically exchange material 

with one another (Berry et al., 2018; Boeynaems et al., 2018). This process can be likened 

to oil demixing from water and forming a dense liquid oil droplet within the dilute liquid 

water environment. This biological phenomenon is driven by weak inter- and intra-

molecular interactions between proteins and nucleic acids, which upon reaching a “critical 

threshold” or “saturation limit” undergo a phase transition and form a non-membrane 

bound droplet (Figure 4A). These droplets have been coined many different names 

including, but not limited to, granules, bodies, condensates, MLOs, liquid droplets, foci, 

puncta, assemblies, and bodies. For the sake of simplicity, these will be referred to as 

“granules” or “MLOs” below. The formation of phase separated granules within a cell 
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serves as a means for the tight spatiotemporal regulation of diverse biomolecular processes 

such as ribosome biogenesis (Falahati and Wieschaus, 2017), gene expression (Al-Husini 

et al., 2018; Molliex et al., 2015), cell differentiation (Liu et al., 2020), and cell receptor 

assembly and signaling (Banjade and Rosen, 2014; Su et al., 2016).  

Many proteins that drive LLPS contain IDRs. IDRs promote phase separation due 

to their propensity to form weak-intermolecular interactions with RNAs, folded proteins 

and other IDRs (Protter et al., 2018). The promiscuity of the interactions of IDRs within 

proteins are suggested to decrease the critical concentration of nucleic acid or protein 

interactors needed to phase separate, by enhancing the overall strength of multivalent 

interactions between molecules (Figure 4B) (Protter et al., 2018). Interestingly, IDR-

containing proteins are common villains in neurodegenerative diseases due to their 

propensity to promote liquid-to-solid phase transitions which form pathological protein 

aggregates or amyloid fibrils (e.g. hnRNPA1, TDP-43 and FUS) (Babinchak et al., 2019; 

Lin et al., 2015; Molliex et al., 2015; Murthy et al., 2019). When mutated, these phase 

separating proteins commonly cause dominant-negative phenotypes and form irreversible 

fibrils or aggregates via homotypic or heterotypic interactions, respectively (Mathieu et al., 

2020).   

One model describing the composition and dynamicity of phase separated granules 

describes these structures as containing cores and shells, in which an initially heterogenous 

granule is remodeled into smaller dense “cores” surrounded by a more dynamic “shell” 

(Figure 4A) (Jain et al., 2016). This has been described particularly for stress granules 
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(SGs), but other biological MLOs are likely to be similarly organized. Molecules within 

the initial granule mature and form more stable interactions, nucleating cores which are 

synonymous with the immobile fraction of MLOs. This model also predicts that multiple 

separate cores can exist within a larger granule, all of which are surrounded by a 

dynamically exchanging shell. This shell contains molecules that make up the mobile 

fraction of MLOs. It’s thought that mutations in stable core constituents may result in the 

formation of pathological aggregates, contributing to neurodegenerative disease (Lin et al., 

2015). 

Although IDRs are commonly thought to be the defining feature for a proteins 

ability to phase separate, multivalency of interaction domains is the actual driver for this 

process to occur in vivo (Boeynaems et al., 2018; Choi et al., 2020; Martin and Holehouse, 

2020). The valency, or number of domains capable of undergoing inter- and intramolecular 

interactions in a protein is directly related to the critical concentration at which LLPS will 

occur, with a protein of higher valency phase transitioning at lower concentrations than a 

protein with lower valency (Figure 4B) (Li et al., 2012). Multivalency is crucial for this 

process by allowing multiple interactions to occur between a single molecule and multiple 

protein and/or RNA partners, effectively forming a biopolymer, or ribonucleoprotein 

complex (RNP). These RNPs are then often capable of interacting heterogeneously with 

other RNPs, greatly increasing protein and nucleic acid concentrations within a particular 

subcellular location. Upon reaching a particular saturation limit, interacting RNPs 

spontaneously form a droplet via LLPS.  
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Interestingly, the entire C-terminal half of mammalian and fly FMRP is intrinsically 

disordered (Figure 3B) (Tsang et al., 2019). This indicates that the IDR may have a 

substantial impact on how FMRP interacts with other biomolecules to form MLOs 

important for regulating gene expression. FMRP is a multivalent protein capable of 

interacting with DNA, RNA and proteins (Figure 3A. Interestingly, FMRP has been 

extensively documented as a component of many different phase separated granules within 

cells that function in modulating RNA translation and stability including: polyribosomes, 

RNA Processing bodies (P-bodies), SGs, and neuronal granules (NGs) (Barbee et al., 2006; 

El Fatimy et al., 2016; Gareau et al., 2013a; Stefani et al., 2004). Interestingly, the 

disordered C-terminus of human FMRP is sufficient to reversibly drive LLPS in a 

phosphorylation-dependent manner in vitro (Tsang et al. 2019). It has been proposed that 

this may serve as a mechanism for FMRP to regulate activity-dependent translation in 

neurons (Kim et al. 2019). However, precisely how FMRP is able to interact with a 

diverse subset of cytoplasmic granules and what its functions are within them has yet 

to be elucidated. In order to gain a better understanding of what the functions of FMRP 

within biomolecular condensates are, we need to first understand the breadth of known 

functions that FMRP has in the regulation of gene expression.   
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Figure 4. Liquid-Liquid Phase Separation 

(A) Left: Proteins and RNAs form mRNP complexes that are soluble within the 
surrounding dilute liquid environment. Middle: Increased local protein and/or RNA 
concentration can cause phase separation to occur, forming a dense liquid droplet. These 
droplets are held together by weak multivalent interactions, are reversible and dynamically 
exchange with the surrounding dilute phase. Right: mRNP interactions within phase 
separated granules are capable of maturing over time and form stable cores within a more 
dynamic shell. These cores are formed by stably interacting mRNPs which minimally 
exchange with the more dynamic shell. Figure adapted from (Jain et al., 2016) (B) Left: 
Proteins are evenly distributed in a system and undergo phase separation above a critical 
concentration, forming liquid droplets. These droplets are stable so long as the protein 
concentration remains higher than the critical concentration. Liquid droplets dissolve if 
protein levels drop below the critical concentration. Right: The critical concentration for 
phase separation is reduced in proteins with higher valency or for proteins that interact 
more strongly. Figure adapted from (Alberti, 2017).  
  

A. 

B. 
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1.2 FMRP regulates translation and mRNA transport within granules 

1.2.1 Models of FMRP-mediated translation regulation 

FMRP has a clear function in regulating the translation of many proteins within 

neurons as indicated by the loss of FMRP causing significant alterations in protein 

expression (Richter and Zhao, 2021). Strong evidence showing the crucial role of FMRP 

in translation inhibition was the observation that proteins in FMR1-KO mice incorporated 

significantly more 35S-methionine, reporting an up to 20% increase in protein synthesis 

(Dölen et al., 2007; Udagawa et al., 2013). FMRP is further implicated as a translation 

regulator as it binds over 1,000 transcripts predominantly within their coding sequences 

(CDS), and is found to be associated with stalled ribosomes in polyribosome fractions 

(Darnell et al., 2011; Li et al., 2020; Maurin et al., 2018; Sawicka et al., 2019; Das Sharma 

et al., 2019; Stefani et al., 2004). FMRP regulates mRNA translation and stability in both 

the pre- and postsynaptic space. These regulated transcripts encode proteins that are 

important for synaptic transmission, small GTPase signaling, dendritic outgrowth, and 

ionotropic glutamate receptor activity (Darnell et al., 2011; Tran et al., 2019). Moreover, 

FMRP is responsible for regulating multiple stages of the mRNA life-cycle including 

translation initiation and elongation, degradation inhibition, and translation repression of 

target mRNAs via the microRNA RISC (miRISC) pathway, within messenger RNP 

(mRNP) granules (Lai et al., 2020; Li et al., 2008; Richter and Zhao, 2021). Below, the 

focus will be on FMRP functions in repression of translational initiation and elongation, 

and its regulation of mRNA stability within different populations of mRNP granules. 
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1.2.1.1 Regulation of translation initiation 

As previously mentioned, FMRP is responsible for differentially regulating a large 

subset of neuronal transcripts, and is able to do so at different points of the mRNA life 

cycle. Although it is not the major mechanism of FMRP-mediated translation repression, 

FMRP regulates translation initiation in an activity dependent manner (Napoli et al., 2008). 

FMRP interacts with the eukaryotic initiation factor 4E binding protein, CYFIP1 (Schenck 

et al., 2001). CYFIP1 is involved in targeted translation suppression and actin 

polymerization, two processes important for dendritic spine morphogenesis which is 

affected in FXS (De Rubeis et al., 2013). Within neurons, FMRP forms an mRNP complex 

with CYFIP1, and is able to recruit CYFIP1 to specific mRNAs such as the dendritically 

localized Arc, camkii, Map1B, and APP (Napoli et al., 2008). CYFIP1 then binds to the 5’ 

7-methylguanosine (m7G) cap binding protein eIF4E, inhibiting the formation of the eIF4F 

complex at the m7G cap. Without the eIF4F scaffold the 43S preinitiation complex with 

the small ribosomal subunit cannot be recruited to the transcript and cap-dependent 

translation initiation is inhibited (Hinnebusch, 2014). Following activation of mGluR at 

the PSD, CYFIP dissociates from eIF4E allowing translation to proceed (Napoli et al., 

2008). Interestingly, CYFIP1 interacts with multiple genes associated with neurological 

disorders including ASDs, intellectual disabilities, attention deficit hyperactivity disorder 

(ADHD), schizophrenia, and Alzheimer’s disease (AD), in addition to FXS, implicating its 

importance in regulating synaptic plasticity (De Rubeis et al., 2013). The FMRP-CYFIP1 
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initiation suppression complex may function to regulate only a particular subset of genes, 

as this is not the major mechanism of FMRP-mediated repression (Richter and Zhao, 2021). 

 

1.2.1.2 Regulation of translation elongation 

The observation that FMRP is found predominantly within polyribosome fractions 

and binds transcripts within their CDS, suggests that the major mechanism by which FMRP 

represses translation occurs at the level of elongation (Shah et al., 2020). Indeed, 

polyribosome runoff experiments have shown that FMRP associates with mRNAs and 

blocks ribosomal translocation as evidenced by high levels of ribosome-occupancy on 

FMRP-bound transcripts following puromycin treatment (Darnell et al., 2011). Puromycin 

stimulates premature termination of actively translating ribosomes, while having no impact 

on stalled ribosomes (Stefani et al., 2004). Ribosomal stalling as a mechanism of regulating 

translation was recently supported in a study showing a reduction of ribosomal pausing on 

FMRP-regulated transcripts in an FMR1-KO mouse model (Das Sharma et al., 2019). 

Additionally, over 300 mRNAs repressed by FMRP have been found to have increased 

ribosomal stalling (Shu et al., 2020). Although it’s evident that FMRP regulates translation 

via ribosome stalling, how it’s functioning as a molecular brake on specific subsets of 

neuronal transcripts has been debated throughout the years. 

One model predicts that FMRP stalls ribosome translocation by blocking the 

association of tRNA and other elongation factors with the ribosome (Chen et al., 2014; 

Richter and Zhao, 2021). Using cryo-EM, the KH domains of Drosophila FMRP were 
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shown to interact directly with the ribosome near the ribosomal P-site, suggesting that it 

may block the addition of new amino acids to the elongating polypeptide chain (Chen et 

al., 2014). Additionally, the RGG box in FMRP bound near the A-site of the ribosome. 

This puts the RGG box in close proximity to putative G-quadruplex secondary structures 

in target mRNAs where it could be bound to the transcript. From this, it can be inferred 

that when FMRP is bound to G-quadruplex structures in target transcripts via the RGG-

box, it is also able to bind translocating ribosomes via the KH domains and block 

elongation. However, these FMRP-ribosome interactions were shown in vitro and outside 

of the context of bound mRNA. Further studies on how FMRP interacts with translating 

ribosomes are required to gain a better understanding of this relationship. 

Another model predicts that FMRP sterically hinders translocation via its ability to 

bind transcripts within and throughout their CDS via optimal codons (Darnell et al., 2011; 

Richter and Zhao, 2021). Within neurons, FMRP mRNA targets are enriched with optimal 

codons, which are codons that correspond with highly abundant tRNAs. FMRP 

preferentially interacts with and stabilizes transcripts with this optimal codons bias (Shu et 

al., 2020). In support of this model, transcripts with optimal codon bias are 

disproportionately down-regulated in FMRP-deficient mice (Sawicka et al., 2019; 

Thomson et al., 2017). It has been predicted that FMRP increases mRNA stability by 

binding and protecting mRNAs via these optimal codons and blocking an unidentified 

nuclease from degrading bound transcripts (Shu et al., 2020). However, the mechanism by 

which FMRP preferentially interacts optimal codons to control these processes has yet to 
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be elucidated and there are still a lot of questions that need to be answered for this recent 

model. 

In summary, FMRP is able to repress translation of specific subsets of mRNA 

targets using vastly different mechanisms, which could enable cells to fine-tune expression 

at different stages in development, in different tissues, or even in spatially distinct areas 

within the cell (e.g. different populations of granules). However, how FMRP is able to 

differentially regulate translation is still unknown. We speculate that this is most likely 

determined by the particular mRNP complex with which FMRP is associated. 

1.2.2 Regulation of mRNA in mRNP complexes 

From the onset of transcription until decay, mRNAs are painted with RBPs, 

forming an mRNPs which choreograph mRNA fate within the cell. RBPs interact with 

transcripts via a number of RNA secondary structures or specific sequences located within 

the untranslated regions (UTRs), introns and exons. Motifs within the UTRs are typically 

important for directing cellular localization and increasing mRNA stability (Taliaferro et 

al., 2016). Interestingly, transcripts enriched within distal axonal and dendritic 

compartments of neurons, have considerably longer 3’UTRs which offers more RREs for 

miRNA and RBPs to interact with and promote stabilization during transport (Taliaferro et 

al., 2016; Tushev et al., 2018). FMRP is found within many different mRNP complexes 

which differ in protein content and molecular function including polyribosomes, SGs, P-

bodies, and NGs. Polyribosomes contain mRNAs, ribosomes, translation factors, and other 

RBPs that can either promote or repress translation. As previously discussed, FMRP 
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associates with polyribosomes where it functions in ribosome stalling during translation 

elongation. Polyribosomes are the major mRNP granule which FMRP localizes to and 

functions within. However, FMRP is also able to stabilize and translationally repress 

mRNAs within other mRNP complexes.       

1.2.2.1 FMRP promotes stress granule assembly                                                                                                                             

SGs are a type of MLO that form rapidly in response to cellular stress and contain 

transcripts that are stalled at the pre-initiation phase of translation. A number of stressors 

including heat/cold shock, oxidative stress, ER stress, osmotic stress, and UV irradiation 

can induce the formation of SGs where mRNAs are translationally stalled to reduce energy 

expenditure from protein production (Protter and Parker, 2016). SGs also serve as dynamic 

triage units within the cell where the fate of transcripts is determined and mRNAs are 

directed for repression, degradation, or storage. Depending on the type of stress, transcripts 

will either be stabilized and translationally repressed until the cell is no longer stressed and 

re-initiation of translation can resume, or targeted for degradation (Anderson et al., 2015).  

FMRP has been identified as a core SG component and may be involved in shuttling 

translationally repressed transcripts from polyribosomes to SGs (Fu et al., 2020; Mazroui 

et al., 2002). Although FMRP is not required for SG nucleation, loss of FMRP reduces 

mRNA localization to SGs and reduces SG assembly (Didiot et al., 2009). FMRP maintains 

translation repression in its phosphorylated state. Interestingly, phosphorylation of residues 

within the C-terminal IDR of FMRP promotes its phase separation with CAPRIN1, a 

protein that promotes SG assembly (Kim et al., 2019). Assembly of the FMRP-CAPRIN1 
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complex may be a mechanism by which mRNAs are recruited to stress granules. However, 

the precise function of FMRP within SGs is largely unknown. 

1.2.2.2 FMRP interacts with RNA Processing bodies within neurons  

FMRP also interacts with P-bodies to regulate mRNAs (Barbee et al., 2006; Cougot 

et al., 2008; Zalfa et al., 2006). P-bodies are mRNP granules containing nontranslating 

mRNAs and RBPs involved in deadenylation, 5’�3’ mRNA decay, mRNA storage and 

repression via the RNA-induced silencing complex (RISC) in somatic cells (Anderson and 

Kedersha, 2006; Standart and Weil, 2018). Some of the core components required for 

mRNA decay in P-bodies include the deadenylation complexes, decapping enzymes and 

enhancers of decapping (Coller and Parker, 2005; Eulalio et al., 2007; Ingelfinger et al., 

2002; Luo et al., 2018; Parker and Sheth, 2007). In contrast to SGs, ribosomal subunits and 

most translation initiation factors are absent from these MLOs (Parker and Sheth, 2007; 

Teixeira et al., 2005). A subset of FMRP localizes to mRNP transport granules structurally 

related to P-bodies throughout neurons, illustrating yet another mechanism by which 

FMRP mediates translation repression and transcript stability (Barbee et al., 2006; Cougot 

et al., 2008). Although FMRP associates with P-bodies, its function within these structures 

has yet to be elucidated. FMRP associates with miRNAs and several components of the 

RISC pathway including Ago1, Ago2 and Dicer (Cheever and Ceman, 2009; Jin et al., 

2004; Muddashetty et al., 2011). It has been speculated that FMRP may be involved in 

mediating translation repression in P-bodies via the RISC complex.  
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1.2.2.3 FMRP regulates RNA transport within neuronal granules 

Neurons are able to control individual synaptic processes by fine-tuning the 

distribution and regulation of mRNAs within synapse-localized neuronal granules (NGs). 

NGs are a specialized MLO found throughout the brain and are enriched with cytoskeletal 

proteins, ribosomal subunits, translation regulators, RBPs and translationally repressed 

synaptic mRNAs (Antar et al., 2005; Banerjee et al., 2018; El Fatimy et al., 2016; Merrill 

et al., 2005; Miyashiro et al., 2003). Interestingly, in mouse brains these complexes also 

show a high degree of overlap with polyribosomes suggesting NGs may develop from 

stalled polyribosomes (El Fatimy et al., 2016).  

Densely packaged NGs form within the soma and transport mRNAs in a 

translationally repressed state through dendrites and axons out to synaptic terminals (Figure 

5). Forming a compact granule is necessary to prevent the loss of material due to 

hydrodynamic drag during rapid, motor-dependent transport through neurites (Alberti, 

2017; Brangwynne et al., 2009). NGs are bidirectionally transported via microtubules 

between the soma and synaptic densities, revealing a recycling mechanism of NG 

components back to the cell soma, in addition to their delivery out to synapses (Bassell and 

Warren, 2008). Anterograde transport out to distal neurites occurs via the motor protein 

kinesin, while retrograde transport is dependent on the dynein motor protein (Carson et al., 

2001; Kanai et al., 2004; Otero et al., 2002). At the synapse, NGs are maintained within 

the synaptic density and disassemble in response to local synaptic activation, permitting 

rapid protein synthesis in response to an acute stimuli (Buxbaum et al., 2014).  
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Within neurons, FMRP associates with NGs in the soma, neurites and at synaptic 

densities and it is proposed that FMRP regulates many mRNA targets within these 

structures (El Fatimy et al., 2016) However, FMRP occupies only a subset of NGs 

suggesting it may be essential for the spatiotemporal regulation of particular neuronal 

mRNAs (Barbee et al., 2006; El Fatimy et al., 2016). FMRP and the FMR1 mRNA are both 

found within the PSD, suggesting the necessity for local translation of FMRP at these sites 

(Antar et al., 2004). Perhaps FMRP is not the major regulator of mRNAs during transport, 

but is instead required for translation repression out at the synapse. While studies using the 

MS2-tagging method show a requirement for FMRP in localizing target transcripts out to 

neurites, others indicate that FMRP is not required for NG transport (Dictenberg et al., 

2008; Estes et al., 2008; Kao et al., 2010). Recently, Goering and others showed that the 

RGG box was required for the localization of mouse FMRP and G-quadruplex containing 

transcripts out to neurites using subcellular fractionation followed by high throughput 

sequencing (Goering et al., 2020). As indicated earlier, one of the major cellular defects in 

FXS is dendritic overgrowth due to aberrant protein synthesis at the synapse. This indicates 

that transcripts are localized out at synaptic densities even in the absence of FMRP, and 

that FMRP is not required for mRNA transport within NGs. Altogether, there is a general 

lack of understanding of what role FMRP has within NGs and how it interacts with these 

MLOs.   
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Figure 5. Model for FMRP function in NGs 

1) FMRP binds target transcripts within the nucleus forming an mRNP. 2) This mRNP is 
shuttled out of the nucleus into the soma where ribosomes assemble on mRNAs and 
translate polypeptides until FMRP is phosphorylated which stalls translation. These 
translationally stalled complexes can then assemble with motor adaptors and other factors 
to form a NG. 3) The NG then associates with the kinesin motor protein and is translocated 
out to distant synaptic densities via microtubules. 4) After reaching a synaptic destination, 
the NG is released from the motor protein and maintained in the PSD. 5) Upon synaptic 
activation of the mGluR1/5, 6) FMRP is dephosphorylated and releases translation 
repression on its target transcript. 7) The transcript rapidly resumes translation, producing 
nascent protein in an activity dependent manner. 8) FMRP is either retained in the PSD or 
9) transported back to the soma via dynein motor proteins. Figure adapted from (Bassell 
and Warren, 2008).  
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1.3 Summary 

FMRP is an RBP important for regulating >1,000 mRNAs, many of which function 

in learning and memory formation. Even though its function as a repressor of translation is 

clear at both the initiation and elongation phase, how it is able to spatiotemporally regulate 

such a diverse population of transcripts has yet to be elucidated. One of the major cellular 

functions of FMRP is its ability to interact with distinct phase-separated granules. 

Organization by phase separation is speculated to be an important cellular phenomenon 

that allows for the compartmentalization of molecules important for specific processes 

while still permitting for dynamic exchange with the surrounding environment. The 

propensity of FMRP to localize to granules suggests that this is important for its function. 

Whether specific interaction domains of FMRP are required for recruitment to different 

granules is unknown. The specific RRE identified by the KH domains remains enigmatic, 

although the ubiquitous short sequences are the most likely candidate. We predict the KH 

domains are crucial for strengthening overall interactions within FMRP granules via these 

highly enriched RREs, while more specific interactions are contributed by the other 

domains. Here we present the central hypothesis that the KH domains of FMRP are 

required for FMRP granule formation. To test this hypothesis, we examine the impact of 

two FXS-causing missense point mutations in the KH domains on FMRP granule 

formation and function. We predict that multivalent interactions via these low specificity 

KH domains, promotes the formation of FMRP-interacting granules and more specifically, 

FMRP-positive NGs in vivo.   
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CHAPTER TWO: MULTIVALENT INTERACTIONS DRIVE FMRP GRANULE 

FORMATION IN DROSOPHILA S2 CELL CULTURE 

 

2.1 The FMRP IDR functions cooperatively with the KH domains to form granules 

FMRP has been well characterized in its ability to localize to different MLOs 

including SGs, P-bodies, Fragile X granules (FXGs), and NGs (Barbee et al., 2006; Christie 

et al., 2009; Gareau et al., 2013a; Lee et al., 2010; Li et al., 2009). Like human FMRP, the 

entire C-terminus of Drosophila FMRP is predicted to be disordered (Figure 3B). IDRs 

within RBPs have been shown to drive the formation of granules through the process of 

LLPS. Although the IDR of FMRP has been shown to promote droplet formation in vitro, 

the dependency of the IDR in granule formation in vivo has yet to be elucidated (Tsang et 

al., 2019).  More specifically, little is known about what role the IDR plays in the context 

of the other RBDs in the ability of FMRP to localize to or form granules. To address this 

question, we first constructed a series of IDR and KH domain mutants with an N-terminal 

EGFP-tag (Figure 6A). We then expressed these constructs in transiently transfected 

Drosophila Schneider 2 (S2) cells to determine how they impact FMRP granules. 
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Similar to what has previously been shown by others, our EGFP-FMRP (WT-

FMRP) construct forms numerous, characteristically small, spherical granules (Figure 6B; 

Gareau, Martel, et al. 2013; Gareau, Houssin, et al. 2013). We were initially interested in 

determining if the IDR of fly FMRP, referred to here as IDR, was necessary and sufficient 

to drive the formation of FMRP granules in S2 cells. As with its human ortholog, the IDR 

was sufficient to induce FMRP granules in transfected cells (Figure 6C). Interestingly, 

expression of the IDR alone is not capable of forming granules in all cells, with IDR-

granules forming in approximately 25% fewer cells than WT-FMRP. This suggests that 

other domains within the N-terminus of FMRP likely contribute to the formation of (or the 

interaction with) granules in vivo. In support of this hypothesis, the structured N-terminus 

of FMRP (∆IDR), which contains the DNA-binding tandem Tudor domains and the three 

protein- and RNA-binding KH domains, is also capable of forming granules, albeit at a 

significantly lower frequency (~26%). Interestingly, ∆IDR was able to form granules even 

at lower expression levels than WT-FMRP (Figure 6D). It’s important to note, that we 

cannot conclude whether this indicates that FMRP is able to form granules without the IDR 

or if this construct is able to interact with already formed FMRP granules (or another MLO) 

via its N-terminal functional domains. Regardless, the loss of the either the N- or C-

terminal domains significantly reduces the formation of FMRP granules in vivo. 

Based on these observations, we speculated that the two major RBDs within the N-

terminus, KH1 and KH2, may play an important role in promoting the formation of FMRP 

granules by working in cooperation with the IDR, as multivalent interactions are what drive 
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LLPS in the cellular context. Indeed, we found that by adding back both KH domains 

(KH+IDR) this granule phenotype was rescued, with over 90% of cells forming granules 

(Figure 6C). These data support recent evidence suggests that although IDRs are important 

for the biogenesis of MLOs, multivalent interactions contributed by other interaction 

domains is required for more physiological granule formation (Banani et al., 2016). More 

specifically, this suggests that the KH1 and KH2 domains cooperate with the IDR to form 

FMRP granules, in vivo.   



 

 
 

36

 

 

                               

 

Figure 6. The IDR functions cooperatively with the KH domains to form FMRP 

granules in S2 cells 

A. 

B. 

C. D. 
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(A) Schematic of FMRP showing each of the RBDs in light blue boxes and its IDR which 
is indicated by grey and white stripes (top). IDR mutants that were made in this study are 
shown below WT-FMRP and amino acid deletions are annotated with thin lines. Premature 
stop codon was added before the IDR domain (amino acids 374-682) in ∆IDR construct. 
For IDR, the first 373 amino acids were deleted from FMRP. Both KH1 and KH2 domains 
are fused to the IDR in the KH+IDR mutant. The first 226 amino acids up to KH1 domain 
were deleted as well as the region between the KH2 and IDR domains (336-373). Each of 
these constructs were made within an N-terminally tagged EGFP vector. (B) 
Representative images of EGFP-FMRP mutant granule phenotypes in S2 cells. These 
images show the major FMRP phenotype produced by these mutants. Scale bar: 2µm. (C) 
Quantification of the percentage of transfected cells forming FMRP granules (mean ± S.E.; 
n≈100 cells in triplicate). (D) Western blot analysis of EGFP protein levels in untransfected 
cells or cells transiently transfected EGFP and EGFP-FMRP mutant constructs. α-tubulin 
was used as a loading control. IB= immunoblot. Statistical analysis was done by ordinary 
one-way ANOVA followed by Holm-Šídák's multiple comparisons test. 
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2.2 FXS-causing missense mutations in the KH domains disrupt granule formation 

Disease-causing missense mutations in the KH1 and KH2 domains of hsFMRP 

(Gly266Glu and Ile304Asn, respectively) are predicted to disrupt proper folding of KH 

domains via steric disturbance. Disruption of protein structure by these mutations results 

in the loss of several important FMRP functions including mRNA-binding, AMPA 

receptor trafficking and polysome association (Darnell et al., 2005; Myrick et al., 2014; 

Valverde et al., 2007). To better understand what role(s) the KH1 and KH2 domains have 

in FMRP granule formation, we made the analogous point mutations in the evolutionarily 

conserved residues of the Drosophila FMRP ortholog, Gly269Glu and Ile307Asn, 

hereafter referred to as KH1* and KH2*, respectively (Figure 7A) (Valverde et al., 2007).  

First, we transfected S2 cells with these EGFP-tagged point mutants to see what 

impact this had on FMRP granule formation (Figure 7B). Interestingly, we observed a two-

fold decrease in the ability of cells transfected with KH1* to form granules, while KH2* 

had no effect (Figure 7C). This suggests that the KH1, but not the KH2 domain, is required 

for de novo assembly or recruitment to pre-existing granules. We also saw a significant 

reduction in the ability to form granules in cells expressing the KH1*KH2* double mutant 

which disrupts both KH domains. KH1*KH2* did not have as robust of an effect on 

granules as KH1*, instead representing an intermediate between the mutants. Higher local 

concentrations of protein drive granule formation, and lower expression of the KH1* and 

KH1*KH2* mutants could explain why we saw fewer granules in these cells (Bolognesi 
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et al., 2016; Li et al., 2012). However, these mutants were each expressed at similar levels 

suggesting this is not the reason we see fewer granules in these mutants (Figure 7D).  

As a control, we also made a construct called ΔKH in which both the KH1 and KH2 

domains were removed (Figure 7A). This has been used in previous studies looking broadly 

at the role of functional domains in FMRP granule formation and dynamics in S2 cells 

(Gareau et al. 2012). Consistent with published results, ΔKH had no effect on the ability 

of FMRP to form granules in vivo (Figure 7C). Together, these data suggest that the KH1, 

but not KH2, domain is required for FMRP granule formation in S2 cells. 
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Figure 7. The KH1 FXS-causing point mutation disrupts FMRP granule formation  

(A) Schematic representation of FMR1 variants used in this study. Arrow heads point to 
location on a Drosophila melanogaster FMRP protein where the analogous FXS-causing 
missense mutation is located at the conserved residues. Deletion of the two adjacent KH 
domains is annotated with a break in the FMR1 gene between amino acids 225-236. (B) 
Representative confocal images of transiently transfected EGFP or EGFP-FMRP 
constructs in S2 cells. Scale bar: 2µm. (C) Quantification of the percentage of transfected 
S2 cells that formed EGFP-FMRP granules. Average is shown in the top of each bar (mean 
± S.E.; n≈100 cells in triplicate). (D) Western blot analysis of FMR1 and EGFP protein 
levels in untransfected cells or cells transiently transfected EFGP and EGFP-FMRP mutant 
constructs. α-tubulin was used as a loading control. IB= immunoblot. Statistical analysis 
was done by ordinary one-way ANOVA followed by Holm-Šídák's multiple comparisons 
test. 
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In addition to differences in their ability to form granules, we noticed distinctive 

morphological phenotypes in several of our constructs. We classified these morphological 

differences into two categories: 1) “normal” granules, which were generally round in shape 

with diameters of ~ 200-1,000 nm, and 2) amorphic granules, which were considered to be 

any type of non-round granule. Although each construct could induce the formation of 

amorphic granules, this typically occurred in less than 10% of cells (Figure 8A-B). EGFP-

tagged IDR, KH+IDR, KH1*, KH1*KH2*, and ∆KH resulted in the formation of granules 

that were morphologically indistinct from WT-FMRP granules. In contrast, 70% of ∆IDR 

(Figure 8A) and ~ 50% of KH2* (Figure 8B) granule forming cells contained amorphic 

granules that took up large volumes within the cell, oftentimes with diameters greater than 

1,000 nm. This suggests that the IDR and KH2 domain may be involved in forming 

interactions with additional factors that restrict the size and shape of FMRP granules. 

Interestingly, round granules in KH1*KH2* and ∆KH were very large, reminiscent of 

liquid-like droplets that have fused into larger structures (Figure 7B) (Brangwynne et al., 

2009). This further suggests that the KH domains may be regulating granule size in S2 

cells.    

We also noticed differences in the number of granules present within these cells 

which led us to quantify the average number of granules each mutant was able to form. To 

our surprise, neither the IDR (Figure 8C) or KH mutants (Figure 8D) were able to 

recapitulate WT granule numbers, with an at least three-fold reduction in each mutant. 

However, KH2* formed more granules than any of the other constructs. This further 
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indicates that this mutation does not substantially impact FMRP granule formation in vivo 

(Figure 8D). Altogether, these data suggest that the KH domains and IDR are cooperating 

to regulate FMRP granule formation in vivo. Loss of any single domain alters but does not 

abrogate granule formation, morphology or number, suggesting that FMRP granule 

formation is dependent on multivalent interactions.  
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Figure 8. The KH2 domain and IDR regulate FMRP granule morphology 

Comparisons of the two major morphological phenotypes observed in the (A) FMRP-IDR 
mutants and the (B) FMRP-KH mutants. Spherical granules (black bars) were always 
present in cells, although some also coincided with non-spherical, amorphic granules (grey) 
that often took up much larger volumes of the cell. Cells were categorized as amorphic if 
at least one granule within the cell was amorphic. A small percentage of all cells formed 
amorphic granules. Spherical granules ranged in size from ~200-1,000 nm (n=100 cells). 
Comparison of the average number of granules per cell in the (C) FMRP-IDR mutants and 
the (D) FMRP-KH mutants, normalized to cell area, µm2 (mean ± SE; n=15 cells). 
Statistical analyses were done by Brown-Forsyth ANOVA followed by Dunnett’s T3 
multiple comparisons test. 
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2.3 The IDR promotes FMRP-core formation, while the KH domains alter the 

dynamics of the outer shell in FMRP granules  

Thus far, we have demonstrated that the formation of FMRP granules is driven, in 

part, by multivalent interactions involving the modular N-terminal RBDs and the C-

terminal IDR. FMRP is able to undergo LLPS in vitro (Tsang et al., 2019). FMRP granules 

in our study share some classic features with phase separated droplets. Droplets are 

characterized by forming round structures, which we see with our FMRP granules (Figure 

6A & 7A). Another common feature is their propensity to coalesce into a single larger 

droplet upon contact with one another (Brangwynne et al., 2009). Although FMRP granules 

move throughout the cell and come into contact with one another, we rarely saw them 

remain fused together, and rather would interact briefly and then split off (data not shown). 

Liquid droplets are also characterized by their dynamic ability to rapidly reorganize and 

exchange with their surrounding environment (Shin and Brangwynne, 2017). It has 

previously been shown that deletion of the KH domains in FMRP significantly reduces the 

ability of FMRP to exchange between granules and the cytosol (Gareau et al., 2013b). 

Thus, we predicted that one important function for the individual KH domains may be to 

modulate FMRP granule dynamics (Goering et al., 2020; Tsang et al., 2019).  

To study the dynamics of FMRP in granules in transfected S2 cells, we conducted 

Fluorescence Recovery After Photobleaching (FRAP) experiments. First, we examined the 

independent and collaborative roles of the IDR and KH domains in FMRP granules 

dynamics. Interestingly, WT-FMRP formed relatively stable granules (Figure 9A). The 
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IDR and ∆IDR in contrast rapidly recovered their exchangeable pools, suggesting that 

domains within the N-terminus and C-terminus may somehow cooperate to stabilize WT 

granule dynamics (Figure 9A-D). In support of this, fusing the KH domains to the IDR 

helped stabilize granule interactions, recovering somewhat more slowly following 

photobleaching (Figure 9A-B and 9D). However, these granules were still significantly 

more dynamic than WT, suggesting additional N-terminal domains are also contributing to 

stabilizing FMRP-interactions within granules.  

A current model suggests that membraneless SGs are made up of stable cores from 

which there is little or no exchange, and are surrounded by a highly exchangeable shell-

like structure (Jain et al., 2016). In FRAP experiments, it is predicted that proteins within 

the non-recovering immobile fraction represent stable cores, whereas the mobile fraction 

represents the dynamic shell (Figure 4C). Approximately 30% of WT makes up these 

stably interacting cores, while the other ~70% resides within the exchangeable pool (Figure 

9C). In the IDR only, FMRP shifts significantly into the exchangeable pool. The mobile 

fraction for IDR (86.4%) is significantly larger than WT and adding the KH domains back 

does not increase core occupancy (86.5%) (Figure 9C). Interestingly, the immobile fraction 

is completely absent in ∆IDR (Figure 9C). These data suggest that the ∆IDR granules that 

form are completely lacking the stable core associated with WT-FMRP granules.    

In addition to a large immobile pool, the mobile fractions within WT granules have 

a relatively slow recovery time (recovery half-time or t1/2= 12.1s; Figure 9D). The IDR and 

∆IDR formed granules that shared ~ 10-fold more rapid exchange rates (t1/2= 1.7s and 1.6s, 
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respectively). KH+IDR significantly increased recovery time (t1/2= 3.6s) relative to the IDR 

and ∆IDR, suggesting the KH domains are contributing some stability to interactions 

within the dynamic shell of FMRP granules. Altogether, these data support the hypothesis 

that the IDR and KH domains are collectively contributing to granule stability.    
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Figure 9. Loss of the IDR abolishes the immobile fraction of FMRP granules 

Representative time-lapse images of FMRP-mutant FRAP pre-bleach and at 1, 3 and 15 
seconds following the bleaching event. Scale bar in whole cell image: 5µm. Scale bar in 
zoomed in granule image: 0.5µm. Images show differences in recovery rates in the first 15 
seconds of recovery. (B) Nonlinear one-phase association curves of FRAP experiments 
representing fluorescence intensity of granules relative to initial intensity over 120 seconds 
(mean ± SE; n=17-23 granules). Figure legend on the bottom indicate the different mutants. 
(C) Comparison of the average mobile fraction of FMRP mutant granules. Average mobile 
fraction for genotype is annotated at the top of each bar (mean ± SE; n=17-23 granules). 
a.u.=arbitrary units. (D) Quantification of the average time for granules to recover half their 
mobile fraction, or final intensity in seconds. Average t1/2 is annotated at the top of each 
bar (n=17-23 granules). Statistical analyses were done by Brown-Forsyth ANOVA 
followed by Dunnett’s T3 multiple comparisons test. 
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We next wanted to determine how the KH point mutants affected FMRP granule 

dynamics, predicting that they may contribute to FMRP exchange rates.  

To test this, we analyzed dynamics of the KH1* and KH2* mutants in S2 cells using FRAP. 

Mutating either or both of the KH domains caused FMRP granules to recover much more 

rapidly than WT, similar to the IDR and ∆IDR mutants (Figure 10A-B). Notably, ∆KH had 

the opposite effect and significantly reduced exchange rates of the mobile pool, similar to 

what has been previously shown (Figure 10B; Gareau, Martel, et al. 2013). The immobile 

fractions of KH1* and KH2* FMRP granules were no different from WT, whereas *KH2* 

reduced the exchangeable pool roughly 15%, similar to ∆KH (Figure 10C).  This suggests 

that disruption or deletion of both KH domains severely disrupts FMRP granule dynamic, 

potentially in a non-physiological manner. As expected, KH1* and KH2* impacted the rate 

of recovery of the dynamic shell which recovered much more rapidly (t1/2= 4.3 and 13.1s 

for KH1* and KH2*, respectively), than WT (t1/2= 21.9s; Figure 10D). This supports our 

previous findings that the KH domains function in stabilizing homotypic or heterotypic 

interactions between FMRP and constituents of the mobile fraction of granules. As with 

granule formation (Figure 7C), the effects of the KH1* and KH2* mutations do not appear 

to be additive, as KH1*KH2* represents an intermediate between the individual mutations 

(Figure 10D). Collectively, these data are consistent with the model suggesting 

multivalency is the driving force underlying granule formation and that reducing valency 

of FMRP increases dynamics by destabilizing overall protein interaction strength (Shin and 

Brangwynne, 2017). Most notably, we provide evidence showing that not all interaction 
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domains are created equal in FMRP, and the KH1 and IDR are more essential for this 

process.  
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Figure 10. FXS-causing point mutants increase the exchange rate of mobile fraction 

in FMRP granules 

(A) Representative time-lapse FRAP images showing differences in recovery rates 
between WT, FXS-causing point mutations and ∆KH up to 20 seconds following the 
photobleaching event. Scale bar in whole cell: 5µm. Scale bar in zoomed-in granule image: 
0.5µm. (B) Nonlinear one-phase association regression recovery curves of FMRP-mutants 
representing fluorescence intensity of granules relative to initial intensity over 120 seconds 
(mean ± SE; n=17-21 granules). (C) Average mobile fraction of FMRP mutant granules 
(mean ± SE; n=17-21 granules). a.u.=arbitrary units. (D) Quantification of the average time 
in log10(seconds), it takes for granules to recover half of their exchangeable pool. Average 
t1/2 is annotated at the top of each bar (n=17-21 granules).  Statistical analyses were done 
by (C) Brown-Forsyth ANOVA followed by Dunnett’s T3 multiple comparisons test. 
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2.4 FXS-causing mutations alter the liquid-like nature of stress granules 

FMRP is a constituent of several different RNP populations in cells including P-

bodies and SGs (Kapeli and Yeo, 2012; Sossin and DesGroseillers, 2006). As we show 

above that the KH domains regulate FMRP granule formation and dynamics, we were 

curious whether the disease-causing mutations in the KH domains had an effect on the 

interaction of FMRP with these RNP populations or on their formation.  

To examine interactions with SGs, we co-transfected S2 cells with EGFP:FMRP 

constructs and mCherry-tagged Rasputin (Rin), the fly ortholog of G3BP1, a highly 

conserved SG marker (Yang et al., 2020). First, we were interested in whether KH1* and 

KH2* induced SG formation prior to the introduction of a stressful stimuli. We found that 

a subset of cells formed SGs prior to the introduction of a stressor in all cases, which is 

likely the result of Rin overexpression, which is known to induce SG formation (Matsuki 

et al., 2013) (Figure 11A-B). Strikingly, we noticed that all cells forming KH1* granules 

significantly overlapped with the population of cells forming SGs (Figure 11A). While 

each of the FMRP constructs usually overlapped with the Rin granules, KH1* granules 

only formed when Rin granules were also present. Due to diffuse cytoplasmic staining in 

unstressed cells overlapping with punctate granules, quantifying this was not possible (data 

not shown). This suggests that KH1* preferentially localizes to pre-formed SGs and is 

likely dysfunctional in its ability to assemble granules on its own.  

To see if these mutants altered the liquid-like properties of SGs that formed in 

unstressed cells, we quantified the number of cells that formed Rin-positive SGs after 
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treatment with 1,6-hexanediol (Figure 11B). 1,6-hexanediol is an aliphatic alcohol that 

disrupts weak hydrophobic protein-protein (π-π) and protein-RNA (π-cation) interactions 

required to form dynamic MLOs (Itoh et al., 2021; Kroschwald et al., 2015, 2017). 

Overexpressing Rin and FMRP induced SG formation in approximately 20% of transfected 

cells and similar results were observed with KH1*, KH2*, KH1*KH2*, and ΔKH (Figure 

11B, left). Interestingly, the population of Rin-positive granules observed in these cells did 

not disappear after treatment with 1,6-hexanediol, suggesting these non-stress-induced SGs 

are less liquid-like in nature, and may be forming stable structures (Figure 11B, right). 

Although this may be indicative of the overexpression of Rin or the FMRP constructs as 

causing aggregate formation in a small subset of cells which could be toxic, it’s likely to 

be mild as these cells showed no significant defects in viability (Figure 11D).   

To gain further insight into the biophysical properties of FMRP granules, we treated 

co-transfected cells with 1,6-hexanediol and looked at the impact on FMRP (Figure 11C). 

As expected WT, KH1* and KH2* mutant FMRP granules readily dissociated upon 

treatment, suggesting that they are forming liquid-like assemblies in S2 cells (Figure 11C-

right). However, ΔKH and KH1*KH2*, do not show as robust of a response to 1,6-

hexanediol implying that these are forming granules with solid-like characteristics. These 

results support our FRAP data and indicate that ∆KH, and to a lesser extent KH1*KH2*, 

is inducing the formation of non-physiological solid-like aggregates in cells and are not 

behaving similarly to the single missense mutations.   
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Figure 11. KH1* is only capable of interacting with pre-existing Rin+ SGs 

(A) Representative images of the intracellular localization of transiently transfected FMRP 
mutants (green) and Rin (magenta). Constructs shown are indicated in the top left corner 
of each image. FMRP and Rin merged images are shown in the right column. White 
arrowheads point to colocalized FMRP and Rin granules which only occurred in KH1*. 
Scale bar: 2µm. Comparison of the percent of co-transfected cells forming (B) Rin-
granules or (C) FMRP granules without (left) or with (right) the addition of 10% 1,6-
hexanediol. Cells were incubated with 1,6-hexanediol or with media (no treatment) for up 
to 20 minutes to count the number of cells forming granules. Approximately 100 cells were 
manually analyzed in triplicate for each genotype per treatment group and compared to WT 
(mean ± SE). (D) Trypan Blue stain was used to determine percent viability of cells 
ectopically expressing each of the FMRP-mutants in triplicate (mean ± SE). Statistical 
analyses were done by (B-C) ordinary two-way ANOVA followed by a Šídák's multiple 
comparisons test and (C) ordinary one-way ANOVA followed by Holm-Šídák's multiple 
comparisons test. 
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FMRP is a core component of SGs and has been shown to readily shift into SGs 

following stress induction (Gareau et al., 2013a). As expected, under arsenite-induced 

stress, we see that most of the FMRP and Rin proteins shift out the cytoplasm and sink into 

granules (Figure 12A). Rin almost always overlapped with WT, KH1*, KH2*, and 

KH1*KH2* while ∆KH modestly reduced this colocalization (Figure 12B). These data 

suggest the KH domains are not required for FMRP localization to SGs. However, co-

transfection with KH1* or KH2* modestly but significantly reduced arsenite-induced SG 

formation (Figure 12C, left). Moreover, dissolution of these SGs following 1,6-hexanediol 

treatment was significantly reduced in these mutants, revealing that the KH mutations are 

shifting these SGs from liquid-like to more solid structures (Figure 12C, right). Together, 

these data suggest that SG dynamics are significantly impacted by these FXS-causing point 

mutations.  

We next asked whether these mutations altered how FMRP associated with 

arsenite-induced SGs. Although stress is not required to induce the formation of FMRP 

granules, it shifts FMRP from the cytoplasm, polyribosomes, or other RNPs into SGs 

(Gareau et al., 2013a). Interestingly, fewer cells expressing KH1* and KH1*KH2* formed 

FMRP granules in response to arsenite stress compared to WT (Figure 12D, left). This is 

consistent with the reduced ability of KH1* to form granules in unstressed cells. As with 

Rin-positive granules, FMRP granules in stressed cells did not dissolve as readily when 

treated with 1,6-hexanadiol suggesting that they are forming solid-like structures (Figure 

12D, right). KH1*, KH1*KH2*, and ∆KH granules most notably only mildly dissolved 
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following the addition of 1,6-hexanediol (Figure 12D). This further implicates the KH 

domains in initiating the transition from a liquid to a solid-like assembly, particularly in 

the case of ∆KH granules. Altogether, these data show that while the KH domains are not 

required for SG formation or FMRP recruitment to SGs, they contribute important dynamic 

interactions within these structures, as mutating either or both KH domains causes both 

SGs and FMRP granules to transition from dynamic liquid-condensates to more stable 

solid-like structures.  
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Figure 12. Loss of either KH domain shifts causes the formation of solid-like granules 

in arsenite stressed cells 

(A) Representative images of the intracellular localization of transiently transfected FMRP 
mutants (green) and Rin (magenta) treated with 0.5mM sodium arsenite for 45 minutes. 
Constructs shown are indicated in the top left corner of each image. FMRP and Rin merged 
images are shown in the right column. Scale bar: 2µm. (B) Comparison of the average 
Pearson correlation coefficient between FMRP-mutants and the stress granule marker, Rin, 
in arsenite treated cells (mean ± SE; n=8-10 cells). Comparison of the percent of transfected 
cells treated with 0.5 mM sodium meta-arsenite for 45 minutes forming (C) Rin-granules 
or (D) FMRP granules with or without 10% 1,6-hexanediol treatment. Approximately 100 
cells were manually analyzed in triplicate for each genotype per treatment group and 
compared to WT. (mean ± SE). Statistical analysis was done by (B) ordinary Brown-
Forsyth ANOVA followed by a Dunnett’s T3 multiple comparisons test and (C & D) 
ordinary two-way ANOVA followed by a Dunnett’s multiple comparisons test. 
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2.5 The KH1 domain is essential for FMRP localization to P-bodies 

In addition to SGs, FMRP has been shown to associate with P-bodies in fly and 

mammalian neurons (Barbee et al., 2006; Cougot et al., 2008). Thus, we were next 

interested in whether the KH mutants affected P-body assembly or colocalization. To 

address this question, we used HPat, a highly conserved P-body component in yeast and 

flies, as our P-body marker (Pilkington and Parker, 2008). HPat-positive P-bodies formed 

in each of the mutants constitutively, suggesting that the KH domains are not required for 

P-body assembly (Figure 13A). As expected, we found that some P-bodies did not have 

any FMRP present within them (white arrowheads in Figure 13A and Figure 13B), 

although most punctate FMRP colocalized with punctate HPat (Figure 13C). As FMRP is 

not present in all P-bodies, this suggests that it is not required for P-body 

assembly. Interestingly, we never saw KH1* granules overlapping with HPat granules, 

implying that the KH1 domain may be required for FMRP recruitment to P-bodies (yellow 

arrows in Figure 13A). Indeed, quantification of the average Pearson’s colocalization 

coefficient shows a significant reduction in KH1* when compared with WT (Figure 13B). 

It must me noted that, although the Pearson’s coefficient for KH1* is positive (which would 

suggest an interaction between these proteins), this may be biased as this analysis does not 

differentiate between diffuse FMRP and HPat fluorescence within the cytoplasm and 

granules. Alternatively, reduced colocalization could be due to the lower number of FMRP 

granules observed in the KH1* mutant (Figure 8D). In contrast, KH1*KH2* and ΔKH led 

to the formation of large spherical granules that colocalized more strongly with HPat 
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(Figure 13C), suggesting that FMRP and HPat may be sinking into these larger solid-like 

structures. Collectively, we found that the KH1 domain is important for FMRP association 

with P-bodies and disrupting this domain may be abolishing the transference of FMRP 

from other granules such as SGs, into P-bodies. 
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Figure 13. The KH1 domain is required for P-body association 

(A) Representative images of the intracellular localization of transiently transfected FMRP 
(green) and HPat (magenta). Arrowheads show HPat-positive granules that do not overlap 
with an FMRP-positive granule. Arrows indicate KH1 induced stress granules that do not 
overlap with P-bodies. Scale bar: 2µm. (B) Quantification of the average Pearson 
correlation coefficient between FMRP-mutants and the P-body component, HPat, 
compared to WT (mean ± SE of 12-13 cells). (C) Average Mander’s coefficient showing 
the fraction of FMRP overlapping with HPat fluorescence. Statistical analyses were done 
by ordinary one-way ANOVA followed by a Holm-Šídák's multiple comparison test. 
  

A. B. 

C. 



 

 
 

63

 

 

CHAPTER THREE: THE FMRP KH DOMAINS ARE REQUIRED FOR THE 

FORMATION AND STABILIZATION OF NEURONAL GRANULES IN MOTOR 

NEURONS 

 

3.1 The KH1 domain is required for NG formation in primary motor neurons 

FMRP plays a critical role in neurodevelopment by assembling into neuronal RNA 

transport granules (NGs). These granules are important for the transport of FMRP, 

translation machinery and specific mRNA cargo important for synaptic growth and 

maintenance from the soma into distal neuronal processes (Antar et al., 2004, 2005, 2006; 

Davidovic et al., 2007; Dictenberg et al., 2008; El Fatimy et al., 2016). FXS is caused by 

loss-of-function of FMRP within neurons and presumably the subsequent loss of transport 

and translation repression within NGs and at synapses. Patients with missense mutations 

in the KH1 and KH2 domains present with severe FXS-phenotypes. Based on this, we were 

next interested in exploring whether either of the KH domains played a role in assembly or 

function of FMRP-containing NGs.  Here, we took advantage of an established system 

used to examine NG composition and dynamics in primary cultures of Drosophila larval 
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motor neurons (Barbee et al., 2006). To study FMRP granules in vivo, we generated a series 

of transgenic flies that allowed for their inducible expression under control of the 

UAS/Gal4 system (Brand and Perrimon, 1993). To normalize expression levels, all 

transgenes were inserted into the same locus on the 3rd chromosome near the endogenous 

dFMR1 gene. All were also recombined with the FMR1∆50 null allele to reduce levels of 

endogenous protein. Unless otherwise noted, experiments were done in a heterozygous null 

mutant background (FMR1∆50/+). We drove the expression of our EGFP-tagged FMRP 

mutants using a restrictive motor neuron-specific Gal4 driver (C380-Gal4, cha-Gal80). 

Primary motor neurons were harvested from 3rd instar larva in order to study FMRP granule 

formation and dynamics in vivo (hereafter referred to as WT,∆50/+, KH1*,∆50/+, etc.).  

We first asked whether these mutants were capable of forming somatic and neuritic 

NGs in primary motor neurons. Similar to what we saw in S2 cells, WT,∆50/+ and 

KH2*,∆50/+ formed numerous round granules within the cell body (Figure 14A). In 

contrast, KH1*,∆50/+ and KH1*KH2*,∆50/+ fluorescence was almost entirely diffuse and 

cytoplasmic, with few or no granules forming within the soma or neurites. While we 

observed only a slight reduction in the number of KH2*,∆50/+ MNs containing NGs, 

KH1*,∆50/+ and KH1*KH2*,∆50/+ only formed NGs in ~2% and 10% of neurons, 

respectively (Figure 14B) This is not likely to be due to reduction in protein expression in 

either KH1* or KH1*KH2* as expression levels are similar among all constructs (Figure 

14C). As with S2 cells, this signifies that the KH1 domain is essential for NG assembly 

within neurons. The FMR1∆50/∆113 null background is viable through adulthood (Bushey 
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et al., 2009). Ectopically expressing these mutants in the FMR1 loss-of-function, instead 

of the FMR1 heterozygous background would be ideal in order to eliminate all endogenous 

FMRP protein. However, expression of KH1* and KH1*KH2* causes embryonic lethality 

when expressed in the FMR1∆50/∆113 background (data not shown). Notably, lethality 

occurs even when expression of the mutants is driven by the restrictive motor neuron-

specific driver, C380-Gal4,cha-Gal80. This suggests that the KH1* mutation may have 

some unknown dominant-negative effect, particularly within motor neurons.  
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Figure 14. The KH1 domain is essential for NG formation in motor neurons 

(A) Representative Z-projections of major granule phenotype in Drosophila primary motor 
neuron cell bodies. C380-cha-Gal80 was used to drive expression of the EGFP: FMRP 
constructs (green) in a subset of primary motor neurons in the FMR1∆50/+ heterozygous 
background. Scale bar: 2µm. (B) Comparison of the percent of EGFP-expressing motor 
neurons forming granules in FMR1-heterozygous background. Mean percentage is shown 
above respective bar (mean ± SE; n=20 cells in triplicate). (C) Western blot analysis of 
EGFP (top) and FMR1 (middle) expression of UAS-EGFP and UAS-EGFP-FMRP 
mutants under the C380-Gal4, cha-Gal80 selective motor neuron driver in the larval CNS. 
a-tubulin was used as a loading control. Statistical analysis was done by ordinary one-way 
ANOVA followed by a Holm-Šídák's multiple comparison test. 
  

A. 

B. C. 
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3.2 The KH2 domain stabilizes the dynamic shell of NGs 

Thus far, we have shown that the KH1 and KH2 domains, although similar in 

predicted function, have substantially different effects on NG phenotypes. Abrogation of 

NGs due to the KH1* mutation coincides with embryonic lethality in FMR1 nulls. The 

KH1 domain therefore appears to be contributing some essential function which correlates 

with NG formation. KH2*,∆50/+ on the other hand, only mildly disrupts NG formation 

and has no negative impact fly viability. As we have previously shown that the point 

mutants disrupt granule dynamics in S2 cells, we were curious whether KH2* similarly 

impacted NGs.  

We predicted that NGs are more stable within neurites than in the soma which could 

prevent the loss of granule constituents during active transport. To determine whether there 

was a difference between these populations, we photobleached individual round granules 

in either the soma (top panel-Figure 15A) or neurite (top panel-Figure 15B) and compared 

recoveries over a 3-minute span. Extending FRAP analysis beyond 200s was not possible 

due to excessive photobleaching (data not shown). Contrary to what we predicted, there 

was not an increased immobile fraction of WT granules in the soma vs. neurites (black 

bars-Figure 15E). Instead, we saw a the mobile fraction in neurites recovered two times 

slower than in somatic granules (black bars-Figure 15F). This suggests that, while WT 

FMRP is not reorganizing into stable “cores” within neuritic NGs, FMRP within the 

dynamic shell is instead forming more stable interactions which is maintaining NG 

structure during transport. 
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We next compared the recovery curves of somatic and neuritic populations of 

KH2*,∆50/+ NGs to determine whether the KH2* mutation disrupted stability. Somatic 

and neuritic recovery curves for WT,∆50/+ and KH2*,∆50/+ were quite similar, although 

KH2*,∆50/+ mobile fractions recovered much more rapidly than WT,∆50/+ in both the 

soma (Figure 15C) and neurites (Figure 15D). Interestingly, we observed dramatic 

alterations to both the mobile and immobile pools of KH2*,∆50/+ NGs. In contrast to WT 

granules, we saw a significant shift of KH2*,∆50/+ into the immobile fraction in both NG 

populations (immobile fraction increased by 5.6% ± 1.19 in soma and 12.9% ± 1.06 in 

neurites; Figure 15E). Strikingly, mobile fractions of KH2*,∆50/+ NGs recovered ~7 times 

more rapidly than WT,∆50/+ in soma and ~15 times more rapidly in neurites (Figure 15F). 

This highlights the importance of the KH2 domain in contributing stabilizing interactions 

within the dynamic shell of NGs. Altogether, these data suggest that the KH2 domain 

moderates NG granule shell/core organization by 1) causing more KH2* to shift into the 

nondynamic core and 2) destabilizing the remaining KH2* in the shell.   
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Figure 15. The KH2 domain stabilizes NG interactions 

(A) Representative time lapse images of somatic FRAP NGs pre-bleach, 1 second post-
bleach and then at 10, 25, and 200 seconds following the bleaching event. Scale bar in 
whole cell image is 2 µm. Scale bar in zoomed-in granule image is 1 µm. (B) 
Representative time-lapse images of neuritic FRAP NGs pre-bleach, 1 second post-bleach 
and then at 10, 25, and 200 seconds following the bleaching event. Neurites are outlined in 
green in the pre-bleach image, arrow heads point to the photobleached granule.  Scale bar: 
1µm. Nonlinear one-phase association regression curves of NGs representing fluorescence 
intensity of (C) somatic NGs and (D) neuritic NGs relative to initial intensity over 200 
seconds (mean ± SE; n ≥ 9 granules). (E) Comparison of the average mobile fractions of 
somatic and neuritic mobile fraction of WT and KH2* NGs (mean ± SE; n ≥ 9 granules). 
a.u.=arbitrary units. (F) Comparison of the average fluorescence recovery half-time of 
somatic and neuritic mobile fraction of WT and KH2* NGs (mean; n ≥ 9 granules). 
Statistical analysis was done by ordinary two-way ANOVA followed by Šídák's multiple 
comparison test. 
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3.3 The KH2 domain is important for neuritic transport  

We were next curious as to whether biophysical alterations observed in 

KH2*,∆50/+ NGs, had any impact on NG transport as this could impact FMRP function 

and mRNA trafficking out to the synapse. We noticed conspicuous differences in NG 

number and distribution between WT,∆50/+ and KH2*,∆50/+ in neurites (Figure 16A). 

Although we previously saw minimal defects in KH2*,∆50/+ NG formation (Figure 14B), 

we found 30% fewer granules out in neurites when compared with WT,∆50/+ (11.2 ± 3.30 

fewer granules in KH2*,∆50/+; Figure 16B). Although, it is possible that this simply due 

to a reduction in the number of granules in neurons this is potentially indicative of transport 

defects in these mutant granules. To determine whether this was true we calculated the 

percentage of granules in neurites proximal (<10µm) and distal (≥10µm) from the soma. 

We found a significant reduction in the proportion of neuritic KH2*,∆50/+NGs in distal 

neurites, further supporting that this mutation results in NG transport defects (Figure 16C).  

We next asked whether KH2*,∆50/+ displayed altered neuritic transport of NGs. 

Similar to what others have found, the majority of WT,∆50/+ NGs were static with ~20% 

actively transported through neurites (Kao et al. 2010; Cioni et al. 2019; Figure 16D). 

KH2* had no impact on directionality of NG transport (X2 = 0.581, p= 0.748; data not 

shown). However, KH2* did impact the kinetics of NGs. We observed a significant 

increase in the anterograde velocity KH2*,∆50/+ granules (Figure 16E). Increased 

velocities would be expected to increase shear force on liquid droplets caused by 

hydrodynamic drag which could account for the reduction of observable KH2*,∆50/+ 
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granules out in distal neurites. Additionally, this increased velocity could also reduce NG 

docking to synaptic compartments, preventing granules and their constituents from 

entering synapses, although this typically results in an accumulation of granules out in 

neurites which we did not see with KH2*,∆50/+ (Kao et al., 2010; Yoshimura et al., 2006). 

Altogether these data suggest that the KH2* mutation is disrupting FMRP granule transport 

out towards distal regions of neurites.   
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Figure 16. KH2 domain is necessary for NG transport into neurites 

(A) Representative images of FMRP, FMR1∆50/+ (left) and KH2*, FMR1∆50/+ (right) 
primary MNs. WT and KH2* GFP granules can be visualized in the soma (cell body) and 
neurites (branching off of cell body). Scale bars: 10µm. (B) Box and whisker plot 
comparing the average total number (box) of NGs within neurites of primary MNs. Range 
of neuritic granule number is represented by dots. (mean ± SE; n=17-18 MNs). (C) Box 
and whisker plot showing the average (box) percentage of neuritic granules that are distal 
(≥10 µm) from the motor neuron cell body. Range of distances is represented by dots. 
(mean ± SE; n=17-18 MNs). (D) Pie charts representing fraction of neuritic granules that 
remain stationary (static) or move in the anterograde or retrograde direction (relative to the 
cell body). Percentages are annotated in the legends. Total number of granules counted in 
17 MNs are indicated within each pie chart. (E) Comparison of anterograde and retrograde 
velocities of motile FMRP, FMR1∆50/+ and KH2*, FMR1∆50/+ neuritic NGs (mean ± 
SE; n=46-75 granules per category). Statistical analyses were done using unpaired t tests. 
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CHAPTER FOUR: FUNCTIONAL IMPACTS OF FXS-CAUSING POINT 

MUTATIONS ON FMRP IN DROSOPHILA MELANOGASTER 

 

4.1 The KH1 domain is required for FMRP-mediated translational repression  

FMRP has been shown to interact with about 4% of neuronal mRNAs, although the 

mechanism by which it is able to bind and regulate such a large subset of mRNAs is still 

unclear (Ashley et al., 1993; Brown et al., 2001). Recent evidence suggests that the RGG 

box of mammalian FMRP contributes target specificity by binding to G-quadruplex 

structures in mRNAs and that these interactions are important regulating mRNA neuritic 

transport (Goering et al., 2020). In contrast, the KH domains which bind to short, 

ubiquitous sequences, are important for polysome association and are implicated in 

suppressing translation elongation via ribosome stalling in flies (Chen et al., 2014; Darnell 

et al., 2005; Feng et al., 1997). Previous studies show that KH1* is defective in binding 

three known mRNA targets CaMKII, PSD95, and Map1B using RNA-

coimmunoprecipitation followed by qPCR in mouse cortical neurons (Myrick et al., 2014). 

However, loss of binding does not directly indicate that KH1* is non-functional in 
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translation repression. In contrast, KH2* which has been better characterized, disrupts both 

RNA-binding and translation repression of several known FMRP targets (Ascano et al., 

2012; Darnell et al., 2005; Siomi et al., 1994).  

To determine the role of the KH domains in regulating translation in S2 cells, we 

examined the ability of these FXS-causing mutations to repress translation in a modified 

λN-based tethering assay (Rehwinkel et al., 2005). In this set of experiments, λN-FMRP 

was artificially tethered to the 5X BoxB sequence in the 3’UTR of the luciferase reporter 

(Figure 17A). This allowed us to study translation repression of each of the FMRP mutants 

in an mRNA-binding independent manner. In λN-FMRP we see repression of the firefly 

luciferase (FLuc) reporter, indicating that λN-FMRP is able to inhibit translation when 

tethered to a transcript in the 3’UTR (Figure 17B). Interestingly, λN-KH2* was similarly 

able to repress reporter translation, which was surprising given that the KH2 domain is 

expected to repress translation by interacting with the elongating ribosome (Darnell et al., 

2011). In contrast, significant de-repression was observed with the λN-KH1* and λN-

KH1*KH2* mutants (Figure 17B). This suggests that the KH1 domain is important for 

translation inhibition, consistent with published data (Chen et al., 2014).   
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Figure 17. The KH1 domain is required for FMRP-mediated translational repression 

(A) Diagram of the FLuc reporter fused to a 5xBoxB 3’UTR. Luciferase assays of (B) 
λN:HA-tethered FMRP-mutants repression of the 5xBoxB FLuc reporter FLuc/RLuc 
ratios were normalized to empty vector ratios. Graph shows repression of the FLuc reporter 
by empty vector or FXS-causing point mutants compared to pAc5.1-FMRP (mean ± SE). 
Statistical analysis was done by ordinary one-way ANOVA followed by a Holm-Šídák's 
multiple comparison test.  

A. 

B. 
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4.2 The KH domains are required to regulate translation of known target mRNAs 

Next, we were interested in addressing whether untethered FMRP could repress the 

translation of the FLuc reporter by binding to the 3’UTRs of known mRNA targets of 

FMRP and whether the KH domains were required for this to occur (Figure 18A). To test 

this, we cloned the 3’UTR of camkii, FMR1, the degenerin/epithelial sodium channel 

(DEG/ENaC) family protein, pickpocket (ppk), and the gene encoding the Drosophila 

homolog of the actin-binding protein profilin, chickadee (chic) into the FLuc reporter 

vector replacing the BoxB 3’UTR (Hou et al., 2006; Reeve et al., 2005; Rehwinkel et al., 

2005; Schaeffer et al., 2001; Xu et al., 2004). It is not known precisely how FMRP binds 

to these targets although FMR1 and chic are predicted to contain G-quadruplexes (Kikin et 

al., 2006). Similar to the 5X BoxB assay, KH2* did not disrupt repression of the ppk, 

FMR1, and chic luciferase reporters, suggesting that the KH2 domain may not be required 

for translational repression of these specific reporter mRNAs (Figure 18B-D). In contrast, 

we saw significant de-repression with KH1* and KH1*KH2*, implying that the KH1 

domain is required for translation repression of this subset of reporters. Interestingly, the 

KH1 domain appears to be dispensable for repression of the camkii reporter, while KH2* 

slightly, but significantly de-represses translation (Figure 18E). These data suggest that the 

individual KH domains regulate the translation of distinct mRNA populations and supports 

previous work that these domains are important for FMRP function in translation 

regulation. Importantly, the loss of repression in KH1* correlates with the failure to form 

FMRP granules.  
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Figure 18. The KH domains regulate translation of different mRNA targets 

(A) Diagram of the FLuc reporters used in this study fused to the 3’UTR of certain known 
targets of FMRP. Luciferase assays comparing repression of FLuc fused with (B) 
pickpocket (ppk) 3’UTR, (C) chickadee (chic) 3’UTR, (D) fragile x mental retardation 1 

(FMR1) 3’UTR or (E) calcium/calmodulin kinase ii (camkii) 3’UTR by untethered FMRP 
mutants. FLuc/RLuc ratios were normalized to empty vector ratios. Graph shows 
repression of the FLuc reporter by empty vector or FXS-causing point mutants compared 
to pAc5.1-FMRP (mean ± SE). All statistical analyses were done by ordinary one-way 
ANOVA followed by a Holm-Šídák's multiple comparison test. 
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4.3 FMRP KH domains are important for modulating synapse formation  

The Drosophila larval neuromuscular junction (NMJ) has been used extensively as 

a model synapse to study FXS in flies. The fly NMJ contains a simple glutamatergic 

synapse, resembling those found in the mammalian CNS and Drosophila FMRP has a well-

established presynaptic function in the control of NMJ development (Drozd et al., 2018; 

Zhang et al., 2001). To study how the FXS-causing KH mutations affect the function of 

FMRP at this synapse, we analyzed the number of synaptic specializations or “boutons” 

that formed at the larval NMJ of the well-characterized body wall muscles 6/7 in abdominal 

segment 3 when FMRP was overexpressed using the motor neuron-specific driver, C380-

Gal4 (Figure 19A). This NMJ is innervated by two neurons which form type 1 “big” (1b) 

and “small” (1s) motor neurons which can be easily distinguished from each other by size 

and immunostaining. Synaptic boutons of these MNs are visualized using antibodies 

against discs large, or DLG, which is the Drosophila ortholog of the post synaptic markers 

PSD-95/SAP70 and the neuronal membrane marker, HRP (Lahey et al., 1994; Menon et 

al., 2013). While 1b boutons are much larger in area and contain more DLG-containing 

active zones in the juxtaposed postsynaptic space, 1s boutons are characterized by their 

relatively small size and association with significantly fewer active zones.   

FMRP negatively regulates synaptic growth in motor neurons and overexpression 

of FMRP in the UAS-FMR1 fly has been shown in previous studies to significantly reduce 

synaptic terminal growth at the larval NMJ (Zhang et al., 2001). Here we were able to 

recapitulate the reduction of 1s (Figure 19B) and 1b (Figure 19C) boutons normalized to 
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muscle area (µm) at the UAS-FMR1 NMJ (Zhang et al., 2001). We also saw a reduction in 

synaptic complexity in these flies assayed by the number of “tips” of strings of boutons 

(Figure 19D). Overexpression of EGFP-tagged FMRP (UAS-EGFP-FMRP) at the fly NMJ 

only affected 1b boutons, in which we saw a reduction relative to our overexpression 

control (UAS-EGFP) (Figure 19C). This indicated to us that our UAS-EGFP-FMRP 

construct was functional within fly motor neurons. Interestingly, although overexpression 

of UAS-EGFP-KH1*, UAS-EGFP-KH2*, and UAS-EGFP-KH1*KH2* had no effect on 1s 

or 1b bouton numbers, each of these mutants reduced complexity of the NMJ (Figure 19D).   

Taken together, this suggests that bouton number and arborization are not necessarily 

linked processes.  While the KH domains may be required to regulate RNAs involved in 

bouton growth they may not be required to regulate RNAs involved in branching.  
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Figure 19. FXS-causing point mutants disrupt FMRP function in synapse formation 

(A) Wandering third instar larval NMJs from C380-Gal4/+;;UAS-EGFP/+ controls, 
FMRP overexpression, UAS-FMR1 and UAS-EGFP-FMRP, and FXS-causing point 
mutant overexpression, UAS-EGFP-KH1*, UAS-EGFP-KH2*, and UAS-EGFP-

KH1*KH2* in C380-Gal4 motor neurons. Maximum Z-projections of NMJs in abdominal 
segment 3 innervating body wall muscles 6/7 were stained with antibodies targeting the 
postsynaptic density marker DLG (green) and the neuronal membrane marker, HRP 
(magenta) for analysis. Scale bar: 50µm. (B) 1s bouton number/muscle area (µm) and (C) 
1b bouton number/muscle area (normalized to control were manually counted and 
compared with the control NMJ (n ≥ 11 NMJs, mean ± SE). All statistical analysis was 
done by Brown-Forsyth ANOVA followed by a Dunnett’s multiple comparison test. 
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4.4 FXS-causing point mutants do not cause localization defects of a target mRNA 

As previously stated, NGs are a specialized type of RNP granule within neurons 

which function in transporting translationally arrested mRNAs between the cell body and 

dendrites/axons (Kiebler and Bassell, 2006; Krichevsky and Kosik, 2001; Lai et al., 2020). 

As the KH domains are essential in regulating distinct mechanisms involved forming 

FMRP granules, we were interested in whether the loss or reduction of FMRP granules in 

neurites, as seen with in KH1*,∆50/+ and KH2*,∆50/+, had any impact on the transport 

of a known mRNA target. Using single molecule Fluorescence in situ hybridization 

(smFISH) we were able to address this question by quantifying camkii transcripts in the 

soma and neurites in our EGFP-FMRP, ∆50/+ primary motor neurons.  

CamKII is a kinase critical for regulating synaptic plasticity and memory formation. 

Its mRNA is spatially localized to both pre- and postsynaptic densities where it’s regulated 

by FMRP (Kao et al., 2010; Zalfa et al., 2003). In fly primary motor neurons, FMRP has 

been shown to colocalize with a MS2-tagged camkii RNA within FMRP granules (Estes et 

al., 2008). Using smFISH we were able to detect single camkii transcripts throughout the 

cell soma and out in neurites (Figure 20A). We did not include the KH1*KH2* double 

mutant in these analysis as we do not believe this construct is physiologically relevant 

(based data shown throughout Chapter 2). Interestingly, we found that all of the FMR1 

mutants, including controls had significantly fewer transcripts in the soma compared with 

the C380-Gal4,cha-Gal80 controls, suggesting that any reduction of endogenous FMRP 

impacts total transcript number (Figure 20B). Interestingly, we found that there was a 
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significantly higher percentage of camkii transcripts out in the neurites of WT,∆50/+ MNs 

relative to the FMR1-nulls (Figure 20C). This suggests that FMRP can promote the 

transport of camkii mRNA in neurites. Although the percentage of neuritic transcripts was 

lower in the KH mutants compared to WT,∆50/+ MNs, the results were not statistically 

significant. This indicates that the KH domains are not required to regulate transport. 

Moreover, normal localization of camkii in KH1* suggests that FMRP granule formation 

is not a prerequisite for transport. This cannot be explained by the presence of one copy of 

FMRP in these experiments because ∆50/+ results are similar to ∆50/∆113. In summary, 

these data indicate that FMRP can promote, but is not required for, camkii transport in 

neurites. Moreover, neither of the KH domains are required to control this process. 
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Figure 20. The KH domains are not required for camkii transport in MNs 

(A) Representative images of camkii mRNA smFISH in MNs. Yellow arrowheads in 
images are distinguishing camkii transcripts out in neurites. Scale bar: 10µm. (B) 

Comparison of the average number of camkii transcripts in soma and (C) comparison of 
the average percentage of camkii transcripts in neurites in C380-Gal4, cha-Gal80, 
FMR1∆50/∆113 nulls, EGFP, FMR1∆50/+ control and each of the FMRP, FMR1∆50/+ 
mutants relative to the ∆50/∆113 control (mean ± SE of 11-20 MNs). Statistical analyses 
were done using a (B) one-way ANOVA followed by the Holm-Šídák's multiple 
comparisons test and (C) Kruskal-Wallis test followed by the Dunn’s multiple comparisons 
test. 
  

A. 
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CHAPTER FIVE: DISCUSSION 

5.1 Multivalency drives FMRP granule formation in vivo 

Here, we show that the IDR and KH domains cooperate with each other to promote 

FMRP granule formation in vivo. Granule formation is driven by LLPS, a biophysical 

process wherein densely packed molecules spontaneously form a membraneless 

condensate upon reaching a critical concentration (Alberti, 2017). These condensates 

loosely confine the proteins and RNAs required for a biological process to occur in a 

particular space and time. This spatial and temporal regulation is important for diminishing 

off-target interactions that could occur within the cytoplasmic environment. In the context 

of RNA granules, these condensates can be important for removing particular mRNAs from 

the cytoplasmic environment to reduce expenditure of energy on costly processes such as 

translation during times when energy conservation is a priority (e.g. during stress).  

IDRs have a high propensity to phase separate in vitro and are enriched in other 

IDR-containing proteins, which has led to an overestimation of their function within 

biological systems (Lin et al., 2015; Pechstein et al., 2020). A common misconception is 

that the IDRs within phase separating proteins are the only domains contributing to these 
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phase transitions. However, more studies are coming out and have illuminated weak, 

multivalent interactions as the drivers of this process in vivo (Banjade and Rosen, 2014; Li 

et al., 2012). Increased valency (i.e. more interaction domains) of a protein provides a 

scaffold of cis-acting binding sites by which interactions with multiple protein or RNA 

species can occur (Martin and Holehouse, 2020). These trans-acting binding partners are 

then capable of interacting with more proteins or RNAs, enabling these biomolecules to 

stack and concentrate within a small area (Banani et al., 2016; Li et al., 2012).  

In our study we found that the FMRP IDR was alone capable of forming granules 

in vivo although, it was able to do so in only ~65% of cells (Figure 6C). IDR-granules were 

also quite different phenotypically from WT granules, suggesting that even though 

granules are forming via this domain they are unlikely to be functioning properly (Figure 

6B). These results indicate that the IDR is not the sole domain required for FMRP granule 

formation and may function cooperatively with domains in the N-terminus to control this 

process. This perhaps is not surprising as the other interaction domains within FMRP are 

likely facilitating interactions with other core components of MLOs.  

Further supporting this hypothesis, we found that adding back the KH1 and KH2 

domains (KH+IDR) significantly increased granule formation in cells (Figure 6C). Perhaps 

increasing the stability of interactions within these granules via increasing valency reduces 

the critical concentration of FMRP needed to optimize phase separation. Further studies 

could confirm this. As overall expression levels between these constructs were similar, we 
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can conclude that the reduced propensities of mutants to form granules was not due to 

lower protein concentrations, which could be influencing this process (Figure 6D).  

In addition to affecting FMRP granule formation, the FMRP-IDR mutants 

drastically altered its distribution within the cytoplasm. The IDR-mutants were 

conspicuously much more diffuse within the cytoplasm further implicating the exclusion 

of a large fraction of these mutants from granules. This exclusion is also likely to be caused 

by reduced valency of FMRP. In support of this conclusion, we saw that when we increased 

the number of interaction domains, granule occupancy increased and coincided with a 

reduction in the cytoplasmic fluorescence intensity (Figure 6B & 8C). Altogether, we 

found that the KH domains and IDR function cooperatively to promote FMRP granule 

assembly (Figure 6-7). Our results thus support the model that multivalency is playing a 

significant role in the ability of FMRP to form liquid-like granules in vivo. 

5.2 The KH1 domain promotes FMRP granule formation in Drosophila 

FXS is normally caused by a complete loss of FMRP expression. However unique 

cases have occurred from single missense mutations within the KH domains, implying that 

these domains are essential for normal FMRP function (De Boulle et al., 1993; Myrick et 

al., 2014). KH1* was predicted to be a hypomorphic allele due to the loss of several major 

FMRP-functions including polyribosome association and mRNA binding (Myrick et al., 

2014). Here, we show that KH1* also substantially diminishes FMRP granule assembly in 

S2 cells (Figure 7C). This mutation also reduced SG-formation (Figure 12D) and FMRP 

localization to P-bodies (Figure 13B). Even more striking, was the absence of KH1* 
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granules in motor neurons (Figure 14A-B). Although we report KH1* granules in ~2% of 

motor neurons, these cells were only able to form a single granule, suggesting that even in 

the limited cases where granules are able to form, FMRP is not localizing normally (data 

not shown). From this, we can infer that the KH1 domain promotes formation of SGs and 

is essential for FMRP to form (or interact with) SGs, P-bodies, and NGs.  

Interestingly, we found that in the FMR1 null mutant fly, KH1* and KH1*KH2* 

caused embryonic lethality, even when expressed only in a subset of motor neurons (data 

not shown). This was surprising, as loss of FMR1 expression in and of itself is not lethal. 

This suggests that the KH1* mutation may have a quasi-dominant phenotype within motor 

neurons which is causing lethality. We did not try expressing this mutant in other cell types 

to see if this was a global phenomenon. Further studies looking into how KH1* increases 

embryonic lethality will be important for gaining a better understand of how this domain 

is disrupting FMRP function within neurons and how this mutation is causing FXS. 

Our results beg the question: what’s so special about the KH1 domain? As we’ve 

shown, valency and not individual interaction domains drive granule formation in vivo. 

However, when we disrupt the KH1 domain by expressing the KH1* mutant, we see a loss 

of FMRP-positive P-bodies and NGs. One explanation for the loss of KH1* granules is 

that the KH1 domain could normally be increasing the valency of FMRP in granules by 

binding ubiquitous sequence motifs in mRNAs, such as WGGA, nonspecifically (Ascano 

et al., 2012). Arguing against this, the ACUK sequence, which is recognized by the KH2 

domain is more highly enriched within the transcriptome than WGGA, specifically within 
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genes linked with autism spectrum disorders (Ascano et al., 2012; Tran et al., 2019). If this 

was the mechanism by which the KH1 domain affected granule formation, we would 

predict that disrupting the KH2 domain would produce similar (or perhaps stronger) 

defects. However, we do not see these same phenotypes in KH2* granules, suggesting this 

may not be the mechanism by which KH1 contributes to granule formation.  

Alternatively, KH1 domain interactions may be shifting the concentration threshold 

required to promote FMRP granule formation (Figure 4B). Presumably, KH1 contributes 

to granule formation by its associations with RREs in target mRNAs (Li et al., 2020). RNA 

promotes LLPS of FMRP and other proteins such as hnRNPA1 and FUS, by shifting the 

phase boundary and requiring lower protein concentrations to initiate phase separation 

(Molliex et al., 2015; Schwartz et al., 2013; Tsang et al., 2019). Transcripts targeted by the 

KH1 domain in particular may be recruiting FMRP to mRNPs, thereby bringing FMRP in 

proximity with other protein/RNA species that it can then interact with via its other 

interaction domains. However, the specific RNAs targeted by the KH1 domain remains 

elusive. Future studies identifying the mRNAs targeted specifically by the KH1 domain 

are needed to address this possible mechanism of granule formation. Additionally, 

addressing whether these RNAs contain multivalent RREs are also needed to show if these 

RNAs can seed granule formation more efficiently than other RNAs. Regardless of what 

the particular mechanism is, our data unambiguously show that the interactions contributed 

by the KH1 domain are essential for FMRP to form NGs and assemble to P-bodies. 
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5.3 The KH2 domain stabilizes FMRP within granules, and loss of KH2 domain 

function in the KH2* mutant disrupts NG dynamics and transport  

The KH2 domain in FMRP is required for association with polyribosomes and stalls 

translation elongation presumably through this association (Feng et al., 1997; Zang et al., 

2009). Here we show that translation repression and ribosome association via the KH2 

domain are not required for granule assembly in vivo. In contrast, disruption of the KH2 

domain has substantial impacts on the associative properties of FMRP within granules. 

In S2 cells and primary MNs, we found that KH2* was destabilized within the 

mobile fraction of granules, indicated by KH2* rapidly recovering after photobleaching 

(Figure 10B). Protein valency is one of the mechanisms regulating mobile fraction 

dynamics (Van Treeck and Parker, 2019). This is due to the increased propensity of a 

protein with higher valency to come into contact with another binding partner before 

exchanging. We believe that loss of KH2 domain function destabilizes the dynamic shell 

of granules as a result of reduced valency, particularly because of the loss of a domain that 

participates in binding to a highly prevalent RRE. The KH2 domain interacts with the short 

sequence motif ACUK and loop-loop pseudoknot kissing complexes in transcripts (Ascano 

et al., 2012; Darnell et al., 2005). ACUK is found ubiquitously throughout the 

transcriptome (Suhl et al., 2014). It is therefore likely that KH2-ACUK interactions 

increase FMRP valency by enabling FMRP to interact weakly with essentially any 

transcript it comes into contact with. Although we did not test this hypothesis here, future 
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studies looking at KH2* propensity to phase separate with different RNA species 

containing varying numbers of ACUK sequences in vitro would be valuable. 

While we saw destabilization of KH2* within mobile fractions, we simultaneously 

observed a substantial shift of KH2* into the nondynamic core, particularly in neuritic NGs 

(Figure 15C-F). Although a loss of valency could explain the increased exchange rate of 

the mobile fraction, this does not explain why this mutation causes FMRP to shift into 

stable cores. Immobile fractions are thought to be formed within granules via strong 

intermolecular interactions, energy dependent processes or protein chaperones, and 

posttranslational modifications (Banani et al., 2016; Jain et al., 2016; Van Treeck and 

Parker, 2019). Mutations within granule-forming RBPs have a high propensity to 

potentiate protein aggregation, which could account for what is occurring to KH2* in MNs. 

Indeed, FMRP has a high propensity to aggregate in vitro, and in silico analyses have 

identified multiple putative aggregation prone sequences within the FMRP CDS (Sjekloća 

et al., 2009, 2011) Interestingly, one of these aggregation prone sequences occurs within 

the KH2 domain, just outside of the RNA-binding pocket in which the KH2* mutation 

occurs. Thus, the Ile307Asn mutation within this domain could potentially elevate 

aggregation propensity by disrupting domain folding and increasing aggregation-sequence 

site exposure.  

In addition to altering the molecular dynamics of FMRP within granules, we found 

that the KH2* mutation disrupted NG transport within neurites, in contrast to what has 

been shown previously in rat PC12 cells (Castrén et al., 2001; Schrier et al., 2004). 
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Interestingly, Schrier et al. found that the KH2 Ile304Asn mutation in human FMRP was 

unable to form granules in PC12 cells, but was still able to localize out in neurites via 

microtubules—potentially within sub-microscopic mRNPs (Schrier et al., 2004). However, 

this lack of granule formation could be due to the relatively low expression level of their 

Ile304Asn mutant in comparison to endogenous FMRP (i.e. mutant expression level was 

reduced to half of endogenous FMRP). As granule formation is dependent on protein 

concentration, this could explain the lack of observable granules in their study.  

In agreement with previous literature, we provide evidence that the KH2* mutant 

functions in, but is not required for neuritic transport of NGs (Schrier et al., 2004). 

However, we did find that this mutation increased the kinetics of anterograde NGs (Figure 

16E). Kinesins are a family of proteins that function as molecular motors for anterograde 

transport and can mediate fast and slow transport, depending on the particular kinesin with 

which the granule attaches (Arpag et al., 2014). Although the KH2 domain has not been 

implicated in FMRP attachment to molecular motors, this mutation could potentially 

enhance association of FMRP with adaptor proteins for different motors. These findings 

may also explain why we see an overall reduction of KH2* granules in neurites, 

particularly in distal neurites (Figure 16B-C). As destabilized KH2* granules are being 

transported out in neurites more rapidly, we predict that these granules are falling apart 

during transport. Future studies identifying which adapters and kinesin motors FMRP 

attaches and how this is potentially disrupted in KH2* mutants will be important for 

gaining a better understanding of NG transport kinetics. 
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5.4 The KH domains are not required for camkii transport in motor neurons 

We found that while FMRP promotes camkii transport in MNs, it was not required 

for this process (Figure 17C). Moreover, we found that neither the loss nor disruption of 

NG transport caused by KH1* and KH2*, respectively, had any effect on camkii transport 

out in neurites. This coincides with a recent study implicating the requirement of the RGG 

box, and not the KH2 domain of mammalian FMRP, for the localization of neuritic mRNAs 

(Goering et al., 2020). Interestingly, RNA-seq analysis from their study determined that 

translationally repressed transcripts did not overlap with transcripts dependent on FMRP 

for their localization, suggesting an uncoupling of these two FMRP functions. However, 

this may not be the case in flies. The fly RGG-box is only weakly conserved and has not 

been shown to bind G-quadruplexes like the RGG-box in mammalian FMRP (Vasilyev et 

al., 2015). Additionally, camkii is predicted to contain two weak G-quadruplex structures 

throughout the entire transcript (Kikin et al., 2006). Perhaps camkii is being shuttled 

through neurites via the IDR or other N-terminal interaction domains in this system.   

Another surprising finding was the underwhelming degree of colocalization 

between the camkii smFISH probes and FMRP (data not shown). There were only a few 

instances of overlap that we saw between these molecules, which could indicate that camkii 

may largely be transported via an FMRP-independent mechanism. Previous studies 

showing FMRP colocalization with target transcripts in NGs, including camkii, have been 

largely performed using the MS2-tagging system (Dictenberg et al., 2008; Estes et al., 

2008; Kao et al., 2010). Incorporating MS2-targeted stem loop structures into target 
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mRNAs allows for transcript visualization when bound by MS2-GFP (Bertrand et al., 

1998). Our lab has shown that fly FMRP is capable of directly binding to MS2 stem loop 

structures, which could explain why our results are in opposition to previous literature 

using this system (Kaul et al., unpublished data).  

Another explanation of the lack of camkii transcripts in FMRP granules could be 

due probe inaccessibility in these RNPs. It has been previously shown that smFISH probe 

hybridization is capable of being hindered for transcripts confined within tightly packaged 

granules (Buxbaum et al., 2014). Thus, their occupancy within granules can effectively 

“mask” the identification of these transcripts by blocking probe hybridization. We are 

currently continuing our smFISH analysis with other transcripts predicted to be dependent 

on FMRP granule transport to see if these findings are pervasive amongst multiple targets. 

5.5 Granule formation may be a functional consequence of translational repression 

Using tethered and untethered translation reporter assays we were able to determine 

whether either of the KH domains were required for translation repression in an RNA 

binding-dependent or independent manner. It’s predicted that the RGG box confers 

specificity for mRNA targets by binding to higher-order structures within the CDS or 

3’UTR in mammalian FMRP (Vasilyev et al., 2015). When bound to these transcripts via 

the RGG box, the KH domains are then predicted to stall elongating ribosomes when they 

come into proximity of FMRP (Harigaya and Parker, 2014). As RNAs are flexible 

polymers, the KH domains could potentially stall translation by FMRP binding virtually 

anywhere on the transcript. Many G-quadruplex structures in FMRP-targets are located in 
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the 3’UTR, which was the reasoning behind the design of our luciferase reporters 

containing putative RNA binding sites in the 3’UTR (Zhang et al., 2014). Using the QGRS 

Mapper, we were able to identify putative G-quadruplex structures in the 3’UTRs of the 

different FMRP target transcripts (Kikin et al., 2006). The FMR1 and chic 3’UTRs contain 

G-quadruplex structures, which could be targeted by the RGG box. However, camkII and 

ppk 3’UTRs are not predicted to contain these structures and thus are likely to either depend 

on RGG binding to other RNA structures or on the other RNA binding domains within 

FMRP.  

In our study, we found that the KH1* mutant significantly impaired FMRP-

mediated translation repression of several FMRP targets (Figure 19). The KH1* mutation 

disrupts mRNA binding and polysome association supporting our results (Myrick et al., 

2014). Our work here adds to these previous studies by showing that the KH1* mutation 

can perturb translation repression independent of RNA-binding (Figure 18B). In contrast, 

KH2* did not disrupt translation repression of most of the luciferase reporters used in this 

study. This was surprising as the KH2 mutation has been shown to disrupt FMRP 

translation repression in vitro (Laggerbauer et al., 2001). The KH1 domain, and to a lesser 

extent the KH2 domain, inhibits ribosome translocation by directly binding the ribosome 

(Chen et al., 2014). We argue that FMRP may function in translationally repressing our 

luciferase reporters in a ribosome-binding and stalling-dependent manner, as we see a 

greater effect when we disrupt the KH1 domain. It’s important to note that we were not 
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able to distinguish whether the FXS-causing mutants were disrupting RNA-binding or 

translation repression in our untethered luciferase reporter assays (Figure 19). 

From these findings, we provide a model describing the functional consequence of 

reduced granule formation by the KH1* mutation. Loss of RNA-binding, and thus valency, 

through the KH1* mutation significantly destabilizes FMRP within granules. This 

reduction in valency causes the phase transition boundary of these granules to shift upward, 

requiring higher local FMRP concentrations to initiate this process. Loss of granules 

indirectly reduces FMRP-mediated translation repression by reducing the propensity of 

corralling particular interactors that may enhance repression. Although translation 

repression is able to occur outside of granules, it is likely that within distinct cytoplasmic 

foci all the required components are contained and primed for action. Thus, although loss 

of granule formation does not abrogate this process, it can significantly inhibit it. 

5.6 Disease-causing mutations in FMRP increase granule dynamics in contrast to 

promoting the formation of pathological inclusions 

Many proteins associated with neurodegenerative diseases including Alzheimer’s 

disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) undergo phase 

separation, linking MLOs to pathological inclusions which are a hallmark of these diseases 

(Ryan and Fawzi, 2019). Neurons are particularly susceptible to the formation of these 

pathological MLOs as they are post-mitotic cells that rely heavily on protein degradation 

pathways which function less efficiently in aged neurons (Lim and Yue, 2015). 

Interestingly we found in our study that FXS-causing point mutations in FMRP mostly 
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form more dynamic condensates, in contrast to these solid aggregates. To our knowledge 

this is the first time anyone has shown an MLO-associated protein linked to disease that 

doesn’t have a propensity to form toxic insoluble aggregates when mutated.  

What makes FMRP different from other phase separating proteins? Most other 

proteins produce gain-of-function mutations that make them form more “sticky” 

interactions within MLOs (Patel et al., 2015). This causes protein entrapment within 

granules, incapable of exchanging with the surrounds environment and thus unable to carry 

out normal functions. In the case of FMRP, we might be seeing the opposite effect. If 

FMRP is unable to stabilize interactions between RNAs, translation machinery or other 

RBPs within MLOs for long enough to carry out its normal function (in translational 

repression or RNA transport) it may cause a significant reduction in function. Further work 

needs to be done to determine whether altered dynamics of FMRP granules has a direct 

effect on NG function. However, our study creates an interesting new framework for 

understanding how disrupting stable interactions and multivalency effect granule 

dynamics and formation and how some MLOs are more susceptible to these 

perturbations. 

5.7 Conclusions and future directions 

FMRP is an important regulator of mRNA translation and transport within neurons. 

It is enriched within multiple distinct cytoplasmic foci, in which it is predicted to regulate 

these processes. Disruption of FMRP function due to single missense point mutations with 

the RNA-binding KH domains produces severe FXS. Unraveling how these mutations alter 
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FMRP-associated granules will aid in understanding what functions these domains have in 

their interaction with particular MLOs and how this may impact their associated disease 

states. The work presented here gives us a better understanding of the functions the 

structured RNA-binding domains and IDR have in FMRP recruitment to FMRP granules, 

SGs, P-bodies and NGs, and provides a model describing the functional consequence of 

granule formation in the context of translation repression. Future studies looking the 

differential interaction with the neuronal transcriptome in KH1* and KH2* are needed to 

better understand which and how targets are regulated by these domains.  
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CHAPTER SIX: MATERIALS AND METHODS  

6.1 Experimental model and subject details 

6.1.1 Fly stocks and husbandry 

In all experiments, both male and female flies were used. Drosophila stocks were 

incubated at 25°C with 12-hour light/dark cycles and 60% humidity on standard 

Bloomington medium. Fly lines used and made in this study are listed in Appendix 1. 

pUAST:attB:EGFP flies were generated via restriction cloning EGFP and each 

EGFP-FMRP mutant into the multiple cloning site of pUAST-attB for directional cloning 

into the 5’-KpnI and 3’-XbaI cloning sites. pUAST:attB:EGFP and pUAST:attB:EGFP-

FMRP mutants were sent to BestGene where these constructs were injected into fly strain 

#24485 for PhiC31 integration into chromosome III. pUAST:attB:EGFP-FMRP mutant 

flies were recombined with w1118;; FMR1Δ50M / TM6B, Tb+ FMR1 mutant flies for FMRP 

primary motor neuron experiments. Final recombinants were genotyped for the FMR1∆50M 

deletion by knocking out a single adult in a PCR tube on ice for 5 minutes. Flies were 

squished with a 200 μL pipette tip in 5μL of squishing buffer (10 mM Tris-Cl pH 8.0, 1 

mM EDTA, 25 mM NaCl, and 0.2 mg/mL proteinase K) and incubated at room temperature 
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for 20 minutes. Samples were then boiled at 95°C for 5 minutes, cooled on ice for 3 minutes 

and then spun down at 16,000X G for 5 minutes in benchtop centrifuge. For genotyping, 5 

μL of the supernatant (genomic DNA prep) was used in a standard NEB One Taq 

Polymerase PCR reaction using the FMR1deletion forward and reverse primers which were 

annealed at 60°C and elongated for 7 minutes as described by Zhang et al. (Zhang et al., 

2001). PCR products were ran in a 1% agarose gel following standard DNA gel 

electrophoresis procedures and probed for the presence of a 4.2 kbp (deletion) or 6.8 kbp 

(wildtype) PCR product. 

2.1.2 Schneider’s S2R+ and S2 cell culture 

S2 and S2R+ cells were maintained at 24°C with ambient humidity in a dark 

incubator and maintained on Shields and Sang M3 media (Sigma-Aldrich; S8398) 

containing bactopeptone and yeast extract, and supplemented with 10% fetal bovine serum 

(Gibco; 16000044), 1% penstrep (Invitrogen; 15070-063) and fungizone (Invitrogen; 

15290-026), also known as M3+BPYE media. DNA transfections were performed with 

Qiagen’s Effectene Transfection Reagent kit (Qiagen; 301425) (see below). Most 

experiments were conducted on S2R+ cells due to their higher propensity to adhere to and 

flatten out on cover slips, making imaging stationary cells more reliable. 

6.1.3 Drosophila third-instar primary larval motor neuron tissue culture 

Primary motor neurons were cultured from wandering 3rd instar larvae using a 

tissue culture protocol adapted from Barbee et al. 2006. For each genotype, 10 larvae were 

washed briefly in 70% ethanol, followed by five one-minute washes in 1xPBS pH 7.4. 
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CNS’s were dissected from 3rd instar larvae in supplemented media, or M3+BPYE media 

supplemented with 50 μg/mL insulin (Sigma-Aldrich; I6634), from which optic lobes were 

also removed leaving only the ventral ganglia (VG). VG were washed briefly in 

supplemented media five times, then transferred to a sterile microfuge tube containing ~1 

mL of Rinaldini’s solution (800mg NaCl, 20mg KCl, 5mg NaH2PO4*H2O, 100mg 

NaHCO3, 100mg glucose, and 1mL penstrep to final volume of 100 mL). VG were spun 

for 5 minutes at 300 x G. Supernatant was carefully removed, and fresh Rinaldini’s solution 

was added, vortexed, spun down and removed a total of five times to wash off residue yeast 

and other contaminants. In a sterile hood, supernatant was removed and 1mL of Liberase 

(Roche; LIBDH-RO; containing collagenase and dispase) supplemented Rinaldini solution 

was incubated with VG for 1 hour. The dissociated tissue was then spun down for 5 minutes 

at 300 x G. Supernatant was discarded and VG were washed another 4 times with 

supplemented M3+BPYE media. Following this, the supernatant was removed and VG 

were resuspended in 200µl of supplemented media. The dissociated VG were titrated with 

a fire-polished, glass Pasteur pipette 56 times and then 175 times with a medium coated 

P200 tip. The MN cell suspension was then seeded onto a single Concanavalin-A (Sigma-

Aldrich; C2010) and Laminin (Corning; CB-40232) coated 35mm glass bottom dish 

(Cellvis; D35-10-1-N). Once plated, cells were incubated at 24°C with ambient humidity 

in a dark incubator 3-5 days before imaging. Media was carefully aspirated and replaced 

every 2 days.   
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6.2 Method details 

6.2.1 Molecular cloning and Site directed mutagenesis 

For S2 cell fluorescence imaging, pAc5.1B:EGFP-FMRP-IDR and ∆KH mutants 

were cloned into the multiple cloning site of pAc5.1B-EGFP following PCR amplification 

of the target open reading frame(s) from pAc5.1B:EGFP-FMRP. Amplification primer 

sequences and sites are listed and described in the Appendix 1. The human KH1 Gly266Glu 

and KH2 Ile367Asn point mutations are orthologous to Drosophila Gly269Glu and 

Ile307Asn, respectively. To generate these Fragile X Syndrome causing point mutants in 

Drosophila FMRP, SDM primers were designed using the “substitution” feature in 

NEBaseChanger v1.2.9 (New England BioLabs Inc.). Mutagenesis was designed to occur 

at nucleotide 805-807 (GGA→ GAA) and nucleotide 868-870 (ATC→ AAC) in the KH1 

and KH2 domain, respectively. NEB’s Q5 Site-Directed Mutagenesis Kit Protocol (E0554) 

was conducted on the pAc5.1B:EGFP-FMRP vector to introduce the KH1 and KH2 

missense mutations. The following modifications were made to NEB’s mutagenesis PCR 

reaction: KH1 mutagenic primers Ta=62℃, elongation at 72℃ for 4 minutes; KH2 

mutagenic primers Ta= 64℃, elongation at 72℃ for 4 minutes.   

To clone the SG protein, Rasputin, into a C-terminally tagged mCherry vector, we 

constructed a (Gly4Ser)3 linker-mcherry pAc5.1 vector. The mCherry-tag was amplified 

from pAc5.1B-mCherry which included 5’-HindIII and 3’-BamHI restriction sites for 

directional cloning into pAc5.1B with an in-frame stop codon following the mCherry 

sequence. Primers for cloning the (Gly4Ser)3 linker upstream of mCherry were also 
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designed to allow for ligation of the three fragments (pAc5.1 + (Gly4Ser)3 + mCherry) in 

the correct orientation. To amplify Rasputin (Rin) to clone into the mCherry vector, total 

RNA was extracted from four BL Canton S adult males using the Zymogen RNA extraction 

kit and following the manufacturer's protocol (Zymo Research Corporation; R2060). RT-

PCR was then conducted on total RNA using Clontech’s RNA to cDNA EcoDry™ Premix 

(Oligo dT) kit (#639543). Rasputin cDNA was amplified using primers that added 5’-

HindIII and 3’-EcoRI restriction sites for directional cloning into the mCherry vector to 

make the final pAc5.1B:Rasputin-(Gly4Ser)3-mCherry. 

The Fluc reporters used in the translation reporter assays were all sourced from the 

pAc5.1C:FLuc:Stop:5BoxB backbone vector (Addgene #21301). The 5BoxB 3’UTR was 

replaced with the 3’UTRs of FMR1 and camkii by Restriction or Gibson cloning 

methods. We cloned the camkii isoform with the long 3’UTR, so that all possible binding 

sites were conserved in the reporter. DNA from 4 adult male BL Canton S flies was 

extracted and purified using the E.Z.N.A Tissue DNA kit (Omega Bio-Tek #D3396-01). 

From the extracted DNA, the long 3’UTR of camkii was amplified using the 

CaMKIIUTRFwdGA and CaMKIIUTRRvsGA primer set, then purified using Zymogen’s 

DNA Clean and Concentrator-5 Kit (#11-302C). pAc5.1C:FLuc:Stop:5BoxB was digested 

with EcoRI-HF and XhoI following NEB’s general protocol for restriction enzymes to 

remove the 5xBoxB 3’UTR. The camkii 3’UTR was then cloned into the luciferase 

destination vector via Gibson Assembly (#E2611) following NEB’s protocol. The FMR1 

3’UTR was similarly amplified using the FMR1Fwd and FMR1Rvs primer set and then 
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cloned into the pAc5.1C:FLuc:Stop:5BoxB destination vector using the 5’EcoRI and 

3’XhoI restriction sites while removing the 5xBoxB sequence. 

6.2.2 S2R+ and S2 cells transient transfections and cell viability assay 

Transient transfections were performed following Qiagen’s standard Effectene 

reagent protocol in which 0.5 μg of each construct was optimized, except for pAc5.1B-

EGFP:FMRP:KH1 in which 0.75 μg was transfected per 1 million cells in a 12-well plate. 

Transfected cells were grown for approximately 72 hours before used in assays.   

To determine whether any of the ectopically expressed FMRP mutants were lethal 

to cells, we used trypan blue to identify differences in viability. Three days post-

transfection, a 1:1 dilution was made of each cell suspension and 0.4% Trypan Blue 

solution. Approximately 10µl of this solution was loaded onto a hemocytometer and 

incubated for 2 minutes at room temperature. Viable cells remained unstained and 

translucent in appearance, whereas non-viable cells were stained blue. All unstained and 

blue cells within a 1 x 1 mm square were manually counted in triplicate experiments. Data 

were plugged into Excel to determine % viability and analyzed using Prism. 

6.2.3 Live cell imaging and analysis of granule 

For granule formation, morphology and count assays, live cell imaging was 

conducted on transiently transfected S2R+ cells. Cells were plated on poly-d lysine coated 

imaging dishes 72 hours post-transfection and imaged within 2 hours of plating. In all 

experiments, images were obtained using an Olympus FV3000 confocal laser scanning 
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microscope and cells were visualized with a 100x (NA 1.4) objective digitally zoomed to 

2.95x for best resolution.   

To count the number of transfected cells able to form granules, approximately 100 

cells were manually identified at the microscope. The total number of cells that formed 

granules out of all EGFP-expressing cells were counted. Cells were scanned through in Z 

to make sure that granules in any plane were identified. The number of granule-forming 

cells was divided by total number of transfected cells in three separate experiments.  

To compare the propensity of the different mutants to form spherical granules, 

approximately 100 granule-forming transfected cells were identified at the microscope. 

The number of cells forming spherical and amorphic (non-spherical) granules were 

counted. In most cases, cells that formed amorphous granules also contained spherical 

granules-- cells that formed any number of amorphous granules were categorized as 

amorphic.   

Finally, to count granules formed by each FMRP-mutant, 15 cells were analyzed in 

a single experiment. The z-plane where the nucleus took up the largest cell area was 

examined. Punctate areas of fluorescence intensity above background were considered to 

be granules and counted using ImageJ’s cell counter plugin. For each image, both cell 

diameter (through the longest axis in the same z-plane) and granule number were collected. 

From this, the number of granules per cell area (μm2) was plotted.   

Data from each of these experiments was entered into Excel for initial analysis. 

These data were then entered into Prism for statistical analysis.  
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6.2.4 Fluorescence Recovery After Photobleaching 

For FRAP experiments, 17-21 EGFP positive granules were viewed with a 100x 

(NA 1.4) objective digitally zoomed to 2.95x and photobleached with the lowest laser 

intensity necessary to completely bleach ROI, ranging from 2.44-10% 488nm laser power 

for 500-1,000 milliseconds. Two pre-FRAP images were collected and images were 

captured every 1.0878 seconds pre and post bleaching for a total of 200 frames. 

To set up the FRAP analysis, images were initially processed in ImageJ2/FIJI 

(Rueden et al., 2017; Schindelin et al., 2012). Data were analyzed essentially as described 

in (Cheney et al., 2017). A ROI was manually traced in each FRAP movie for 1) the 

bleached granule, 2) an unbleached granule, and 3) diffuse cytoplasmic staining for 

background. To ensure that fluorescence was accurately measured, ROI was moved 

throughout the movie if/when granules moved in x/y out of the initially set ROI to maintain 

consistency. From these movies, the mean fluorescent intensity was obtained for each 

frame and plugged into an excel sheet. Using these data, the following was calculated: 1) 

Photobleach Correction Value (PCV), in which the initial pre-bleach unbleached granule 

average fluorescence intensity was divided by each subsequent unbleached granule average 

intensity, 2) Corrected Average Intensity (CAI), where the bleached granules mean 

intensity was multiplied by the PCV, 3) Background Corrected Fluorescence Intensity 

(BCFI), where the CAI was subtracted by the average intensity of the background ROI, 

and 4) the Final Corrected Value (FCV) which was calculated by dividing each BCFI by 

the initial BCFI value and multiplying by 100 to get a normalized fluorescence intensity 
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profile. The FCV’s from each movie were then plugged into a nonlinear fit in Prism to 

calculate the fluorescence recovery curve, mobile fraction, and half-life. 

For the IDR FRAP analysis, WT-FMRP Relative Fluorescence was adjusted post-

hoc. For some unknown reason, WT granules were bleached to an average fluorescence 

intensity of -20 following photobleaching, which caused a shift in the recovery curve. As 

this did not occur in WT in our FXS-causing point mutant WT, we did not believe this was 

the true representation of these data. To adjust for this, each data point was increased by 

20 to account for this deviation. 

6.2.5 Immunocytochemistry, arsenite and 1,6-hexanediol treatments 

The following immunocytochemistry procedure was followed for all S2R+/S2 cell 

imaging, unless indicated otherwise. Cells were plated, immunostained and imaged on 35 

mm glass bottom dishes with 10mm #1 cover glass (Cellvis; D35-10-1-N). After allowing 

cells to settle on imaging dishes for at least 20 minutes, they were fixed with 4% PFA for 

10 minutes followed by a 5-minute incubation with ice cold methanol at -20°C. Cells were 

washed three times for 5 minutes in 1xPBS (pH 7.4), permeabilized in 1xPBST (pH 7.4) 

for 10 minutes, and then blocked in 1xPBST with 2% BSA (w/v; Sigma-Aldrich, A9647) 

and 5% normal goat serum (v/v; Sigma-Aldrich, S26-M) for 30 minutes. Cells were 

incubated with primary antibodies overnight at 4°C, washed in 1xPBS, and then incubated 

for 1 hour in secondary antibodies at room temperature. Cells were washed with 1xPBS 

and then mounted in DAPI-Fluoromount-G Clear Mounting Media and sealed by adhering 

a #1 coverslip to the dish. 
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For FXS-causing point mutants/HPat colocalization experiments, immunostaining 

was conducted on cells transfected with pAc5.1B:EGFP-FMRP and FXS-causing point 

mutants. For this assay, rabbit anti-HPat (1:1,500) primary and goat anti-rabbit Alexa-567 

(1:500) secondary antibodies were used. 

To induce stress, cells were co-transfected with pAc5.1B:EGFP-FMRP mutants 

and pAc5.1B-Rasputin(Gly4Ser)3mCherry. At 72 hours post transfection, cells were treated 

with 0.5mM sodium meta-arsenite in M3+BPYE media for 45 minutes. For colocalization 

analysis, cells were immediately fixed in 4% PFA for 10 minutes, incubated with ice cold 

methanol at -20°C for 5 minutes and then washed 3 times for 5 minutes in 1xPBS (pH 7.4). 

Preparations were then mounted in DAPI-Fluoromount-G Clear Mounting Media 

(Southern Biotech).   

For analysis of granules with 1,6-hexanediol transfected cells were co-transfected 

with pAc5.1:EGFP-FMRP mutants and pAc5.1-Rasputin(Gly4Ser)3mCherry. Non-stressed 

cells were imaged via CLSM on either fresh cell culture media or 10% 1,6-hexanediol 

(w/v) in media. Cells were imaged within 20 minutes of the addition of hexanediol, as cells 

start to bleb and stress granules begin to form after long exposure times (Wheeler et al., 

2016). Stressed cells were treated with 0.5 mM sodium arsenite for 45 minutes before the 

addition of fresh 0.5 mM arsenite, or 0.5 mM arsenite + 10% 1,6-hexanediol. In all 

conditions, approximately 100 live transfected cells were analyzed for the presence of 

FMRP or Rin granules, in triplicate. Data from each of these experiments was entered into 
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Excel for initial analysis. These data were then entered into Prism where we performed 

statistical analysis and created graphs.  

6.2.6 Colocalization analysis 

To determine the degree to which FMRP mutants colocalized with SG or P-body 

components, 12-13 images were analyzed in ImageJ/FIJI using the Just Another 

Colocalisation Plugin, JACoP (Bolte and Cordelières, 2006). In all cases, images were 

cropped to the smallest area possible to eliminate colocalization events outside of the cell 

of interest and images for FMRP/HPat colocalization were background subtracted to a 

rolling ball radius of 50 pixels to account for the higher degree of HPat background 

staining. In JACoP, Pearson’s coefficient analysis was performed between the FMRP and 

SG or P-body channels which were recorded in Excel and analyzed in Prism.   

6.2.7 Western blotting 

Western blots were generally carried out as follows. Samples were boiled at 95°C 

for 10 minutes, chilled on ice for 5 minutes and sonicated for three one second pulses, with 

one second pauses in between at 50 mW on ice. Samples were chilled on ice for 5 minutes 

before clarification at 15,000X G for 15 minutes at 4°C. Supernatants were carefully 

transferred to a fresh microfuge tube on ice, and then 15-25 μL of sample was added per 

well in a 4-20% Mini-PROTEAN TGX Precast Protein Gel (Bio-Rad, #4561094). Gels 

were run at 250V for 35 minutes or until adequate separation was achieved. Prior to protein 

transfer, the SDS-PAGE gel and nitrocellulose membrane were equilibrated in 1x transfer 

buffer for 10 minutes with agitation. Gel transfer to nitrocellulose membrane was run at 
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120V for 45 minutes on a stir plate with an ice pack to keep the solution cool. The 

nitrocellulose membrane was then incubated in blocking solution (5% non-fat milk in 1X 

TBST pH 7.4) for 30 minutes at room temperature with agitation. Primary antibodies were 

diluted in blocking solution (indicated below) and incubated with membrane for either 2 

hours at room temperature or overnight at 4°C with agitation. Membranes were washed 5 

times in 1X TBST with agitation. Secondary antibodies were diluted in blocking solution 

and incubated with membrane for 45 minutes to 1 hour at room temperature with agitation. 

Membranes were washed in TBST for 5 minutes 3 times with agitation. Approximately 1 

mL of Thermo Scientific SuperSignal West Dura Chemiluminescent Substrate (Thermo 

Scientific; 34075) was incubated with membrane before imaging on a FluorChem R 

(ProteinSimple). 

For westerns conducted on EGFP-FMRP mutant ectopic expression assays in S2R+ 

cells, transfected cells were harvested at three days post-transection from a 6-well plate. 

Cells were scraped and resuspended by pipetting up and down and 1.5 mL of cells were 

spun down at 1,000x G for 5 minutes at 4°C. Cells were then resuspended in 400 μL of 2x 

Laemmli sample buffer + �-mercaptoethanol on ice.  

For westerns conducted on C380, cha-Gal80/+ ; ; UAS:EGFP-FMRP, FMR1∆50M/+ 

larvae ectopically expressing the FXS-causing point mutants, 5 CNS’s were diluted in 

100µL of 2x Laemmli sample buffer + �-mercaptoethanol on ice. CNS’s were 

homogenized in a 1.6 mL microcentrifuge tube for 30 seconds on ice using a hand-held 
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homogenizer. Homogenate was incubated on ice for 3 minutes, and then processed as 

indicated above.  

For both of these assays, the primary antibodies used were mouse anti-dFMR1 

(1:3,000), rabbit anti-EGFP (1:2,000), and mouse anti-ɑ-tubulin (1:1,000). Secondary 

antibodies used were horse anti-mouse HRP or goat anti-rabbit HRP which were diluted 

1:1,000 in block. 

6.2.8 Primary motor neuron imaging and neurite transport analysis 

Primary motor neurons were cultured from flies as indicated in section 6.1.3. At 3-

5 days post-harvest, live primary motor neurons were imaged using an Olympus FV3000 

scanning confocal microscope with a 100x (NA 1.4) objective. For soma imaging, images 

were digitally zoomed to 2.95x for optimal resolution and a z-stack was obtained with 

0.39µm slices through the entire soma. Images were presented as Z-projections which were 

made using Fiji/ImageJ.   

For neurite transport movies, live cells were imaged with the 100x objective 

digitally zoomed to 1.79x so most branching neurites were imaged. Movies were collected 

containing four 0.39µm z-slices, over 100 frames (8:04 minutes). Movies were then 

analyzed using the Kymolyzer plugin in FIJI/ImageJ from which granule velocities and 

directionality were obtained, using a lower speed limit set to the pixel size, 0.138µm. (Basu 

et al., 2020).   

To calculate the average number of neuritic granules in primary motor neurons, the 

max-intensity Z-projection of the first time point imaged was used (Frame 1). The Cell 
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Counter plugin was used to manually count the number of granules within neurites for each 

of the movies used for tracking neuritic granules. Additionally, the proportion of neuritic 

granules 10µm or further from the cell body was determined from these images. The scale 

of these images was globally set and a symmetrical circle was drawn tightly around each 

cell using the Oval selection tool in ImageJ, containing as much of the cell as possible. The 

diameter of each cell body was recorded in µm. The center of each circle was determined 

and marked using the Pencil tool. From this point, a line was drawn to the center of each 

granule within neurites and crude distance from the cell body was recorded in µm. The 

distances recorded were subtracted by the radius for their respective cell body to obtain the 

final distance used in analysis. Data were recorded in Excel and statistical analyses were 

performed in Prism. 

6.2.9 Single molecule FISH and FISH-quant image analysis 

Primary motor neurons were cultured from flies driving expression of UAS-

EGFP:FMRP, FMR∆50 under the control of the C380,cha-Gal80 driver as described in 

section 6.1.3. Custom Stellaris® FISH Probes were designed against Drosophila 

melanogaster fmrI, camkII, futsch, and chic by utilizing the Stellaris® FISH Probe Designer 

(Biosearch Technologies Inc., Petaluma, CA) available online at 

www.biosearchtech.com/stellarisdesigner. Primary motor neurons were hybridized with 

the indicated Stellaris FISH Probe set labeled with either Quasar-570 or 670 (Biosearch 

Technologies, Inc.) following the manufacturer’s instructions available online at 

www.biosearchtech.com/stellarisprotocols. Essentially, at 3-4 days post culturing, cells 
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growing on #1.5 cover glass were washed in 1X PBS (pH 7.4). Cells were then incubated 

in fixation buffer (3.7% formaldehyde in 1X PBS) for 10 minutes at room temperature, 

then washed twice in PBS. To permeabilize cells were immersed in 70% ethanol at 4°C for 

at least 1 hour and up to a week. Ethanol was aspirated and cells were washed in Stellaris 

Wash Buffer A for 5 minutes, then hybridized with the indicated probe(s) in a dark, humid 

hybridization chamber at 37°C for 5-16 hours. Probes were used at a final molarity of 

0.125µM in Stellaris Hybridization buffer. Hybridization buffer was aspirated and cells 

were incubated with Wash Buffer A twice at 37°C for 30 minutes, then washed with 

Stellaris Wash Buffer B for 5 minutes at room temperature. Buffer was aspirated and 

Vectashield Mounting Medium was added to the #1.5 cover glass in the imaging dish and 

a clean coverslip was placed on top and sealed with clear nail polish. Imaging dishes were 

stored in the dark at -20°C for up to 2 days before imaging on an ONI Nanoimager S. 

Approximately 15 cells were imaged per genotype using the widefield microscopy 

application on the ONI Nanoimager S for imaging smFISH probes. In order to detect 

smFISH probes, cells were exposed to 7% 570- or 640-laser power for 1,500 milliseconds.  

Z-projection was obtained with 0.2 µm slices through the entire cell. EGFP-FMRP was 

imaged sequentially which allowed us to distinguish the soma and neurites from 

background.   

To analyze smFISH images, we used the FISH-Quant Matlab application to detect, 

localize and quantify mRNA in primary motor neurons (Mueller et al., 2013). Motor 

neuron soma and neurites were outlined individually, which allowed us to differentiate 
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mRNAs residing within the soma and neurites. Data were compiled in Excel and statistical 

analyses were performed in Prism. 

6.2.10 Luciferase reporter assays 

Transfections were performed in three biological replicates in 24-well plates. For a 

single well, 0.025 µg of the firefly luciferase (FLuc) 3’ UTR mRNA reporter plasmid, 0.1 

µg of the Renilla luciferase (RLuc) transfection control plasmid, and 0.25 µg of either the 

empty λN vector or the λN: FMRP mutant vector was transfected. At three days post 

transfection, cells were thoroughly scraped and resuspended and 75 µL of cells were added 

in three technical replicates to a 96-well white, flat bottom polystyrene assay plate (Costar). 

Following the Dual-Glo Luciferase Assay System kit protocol (Promega), an equal volume 

of Dual-Glo Reagent and then Dual-Glo Stop & Glo Reagent were added to each well and 

incubated for 15 minutes before measuring FLuc and RLuc luminescence, 

respectively. Luminescence was measured using a Synergy™ HTX Multi-Mode 

Microplate Reader (BioTek). 

6.2.11 Larval NMJ immunohistochemistry and morphological analysis 

Third instar larval body wall preps for NMJ analysis were dissected in ice cold 

calcium-free Jan and Jan buffer (130 mM NaCl, 5 mM KCl, 36 mM sucrose, 5 mM HEPES 

[pH 7.3], 4 mM MgCl2, and 0.5 mM EGTA) within 30 minutes on sylgard plates. 

Dissection buffer was removed and preps were fixed in 4% PFA for 20 minutes, then 

washed 3x 5 minutes in 1X PBS (pH 7.4) and permeabilized in 1X PBS (pH 7.4) + 0.1% 

Triton X-100 for 10 minutes. Preps were blocked in 1X PBS with 2% BSA and 5% normal 
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goat serum with shaking for 30 minutes. Block was removed and primary antibody (mouse 

anti-DLG, 1:200) diluted in block was incubated overnight at 4°C. Preps were washed 6x 

5 minutes in PBS and then incubated for 1 hour with secondary antibodies diluted in block 

at room temperature (goat anti-mouse Alexa 488 or 567 at 1:500 & Dylight 649-conjugated 

anti-HRP at 1:500). Preps were washed in 1xPBS and then mounted on slides in DAPI-

Fluoromount-G Clear Mounting Media. 

All imaging was done on an Olympus FV3000 scanning confocal microscope using 

20X and 60X objectives to image the NMJ at muscles 6/7 in abdominal section 3 (N.A. 

0.85 and 1.42, respectively). When shown, maximum Z projections were assembled from 

0.4μm optical sections. All post-hoc image processing was done using Fiji in ImageJ2. For 

morphological analysis of larval NMJs, between 10-17 images were examined per 

experiment, in which 1s, 1b and axon terminals were manually counted at muscles 6 and 7 

(m6/7) in abdominal segment 3 (A3) using the Cell Counter plugin in Fiji. To account for 

muscle area differences between genotypes which effects NMJ size, synaptic bouton 

numbers were normalized to muscle surface area (MSA). MSA was calculated by outlining 

both m6/7 using the freehand selection tool in ImageJ2/Fiji and recording the calculated 

muscle area. 1s and 1b bouton numbers were divided by the corresponding muscle area. 

These data were then normalized to the C380-Gal4/+;; UAS-EGFP/+ overexpression 

controls. Data were collected and calculations were conducted in Excel and statistical 

analyses were performed in Prism. 
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6.2.12 Quantification and statistical analysis 

All data were initially recorded in Excel (Microsoft) and then graphed and analyzed 

in Prism version 9.0.2 (GraphPad). Results were considered statistically significant if 

p<0.05. Error bars throughout the study indicate mean ± SEM. n.s. = not significant, * 

p<0.05, ** p<0.01, *** p<0.001, and **** p<0.0001. Outliers were identified and removed 

using ROUT method in Prism, where necessary. Statistical tests and sample sizes for each 

experiment are indicated within the corresponding figure legend and/or in methods section. 
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APPENDIX 1: TABLE OF REAGENTS AND RESOURCES 

 SOURCE IDENTIFIER 

Antibodies   

Primary antibodies   
Mouse anti-Fmr1 [6A15] Abcam ab10299 

Rabbit anti-EGFP Proteintech 50430-2-AP 

Mouse anti-α tubulin DSHB 12G10 

Mouse anti-discs large DSHB 4F3 

Rabbit anti-Pat1 
(Pradhan et al., 

2012)  
Secondary antibodies   

Horse anti-mouse HRP Cell Signaling 7074S 

Goat anti-rabbit HRP Cell Signaling 7076S 

Goat anti-mouse Alexa 488 Invitrogen A11029 

Goat anti-rabbit Alexa 594 Invitrogen A11037 

Goat anti-HRP 647 
Jackson 

ImmunoResearch 
Labs AB_2338967 

Chemicals   

1,6-hexanediol Sigma-Aldrich 240117 

Sodium meta-arsenite Sigma-Aldrich S7400 

Critical Commercial Assay kits   

Q5 Site-Directed Mutagenesis kit 
New England 

Biolabs E0554S 

One-Taq Polymerase 
New England 

Biolabs M0480 

Dual Glo Luciferase Assay System Promega E2920 

Effectene Transfection kit  Qiagen 301425 

Experimental Models: Cell Lines   

D. melanogaster: Schneider's 2 cells (S2R+) 

Drosophila 

Genomics 
Resource Center 

NIH Grant 
2P40OD01094

9 
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D. melanogaster: Schneider's 2 cells (S2) 

Drosophila 

Genomics 
Resource Center 

NIH Grant 
2P40OD0109

49 

Experimental Models: Organisms/Genotypes   

D. melanogaster: BL Canton S  

Bloomington 
Drosophila Stock 

Center BDSC:64349 

D. melanogaster: C380-Gal4 

Bloomington 
Drosophila Stock 

Center BDSC:80580 

D. melanogaster: w1118; UAS-FMR1 

Bloomington 
Drosophila Stock 

Center BDSC:6931 

D. melanogaster: w1118;; FMR1Δ50M/TM6B,Tb+ 

Bloomington 
Drosophila Stock 

Center BDSC:6928 

D. melanogaster: w*;; FMR1Δ113M/TM6B,Tb+ 

Bloomington 
Drosophila Stock 

Center BDSC:67403 

D. melanogaster: C380-Gal4, cha-Gal80 
(Hartwig et al., 

2008)  

D. melanogaster: w1118; wgSp-1/CyO, P{w+mC=2xTb1-

RFP}CyO; MKRS/TM6B, Tb1 

Bloomington 
Drosophila Stock 

Center BDSC: 76359 

D. melanogaster: C380-Gal4;; Sb/ TM6B,Ser This paper  
D. melanogaster: pUAST-attB-EGFP This paper  
D. melanogaster: pUAST-attB-EGFP:FMRP This paper  
D. melanogaster: pUAST-attB-EGFP:FMRP:KH1* This paper  
D. melanogaster: pUAST-attB-EGFP:FMRP:KH2* This paper  
D. melanogaster: pUAST-attB-

EGFP:FMRP:KH1*KH2* This paper  
D. melanogaster: pUAST-attB-EGFP:ΔKH This paper  
D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP/TM6BTb This paper  
D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP:FMRP/TM6BTb This paper  
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D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP:FMRP:KH1*/TM6BTb This paper  
D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP:FMRP:KH2*/TM6BTb This paper  
D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP:FMRP:KH1*KH2*/TM6BTb This paper  
D. melanogaster: w+; FMR1Δ50M, pUAST-attB-

EGFP:ΔKH/TM6BTb This paper  
D. melanogaster: C380,cha-Gal80;; 

TM6BTb/TM3BSb This paper  
D. melanogaster: C380,cha-Gal80;; 

TM6BTb/FMR1Δ113M This paper  
D. melanogaster: C380-Gal4;; FMR1Δ113M/TM6BTb This paper  

Oligonucleotides   
FMR1 deletion (PCR forward primer): 5'-
AAGGAAAAAAGCGGCCGCAAAGATATCGCG
AAAATCCCCCCAG-3' 

(Zhang et al., 
2001) 

 

FMR1 deletion (PCR reverse primer): 5'-
CGGGATCCGTTATGCTACGTGAATAAATC-3' 

(Zhang et al., 
2001) 

 

FMRP-pUAST (PCR amplification forward primer 
with 5'-KpnI site):  

This paper  

FMRP-pUAST (PCR amplification forward primer 
with 3'-EcoRI site):  

This paper  

KH1 SDM (Forward primer for mutagenesis of the 
KH1 domain in dmFMRP [Gly269Glu]): 5' 
CAAAATCAGCGAAGAGACCGAGG -3' 

This paper  

KH1 SDM (Reverse primer for mutagenesis of the 
KH1 domain in dmFMRP [Gly269Glu]): 5'-
AATGTGCAGGACTTCTCC-3' 

This paper  

KH2 SDM (Forward primer for mutagenesis of the 
KH2 domain in dmFMRP [Ile307Asn]): 5'-
GGGCGCATTAACCAGGAGATTG-3' 

This paper  

KH2 SDM (Reverse primer for mutagenesis of the 
KH2 domain in dmFMRP [Ile307Asn]): 5'-
ATTCTTGCCAATCACCTTGC-3' 

This paper  
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DP-90 (FMRP PCR amplification forward primer 
with 5'-HindIII site): 5'-
ACAAGCCAAGCTTTATGGAAGAT-3' This paper  
ES-51 (FMRP:∆IDR amplification reverse primer 
with 3' EcoRI): 5'-
TACGGAATTCTTACTTCTCCTGACGCAACTGT
T-3' This paper  
ES-135 (EGFP amplification forward primer): 5'-
GGTACCAACATGGTGAGCAA-3' This paper  
ES-136 (EGFP amplification reverse primer with 3'-
XbaI site): 5'-
GTTCATCTAGACTACTTGTACAGCTCGTCCAT
GC-3' This paper  
ES-83 (KH1+2 amplification forward primer with 5' 
HindIII site): 5'-
AAGCCAAGCTTTGGAAACTACGTTGAGGAGT
T-3' This paper  
ES-82 (KH1+2 amplification reverse primer with 3' 
AscI site): 5'-
ATCTCGGCGCGCCGCGACAGATGATACTCCA
AC-3' This paper  
ES-60 (IDR amplification forward primer with 5' 
HindIII site): 5'-
GTCAAAGCTTCGAGATTGATCAGCAGCTTC-3' This paper  
ES-53 (IDR amplification reverse primer with 3' 
EcoRI site): 5'-
TACGGAATTCTTAGGACGTGCCATTGACCA-3' This paper  
DP-140 (FMRP KH0 deletion amplification reverse 
primer with BamHI 5' site): 5'-
ATGACGGATCCCAGACGACCCAATTCACAGA
TT-3' This paper  
DP-141 (FMRP KH0 deletion amplification forward 
primer with BamHI 3' site): 5'-
ATGACGGATCCTACGTTGAGGAGTTCCGTGT
G-3' This paper  
DP-142 (FMRP KH1+2 deletion amplification 
reverse primer with BamHI site): 5'-
ATGACGGATCCCTCAACGTAGTTTCCACGGC-
3' This paper  
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DP-143 (FMRP KH1+2 deletion amplification 
forward primer with BamHI site): 5'-
ATGACGGATCCCTGGCGCATGTACCCTTTGT-
3' This paper  
DP-93 (FMRP amplification primer with EcoRI 3' 
site): 5'-TCTGCAGAATTCTTAGGACGTG-3' This paper  
DP-91 (FMRP RGG deletion amplification reverse 
primer with EcoRI site): 5'-
TGACGGATCCATCGTTGTAGCCACGCTGCT-3' This paper  
DP-92 (FMRP RGG deletion amplification primer 
with EcoRI site): 5'-
TGACGGATCCCCGCCACGCAACGATCAGCA-3' This paper  
ES-139 (FMRP LIC amplification forward primer): 
5'-
TACTTCCAATCCAATGCAGAAGATCTCCTCGT
GGAAGTTCGGC-3' This paper  
ES-140 (FMRP LIC amplification reverse primer): 5'-
TTATCCACTTCCAATGTTATTAGGACGTGCCA
TTGACCAGGCC-3' This paper  
DP-204 (mcherry amplification forward primer with 
5' HindIII site): 5'-
AGTACAAGCTTATGGTGAGCAAGGGCGAGGA
G-3' This paper  
DP-205 (mcherry amplification reverse primer with 3' 
BamHI site): 5'-
AGTACGGATCCTTACTTGTACAGCTCGTCCAT
GCCG-3' This paper  
DP-206 (Top oligonucleotide for cloning (Gly4Ser)3 
linker upstream of mcherry, containing a 5' ApaI site, 
and 3' HindIII site to clone directionally into pAc5.1): 
5'-
CGGTGGAGGAGGCTCTGGTGGAGGCGGTAGC
GGAGGCGGAGGGTCGA-3' This paper  
DP-207 (Bottom oligonucleotide for cloning 
(Gly4Ser)3 linker upstream of mcherry, containing 
ApaI and HindIII sites): 5'-
AGCTTCGACCCTCCGCCTCCGCTACCGCCTCC
ACCAGAGCCTCCTCCACCGGGCC-3' This paper  
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ES-170 (Rasputin RT-PCR primer with 5' KpnI site): 
5'-TGACATGGTCATGGATGCGACCCA-3' This paper  
ES-171 (Rasputin RT-PCR primer with in-frame stop 
codon and 3'-EcoRI site): 5'-
ATACGAATTCGCGACGTCCGTAGTTGCCA-3' This paper  
CaMKIIUTRFwdGA (CaMKII 3'UTR Gibson 
assembly primer for cloning into FLuc backbone 
vector cut with EcoRI and XhoI): 5'-
CGGAAAGTCCAAATTGTAATGGGCATTAATC
AATGGAATATAAAC-3' This paper  
CaMKIIUTRRvsGA (CaMKII 3'UTR Gibson 
assembly primer for cloning into FLuc backbone 
vector cut with EcoRI and XhoI): 5'-
CTTACCTTCGAATGGGTGACAAAATTGCATTA
TGCTTTGAATTC-3' This paper  
FMR1Fwd (Forward restriction primer for cloning 
FMR1's 3'UTR containing the 5' EcoRI site): 5'-
TACTGAATTCAGGAGCAACAGCTCACAG-3' This paper  
FMR1Rvs (Reverse restriction primer for cloning 
FMR1's 3'UTR containing the 3' XhoI site): 5'-
ATACCTCGAGGCTTGATGGTTTGTGTTTTG-3' This paper  

Recombinant DNA   

Plasmid: pUAST-attB 
DGRC 

NIH Grant 
2P40OD0109

49 

Plasmid: pUAST-attB-EGFP This paper  
Plasmid: pUAST-attB-EGFP:FMRP This paper  
Plasmid: pUAST-attB-EGFP:FMRP:KH1* This paper  
Plasmid: pUAST-attB-EGFP:FMRP:KH2* This paper  
Plasmid: pUAST-attB-EGFP:FMRP:KH1*KH2* This paper  
Plasmid: pAc5.1B-EGFP Addgene 21181 

Plasmid: pAc5.1-EGFP:FMRP This paper  
Plasmid: pAc5.1-EGFP:FMRP:KH1* This paper  
Plasmid: pAc5.1-EGFP:FMRP:KH2* This paper  
Plasmid: pAc5.1-EGFP:FMRP:KH1*KH2* This paper  
Plasmid: pAc5.1-EGFP:FMRP:∆KH This paper  
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Plasmid: pAc5.1-EGFP:FMRP:∆IDR This paper  
Plasmid: pAc5.1-EGFP:FMRP:IDR This paper  
Plasmid: pAc5.1-EGFP:FMRP:KH+IDR This paper  
Plasmid: pAc5.1-Rasputin-(Gly4Ser)3-mCherry This paper  
Plasmid: pAc5.1B-λN:HA Addgene 21302 

Plasmid: pAc5.1-λN:HA:FMRP This paper  
Plasmid: pAc5.1-λN:HA:FMRP:KH1* This paper  
Plasmid: pAc5.1-λN:HA:FMRP:KH2* This paper  
Plasmid: pAc5.1-λN:HA:FMRP:KH1*KH2* This paper  
Plasmid: pAc5.1B Invitrogen V411020 

Plasmid: pAc5.1-FMRP This paper  
Plasmid: pAc5.1-FMRP:KH1* This paper  
Plasmid: pAc5.1-FMRP:KH2* This paper  
Plasmid: pAc5.1-FMRP:KH1*KH2* This paper  
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APPENDIX 2: smFISH PROBE OLIGONUCLEOTIDES 

Sequence Name Sequence Three Modification 

camkii-1_1 GAAAAACGCGTACAGGCTGC Quasar 670 

camkii-1_2 CCAACTCTTCTTTGATGTCG Quasar 670 

camkii-1_3 GCAGCAAATTCAAAGCCAGT Quasar 670 

camkii-1_4 CACTATGTTGGGATGGTGTA Quasar 670 

camkii-1_5 CTCCTGTATACTGTCATGTA Quasar 670 

camkii-1_6 AATGTGATGCATCAGCTTCT Quasar 670 

camkii-1_7 CATTTTGGTGGCAGTGATTG Quasar 670 

camkii-1_8 ATTCTCTGGTTTCAGATCTC Quasar 670 

camkii-1_9 AGACCAAAGTCAGCGAGTTT Quasar 670 

camkii-1_10 CTGATGATCGCCTTGAACTT Quasar 670 

camkii-1_11 CTCCTTTTTCAATACCTCAG Quasar 670 

camkii-1_12 AAGAATAACTCCACATGCCC Quasar 670 

camkii-1_13 TGCTGATCTTCATCCCAAAA Quasar 670 

camkii-1_14 ACGGATAATCATAAGCTCCC Quasar 670 

camkii-1_15 TTTAGCTTCTGGAGTAACCG Quasar 670 

camkii-1_16 GATGTTTTAAAGCCTCAGCT Quasar 670 

camkii-1_17 CACACGTTCGCGTTGACAAA Quasar 670 

camkii-1_18 CTTGAGACAGTCTACGGTTT Quasar 670 

camkii-1_19 CGCCAACATTGTCGTAAGTA Quasar 670 

camkii-1_20 GTTATCATACTTCTGCTCGA Quasar 670 

camkii-1_21 GTTGATTCTTTGACCTGTGA Quasar 670 

camkii-1_22 CGTCTTCAAGAGTAGTGCTA Quasar 670 

camkii-1_23 GCCACTGTTAATTGCTTCAA Quasar 670 

camkii-1_24 CAAAGGCAGTTAGATGCGGA Quasar 670 

camkii-1_25 ATTCCTTCTACAAGGTTACC Quasar 670 

camkii-1_26 GCTTTGCAGTTTTTACCAAG Quasar 670 

camkii-1_27 CTTCACCAAGTAAGTGCACA Quasar 670 

camkii-1_28 GTCTCACATAGGCAATGCAA Quasar 670 
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camkii-1_29 CATTCTGCCATTTGTTATCG Quasar 670 

camkii-1_30 CTTATTTTGGCAGATGCACT Quasar 670 
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