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Abstract

The ubiquity of vortices nearly rivals that of the innumerable fluids and spaces in

which they live. Not only do they exist in systems such as superfluids, supercon-

ductors, optical fields, or cold atomic gases, for example, but they also exist in

our atmospheres, oceans, and even in our veins. This makes understanding and

accurately predicting the dynamics of vortices in various systems a relevant and

meaningful endeavor.

From a typical hydrodynamic perspective, vortices move within a given fluid

because of the background fluid density and phase gradients at the vortex loca-

tion. However, we find that these gradients alone are insufficient for describing

vortex motion. Vortex ellipticity plays a crucial role in vortex dynamics in two-

dimensional fluids, particularly during nucleation and annihilation events of oppo-

sitely charged vortex pairs. This dissertation presents a novel hydrodynamic theory

that accounts for vortex ellipticity that applies to both quantum and classical hy-

drodynamic settings. This is achieved by viewing the two-dimensional vortex as a

virtual three-dimensional circular vortex projected into the two-dimensional plane

whose orientation (otherwise referred to as vortex tilt) quantifies the degree of el-

lipticity. The vortex ellipticity is coupled to the density gradient of the fluid, and

accurate predictions of vortex motion can be made, even during nucleation and an-

nihilation events.
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A linear optical experiment used to test the new hydrodynamic theory is also

discussed in detail. The experiment consists of free-space laser propagation and

a spatial light modulator that projects computer generated holograms for produc-

ing vortex beams. Procedures for generating effective holograms and efficiently

measuring vortex beams include a novel colinear phase-shifting digital hologra-

phy technique using composite holograms that enables both amplitude and phase

measurement of optical beams. Modal decompositions of experimentally gener-

ated fields show that our methods can yield vortex purities > 99.9% in the intended

mode. Additional experimental details and alignment requirements are also intro-

duced.

This experimental setup is used for two test cases that are compared with the

new hydrodynamic theory: (i) a single, tilted vortex in a Gaussian beam and (ii)

the annihilation of an oppositely charged vortex pair in a Gaussian beam. In both

cases we find agreement between the experimental results and the hydrodynamic

theory, confirming not only that the theory accurately predicts vortex motion, but

also that optical systems can be described hydrodynamically. Lastly, because of the

compressible fluid nature of optical systems, we show that annihilation dynamics

can be altered by simply changing the initial core overlap between an oppositely

charged vortex pair. Both numerical simulations and experiments confirm that an-

nihilation dynamics are highly impacted by the initial condition, and one can even

prevent the annihilation between oppositely charged vortex pairs by simply modi-

fying this initial core overlap.
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Chapter 1

Introduction

1.1 A Brief History of Vortices

In his lifetime (1452-1519), Leonardo da Vinci studied many of life’s curiosi-

ties. Among them was the phenomenon of vortices in fluid systems, inspired by his

observations of the flow of water in seas, rivers, and canals [1], and by his interest

in the flow of blood within veins and the heart of the human body [2]. A drawing

of his depicting blood traveling through the heart is shown in Figure 1.1. He also

devised experiments to study fluid flow in various types of tanks and used seeds

of panic grass to observe the motion of vortices in the fluid [1]. In addition to his

study of vortex motion within veins and other fluids, da Vinci is considered to have

foreshadowed much of today’s interest in the phenomenon of turbulence. For the

motion of water pouring from a spout into a pool, he described it as “... this move-

ment being sometimes rapid and sometimes slow, and turning sometimes to the

right, sometimes to the left, now up, and now down, turning over and turning back

upon itself...” [2]. Along with his descriptions, his documents also contain various

drawings of vortices, including those of water from a faucet plunging into a body

of water shown in Figure 1.1 (b), creating the turbulent motion that he described.

2



(a) (b)

Figure 1.1: Drawings of Leonardo da Vinci’s depicting vortices in the flow of blood
through an aortic valve (left) and the turbulent structure of water pouring from a
spout (right). Credit: Royal Collection Trust/© Her Majesty Queen Elizabeth II
2019, Reprinted from [1].

While incomplete and scattered throughout his work, the general description of

vortices and fluid flow provided a vital insight for the field of fluid mechanics.

In 1644, Renee Descartes hypothesized that the motion of the planets around

the sun was due to a large vortex centered at the sun [3]. In his theory, the rota-

tional motion of the planets was due to the motion of the larger vortex, dragging

them along with its rotation just like the leaves on the surface of a whirlpool would

move [3]. But, shortly thereafter in 1687, Newton claimed that vortices on the outer

edge of the solar system should move at a faster rate than those close to the center,

and this contradicted the ideas behind Descartes’ theory [3, 4]. Newton’s theory

of gravity soon replaced the vortex theory of planetary motion due to its ability to

better predict other physical phenomena such as the rising and lowering tides, while

Descartes’ vortex theory could not [5].

It was not until 1858 that the the first formal mathematical study of vortices was

performed by Helmholtz [6]. He was the first to define a vortex line and vortex

3



filament, and described the motion of a small volume of the fluid [6, 7]; he also

accounted for the frictional forces between each of the fluid elements and with

boundaries [6, 7]. This foundation for vortices resulted in Lord Kelvin’s theory

of atoms in 1867 where he aimed to describe atoms and their spectra in terms of

vortex filaments [7, 8]. Of course we know that these theories were replaced by the

Rutherford model of the atom later in the 1900’s [9], which more closely resembles

our current understanding of atoms.

Skipping ahead, in 1961 Hurricane Esther was the first hurricane to have its im-

age taken by a satellite [10]. Shortly thereafter in 1964, Feynman wrote his famous

set of lectures on physics [11]. In them, he commented on what he considered as

the most important unsolved problem of classical physics:

“There is a physical problem that is common to many fields, that is

very old, and that has not been solved. It is not the problem of finding

new fundamental particles, but something left over from a long time

ago—over a hundred years. Nobody in physics has really been able to

analyze it mathematically satisfactorily in spite of its importance to the

sister sciences. It is the analysis of circulating or turbulent fluids.”

— Richard P. Feynman, The Feynman Lectures on Physics Vol 1

Later in 1979, Saffman wrote that it may be useful to view turbulent fluids as a

superposition of interacting vortices, suggesting the need to understand vortex dy-

namics and interactions in coherent systems [12].

Since then, technological advancements have allowed for the expansion of the

study of vortices to a vast collection of systems. The most intuitive places to find

vortices are those we encounter most in our every day lives, such as atmospheric or

4



oceanic systems [13]. In oceanic systems, large vortices are formed across the globe

due to the complex ocean current networks which depend on tidal forces, Coriolis

forces, winds, temperature gradients, salinity and more [14]. Unfortunately, just

like the seeds of panic grass used by da Vinci to locate the vortices, these vortices

contain large levels of micro-plastic pollution, with collections of plastic waste that

pile up near the centers.

Other places that vortices are found and have been studied include super fluids

such as Helium II [15, 16] and cold atomic gases [17], free electron beams [18],

and superconductors [19, 20]. Parallels have even recently been made between

the phase defects in protein waves of live starfish membranes to point vortices in

two-dimensional Bose–Einstein condensates (BECs), showing that the relevance of

studying vortex dynamics extends to important biological processes [21]. Vortices

can also be found in laser beams [22], and they have become a common topic of

study for the field of optics [23]. While there is extensive interest in each of the

mentioned areas, the experimental work of this dissertation is focused on the ap-

plication of understanding vortex motion in coherent linear optical beams. So, an

introduction to optical vortices is important and will be taken up next.

1.2 Optical Vortices

Inspired by the singularities present in radio pulses returning from land under

the Antarctic ice sheet, Nye and Berry examined the structure and properties of

dislocations in waves [24, 25]. Originally denoted as “screw dislocations”, optical

vortices are described by singular points in a macroscopic, coherent optical field

with quantized, azimuthal phase wraps. This phase wrap goes as 2πℓ, where ℓ is
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an integer (positive or negative) number of azimuthal phase wraps, often called the

“topological charge” or just the “charge” of the vortex.

Optical modes containing a single, central vortex are also often referred to as

“donut modes” because of their characteristic shape in the beam’s intensity [26–

29]. When the paraxial equation is solved in cylindrical coordinates, it yields the

Laguerre Gaussian (LG) eigenmode (a specific type of such “donut modes”). These

modes are mathematically expressed as

LGℓ,p(r,φ ,z) =

√
2p!

π(p+ |ℓ|)!
w0

w(z)

(
r
√

2
w(z)

)|ℓ|

e
− r2

w2(z) L|ℓ|
p (

2r2

w2(z)
)

× eiℓφ ei(|ℓ|+2p+1)Arctan(z/zR)e
−ik zr2

2(z2+z2r ) . (1.2.1)

Figure 1.2 shows examples of the amplitude and phase for a few LG vortex modes.

For the ℓ = 0 mode, the beam is a simple Gaussian with a flat phase front (hence

the uniform color in the phase plot). For higher order ℓ, the phase now wraps in a

helical fashion around the beam which goes as 2πℓ, and there is a singularity at the

center that goes as r|ℓ| in the amplitude.

Subsequent work connecting these vortices to the orbital angular momentum

of light by Allen et al [30] catalyzed an entire field of study, including efforts to

understand optical vortex kinematics [23, 31–36], utilize the angular momentum in

light-matter interactions [23, 37–43], and make use of the orthogonality between

vortex modes of differing topological charge for communications purposes [23,44–

50].
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Figure 1.2: Amplitude and phase for LG modes of order ℓ=−2, p = 0 (left), ℓ= 0,
p = 0 (middle), and ℓ=+1, p = 0 (right).

Common Generation and Measurement Techniques

There are many ways to generate optical vortices [51–54]. One common and

simple way to produce an optical vortex is by using what is called a spiral phase

plate [55, 56]. This is a piece of glass etched at a variable azimuthal thickness such

that the glass creates a spiral shape with a singularity in the center. Since we know

from basic optics principles that light slows down when it enters a medium with

a higher index of refraction [57], it is easy to see how this etched piece of glass

creates a helical phase: light passing through a thin part of the plate is slowed down

for less time than the light passing through a thicker part. Because of the geometry

of the etching, the beam acquires the helical phase delay, characteristic of vortex

beams.

While simple in concept, there are downsides to using spiral phase plates. Be-

cause it is made of glass, the phase delay around the beam will only be appropriate
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for the wavelength of light that it is designed for. Additionally, it is typical to want

to generate optical vortices of various different charges, and to generate a given

charge, a unique spiral phase plate is required. This makes generating more than

one type of field containing vortices a cumbersome activity.

Many have created optical vortices using spatial light modulators (SLM) [58–

64]. An SLM usually consists of a liquid crystal display (LCD) panel that modulates

either the phase or amplitude of an incident field on a pixel-by-pixel basis [65], and

they are useful because fields generated can be quickly changed by simply changing

what is projected on the LCD panel without moving the optic. SLMs can be used

to directly stamp a desired phase onto an incident beam; alternatively, a diffractive

hologram can be programmed onto an SLM to control both amplitude and phase.

A diffractive hologram is commonly referred to as a forked grating [66], which is

created by superposing a planewave with a spiral phase (with topological charge

that can be varied). A Gaussian laser beam incident on a forked grating produces

a transmitted vortex beam in the first diffracted order with a vortex charge that

matches the charge of the grating [23, 67–70].

The LG modes of Equation 1.2.1 make up a set of eigenmodes of free space,

and the orthogonality between the modes makes them an interesting candidate for

communications purposes. Additionally, there are no theoretical restrictions on the

degree of topological charge, and essentially, the modes make up an infinite basis

set that can be used to transmit data if one could directly read out the modal content

from a beam. Because of such applications to communications, there is a large

body of work on measuring the different topological charge states of vortex beams

that can be created by forked gratings and spatial light modulators. Since the vortex

is intrinsically in the phase winding of a laser beam, the phase must be measured.
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Because of this, a common way to measure the charge of a vortex is to interfere

the vortex beam with reference beam. For reference beams that are of a planewave

nature (like a normal Gaussian laser beam), a fork in the interference pattern can

identify a vortex, because the number of prongs determine the charge [71,72]; when

the reference is a vortex beam of opposite helicity to the measured beam, one can

simply count the number of azimuthal fringes present [73–75]. Counting fringes

at the focus of a cylindrical lens can also reveal the topological charge of a given

beam [76], and the charge has similarly been measured by transforming a vortex

beam using annular gratings [77].

Others have used modal decomposition techniques which take a transverse field

measurement and breaks it down into its modal content, therefore measuring the

topological charge and radial mode content of a given beam [78–85]. Recent ef-

forts have shown that the detection of the topological charge of a vortex beam can

be measured through photocurrents [86,87], bringing the field one step closer to on-

chip detection methods of varied topological charges. Most of this work is focused

in the realm of single vortices of various, higher order charges or modal superpo-

sitions that can be used for communications. But, there is also a separate focus on

vortex fields that contain anywhere from a few to hundreds of optical vortices.

Optical vortices can be generated from a set of as little as three random plane

waves [88, 89]. Increasing the number of random plane waves creates fields that

contain high densities of optical vortices, usually referred to as optical speckle [90],

shown in the top row of Figure 1.3. Scattering light from a diffusor or a piece of

scotch tape [91] results in a random set of plane waves, and therefore can be used

to generate optical speckle. Speckle has been generated by sending light through a

screen with multiple apertures at different transverse locations [92] and spatial light
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modulators have also been used to generate optical speckle by creating a random-

ized a vortex lattice that is propagated through a lens [93]. These optical speckle

patterns evolve with beam propagation, in complex tangled patterns reminiscent of

vortex motion in other quantum fluids. A recent study numerically simulated and

experimentally measured the complex vortex dynamics in laser speckle, shown in

Figure 1.3. The results of this study particularly motivated the work of this disser-

tation, with the aim to understand the physical mechanisms behind these complex

dynamics.

Whether there are hundreds of vortices or only a few, it is often the case that

the vortices present in a beam will move in the transverse plane as the beam prop-

agates. This has been investigated using modal decompositions of vortex fields,

Fourier analysis and scalar diffraction theories [31–33, 35, 36, 95] which can be

used to analytically or numerically propagate fields. Once the field as a function of

propagation are determined, it is possible to identify the vortex locations at various

propagation distances [24]. Tracking the evolution of the vortices with propagation

allows for in a measurement of the vortex dynamics that occur in the transverse

plane. Quantifying these trajectories provides some insight as to how modifying

the initial condition can alter a vortex trajectory [96, 97].

While tracking vortices with propagation is useful for quantifying the trajec-

tories and can illuminate how certain changes impact the dynamics, it does not

provide a physical understanding for why the vortices move the way they do within

the beam. The following section will discuss a perspective of beam propagation that

analogizes optical systems to other two-dimensional fluids. Later, this will help us

to build a hydrodynamic interpretation of vortex motion in light.
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Figure 1.3: The transverse amplitude (top left) and phase (top middle) of a typical
random wave. The top right panel shows the zeros of the real (white) and imaginary
(black) parts of the wave represented in the top two panels, the intersections of
which occur at phase singularities, which are marked in yellow. These singularities
can be tracked over the propagation of the wave, the paths of which are shown in the
bottom panel. That cell is oriented such that the z axis is vertical. Each vortex line
is marked in a different color highlighting a complicated, tangle-like structure. The
form of tangled vortex lines shown here appears qualitatively identical to similar
plots of vortex lines in condensed matter systems [94]. From Alperin, 2019. [95] ©
American Physical Society

1.3 Light as a Fluid: Optical Vortex Dynamics

The goal of the work in this thesis is to build a hydrodynamic understanding

of vortex motion in optical beams. In essence, there should be a way to use the

background phase and amplitude gradients along with the properties of the vortex
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itself to predict its motion if optical vortices can be described hydrodynamically.

Before we delve into the details, it is important to establish the setting for this

problem. The optical system will be treated from the perspective of a “2+1D”

system, such that the z-axis no longer represents a spatial coordinate, but instead

plays the role of time.

A “2+1D” Fluid Perspective for Optical Vortices

We consider the optical beam as a “2+1D” system: the paraxial propagation

axis replaces time via z = ct, where c is the speed of light. The laser beam is then a

two dimensional, coherent fluid described by a macroscopic wavefunction wherein

the dynamics happen in the transverse plane. A schematic of this is shown in Figure

1.4.

A “2+1D” Optical System

𝑧 = 𝑐𝑡

𝑥
𝑦

2D Transverse Plane Propagating in “Time”

△ 𝑧 = 𝑐 △ 𝑡

Figure 1.4: Optical beams in the view of a “2+1D” system where the z-axis plays
the role of time.

When considering the z-axis as an analogue to the time axis, we can quickly

see how our optical system closely resembles that of other two-dimensional fluids

by comparing the governing equations for optical systems to that of BECs at low

temperatures, for example. For such BECs, the wavefunction evolution is governed
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by the Gross-Pitaevskii Equation: [98, 99]

iℏ∂tψ +
ℏ2

2m
∇

2
⊥ψ −Vext −g |ψ|2 = 0 (1.3.1)

where ψ is the two-dimensional, macroscopic wavefunction of the condensate, Vext

describes an external potential, and g describes the strength of the atomic inter-

actions in the system1. In the case of no nonlinear interactions and no external

potential, the Gross-Pitaevskii Equation reduces down to

iℏ∂tψ +
ℏ2

2m
∇

2
⊥ψ = 0. (1.3.2)

Optical systems on the other hand are governed by the paraxial equation which

in the case of no nonlinearity is written as

2ik∂zψ +∇
2
⊥ψ = 0 (1.3.3)

where ψ is the transverse wavefunction and k = 2π/λ is the usual wavevector.

Immediately, it is easy to see the similarities between the two equations. One can

loosely transform the linear, Gross-Pitaevskii Equation into the paraxial equation

by recalling that p = mv = ℏk and by replacing ∂t with ∂z using the analogy.

Quickly emphasizing these parallels aids in understanding the treatment of light

as a two-dimensional fluid and the potential application of results from other flu-

ids to light, but we are far from the first to build such connections between a hy-

drodynamic interpretation of optics and other quantum fluids [100–110]. More

rigorously, a Madelung transformation [111] of the paraxial equation re-casts the
1This Gross-Pitaevskii Equation is a form of the Nonlinear Schrödinger Equation for a nondissi-

pative, zero temperature BEC [98]
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the bulk dynamics as an Euler equation, allowing for light to be interpreted as an

inviscid, compressible, two-dimensional fluid [100, 108]. In fact, light’s compress-

ible fluid nature has been directly called out because of the fact that the NLSE for

optics can be rewritten in terms of a continuity equation and the Bernoulli Equa-

tions [104]. Proukakis provides an overview of the body of work regarding the

similarities of BECs in analogy to optical systems [106]. While the similarities be-

tween the Schrödinger and paraxial equations are striking and inspiring, it is not

exact. Two immediate reasons are that (i) ψ for optical modes are composed of

classical electromagnetic fields (that are not quantum wavefunctions) whereas ψ

for BECs describes the condensate wavefunction [106] and (ii) position is not the

same as time. For these reasons, the connection is referred to as a “formal analogy.”

It is important to note that the analogy between the Gross-Pitaevskii Equation

and optical systems is valid for both linear and nonlinear optical systems. In fact,

the full form of the nonlinear Schrödinger Equation describes the propagation of

light in nonlinear optical systems [100, 106]. For example, waveguides with a var-

ied transverse refractive index are analogous to the external potential term in the

Gross-Pitaevskii Equation [106]. Perhaps some of the reason the incomplete hy-

drodynamic picture for the linear optical case has not yet been addressed is because

a large shift in focus happened: nonlinear systems in which the light-matter interac-

tion can dominate the fluids interpretation restores GPE physics and superfluid dy-

namics. This has prompted a diverse body of work dedicated to “Quantum Fluids of

Light” which include, for example, light passing through bulk nonlinear crystals to

induce photon-photon interactions or to create polaritons, and other systems where

light is trapped into cavities and interacts strongly [110, 112–115].
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1.3.1 Prior Work: Vortex Dynamics in Linear Optical Systems

Optical vortex dynamics for vortex pairs in a linear system was analytically and

numerically treated by Indebetouw in 1993 [32] and shortly thereafter by Rozas et

al in 1997 [31]. Rozas and Swartzlander’s pioneering exploration of vortex dynam-

ics in a propagating laser beam yielded a hydrodynamic a velocity expression that

depends on the background field’s amplitude and phase gradients that can be used to

predict vortex motion in some cases [31, 100, 116]. They found that a single, linear

core vortex displaced in a Gaussian beam moves in the xy-plane depending on the

background field. However, they also found that the vortex motion was unchanged

if another same-charge vortex is added to the system. Their conclusion was that

linear core vortices exhibit no effective interactions, since the motion of one vortex

is not dependent upon the presence of another. They also concluded that only small,

point-like vortices can exhibit “fluid-like” motion in linear light [31, 100].2

The search for vortex interaction in optical systems continued and in 2004,

Roux discussed vortex interactions amongst pairs of opposite topological charge

that morph into non-circular vortices as they move within a propagating beam [117].

Using a modal analysis, he derived an expression for a beam at z = 0 in terms of

parameters that describe the morphology of each vortex and found a coupling term

to describe the strength of the interaction [117]. These oppositely charged vortex

pairs have been analytically and numerically shown to annihilate, depending on the

initial beam parameters [32, 35, 118]. Based on the implications of the work done

by Rozas et al, Chen and Roux later applied a global background phase to a beam

2“Fluid-like” in this context is related to a specific subset of fluids where only phase gradients
are present and the density is uniform.
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containing an oppositely charged vortex pair to change the rate of annihilation of a

vortex pair [96], relying on numerical techniques to confirm their predictions.

This collection of work specifically dedicated to vortex motion in linear light

mostly relies on analytical or numerical methods, and aside from Rozas, we have

not seen the linear dynamics addressed from a hydrodynamic perspective. As we

will see in Chapter 2, though, the hydrodynamic models previously derived are only

applicable to circular vortices, and they do not work for the simple case of an op-

positely charged vortex pair in a linear beam propagation. Indeed, the annihilation

between opposite charge vortex pairs seen in linear systems has been attributed to

beam diffraction (rather than being consistent with hydrodynamics) [119].

1.4 Dissertation Outline

This dissertation is broken up into three parts. In the first part, I will began

with a brief history of vortices and an introduction to optical vortices, providing

some context for the topics discussed in this work. This is followed up by Chapter

2, which is written to highlight the issues with applying previous models for pre-

dicting vortex motion and the thought process behind our hypotheses for why the

models are insufficient. The development of a novel theory for predicting vortex

motion in laser beams from a hydrodynamic perspective based on the background

field gradients and vortex ellipticity is then discussed in detail in Chapter 3. These

theoretical developments are the work of Prof. Mark T. Lusk from the Colorado

School of Mines, in collaboration with Prof. Mark E. Siemens, fellow Ph.D student

Andrew A. Voitiv, and myself.

The formalism of Chapter 3 is then tested experimentally. Part II consists of the

motivation for and use of computer generated holograms, including key issues that

16



can arise in hologram generation which are spelled out in Chapter 4, followed by

a new colinear phase-shifting digital holography approach to measure laser beam

amplitude and phase using composite holograms in Chapter 5. A detailed account

of the full experimental apparatus developed for measuring vortex dynamics written

in Chapter 6 concludes Part II. The final part of this work details the experimental

results. Chapter 7 discusses results for linear core vortex dynamics. Numerical

and experimental results for vortex annihilation events for vortices initially with a

hyperbolic tangent structured vortex core of varying size are the topic of Chapter

8. The dissertation is concluded with a final discussion of the work and future

directions this research could head in.

The experimental work in this dissertation was completed by myself, under the

supervision of Prof. Mark Siemens. The exceptions are: the single vortex velocity

measurements were a collaborative effort between Andrew A. Voitiv and myself

with final reported measurements taken by Andrew A. Voitiv, under the supervi-

sion of Prof. Mark E. Siemens, contributions from Samuel N. Alperin, Andrew A.

Voitiv, William G. Holtzmann, Prof. Juliet T. Gopinath and Mark E. Siemens in

the manuscript and data that was used as the basis of chapter 5, and chapter 9 is

based on collaborative discussions between myself, Andrew A. Voitiv, Prof. Mark

T. Lusk and Prof. Mark E. Siemens.
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Chapter 2

The Hydrodynamic Model for 2D Fluids is Incomplete

A portion of this work was published in Physical Review A: Volume 104, Issue

No. 3, under the title Hydrodynamics of noncircular vortices in beams of light

and other two-dimensional fluids. [120]

The motion of a circular vortex in a two-dimensional fluid is determined by both

the background amplitude gradients and background phase gradients at the location

of the vortex [98, 100, 101, 121]. Because of this, it is important for characterizing

the motion of a given vortex that exists within a system containing multiple vortices

to not only consider the phase structure of the other vortices, but also the size and

shape of the amplitude in their cores. In this chapter, we will very briefly review the

expectations for vortex motion in the case of both incompressible and compressible

two-dimensional fluids. These expectations can then be compared to the actual

trajectories measured for vortex pairs in a Gaussian beam using the propagation

of modes. We will then consider the applicability of a previously derived velocity

equation used in other two-dimensional fluids to a set of oppositely charged optical

vortices [98]. In doing so, we will see that a previously derived result used to

predict vortex dynamics for other two-dimensional, compressible fluids holds for
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optical vortices at the beam waist, but fails beyond z = 0.1 This will provide insight

and motivation for the theoretical developments of Chapter 3.

In an effort to be very clear for the remainder of this dissertation, unless men-

tioned otherwise when I refer to hydrodynamics I am using the term generally- i.e.

not specifically implying incompressible fluid dynamics. Sometimes in the litera-

ture on optical vortices, violation of incompressible hydrodynamics is taken to be

a violation of a hydrodynamic interpretation altogether. But, this is not surpris-

ing, since a full understanding of vortex hydrodynamics was not presented until the

work in this dissertation. For the sake of clarity and being very explicit, my use of

the word will encompass both incompressible and compressible fluid dynamics, and

will expand to include vortex ellipticity (also referred to as vortex tilt) in Chapter 3.

2.1 Vortex Dynamics in Incompressible vs. Compressible Fluids

Because of the prevalence of vortices in many different types of systems, con-

siderable work has been done to understand the physics of vortex interaction [122,

123]. We can now consider the conceptual differences for various fluids that govern

how a given vortex will move depending on the background amplitude and phase

gradients present within the fluid.

In a purely incompressible fluid there are no density gradients (except for very

steep ones with a characteristic “healing length” typically less than a nanometer),

so the density is constant throughout the entire fluid. This means that vortices ex-

isting within the fluid can have a long ranged phase structure, but are are near delta

functions in their density with no meaningful overlap with other vortices when the

1We will see later that the reason for this discrepancy is that vortices at z = 0 are circular, making
the previous fluid models applicable at the initial condition. However, beyond z = 0 the vortices are
no longer circular, and the models no longer are accurate.
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separation is larger than the healing length. Milne-Thomson showed that in an in-

compressible fluid, vortex motion follows the phase gradient (fluid velocity) of the

underlying fluid at the location of the vortex. The fluid velocity is determined by

other vortices and their location in the system [122]. This phase gradient leads to

the familiar setting in which vortex pairs of the same rotation circle around each

other and those of opposite rotation will propel each other forward [122,123]. This

forward motion in the case of an opposite charge vortex pair is the reason that bub-

ble or smoke rings are propelled forward: these rings are a vortex taurus, where a

cross sectional slice of such a ring yields a pair of vortices with opposite circula-

tion [123].2

For a compressible fluid, there are usually significant density gradients in the

fluid. Recent work has shown that hydrodynamic models derived from the Gross-

Pitaevskii equation can be extended to include density inhomogeneity, in which

case density gradients also contribute to the vortex velocity [98]. Vortices in this

compressible setting have cores that are no longer reminiscent of the delta function-

like cores in an incompressible fluid, but are characterized by linear amplitude core.

This means that for a given vortex within the fluid, its motion is not simply dictated

by the phase gradients present from other vortices, but may also respond according

to the total density gradient of their amplitude cores at the location of the vortex.

The contributions to vortex motion for both the incompressible and compress-

ible fluid cases are compared visually in Figure 2.1. For a static fluid with no

vortices initially, a vortex placed within the fluid would not move since both the

amplitude and phase gradients are zero, shown in the top row of the figure. In the

2Dianna Cowern, also known as “Physics Girl” on YouTube, has a very accessible and wonderful
video in relation to this type of vortex motion in a pool of water [124].
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Figure 2.1: Background phase and fluid density are shown for static, incompressible
and compressible fluids. The resulting velocity of the vortex on the right (marked
in red) is shown for each case as described in the text.

second row, an example for a two vortex system in an incompressible fluid is shown.

The phase gradient is that of a circular, negatively charged vortex on the left and

the vortex of interest is a positive vortex (marked in red) on the right. The phase

gradient of the left vortex is the only contributor to the right vortex’s velocity, since

the density core is a near delta function. The result of this calculation (and the same

calculation accounting for the effect of the right vortex on the left) is that both vor-

tices move downward for the specified geometry. If the charges were reversed, both
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vortices would instead move upward. For the last row in the figure, a compressible

two vortex system is shown, where neither gradient is zero since the density core of

the left vortex has meaningful overlap with the right vortex.

Looking at the propagation dynamics of vortices in a laser beam can reveal

whether or not we anticipate the motion of optical vortices to follow incompress-

ible or compressible fluid dynamics. A review of vortex pair dynamics from the

propagation of modal superpositions is discussed next, followed by the initial at-

tempt at describing the motion hydrodynamically in terms of the background field.

2.2 Review of Vortex Pair Motion in a Gaussian Beam

It is known that when placing a note card into a laser beam at a fixed propagation

distance z, the field distribution in the transverse plane will not evolve as long as the

field generated at z = 0 remains the same. The motion of optical vortices that we

consider is due to the beam evolution as the propagation distance increases. Here,

the z coordinate acts as the analogy to time in a two-dimensional fluid, resulting in

a “2+1D” optical fluid system as discussed in Section 1.3.

To quantify vortex motion in such a system, we can consider propagating the

modal content of a given field and then use the real and imaginary zeros to locate

the vortices throughout the trajectory [90]. This has been a successful and straight-

forward way to quantify vortex dynamics and will be used here to review the antic-

ipated dynamics for vortex pairs in a Gaussian beam, since previous work has al-

ready quantified this for pairs of the same charge [31,32] and opposite charge [32].

Although some have considered the impact of introducing asymmetries into the

beam [96, 97], we strictly adhere to symmetric host beams for this discussion.
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To create a field of two like charge vortices displaced symmetrically along the

x-axis, one needs to simply colinearly superpose an LGℓ=+2,p=0 mode with a Gaus-

sian. The addition of the Gaussian to the LG mode splits the single vortex with

charge ℓ = +2 into two separate vortices of unit charge, with the relative power

of the modes determining the vortex separation [125–127]. We will say that each

vortex is initially displaced by x0 symmetrically from x = 0. This field is given by

ψsame(x,y,z) = 2d2LG0,0eiπ +
√

2LG2,0 (2.2.1)

where d = x0/w0 and w0 is the beam waist. The trajectory found from propagating

a beam of this modal content is consistent with previous observations, where the

vortices move in straight line trajectories perpendicular to their radial displacement

in the beam [31, 32], shown in Figure 2.2. This straight line, constant velocity

occurs regardless of the initial separation, and the observed vortex speed increases

with different initial conditions for which the separation is increased.

This motion is in contrast to the expected circular motion of a like charge vortex

pair for an incompressible fluid [123]. In general, a vortex located in the center of
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Figure 2.2: Amplitude and phase slices for the propagation of a same charge vortex
pair with w0 = 1 mm, x0 = 0.5 mm, and λ = 633 nm up to a Rayleigh length, along
with the tracked vortex trajectories.
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an LGℓ,p mode has an amplitude core that is proportional to (r)|ℓ| according to

the functional form of the LG mode in Equation 1.2.1. If an LG mode of higher

order charge is split into a set of several vortices by superposing it with a Gaussian

beam, each vortex is then of charge |ℓ| = 1, and the vortices then have linear (r1)

amplitude core structures. Consequently, these optical vortices are quite different

from vortices with delta function-like cores, and the difference in vortex core shape

does impact the motion in the system. Rozas et al. examined this case numerically,

and derived the velocities for this same charge vortex pair using his expression

based on the background amplitude and phase in the beam at the location of the

vortices [31], acknowledging that optical vortex dynamics must account for such

compressiblity in the system.

It is possible to prepare an optical system in which the vortices are delta function-

like at the beam waist. Rozas et al. showed that for such small core vortices, the

vortices follow an incompressible fluid-like motion for small propagation distances.

This holds only for small z due to beam diffraction, which will yield a core that in-

creases in size with propagation [31]. These expanding cores approach the linear

cores predicted above and likewise the fluid motion approaches the compressible

case with propagation.

For an oppositely charged vortex pair with linear vortex cores, like that of Inde-

betouw’s work [32], the field can be written as a sum of LG modes such that

ψopp(x,y,z) = (1−2d2)LG0,0 +
√

2dLG1,0 −
√

2dLG−1,0 −LG0,1 (2.2.2)

where d = x0/w0 describes the vortex separation relative to the size of the beam

waist. Details for obtaining this via a modal decomposition can be found in Ap-
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pendix A.1. The vortex dynamics can be wildly different in this case depending on

the ratio of x0/w0. Vortex annihilation is seen for pairs where x0 < w0/2 [32, 33],

and the annihilation rate increases as x0/w0 gets smaller. In contrast, when x0 >

w0/2 the vortices travel farther apart with propagation and do not annihilate each

other [32]. In fact, the trajectory can vary from traveling in the −ŷ direction to hav-

ing motion in the +ŷ direction, depending on the initial vortex separation as shown

in Figure 2.3.

This behavior is dramatically different than the incompressible fluid expecta-

tion, where the vortices are expected to only ever move in straight lines. It is also

very different from the same charge vortex case, indicating that the velocity in a

given system is also dependent on not only on the signs of the charges present, but

their relative signs. Additionally, while the algebraic expression has been found to
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Figure 2.3: (a-c) A set of phase snapshots calculated from propagation of Equation
2.2.2 with w0 = 1 mm and λ = 633 nm over a distance of three times the Rayleigh
length for an oppositely charged pair. (d) tracked vortex trajectories for various ini-
tial conditions labeled in the inset of the plot. A variety of velocities and trajectories
are possible depending on the initial condition for the vortex separation.
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accurately describe the motion for each of these trajectories based on the initial vor-

tex separation, we are still left wondering why exactly these dramatic differences

occur.

Our hypothesis at this stage is that a hydrodynamic model that describes optical

vortex motion including both the incompressible and compressible fluids contribu-

tions may allow us to differentiate these cases. Rozas applied this sort of test to

a same charge vortex pair [31] (but, these results were not very exciting since the

vortices move independently of each other within a beam), and a reasonable next

step can be taken to see if this sort of model can also work for the opposite charge

vortex pair.

Vortex Motion in a Fluid

In Section 1.3, we discussed the parallels between the governing equations for

BECs and paraxial optics. It is interesting to consider extending the comparison

beyond the governing equation and applying it to optical vortex motion as well.

With this in mind, we consider an initial system consisting of a Gaussian laser

beam with N linear core vortices placed at specified locations. The wavefunction

for such a field can be written as

ψ(r,φ) = e−r2/w2
0

N

∏
j=1

(
rjℓjeiφj

)
, (2.2.3)

where w0 is the Gaussian beam waist, r j =
√

(x− x j)2 +(y− y j)2 and is non-

dimensionalized by
√

2w0, l j describes the quantized phase wrap, referred to as

the topological charge, and φ j = arctan
(

y−y j
x−x j

)
for the jth vortex. We will refer to

this class of vortices as linear core vortices because of the linear amplitude structure
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of each vortex.3 To characterize the motion of a specific vortex in an N vortex sys-

tem, we follow Rozas et al. and separate the contributions of that vortex from the

rest, and consider all other contributions as comprising the background field for that

vortex [31]. For example, we are interested in looking at the motion of the j = 1

vortex; the field in Equation 2.2.3 can be rewritten into the form

ψ(r,φ) = r1eiℓ1φ1 ρ̃eiφ̃ (2.2.4)

where r1 =
√

(x− x1)2 +(y− y1)2, |ℓ1|= 1 for a unit topological charge, and ρ̃ and

φ̃ are denoted as the background amplitude and phase, respectively. The multiplica-

tive nature of Equation 2.2.3 allows for this simple separation.

This type of vortex wavefunction is not exclusive to linear optics and is also

used in the case of the BEC mentioned earlier [98]. In particular, Groszek’s work

described the motion of linear core vortices in a two dimensional BEC by applying

the unitary evolution operator to propagate a wavefunction such as that of Equation

2.2.4 and substituting the result into the Gross-Pitaevskii equation (Equation 1.3.1).

Doing so yielded an expression from which the vortex position as a function of time

was analytically derived, and therefore the vortex velocity could be extracted [98].

The result was

v⃗vortex =
ℏ
m
(
∇φ̃ − κ̂ ×∇lnρ̃

)
, (2.2.5)

where φ̃ and ρ̃ are the background phase and density of the fluid and κ̂ is the cir-

culation of the vortex whose velocity is being determined. This expression has a

familiar, intuitive interpretation based on the discussions of Section 2.1: the back-

3Such linear core vortices are also referred to in the literature as large core, conventional or even
as point vortices [32,98,100]. In Chapter 8, we will use “point vortex” to specifically mean a vortex
with a sharp, or delta function amplitude core.
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ground amplitude and phase gradients at the location of a particular vortex drive the

vortex motion.

With the goal of interpreting the motion of optical vortices from this same per-

spective, the result can be then be loosely transformed using parameters relevant

to optics, just as was done for the Gross Pitaevskii Equation above. Recasting Eq.

2.2.5 in analogy to this result using wavenumber, k = 2π

λ
, where λ is the wavelength

of the laser, and momentum, p = mc = ℏk, we find that the velocity of optical vor-

tices can then be written in terms of optical parameters as

v⃗vortex =
∂ r⃗
∂ z

=
λ

2π

(
∇⊥φ̃ − κ̂ ×∇⊥lnρ̃

)
(2.2.6)

where φ̃ remains the background phase of the beam, ρ̃ is now the background am-

plitude of the beam, and κ̂ is now the topological charge of the vortex whose motion

is being described. If ℓ=+1, then κ̂ =+ẑ, and similarly for ℓ=−1, κ̂ =−ẑ. The

subscript has been placed on ∇⊥ to specify that the derivatives are strictly in the

transverse plane of the beam, and perpendicular to the propagation direction. Sim-

ilar expressions for vortex velocity based on background field gradients in optical

systems have been obtained previously [100, 101].

The velocity relationship of Equation 2.2.6 can now be applied to optical vortex

dynamics for different vortex configurations to test its validity and applicability

to our optical systems of interest. In the next two sections, we will see that this

model is acceptable at the initial condition where vortices are circular, but once the

beam begins to propagate and the vortices become elliptical, the model is no longer

accurate.
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2.3 Initial Velocity for Optical Vortex Pairs

Calculating the anticipated velocity at the initial condition is a first step toward

this goal. We start by using Equation 2.2.3 with N = 2 vortices, with the left vortex

denoted as vortex 1 and right vortex as vortex 2, and solve for the velocity of vortex

2, v⃗2. This initial field amplitude is shown in Figure 2.4 (a) for reference throughout

the section. For now, the topological charge of each vortex will not be specified,

giving the general form for a two vortex field at z = 0 as

ψ0(r,φ) = r1eiℓ1φ1r2eiℓ2φ2e−r2/w2
0 (2.3.1)

where vortex 1 is located at r⃗1 = −x0x̂, and vortex 2 is located at r⃗2 = +x0x̂. Al-

though this type of analysis should hold for asymmetric vortex arrangements, only

this symmetric case is considered. With this initial wavefunction, the general ve-

locity at z = 0 can be found from Eq. 2.2.6 for vortex 2. We write the total field as

the product of the right vortex component and the background field such that

ψ0(r,φ) = r2eiℓ2φ2ψbg

ψbg(r,φ) = r1eiℓ1φ1e−r2/w2
0. (2.3.2)

This background field can be further split into its background amplitude and phase

components such that

Φbg = ℓ1φ1

ρbg = r1e−r2/w2
0, (2.3.3)
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Figure 2.4: (a) Field amplitude is plotted for a two vortex system with vortices
located at (±x0,0). (b) The background field amplitude of vortex 2 consists of the
background Gaussian containing only vortex 1 at x =−x0.

where the background field amplitude is shown in Figure 2.4 (b). From this, the

background field gradients used in the velocity expression, ∇⊥Φbg and ∇⊥ lnρbg,

can be calculated in Cartesian coordinates as

∇⊥Φbg|{x0,0} = ℓ1∇⊥ tan−1
(

y
x+ x0

)
|{x0,0}

= ℓ1

(
−y

(x+ x0)2 + y2 x̂+
x+ x0

(x+ x0)2 + y2 ŷ
)
|{x0,0}

=
ℓ1

2x0
ŷ (2.3.4)
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and

∇⊥ lnρbg|{x0,0} = ∇⊥ ln
(

r1e−r2/w2
0

)
|{x0,0}

=

(
∇⊥ ln

(√
(x+ x0)2 + y2

)
−∇⊥

(
x2 + y2

w2
0

))
|{x0,0}

=

(
x+ x0

(x+ x0)2 + y2 x̂+
y

(x+ x0)2 + y2 ŷ− 2xx̂+2yŷ
w2

0

)
|{x0,0}

=

(
1

2x0
− 2x0

w2
0

)
x̂. (2.3.5)

Substituting the results of Equation 2.3.4 and Equation 2.3.5 into Equation 2.2.6

results in a final velocity expression for determining the initial vortex motion:

v⃗2 =
λ

2π

(
ℓ1

2x0
ŷ− ℓ2

2x0
ŷ+

2ℓ2x0

w2
0

ŷ
)

(2.3.6)

where the second term has been transformed to the ŷ direction via the cross-product

with the vortex orientation.

Now, we distinguish between the two specific cases of Section 2.2: a pair of

like-charge vortices, where ℓ1 = ℓ2 = +1, also found in [31], and a pair of unlike-

charge vortices, where ℓ1 = −1 and ℓ2 = +1. Doing so reveals an immediate rea-

soning behind the difference in each vortex pair’s initial dynamics. The results are

summarized in Figure 2.5.

A Same Charge Vortex Pair (ℓ1 = ℓ2 =+1)

In the like charge pair, the initial velocity predicted for the vortex at +x0 from

Eq. 2.3.6 is given by

v⃗2,like =
λx0

πw2
0

ŷ, (2.3.7)
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since the first two terms of Equation 2.3.6 (which come from the phase and ampli-

tude gradients of vortex 1) will cancel out as shown in the top row of Figure 2.5.

This expression is equal in magnitude to the velocity for the single, off-center vortex

case obtained by Rozas, who observed a vortex speed of x0/zR, for Rayleigh range

zR = πw2
0/λ in numerical simulations [31]. This result is also is consistent with

the initial direction and magnitude of the vortex within the analytically propagated

LGℓ=+2,p=0 +LGℓ=0,p=0 beam of Section 2.2.

If the mode is propagated from the initial condition, the vortices continue with

the same velocity described in Equation 2.3.7. This result is consistent with previ-

ous observations made by Rozas et al.: vortices of the same sign move in straight

line trajectories with propagation [31]. This seems largely responsible for the ac-

2𝜋
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Background Gaussian 

Amplitude

Background Vortex 

Amplitude
Background Vortex 

Phase

Vortex Pair 

Full Phase

Exactly

Cancel

Exactly

Double

Figure 2.5: For a same-charge vortex pair (top row) and opposite-charge pair (bot-
tom row), the background field components for vortex 2 are shown. Columns two
and three show velocity contributions from background phase and amplitude of vor-
tex 1. The last column shows the background Gaussian amplitude contribution to
velocity. [Reprinted] from [120].
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cepted conclusions that linear core vortices in linear light do not exhibit any ef-

fective interaction or fluid-like motion.4 If the number of vortices in this case is

increased, this result still holds which is consistent with Indebetouw’s predictions

of rigid body motion for lattices of the same charge [32]. It is important to note,

though, that the lack of effective interactions between same charged vortices arises

strictly from the exact cancellation between the phase and amplitude gradient terms

for like-charge vortices. This means that like-charged vortices in a Gaussian beam

can still potentially be described hydrodynamically; it just is less straightforward

due to the cancellation of terms and relies on both the compressible and incom-

pressible fluid contributions.

An Opposite Charge Pair

As discussed in Section 2.2, vortex pairs of opposite charge can exhibit wildly

different dynamics based on the initial separation of the vortices with respect to the

host beam size. A brief look at the initial dynamics according to Equation 2.2.6 and

the background field gradients can provide some insight as to why this is the case

from a hydrodynamic perspective.

We choose to again analyze the dynamics for vortex 2 of Figure 2.4, but set

its charge to ℓ2 = +1 and vortex 1 to have charge ℓ1 = −1. The calculated initial

velocity using Equation 2.3.6 for this pair is

v⃗2,opp =
λ

π

(
x0

w2
0
− 1

2x0

)
ŷ. (2.3.8)

4Fluid-like in this context meaning exhibiting behaviors as expected in an incompressible fluid.

33



This vortex velocity for the case of an infinite waist beam is equal to exactly twice

that of the velocity, v= κ/(4x0), predicted by Milne-Thompson for incompressible,

inviscid fluids [122]. For this opposite charge case at z = 0, there are equal con-

tributions to the vortex motion from phase and amplitude gradients, shown in the

bottom row of Figure 2.5, and the factor of two predicted by Equation 2.2.6 for an

infinite beam comes directly from the amplitude gradient of the other vortex. Inter-

estingly, in a finite beam when the vortex separation is exactly half that of the waist

(x0 = 0.5w0), the non-dimensional magnitude of the velocity calculated from Equa-

tion 2.3.6 yields v⃗2,opp = 1
4x0

, equal to the prediction made by Milne-Thompson.

When the modal superposition of Equation 2.2.2 is propagated with this ratio, the

vortex dynamics actually mimic that of an incompressible fluid, with the vortices

moving along straight, parallel lines at constant velocity.

It can be conceptually understood why these differences occur from the very be-

ginning by looking at the initial condition background field for each of the cases. A

summary of the background fields for a fixed vortex separation in a beam of various

sizes are plotted in Fig. 2.6. At z = 0, the phase gradient contribution at the right

vortex is in the same −ŷ direction, shown in Figure 2.6 (a), regardless of the initial

separation distance of the vortices (although the strength is determined only by the

separation as is evident in Equation 2.3.4). Both the direction and strength of the

velocity contribution from only the amplitude gradients vary depending on the rel-

ative beam size and separation, as shown in (b-d) of the figure. For the case where

the beam is large compared to the separation, as in (b), vortex annihilation is possi-

ble because the field contributions from the left vortex significantly overwhelm the

contributions from the host Gaussian field. As the beam reaches the second region

where x0/w0 = 0.5, a critical point is found where the vortices do not separate with
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Figure 2.6: Mesh plots show either (a) the phase or (b-d) amplitude of the back-
ground of vortex one above a contour plot of the phase of the total field as the beam
diameter w0 is increased with a fixed vortex separation x0. The fixed location of
vortex 2 is marked with a red point, and vectors show the resulting velocity con-
tribution of only the background field gradient in the given plot. (a) The phase
contributes a velocity in the −ŷ direction, irrespective of the beam size, with mag-
nitude determined by the separation. (b-d) The background amplitude, ρ̃ , from the
beam and ℓ1 =−1 vortex located at r1 =−x0 shows a difference in the anticipated
velocity as x0/w0 changes. (e) A plot of the total y velocity based on the sum of the
phase and amplitude gradient terms (Equation 2.3.8) as a function of beam size for
a fixed vortex separation of x0 = 1 mm aids in visualizing the anticipated velocity
based on the field gradients; this can be used to understand the different trajectories
of Figure 2.3.

propagation, but remain the same distance apart. In this case, shown in (c) of the

figure, it is clear that the sum of the field gradients are perfectly balanced such that

the background amplitude gradients at the location of the vortex are equal to zero,

allowing this to happen. Here, it is as if only the phase gradients from each vortex

are present, giving the illusion of an incompressible fluid from the perspective of

the vortex.
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For beams with a waist that is small compared to the separation, seen in (d) of

the figure, the initial dynamics are dominated by the Gaussian beam gradients and

as the beam diverges, the vortices move apart from each other with propagation.

Lastly, in (e) of the figure, we can see that by plotting Equation 2.3.8 as a function

of beam size with a fixed vortex separation of x0 = 1 mm, w0 =
√

2x0 is the critical

point that differentiates between whether the right vortex will have an initially posi-

tive or negative ŷ velocity, aiding in further understanding of the distinct trajectories

in Figure 2.3.

In looking at these initial conditions, we are able to say that the initial veloci-

ties using Equation 2.2.6 match the initial velocities anticipated from propagating

modes, and this hydrodynamic perspective provides physical insight as to why the

vortex trajectories of Figure 2.3 have such a large variance. Next, it is worth con-

sidering the validity of applying Equation 2.2.6 to the entire trajectory, and we will

compliment the similar analysis previously done for the same charge case [31] by

considering the opposite charge case where vortex annihilation occurs.

2.4 Beyond the Initial Condition: Compressibility Alone is Not Enough

The mathematical expressions derived by others for vortex velocity in both the

incompressible [122] and compressible [98] cases are summarized in Table 2.1.

As a reminder, if the vortex velocity is governed purely by the background phase

Fluid Model Velocity Equation
Incompressible v⃗ = ∇ϕbg
Compressible v⃗ = ∇ϕbg − κ̂ ×∇ lnρbg

Table 2.1: Non-dimensional models used to calculate velocities for Fig. 2.7 [98,
122].
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gradients, the vortices are expected to propel each other forward along straight lines.

On the other hand, in the compressible fluid case vortex motion is determined by

not only the phase gradients, but also the background amplitude gradients present.

For these incompressible and compressible cases, the background field is found by

taking the expression for the paraxial field and dividing out a circular vortex. A

similar velocity equation to that of the compressible case in Table 2.1 was derived

by Rozas et al. and successfully applied to a same charge optical vortex pair [31,

100], but the opposite charge vortex pair has not yet been compared to this type of

model.

The result of applying each of these hydrodynamic theories for the oppositely

charged vortex pair of Table 2.1 is shown in Figure 2.7. The total vortex trajectory

predicted from Section 2.2 is shown by the blue curve, where the left vortex is

negatively charged and the right vortex is positively charged. Insets in the figure

AB

𝑧0

𝑧1

𝑧2

+−
Left Vortex Phase Evolution

𝑧0

𝑧2

𝑧1

Figure 2.7: The half-circle vortex trajectory found for the oppositely charged pair is
shown in blue. The incompressible fluid velocity prediction is shown by the black
arrows and the compressible fluid model velocity prediction is shown in green. Each
model is as described in Table 2.1.
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show plots of the phase of the total field for the left vortex at three locations as the

vortex approaches the annihilation event at x = 0. At each propagation step, the

background fields are calculated by dividing out the circular vortex at the current

vortex location from the total field. The velocity vectors, then, can be determined

from this background field according to the velocity equations of Table 2.1 and

each are plotted for comparison with each other and the actual trajectory. The black

vectors (incompressible case) always are perfectly aligned toward the −ŷ direction,

as anticipated due to the fact the phase gradient of each vortex will move the other

vortex downward. The green vectors (compressible case) show a deviation from

this, with an evolving component in the x̂ direction such that each vortex has a

component toward x = 0.

For an accurate trajectory, the velocity vectors would be perfectly tangent to the

plotted trajectory. Therefore, the incompressible fluid case is clearly insufficient,

lacking the necessary velocity evolution in the x-direction to result in a collision.

Equation 2.2.6 is much closer to describing the vortex trajectories, but the velocity

vectors still are not tangent to the trajectory. In fact, while the prediction seems to

work fairly well near the beginning of the trajectory, the discrepancy become larger

as the vortices get closer to the annihilation point.

Clearly, more work is needed to understand the vortex motion past the initial

condition, and Equation 2.2.6 is insufficient for describing the dynamics. Impor-

tantly, though, one key observation can be made from the plot insets of Figure 2.7.

The velocity prediction of Equation 2.2.6 is not far from the actual trajectory near

z = 0. At and close to z = 0 (z0 in the figure), the vortices are circular or near circu-

lar. As the field evolves, the shape of the vortices evolves to become more and more

elliptical as the annihilation event is approached (z1 and z2 in the figure), which was
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also pointed out in [117]. It seems that for vortices of a near circular nature, the ve-

locity predictions of prior work show at least reasonable predictions, which makes

sense given that the derivation was for motion of circular vortices [98].

Because the previously derived hydrodynamic models are for systems where

the vortices are circular, the models are sufficient to describe cases such as the

same charge optical vortex pair scenario, where one vortex is not influenced by the

other. But, when the shape of the vortex itself becomes distorted as the trajectories

evolve, we can no longer rely on these previous models. We shall see a new theory

developed in the next chapter that accounts for evolving vortex ellipticity in the

hydrodynamic model. The theories will verify that the reason for the discrepancy

between previous hydrodynamic models and the predicted trajectory is because of

the evolution of vortex ellipticity that takes place during propagation.
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Chapter 3

Vortex Tilt: A 3D Interpretation of a Non-canonical Vortex and a New Velocity

Equation

A portion of this work was published in Physical Review A: Volume 104, Issue

No. 3, under the title Hydrodynamics of noncircular vortices in beams of light

and other two-dimensional fluids. [120]

Many have found mathematical expressions for vortex position by propagating

modes and using real and imaginary zeros to find the vortex locations. Even the

vortex positions in the case of the oppositely charged vortex pair of the previous

chapter have already been quantified [32]. Yet, we saw in Chapter 2 that prior

methods for calculating vortex velocity based on the background amplitude and

phase gradients [98, 121] break down for this simple case.

In this chapter, we will first explore our hypothesis that vortex ellipticity is the

culprit for the breakdown. This discussion will be followed by the introduction of

a novel formalism developed by Professor Mark T. Lusk, in collaboration with our

DU team, for describing elliptical vortices as virtual, three-dimensional objects that

are tilted away from the axis of propagation. In this formalism, the projection into

the transverse plane is where their elliptical shape will originate. We will then see

how this tilted vortex perspective allows for a complete description of such elliptical

vortices and, more importantly, how it will allow for an accurate hydrodynamic
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interpretation of vortex motion within optical systems. Next, the derivation of the

final expression for vortex velocity that depends not only on the background field

gradients, but also the tilt of the vortex is laid out. The chapter will conclude with

predictions for both a single tilted vortex and oppositely charged vortex pair, along

with comparisons to the anticipated trajectories found based on mode propagation

and vortex tracking methods.

3.1 Canonical vs. Non-canonical Vortices

For a canonical vortex, the phase contours are equally spaced as you travel

azimuthally around the vortex. Additionally, the amplitude profile of a canonical

vortex will be perfectly azimuthally symmetric (circular). On the other hand, a

vortex that is non-canonical has phase contours that are elliptical and the amplitude

center is elliptical, rather than circular.1 Examples of the phase and amplitude for

canonical and non-canonical vortices are shown in Figure 3.1.

When looking at the evolution of an opposite charge canonical vortex pair in a

Gaussian beam, it is evident even with very small propagation distances that the

shape of each vortex changes dramatically. In particular, looking at a distance

halfway to the annihilation point for a given set of initial parameters, we can see that

the amplitude structure of the vortices has been dramatically changed, stretching out

and gaining an intense elliptical shape. This can also be seen in the phase, although

the shape is most obvious when looking at the amplitude. Figure 3.2 shows the

initial field amplitude and phase, along with the propagated amplitude and phase

for comparison.

1It is common for elliptical vortices to also be referred to as ‘noncanonical’ vortices [35,117,128–
130] in the literature. I will use ‘elliptical’ and ‘noncanonical’ interchangeably, under the assumption
that they have the same meaning. I will also use ‘circular’ and ‘canonical’ interchangeably.
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Figure 3.1: Canonical vs. Non-canonical Vortex. (a) A canonical vortex has cir-
cular amplitude contours and equally distributed azimuthal phase contours. A non-
canonical vortex is elliptically shaped in the amplitude, and the phase contours are
also elliptical (no longer azimuthally symmetric). A vortex with (b) a small degree
of ellipticity vs. (c) a high degree of ellipticity are shown.

When looking only at the phase, it may be tempting to say that the ellipticity in

the two vortex case could simply be a visual artifact of the fact that two vortices are

present. After all, we did place two canonical vortices into a beam, and without any

propagation of that field the phase result is two vortices that each, at a quick glance

of the phase, seem to have some ellipticity present. However, it can be seen in the

amplitude that each vortex is a perfect circle to begin with, and that the circular

nature disappears shortly after the propagation begins. If for no other reason, this

change in amplitude structure was enough for us to question the ellipticity of each

vortex with propagation.

To fully understand if ellipticity is the reason behind the discrepancy between

the hydrodynamic model and the anticipated trajectories from analytical mode prop-

agation, there must be a way to quantify and measure such a parameter. Therefore,
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Figure 3.2: Evolution of Ellipticity in a Two Vortex Field. Analytically calculated
amplitude (top row) and phase (bottom row) snapshots of a vortex pair with w0 =
1 mm, x0 = 0.45w0, λ0 = 633 nm are shown using the modal decomposition of
Section 2.2. As the beam propagates, the vortices very quickly begin to elongate.
The circular shape morphs into an elliptical vortex that can most easily be seen in
the deformed amplitude contours.

the logical step is to find a way to measure the ellipticity of any given vortex, de-

spite the presence of other vortices or other field contributions that can be present.

That task is taken up over the next several sections, and begins with viewing our

two-dimensional elliptical vortices from a new virtual three-dimensional perspec-

tive.

3.2 A Virtual, 3D Perspective for Elliptical Vortices

A different way to envision elliptical vortices is to imagine that each vortex is a

three-dimensional (3D), virtual, circular object in our field that is simply projected

into the two-dimensional (2D) transverse plane. This construct is what we will refer

to for the remainder of this dissertation as a virtual, tilted vortex. These virtual

vortices can be oriented in any direction of 3D space, and we will see that any
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elliptical vortex that exists purely in the transverse plane can be described in terms

of two tilt angles of the virtual counterpart which determine the degree of ellipticity

and orientation of the vortex in the 2D plane. The first is the azimuthal angle, ξ ,

which determines the rotation of the vortex away from the original x-axis, while

the second angle, θ , determines the degree of rotation away from the z-axis. It is

important to recognize that the vortex is not actually a three-dimensional object,

since the propagating light is a “2+1D” system and the vortices exist only in a given

xy-plane. However, this mathematical and conceptual representation of the vortex is

extremely useful, both for quantifying vortex motion and for providing conceptual

insight as to why the vortices move the way that they do within the optical fluid

system, which will be discussed toward the end of this chapter. Toward this end,

we turn to defining the tilt angles and therefore the orientation of our virtual 3D

vortex.2

3.2.1 3D Rotation Matrix and Projections into the xy-plane

To describe the orientation of a generic vector in three-dimensional space, it is

possible to simply rotate a vector using an Euler Matrix. The form of the matrix for

a rotation around the z axis followed by a rotation matrix around the new x-axis is

2For the sake of simplicity in the writing, with the emphasis that the vortex is purely two-
dimensional, I may at times refer to just “vortex tilt” rather than “virtual vortex tilt”, under the
assumption that it relates to the virtual counterpart. I will also use “vortex tilt” and “vortex elliptic-
ity” interchangeably.
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given by [131]

R3D =


Cosξ −Sinξ Cosθ Sinξ Sinθ

Sinξ Cosξ Cosθ −Cosξ Sinθ

0 Sinθ Cosθ

 . (3.2.1)

The result of operating this rotation matrix onto a circular vortex that lives in the

xy-plane is shown by the green disk in Fig. 3.3. To find the expressions for the

coordinates in the tilted frame in terms of the original coordinates, one can simply

take the product of R3D.{x,y,z} which yields

x′ = xCosξ −ySinξ Cosθ + zSinξ Sinθ

y′ = xSinξ −yCosξ Cosθ − zCosξ Sinθ

z′ = ySinθ + zCosθ (3.2.2)

where the primed coordinates are that of the rotated system.

We had previously mentioned that the actual vortex that we measure is the pro-

jection of such a tilted vortex into the 2D plane. So, we now want to use the expres-

sions from Equation 3.2.2 to find the projection into the 2D transverse plane.

Projection into the xy-plane along the z′-axis

For the tilted vortex, we can consider the 2D projection into the xy-plane along

the rotated coordinate frame, z′. To find this, we first want to know the values for x′

and y′ that yield z′ = 0. To find this, we first evaluate the last expression of Equation
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3.2.2 at z′ = 0 to find the original coordinate z as a function of x and y:

z′ = 0 = ySinξ + zCosθ

z =−yTanθ . (3.2.3)

Substitution of this (Equation 3.2.3) back into the expressions for x′ and y′ of Equa-

tion 3.2.2 results in

x′(z′ = 0) = xCosξ −ySinξ Cosθ −yTanθSinξ Sinθ

y′(z′ = 0) = xSinξ −yCosξ Cosθ +yTanθCosξ Sinθ . (3.2.4)

Using polar coordinates where x = cosφ and y = sinφ , we can plot Equation 3.2.4

and compare it to the virtual 3D tilted vortex. The result, shown in Figure 3.3 is

an elongated ellipse in the xy-plane, with a major axis that increases in size as the

vortex tilt is increased to θ = π/2 and then decreases as the vortex is tilted from

θ = π/2 to θ = π .

We choose to define tilted vortices in relation to this z′ axis so that the larger

the tilt angle, the more “stretched out” the vortex becomes. Optical vortices exist in

many different forms, but a fundamental eigenmode of free space is the Hermite-

Gaussian mode [132, 133] in which the analogous vortex tilt would be perfectly

perpendicular to the propagation direction. Designing the tilt such that a vortex

with a perpendicular orientation results in an infinitely long line discontinuity is

good fit for consistency with this interpretation of the Hermite-Gaussian mode.

With this framework, we can begin to see how we can use a three-dimensional,

canonical vortex to describe what an elliptical vortex in the transverse plane looks
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z’

A 3D Virtual, Tilted Vortex and its 2D Elliptical Projection

Figure 3.3: The two-dimensional z’ projection of a virtual, tilted vortex is shown.
As the vortex tilt increases, the projection elongates in the 2D plane and the 2D
vortex ellipticity is increased.

like. We must then find a way to quantify the ellipticity and relate it to the orienta-

tion of the 3D vortex.

3.3 Polar Decomposition and the Deformation Matrix

We now have the ability to visualize what the vortex would look like as a 3D

virtual object that is projected into the xy-plane, but we still need a way to mathe-

matically describe and measure these vortices from the actual transverse field that

we would acquire in a laboratory. The method that has allowed us to do so is to

look at the xy-plane projections from the perspective of a deformed circular disk

that has been stretched along one axis and then rotated. The natural way to do this

mathematically is to use a polar decomposition.

The Polar Decomposition Theorem takes an object deformed by a deformation

matrix, F, in a 2D plane and transforms it into two individual parts that describe
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that deformation as a stretch (or compression), U, of an object followed by a rigid

rotation, R, of that stretched (compressed) object [134, 135]. The deformation can

also be broken into a rigid rotation, R, first and then followed by a symmetric

deformation, V. In either case, it is possible to write F such that

F = RU = VR. (3.3.1)

As a quick example of the process, consider Figure 3.4. One way to describe the

object in (a) is to begin with a square that first is stretched and then rotated, as seen

in the subsequent panels of the figure [134]. Just as this shape can be described by

these two successive operations, shown in (b) and (c) of the figure, the same can be

done for elliptical optical vortices. For this purpose, it is easiest to visualize what

the process looks like with a stretch followed by a rotation, where F = RU.3

3For the initial framework we will work with this form of the definition: F = RU. The alternate
definition, F = VR, will be kept in our back pocket for later use.

y

x

y

x

y

x

𝐔 𝐑

(a) (b) (c)

Figure 3.4: Example of Polar Decomposition. A deformed object in the xy-plane,
shown in (a), can be described by F = RU. An object such as the solid square
can be transformed into the rectangle found in (a) by first the uni-axial stretch, (b),
followed by the rigid rotation (c).
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3.3.1 A Tilted Vortex Deformation Matrix, Fv

For the remainder of this chapter, we will adopt the subscript, v, for the ma-

trices that specifically pertain to a vortex (in particular, a vortex with a linear core

amplitude profile).

Scaling Matrix Uv

The typical form of the scaling matrix is

Uv =

1 0

0 k

 (3.3.2)

where k describes the scaling of the object, in this case along the y axis. This is

most easily visualized by operating on a vector r such that

Uv.r =

1 0

0 k


x

y

= x+ ky. (3.3.3)

Written in this way, it is easy to see how this matrix creates a uni-axial scaling.

The scaling factor, k, can then be any factor that stretches or compresses the object

along the y-direction.

As mentioned in Section 3.2.1, for the work in this thesis, we want a k such that

the object will be stretched rather than compressed. One way to do this is to choose

k = secθ , where θ describes the degree of tilt away from the propagation axis. Uv
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is therefore given by

Uv =

1 0

0 Secθ

 . (3.3.4)

If we remind ourselves of the functional form of secθ , shown in Figure 3.5, we can

see why this is a logical choice for our vortices.

First, let’s remind ourselves that 0 < θ < π , where at θ = 0 the vortex in the

transverse plane is circular with a topological charge of +1, and that at θ = π

the vortex is again circular with topological charge of −1. As θ increases from

zero, the uni-axial scaling will also be increasing until it reaches an asymptote at

x
y

z 𝜃 = 10°

𝜋

𝑆𝑒𝑐𝜃

ൗ𝜋 4 ൗ𝜋 2 ൗ3𝜋
4

𝜋0

z’ projection
Tilted Vortex

x
y

z

x
y

z

x
y

z

x
y

z
𝜃 = 45° 𝜃 = 80° 𝜃 = 135° 𝜃 = 170°

Figure 3.5: The functional form of secant is the best choice for the uni-axial scaling
of tilted vortices. At θ = 0◦, the vortex is purely circular in the xy-plane, and secθ =
1. Similarly, at θ = 180◦ where the topological charge is negative, secθ =−1. At
the critical point where θ = 90◦, the vortex is perpendicular to the propagation axis,
and the projection becomes undefined.
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θ = π/2. Just below θ = π/2, the vortex will be severely stretched out, and exactly

at θ = π/2 the vortex is infinitely stretched (technically undefined), and oriented

completely perpendicular to the propagation direction. As the vortex continues to

rotate above θ = π/2, the topological charge switches sign, and the vortex is a

negative, very elongated vortex. As it approaches θ = π , the scaling decreases with

increasing θ as would be expected based on Figure 3.5.

Now that the scaling is set, the next operation is a simple, rigid rotation of our

stretched out vortex projection.

2D Rotation Matrix, Rv,2D

The second piece that we need to describe the elliptical vortex is to define the

amount it has rotated from its original orientation in the xy-plane. We use a two

dimensional Euler Matrix that performs a counterclockwise rotation by angle ξ :

Rv,2D =

Cosξ −Sinξ

Sinξ Cosξ

 . (3.3.5)

A brief derivation of this matrix can be found in Appendix A.2. With both the

scaling and rotation matrices defined, we can then determine the full form of the

deformation matrix in terms of our tilt angles θ and ξ .
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Deformation Matrix, Fv

The final form of the Deformation Matrix then is given by the substitution of

Equation 3.3.4 and Equation 3.3.5 into Equation 3.3.1. The result is

Fv = Rv,2DUv =

cosξ −sinξ secθ

sinξ cosξ secθ

 . (3.3.6)

Note that the top left submatrix of Equation 3.2.1, which is just the xy-projection of

R3D, is equivalent to the inverse transpose of Fv, i.e. F−T
v .

With this description laid out, we can fully realize what these tilted vortices look

like, both visually and mathematically. The final result, as shown in Figure 3.6, is

a view of the circular vortex that has been rotated by angle ξ from the original x-

z
z’

z’-projec�on

�lted vortex

θ
ξ

x
x’

Figure 3.6: Tilted Vortex Diagram. A 2D elliptical vortex in the transverse plane
can be viewed as the projection, along the tilt axis, of a 3D vortex. The ellipticity
can then be described by an azimuthal orientation angle, ξ , and a polar lean, θ .
***Figure credit: Professor Mark T. Lusk. From Andersen, 2021. [120] © Ameri-
can Physical Society
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axis, and then rotated by angle θ around this new x-axis, and for which the xy-plane

projection can be fully described by deformation matrix, Fv.

Now that we can describe any tilted vortex in terms of our deformation matrix,

we want to use this formalism to go the other direction: find the tilt angles of any

given vortex in an arbitrary paraxial field. The next section addresses how to do so.

3.4 Finding Vortex Tilt from a 2D Paraxial Field

In the previous section we developed the formalism for describing an elliptical

vortex in the transverse plane as a projection of a 3D circular vortex that is tilted by

angles θ and ξ . However, we have yet to account for the fact that optical vortices

do not exist on their own; they exist within a beam or some other field that may

contain other vortices or field contributions. As mentioned in both Chapter 2 and

Figure 3.2 of this chapter, in cases such as the oppositely charged vortex pair, the

tilt of each vortex seems to evolve as the beam propagates. In order for our tilted

vortex description to be truly useful, we must find a way to measure the tilt of any

given vortex within any arbitrary field, at any given propagation distance.

Let’s first define a few parameters that will be used throughout the remaining

derivations. A general complex, paraxial field

ψ = ψReal + iψimaginary (3.4.1)

can be treated as a two-dimensional vector, u⃗(⃗r,z) mapped into the transverse plane

where r⃗ = {x,y}. Doing this will simplify the later analysis. The matrix form of
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u⃗(⃗r,z) is therefore given by

u⃗(⃗r,z) =

 ψreal

ψimaginary

 (3.4.2)

As an example, consider the paraxial field for a circular, linear core vortex,

ψv = x+ iy. This can now alternatively be written in matrix representation:

u⃗circ
v (⃗r,z) =

x

y

= r⃗. (3.4.3)

To instead describe an elliptical vortex, we can apply our deformation from the

previous section to this circular vortex which is written as

u⃗v(⃗r,z) := u⃗circ
v (F−1

v r⃗)

≡ F−1
v u⃗circ

v (⃗r)

≡ F−1
v r⃗ (3.4.4)

From this perspective, elliptical vortices are obtained through a homogeneous de-

formation by F−1
v . The vector field, u⃗v(⃗r,z), can therefore be more compactly vi-

sualized as a deformed continuum instead of assigning a distinct vector to each

position.

3.4.1 The V 2 Matrix: Eigenvalues and Eigenvectors that Yield Vortex Tilt

With these definitions, we can now approach the problem of determining the tilt

for a vortex in an arbitrary paraxial field. We will see near the end of this section
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that V2, the square of the symmetric deformation matrix of Equation 3.3.1, will

give us the ability to find the vortex tilt angles. We start by assuming that the tilted

vortex component, ψv, can be separated from all other contributions of the field.

The other contributions to the field comprise the total background field, ψbg, at the

location of the vortex that we are interested in measuring. In this way, we can write

any arbitrary paraxial field with a vortex of interest as

ψtot = ψbgψv. (3.4.5)

The 2D derivative of this can be taken, and the product rule dictates that

∇⊥ψtot = ψv∇⊥ψbg +ψbg∇⊥ψv

= ψbg∇⊥ψv

= ρbgeiϕbg∇⊥ψv (3.4.6)

where the first term on the first line goes to zero since we will evaluate this derivative

at the location of the vortex where ψv = 0 and the background field has been broken

down into its amplitude and phase components. Written in the matrix form, the

expression is

∇⊥u⃗tot = ρbgΦ
T
bg∇⊥u⃗v (3.4.7)

where Φbg is a unitary operator that generates vector rotations by ϕbg:

[Φbg] =

 cosϕbg sinϕbg

−sinϕbg cosϕbg

 (3.4.8)
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In looking at Equation 3.4.7, we notice that the gradient field of a general u⃗ is

∇⊥u⃗tot = ∇⊥
(
F−1r

)
= F−1, (3.4.9)

since u⃗ = F−1⃗r from Equation 3.4.3. Upon substiting this into Equation 3.4.7,

∇⊥u⃗tot becomes

F−1
tot = ρbgΦ

T
bgF

−1
v . (3.4.10)

Let’s take a moment and remind ourselves that our goal is to solve for the tilt angles

of a specific vortex within the arbitrary field. The left side in Equation 3.4.10 is

a matrix that contains the tilt angles of the vortex in the arbitrary field that we

are measuring, θ and φ . However, to find F−1
tot , we must know both the background

field amplitude and phase at the location of the vortex. The issue here is that without

knowing the exact tilt of the vortex, we cannot successfully separate the vortex from

the other background field components.

Earlier we mentioned that by finding V2, we would be able to find the tilt angles.

With this in mind, we recall from the Polar Decomposition Theorem that V2 = FFT

in general since

F = VR

FFT = VR(VR)T

FFT = VRRT VT

FFT = VVT = V2 (3.4.11)
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where we have made use of the fact that RRT is the identity matrix since R is a

unitary rotation matrix [135]. Knowing that Ftotal = ρ
−1
bg Fv [Φ

T
background]

−1 from Eq.

3.4.10, it immediately follows that

V2
tot = ρ

−1
bg Fv [Φ

T
bg]

−1
[
ρ
−1
bg Fv [Φ

T
bg]

−1
]T

= ρ
−2
bg Fv [Φ

T
bg]

−1 [[ΦT
bg]

−1]T FT
v

= ρ
−2
bg Fv FT

v

= ρ
−2
bg V2

v (3.4.12)

At this point, we notice that by finding V2 we have eliminated the need to know ϕbg

since [ΦT
bg]

−1 [[ΦT
bg]

−1]T = 1. The only thing left is to eliminate the need for ρbg.

One way to do this is to use the eigenvalues and eigenvectors of V2
tot . We solve

the typical eigenvalue problem then by taking

Det
[
V2

tot − Iλ
]
= 0 (3.4.13)

which, as detailed in Appendix A.3, results in

(λ −ρ
−2
bg )(λ −ρ

−2
bg sec2

θ) = 0. (3.4.14)

The eigenvalues then are λ = ρ
−2
bg and λ = ρ

−2
bg sec2 θ . Here, we let the eigenvectors

of V2
tot be denoted by ν j with eigenvalues λ j, j = 1,2. Upon taking the ratio of the

eigenvalues, the background amplitude is also eliminated from the expressions such

that
λ1

λ2
= cos2

θ , (3.4.15)
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and the ratio of the corresponding eigenvector components is

ν1x

ν1y
= cotξ . (3.4.16)

Solving each of these equations results in the azimuthal rotation ξ and polar dip θ :

θ = cos−1

±

√
λ1

λ2

 , ξ = cot−1
(

ν1x

ν1y

)
+nπ, (3.4.17)

where λ1 < λ2 and n ∈ Z, and the signs can be determined from the sign of the

components of Ftot = ρ
−1
bg Fv Φ

T
bg. This result leaves us at a point where we can

quantify the tilt angles if we just had the form of the V2
tot matrix for our paraxial

field.

3.4.2 Relationship between V2
tot and u⃗tot

Conveniently, we are actually well equipped to find V2
tot because of the relation-

ships between V2
tot , F−1

tot , and ∇⊥u⃗tot . Knowing that ∇⊥u⃗tot = F−1
tot from Equation

3.4.9, and that V2
tot = FtotFT

tot from Equation 3.4.11, we can write V2
tot in terms of

the total field gradients only. The result is

V2
tot = FtotFT

tot = [∇⊥u⃗tot ]
−1[∇⊥u⃗tot ]

−T

=

∂xψRe ∂yψRe

∂xψIm ∂yψIm


−1∂xψRe ∂yψRe

∂xψIm ∂yψIm


−T

. (3.4.18)

This means that we are able to directly measure the components of V2
tot from any 2D

data set as long at the full complex field is known. From there, we simply must find
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the eigenvalues and eigenvectors, and therefore the vortex tilt angles. The benefit

of this formalism is that the tilt angles can be quickly extracted from just the field

gradients at the location of the vortex. An example of applying this to a paraxial

field with a tilted vortex using Mathematica is laid out in Appendix A.4.

Now that we have the ability to quantify the tilt of any given vortex, we next

explore finding the vortex velocity since we should be able to separate the vortex,

including its tilt, from the background field.

3.5 A Vortex Velocity Expression that Includes Vortex Tilt

We now consider a general paraxial vector field, u⃗(x,y,z), that contains a single

moving vortex (of unit charge) with position described by r⃗v(z). The vortex velocity

will be denoted by v⃗ = ∂z⃗rv, since the vortex will be moving within the xy-plane as

the beam propagates. At the vortex center, u⃗ = 0⃗. Because the value of the paraxial

field at the vortex location is always equal to zero, and therefore a constant, it is

guaranteed that dz⃗u = 0 for all z. The total derivative of u⃗ with respect to z can

also be expressed as dz⃗u = ∂x⃗u ∂zx+ ∂y⃗u ∂zy+ ∂z⃗u = ∇⊥u⃗ ∂z⃗rv + ∂z⃗u. Using the

relationships just mentioned, the total derivative is

dz⃗u = F−1
tot v⃗+∂z⃗u = 0⃗, (3.5.1)

with the transverse position evaluated at r⃗v(z) for all fields. A quick rearrangement

of this result yields the vortex velocity as

v⃗ =−Ftot∂z⃗u. (3.5.2)
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Here, we remind ourselves of the form of the paraxial equation,

σ0∂z⃗u =−1
2

∇
2
⊥u⃗+V u⃗, (3.5.3)

where

σ0 =

0 −1

1 0

 . (3.5.4)

Equation 3.5.2 can then be rewritten using the paraxial equation such that

v⃗ =−Ftot∂z⃗u =−Ftotσ
−1
0 (−1

2
∇

2
⊥u⃗+V u⃗). (3.5.5)

Then, we can rewrite F in terms of the background field instead, using Ftot and Fv,

Ftot =
1

ρbg
FvΦbg to obtain

v⃗ =
1

2ρbg
FvΦbgσ

−1
0 ∇

2
⊥u⃗. (3.5.6)

where V u⃗ = 0 since this is evaluated at the vortex center where u⃗ = 0.

This expression for vortex velocity can be simplified by noting that a vortex lo-

cated at r⃗v is described by u⃗v =F−1
v (⃗r− r⃗v) so u⃗= ρbgΦ

T
bgF−1

v (⃗r− r⃗v). The Laplacian

term of Eq. (3.5.6) evaluated at the vortex center, can therefore be written as

∇
2
⊥u⃗ = 2∇⊥ · (∇⊥u⃗) = 2∇⊥ · (ρbgΦ

−1
bg F−1

v ). (3.5.7)

Substitution of this result into Eq. (3.5.6) gives

v⃗ =
1

2ρbg
FvΦbgσ

−1
0 ∇

2
⊥2∇⊥ · (ρbgΦ

−1
bg F−1

v ). (3.5.8)
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To simplify this, we define A ≡ FvΦbg so that v⃗ is then

v⃗ =
1

ρbg
Aσ0∇⊥ · (ρbgA−1) =

1
ρbg

Aσ0
(
ρbg∇⊥ ·A−1 +A−1

∇⊥ρbg
)
. (3.5.9)

Since Fv is not a function of position in the x-y plane, the first term can be reevalu-

ated in terms of the gradient of the background phase only:

v⃗ =
1

ρbg
Aσ0

(
ρbg(∇⊥Φ

−1
bg )F−1

v +A−1
∇⊥ρbg

)
. (3.5.10)

Now, we can expand to two terms and simplify using
(
∇⊥ρbg

)
/ρbg = ∇⊥ ln

(
ρbg
)

and the velocity becomes

v⃗ = Aσ0(∇⊥Φ
−1
bg )F−1

v +Aσ0A−1
∇⊥ lnρbg. (3.5.11)

For clarity, we will rewrite this expression as

v⃗ = v⃗ϕ + v⃗ξ ,θ ,ρ (3.5.12)

Next, we simplify the phase contribution, v⃗ϕ = Aσ0(∇⊥Φ
−1
bg )F−1

v , to the vortex

velocity. The three tensor,

∇⊥Φ
−1
bg =



−sinϕbg∂xϕbg

−sinϕbg∂yϕbg


−cosϕbg∂xϕbg

−cosϕbg∂yϕbg

cosϕbg∂xϕbg

cosϕbg∂yϕbg


−sinϕbg∂xϕbg

−sinϕbg∂yϕbg




(3.5.13)
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acts on Fv to produce a vector

(
∇⊥Φ

−1
bg

)
F−1

v =−(cosθ cosξ cosϕbg + sinξ sinϕbg
)

∂yϕbg +
(
cosθ cosϕbg sinξ − cosξ sinϕbg

)
∂xϕbg(

cosϕbg sinξ − cosθ cosξ sinϕbg
)

∂yϕbg +
(
cosξ cosϕbg + cosθ sinξ sinϕbg

)
∂xϕbg

 .
This vector can now be used in simplifying the entire first term:

v⃗ϕ =−Aσ0
(
∇⊥Φ

−1
bg

)
F−1

v =

∂xϕbg

∂yϕbg

= ∇⊥ϕbg (3.5.14)

as expected.

Next, the second term, v⃗ξ ,θ ,ρ = Aσ0A−1
∇⊥ lnρbg, is directly compared to the

result from Equation 3.5.17, v⃗ξ ,θ ,ρ = −V2
v

Jv
σ0∇⊥ lnρbg to verify their equivalence.

The derived expression of 3.5.14 evaluates to

vξ ,θ ,ρ = Aσ0A−1
∇⊥ lnρbg

=

 −cosξ sinθ sinξ tanθ −secθ
(
cos2 θ cos2 ξ + sin2

ξ
)

cos2 ξ secθ + cosθ sin2
ξ cosξ sinθ sinξ tanθ

∇⊥ lnρbg.

(3.5.15)
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Similarly, the second term of Equation 3.5.17 evaluates to

vξ ,θ ,ρ =−V2
v

Jv
σ0∇⊥ lnρbg

=

 −cosξ sinθ sinξ tanθ −cosθ
(
cos2 ξ + sec2 θ sin2

ξ
)

cos2 ξ secθ + cosθ sin2
ξ cosξ sinθ sinξ tanθ

∇⊥ lnρbg

(3.5.16)

when plugging in the full forms of V2
v , Jv and σ0. Subtracting Equation 3.5.16 from

Equation 3.5.15 returns a zero matrix, from which we can conclude that the two

are equivalent. Therefore, the final velocity expression for a tilted vortex in any

arbitrary linear optical field can be written as

v⃗ = ∇⊥ϕbg −
V2

v

Jv
σ0∇⊥ lnρbg. (3.5.17)

where Jv = Det(Fv).

For incompressible materials, where ∇ρbg = 0, this equation is consistent with a

hydrodynamic interpretation of the paraxial equation [111]—i.e. it is just the phase

gradient. However, as we discussed in Chapter 2, light exhibits compressibility, so

vortex motion is also influenced by local gradients in fluid density. In the absence of

tilt, where V2
v/Jv = 1, Equation 3.5.17 reduces to a form previously obtained in the

context of the Gross-Pitaevskii equation for quantum fluids [98,121] in which such

density gradients are accounted for. Additionally, work done in an optical system

by Rozas et. al resulted in a similar expression for the velocity, including both the

phase and amplitude gradient contributions [100].
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Equation (3.5.17) goes a step further though, revealing a new coupling between

vortex tilt and local gradients in the hydrodynamic density. Because of this cou-

pling, vortex speed can be altered by simply changing the degree of vortex elliptic-

ity. As tilt approaches θ = 90◦, the vortex speed in the direction of tilt will approach

infinity while that in an orthogonal direction approaches zero, which can be seen

the two test cases of the next section.

The combination of Eq. (3.4.17) and Eq. (3.5.17) comprise a coupled system

that can be solved to predict the evolution of vortex position and tilt, for either linear

or non-linear optical media. If axial location, z, is replaced by time, t, the system

can be applied directly to predict the dynamics of vortices in quantum fluids within

the Gross-Pitaevskii ansatz [17].

3.6 Tilted Vortex Velocity Predictions: Two Cases

Now that the expectation for the vortex velocity based on the field gradients and

vortex tilt has been derived, we apply it to two specific examples. The first is a

single vortex embedded in a Gaussian beam. The second is the familiar, oppositely

charged vortex pair in a Gaussian. In each case, we compare the anticipated vortex

velocity to the trajectory found by equating real and imaginary zeros. In both cases,

we will find an excellent match with experiments (discussed later in Chapter 7).

3.6.1 A Single, Tilted Vortex in a Gaussian Beam

Consider the initial state of a paraxial field constructed as the product of a vor-

tex, placed on the x-axis at x0 with initial tilt {ξi,θi}, and a Gaussian beam of waist

w0 and wavenumber k. Position is nondimensionalized with w0/
√

2 (in-plane) and

Rayleigh length (propagation axis). Remembering that a tilted vortex can be de-
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scribed by Equation 3.4.4, the paraxial field at the beam waist is described by the

deformation of the circular vortex such that

u⃗v(x,y,0) = F−1

x− x0

y

=

 cosξi sinξi

−cosθi sinξi cosθi cosξi


x− x0

y


=

 (x− x0)cosξi + ysinξi

(x− x0)(−cosθi sinξi)+ ycosθi sinξi

 (3.6.1)

in the matrix representation. The full complex field can then be written in the form

ψv(x,y,0) = (x−x0)cosξi+ysinξi− i(x−x0)cosθi sinξi+ iycosθi sinξi. (3.6.2)

This field gives our initial condition to propagate, from which we can watch the

beam evolution in z (“time”) and quantify vortex motion. A convolution of this ini-

tial field with the paraxial Green’s function [136], which can be found in Appendix

A.5, is used to derive the field as a function position along the z-axis such that

ψv(x,y,z) =
1

(−i+ z)2

√
2
π
(cosξi(−x+ x0 + ix0z− iycosθi)− ysinξi...

...+ ixcosθi sinξi + x0(−i+ z)cosθi sinξi)e
i x2+y2

2(−i+z) (3.6.3)

The coupled Eq. (3.4.17) and (3.5.17) can then be solved to find two key results.

The first is that vortex tilt does not evolve from its initial value. Second, the vortex

position is given by

xv = x0 − x0zcosξi sinθi sinξi tanθi

yv = x0zcosθi
(

cos2
ξi sec2

θi + sin2
ξi
)
. (3.6.4)
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Here Eq. (3.5.17) has been integrated to construct this vortex trajectory. Surpris-

ingly, for a vortex with any arbitrary tilt in this scenario, the calculated vortex ve-

locity with propagation is a constant.

The background field can be determined by using the vortex position from Equa-

tion 3.6.4, with ξ and θ calculated as described by Equation 3.4.17, and dividing

out the total elliptical vortex from the paraxial field of Equation 3.6.3. This back-

ground field can be used to compute the gradients needed to predict vortex velocity

according to Equation 3.5.17. The background field gradients of the field given in

Equation 3.6.3 are

∇⊥ϕbg =
x0z

1+ z2

 (1− zcosξ sinθ sinξ tanθ)

zcosθ
(
cos2 ξ sec2 θ + sin2

ξ
)


∇⊥ lnρbg =
x0

1+ z2

 1
2 (2z+ sinθ sin2ξ tanθ)

−1
4 ((3+ cos2θ)secθ +2cos2ξ sinθ tanθ)

 . (3.6.5)

Figure 3.7 shows a visual depiction of the evolving optical mode and vortex tra-

jectory for a vortex with beam parameters λ = 633 nm, w0 = 1 mm, x0 = 0.75w0,

ξi = 80◦ and θi = 60◦. The velocity is clearly seen to be driven by the phase and

tilt+amplitude gradient terms in Equation (3.6.5). The evolution of the background

field changes the relative strength of the background phase and tilt+amplitude gra-

dients such that the x and y components perfectly balance throughout the entire

beam propagation, resulting in a constant total velocity. We find that this surpris-

ing constant velocity results from the equally-surprising vortex decomposition of

the propagating field: the background field is a simple diverging Gaussian, and

changes in the amplitude and phase gradients exactly cancel.
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Vortex Trajectory

Figure 3.7: The trajectory of a single tilted vortex along with background field gra-
dient velocity contributions are shown. Top: Mode snapshots of an off-center, tilted
vortex calculated from Equation (3.6.3) with its location (dots) and predicted tra-
jectory (white arrow) for beam parameters λ = 633 nm, w0 = 1 mm, x0 = 0.75w0,
ξi = 80◦ and θi = 60◦. Brightness is amplitude and color shading represents phase.
Middle: A cropped window of the background field evolution, along with back-
ground gradient vectors to visualize each contribution: cyan (farthest right) arrows
show velocity from the first term of Eq. (3.5.17), vϕ , while orange (farthest left)
arrows shows the second term, vξ ,θ ,ρ ; green (middle) arrows are the sum of these
terms (vtotal). Bottom: Evolution of individual components and resulting total ve-
locity for both x and y directions, labeled by the corresponding component, cal-
culated from Equation 3.6.5. From Andersen, 2021. [120] © American Physical
Society
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To understand how the tilt of a given vortex affects its motion in this scenario,

the predicted dynamics for vortices with different tilt angles is summarized in Fig.

3.8. Velocities are measured in terms of the number of millimeters the vortex has

moved in the transverse plane per meter of propagation distance. Contour lines are

θ = 60°

θ = 50°

θ = 72°

θ = 86°

ξ = 22.5°

ξ = 45°

ξ = 67.5°

ξ = 75°

ξ = 87° ξ = 90°

ξ = 0°

v y
(u

n
it

s 
o

f 
x 0

)

vx (units of x0)

Figure 3.8: Velocity Predictions for a Vortex on Shoulder of Gaussian Beam. Ve-
locity predictions in mm/m for both x and y directions are shown for a single vortex
with various tilts. Dashed semi-circles show the predicted velocities for a spec-
ified polar angle, θi, as the azimuthal orientation, ξi, is varied. Dotted lines are
predictions for a fixed ξi and varying θi. In the absence of tilt, the vortex moves
vertically, but one should note that specific combinations of tilt can also lead to a
purely upward velocity. For severe tilt (θi near 90◦), the vortex can be made to
move essentially orthogonal to its untilted trajectory.
Adapted from Andersen, 2021. [120] © American Physical Society
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shown in the figure for various tilt angles, with dotted lines showing predictions

for a fixed xi angle and dashed lines showing results for a fixed θ . In the absence

of any tilt(ξ = 0◦ and θ = 0◦), a vortex placed on the side of a Gaussian beam

will initially move perpendicular to its displacement from the beam center which is

consistent with results for the same scenario found within the literature [31]. While

the untilted vortex moves vertically when displaced in the positive x direction, one

should note that there are other specific combinations of tilt that can also lead to

a purely upward velocity (although the magnitude of the velocity will change for

a given tilt). For severe tilt (θi near 90◦), the vortex can be made to move nearly

orthogonal to its untilted trajectory. This dependence of the velocity on the degree

of ellipticity is also consistent with prior observations [128].

In the figure, polar angles are limited to θi ∈ [0,90]◦ because greater values

would correspond to a vortex of opposite charge. Negatively charged vortices move

in the direction opposite to their positive counterparts. Interestingly, the vortex

velocity is an even function of azimuth angle, ξi, despite the initial vortex position

being offset from the beam center. Also note that the vortex velocity can never be

brought to zero via tilt. This figure will become useful for the experiments discussed

in later chapters where the intersection points of the contours are used to test the

theory.

3.6.2 An Oppositely Charged Vortex Pair in a Gaussian Beam

Again motivated by the results presented by Indebetouw [32], we are interested

in considering two oppositely charged, untilted vortices placed symmetrically in a

Gaussian beam. The evolving paraxial field can be obtained via convolution of the
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initial field,

ψpair,0(x,y,0) = ((x+ x0)− iy)((x− x0)+ iy)e−(x2+y2)/w2
0, (3.6.6)

with the paraxial Green’s function, as was done for the single vortex case in Ap-

pendix A.5. The solution is particularly simple when considered in the limit of an

arbitrarily large beam waist. This leaves only two characteristic lengths: the separa-

tion between the vortices, 2x0, and the wavelength of the light. Position can then be

nondimensionalized using 2x0 (in-plane) and 2kx2
0 (propagation axis). The resulting

paraxial field, in the limit of a large beam waist, is given by

ψpair(x,y,z) =−1
4
+ x2 + y2 + i(y+2z) (3.6.7)

The coupled Eqs. 3.4.17 and 3.5.17 can then be solved to find, for instance, that

for z ≥ 0 the evolving vortex tilt as a function of propagation for the right vortex is

given by

ξ (z) = tan−1 −1−4z√
1−16z2

θ(z) = cos−1

√
−1+

2
1+4z

. (3.6.8)

The evolution of the tilt for both the right and left vortices are shown in Figure 3.9.

The trajectory for the vortices in this case is given by

xv =
1
2

√
1−16z2, yv =−2z. (3.6.9)
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Figure 3.9: The evolution of tilt angles for the oppositely charged vortex pair as
described by Equation (3.6.8) is shown.
***Figure credit: Professor Mark T. Lusk. From Andersen, 2021. [120] © Ameri-
can Physical Society

This solution for the field can be propagated both in the positive and negative z di-

rection (essentially looking at the propagation both after and before the beam waist,

respectively), which reveals a full vortex loop with a nucleation event occurring at

z = −1/4 and an annihilation event at z = +1/4. The projection of the trajectory

into the xy-plane traces out a circle. These dynamics are consistent with the result

for z > 0 previously obtained using Hankel transforms [32], and also with the result

from our propagation of the modes from Section 2.2.

With the tilt quantified at all points within the trajectory, we can then find

the background field at any z by unwrapping the tilted vortex of interest: ψbg =

ψpair/ψv,tilted . From this background field, we are then able to calculate the vortex

trajectory using Equation (3.5.17). The result is the same as the the axial derivative

of Equation (3.6.9). The full trajectory is shown in three dimensions, including po-

sition and tilt in Figure 3.10. When phase gradients within a field get sufficiently

steep, a vortex pair can nucleate. In particular, when the phase gradient reaches the
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Figure 3.10: Tilt perspective on nucleation and annihilation. A pair of identical
vortices nucleates at top-left, but subsequently evolve so that they are of opposite
charge at the mid-point before becoming once again parallel as they annihilate at
lower-right. The envelope of orientations is a mobius strip. The results shown were
obtained by combining Eq. (3.6.9) and Eq. (3.6.8).
***Figure credit: Professor Mark T. Lusk. From Andersen, 2021. [120] © Ameri-
can Physical Society

π threshold, two vortices that happen to have the same tilt nucleate [137], as can be

seen in the top left of Figure 3.10. The tilts then evolve in opposite directions such

that the vortices are of opposite tilt at the midpoint in their life cycle. They sub-

sequently become realigned so that they are once again parallel when annihilation

occurs. At both nucleation and annihilation, the polar tilt is 90◦, and the eigenvalue

analysis implies that the axial speed must be zero while the lateral speed is infinite.

This is consistent with the trajectories plotted. We notice that there are corners in

the tilt near z = 0, which can also be seen by the discontinuities in the derivative for

72



Figure 3.9. One could imagine finding a field with a smoothly varying tilt through-

out the entire trajectory, but that was not done here, as our goal is to understand the

dynamics of the same, z = 0 field found in [32].

The results of Equations (3.6.7–3.6.8) are the limiting case of an infinite beam

waist, but the characteristics of the two vortex tilt evolution discussed above are

also relevant to experiments with finite beams if the initial vortex separation is small

compared to the beam waist. A finite beam contributes amplitude and phase gra-

dients that affect the vortex motion, just as in the single-vortex case. Therefore, in

our quantitative comparison with experiments below, we include the beam in the

Fresnel integration solution of paraxial propagation. The solution is consistent with

past work [32].

3.7 Summary and Confirming Tilt-Affected Vortex Hydrodynamics for the

Two-Vortex Case

At the end of Chapter 2, we left off with the problem that prior hydrodynamic

models could not accurately predict vortex motion in the two vortex case. In this

chapter, we have presented a new formalism to quantify the tilt angles for a virtual,

three-dimensional vortex that results in elliptical vortices within the xy-plane. We

have seen how in using this formalism, it is possible to derive a tilt-affected vortex

velocity expression (Equation 3.5.17) in terms of the background fluid gradients.

This model provides a hydrodynamic perspective to vortex motion that works gen-

erally, even when vortex ellipticity is present and evolving. To reconnect with the

previous chapter, we turn to confirming that that our new model can accurately

predict the motion in the two vortex case.
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With both position and tilt evolution of the oppositely charged vortex pair es-

tablished, we can directly compare the known trajectory to the results of the vortex

kinematics determined by Equation (3.5.17). For each approach, we calculate the

velocity from the background fields at various z steps according to Table 3.1, which

is an adapted version of Table 2.1, to include the new vortex velocity expression

that we derived in Section 3.5. In the final compressible+tilt case, not only do

background phase and amplitude gradients contribute to vortex motion, but the ori-

entation of the vortex contributes to its motion, as it is a feature of the vortex itself.

In order to find the background field for this case, the tilted vortex, described by

Eqs. (3.6.8) and (3.6.9), is divided out from the expression for the paraxial field.

We compare each of these models to the known trajectory of one of the vortices

in an opposite-charge pair, which follows a quarter-circle arc to recombination in

the limit of an infinite beam waist (blue curve in Fig. 3.11). The incompressible

fluid prediction, (black arrows in Fig. 3.11), is clearly inadequate because it lacks

any x-component of the velocity. Accounting for compressibility by including the

background amplitude gradient, but not tilt (green arrows in Figure 3.11), is a sig-

nificant correction near z = 0 where the vortices are mostly untilted, but it clearly

breaks down near recombination where vortices are most tilted. Only if both the

phase and amplitude gradients are included in addition to the evolving tilt of the

Fluid Model Velocity Equation
Incompressible v⃗ = ∇ϕbg
Compressible v⃗ = ∇ϕbg − κ̂ ×∇ lnρbg

Compressible + Tilt v⃗ = ∇⊥ϕbg −
(
V2

v/Jv

)
σ0∇⊥ lnρbg

Table 3.1: Models used to calculate non-dimensional transverse vortex velocities
for Fig. 3.11 [98, 122].
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Figure 3.11: Comparison of Fluid Models for Predicting Vortex Pair Motion. The
quarter-circle trajectory of a vortex in an opposite-pair annihilation event (blue)
with arrows show the predicted velocities calculated from three different back-
ground fields, as described in the text and in Table 3.1. The incompressible fluid
prediction (black), addition of fluid compressibility (green), and inclusion of vortex
tilt (red) for the full kinetic theory of Eq. (21). Only the red arrows accurately
describe the vortex motion.
***Figure credit: Professor Mark T. Lusk. Adapted from Andersen, 2021. [120]
© American Physical Society

vortex (red arrows in Figure 3.11, from Equation (3.5.17)) do the velocity vectors

fall tangent to the established trajectory.

Clearly, vortex tilt plays an essential role in vortex motion in compressible hy-

drodynamics. In particular, it is the relationship between the tilt and amplitude

gradients in the background fluid that was found to be essential in predicting vortex

motion. This is not relevant for incompressible fluids that form the basis for much

of our intuition, and it is not observed in compressible fluids for the many scenarios

in which vortices are mostly circular in shape (i.e. minimal tilt). However, tilt must

be taken into account whenever vortex ellipticity is present or evolves, as we have

seen in the two oppositely charged vortex pair setting.
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Additionally, we can conceptualize tilt as having an impact on vortex trajecto-

ries much in the way that a surfer has on their own motion while riding a wave. A

surfer is capable of steering themselves across the water by simply adjusting their

body’s orientation with respect to the underlying fluid. The analogy can be ap-

plied to our vortices, as their orientation plays a role in how they move within the

background fluid.

3.8 Part I Summary

In Part I, we established the reasoning behind treating light as a “2+1D” fluid

and used an optical medium as a study ground to understand hydrodynamic vortex

motion. We also discussed the context for our hypothesis of vortex ellipticity as the

culprit behind the failure of previous models for predicting vortex dynamics. This

was done by looking carefully at the simple case of propagating a Gaussian laser

beam containing an oppositely charged vortex pair. Finally, the newly developed

theory for describing vortex motion confirmed that by including the evolution of

vortex ellipticity in the velocity expression, vortex motion can be accurately de-

scribed from a compressible hydrodynamic perspective.

A logical partner to this theoretical framework is to run experiments and test

the theoretical predictions. In the following chapters that make up Part II, we will

discuss methods for generating and measuring optical fields containing vortices

and an experimental apparatus designed specifically for testing the propagation of

optical vortices.
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II

A Novel Measurement Technique and an Experimental Apparatus
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Chapter 4

Using Holograms to Generate Optical Fields in the Lab

Now that a theory has been developed for vortex motion within two-dimensional

fluids, the next important step is to validate that theory by comparing it to obser-

vations from experiments. To do so, we must first choose a medium in which to

test. For the work done in this dissertation, we choose an optical medium. Not only

is this consistent with the chosen applications of the theory in the previous chap-

ter, but performing an optical experiment is ideal because it can be done with low

power, free space laser propagation, and the experiments are all performed at room

temperature, in contrast to other two-dimensional fluids such as BECs that require

low temperatures [98].

We must also consider what techniques are available for generating the type of

initial condition fields we are interested in testing. There are many ways to gener-

ate optical vortices including spiral phase plates [138,139], digital micromirror dis-

plays [140], SLMs [59–63] or even diffusers such as scotch tape [95]. Importantly,

not only does convenience matter, but the level of control over and the quality of

the experimentally generated optical field becomes important since poor beam qual-

ity can impact vortex trajectories within a beam. Some of the methods mentioned

can be cumbersome; when using etched pieces of glass, a unique piece of glass is
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needed for each field that needs to be generated. In the case of diffusors, they don’t

offer a lot of control over the generated field.

Using a spatial light modulator, which consists of an array of pixels, referred to

as the SLM (or LCD) panel, is of particular interest since it can modulate an incident

light field on a pixel-by-pixel basis. Benefits of using such a device include a sig-

nificant degree of flexibility in the fields that can be generated, the ability to switch

from one field to another quickly, and fine control for pixel arrays with high enough

resolution. In theory, any pattern can be projected onto the SLM panel. Each of

these benefits are appealing for an experiment with more than one initial condition

field to generate. One downside is that although commercial-grade SLMs are avail-

able, they usually cost on the order of tens of thousands of dollars. The benefits of

using such devices can include generating optical fields at high power thresholds,

precision phase control, and high power conversion efficiency. A way around the

issue of cost, though, is to use a rewired classroom projector LCD panel [141] that

costs on the order of tens or hundreds of dollars instead.

For the work done in this thesis, we choose to generate optical vortices by shin-

ing laser light onto the low-cost classroom projector SLM that specifically displays

a diffractive hologram that has the desired field encoded within it. This is a very

common vortex generation technique used within the optics community [23,67–70].

Although this is the case, small imperfections from pixelation or diffraction in the

beam can result in a change of the background field gradients that drive the vortex

motion. For this reason, the ability to generate high quality holograms becomes a

necessity for experimental success.

In this chapter, I will first review the principles of holography that inspire the use

of computer generated holograms projected onto an SLM for the experiments. I will
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discuss how to make such holograms and a few key elements that are important for

creating holograms that generate high-quality vortex beams from such a low-cost

SLM.

4.1 Holography Concepts and Overview

To motivate our use of computer generated holograms for experiments used

to measure optical vortex dynamics, we will briefly review the basic concepts of

holography [65,142–145].1 To understand the power of holography, we can first re-

mind ourselves of the limitations of traditional photography. The image of an object

can be captured and stored onto a piece of photosensitive material. When a person

looks at such a photograph the photograph always maintains the same perspective

of the object no matter their viewpoint. This is the reason that a photograph of a

person looking directly at the camera seems always to be looking at the observer,

even if the photograph is viewed from different perspectives [142]. Additionally,

photosensitive material can only record the intensity of the light, so only ampli-

tude information of the wavefront is recorded in a photograph. The loss of phase

information is the reason for this loss of perspective information.

In contrast, holography is a method for reconstructing the total wavefront that

travels away from an object to an observer. When a hologram is used, unlike in

a photograph, the observer is always viewing the actual wavefront, so their view

of a reconstructed hologram changes with their viewpoint. To accomplish a full

reconstruction of a wave, both amplitude and phase information are needed, so,

one may think to draw upon the concepts of coherent interferometry. When two

1For a more complete discussion of holography principles, I direct the reader to the fourth edition
of “Practical Holography” written by Graham Saxby [142].
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waves of coherent light interfere, such as a reference wave and an object wave, the

intensity pattern becomes dependent on both the amplitude of the waves and their

phase. This can be seen by looking at the time averaged intensity of the field at

the location of the recording medium [65, 146]. First, the amplitude is given by the

superposition of the fields such that

Etotal = Eob j +Ere f . (4.1.1)

The intensity then can be found by taking the square of the amplitude which results

in

Ih = |Etotal|2 = E∗
totalEtotal

=
∣∣Eob j

∣∣2 + ∣∣Ere f
∣∣2 +E∗

ob jEre f +E∗
re f Eob j (4.1.2)

This form of the intensity will become useful for understanding the wavefront re-

construction process later, but it is not readily obvious here that the result depends

on both the amplitude and the phase of the fields.

An alternate form of the field can be found, though, if one assumes the generic

form of the object and reference fields as

Eob j = aoeiφo

Ere f = areiφr (4.1.3)
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where ao (ar) is the amplitude of the object (reference) field and similarly, φo (φr) is

the phase of the object (reference) field.2 These expressions can then be substituted

into Equation 4.1.2 which yields

Ih = a2
o +a2

r +(aoe−iφoare−iφr +are−iφraoeiφo)

= a2
o +a2

r +arao

(
e−i(φr−φo)+ ei(φr−φo)

)
= a2

o +a2
r +2arao cos(φr −φo) . (4.1.4)

From this form of the equation (Equation 4.1.4), we can see that a hologram, unlike

a photograph, contains both amplitude and phase information. It is important to

note that although each phase appears in the equation, it is on only as the difference

between the reference and object phase. This is not a problem, though, if the ref-

erence wave has a known (and usually constant) phase; if this is the case, then one

can obtain the object phase.

To experimentally construct a hologram, a coherent reference wave consisting

of monochromatic laser light is generated. The ideal reference wave is a perfect

planewave, but an expanded Gaussian beam is often used to approximate such a

planewave. This light can then be separated, typically by a beam splitter, into two

separate beam paths. One path contains the unaltered reference wave, while in the

second path an object is illuminated by the light, and the scattered light creates what

is called the object wave. Each of the waves are then sent to interfere at a location

where a photosensitive medium, such as photographic film, records the interference

2The fields given in Equation 4.1.3 can both be functions the transverse coordinates, since they
can describe fields that have a spatially-varying amplitude and phase. For simplicity, we will assume
this, but do not write the dependence directly into the equations.
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pattern which will become the hologram.3 An example setup is shown in Figure

4.1 (a). Once the film is exposed, it can be developed, set and used as a hologram.

To reconstruct the original object wavefront, a reference wave is sent onto the set

hologram with both the same form and angle of incidence as the original reference

wave [65, 142–144]. Light transmitted through the hologram is determined by the

3The difference between the path lengths of each arm of the interferometer must be less than the
coherence length, and near zero for optimal interference. For a HeNe laser, the coherence length is
on the order of 20 cm, and the solid state laser used in the single vortex experiments has a coherence
length greater than 50 m. Broadband sunlight on the other hand has a coherence length on the order
of µm [147].

Object Field

Hologram

Hologram

(a)

(b)

Hologram 

Plane

Object Virtual Image Reconstructed Object Field

Figure 4.1: (a) A typical geometry for creating an interference pattern that is
recorded as a hologram is shown. (b) By illuminating the hologram with a field
in the same geometry as the initial recording, an observer sees a reconstructed ob-
ject field, which yields a virtual image of the object.
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transmittance [146], which is simply

t = ηIh (4.1.5)

where η is a constant of proportionality that is determined by physical factors when

the hologram was generated, such as the exposure time and the recording medium

properties. By substituting in the earlier result for Ih from Equation 4.1.2, the trans-

mitted light is

Etrans = Ere f × t

= ηEre f

(∣∣Eob j
∣∣2 + ∣∣Ere f

∣∣2 +E∗
ob jEre f +E∗

re f Eob j

)
. (4.1.6)

There are four terms of this equation, each of which represents a unique field that

is generated by the hologram [146].4 The first term, which can be written as E1 ∝

Ere f is just an attenuated version of the original reference beam, and the second

term, E2 ∝ Ere f |Eob j|2, is an additional modulated wave. The third term, E3 ∝

Ere f E∗
ob jEre f is what is referred to as the conjugate wave that generates a real image

of the object [65, 142, 146]. The last term is E4 ∝ Ere f E∗
re f Eob j. For the chosen

plane wave reference beam, Ere f E∗
re f = 1, so the last term yields E4 ∝ Eob j, which

is the term we’ve been waiting for that recreates the object field. An observer of the

hologram will see this field as a virtual image, as shown in Figure 4.1 (b).

When Gabor presented the first demonstration of the ideas behind holography in

1948, his geometry was such that the reference and object field were collinear [145].

4For a more detailed discussion and specific examples of the interpretation of these terms, I
direct the reader to Section 9.4 of “An Introduction to Fourier Optics” by John Goodman, or the
article “Phase Conjugation and Image Correction” by E. N. Leith. The reader may additionally find
their diagrams useful for visualizing each field.
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Subsequently, each of the waves described above overlapped, resulting in a distorted

version of the object field [145]. While his work was not immediately recognized

by others, he was eventually awarded the Nobel Prize in 1971 for his holography

work [142]. Importantly, the collinear geometry that Gabor used was not a neces-

sity. In fact, ensuring that the reference field and object field are differentiated by

their angle of incidence onto the hologram results in a unique direction for the re-

constructed object field [65,142,144,148]. This means that it can be separated from

the other fields generated by the hologram and spatially filtered. This so called “off-

axis” geometry is commonly used to avoid such distortions of the recreated object

field [65, 142, 144, 148].

4.2 Computer Generated Digital Holograms

With modern technology, the need to develop a film is no longer necessary. The

process of Figure 4.1 (a) can be done with a computer, and the digital hologram

can be displayed onto a spatial light modulator. Benefits of using a computer gen-

erated hologram include not only the time saved by skipping the first portion of the

experiment entirely, but it also mitigates issues related to choosing the appropriate

photosensitive material for the experiment and exposure times or photo-bleaching

of the hologram. For the work done in this dissertation, we rely entirely upon com-

puter generated digital holograms.5

5For all experiments in this thesis, the holograms are designed to match the parameters of an
Epson 83H projector used as an SLM; the panel resolution is 1024× 768 and the measured pixel
pitch is 12.4 µm. Example code used for generating holograms is also laid out in Appendix C.2.
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4.2.1 Phase Modulating Holograms

Following the same holography principles as laid out in the previous section, the

computer generated hologram can be created by using interferometry. An experi-

mentally generated hologram is created by superposing a reference field (ideally a

plane wave) with the object field. With a goal of generating optical vortices, the

object field is simply the optical field that contains the vortices in the desired con-

figuration, denoted as ψ f ield(x,y). The hologram to create the desired phase for an

optical field can then be constructed via the superposition of a planewave with the

field, written as

Hphase(x,y) =
∣∣∣ei π(cosα x+sinα y)/L + eiArg[ψ f ield(x,y)]

∣∣∣ , (4.2.1)

where L sets the grating spacing and α determines the angular orientation of the

grating. In each hologram, L = N ∗d where N is the number of pixels and d is the

pixel pitch (12.4 µm). As an example, a typical forked grating hologram can be

created with a vortex located at (x0,y0) by using

ψ f ield(x,y) = eiℓΦ, (4.2.2)

where ℓ specifies the charge of the vortex and Φ = arctan((y− y0)/(x− x0))).6

A few examples of such forked grating holograms are shown in Figure 4.2. We

found that using holograms with grating lines at an angle to the pixel rows and

columns of the SLM, such as in rows 2 and 3 of the figure, resulted in cleaner

6It should be noted that extra care must be taken with the syntax used for the arctangent function.
For example, in Mathematica, the syntax reads as “ArcTan[x,y]”, requiring that the denominator be
written first.
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Forked Grating Amplitude Phase

0                              1 0                              1 0                              2π

Figure 4.2: Each row shows the constituent parts for building a forked grating holo-
gram and the resulting HyGG field at z/zR = 0.05. Each set of gratings displayed
has N = 30 pixels for clarity.

modes for the single vortex trajectory measurements of Chapter 7, because it is

easy to block light diffracting off the pixels. When light is incident on this type

of hologram, a Hypergeometric Gaussian (HyGG) mode is generated in the first

diffracted order [76, 149, 150].

4.2.2 Additional Amplitude Mask

Many have created various holograms or methods for controlling the amplitude

of the beam generated from a SLM, each with various degrees of success [45, 60,

61, 67]. Here, I will share the process I used throughout my time at DU, which

is most similar to methods found in [61, 151, 152]. It involves just one additional

step after creating the forked gratings of the previous section. We have found that

the simplest and most effective way to create a beam with both accurate phase and
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amplitude is to apply an amplitude mask to the grating. The modified hologram

equation for a given vortex field then is

Hphase&amplitude(x,y) = Hphase(x,y)∗
∣∣ψ f ield(x,y)

∣∣ . (4.2.3)

For example, say that instead of producing the HyGGℓ=+4 mode in Figure 4.2,

we want to generate an LGℓ=+4,p=0 mode. The hologram can be constructed by

simply taking the original ℓ = +4 forked grating hologram as in Figure 4.2, and

multiply it by
∣∣LGℓ=+4,p=0

∣∣. Examples are shown in Figure 4.3. This same concept

can be applied to beams where ψ f ield(x,y) is the field of a pair of vortices, each with

a specified core amplitude, embedded into a host Gaussian beam, and this example

is shown in the last row of the figure.

Forked Grating Amplitude Phase

0                              1 0                              1 0                              2π

V
o
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e
x
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a
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e

Amplitude Mask Final Grating

Figure 4.3: Holograms for an LGℓ=+4,p=0 (top row) and a vortex lattice (bottom
row) are shown. Each row shows the constituent parts for building holograms to
modulate both amplitude and phase of the incident field. The resulting fields at
z/zR = 0.001 from each hologram are plotted in the last column. The set of gratings
displayed has N = 30 pixels.
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This is the basic set up for making holograms. However, due to the fact that we

are using a finite sized pixel grid to generate a field that has azimuthal symmetry,

the holograms must be generated with extra care.

4.2.3 A Balancing Act: Large Angle Diffraction and Pixelation

In each of the experiments performed in this work, it is advantageous to use as

small of a grating constant as possible in order to increase the diffraction angle of

the light from the grating. Larger separation allows for clean observation of the

first diffracted order without interference from any other diffracted orders which

can cause fringing within the measured field. However, we must take into account

the finite size of the pixels and the effect that may have on the hologram quality.

Say for example, you want to create a hologram that has a vortex charge of ℓ=

+2 with a small spacing such that the orders are quickly separated from each other.

There is an exact lower limit to the grating spacing period: a grating with one pixel

“on”, one pixel “off”. But, it turns out that superimposing an additional field to a

grating of this kind can have a dramatic effect on the generated field. This is because

the hologram itself can become distorted from pixelation, as shown in Figure 4.4

(a). It can be seen in the figure that for N = 2 pixels, there are regions of constructive

and destructive interference as you travel azimuthally around the center. This results

in bright and dark azimuthal fringes in the generated optical field, a clear difference

from the anticipated HyGGℓ=+2 mode that would be anticipated. As ℓ is increased

in this type of grating, we observe an increase in the fringes that goes as 2 ∗ ℓ (ten

bright fringes for an ℓ= 5 mode, for example). The presence such fringes is clearly

undesirable and should be minimized or eliminated, if possible.
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Actual Hologram Measured Field
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(b) Increased Grating Spacing Diagonally Oriented Grating
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(c)

Figure 4.4: (a) An ℓ = +2 hologram with the smallest possible grating constant
is shown (left). A zoomed in version shows the pixelation and distortion present
within the hologram. The resulting field (right) is very poor quality, with azimuthal
fringes present in the beam and seemingly no vortex at the center. (b) An ℓ = +2
hologram improved by increasing the grating spacing. (c) An ℓ = +2 hologram
improved by using a diagonally oriented grating.

There are two methods to reduce these distortions that we have used. The first

is to simply increase the grating spacing, as in Figure 4.4 (b). The large scale image

of the grating no longer carries the same interference present in the finer grating,

and the zoomed in image is also much cleaner and lacks the distortions seen in (a).

The second method that bypasses this issue is to use a grating that is misaligned to

the pixels, as shown in (c) of the figure. These diagonally oriented gratings produce

clean data, and have the extra advantage of generating light that is also misaligned

to the pixel diffraction. Although we did not use diagonal gratings for all of the

experimental work presented in later chapters, we recommend using them for these

reasons mentioned here.
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One final note on the holograms is that for optimal field generation, the values

of the grating should be rescaled such that the grating contrast is maximized. Using

the full bit depth of the SLM means that the most light possible is transmitted and

the resulting beam seems to have a higher signal to noise ratio.7 With these details

of making holograms established, it is now time to move on to a discussion of

methods for measuring the fields generated by the holograms.

7This is true for any single hologram used for generating an arbitrary optical field. In the next
chapter, this normalization must be done more carefully when implementing the colinear phase-
shifting digital holography by using composite holograms.

91



Chapter 5

Measuring Optical Fields and Collinear Phase-shifting Digital Holography

This work was published in Applied Optics: Volume 58, issue No. 2, under the

title Characterizing vortex beams from a spatial light modulator with colinear

Phase-shifting holography [151].

When I first came to DU, the group had not yet learned how to measure the

phase of a vortex beam. We were relying on intensity profiles, even when looking at

generating pure LG modes, and searching for a way to measure the phase. Through

this chapter, I will discuss the methods of phase-shifting digital holography and our

novel colinear implementation of the process by using composite holograms. The

process allows for measurement of the full complex field, without which we cannot

track vortices as accurately and precisely. As we will see later in the two vortex

annihilation experiment of Ch. 7 and Ch. 8, tracking the vortices accurately is not

possible by simply looking at the intensity profiles of the beam and this may be a

contributing reason for why such dynamics have not been previously measured in

detail by other groups.
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5.1 Phase-shifting Digital Holography

When light is generated by a hologram, the full field is generated, but when

measuring that field, the same issues arise when taking a photograph: only intensity

can be recorded. However, in 1997, Yamaguchi et al. wrote a paper that discussed

a clever method called phase-shifting digital holography [153]. This method allows

for not only the amplitude information to be measured, but the phase information

can also be reconstructed when using the technique. This was an opportunity for us,

since we could implement their methods for our purposes: to measure the phase of

our vortex beams. Here, we will quickly review the original phase-shifting digital

holography work done and follow that with our implementation for vortex beams.

5.1.1 Method Review and Sign Correction

The concept of the phase-shifting holography is fairly simple. An interferometer

is used such that there is a signal and reference beam that produces an interferogram

which is incident onto a CCD. The field of the interferogram is given by [153]

Uinterferogram(x,y) =Usignal(x,y,φS)+Ureference(x,y,φR)

= ASeiφS +AReiφR. (5.1.1)
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This interferogram’s intensity is then written as [153]

I(x,y,φR) =
∣∣Usignal(x,y,φS)+Ure f erence(x,y,φR)

∣∣2
=
(

ASeiφS +AReiφR
)(

ASe−iφS +ARe−iφR
)

= A2
R +A2

S +ARAS

(
ei(φR−φS)+ e−i(φR−φS)

)
= A2

R +A2
S +2ARAS cos(φR −φS) (5.1.2)

where we have made use of the identity cosθ =
(
eiθ + e−iθ)/2.

The goal is to find the phase of the beam, but this expression on its own contains

both amplitude and phase information. However, by algebraic convenience, an ex-

pression can be constructed such that the amplitude of both the signal beam and

reference beam can be eliminated, leaving just the phase of the reference and the

relative phase of the signal beam. One way to do this is the four phase step method

used in the mentioned paper [153] and in our work. The first thing to notice is that

the difference between two of the interferograms of Equation 5.1.2 with different

reference phases will eliminate the first two terms in the expression (A2
R+A2

x). Sec-

ond, because only the third term of Equation 5.1.2 remains, by taking a ratio of one

set of differences over another the prefactor of 2ARAS can also be eliminated. Doing

this and choosing equal phase steps results in a convenient simplification:

I(x,y,3π/2)− I(x,y,π/2)
I(x,y,0)− I(x,y,π)

=
(cos(3π/2−φS))− (cos(π/2−φS))

(cos(0−φS))− (cos(0−φS))
(5.1.3)
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Using the sum and difference identities, this expression simplifies as follows:

I(x,y,3π/2)− I(x,y,π/2)
I(x,y,0)− I(x,y,π)

=
cos 3π

2 cosφS + sin 3π

2 sinφS −
(
cos π

2 cosφS + sin π

2 sinφS
)

cos(−φS)− (cosπcosφS + sinπ sinφS)

=− tanφS. (5.1.4)

We can now solve this for the the phase of the signal beam which yields

φS(x,y) =−ArcTan

(
I
(
φR = 3π

2

)
− I (φR = π)

I (φR = 0)− I
(
φR = π

2

) ) (5.1.5)

I want to take a moment to acknowledge Leah Huzak for very carefully working

through the algebra and identifying a sign error in Eq. 3 of the original manuscript [153].

While the phase structure will be correct without the negative sign in Equation 5.1.5,

the reconstructed phase will be of opposite topological charge to the actual signal

(encoded) beam. This certainly matters for our applications and interpretation of

the relationships between vortex motion and charge.

5.1.2 Application to Vortex Beams

In the Yamaguchi paper, a two-arm interferometer was used (shown in Figure

5.1 (a)): a reference arm is paired with a phase shifter and a signal arm is sent

onto a die which scatters the laser light and generates the object field. The simple

modification to apply this to vortex beams is to replace the object with the SLM,

as shown in Figure 5.1 (b).1 In theory, with the flexibility of the SLM, one should

be able to generate any desired field, within the experimental constraints of the

chosen SLM, and measure the amplitude and phase of the emitted field, using this

1In both Figure 5.1 (a) and (b), it can be important to ensure equal path lengths for each arm of
the interferometer to optimize the interference.
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(a)

BS1 SLM CCD

Motorized

Translation Stage

(Phase Shifter)

BS2

M M

HeNe Laser

633nm

(b)Original Phase-shifting Digital Holography Setup Vortex Phase-shifting Digital Holography Setup

Figure 5.1: Experimental Setup Comparison. (a) This is the experimental setup
used in the original phase-shifting digital holography paper. [Reprinted] with per-
mission from [153] ©The Optical Society. (b) A similar setup can be used for vortex
beams, where the reference arm can be phase stepped using a motorized translation
stage. In this case, the object is instead a transmissive SLM that generates a vortex
beam.

technique. A shutter may be used in the reference arm to block the reference field

when measuring the amplitude of only the signal arm.

Figure 5.2 shows an example of this process and schematic interferograms for

an LG vortex beam with unit topological charge. In the top row, the intensities

for the signal LGℓ=1,p=0 mode and a Gaussian reference are plotted followed by

superpositions at the four specified phase steps used in the reconstruction. The

result is an interferogram with a vortex shifted to the side of the Gaussian, where

the direction of the shift is determined by the phase difference between the two

modes.

To recover the entire field of the signal beam at a particular propagation distance

in an experiment, then, we simply need to take five total images: one image of the

signal only intensity (from which we can obtain the field amplitude by taking the

square root), and images of the four phase stepped interferograms that are used to

calculate the phase. The translation stage that shifts the reference beam, as in Fig-

ure 5.1 (b), must be calibrated to accurately shift the phase between the two beams.

The CCD can also be moved along the z direction to scan along the beam propa-

gation direction, taking the needed five images at each z-step to build up the vortex
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Figure 5.2: The process of measuring amplitude and phase via phase shifting holog-
raphy is shown. Top: Superposition of a signal beam with a phase shifted Gaussian
beam results in varying intensity patterns that depend on the phase shift. Bottom
Left: The full complex field of a LG beam is shown. Bottom Middle: amplitude
of the signal beam can be found by taking the square root of the intensity. Bottom
Right: The phase can be reconstructed from the interferograms of the top panel via
Equation 5.1.5.

dynamics data. This was successfully implemented for measuring the dynamics of

vortices in speckle generated from a piece of scotch tape [91].

While this implementation has been demonstrated, the signal and reference

beams travel along different paths, which means they are subject to the difference

in vibrations amongst the optics used to direct each beam. This can result in ex-

tra phase jitter between the two arms, and less clean measurements. In the next

section, we see that a new method can be implemented to eliminate the reference

arm, which not only makes the measurement more stable, but it also simplifies the

experimental setup.
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5.2 Novel Colinear Geometry Phase Shifting Holography by Using Compos-

ite Holograms

Using an SLM to generate optical fields has already proven to be a smart choice

because of its versatility and ease of changing holograms to create new optical fields

in a quick time frame. But, even further, the SLM has become the optimal tool for

performing these experiments because of our ability to implement phase-shifting

digital holography by using composite holograms. Not only can we generate the

desired signal field from a hologram, but we can also simultaneously generate the

needed reference beam for reconstructing the phase and let these two fields propa-

gate together.

There are many benefits of this implementation. First, there is no need for a

separate arm to recombine the reference beam with the signal beam. This not only

eliminates the need for beam splitters in the set up which can cause distortions

and vortex shifts in the signal beam [154], but also inherently guarantees that the

reference beam will travel in the same direction as the signal beam, removing any

fringing or other distortions caused by misalignments between the two. Second, the

signal beam and reference beam will also travel along the same path through the

experiment. The signal beam and reference beam will therefore pick up the same

vibrations through the experiment, whereas an external reference arm can fluctuate

with respect to the signal, introducing potential extra noise in the measurement.

5.2.1 Holograms

To generate both the reference and signal beam, we simply add the reference

beam to the hologram at the specified phase shift and follow the same methods
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from Chapter 4 for producing optimal hologram quality. The expression used for

the hologram is then given by

HPSDH(x,y) =
∣∣∣ei π(cosα x+sinα y)/L +Aψ f ield(x,y)+Bψre f (x,y,φR)

∣∣∣ , (5.2.1)

where L=N ∗d sets the grating spacing and α determines the angular orientation of

the grating, as in Equation 4.2.1. Here, ψ f ield(x,y) is the field that is intended to be

measured and ψre f (x,y,φR) is the additional reference beam, only used when mea-

suring the phase. A and B are relative weights of the generated field and reference

beams.

An example of a set of the five holograms needed to measure the full field is

shown in Fig. 5.3. It is easy to see that the resulting holograms match the intensity

profiles shown in Fig. 5.2, but with an additional angled planewave that creates the

diffraction grating. These superimposed modes each evolve together as the beam

propagates, allowing for both amplitude and phase as a function of propagation to

be measured. From the amplitude and phase, the vortex location(s) can be identified

through tracking real and imaginary zeros, allowing for the measurement of vortex

dynamics.

Amplitude

Figure 5.3: Set of composite (reference+signal) holograms used for field measure-
ment of an LGℓ=1,p=0 beam with A = 0.5, B = 0.5, α = π/6 and N = 10 pixels.
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Ratio of Signal to Reference Power

The ratio of signal power to reference power used in the experiments of later

chapters within this dissertation depend on the specific application. For beams with

a single, centered vortex, a 50:50 ratio often resulted in clean phase measurements.

However, when there are two vortices close together, having the highest contrast in

the grating near the vortex centers tended to yield clearer phase measurements with

less noise at the locations of the vortices. It is important to note, though, that going

too low, such as 99:01, seemed to optimize the interference for low power noise

that may be in the field. In most experiments, the right balance between measuring

a clean vortex and minimizing the noise was found by iterating through different

power ratios and choosing the holograms that yielded the cleanest phase near the

vortex center.

Proper Normalization Methods for Phase Holograms

It was mentioned at the end of Section 4.2.3 that the field generated from the

holograms is cleanest when the contrast within the holograms themselves is max-

imized. While this is generally true, it is important to be careful when generating

the holograms needed for reconstructing the phase of the field. This is because to

get the proper phase, it is not just the amplitude that is needed, but specifically the

relative amplitude between each interferogram. If each hologram is rescaled, then

the phase calculated is actually incorrect. To avoid this issue, and still maintain the

highest contrast possible, the set of four phase holograms are normalized instead to

the maximum value within all four holograms rather than individually.
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5.2.2 Experimental Fields Measured by Colinear Phase-shifting Digital Holog-

raphy

With each of the holograms made, the experimentally generated fields can be

measured and used to reconstruct the full complex field. To test our ability to mea-

sure high quality vortex modes, we generated a set of HyGG modes and a set of LG

Modes. The results for modes with topological charge of ℓ = −1 and ℓ = +4 are

shown in Figure 5.4 along with an LGℓ=0,p=0&1 mode.

The measured amplitude and phase match well with our expectations. In the

amplitude measurements, we see smaller vortex cores for smaller ℓ values, and we

observe many radial modes in the HyGG beams, in contrast to the single, lowest-

order mode in the LG beams with p = 0. The phase information also shows a

significantly higher amount of curvature in the HyGG modes as compared to the

LG modes, as expected after some propagation due to the additional radial modes

Figure 5.4: Experimental measurements of several complex laser modes measured
by colinear phase-shifting digital holography including a “flat donut” mode on the
far right. [Reprinted] with permission from [151] ©The Optical Society.
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present in HyGG beams [155]. The expected topological charge is clearly and

directly seen in both the HyGG and LG beams.

5.3 Modal Decomposition

Since we have both amplitude and phase information from the colinear phase-

shifting digital holography process, we can evaluate the quality of the fields gener-

ated. One way to quantify this is to perform a modal decomposition of the measured

field and compare it to the designed modal content. Any field can be computation-

ally decomposed into any basis [78–85], but if the LG basis is used, both ℓ and

p power spectra can be determined. This method has many advantages including

minimally required data acquisition (one complex beam profile is all that is needed

to perform a computational modal decomposition), the ability to check other modal

bases without acquiring more data, and minimal alignment error. Here we review

the theory for modal decomposition in an LG basis and then apply the LG modal

decomposition to the experimentally measured modes shown in the previous sec-

tion.

5.3.1 Modal Decomposition Theory

To start, consider the arbitrary optical field, ψ f ield , such as the fields measured

through the techniques of the previous section. This field can be expanded into the

sum of LG components, so that

ψ f ield =
∞

∑
l=−∞

∞

∑
p=0

Cℓ
pLGℓ

p. (5.3.1)
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Orthogonality of LG modes allow for full characterization of the modal composition

of ψ f ield by way of

Cℓ
p =

∫
All

ψ f ield ∗
(

LGℓ
p

)∗
dA, (5.3.2)

where
(
LGℓ

p
)∗ is the complex conjugate of LGℓ

p.

Given experimental measurements of the complex image of ψ f ield , we can mea-

sure Cℓ
p by multiplying that image by a calculated image of LGℓ∗

p and then by sum-

ming over all pixels. This means that after we have a complex image of a field, our

method becomes a matter of iterating through digital transmission filters (LGℓ∗
p for

all relevant values of ℓ,p) and summing over all pixels, which allows us to measure

Cℓ
p over a very large portion of the {ℓ, p} parameter space very quickly, without

having to take additional physical measurements for each ℓ. Example code used to

perform such decompositions can be found in Appendix C.4

5.3.2 Example of Modal Decomposition with Experimental Data

As described in the previous section, the modal decomposition onto an LG basis

gives the full ℓ-p spectrum measurement, and a projection onto the the ℓ axis yields

the ℓ power spectrum. The measurements done for this work used pure LG modes

as the digital filters. Figure 5.5 shows the results of this decomposition for three

experimentally-generated and measured modes: an HyGG with topological charge

ℓ = −1, a LG mode with ℓ = −1 and p = 0, and the composite “flat donut” that

is a sum of LG p = 0 and p = 1 with ℓ = 0. Calculations of the power spectra

confirm high quality mode generation with extremely high ℓ purity for each of the
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Figure 5.5: Results of modal decomposition on three experimentally measured laser
modes: A) a HyGG beam with ℓ=−1, B) an LG beam with ℓ=−1, p= 0, and C) a
composite “flat donut” mode composed of LGp=0

ℓ=0 −LGp=1
ℓ=0 . The top graphs shows

the power spectrum on a logarithmic scale, and the bottom shows the amplitude
spectrum in LGp

ℓ space. [Reprinted] with permission from [151] ©The Optical
Society.

measurements, on the order of 99.9 %. Previous authors were able to attain a modal

purity of up to 99.3% [26] and 99.67% [156].

These results show immense promise for our ability to generate optical fields

of high purity. However, it is important to consider potential errors in the methods.

Successfully quantifying the errors can afford us a high confidence in our ability to

accurately measure these modes and confirm that these results are in fact reliable.
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5.3.3 Finite Window and Pixelation Error Analysis

As described in Section 3.1, the modal decomposition of a discretized complex

field requires the generation of a set of basis fields whose centers must match that

of the field of study. The alignment of the pixel edges of the generated basis fields

with respect to those of the measured image is extremely important for accurately

measuring the modal content. While the pixel edges are generally fixed for a phys-

ical measurement, determined by the location of the beam on the CCD and how the

image is cropped, the alignment of pixel edges can conveniently take any position

during computational analysis. In Figure 5.6 we can see errors from pixelation can

be minimized, even for low resolution images.

The errors stemming from pixelation are shown to be less of a function of res-

olution, and more of a function of pixel-edge alignment, which is surprising. This

result can be exploited to achieve high spectral resolution from low resolution data

that is easy to measure and compute. Although even inexpensive consumer cam-

era CCDs can be used to record complex images with resolutions on the order of

thousands of pixels squared, we analyzed modeled images with only 100 pixels

squared to demonstrate that excellent results can be achieved with low resolution,

rapidly computable data. The mode spectrum of pure, LG modes on a discrete grid

(as would be measured by a CCD in an experiment) is calculated using different

relative displacements between the modeled image and the calculated transforma-

tion filter. Differences in the spectrum for different relative waist sizes of the mode

with respect to the size of the image window are also calculated. The error in such a

measurement is dependent on the beam size as compared to the window as well: too

small and the pixel effects are less forgiving, but too large and the beam is clipped
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Figure 5.6: Modeled modal purity of a pure LG4
0 mode as a function of beam waist

to the total image window. Each curve shows the misalignment error resulting from
the measured mode and calculated mode having: no relative displacement (blue),
a quarter pixel displacement (purple), a half pixel displacement (red), one pixel
displacement(orange). We conclude there is an optimal ratio for which the error is
mostly negligible, and at which very small (sub-pixel) misalignment is at its most
forgiving. This relative size is approximately 2

5 of the window, for all values of
ℓ. We find slight variations in these errors for different ℓ values, but the error-
minimizing value of the beam to window ratio remains the same. [Reprinted] with
permission from [151] ©The Optical Society.

by the window. This trend is shown for LG4
0 in Figure 5.6, where each line repre-

sents the measured modal purity of as a function of beam size in a fixed window,

for different pixel-edge displacements.

One important note on this error measurement is that it is not possible to mea-

sure a modal content that is of higher purity than the actual mode itself. In other

words, it is not possible to adjust the window size around the beam or the center of

the calculated LG filter to achieve a higher purity measurement; it is only possible

to reduce these errors introduced by the modal decomposition process.
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5.3.4 Detector Tilt Error Measurements

Further measures could be taken into account such as correcting for any po-

tential misalignments in the detector that is measuring the ℓ content of a given

field [157]. However, in Figure 5.7, we show that when measuring the topological

charge of a beam our technique is highly insensitive to the tilt of the detector. We

see only a small deviation in the ℓ power spectrum as we increase the tilt of the

camera to 10 degrees. When increased to 20 degrees, we see slightly more power

in the surrounding modes, but continue to measure a purity greater than 99.9% in

the ℓ spectrum for this case. The radial mode spectrum proves to follow the same

pattern, but we do observe a measurable decrease in the purity of the p=0 mode.

That we observe high ℓ purity in the measured mode even in the case of dramatic

detector misalignment is indicative of the strength of this technique.

This result makes sense: while a tilted mode may look oblong in the intensity

measured on a camera, the reference and signal beam are co-propagating, and there-

fore maintain the same phase difference and azimuthal phase wrap at the expense
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Figure 5.7: Measured modal power spectra of a LG1
0 beam from CCD images taken

at 0, 10 and 20 degrees of misalignment from the axis of propagation. Left and right
parts show the same data represented in the ℓ (left) and radial (right) bases. Data is
for integer ℓ and radial modes; results for different CCD tilts are slightly offset for
clarity. [Reprinted] with permission from [151] ©The Optical Society.
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of radial mode purity. These error analyses of decomposition results applied to ac-

tual measurements demonstrate the robustness of our colinear phase-shifting digital

holography and the digital modal decomposition. In minimizing errors stemming

from center mismatches between the experimental field and the digital basis filters,

beam to window size, and detector tilt, we can reliably confirm our measured modal

purity from Section 5.3.2 of up to 99.9% for the intended topological charge.

In this chapter, we have discussed and implemented a novel colinear geometry

of phase-shifting digital holography by using composite holograms. This robust

measurement technique allows for quick measurement of both amplitude and phase

of any arbitrary field that can be encoded into a hologram in addition to fast compu-

tational determination of the LG modal spectrum. The modal decomposition results

give us confidence that our experimental methods do in fact yield high quality op-

tical fields suitable for testing vortex dynamics for fields as described in Chapter

3. But, we have only discussed how to create holograms for both generating and

measuring optical fields. We have yet to discuss the actual apparatus used to do so.

This is the topic of the following chapter.
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Chapter 6

Experimental Apparatus, Alignment Methods and Other Details

With the theoretical framework laid out, we can consider what the design should

be for carrying out experiments used to test the models. The main concept behind

the setup is fairly simple: we need an input laser beam to pass through a device

that can generate the field we want, and then we need to measure the light that

propagates on the other side. My main goal as the experimentalist is to have a

set up that can successfully generate and measure the dynamics of optical vortices

within beams that is also as simple to work with as possible. Depending on the

type of vortex experiment you want to carry out, the vortex generation could be

done by anything from a spiral phase plate to a diffuser, as discussed in Ch. 1.

I want to take a brief moment here to emphasize that the apparatus designed for

the work in this thesis can be used for a wide variety of experiments. However,

because I exclusively used holograms displayed on an SLM for the experiments

presented here, an external reference path was not needed (that could be necessary

for experiments that use another type of vortex generation, such as work done on

laser speckle generated from a piece of scotch tape [95], for example).

In this chapter, we will discuss in detail certain aspects of the experimental

apparatus and infrastructure that I built, including improvements made to the setup

and methods I created through my time here at the University of Denver. While the
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number of components in the apparatus is small and the setup is simple in concept,

the difficulty of the experiments lies in the need for very high purity modes. Because

the vortex trajectories are very susceptible to the quality of the mode produced

and propagated through the experiment, any success in the measurements is due

to a very high level of precision and care in the experimental setup and alignment.

Alignment procedures are discussed in detail in an effort to ease reproducibility of

the experiments, and to allow for consistency with future experiments of the same

sort that others might perform.

As an aside, I assume any graduate student has something tedious that they

must do to maintain an experiment. For me, while getting the alignment as close to

perfect as possible is a time consuming endeavor in and of itself, I happened to also

spend a surprising amount of time tracking down the most minor specks of dust or

scratches on mirrors and lenses that can so easily distort the measurements at the

low light vortex centers. Such is the life of many optics experimentalists though, I

imagine.

6.1 Experimental Apparatus

6.1.1 Overview of the Optical Set Up

A schematic of the full experimental apparatus is shown in Figure 6.1. A laser,

either a 526.5 nm diode laser or a 633 nm HeNe depending on the experiment, is

first directed along a line of holes and sent through a telescope with lenses L1 and

L2 of focal lengths f1 < f2, which expands the beam. All lenses used in the set

up are AR Coated (350 nm-700 nm antireflection) Thorlabs N-BK7 Plano-Convex

lenses. An aperture is also placed at the focal plane between the lenses to spatially
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Figure 6.1: A schematic of the complete experimental apparatus is shown. Light in-
cident onto a diffractive hologram projected onto the SLM generates optical vortices
in the first diffracted order. This light is then imaged onto a CCD and translation
stage is used for changing the path length of the beam to the CCD. Both amplitude
and phase are measured by using phase-shifting digital holography.

filter the beam. L2 is placed on a translation stage that moves along the direction of

propagation so that the beam can be collimated very precisely.

The specific values of f1 and f2 are chosen depending on the experimental needs

and based on the fact that the divergence of the beam coming out of the laser de-

pends on which laser is being used. In general, I found that having a beam size

after L2 that is just small enough to be contained within the smaller edges of SLM

panel works best.1 While it is tempting to use a very large beam to get the in-

coming field to be as flat as possible across the SLM (and most planewave-like),

I do not recommend using beams larger than the SLM panel. These large beams

diffract off of the inner SLM panel edges, causing unwanted interference in the

1The work in this thesis used an Epson 83H classroom projector LCD panel with resolution of
1024x768 pixels and pixel pitch of 12.4 µm. The panel has a width of 13.97 mm, and an incident
beam that has a waist of w0 = 2 mm or less worked well for this SLM.
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propagating mode that can distort the mode and subsequently the vortex location

in the measurements. Smaller beams can be used when needed, but too small of

a beam is also subject to pixelation effects. No matter the size of the incident

beam, the incoming Gaussian field and the Gaussian component of the programmed

field will be multiplicative, resulting in the same field with a smaller beam waist

(er2/w2
1 ∗ er2/w2

2 = er2/(w2
1w2

2/(w
2
1−w2

2))). Depending on the experimental constraints,

it can also be important not to make the encoded field so small that the mode is

subject to pixelation effects.

After the telescope, the beam is then aligned along another line of holes on the

optical table and a shear interferometer (Thorlabs SI254) is placed at the anticipated

SLM location. L2 is fine tuned such that the beam waist occurs at the surface of

the SLM. Having the beam waist at the location of the SLM provides a flat incident

phase and alleviates the need to correct for a radius of curvature of the incident beam

in the holograms. For the SLM we use a transmissive, red LCD panel of a rewired

Epson 83H classroom projector [141], which is mounted onto a 3-axis translation

stage in addition to tip and tilt mounts with rotation abilities for precise alignment,

described in more detail later in Section 6.2.1. If the incoming beam needs to

be realigned, after the SLM is mounted, a check with the shear interferometer a

couple of centimeters before seems to be sufficient for beams that have a large

Rayleigh length (large, slowly diverging beams). For small beams that have a larger

divergence, the SLM may need to be removed and then replaced to ensure accurate

collimation at the SLM.

Holograms as described in Section 5.2 are displayed on the SLM and the beam

diffracts off of the hologram, generating the programmed field from the hologram

in the first diffracted order. Two mirrors immediately follow the SLM to align
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this diffracted order along a line of holes. Lenses L3 and L4 with f3 = f4 = 50cm

are then placed on translation stages along this line of holes to spatially filter and

image the beam. The stages are in place to fine tune the distance between the

lenses in the imaging system. The beam is then finally aligned with a set of mirrors

onto a translation stage with a retroreflector that redirects the beam to a CCD for

measurements. The CCD used is a 12-bit, 1′′ CMOS Wimcam LCM with resolution

of 2048×2048 pixels and pixel pitch of 5.5µm

6.1.2 Computer and Software

To control the experiment, the SLM, translation stage and camera are all con-

nected to the same Windows 10 PC. The main monitor is connected via HDMI

whereas the SLM is connected via VGA to prevent communication issues in terms

of display resolution on the SLM. It is critical for proper field generation that the

resolution of the computer display output match that of the SLM, which in the case

of an Epson 83-H projector as used in the experiments is 1024× 768. Only one

monitor is really necessary, but a VGA splitter was used so that the display on

the SLM can be easily viewed for troubleshooting, in addition to having the main

computer display. To avoid further communication issues, it can be important to

connect the SLM prior to the second monitor. The translation stage is connected to

the computer via a motion controller and GPIB or USB connections.

DataRay Software and Labview Automation

Each piece of equipment is controlled simultaneously with an automated Lab-

view program that I wrote. The master program interfaces the available labview

programming to run both the stage and the CCD, in addition to programs to control
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the SLM. The block diagram and further specifics from the program can be found

in Appendix C.1. In each set of data taken, the computer displays the first grating

in the set on the SLM and the image on the camera is taken. This cycle repeats for

every hologram in the set of data to be taken. After each grating image has been

taken, the stage automatically moves back by a step size specified by the user, and

the next set of images are taken at the new z location. For ease in data processing

later, each recorded image is named with the z location in centimeters followed by

the image number in the set. From there, the data is processed via Mathematica

files that can be found in Appendix C.3.

6.2 Alignment

Because small misalignments can potentially result in significant changes in the

vortex trajectories, throughout my work, I have implemented some best practices

that have helped improve the repeatability and quality of the setup. These alignment

details address this work’s most significant experimental challenges, so they merit a

thorough discussion. In addition to the topics discussed within this section, general

alignment procedure details that may be beneficial for those who intend to use the

same setup are in Appendix B.2.

6.2.1 SLM Alignment when Using a Diffractive Hologram

In general, it is advantageous to put the SLM onto translation stages for fine

tuning of its location relative to the incoming beam. The SLM is mounted onto a

three-axis translation stage, in addition to a tip and tilt mount. The three axis stage

is used for centering the hologram with the center of the beam and to fine tune the
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location along the propagation direction in relation to the first imaging lens, L3. The

tip and tilt mount is to ensure that the SLM is oriented as follows.

Angle of Incidence for the SLM with a Diffractive Hologram

When I came to DU, the group had been aligning the SLM such that it was

perpendicular to the incoming beam [76]. This seemed reasonable, since generally

optics are aligned perpendicular to the propagation axis, and in the case of directly

imprinting the phase onto a beam without using a diffractive hologram, the proper

alignment is normal incidence [60]. However, we will see in this section that align-

ing the SLM in this way leads to LG modes where the vortex drifts as the beam

propagates when it is not supposed to.

Additionally, there seems to be a lack of consistency in the literature regarding

the alignment of the SLM when using diffractive holograms. In many cases, includ-

ing well-known papers, orientation of the SLM is not explicitly mentioned. One

might then turn to looking at the schematic of the experimental setup. However, the

experimental diagrams are either clearly showing an incident beam that is perpen-

dicular to the hologram [25,53,59,76,80,158–161], or it is unclear [59,81], or nei-

ther the incident nor the generated mode are perpendicular to the SLM [162–168].

One study showed it is possible to generate high quality optical vortices using an

SLM with a phase-only computer generated hologram [60]. However, this work

used a transmission SLM with a hologram that was not diffractive. Another group

generated high quality modes at normal incidence, but this was achieved by using

a second corrective hologram [169]. In some papers, the orientation of the SLM is

shown with a beam coming into the SLM at an angle, with the vortex beam axis

perpendicular to the SLM surface [67,170–172] and the case of high-angle diffrac-
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tion has also been studied [173]. The inconsistency throughout the literature shows

the need for reasoning behind a given choice, and what orientation produces correct

realization of the hologram.

The importance of being explicit about the relative alignment of the SLM and

the incident beam became evident in one of my first projects, in which I attempted

to generate a variety of high quality LG modes using the SLM. LG modes are well

understood and if we could generate quality modes across a range of topological

charges, we’d have confidence in our ability to generate other optical fields. For

this side project, there was no imaging system following the SLM, and we simply

allowed the beam to propagate far enough such that the diffracted orders were no

longer overlapped to take measurements. This is important for the results of the

next paragraph, since we did not want to introduce any potential distortions from

lenses [97, 174, 175] and wanted to look at the pure mode after only the SLM.

While working through this project, I found that I could generate an l = 1, p = 0

mode that looked much like what we expected: a round beam with a centered vortex

that could be created and viewed on a camera. However, if the SLM was aligned

such that the vortex was centered in the beam for a hologram with an l =+1 mode,

as soon as the hologram was switched to, say, an ℓ=+10 mode, the vortex was no

longer centered in the beam. Additionally, the ℓ=−1 mode was no longer centered.

Even further, if the camera was placed at a certain location and the ℓ = +1 mode

was centered, at another propagation distance, the vortex also would no longer be

centered. This is summarized in Figure 6.2.

An LG mode is an eigenmode of the paraxial equation governing optical propa-

gation, so we expect that a vortex in an LG beam should remain centered throughout

the entire propagation distance. This made the results of Figure 6.2 surprising. Af-
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Figure 6.2: For an incident beam that is normal to the SLM, the vortex at the center
of LG modes in the first diffracted order will drift as the topological charge is varied.
The SLM can be moved in the transverse plane such that the vortex is centered in the
beam for a single mode at a specific propagation distance, but at all other distances,
even that vortex will become off-center.

ter considering many other possibilities, we realized that there must be something

wrong with the alignment of the SLM. In particular, because of the mismatch be-

tween the ℓ = +1 and ℓ = −1 modes, it seemed not to be an issue related to the

topological charge or pixelation in the gratings. It is surprising that this issue of

SLM alignment has not been identified sooner. We think this is because most work

has used unit or unvaried charge beams, for which the problem can be apparently

“fixed”: it is possible to send in a beam perpendicular to the SLM, place a cam-

era after the SLM at a specific location, and get the vortex centered on the beam

by moving the SLM vertically and horizontally. The problem is, the vortex will

only be centered at that location, and for those who are relying upon a high quality

vortex (or even other more general optical modes), it is imperative to get the SLM

alignment right.

In hindsight, it makes sense that the proper alignment for the SLM requires that

the first diffracted order carrying the encoded field be perfectly perpendicular to the

SLM. The field encoded into the hologram has a mode axis that is perpendicular to

the surface of the SLM and the reference beam programmed into the hologram is an

angled planewave. So, to imprint the field correctly, the first diffracted order should
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be aligned perpendicular to the SLM and the incident beam should be at an angle.

This is also consistent with the holography principles discussed in Section 4.1.

The beam incident onto the SLM is therefore aligned along a line of holes and

the SLM is placed in the beam path at an angle such that the first diffracted order

propagates perpendicular to the SLM, as shown in Figure 6.3. To guarantee that this

is the case, the simplest way to align the SLM at the correct angle is to compare the

incident beam, first diffracted order and the reflected beam. In the case of a reflec-

tive SLM, the first diffracted order is 90◦ to the SLM when it is exactly in between

the incident and reflected beams, such that α = β in the figure. For transmissive

SLMs, we use the backreflection to align the SLM with the same process. In this

case, it is important to use the diffracted order on the side that corresponds to the

Reflection

Geometry

Transmission

Geometry

Transmitted Beam

Incident Beam

Figure 6.3: Schematic of the Correct SLM Alignment. For a reflective SLM, the first
diffracted order should be exactly in between the incident and reflected beam, in
both the x and y. Using the same alignment for the backreflection on a transmissive
SLM will guarantee proper orientation of the transmitted first diffracted order.
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back reflected beam (m=+1 is the top diffracted order in the figure for the depicted

SLM orientation). The opposite order (m = −1 in the figure) is not perpendicular

to the SLM and will not authentically reproduce the hologram.

The exact angle of incidence of the beam onto the SLM will depend on the grat-

ing constant. Gratings with closer fringes produce higher angles of diffraction, so

a grating with a small grating constant will need a larger rotation of the SLM. It is

possible to minimize the angle of incidence to the SLM by using a large grating con-

stant (small diffraction angle), reducing the effect of non-optimal alignment, such

as coming in at normal incidence. However, cleanly isolating the first diffracted

order from the others becomes a challenge, even when spatially filtering the mode

with a lens and aperture. In our view, it is more beneficial to illuminate the SLM

at the proper angle and use as small a grating constant as possible2, to get better

spatial filtering of the first diffracted order.

Comparing Higher Order Modes at z = 0

To check that the SLM is centered and that the angle is also correct, I compare

two LG modes, each with the same, higher order topological charge, but with oppo-

site sign. I typically compare modes with either ℓ=±10 or ℓ=±12. As mentioned

earlier, when the SLM is not aligned at the correct angle, the vortex center will drift

as you scan through different values of topological charge. When the SLM is ori-

ented correctly, the vortex (propagated some distance, such as a few meters) from

the SLM) should be centered for both higher order modes, as can be seen in Figure

6.4. Additionally, the vortex should no longer drift with beam propagation.

2As discussed in Chapter 4, the grating constant can only be so small before pixelation in the
hologram can distort the generated field.

119



𝐿𝐺+10 𝐿𝐺−10

1

0

Figure 6.4: Using Higher Order Modes to Check Alignment. Toggling between a
high order mode with either positive or negative topological charge can indicate if
the orientation of the SLM is not quite right. When the SLM is oriented correctly,
both modes will be centered, as in these images. When it is not, there will be a shift
in the intensity profile and while one mode can be centered, the other will clearly
be off-center, as shown in Figure 6.2.

A combination of the SLM orientation of the previous section, and checking the

vortex drift across higher order positive and negative charge vortices allowed us to

obtain the very high purity modes discussed in Chapter 5, even with a very low cost,

used projector LCD panel with pixels that are larger than the typical commercial

SLMs designed for use in optical laboratories.

6.2.2 The Imaging System and Minimizing Magnification Errors

Another very important part of the experiment is the imaging system that is

placed after the SLM. Depending on the the experiment, the imaging may not al-

ways be needed. For example, if one only needed to measure a beam at propagation

distances far from the SLM, it is possible to simply wait for the diffracted orders

to separate from each other, redirect the first diffracted order onto a CCD, and take

the necessary measurements. However, in the case of our vortex dynamics exper-

iments, being able to measure the entire propagation of the field starting at z = 0

is beneficial, because only then can we capture the full dynamics. No matter how
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small of a diffraction grating that is possible for a given setup, the only way to do

this is to use an imaging system. This is comprised of two lenses of equal focal

length, for simplicity, placed such that the light emitted from the SLM can be im-

aged and the first diffracted order can be spatially filtered with an aperture at the

focus of the imaging system. The light generated from the SLM will travel through

both of the imaging lenses (L3 and L4 as shown in Figure 6.1), and their alignment

can have a dramatic effect on the outgoing beam.

If the imaging system following the SLM is perfectly set up such that the SLM

is located exactly one focal length away from the first lens and the distance between

both lenses (L3 and L4) is exactly f3+ f4 apart, then the beam propagating from the

SLM will be exactly the same as the beam beginning a distance of f4 away from

L4. This means that the imaging plane is the new location of the beam waist, as

well as the new z = 0 point, as shown in Figure 6.5 (a). After the imaging plane, the

light propagates just as it would have if the surface of the SLM were located at that

imaging plane instead. Another way to think about this is that L3 and L4 not only

image the light at the surface of the SLM, but also the light propagating beyond

the SLM as well. However, this one-to-one propagation is only true for completely

perfect alignment, which is not possible in an experimental setting. Although they

can be minimized, misalignments will always be present.

One type of misalignment is the transverse alignment of the lens compared to

the beam axis. The first diffracted order should be aligned on each lens so that it is

incident in the exact middle of the lens. This is to avoid any asymmetric focusing

or distortions to the beam that can cause displacements in the vortex locations that

can be introduced by the lenses [174, 176] or asymmetries in the host beam that

can alter vortex dynamics [97, 177]. A target (such as a Thorlabs SM1 UV/Visible
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Alignment Disk, VRC1SM1) is placed on each lens as it is aligned to minimize

these types of errors, and the lens is adjusted until the beam is centered on the

target (and therefore the lens).

A second type of misalignment in relation to each individual lens is the in-

coming angle of the beam with respect to the lens. If the beam enters the lens at

an angle, the light is no longer focused (or collimated) properly through the lens.

These shifts and tilts can cause dramatic changes in the modal content and therefore

the beam propagation [175,176]. The angle of the lens with respect to the beam can
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Figure 6.5: Ray diagrams are shown for the case of a perfectly aligned imaging
system as shown in (a), or an imaging system with two types of misalignments as
described in the text and shown in (b). In both (a) and (b) the object considered
for the ray tracing is the field propagated to a certain distance away from the SLM,
marked by the black, solid arrow. Application of the thin lens equation to this
“object” results in a virtual image created by the first lens, L3, marked by the dashed
black arrow. This virtual image is then used as the object for the second lens, L4.
The location, z′, and size of the final image that appears on the right side of L4
depends on both the error in the placement of the SLM (described by ∆) and the
error of the distance between the two lenses (described by ε).
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be adjusted using the back-reflection of the beam, as far back down the beam path

following the first diffracted order as possible to allow for the smallest misalign-

ment possible. While each of these types of misalignments can be found within the

literature, there are other misalignments that are crucial to consider, specifically in

the context of accurately measuring vortex dynamics. The remainder of this section

is dedicated to understanding these additional sources of misalignment and how to

minimize their effects.

The first additional misalignment that we consider is a displacement, ∆, of the

SLM from the left focal plane of L3 as shown in Figure 6.5 (b). A second possible

misalignment is of the z distance between the lens pair after the SLM, shown in

Figure 6.5 (b). For this, we will consider the first lens, L3, to be displaced to the

left by ε from the correct location. If the distance between the lens pair is not well

aligned along z, the result is a magnification of the beam which can not only alter

the intended initial condition field at the focal plane of the second lens, but it also

scales the meaning of the z propagation after the lenses.

To understand the exact effect on the beam propagation, we can apply a simple

ray optics approach to an object located to the left of L3 and make use of the thin

lens equation. We will use the diagram and distances labeled in Figure 6.5 (b) and

will solve the problem for the case that includes a displacement from the correct

position for both the SLM and L3.

As a reminder, the thin lens equation is given by

1
f
=

1
dob ject

+
1

dimage
(6.2.1)
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where f is the focal length of the lens and d is the distance to either the object or

the image, indicated here by the subscripts. For a lens pair, we follow the process

of applying the first lens to the first object and then the second lens to the image

created by the first lens, allowing us to find the relationship between propagation

from the SLM and the propagation after the second lens.

For the first lens L3, consider the field propagated away from the SLM by an

amount, z, and located z0 away from L3. This is marked as our ‘object’ by the solid

black arrow to the left of L3 in Figure 6.5 (b). For the sake of this example, let’s

assume that the focal lengths are not the same for generality, and that z>∆ such that

this object is inside the focal length resulting in a virtual image and thus a negative

sign applied to the image distance. The image produced is located at position z1.

The thin lens equation is therefore given by

1
f3

=
1
z0

+
1

−z1
=

1
f3 +∆− ε − z

− 1
z1

(6.2.2)

where we have made use of the fact that in this geometry z0 = f3+∆−ε − z. A few

algebraic steps gives us the virtual image distance

z1 =

(
1

f3 +∆− ε − z
− 1

f3

)−1

z1 =
f3( f3 +∆− ε − z)

z− (∆− ε)
, (6.2.3)

for which the image is represented by the black dashed arrow in the schematic.

This can now be used as the object for the second lens. Since this object is

guaranteed to be to the left of the original object because of the specified geometry,

we can assume that this new object lies well outside the focal length of the second
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lens without concern. Therefore, the next application of the thin lens equation yields

1
f4

=
1
z2

+
1
z3

=
1

z1 + f3 + f4 + ε
+

1
z3
. (6.2.4)

Substituting in Equation 6.2.3 for z1 and solving for the final image distance, z3, the

resulting expression is

1
f4

=
1

z1 + f3 + f4 + ε
+

1
z3

1
f4

=
z− (∆− ε)

(z− (∆− ε))( f4 + f3 + ε)+ f3( f3 +∆− ε − z)
+

1
z3

⇒ z3 =

(
1
f4
− z−∆+ ε

( f4 + ε)(z−∆+ ε)+ f 2
3

)−1

z3 =
f4( f4 + ε)

f 2
3

(z−∆+ ε)+ f4

⇒ z′ =
f4( f4 + ε)

f 2
3

(z−∆+ ε). (6.2.5)

In the last step we have made use of the fact that the propagation distance measured

by the CCD in the lab begins one focal length away from L4, since for a perfectly

aligned system, that would be the z = 0 imaging plane (i.e. z′ = z3 − f4).

With this solution, we can now consider some specific cases. In particular,

when f3 = f4, as is done in our experiments to ensure one-to-one magnification of

the field from the SLM, the expression becomes

z′ =
( f + ε)

f
(z−∆+ ε), (6.2.6)
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and for the case where ∆ = ε = 0, the expression simplifies to

z′ = z. (6.2.7)

This simplification verifies that the result of Equation 6.2.6 is consistent with our

expectations for no misalignments in the system, as in case (a) of Figure 6.5, where

the beam propagates one-to-one from the imaging plane of the second lens.

With this simplification happening as expected, we can now consider other sim-

plifications of the expression that prove to be useful for optimizing the experimental

setup. In particular, we will consider the two distinct cases that are most relevant

to our experiments: misalignments of only the SLM and misalignments of only the

lens pair.

Case 1: ε = 0, ∆ ̸= 0

If we assume a positive ∆ that moves the SLM to the left, increasing the propa-

gation distance to the first lens by ∆, we recover the result

z′ = z−∆, (6.2.8)

where z′ is equivalent to z shifted by the same amount (∆) as the SLM. In hindsight,

this makes intuitive sense since a shift in the location of an object on one side of an

otherwise perfect imaging system will simply result in the same shift of the image

on the other side. The result is plotted with a variety of values for ∆ in Figure 6.6 to

show the impact. We can quickly note here that the change in position is indepen-

dent of the focal length of the lenses.

126



Displaced SLM by 

𝑓3 = 𝑓4 = 50𝑐𝑚

z
’ (

c
m

)

z (cm)

Figure 6.6: A plot of z′ as calculated by the thin lens equation as compared to the z
location of the camera as measured by a tape measure in the lab is shown for various
SLM misalignments assuming perfect alignment between the lenses. If the SLM is
moved back by a distance of 10 cm from the left focal plane of L3, the image of the
propagated field will simply move back a distance of 10 cm as well. This means
that at the measured z = 0 cm in the lab for no misalignment, the actual z of the
propagated field will be 10 cm greater.

Case 2: ∆ = 0, ε ̸= 0

It turns out that misalignment of the lens pair after the SLM is the more impor-

tant source of error to consider. For ∆ = 0, Equation 6.2.6 becomes

z′ =
f ( f + ε)

f 2 (z+ ε) (6.2.9)

This error is not a systematic shift in the same way as in Case 1. If the lenses are

not very close to f3 + f4 then the propagation measured is not one-to-one with the

propagation away from the SLM, as shown in Figure 6.5 (b), and interpreting the

vortex dynamics is much more difficult. As anticipated, if the lens pair is perfectly
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aligned, z = 50cm away from the SLM corresponds to z′ = 50cm. However, with

a small deviation from this distance between the lenses, there can be a significant

difference between the propagation distance as measured in the lab, z, compared to

the propagation value, z′, anticipated based on the misalignment.

Plotting z′ as compared to z as measured in the lab, shown in Figure 6.7, reveals

a simple strategy to reduce the error introduced by case 2 in particular: increase

the focal length of the imaging lenses. This can make some intuitive sense if you

consider a very short focal length lens. The depth of focus of a lens with a smaller

focal length is much smaller and the divergence is much larger than for a larger

focal length lens. If your beam is diverging very quickly, small adjustments to the z

location of the second lens can have a greater affect on the collimation.

The expense of using longer focal length lenses, though, is a lower numerical

aperture, but this is a small price to pay for minimizing the opportunity for poten-

𝑓3 = 𝑓4 = 12.5𝑐𝑚 𝑓3 = 𝑓4 = 50𝑐𝑚
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Figure 6.7: (a) shows the discrepancy for lenses with f = 12.5cm and (b) shows the
discrepancies for lenses with f = 50cm. This shows that such errors can easily be
reduced over the scales we propagate our fields, though, by simply increasing the
focal length of L3 and L4. For this reason, we choose lenses of f = 50cm.

128



tially significant errors from small misalignments that can dramatically affect our

observations. For this reason, all experiments performed in this dissertation have

imaging lenses L3 and L4 of focal lengths f3 = f4 = 50cm. An additional benefit of

using these longer focal length lenses is that accessing the imaging plane is easier,

as there is more path length to set up the translation stage before reaching the CCD.

With these results, we can clearly see that the most crucial distance to optimize

is the distance separating the two lenses, particularly when the focal length of the

lenses is small. A shift of the SLM will manifest itself as a systematic error that is

easier to correct. An additional check on the imaging system can be done by placing

a resolution standard at the location of the SLM and the CCD at the imaging plane.

After the alignment process is complete, a comparison of the actual size of the

resolution standard and the size in the image, within the pixel size (5.5µm), can

help verify that the imaging system is one-to-one. Once the distance between the

lenses is set, the SLM is translated as close as possible to one focal length from L3

using a tape measure.

6.2.3 The Aperture, Translation Stage, and Camera

Even if the hologram used were not diffractive, it would be advantageous to

spatially filter the light generated by the spatial light modulator, since stray pixel

diffraction can potentially interfere with the measurements of the beam. However,

particularly because we are using diffractive holograms, it is even more important

to spatially filter the light emitted and ensure only the desired first diffracted order

passes on to the CCD. As shown in Figure 6.1, the first diffracted order is selected

and spatially filtered at the focus of L3 by an aperture. One must be careful when

selecting the size of the aperture to use.
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Aperture

A balance between having a small enough aperture to filter out interference

from other diffracted orders and a large enough aperture to avoid clipping the beam

is needed for accurate and clean data. An adjustable aperture (Thorlabs SM1D12C)

was placed at the focal plane on a three-axis translation stage. The aperture was

adjusted until the fringing was minimized without causing beam diffraction. An

example for a two vortex experiment is shown in Figure 6.8 where the aperture

for the specified conditions was set to 4 mm, highlighted by the dashed red box,

when taking data. It is also useful to test the centering of the aperture by closing

the aperture to the smallest diameter and looking at the distortion of the vortices.

If the vortices simply get larger equally in each direction and maintaining an even

power distribution (as in the far right of Figure 6.8), the aperture is centered well

enough. If the aperture is off-center, one vortex will be distorted more than the

other, and the aperture alignment can be fine tuned via the micrometers of the stage

it is mounted on. Back-reflection from the aperture can be used to ensure that the

7mm 6mm 5mm 4mm 3mm 2mm 1.5mm 

Figure 6.8: For a beam with w0 = 1.88 mm generated from a grating with L = 10
pixels, as the aperture at the focal plane of the imaging system is adjusted, the
beam quality varies. On the far left, when the aperture is large, fringing from other
diffracted orders is prominent. On the far right, the aperture is small and clipping the
beam, causing diffraction and preventing higher spatial frequencies from passing
through. This distorts the initial field. The optimal aperture size for this beam
profile (highlighted by the dashed red box at 4 mm) is large enough to minimize
clipping, but small enough to minimize fringing.
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aperture is not tilted with respect to the direction of propagation, which can alter

the beam propagation as well.

Translation Stage and Retroreflectors

After propagating through the imaging system, the light is directed to a transla-

tion stage that is aligned along the propagation direction. Mounted on the transla-

tion stage is a retroreflector that redirects the light to a CCD for beam measurement,

as shown in Figure 6.1. As the translation stage is moved, the path length of the

light to the CCD is increased, so that the light can be measured at various propaga-

tion distances. The stage and retroreflector are mounted such that when the stage

is set to its closest point, the field measured on the camera is at the imaging plane.

This allows for the use of the entire length of the stage, and therefore longest change

in propagation distance possible for measuring vortex dynamics.

On the stage, there were different iterations of retroreflectors used at different

times. For the linear core, two vortex data, a HeNe laser was used and we used

a Thorlabs TIR Retroreflector, B-coated (AR Coating: 650 - 1050 nm). When

we switched to using the green diode laser for the single vortex experiment, the

retroreflector was no longer close to the wavelength specifications, and we saw

extra reflections that interfered with the mode. For this case, I made a retroreflector

from two silver mirrors (Thorlabs PF10-03-P01-10) mounted at a 90◦ angle such

that a beam coming in along a line of holes was redirected out along the next line

of holes.

Two mirrors placed just after the imaging system, shown in Figure 6.1, are used

to align the beam to the stage. For any given experiment, the aim is to obtain the

smallest drift introduced by the stage as possible. One could do this with a knife-
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edge and power meter. However, the beam wander feature in the DataRay software

is what I used to align the stage. The beam wander feature tracks the centroid of the

beam, so the camera can be effectively used as an iris. I used the beam’s location

at the midpoint of the stage and then aligned the first mirror following L4 when the

stage is at the closest point to this location and the second mirror after L4 when the

stage is at the farthest point to the same location. A few iterations of these mirror

adjustments results in an aligned stage.

The longer stage used in the original two vortex data was bowed and the smallest

drift that could be achieved was on the order of millimeters. In the single vortex

case, the Newport stage that was used was much more stable, and the beam could

be aligned such that the drift was on the order of tens of microns. In either case,

an LG beam is used to help account for and mitigate any drifts in the system. No

matter the stage used, though, the imaging plane must be determined in order to set

the starting point for measurements taken.

Determining the Imaging Plane of the CCD

The CCD is first aligned such that the beam is centered on the sensor and the

back reflection of the beam travels exactly along the incoming path. To find the

imaging plane of the camera (i.e. the z = 0 plane), I used a hologram encoded with

the amplitude of a unique image with sharp and distinct features,3 as in Figure 6.9

(a). The translation stage with the camera mounted on it was moved to a point

such that z < 0, and the camera was inside the imaging plane, shown in Figure

3As a short aside related to scientific outreach amongst young students, I found that using images
from popular preteen/teenage shows was a fun and effective way to peak their interest during lab
tours. Students, particularly around the middle school age were intrigued that you could imprint fun
objects, such as a Mind Flayer [178] or others found in Appendix C.4, onto a laser beam.
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(b) Out of Focus Image(a) Hologram (c) Focused Image

Figure 6.9: (a) A hologram used for determining the z = 0 imaging plane is shown.
(b) When the camera is placed at z < 0, the image is clearly out of focus. (c) When
the camera is at the imaging plane, the image stamped onto the hologram is in focus.
This point was used to determine the starting point for taking data in each run.

6.9 (b). The stage is then moved until the sharpest image is obtained, such as that

of Figure 6.9 (c), and this determines the location of the zero point for a given

configuration. Alternatively, the imaging plane can also be found by placing a point

vortex hologram onto the SLM and translating the CCD until the core is as small

and sharp as possible.

Once the zero point is set, measurements of the beam can be made beginning

there and at larger propagation distances as determined for a particular experiment.

The location of any vortex in the beam can then be identified at each z location as

described in the following section.

6.3 Vortex Tracking Methods

In order to accurately measure the dynamics of vortices within the experiment,

despite the steps taken to align the beam to the translation stage, we must carefully

account for any beam drift in the system. Only after the drift has been eliminated

can we identify and track the vortices. This section details the methods used in each

experiment for both accounting for drift and identifying vortex locations once this

is done.
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Cropping Data to Account for Drift

Even with a careful alignment of the translation stage that controls the prop-

agation distance to the camera, it is very important to account for any inevitable

drifting of the beam with propagation. The method we have used in this work is to

use a high quality LG beam in a given experiment as a “tracer” to track the beam

drift, so that it can be eliminated. Using the amplitude and phase measurements

of the LG mode obtained from the phase-shifting digital holography methods from

Section 5.2, and the vortex identification methods discussed in the next subsection,

we are able to track the vortex of an ℓ= 1, p = 0 LG mode. If the beam drifts, the

location of the vortex will move the same amount, which can be used to shift the

center-point of the data accordingly.

An example of this is depicted in Figure 6.10. Panels (a-c) are plotted examples

of a LG mode measured at a fixed camera location while the translation stage is

moved back. In this example, there is a large amount of drift present (>1 mm) in

the system. The actual amount of drift in the experiments varies depending on the

quality of the translation stage that is used, and a large drift is used in the figure

for clarity of the concept. The vortex in the LG mode is located computationally,

and the beam is cropped around this location, creating a window centered around

the beam with drift removed, shown in panels (d-f). This centering is then applied

to all images taken for a given data set, and the images are then considered to be

calibrated with no remaining effects from drift present in the data.

This of course relies on a LG mode with a centered vortex that is not drifting

with respect to the beam, which can happen if the system is not well aligned. How-

ever, our confidence in this method results from our alignment methods discussed

134



y
 (

m
m

)

x (mm)

y
 (

m
m

)

x (mm)

y
 (

m
m

)

x (mm)

y
 (

m
m

)

x (mm)

y
 (

m
m

)

x (mm)

y
 (

m
m

)

x (mm)

(a) (b) (c)

(d) (e) (f)

Figure 6.10: A theoretical example of the drift calibration method is shown. (a-c)
the beam drifts as it propagates with respect to the camera. (d-f) the calibrated data
no longer has this external drift and vortex trajectories can be measured directly
from the new window.

in previous sections of this chapter which yielded the high purity modes reported in

Chapter 5, particularly for an ℓ= 1 mode.

Identifying Vortex Locations

Once the drift is accounted for, the vortex locations relative to the corrected

beam center can be identified at each z step. From this, we can not only measure

quantities such as the x and y positions as a function of propagation, but we can

accurately measure the vortex velocities. One might be tempted to locate the vor-

tex using the zeros of the amplitude, but a zero amplitude value cannot guarantee

the presence of a vortex on its own [24]. Additionally, locating the true zero point
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in potentially noisy experimental data is an extra challenge. The phase at the lo-

cation of the vortex is undefined, so this may also be less straight forward to use

for identifying vortex locations. However, the real and imaginary parts of a vortex

field are smoothly varying, shown for an LGℓ=1,p=0 mode in Figure 6.11 (a), and

the only way the singularity at the center of the vortex can exist is if both real and

imaginary parts are simultaneously equal to zero [90].4 This is why vortices are

sometimes referred to as optical nodes [181]. Figure 6.11 compares (a) the real and

imaginary representation of a vortex (with zeros marked by the solid red line) to (b)

the amplitude and phase representation to illustrate the characteristic shapes near a

vortex. As can be seen in the figure, the intersection of the real and imaginary zeros

accurately locates the vortex.

The calculation of real and imaginary zero intersections can easily be done com-

putationally on experimental data, but full complex data (i.e. both amplitude and

phase, not just an intensity image) are required. We acquire the complex field data

4Edge defects can also be detected by the intersections of real and imaginary zeros, but yield
continuous zero lines (such as the line discontinuities found in Hermite Gaussian Modes) rather
than the single point for an optical vortex [24, 179–181]

Re[𝜓] Im[𝜓]

(a) (b)

Amplitude Phase

Figure 6.11: (a) Real and imaginary parts of an LGℓ=1,p=0 mode are plotted in
three dimensions. Both are smoothly varying, and the zeros of each are marked by
a solid, red line. (b) When both zero lines are plotted together (black solid lines) in
comparison to two dimensional plots of the amplitude and phase, the intersection
lines up with the anticipated vortex location (white circle) in the center of the beam.
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with the phase-shifting digital holography techniques of Chapter 5. The field mea-

surement and calculation of real and imaginary zero intersections is repeated at each

z step and the set of vortex positions is used to measure quantities such as the vortex

velocity. An example of a computationally located vortex from experimental data

of an LGℓ=1,p=0 is shown in Figure 6.12. As seen in the figure, a central vortex is

located by the intersection point of the real and imaginary zeros. Many other vor-

tices are also found along the outside edge of the beam, but this is due to low light

noise, so they can be disregarded.

This method of vortex tracking also works for fields with more than one vortex,

and the number of zero crossings increases with the number of vortices present. For

fields with large amounts of noise, and more than one vortex could be in the data

where only one should be present; a Gaussian filter can be applied to the data to

reduce some of the impacts of experimental noise.

𝜓𝑅𝑒𝑎𝑙 = 0 𝜓𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 = 0 Vortex Location

Figure 6.12: An example of the real and imaginary zeros for an experimental field
of an LGℓ=1,p=0 are shown in the left and middle images, respectively. The vortex
location is the intersection, marked by the centered, red point on the right image.

6.4 Part II Summary

In this chapter, and the two preceding it, we have discussed at length the details

for building an experiment to measure vortex dynamics. This has included meth-

ods for generating holograms, techniques for measuring amplitude and phase of

optical fields, details on how to properly align an experimental setup, and reliable
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methods for tracking vortex locations with propagation. Each of these topics have

contributed to reaching our goal of experimentally testing vortex dynamics for the

test cases discussed in Chapter 3. The results of performing these experiments will

be discussed next as we move into Part III.
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III

Experimental Results and Future Directions
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Chapter 7

One and Two-Vortex Experiments for Vortices with a Linear Core

A portion of this work was published in Physical Review A: Volume 104, Issue

No. 3, under the title Hydrodynamics of noncircular vortices in beams of light

and other two-dimensional fluids. [120]

Now that we have established the experimental needs for measuring vortex dy-

namics, we are interested in testing the impact of vortex ellipticity on optical vortex

trajectories. This chapter discusses the experimental results for linear core vortex

motion in Gaussian beams for two test cases. The first case is a single vortex placed

on the side of a Gaussian beam with various ellipticities. Recalling the prediction

from Chapter 3, as the ellipticity is changed, the velocity of the vortex should also

change. The second case is the annihilation of a linear core vortex pair, in which

vortex ellipticity evolves with propagation. If both the vortex trajectories and the

vortex tilt behave as anticipated in each case, the results will provide compelling

evidence that our hydrodynamic model effectively describes these linear optical

systems.

As an aside, any specific experimental details that are unique to a given exper-

iment will be discussed followed by the results from the set of experiments per-

formed. Comparisons of the data are made with the predictions from both Section
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3.6.1 pertaining to a single, linear core vortex placed within a Gaussian, and Section

3.6.2 for an oppositely charged vortex pair within a Gaussian will be made.

7.1 Single Off-center Vortex within a Gaussian

In the case of a single optical vortex, two unique initial conditions are pertinent:

[1] a vortex centered in the beam and [2] a vortex shifted from the center of the beam

by some distance, x0. The background field for each of these is just the underlying

Gaussian. For a centered vortex, ∇ρ̃ = ∇φ̃ = 0 for the background Gaussian, so Eq.

2.2.6 suggests that the vortex will not move. This is consistent with the propagation

of an ℓ= 1 LG mode [30].

7.1.1 Single Vortex Specific Experimental Details

For this experiment, the set up resembles that of Figure 6.1, where a λ = 526.5

nm diode laser (MSL-III-526.5) was spatially filtered through a single mode fiber

and sent through a collimating lens (rather than the first telescope in the figure)

before being sent onto the Epson 83H SLM. Imaging lenses of focal length f3 =

f4 = 500mm were used along with a Newport IMS500 translation stage. Collinear

phase-shifting digital holography methods as described in Chapter 5 were used to

measure the amplitude and phase of the field at each propagation distance, and a set

of thirteen tilt angles for ψ f ield,i(x,y), shown in Table 7.1, were chosen to sample a

variety of locations across the space from Figure 3.8.

The vortex velocity for each pair of angles can be calculated by using the di-

mensional form of Equation 3.6.4 (i.e. z → z/zR), and taking the derivative with
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respect to z such that

vx =− λx0

πw2
0
(cosξ sinθ sinξ tanθ)

vy =
λx0

πw2
0

(
cosθ(cos2

ξ sec2
θ + sin2

ξ )
)

(7.1.1)

where we have used zR = πw2
0/λ . Analytically predicted velocity components for

each vortex tilt are shown in Table 7.1 and will be used for comparison with the

experimental measurements.

i ξ (degrees) θ (degrees) vx,pred (mm/m) vy,pred (mm/m)
1 0 0 0 0.11
2 0 50 0 0.17
3 22.5 50 −0.036 0.16
4 45 50 −0.051 0.12
5 67.5 50 −0.036 0.087
6 90 50 0 0.072
7 0 60 0 0.22
8 22.5 60 −0.059 0.20
9 45 60 −0.084 0.14

10 67.5 60 −0.059 0.081
11 90 60 0 0.056
12 75 72 −0.082 0.057
13 87 86 −0.083 0.012

Table 7.1: A set of 13 tilt angles used for comparison with theory of a single, tilted,
off-center vortex. The predicted x and y velocities, calculated from Equation 7.1.1,
are shown for each field as well.

The holograms used in the setup had input parameters of α = π/6, N = 5 pixels,

A = 0.5, B = 0.5 and ψ f ield(x.y) is given by Equation 3.6.2 with x0 = 0.8 mm. A

subset of the holograms used are shown in Figure 7.1 (a-d). One may notice that

it looks like α = −π/3 in the holograms, but the SLM panel itself needed to be

mounted such that it was rotated by 90◦ in the setup. The holograms are rotated to
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Figure 7.1: (a-d) Four of the projected holograms for vortices with x0 = 0.8 mm
and of encoded tilt angles as labeled. Adapted from Andersen, 2021. [120] ©
American Physical Society

show the correct orientation from the experiment, with the vortex displaced to the

right in the beam.

To identify the vortex locations, the intersections of real and imaginary zeros

are identified, as described in Section 6.3. For each set of data taken at a particular

z distance, the phase was fit to Equation 3.6.2 to extract the experimental vortex tilt.

A set of five individual measurements was taken at each z location and averaged.

The results are discussed in the following section.

7.1.2 Experimental Results

Figure 7.2 shows experimental measurements of the field amplitude (a-d) and

phase(e-f) at the imaging plane. A careful observer will notice that the ratio of the

Gaussian mode size to the vortex location is smaller in the measured results than

in the holograms. This is because the output beam generated by the hologram is

actually the product of the field on the hologram and the incident Gaussian beam.

The result is a smaller generated host Gaussian and a larger apparent vortex offset
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Figure 7.2: Measured amplitudes (a-d), and phases (e-h) that correspond to the
holograms displayed in Figure 7.1 are shown. A 2D amplitude fit of (a) at z = 0 mm
using Equation 3.6.3 at z = 0 gives a measurement of w0 = 1.1 mm. (e-h) also
show measured tilt angles (insets) at z = 0 mm calculated by fitting the phase data
to Equation 3.6.2 with fitting parameters x0, y0, ξ and θ . Adapted from Andersen,
2021. [120] © American Physical Society
***Experimental data taken by Andrew A. Voitiv.

for the measured mode.1 However, the vortex tilt and offset from center remain

unaffected. The measured tilt angles at the imaging plane show excellent agreement

with the programmed tilt angles.

The experimentally measured vortex positions in x (red) and y (blue) as a func-

tion of propagation for a subset of the thirteen measurements are shown in Figure

7.3. The error bars in the figure show the standard deviation of five measurements

taken at each z position. To be very clear, the dashed lines in Figure 7.3 are not lin-

ear fits to the data, but are the analytical prediction from Equation 7.1.1, for which

the slopes are displayed in Table 7.1. The predictions are calculated based off of

the experimentally measured beam parameters at the imaging plane.

1The actual generated beam waist measured at the z = 0 plane is used for the vortex velocity
calculations of Table 7.1.
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x and y Positions with Propagation Distance z for Various Tilt Angles

Figure 7.3: Experimentally measured vortex positions as a function of propagation
are shown for both x (red) and y (blue) directions. Error bars represent one standard
deviation of five independent measurements. The dashed lines are the analytical
predictions from Equation 3.6.4.
***Experimental data taken by Andrew A. Voitiv.

The measured data align remarkably well with the analytical prediction in each

of the various tilt cases. However, fitted slopes (which are not shown in the figure)

for each plot in Figure 7.3 are calculated using the propagated uncertainties for both

the x and y motion, described next. These two fitted slopes for each plot are used

to create a single uncertainty ellipse in Figure 7.4, which are also well aligned with

the analytical prediction.

Error Analysis of Vortex Trajectory Fits for Vortex Velocity Measurements

With the goal of accurately measuring vortex velocity in mind, for each tra-

jectory we want to use the full data, including errors, from Figure 7.3 to do so.

Each position, (xi,yi), in every trajectory has its own unique uncertainty values,
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(σxi,σyi). We want to determine the velocity by separately fitting the x and y data to

q = A+Bz, where B is the velocity and q is either the x or y direction. Following

the error analysis in “An Introduction to Error Analysis” by John. R. Taylor on pg.

198 [182], we see that the propagating the errors results in a best fit slope B, and

uncertainty in slope σB, of

B =
∑w∑wzq−∑wz∑wq
∑w∑wz2 − (∑wz)2 ,

σB =

√
∑w

∑w∑wz2 − (∑wz)2 , (7.1.2)

where wi = 1/σ2
i . We use these formulas to calculate the slopes and the uncertainty

in the slopes. We do not find the intercept as we don’t need it to measure the

velocity.

As a quick example, in the case of Figure 7.3 (h) the data from that particular

measurement in the x direction was:

z (m) xi (mm) σi (mm)
0.0 0.80 0.01
0.2 0.784 0.005
0.4 0.768 0.005
0.6 0.752 0.009
0.8 0.736 0.006

The slope and uncertainty are calculated using these values as input to Equation

7.1.2. The result is vx =−0.08 mm/m with σx =±0.01 mm/m.
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Single Vortex Velocity Results Summary

These slope fits and uncertainties in the slope fits for a given x and y are used to

compare the experimental velocities to the hydrodynamics theory of Figure 3.8 and

Table 7.1, as shown in Figure 7.4. The uncertainty in each slope is represented by

an ellipse of the appropriate size bounding the cross-hair for that data point.

Overall, the data is an excellent match with the theoretical predictions. The

measured velocities for each set of angles indicate not only that vortex ellipticity

impacts the vortex trajectory, but that it does so in accordance with the hydrody-

namic model derived in Chapter 3 (Equation 3.5.17). There is some small deviation

from the predicted values which are likely due to imperfections in the field gener-

ated from the SLM. Slight misalignments of the SLM or curvature within the LCD

panel itself may affect the generated field and subsequent vortex trajectories. Addi-

tionally, pixelation of the forked grating displayed on the SLM can cause distortions

in the generated field.

While each of these may only contribute a very small amount to the imperfec-

tions in the generated field, the affect is more noticeable when applied to a hologram

containing an untilted vortex. The data point with the largest degree of uncertainty

in vortex position, as seen in the velocity data of Figure 7.4, is the set with the most

extreme tilt of θ nearing 90◦. This vortex is approaching the same form as a Hermite

Gaussian mode with a line singularity, but no vortex. Due to the highly elongated

vortex core, there is less light in the x-direction with which to accurately pin down

the vortex position in the x-component with our phase-retrieval measurements.
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Figure 7.4: Experimentally measured vortex velocities (crosshairs) in mm/m for
both x and y directions are shown with comparison to the theoretical predictions
(colored dots) from Equation (3.6.4). The elliptical regions show the experimental
uncertainty.
***Figure Credit: Mark T. Lusk. From Andersen, 2021. [120] © American Physi-
cal Society

Single Vortex Tilt Measurements

In addition to the measurements of vortex location as a function of propagation

described in the last section, the vortex tilt with propagation was also measured. A
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set of these measurements for various initial vortex tilts are shown in Figure 7.5,

where the 2D phase is fit using Equation 3.6.2. The average value along with one

standard deviation are shown for each set of measurements, and are in excellent

agreement with the expected values. The experimental tilt measurements are in fact

constant throughout propagation, and it is clear that the experimental values are

very well aligned with the predictions. This non-varying tilt confirms the theoretical

prediction of tilt for the single vortex case.

Analytical Prediction Experimental Measurements
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Tilt Measurement with Propagation Distance z for Various Tilt Angles
𝜉 = 0° 𝜃 = 0° 𝜉 = 0° 𝜃 = 50° 𝜉 = 0° 𝜃 = 60°

𝜉 = 22.5° 𝜃 = 50° 𝜉 = 45° 𝜃 = 50° 𝜉 = 90° 𝜃 = 50°

𝜉 = 67.5° 𝜃 = 50° 𝜉 = 75° 𝜃 = 72° 𝜉 = 90° 𝜃 = 60°

Figure 7.5: A subset of the experimentally measured tilt values at each propaga-
tion step are shown for ξ (red) and θ (blue) corresponding to the measurements in
Figure 7.3. The labels are the average value and standard deviation of each set of
measurements. The dashed lines are the analytically predicted values (labeled at
the top of each plot). One should note the scale of the y-axis for each of the figures,
as it varies for each plot.
***Experimental data taken by Andrew A. Voitiv.
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This experimental agreement with theory for this case is the first step toward

confirming the theoretical framework of Chapter 3. We now turn to the case of an

oppositely charged (and circular at z = 0) vortex pair for a more strenuous test of

our hydrodynamic theory in which both the vortex tilt and the velocity are expected

evolve with propagation.

7.2 Two Vortex Experiments

The initial condition field discussed in this section is that of a circular, linear

core vortex pair, displaced symmetrically across the y-axis such that the vortices

are located at (±x0,0) in a Gaussian beam. The expectations for vortex motion

in this case can be found in Section 3.6.2, where the theoretical predictions are

discussed. The experimental implementation and results are discussed here.

7.2.1 Two Vortex Specific Experimental Details

For the two vortex experiments, a λ = 633 nm HeNe laser (Melles Griot) was

first spatially filtered using a telescope with an iris at the focal plane, as depicted

in Figure 6.1, which then was incident onto the Epson 83H SLM. Imaging lenses

of focal length f3 = f4 = 500mm were used along with a Ball Screw Linear CNC

Slide Stroke 1000mm Long Stage Actuator Stepper Motor translation stage. Get-

ting clean generation and measurement of multiple linear core vortices is particu-

larly challenging because of the significant core overlap and, therefore, very low

power regions where the measurement is taken. A way to alleviate extra difficulty

in the measurements is to use a larger initial vortex separation, with the trade off

of longer annihilation ‘times’. This is the reason for the longer translation stage,
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despite it having larger deviations across the length of the stage than the stage used

in the single vortex case.

Colinear phase-shifting digital holography methods as described in Chapter 5

were used to measure the amplitude and phase of the field at each propagation

distance. Holograms used in the setup had input parameters of α = 0,2 N = 10

pixels, A = 0.95, B = 0.05 and ψ f ield(x.y) is given by Equation 3.6.6. An example

hologram with a left vortex with a negative charge and right vortex with a positive

charge is shown in Figure 7.6 (a).

(a) Two Vortex Hologram (b) Experimentally Measured Field

Amplitude Phase

Figure 7.6: A vortex pair hologram on the left in (a) is shown with a zoomed in view
of the vortex configuration. White dashed outlines trace over each fork to highlight
them. (b) The measured field amplitude and phase are shown with measured beam
parameters of w0 = 1.553 mm and x0 = 0.297 mm.
Adapted from Andersen, 2021. [120] © American Physical Society

7.2.2 Experimental Results

First, we measure the beam parameters of the field generated from a chosen

hologram at the z= 0 imaging plane. Figure 7.6 (b) shows both amplitude and phase

measurements obtained when using the hologram in (a). The inset on the amplitude
2This experiment was performed before the single vortex experiment, where improvements to

holograms by misaligning the grating and pixel axes were made.
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plot shows the measured beam waist and vortex displacement from a 2D amplitude

fit using Eq. 2.3.1. Measurements of the mode were made with propagation steps

of z = 5 cm, beginning at z = 0 cm up to a final distance of z = 195 cm.

Measured Vortex Dynamics

From the amplitude and phase data in Figure 7.7, we qualitatively observe a

the near half circle trajectory expected for the two vortex case. The vortices in the

figure are marked with white circles in the phase plots, and show a down and inward

motion with propagation. This dynamic continues until they annihilate each other

and no vortices remain. Measurements made far beyond the annihilation point show

a phase front that contains no reappearance of the vortices. While these images are

useful for an initial interpretation of the data, it is important to quantitatively track

the vortices so that the model can be rigorously checked.
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Figure 7.7: Snapshots of amplitude and phase with propagation show the vortex
trajectory and annihilation event. Amplitude data has equal resolution to that of the
phase measurement, but are plotted with limited contours to highlight tilt evolution
in the amplitude structure. Data far beyond the annihilation point confirms that the
vortices do not reemerge. Measured beam parameters are the same as in Figure 7.6:
w0 = 1.553 mm, x0 = 0.297 mm.
Adapted from Andersen, 2021. [120] © American Physical Society
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Although there are two vortices present, real and imaginary zeros can still be

used to identify the vortex locations. Using the computationally tracked vortex

locations from the amplitude and phase data, quantitative dynamics measurements

can be made. In Figure 7.8, we show three separate representations of the data, each

with error bars denoting one standard deviation across five measurements. First, the

xy-plane data is plotted, showing the anticipated nearly half circular x-y trajectory.

The averaged data show reasonable agreement with the analytically predicted tra-

jectory, with each vortex moving in the negative y direction and toward x = 0 until

annihilation. Panel (b) shows the vortex separation along the propagation direction.

The measured vortex annihilation event occurs at z ≈ 910 mm and the data are in
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Right (+) Vortex
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Figure 7.8: Measured (symbols) and analytical (lines) vortex trajectories for (a) the
x-y plane (each green/red symbol pair is a measurement at a specific z), and (b) the
vortex separation along z, and (c) the y position as a function of propagation.
From Andersen, 2021. [120] © American Physical Society
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excellent agreement with the anticipated annihilation distance prediction [32]. Last,

the measurement of the y position as a function of propagation is plotted in (c). Us-

ing a weighted linear fit [182] on the combined data for y positions of each vortex,

the measured y velocity is vy,meas = −0.364± 0.009 mm/m, which compares well

to the predicted vy,model = −0.314 mm/m from Equation 3.5.17 and calculations

from [32].

In the data, x0 is sufficiently small compared to the beam waist that beam di-

vergence effects are not enough to describe the discrepancy between the data and

prediction in (a) and (c). However, the slight disagreement can be attributed to sev-

eral potential experimental sources of error such as imperfect beam collimation and

roundness, and pixelation in the hologram, pixel phase error, and a finite bit depth

on the SLM. It should be noted that these types of errors do not impact the mea-

sured standard deviation, and could only contribute to a systematic error present

in the data. Even with extra care taken, these are all culprits for introducing error,

and balancing each of these is very difficult. It may be possible to improve these

measurements by implementing the same step taken for the single vortex case, and

create holograms that are misaligned with the SLM pixel grid to alleviate any extra

stray pixel diffraction that can affect the measurement.

Up until now, each of the measurements taken have been in a host beam with

a waist that is large compared to the vortex separation. It is insightful to consider

the case where the separation to beam size ratio is much smaller. Because the

annihilation is dependent upon both x0 and w0, as anticipated from Figure 2.6 the

vortices can exhibit very different behavior, since the Gaussian itself contributes to

the vortex motion.
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We measure vortex separation with propagation for two initial conditions, shown

in Figure 7.9 (a-b). The vortex separation data for both of these initial fields are also

shown in Figure 7.9 (c). In these measurements, we consider the case of an oppo-

sitely charged vortex pair in addition to a same charge pair. However, we only show

the amplitude measurements for the oppositely charged pair in (a-b) since the am-

plitude profile for an opposite and same charge pair is the same at z = 0. For beams

with a waist that is small compared to the separation (w0 < x0), we see that the dy-

namics are dominated by the background Gaussian beam for both the opposite and

like charge pairs. For the opposite charge pair, vortices no longer annihilate, but

continue to propagate, increasing their separation distance at a rate close to that of

the Gaussian beam divergence. For the larger beam relative to the vortex separation

(w)>x0), we see steady motion in the same charge vortex case and we see anni-

hilation in the opposite charge pair, both consistent with the predictions for each

case [32].
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Figure 7.9: We show the experimental intensity for two different beam waists with
very similar vortex separation. The measured beam parameters are (a) w0 = 1.55
mm with 2x0 = 0.59 mm and (b) w0 = 0.41mm with 2x0 = 0.53 mm. (c) Experi-
mental vortex separation as a function of propagation is shown for a same charge
pair (filled points) and for an opposite charge pair (unfilled points). Blue lines are
the analytical predictions of the the trajectories for the measurements correspond-
ing to (a) according to [32] and the red line is the divergence of the beam waist
corresponding to (b).
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So far, the vortex trajectories match well with the predictions, confirming the

vortex position results predicted by the hydrodynamic model given in Equation

3.5.17. Next, we evaluate the evolution of the experimental tilt for the case in

which the vortices experience an annihilation event.

Measured Vortex Tilt Evolution in the Opposite Charge Pair

In calculating vortex tilt from experimental field measurements, it is important

to remember that F from Equation 3.4.10 still contains the background field while

the eigenvalues and eigenvectors of V2 from Equation 3.4.12 are independent of

both ρbg and φbg. It is also useful here to remind ourselves that the V2 matrix

can be rewritten in terms of the gradient of an arbitrary field u⃗, where u⃗ is the

matrix representation of the real and imaginary parts of ψ f ield(x,y,z) as described

in Equation 3.4.2. Using the relationships of the polar decomposition and Equation

3.4.9,

V2 = FFT =
[
∇⊥u⃗−1][

∇⊥u⃗−1]T , (7.2.1)

where

∇⊥u⃗(x,y,z) =

∂xRe[ψ(x,y,z)] ∂yRe[ψ(x,y,z)]

∂xIm[ψ(x,y,z)] ∂yIm[ψ(x,y,z)]

 . (7.2.2)

This result reminds us that V2 can be reconstructed in terms of the derivatives of

the real and imaginary parts of the complex field at the location of the vortex for

a given z position – i.e. the full measured field can be used to calculate the vortex

tilt and the background field does not have to be calculated. To determine vortex

location and tilt from experimental data, the measured complex field is separated
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into its real and imaginary parts with vortex locations in the xy-plane found by the

intersection of real and imaginary zeros. The first step is to obtain the slope at each

vortex location by cropping a small window around the selected vortex. Then, the

real and imaginary parts are separately fit to planes of the form z = ax+ by+ c.

These fit parameters, a and b, for both real and imaginary parts are used to find ξ

and θ , as shown in Figure 7.10. V2 can be written in terms of these fit parameters

as

V2 =
1

(arebim −aimbre)2

 b2
im +b2

re −(aimbim +arebre)

−(aimbim +arebre) a2
im +a2

re

 . (7.2.3)

From there, we need only take the eigenvalues and eigenvectors and use Equation

3.4.17 to find both ξ and θ .

In Figure 7.8, there were a set of five measurements taken and averaged to ob-

tain the dynamics results. However, for the tilt measurement, only one data set from

Figure 7.10: Visualization of Experimental Tilt Measurement for the Two Vortex
Case: (a) The complex field is shown with the absolute value of the field (3D mesh)
placed above of the phase (2D color). (b) The real part of the field (3D mesh) is
shown, and the vortex locations are marked at the real and imaginary zeros of ψ

with black dots. An example of fitted planes for each vortex over a chosen small
window in the x-y plane is shown. The fit is given by zre = arex+brey+cre. (c) the
imaginary part of ψ is plotted (3D mesh), with a fit given by zim = aimx+bimy+cim.
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the five mentioned above was clean enough to extract a reliable tilt measurement.

Examples of the real and imaginary parts are plotted in Figure 7.11 for the data set

used to measure the tilt along with data that was not suitable for tilt measurements,
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Figure 7.11: (a) Three-dimensional plots of the real and imaginary parts of the two
vortex field used to measure tilt along with a slice at the location of one of the
vortices are shown. While there is some noise present within the beam, slices show
that the field is smoothly varying enough to extract a reliable tilt measurement. (b)
shows an example of data with a discontinuity near the vortex location. Slices show
that fitting within a small window of the vortex yields extreme values that are not
indicative of the actual tilt of the vortex.
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to highlight what is meant by “reliable”. In cases where there is noise or imper-

fections in the beam, whether from pixelation in the holograms or stray light that

differs from image to image used in the reconstruction of the phase, discontinuities

can arise near the vortex center. When there is a sharp discontinuity, as in (b) of

the figure, it can be seen that any fit of the data with a small window around the

vortex will yield a highly inaccurate gradient measurement. Data that was of high

enough quality, such as that seen in Figure 7.11 (a), was used to extract the tilt

measurements of Figure 7.12.

The data shown in Figure 7.7 is the same data as in Figure 7.11 (a) and was

used for the tilt measurement. A schematic of the tilt vectors for the trajectory

is shown in Figure 7.12 (a) for ease in interpreting (b) and (c) of the figure. The
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Figure 7.12: (a) Tilt vector evolution of a vortex pair beginning at z = 0 up to the
annihilation point is shown. The left vortex is negatively charged (anti-aligned with
propagation direction, θ = π) and the right vortex is positively charged (aligned
with propagation direction, θ = 0). This is meant to be a visual aid for interpreting
the plots in (b-c). (b) A comparison of the measured (dots) ξ for the left and right
vortices with propagation compared to the predicted (solid line) ξ from Eq. 3.6.8
for each vortex is plotted. [Reprinted] from [120] (c) Similarly, a comparison of θ

for both experiment and theory is shown. The shaded regions show the RMS error
between the data and the predicted values. (b) and (c) From Andersen, 2021. [120]
© American Physical Society

159



experimentally measured tilts are directly compared with the analytical predictions

in Figure 7.12. As the vortices evolve with propagation, it is clear that the vortex

tilt is not only increasing until annihilation, at which point the orientations become

equal, but closely follows the prediction marked by the solid lines in the figure. The

experimental measurements of both tilt angles are notably noisier near z = 0, which

is attributed not to lower-quality acquired data, but to lower sensitivity on both θ

and ξ as θ approaches 0 or 180◦. For ξ , the orientation of the ellipse axes loses

meaning for a circle, and for θ , the change in ellipticity for a small change in θ

is greatest near θ = 90◦ and approaches zero for θ approaching 0 or 180◦. This

reduced sensitivity of tilt measurements for near-circular vortices was confirmed

with synthetic data. With this in mind, we note that the fit between experiment and

theory for tilt angles between θ = 90◦±60◦ is excellent.

The agreement of the experiment with the theory demonstrates that amplitude

and phase gradients alone are not sufficient for describing the vortex motion. Partic-

ularly in this two vortex case, the annihilation event (when beams are much larger

than the vortex separation, w0 >> x0) is possible not only because of the com-

pressibility in the system, but specifically because of vortex tilt and its evolution.

Without both, the dynamics would not be as they are.

7.2.3 Discussion

Collectively in this chapter we have shown experimental results for comparison

to the hydrodynamic model from Chapter 3 for two distinct cases: a single vor-

tex placed at the side of a Gaussian beam and an oppositely charged vortex pair

placed symmetrically in a Gaussian beam. The excellent match in the single vor-

tex case has shown that it is possible to predict dynamics of a tilted vortex in a
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simple setting. The agreement between theory and experiment for the two vor-

tex case provides a very compelling second verification for the compressible fluid

+ tilt hydrodynamic model, particularly because neither the tilt or vortex location

are fixed in the scenario. Each case provides compelling evidence not only for the

importance of light’s compressibility, but that the ellipticity in the vortex is a key

component to understanding vortex dynamics in two-dimensional fluids.

The agreement also gives us reason to believe that the model may generally

work for other vortex systems, even if the vortex density is high such as in laser

speckle. In addition to the confirmation of the model, the discussions of Chapter 2

and the results of the two vortex case when w0 < x0 remind us that it is interesting

to consider how the compressible nature of the system on its own can alter vortex

dynamics. Perhaps it is possible to alter the annihilation dynamics of an oppositely

charged pair by simply changing the degree of overlap between the vortex cores at

the initial condition. This is the topic of the following chapter.
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Chapter 8

How Initial Core Size Affects Vortex Pair Dynamics

After measuring the dynamics of an oppositely charged, linear core vortex pair

in a Gaussian beam, an interesting follow up study is to consider and experimen-

tally measure annihilation events between vortices that initially have a smaller core.

Since the amplitude gradient helps facilitate the perpendicular motion necessary for

recombination in the linear core vortex pair, perhaps it is possible to modify the an-

nihilation dynamics simply by changing the initial overlap of the vortex cores. In

free space optics, a linear amplitude core is the default eigenmode-like shape for a

unit charge vortex (see Equation 1.2.1). A vortex generated with a core shape that

is different will quickly evolve with propagation toward a linear core, but the ini-

tial shape can introduce transient diffraction waves that alter the background field,

affecting the subsquent vortex dynamics.

In this chapter, we investigate the properties of annihilation events for vortex

pairs with a hyperbolic tangent shaped amplitude core. By using the hyperbolic

tangent function, we can tune the size of the core from a delta function-like core

to a linear core, and compare differences in the trajectories. Others have also used

hyperbolic tangent cores in their work [104, 116, 183], so it also offers some fa-

miliarity amongst the literature. Although we found in Chapter 3 that tilt is also

an important piece in predicting dynamics, for simplicity, this chapter is focused
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only on the consequences of changing this amplitude structure and the observed

dynamic differences. We use numerical simulations to consider different sets of

initial conditions and then experimentally verify that core shape has an impact on

vortex annihilation dynamics.

8.1 Definitions and Initial Condition Fields

To set up the initial condition, we begin in much the same way as the opposite

charge vortex pair of Chapters 2, 3, and 7: two vortices of opposite charge are

symmetrically displaced in a Gaussian beam at (x,y) = (±x0,0). This field is given

by the expression

ψ(r,φ ,0) = ψvortex−ψvortex+ψhost = A−e−iφ−A+eiφ+e−r2/w2
0 (8.1.1)

at z = 0 and where the subscripts are related to the ℓ = ±1 vortex charge, A±

and φ± describe the amplitude and phase of the each vortex, and w0 is the host

beam waist. In this two vortex system, the initial separation between the vortices

is vs = 2x0 and the postively charged vortex is on the right, and the negatively

charged vortex is on the left. The subsequent phase of each vortex is then given

by φ± = arctan(y/(x∓ x0)). For the amplitude structure, we use the hyperbolic

tangent function such that:

Atanh(r,φ) = tanh
(

r− r0

cr

)
, (8.1.2)

where r0 =
√
(x− x0)2 +(y− y0)2 and cr determines the effective size of the vortex

core (summarized in Figure 8.1). The motivation for choosing the hyperbolic tan-
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Figure 8.1: A pair of vortices each with a large core (top) or small core (bottom)
amplitude are shown. The columns show the combined amplitude contour, the in-
dividual vortex slices, the combined slice profile and finally the amplitude gradient
of the left vortex at the right vortex. Linear core vortices have immediate overlap,
while smaller cores do not have any initial overlap.

gent function is that for very small values of cr, the core approaches a delta function

or point-core amplitude and for large values of cr, the core approaches the large, lin-

ear core limit. This allows us to scale the initial overlap between the amplitudes of

each vortex in the initial condition.

With the initial condition set, and the ability to vary the initial overlap of the

cores, we can now look at whether or not the vortices annihilate or survive when

the beam propagates, as a function of core size.

8.2 Fourier Transform (Far Field) is Not Sufficient for Determining Vortex

Pair Annihilation

Our first idea was that we could identify whether or not the vortices would anni-

hilate with propagation by simply looking at the Fourier Transform (far field) of the

initial field to see whether or not there were residual vortices. This had been briefly
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considered experimentally [158] and analytically at the focus of a high numerical

aperture lens [184]. For example, in beams with pairs that quickly annihilate, the

expectation is that the far field would not contain any vortices, whereas for vortex

pairs that don’t annihilate each other the vortices would remain present in the far

field. However, upon looking at the two dimensional Fourier Transform of the field

for linear core vortex pairs that are expected to annihilate and not [32], it quickly

became clear that this would not suffice.

As can be seen in Figure 8.2, the Fourier Transform for linear core pairs below,

at, and above the critical x0 = 0.5w0 annihilation criteria, the Fourier Transform

looks remarkably similar. Interestingly, even for the linear core pair, no vortices

can be seen in the far field of any of the cases.1 A circular discontinuity sits offset

1For vortex pairs with an initial condition that is expected not to annihilate, it is surprising to see
that vortices don’t exist. However, when back-propagating the far field, we see that the circular dis-
continuity transforms into a string of many oppositely charged vortices that all eventually recombine
except the two vortices present at the initial condition.
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Figure 8.2: The far field (Fourier Transform) of a linear core vortex pair at sep-
arations above and below the critical point for annihilation are shown. Here, FT
denotes Fourier Transform. The result is a circular phase discontinuity whose posi-
tion depends on the initial vortex separation. The z = 0 field and Fourier Transform
are not to scale.
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from the center, with its displacement being determined by the initial separation of

the vortices. Unfortunately, this result is not particularly useful, since there does

not seem to be a meaningful way to use these far field patterns as a diagnostic for

vortex annihilation in a reliable way. Even if the position of the circle were used, it

would only be relevant to this specific initial condition.

For the case of a hyperbolic tangent core pair, the result is even less friendly

than that of the linear core pair. Rather than a circular discontinuity, the result is a

forked grating shape, with the width determined by the initial separation. In either

case, there is not an intuitive and simple way to consider only the Fourier Transform

as a means of determining vortex annihilation. So, we turn to numerical simulations

to watch the dynamics unfold with propagation.

8.3 Numerical Simulation Results and Expectations

To look at the difference of vortex pair annihilation dynamics based on the vor-

tex separation and core size, we use numerical simulations to test a variety of initial

conditions. The numerical simulations for this chapter rely on the angular spec-

trum method for propagating light. There are several resources that discuss this

method [65,185] and here, we provide a brief review of the method followed by the

results.

8.3.1 Review of the Angular Spectrum Method for Propagating Light

There are many ways to propagate an optical field, including those such as the

popular Fresnel integral. However, analytically solving the Fresnel integral can

be difficult when using complicated functions, and numerically solving them can

be time consuming. Another way is to use the angular spectrum of plane waves
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method. A propagated light field can be calculated using a process that breaks the

initial field into a spectrum of plane waves with different orientations away from the

z axis (hence the name angular spectrum) and then looks at the propagation of that

set of fields. To propagate an initial field, ψ0(x,y) = ψ(x,y,z = 0), start by taking

the Fourier Transform:

Fψ( fx, fy) = F{ψ0(x,y,z = 0)} (8.3.1)

When taking the Fourier Transform of the initial field, it is transformed into a set

of plane waves. Intuitively this can make sense when thinking about the conjugate

relationship between position and momentum. To find the propagated field, each

planewave is then advanced by eikz, including the phase that is picked up for plane

waves travelling at an angle relative to the initial fields z axis. The result is the

transfer function, H [65, 185]. For the simulations done here, we use the paraxial

limit transfer function [65, 185],

H( fx, fy,z) = eikze−iπλ z( f 2
x + f 2

y ). (8.3.2)

Once the planewaves are advanced by H, the inverse Fourier Transform can be

taken to get back to position space and find the propagated field. The propagated

field at a given z distance then, is given by

ψ(x,y,z) = F−1{F{ψ(x,y,0)}∗H( fx, fy,z)
}
. (8.3.3)

A benefit of this method is that the first Fourier Transform only needs to be

calculated once for any given initial condition field. Once this Fourier Transform is
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taken, we can use it in conjunction with the transfer function to find the field at any

given propagation distance.

8.3.2 Numerical Simulations Using the Angular Spectrum Method

We numerically propagate several different initial conditions in which the size

of the cores are altered by way of the angular spectrum method. As discussed in

Section 6.3 of this dissertation, we use the real and imaginary zero intersections to

locate the vortices at each propagation step. For the first comparison, we look at the

projection of the trajectories into the transverse plane for a beam with a waist that

is large compared to the separation (w0 >> x0), depicted in Figure 8.3.

The top row shows the phase contours for a linear core vortex pair (cr >> x0) at

increasing propagation distances up until the annihilation point. The results of the

numerical simulation show a half circle trajectory in the transverse plane, consistent

with the expectations for linear core vortex pairs [32]. With this verification, we

then consider vortex pairs with hyperbolic tangent core shapes with decreasing core

sizes. The trajectories are tracked up to the annihilation point, which increases as

the size of the core decreases. The trajectories for a set of increasingly smaller

initial cores are plotted in Figure 8.3 in the bottom panel. The linear core half circle

trajectory is plotted as a solid black line for comparison.

As the initial cores decrease in size, two observations can be made: (1) the

trajectories increasingly deviate from the linear core half circle in the xy-plane and

(2) the beam must propagate a farther distance before the vortices reach the point

of annihilation, indicated by the larger number of z-steps. We can interpret these

results using what is known about the impact of background phase and amplitude

gradients on vortex motion. The phase gradient from the right, positive vortex at
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Propagation

+−

Figure 8.3: Numerical vortex trajectories projected into the xy-plane are shown for
various core sizes. Top: Slices of the phase for the evolving field of an oppositely
charged linear core vortex pair are shown. The vortex locations are marked with
white circles and through the propagation the vortices follow a half circle trajectory
in the xy-plane until the annihilation point. Bottom: A compressed 2D version of
the top panel for multiple initial conditions. This plot shows the trajectories for
various core sizes ranging from linear to very small cores. Each point is analogous
to the white markers in the top panel and represents a successive, equal step in z.
As the core size decreases, we see that the trajectories deviate more from the linear
core in the xy-plane and also take longer in z to annihilate.
***Bottom Figure Credit: Prof. Mark T. Lusk

the location of the left vortex is initially downward via the right hand rule causing

the left vortex to move downward. Similarly, the initial phase gradient from the left,

negative vortex at the location of the right vortex is also in the downward direction,

causing the right vortex to also move downward. This explains the initial vertical

(−ŷ) motion of the vortices.

As a reminder, in the presence of no amplitude gradients, the vortices would

simply follow straight line trajectories, as expected for an incompressible fluid sys-
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tem [122]. In fact, as the core size decreases, the system approaches an incom-

pressible fluid-like regime for small propagation distances, which was previously

discussed for such vortices back in 1997 [116]. But, this only holds for small prop-

agation distances because as the beam propagates, it also diffracts. It can be seen

in Figure 8.3, that the downward motion is followed by an outward motion (away

from x = 0) of each vortex before the recombination event. The hypothesis is that

this outward motion is caused by the eventual core overlap that happens due to the

diffraction of the beam.

To conceptually understand the impact of amplitude overlap in the vortex mo-

tion, we must look at the motion of a vortex in the present background field. For

this purpose, we specifically consider the propagation of a single vortex within a

Gaussian beam, as shown in Figure 8.4. It is important to note that this will not be

the complete background field, since to find the true background field at any given

propagation distance one would need to divide out the vortex of interest, including

its ellipticity, from the field. Additionally, we know that the evolving orientation of

the vortex itself can influence the trajectories, as discussed in Chapter 3. However,

we will see that assuming that the background field can be approximated as the

single vortex within the Gaussian; measuring at early propagation times where the

vortices are expected to be mostly untilted is enough to demonstrate the connection

between the outward motion of a given vortex to the arrival of the diffraction wave

from the neighboring vortex.

In Figure 8.4, we show the numerically propagated background field, given the

assumptions mentioned in the previous paragraph, and calculate the anticipated vor-

tex velocity of the right vortex based on Equation 3.5.17. The same parameters are

used for both the background field (only the left vortex in the Gaussian) and the
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Figure 8.4: Motion of the right vortex compared to the left, diffracting vortex core.
Top: Plots of amplitude with propagation of a single vortex in a Gaussian with
initial parameters w0 = 1 mm, x0 = 0.30w0, and cr = 0.15w0 are shown. Black cir-
cles mark the previous right vortex locations and the white circle shows the current
vortex location, measured from the two-vortex trajectory. Plots of the highlighted
regions from the top row along with red, untilted velocity vectors calculated via
v⃗vortex = ∇φbg −σ0∇ lnρbg are shown. Black dots mark the prior vortex locations
at each step for comparison of the trajectory with the velocity prediction. Bottom:
The same for w0 = 1 mm, x0 = 0.30w0, and cr = 0.005w0. Note that between each
z-step, the motion is consistent with the calculated velocity.
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two vortex field, and field gradients are calculated using a two-point finite differ-

ence method [186]. In the figure, both a zoomed out region and a close up are

shown, with velocity vectors shown by the red arrows in the close up. The vor-

tex locations are also shown, for all previous z-steps (black) and the current step

(white). In the medium sized core case, the diffraction of the left vortex mainly

comes in one, larger wave that pushes the vortex outward upon its arrival. This can

be seen by the initially downward motion of the the right vortex, followed by the

motion to the right at ≈ z = 0.3 m.

In the case of the very small sized core that is reminiscent of a delta function

core, ringing in the diffraction field (also seen in [31]) becomes stronger, with sev-

eral smaller waves followed by a final large diffraction wave. The successive waves

create a temporary spiral-like motion of the vortex, with a velocity in the −x̂ di-

rection near z = 0.3 m, followed by the outward motion from the last diffracting

peak just before z = 0.4 m. In both cases, despite the approximations mentioned for

the comparison, the calculated vortex velocity reliably predicts the vortex motion.

It also confirms that the outward motion seen in the vortex trajectories can be at-

tributed to the impact of the diffracting core of the neighboring vortex. In the case

of the linear core, the absence of the outward motion can be seen as a result of there

being no diffraction wave from the other vortex.

8.4 Experimental Results

With the expectations for the trajectories set, we experimentally measured the

trajectories for a few different cases. For the experiment, we use the setup as dis-

cussed in Figure 6.1. The same 633 nm HeNe laser and Ball Screw Linear CNC

Slide Stroke 1000mm Long Stage Actuator Stepper Motor translation stage used
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for the linear core vortex experiments of Section 7.2 are used here. The SLM is

still an Epson 83H projector LCD panel, and the imaging lenses have focal length

f3 = f4 = 500mm.

Again, colinear phase-shifting digital holography methods were used to mea-

sure the amplitude and phase of the field at each z-step. The holograms are modu-

lated in both the amplitude and the phase to properly create the output beam, and

including a Gaussian amplitude in addition to the vortex amplitudes within the grat-

ing improved the quality of the data. In other words, ψ f ield to be used in Equation

4.2.3 for generating the holograms is given in Equation 8.1.1 with A± from Equa-

tion 8.1.2. The other parameters used in the holograms were: α = 0,2 N = 10

pixels, A = 0.95, B = 0.05. Example holograms for three different core sizes are

shown in Figure 8.5.

2This experiment was performed before the single vortex experiment, where improvements to
holograms by rotating the grating relative to the pixel axes were made.

Two Vortex Holograms Projected on SLM

Large Core Small Core

Figure 8.5: Example holograms with varied core sizes are created as described in
the text.
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Once the experimental field is measured and calibrated (using the drift removal/-

calibration methods from Section 6.3), we use the same method of intersecting real

and imaginary zeros to locate and track the vortices. With this, we are then ready

to analyze the trajectory data. We use a 2D fitting routine, with Equation 8.1.1,

on the amplitude of the field at the imaging plane to measure the initial condition

parameters including the beam waist, initial vortex separation and core sizes which

are then used in the simulation for comparison with the experimental measurement.

Results are shown in Figure 8.6. In the top four rows, we show the simulated

amplitude (row 1) and phase (row 2) data followed by the experimentally measured

amplitude (row 3) and phase (row 4) data. The qualitative agreement between cal-

culations and experiments is excellent. In the bottom left of Figure 8.6, we show

a quantitative comparison of the separation between the vortices. The experimen-

tal vortex separation and the numerical simulation also show a very strong agree-

ment between the experiment and simulation, including the fact that the vortices are

pushed farther away from each other before moving toward each other and annihi-

lating.

The vortices are not small enough to observe the small oscillations shown in

the cr = 0.05mm case in Figure 8.3 since the measurements are in a finite (smaller)

host beam, and the setup is limited by the numerical aperture of the system. It is

possible to use lenses of smaller focal lengths, but the trade off of using longer

focal length lenses was made to ease in alignment of the imaging system (reducing

the likelihood of magnification errors and therefore inaccurate vortex separation

measurements with beam propagation as discussed in Section 6.2.2). Additionally,

we experimentally measured vortex separation for two additional core sizes. All

three vortex separation measurements are shown in the bottom right of Figure 8.6,
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Figure 8.6: Top: Simulated and experimental slices of the field are shown for a set
of propagation steps. Bottom Left: Comparison of vortex separation as a function
of propagation shows good agreement between simulation and experiment. Bottom
Right: A set of measurements for three different sized vortex cores verifies that
larger cores annihilate more quickly than small cores.

which confirm smaller annihilation distances for large cores and farther distances

for small cores.

8.5 A Vortex Annihilation Phase Diagram

These results prompt some additional questions. If the annihilation distance can

be altered based on the initial overlap of the vortices, is there also a way to design
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an initial condition such that the annihilation event is prevented from happening

altogether? If so, what does that look like? The observation that smaller cores take

longer to annihilate prompts the thought that perhaps we can achieve this by simply

decreasing the core size as much as possible. To test this, we can again rely on our

numerical angular spectrum propagation methods.

We numerically consider a variety of initial conditions to map out regions of

annihilation and non-annihilation based on initial beam parameters. The results are

summarized in Figure 8.7. As can be seen in the top row of the figure, for initial

conditions in which the vortices do annihilate, the dynamics resemble those found

in Figure 8.3. However, initial conditions can be found such that the trajectories

instead move apart from each other. A critical point in between where the vortices

seem to be consistently spaced throughout the trajectory can also be found. This

critical point is found for a variety of initial conditions, marked by red dots and

plotted in Figure 8.7, to show the two unique regions. For vortices with large cores

that are spaced close together (moving up and to the left in the figure), annihilation

is certain to occur, matching the intuition that highly overlapped cores annihilate

more quickly. For vortices that are spaced far enough apart and that have small

enough cores (moving down and to the right in the figure), one would expect that

the vortices would not have a sufficient overlap before the background Gaussian

gradients dominate the vortex motion and keeps them apart for the entirety of the

propagation.

One can also imagine a specific separation, for example x0/w0 = 0.48, in which

a linear core pair is expected to annihilate. By simply reducing the size of the

core (cr/w0 < 2.7 for that separation), the annihilation event can be prevented. We

also note that there is a maximum initial vortex separation at which even vortices
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Figure 8.7: Vortex trajectories measured up to z = 2.8zR, such as those in the top
panel, were used to find critical points between initial conditions that produce an-
nihilating vs. non-annihilating pairs for a variety of initial conditions. The numer-
ically determined data points are fit with a modified polynomial that has a vertical
asymptote at x0 = 0.5w0 to match the diverging linear core pair expectations near
x0 = 0.5w0 [32].

with point cores (cr → 0) annihilate in the simulations. Though not immediately

obvious, it makes intuitive sense that vortex pairs with sufficiently small separation

will always annihilate, even with small cores, since the cores will need a much

smaller propagation distance before fully overlapping. This maximum initial vortex

separation was measured as x0 = 0.355w0.
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8.6 Discussion

In this chapter, we have shown that vortex pair annihilation in linear optical

systems can be tuned by simply changing the initial overlap of the vortex core

functions. We also showed that the vortex separation in relation to the size of the

host Gaussian field can also impact the vortex dynamics. These changes can either

facilitate or prevent annihilation events, based on the initial field parameters. These

results emphasize the utility in the compressibility of light in vortex dynamics and

a way to engineer a desired outcome. Further insights could be gained in more

complex, many vortex systems with non-uniform core shapes and sizes using the

same principles.
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Chapter 9

Conclusions and Future Directions

In this dissertation, I have shared in detail a portion of the work I completed

while tackling my PhD. Through my time at DU, I have accomplished much more

than I anticipated, including a few publications, and a decent number of conference

presentations, including an invitation for a keynote presentation at the DU Research

& Scholarship Showcase. I participated in various grant writing opportunities, gave

the lab presentation for the W.M. Keck Foundation, and received a few fellowship

awards. I also had the opportunity to co-teach the Light-Matter Interactions course

here at DU, and found that and interacting with the students to be beyond fulfilling

and a wonderful experience. Last, but certainly most influential, I am leaving with

a much larger knowledge base in experimental physics than I had when I began.

The experimental apparatus that I built can be recreated and used by others both in

and out of our group. It should be a useful tool for anyone interested in studying

vortex dynamics, and the new theory detailed in this work can be utilized by anyone

interested in vortex dynamics within the vast collection of two-dimensional fluids.
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9.1 Conclusions

In the context of optical beams, it has long been known that both amplitude and

phase gradients contribute to the motion of vortices [100], but a full hydrodynamic

model for such systems had not yet been identified because the gradients alone are

not sufficient. The inclusion of vortex ellipticity in the kinematics is the missing

piece that unlocks a hydrodynamic interpretation of vortex motion in optical laser

beams, even for purely linear vortex systems in which the vortex amplitude cores

are always overlapping.

In this dissertation, we have presented the novel theory for predicting and un-

derstanding the dynamics of vortices in two-dimensional fluids and have applied

this theory to a linear optical system. The ellipticity of an optical vortex in any

paraxial field can be described using a polar decomposition, and interpreted as the

two-dimensional projection of a virtual, circular vortex that lives in a virtual three-

dimensional space. This circular vortex is tilted with respect to the propagation

direction, resulting in elliptical projections onto the transverse plane. This interpre-

tation of the mathematics gives a more intuitive way of predicting and visualizing

the vortex dynamics investigated within the scope of this work, allowing one to

think of the vortex like a surfer: to change the direction they travel on a wave,

they simply need to reorient themselves (i.e. change their tilt) on the wave they

ride. This coupling between vortex ellipticity and the background field gradients

was found to be essential in predicting vortex motion with the new kinetic equation

given in Equation 3.5.17. Vortex ellipticity, however, is not relevant for incom-

pressible fluids that form the basis for much of our intuition, and it is not observed

in compressible fluids for the many scenarios in which vortices are near circular. It
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remains evident, though, that vortex ellipticity must be taken into account whenever

vortex symmetry is lost, as is the case whenever vortices of opposite charge move

in optical systems.

We applied this new approach in understanding vortex dynamics experimen-

tally, and tested two specific cases: a single, off-center vortex of various elliptic-

ities, and the annihilation event between two initially circular, oppositely charged

vortices. We have designed, constructed and optimized an experimental apparatus

for testing vortex dynamics and shared these details in this work. The results from

the experiments are a compelling match to the newly developed theory, and give

us confidence that accounting for ellipticity in vortex dynamics allows for accurate

predictions for vortex dynamics.

We also emphasized the compressible nature of light, and utilized that to modify

vortex dynamics in oppositely charged pairs. By simply changing the initial size of

the vortices, we have shown that the dynamics can be dramatically altered, includ-

ing preventing the annihilation of the oppositely charged vortex pair in a Gaussian

beam, given the right initial conditions. These results provide insight into the dra-

matic impact that amplitude gradients of a given fluid can have on vortex dynamics.

Vortex ellipticity (virtual tilt) and its coupling to background amplitude gradi-

ents (fluid compressibility) have important implications for understanding and con-

trolling the motion of vortices in other systems. While the hydrodynamic velocity

equation has been derived for tilted vortices in the context of propagating parax-

ial light, the results are equally valid for nonlinear 2D settings as well, including

quantum fluids such as superfluid Helium, atomic Bose Einstein condensates, and

nonlinear optical media.
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As opposed to these other 2D fluids, choosing a linear optical system has been

convenient because of the relative simplicity of the experiments. Not only can ex-

periments can be performed at room temperature, but they can be done with rel-

atively inexpensive equipment as well. It is worth noting that we were able to

achieve experimental results that closely matched the theoretical expectations with

fairly basic holograms, despite using a low cost classroom projector LCD panel

not specifically designed for these purposes. The results shared in Chapter 7 could

potentially be further improved upon by implementing more elaborate holograms

that have been shown to generate very high quality beams [67], or accounting for

distortions of the SLM panel itself in the hologram.

Performing this work in an optical context also yields a variety of avenues for

future exploration. With the confidence in the apparatus, follow up studies on more

complex vortex configurations are possible. A few options are laid out in the next

section.

9.2 Future Directions

A natural set of extensions for this work is to consider the wide variety of ini-

tial conditions for vortices that are available when using an SLM. It is interesting to

consider the application of the theory from Chapter 3 to optical systems with higher

order charges, but there still remain many avenues to explore for unit charge vor-

tices. In particular, it could be interesting to explore the effects of small changes to

the initial field on the subsequent vortex dynamics in both linear and non-linear sys-

tems, and potentially compare them with results seen in other fluid systems [187].

A few interesting options for potential exploration are laid out below.

182



Asymmetric Core Two Vortex Interactions

In the work discussed throughout this dissertation, we focused on initial con-

dition fields with amplitude cores that were initially circular and of the same size.

One might be interested in considering how the dynamics of an opposite pair may

change when one core is large while the other is small, as shown in Figure 9.1.
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Figure 9.1: Top row: Vortex pairs with equally sized vortex cores. Bottom row:
Vortex pairs of unequal size would inevitably exhibit dynamics different than their
symmetric counterparts, but the hydrodynamic model would still apply and should
explain the subsequent vortex motion.

Lattices of (and Defects Within) Optical Vortices

Another type of initial condition that would be interesting to consider is a vortex

lattice of different types. These lattices could be all the same sign, alternating signs,

as in Figure 9.2 (a), or randomized lattices. While some work has been done to con-

sider effective ways to generate optical speckle where the result is dependent upon

the effective vortex interactions of a lattice sent through the focus of a lens [93],

delving into the details of the vortex hydrodynamics both with and without travel-
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ing through a lens may lead to better understanding of why the work of that paper

is effective.

Many questions can be asked about the stability of optical vortex lattices as well.

We know from the 1998 Indebetouw paper that lattices of the same charge are stable

upon propagation, since like charge vortices are not influenced by the presence of

other vortices in the system. But, further exploration into whether or not this is true

for other types of lattice configurations is a question of interest (and has only been

explored for lattices of all the same or alternation charges [172,188]), particularly if

you wanted to design some initial condition with a specific outcome in the far field.

Amplitude Phase Amplitude Phase

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9.2: (a) Amplitude and phase of an optical lattice with alternating charges is
shown. It is possible to consider a range of defects in the optical lattice to test the
effect of each type of defect represented in (b-f). Yellow, dashed circles highlight
the example defect in each of the amplitudes of (b-f).
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From there, one can start considering questions reminiscent of condensed mat-

ter physics such as the impact of defects within the lattice on the propagation. A

few defects inspired by those found in solid state lattices are shown in Figure 9.2.

Consider the optical lattice in (a) of the figure. One possible defect for this lattice

is the removal of a vortex at a specific location, such as in Figure 9.2 (b) or (c), and

how which vortex is removed may impact the system differently. The effects on the

far field patterns for such defects have been previously considered [189], but the

changes in their dynamics or stability have not been measured. We can also imag-

ine defects such as those shown in (d-f) of the figure, where interstitial vortices,

vortices displaced from their centers or grain boundaries can be introduced into the

fields. Each of these cases will have different propagation dynamics and a different

far field distribution, but the impact of each type of defect has not been studied.

Optical Vortex Speckle

Finally, we can consider applying the hydrodynamic vortex equation to systems

such as optical speckle. In optical speckle, we know that the dynamics are very

complex, in part due to the high asymmetry and randomized structure in the sys-

tem. The hydrodynamic model can be tested by comparison to experimental data

of vortex dynamics within this complex system, which would further validate the

strength of the model’s predictive power and could serve as a means of strengthen-

ing the connection between optical fluids and other two-dimensional fluids.
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Appendix A: Theory Details

A.1 LG Decomposition for Oppositely Charged Vortex Pair***

The modal decomposition for the oppositely charged vortex pair can be per-

formed to find the modal content, and subsequently the beam evolution with prop-

agation. The result was obtained using the z = 0 field

U(x,y) =

√
2

w0

√
(x− x0)2 + y2eitan−1(y/(x−x0))

√
(x+ x0)2 + y2e−itan−1(y/(x+x0))

×
√

2
π

1
w0

e
− x2+y2

w2
0 (A.1)

from Indebetouw [32]. The coefficients of the modal decomposition are determined

via

Cℓ,p =
∫ −∞

−∞

∫ − inf

−∞

U(x,y)×LG∗
ℓ,p(x,y)dxdy (A.2)

where LG∗
ℓ,p(x,y) is the complex conjugate of LGℓ,p(x,y). For example, one can

calculate the coefficient for the LG1,0(x,y) mode via

C1,0 =
∫ −∞

−∞

∫ − inf

−∞

U(x,y)×LG∗
1,0(x,y)dxdy (A.3)

***The modal decomposition was performed by University of Denver PhD student Patrick Ford.
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which yields a value of

C1,0 =

√
2x0

w0
(A.4)

The final result for the opposite pair field for all ℓ and p is

ψopp(x,y,z) = (1−2d2)LG0,0 +
√

2dLG1,0 −
√

2dLG−1,0 −LG0,1 (A.5)

where d = x0/w0.

A.2 Derivation of the 2D Rotation Matrix

To derive the 2D rotation matrix, we start with a vector, v⃗, that exists in the

xy-plane and is rotated by angle α from the x-axis, as shown in Figure A.1. Vector

v⃗ can be described by its vector components where

v⃗ =

x

y

=

cosα

sinα

 . (A.1)

y

x

Ԧ𝑣

𝛼

θ

Ԧ𝑣’

Figure A.1: A vector, v⃗, is rotated by angle θ to become vector v⃗ ′, as described by
Equation A.5.
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Similarly, v⃗ ′ can be expressed in terms of its own vector components such that

v⃗ ′ =

x′

y′

=

cos(α +θ)

sin(α +θ)

 . (A.2)

Using the sum and difference formulas from trigonometry, this can be rewritten to

v⃗ ′ =

cosα cosθ − sinα sinθ

sinα cosθ + cosα sinθ

 . (A.3)

Remembering that cosα = x and sinα = y from Equation A.1, this can be rewritten

into the form

v⃗ ′ =

cosθ −sinθ

sinθ cosθ


x

y

 , (A.4)

where

R =

cosθ −sinθ

sinθ cosθ

 (A.5)

The matrix is defined as the 2D rotation matrix which takes an input vector and

rotates it by angle θ .

A.3 Finding the eigenvalues of the V 2Matrix

Recall that the V 2 matrix for the total field is described as V2
Total = FtotalFT

total

which is simplified in Eq. 3.4.12 to

V2 = ρ
−2
bg V2

vortex. (A.1)
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This can then be rewritten in terms of Fvortex where Fvortex is given by 3.3.6 such

that

V2 = ρ
−2
bg FvortexFT

vortex (A.2)

From here, we can simply substitute in the matrix form of Fvortex and carry out the

matrix algebra:

V2 = ρ
−2
bg

Cosξ −Sinξ Secθ

Sinξ Cosξ Secθ


 Cosξ Sinξ

−Sinξ Secθ Cosξ Secθ

 . (A.3)

V2 = ρ
−2
bg

 Cos2ξ +Sin2ξ Sec2θ Cosξ Sinξ −Sinξ Cosξ Sec2θ

Sinξ Cosξ −Sinξ Cosξ Sec2θ Sin2ξ +Cos2ξ Sec2θ

 (A.4)

Factor:

V2 = ρ
−2
bg

 Cos2ξ +Sin2ξ Sec2θ Cosξ Sinξ (1−Sec2θ)

Sinξ Cosξ (1−Sec2θ) Sin2ξ +Cos2ξ Sec2θ

 (A.5)

Use trig identity to simplify:

V2 = ρ
−2
bg

Cos2ξ +Sin2ξ Sec2θ Cosξ Sinξ Tan2θ

Sinξ Cosξ Tan2θ Sin2ξ +Cos2ξ Sec2θ

 (A.6)

Take the determinant:

219



Det
[
V2

total − Iλ
]
= 0 (A.7)

0 =

∣∣∣∣∣∣∣
ρ

−2
bg (Cos2ξ +Sin2ξ Sec2θ)−λ ρ

−2
bg Cosξ Sinξ Tan2θ

ρ
−2
bg Sinξ Cosξ Tan2θ ρ

−2
bg (Sin2ξ +Cos2ξ Sec2θ)−λ


∣∣∣∣∣∣∣ (A.8)

Carry out the algebra:

0= (ρ−2
bg (Cos2

ξ +Sin2
ξ Sec2

θ)−λ )(ρ−2
bg (Cos2

ξ Sec2
θ +Sin2

ξ )−λ )−Cos2
ξ Sin2

ξ Tan4
θ ,

0= ρ
−4
bg Cos4

ξ Sec2
θ +ρ

−4
bg Cos2

ξ Sin2
ξ−ρ

−2
bg λCos2

ξ +ρ
−4
bg Sin2

ξ Cos2
ξ Sec4

θ+

ρ
−4
bg Sin4

ξ Sec2
θ −ρ

−2
bg (λSin2

ξ Sec2
θ +λCos2

ξ Sec2
θ +λSin2

ξ )+λ
2−

ρ
−4
bg Cos2

ξ Sin2
ξ Tan4

θ

0= λ
2 +ρ

−4
bg Cos2

ξ Sin2
ξ (1+Sec4

θ −Tan4
θ)+ρ

−4
bg Sec2

θ(Cos4
ξ +Sin4

ξ )...

...−λρ
−2
bg

(
Cos2

ξ +Sin2
ξ +Sin2

ξ Sec2
θ +Cos2

ξ Sec2
θ
)

Simplify
(
Cos2ξ +Sin2ξ +Sin2ξ Sec2θ +Cos2ξ Sec2θ

)
:

(
Cos2

ξ +Sin2
ξ +Sin2

ξ Sec2
θ +Cos2

ξ Sec2
θ
)
=
(
1+(Sin2

ξ +Cos2
ξ )Sec2

θ
)
,

= 1+Sec2
θ ,
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Simplify 1+Sec4θ −Tan4θ :

1+Sec4
θ −Tan4

θ= 1+Sec4
θ −Sin4

θSec4
θ ,

= 1+Sec4
θ(1−Sin4

θ),

= 1+Sec4
θ(1+Sin2

θ)(1−Sin2
θ),

= 1+Sec4
θ(1+Sin2

θ)(Cos2
θ),

= 1+Sec2
θ(1+Sin2

θ),

= 1+Sec2
θ(1+(1−Cos2

θ)),

= 1+Sec2
θ(2−Cos2

θ),

= 1+2Sec2
θ −Sec2

θCos2
θ ,

= 2Sec2
θ ,

Substitute in:

0= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Cos2

ξ Sin2
ξ (2Sec2

ξ )+ρ
−4
bg Sec2

θ(Cos4
ξ +Sin4

ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ(2Cos2
ξ Sin2

ξ +Cos4
ξ +Sin4

ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ(Cos4
ξ +Sin2

ξ (Sin2
ξ +2Cos2

ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ(Cos4
ξ +Sin2

ξ (1+Cos2
ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ(Cos2
ξ (Cos2

ξ + sin2
ξ )+Sin2

ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ(Cos2
ξ +Sin2

ξ )

= λ
2 −λρ

−2
bg (1+ sec2

θ)+ρ
−4
bg Sec2

θ
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The final expression from the eigenvalue problem is

(λ −ρ
−2
bg )(λ −ρ

−2
bg Sec2

θ) = 0 (A.9)

and the ratio of the eigenvalues, which is independent of ρbg is given by

λ1

λ2
= Cos2

θ (A.10)

allowing a solution for theta from the total paraxial field. The eigenvectors are then

used to find ξ from the total paraxial field.

A.4 Using Mathematica to Find Vortex Tilt from a Paraxial Field

Below is an example code for measuring the tilt of a single vortex placed within

a Gaussian host beam. The process for finding the tilt of a vortex would still be the

same for a more complicated input field.

Code Example: Measuring Vortex Tilt.

assumptions ={ Element[x,Reals],Element[y,Reals],Element[z,
Reals],\[Xi] >0,\[Theta]>0,Element[Sec[\[Theta]],Reals],
Element[Sec[\[Theta]]^2, Reals ]};

x0set =0.5*10^ -3; (* input Subscript[x, 0] in meters *)
w0set =1*10^ -3;(* input Subscript[w, 0] in meters *)
\[Xi]set=60 Degree; (* input azimuthal angle , \[Xi] *)
\[Theta]set=25 Degree;(* input polar angle , \[ Theta] *)
\[ Lambda ]0set =633*10^ -9; (* input laser wavelength *)

(* Expression for a Gaussian containing a tilted vortex *)
\[Psi]field[x_0_,x_,y_,z_,\[Xi]_,\[ Theta]_]:=1/(k w0^2+2 I z

) k Sqrt [2/\[ Pi]] w0^2 E^(-((k (x^2+y^2))/(k w0^2+2 I z))
) (Cos[\[Xi]](-x +x0 + I x0 z -I y Cos[\[Theta]]) - y Sin
[\[Xi]] + I x Cos[\[ Theta]] Sin[\[Xi]] + x0(-I +z)Cos[\[
Theta]]Sin[\[Xi]])/.{w0->w0set ,k ->(2\[Pi])/\[ Lambda ]0set
};

realpart=Simplify[ComplexExpand[Re[\[Psi]field[x0set,x,y,z,
\[Xi]set,\[Theta]set]]], assumptions ];

imaginarypart=Simplify[ComplexExpand[Im[\[Psi]field[x0set ,x,
y,z,\[Xi]set,\[Theta]set]]], assumptions ];
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dxreal=FullSimplify[D[realpart ,x]]/.{x->x0set,y-> 0,z-> 0}//
N;

dyreal=FullSimplify[D[realpart ,y]]/.{x->x0set,y-> 0,z-> 0}//
N;

dximag=FullSimplify[D[imaginarypart ,x]]/.{x-> x0set ,y0,z->
0}//N;

dyimag=FullSimplify[D[imaginarypart ,y]]/.{x-> x0set ,y-> 0,z
-> 0}//N;

grad\[Psi]={{ dxreal ,dyreal},{dximag ,dyimag }};
vsqmatrix=Inverse[grad\[Psi]]. Transpose[Inverse[grad\[Psi]

]];

evals=Eigenvalues[vsqmatrix ];
Print[Style["Calculated \[ Theta] from Field Gradients:"]]
ArcCos[Sqrt[evals [[2]]/ evals [[1]]]] *180/\[ Pi]
evecs=Eigenvectors[vsqmatrix ];

Print[Style["Calculated \[Xi] from Field Gradients:"]]
ArcCot[evecs [[2]][[1]]/ evecs [[2]][[2]]]*180/\[ Pi]

A.5 Fourier Transform Method for Analytical Fresnel Integration***

The propagation of optical fields with vortices can be calculated with the Fres-

nel integral. We analytically implement this calculation with Fourier transforms,

following Pritchett and Trubatch [136].

Basic setup for the calculation

We want to solve the following system:

∂xxu+∂yyu+2ki∂zu = 0, (A.1)

which is the paraxial equation for the complex field

u(x,y,z = 0) = uGauss(x,y,0)ũ(x,y), (A.2)

***This appendix section was written by University of Denver PhD student Andrew A. Voitiv,
originally used as supplemental information for the work in [120].
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where uGauss(x,y,0) represents the complex-valued initial background mode, a Gaus-

sian function for these purposes, which is modulated by the amplitude and phase of

one or more vortices described by ũ(x,y).

The solution to this system is the following Fresnel integral, a convolution of

the initial condition with the paraxial Green function:

u(x,y,z) =
−ik

z

∫
dx′
∫

dy′u(x′,y′,0)e
ik
2z((x−x′)2+(y−y′)2). (A.3)

Non-dimensionalize the paraxial equation using:

x → w0x,y → w0y,z → kw2
0z. (A.4)

The non-dimensional paraxial equation is then

∂xxu+∂yyu+2i∂zu = 0 (A.5)

and the non-dimensional Fresnel integral is:

u(x,y,z) =
−i
z

∫
dx1

∫
dy1u(x1,y1,0)e

i
2z((x−x1)

2+(y−y1)
2). (A.6)

Then the Fresnel integral is

u(x,y,z) =
−i
z

1
2π

∫
dx1

∫
dy1

2√
π

e−(x2
1+y2

1)ũ(x1,y1)e
i

2z((x−x1)
2+(y−y1)

2). (A.7)
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We can write this with the x1 and y1 terms grouped by integral:

u(x,y,z) =
−i
z

1
2π

2√
π

∫
dx1e−x2

1(1−
i

2z )e−ix1
x
z

∫
dy1ũ(x1,y1)e−y2

1(1−
i

2z )e−iy1
y
z .

(A.8)

Now define the following:

α = 1− i
2z
,βx =

−x
z
,βy =

−y
z
. (A.9)

Then the non-dimensional Fresnel integral is

u(x,y,z) =
−i

π3/2 e
i

2z (x
2+y2)

∫
dx1e−αx2

1eiβxx1

∫
dy1ũ(x1,y1)e−αy2

1eiβyy1, (A.10)

which is in the form of a two-dimensional Fourier transform. Define the Fourier

transform as follows:

Fq(βq,q) =
1√
2π

∫
dq fq(q)eiβqq, (A.11)

where q represents x or y, and define the following kernel functions:

fx(x1) = ũ(x1,y1)e−αx2
1 (A.12)

fy(y1) = e−αy2
1Fx(βx;x1). (A.13)

With this, the Fresnel integral becomes

u(x,y,z) =
−i
z

2
√

πei x2+y2
2z Fy(βx;βy) (A.14)
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Parameters listed after semicolons serve as reminders of functional dependence.

Implementation for single titled vortex on the shoulder of a Gaussian beam

We take the initial field

ũ(x,y) = ((x− x0)+ i(y− y0)cosθ)cosξ +((y− y0)− i(x− x0)cosθ)sinξ ,

(A.15)

to be a single vortex that may be tilted at any initial angles ξ and θ and which may

be shifted along the x- or y-axes by x0 and y0, respectively. For this demonstration,

we set: y0 = 0.

To reach the desired field, we begin by inserting Equation A.15 into Equation

A.12 and then using Equation A.11:

Fx(βx) =
1√
2π

∫
dx fx(x1)eiβxx. (A.16)

The result of this Fourier transform is used to construct the next (using Equation

A.13):

Fy(βy) =
1√
2π

∫
dy fy(y1)eiβyy. (A.17)

The final Fresnel-integrated field is thus evaluated by finding (Equation A.14):

u(x,y,z) =
−i
z

2
√

πei x2+y2
2z Fy(βy), (A.18)
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with result:

u(x,y,z) =

√
2
π

e
i(x2+y2)

2(z−i)

× (cosξ (−x+ ix0z+ x0 − iycosθ)+ sinξ (−y+ cosθ(x0z+ i(x− x0))))

(z− i)2

(A.19)

Implementation for a vortex pair on a Gaussian

We take our vortex pair to consist of opposite unit charge vortices with linear

amplitude cores, (x+ iy) and (x− iy), which are neither initially tilted but are each

shifted from the origin by ±x0:

ũ(x,y) = ((x+ x0)− iy)× ((x− x0)+ iy). (A.20)

The order of calculations follows directly the order used in the previous imple-

mentation for the single-vortex case, for the new expression of ũ(x,y). The final

Fresnel-integrated result is:

u(x,y,z) =

√
2
π

e
i(x2+y2)

2(z−i)

(
x2 + x2

0(z− i)2 −2x0y(z− i)+ y2 −2z(z− i)
)

(1+ iz)3 (A.21)
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Appendix B: Additional Experimental Details

B.1 Epson 83H as a Spatial Light Modulator

The Epson 83H Projector LCD Panel is used as a spatial light modulator. The

panel resolution is 1024× 768 with a pixel pitch of 12.4 µm. Typically, we used

the “red" LCD panel for our experiments.

A Few Tips when Using a Projector

Before rewiring the projector and removing the panel, it is beneficial to navigate

through the menus, shown in Figure B.1, and ensure that the the Auto Keystone is

set to “Off" and that the Keystone is set to “0". If this is not the case, the SLM

will automatically distort the light coming from the panel and all beams will be

oblong. If the projector is rewired already, it is still possible to scan through the

menus; an imaging system can be used to magnify and image laser light passing

through the SLM to navigate through the menus. This may not be the same for

a other projectors, but classroom projectors in general have a Keystone feature. I

recommend looking at the user manuals for any projector you may use to ensure

that this is disabled.

When taking out the lamp, you can use a small flat head screwdriver between the

metal brace of the panel and the glass cube. It may come off easily, but be careful

because the glass can chip. Best to wear safety glasses to protect your eyes in the
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Figure B.1: Menu for navigating to Keystone options: Keystone should be set to
“0" and Auto Keystone should be “Off".

process. For some projectors, the panel will not easily come off of the glass cube

in which case you may be tempted to use a heat gun to soften the epoxy and more

easily take off the panel. However, it is very important to minimize any heating of

the cube and panel because excessive heat can damage or warp the panel which can

result in poor mode quality or potential lensing effects.

It is easy to use a VGA splitter to set up the second monitor, and be able to see

the dislay that is projected onto the SLM. However, because the resolution is so

critical, I found it important to plug in the SLM first, and then the second monitor.

This way, the computer recognizes the SLM first, rather than the monitor and the

display will then match the Epson Projector’s recommended resolution (1024x768)

rather than what the recommended resolution is of the monitor, which can vary

from monitor to monitor. A simple way to check this is to go into Microsoft’s

Settings → System → Display → Advanced Display Settings. Choosing the display

that matches the SLM, the display should read, “Epson 83H Projector".
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B.2 Experimental Alignment Suggestions

There are a few notable choices made in the experimental setup that help al-

leviate the need for realignment of the entire experiment each time along the way.

First, I used lens mounts that allow the lenses to easily screw in and out. This makes

re-aligning along a line of holes (using the same set of irises that are fixed in their

position) through an imaging system or telescope much quicker and prevents the

need for realignment of the lens mount each time. Second, the lenses in my exper-

iments are always placed such that the planar side of the lens faces the threads of

the screw mount. This makes it easy to always orient the lenses in telescopes and

imaging systems such that there are the fewest chances for introducing aberrations.

Additionally, it is simplest to check the stability of all mounts before using them to

ensure they are not easily moved. While the colinear phase-shifting holography is

more robust against vibrations, it remains highly beneficial to minimize vibrations

and fluctuations in the beam, especially when we look at vortex trajectories.

Because the vortices themselves are very dark, dust and mirror scratches can

cause significant distortions in the vortex location. Using the smallest number of

optics helps reduce the number of places where dust can collect along the way.

Placing the experiment inside of a box and building extra walls along the optical

path helps mitigate this and also prevents excess scatter from reaching the camera

which can also affect the vortex measurement.

B.1.1 Telescope and Shear Interferometer

Because it is important to not introduce any ellipticity into the beam prior to the

SLM, the telescope alignment is very important. First, align beam along a line of
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holes with the irises spaced as far apart as possible. Ideally one right after the mirror

directing the beam down the table, and the other at the opposite end of the table.

Place the first lens in a mount and the second lens on a translation stage with motion

along the propagation direction such that they are approximately f1+ f2 apart from

each other when the stage for the second lens is in the middle of its translational

motion. Precisely align the first lens such that the back reflection goes directly

along the incoming beam and the transmitted beam is centered on the second iris.

If the second iris is too far away such that the beam is no longer visible, a third iris

can be used at a closer distance for centering the beam.

After that, I take the first lens out for aligning the second lens. Repeat the same

process, using back reflection and the second iris, on the second lens. After both

lenses are aligned individually, put both lenses in and check that the transmitted

beam is very well centered on the second iris and check that the ellipticity of the

beam is low using the DataRay software. If either of these are not well aligned,

this process must be repeated. An iris or pinhole can be placed at the focal plane

and adjusted to spatially filter the beam and improve the mode quality. Once this

alignment is completed once, the lenses can be easily unscrewed and the beam

aligned along the line of holes as needed since the laser can output can drift over

time.

A set of mirrors then redirects the beam along a line of holes where the SLM will

be placed. A shear interferometer is placed (temporarily) just before the location of

the SLM panel such that it is perpendicular to the laser propagation direction. By

checking that fringes are parallel to the marked line on the shear plate, it is easy

to see if the beam is collimated or not. If they are not parallel to the marked line

as in B.2 (a), move the micrometer on the translation stage of the second lens in
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(a) (b) (c)

Figure B.2: Shear interferometer when (a) not at the waist, (b) at the waist and (c)
close to the waist, but the incident beam is not of the highest quality.

the telescope until they are, as in Fig. B.2 (b). If the interference fringes are not

perfectly straight, shown in (c) of the figure, it can be an indicator of higher order

mode content within the beam [142] and the need for adjustment of the aperture or

lenses.

Once each of these checkpoints are fully satisfied, then the next step is to align

the SLM.

B.3 Data Ray Software and Aligning the to the Translation Stage

For taking data, alignment procedures and day to day troubleshooting, the Data

Ray software proved to be incredibly useful. The software for the Data Ray cam-

eras can be found online at: https://dataray.com/blogs/software/downloads. In par-

ticular, the beam wander feature was used as the iris for aligning the beam to the

translation stage. When the translation stage is at its zero value, the beam wander

feature collects data regarding the drift of the beam at that location. As the stage is

moved, the beam wander feature will track the displacement of the beam from the

initial location. When the beam is located at the center for both ends of the trans-

lation stage, the beam is aligned to the stage. This also can be used to quantify the

maximum drift introduced by the stage. For the case of the Newport stage used in
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the single vortex measurements, it was possible to align the beam to the stage such

that the largest deviation across the length of the stage was < 30 µm, as shown in

Figure B.3.

1m spindle stage 40cm spindle stage Newport 40cm stage

(a) (b) (c)

Figure B.3: A comparison of beam wander for three stages is shown. The center
point of the beam wander is where the beam is located at both the front and back of
the stage, and the motion away from the center is due to beam drift along the stage.
The maximum deviations are (a) ≈ 1750 µm for the 1 m Ball Screw Linear CNC
Slide Stroke 1000mm Long Stage Actuator Stepper Motor translation stage used in
the two vortex experiments, and (b) ≈ 100 µm for another spindle stage not used
in the experiments, but shown for comparison with (c), and (c) ≈ 20 µm for the
Newport IMS500 translation stage used in the single vortex measurements.

B.4 Checking Camera Orientation

In order to accurately measure vortex dynamics in the xy-plane, it is important

that the camera be aligned with the xy-axis of the SLM. For example, in the single

linear core vortex case, we anticpate that a vortex displaced to the right of the beam

will have a purely upward (y directional) velocity. If there is a mismatch between
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the orientation of the camera and the SLM, the velocity may read the correct mag-

nitude, but the measured components will not be correct. It is much easier to rotate

the camera than it is to do a coordinate transformation in data processing, so a vor-

tex lattice is used to check the relative alignment between the camera and SLM.

This calibration is done at the imaging plane of the imaging system containing L3

and L4 in Figure 6.1.

As shown in Figure B.4, a hologram containing a vortex lattice is projected onto

the SLM and measured by the CCD where the crosshairs in the Data Ray program

are set to 0◦. Using the locations of a vortex row and column, the rotation stage that

the camera is mounted on can be adjusted until the xy-planes of both the SLM and

CCD are aligned.

Figure B.4: When the crosshairs perfectly intersect a row and column of vortices in
the lattice, the CCD is at the correct rotation with respect to the SLM. The vortex
lattice is created using the code from Section C.1.2 with Nx = 6 and Ny = 6 and
cr << w0. Using the smallest cores possible makes the alignment the most precise.
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Appendix C: Experimental Programs

C.1 Experimental LabVIEW Program

A master program was written in LabVIEW to simultaneously control the SLM

panel display, camera and translation stage, automating the data taking process. For

a given set of data to be taken, the user uploads the desired set of holograms to

the program and specifies the desired parameters for the data set. When run, the

program cycles through each of the holograms in the set, saving an image on the

CCD for each hologram, and then moves the translation stage to the next z location

where the same process is then repeated.

The front panel of the program included several input parameters including the

folder path containing the gratings that will be used for the specific data set, and the

exported file path for the data. Other input parameters include the number of grating

sets, propagation step size, total propagation distance, and any additional distances

to account for if the camera is not at the imaging plane to begin with. Additionally,

the exposure time can be adjusted within the program and the parameters including

the size of the aperture at the focal plane are entered. Each of these parameters are

recorded in a notes folder located in the same folder that the data are saved to. An

image of the front panel is shown in Fig. C.1.

The image files are stored in the folder specified by the user and the designed file

format of the images is such that each file is labeled first by the current z location of
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Figure C.1: A user can specify the necessary parameters for taking a data set from
the front panel. The top left shows the folders storing the VIs that display the
holograms as described later in Figure C.2 and the folder path that will be used to
store the data taken. The top right shows the resolution and exposure time of the
camera, which can be adjusted. In the bottom left, there are input parameters to
determine the z step size, number of data points to take as well as other relevant
distances that may need to be taken into account if the physical set up is changed.
The bottom right displays updates with the current data set information as data is
being taken.

the stage in centimeters, followed by the image number. As an example, for a data

set with 3 gratings displayed at each z-step and data taken at z = 0 cm, and z = 10

cm the set of images would be where the image number corresponds the grating

number as they are displayed for data taking. This file format was used for ease in

data processing. The benefits of the format are that it is easy to directly read out
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D:\\000cm_image01.txt
D:\\000cm_image02.txt
D:\\000cm_image03.txt
D:\\010cm_image01.txt
D:\\010cm_image02.txt
D:\\010cm_image03.txt

the z positions from the file names, and it ensures the order of the files stayed in the

order that the data was taken.

To display the holograms, the master program initializes a SubVI, shown in

Figure C.2, that displays the hologram on the SLM.1 A unique SubVI is made for

each grating that is to be used, and stored in a folder that is specified by the user in

the master program “Grating beginning file path" input. In the figure, an example

1Here, I’d like to acknowledge William G. Holtzmann for writing the SubVI and working through
the details of getting it to display correctly on the SLM.

Figure C.2: Left: Example set of SubVIs used to display a set of holograms. Right:
SubVI front panel used to display a hologram.
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of a set of SubVIs and the front panel of the highlighted SubVI is shown. When the

SubVI is initialized, the window containing the grating goes to full screen, and the

hologram is correctly displayed on the SLM.

The order of the holograms is determined by the user in the block diagram.

Figure C.3 shows the relevant section of the block diagram where a user can specify

the file names for the SubVIs. The user should take note of the order so that during

data processing, the correct files are used to reconstruct the amplitude and phase of

the complex field according to Equation 5.1.5.

Modify input to 

include all SLM 

Displays here

Figure C.3: The file names in Figure C.2 are used to specify which SubVIs will be
used for the given data set. These can be modified as needed by the user for a given
set of holograms.
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Further improvements can be made to increase the efficiency and user friendli-

ness of the code, but the program is fairly straightforward to use and can be adapted

to any stage or CCD. The holograms used in the SubVI’s are created in Mathematica

as described in the next section.

C.2 Hologram Generating Mathematica Code

When using the automated LabVIEW program, applying an additional ampli-

tude mask such that the grating region was a square of dimensions 768× 768 and

the remaining pixels were black (zero valued) resulted in the cleanest data. Ex-

ample holograms are shown in Figure C.4, which are each generated as described

in Chapters 4 and 5, with code for both a linear core vortex pair and a hyperbolic

tangent core shared below.

Linear Core Vortex Hologram Tanh Core Vortex Hologram

Figure C.4: A linear core vortex pair hologram (left) and a hyperbolic tangent core
vortex pair hologram (right) are shown generated from the code in Sections C.1.1
and C.1.2, respectively. The parameters used in generating the holograms are as
displayed in the code.
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C.1.1 Linear Core Vortex Holograms

For linear core vortex gratings, the field amplitude goes as r. Code to generate

an equally spaced vortex lattice is shown below. Input parameters are displayed

first, followed by code describing the field amplitude and phase used to generate

the hologram. Both the amplitude hologram and all four phase reconstructing holo-

grams are generated from the code.

Code Example: Linear core vortex lattice holograms.

num = 10;(* number of pixels per grating period *)
set = 1; (* set number of gratings *)
w0set = 2*10^ -3; (* beam waist for mode in hologram *)
Nxset = 2; (* Number of Vortices in the x direction *)
Nyset = 1;(* Number of Vortices in the y direction *)
vsset = 1*10^ -3; (* vortex separation in m *)
alpha = 0 Degree; (* angle of grating lines *)

(* ******** Create File Directory to Export Gratings To
********* *)

which = "opp";
whichfile = "\\opp";
filepath =

"D:\\ Dissertation \\Epson Gratings \\" <> ToString[num] <>
" pix grating constant \\ Linear Core\\" <> ToString[Nxset]
<> "x" <>
ToString[Nyset] <> " with input w0 " <> ToString[w0set
*10^3] <>
"mm\\set" <> ToString[set] <> "_" <> which <> "_vs " <>
ToString[vsset *10^3] <> " mm Linear \\";

CreateDirectory[filepath]
filepathinfo = CreateDirectory[filepath <> "\\info"];
filepathdata = CreateDirectory[filepath <> "\\data"];

(* ******* INPUT Experimental Parameters and Definitions
****** *)

\[ Lambda0 =532*^ -9; (* wavelength *)
w0=w0set; (* waist size of Background Gaussian *)
pixpitch =12.4*10^ -6; (* pixel pitch for SLM *)
k=(2\[Pi])/(num*pixpitch); (* Determine grating constant *)
Ny=Nxset; (* Number of Vortices in the x direction *)
Nx=Nyset;(* Number of Vortices in the y direction *)
vs=vsset; (* vortex separation in m *)
ref =0.05; (* reference beam power *)
sig =0.95; (* signal beam power *)
sign =4;
(* Choose ,
sign = 1 for all negative charges ,
sign = 2 for all positive ,
sign = 3 for random charges ,
sign = 4 for alternating *)
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(* ******* Set up Gridspace Parameters for Gratings ********
*)

xres =768; (* x resolution to match SLM *)
yres =1024; (* y resolution to match SLM *)
xpanelsize=pixpitch*xres;(* use pixel pitch and resolution

to define panel size *)
ypanelsize=pixpitch*yres;(* use pixel pitch and resolution

to define panel size *)
xStep = pixpitch;(* set stepsize to match pixel size *)
yStep=pixpitch;(* set stepsize to match pixel size *)

(* ******* Set up vortex lattice location matrix ******** *)
xbound =(Nx -1)/2;
ybound =(Ny -1)/2;
x0matrix=Table[x ,{x,-xbound*vs,xbound*vs,vs},{y,- ybound*vs,

ybound*vs,vs}];
y0matrix=Table[y ,{x,-xbound*vs,xbound*vs,vs},{y,- ybound*vs,

ybound*vs,vs}];

(* ******* Set up vortex lattice charge matrix ******** *)
If[sign==1,
qmatrix=Table[-1,{x,-xbound*vs,xbound*vs,vs},{y,- ybound*vs,

ybound*vs,vs}];,];
If[sign==2,
qmatrix=Table [1,{x,-xbound*vs,xbound*vs,vs},{y,-ybound*vs,

ybound*vs,vs}];,];
If[sign== 3
qmatrix=Table [2 RandomInteger []-1,{x,-xbound*vs,xbound*vs,vs

},{y,-ybound*vs, ybound*vs,vs}];,];
If[sign ==4 && Nx==Ny,
qmatrix=Table [(-1)^(x/vs) (-1)^(y/vs),{x,-xbound*vs,xbound*

vs,vs},{y,-ybound*vs, ybound*vs,vs}];,];
If[sign ==4 && Nx!= Ny,
qmatrix=Table[Im[(-1)^(x/vs) (-1)^(y/vs)],{x,-xbound*vs,

xbound*vs,vs},{y,-ybound*vs, ybound*vs,vs}]; ,];

(* ********* Create Vortex Field ************* *)
\[Psi]vortex[x_,y_,x0_,y0_,q_]:= Sqrt [2]/w0 ((x-x0)+q I (y-y0

));(* linear core vortex wavefunction *)
\[Psi]vortexlattice=Product [\[Psi]vortex[x,y,x0matrix [[nx,ny

]],y0matrix [[nx,ny]],qmatrix [[nx,ny]]],{nx ,1,Dimensions[
x0matrix ][[1]]} ,{ny ,1,Dimensions[y0matrix ][[2]]}];

(* ********* Create Gaussian Amplitude ************* *)
gaussian=Sqrt [2/\[ Pi]] E^(-((x^2+y^2)/w0^2));

(* ********* Create Full Field ************* *)
\[Psi]field= gaussian*Abs[\[Psi]vortexlattice ]*E^(I Arg[\[

Psi]vortexlattice ]);

(* ********* Create Planewave ************* *)
planewave=E^(I k(Cos[alpha]x +Sin[alpha]y));

(* ******* Create Amplitude Mask ********* *)
\[Psi]abs=Table[Abs[\[Psi]field] ,{x,-(xpanelsize /2)+xStep/2,

xpanelsize /2-xStep/2,xStep},{y,-(ypanelsize /2)+yStep/2,
ypanelsize /2-yStep/2,yStep }];

tab=Table [1,{i ,1,1024},{j ,1 ,768}];
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LabVIEWmask=Table[If[y >128 &&y <897,tab[[x,y -128]],0],{x
,1,768},{y ,1 ,1024}];

AmplitudeMask=\[Psi]abs/Max[\[Psi]abs](* LabVIEWmask *);

(* ****** Set up Amplitude Measurement Diffraction grating
****** *)

Ixy =(.5 planewave +.5 E^(I Arg[\[Psi]field])); (* Planewave +
vortex field phase*)

IxyAmp=Abs[Ixy]; (* Need to take Absolute Value*)

DiscreteGratingAmp=AmplitudeMask*Table[IxyAmp ,{x,-(
xpanelsize /2)+xStep/2, xpanelsize /2-xStep/2,xStep},{y,-(
ypanelsize /2)+yStep/2, ypanelsize /2-yStep/2,yStep }];(*
Apply Amplitude Mask to grating *)

expamp=Chop[DiscreteGratingAmp ,10^ -200];
(* Export Amplitude Grating *)
Export[filepath <> whichfile <>"_amp.bmp",Image[expamp ]];

(* ******** Create Amplitude Mask for Gratings for PSDH
********** *)

interferogramamplitude ={};
For[phase=0,phase <= 3, phase += 1,

(* ********* Create Gaussian Reference ************* *)
gaussianREF=gaussian E^(I \[ CapitalDelta ]\[Phi])/.{\[

CapitalDelta ]\[Phi]->phase *\[Pi]/2};

(* ********* Superimpose with Vortex Field ************* *)
interferogram =(sig*\[Psi]field+ref*gaussianREF);
interferogramamp=Table[Abs[interferogram ],{x,-(xpanelsize /2)

+xStep/2, xpanelsize /2-xStep/2,xStep},{y ,-(ypanelsize /2)+
yStep/2, ypanelsize /2-yStep2 ,yStep }];

AppendTo[interferogramamplitude ,interferogramamp ];
];
interferogrammasks=interferogramamplitude/Max[

interferogramamplitude ];

(* ********** Create Phase Step Gratings for PSDH
************ *)

phasegratings ={};
For[phase=0,phase <= 3, phase += 1,
(* Create Gaussian Reference *)
gaussianREF=gaussian E^(I \[ CapitalDelta ]\[Phi])/.{\[

CapitalDelta ]\[Phi]->phase *\[Pi]/2};
(* Superimpose Reference Mode with Vortex Field *)
interferogram =(sig*\[Psi]field+ref*gaussianREF);
(* Interferogram Phase + PlaneWave *)
interferogramplusPW=Abs [(0.5 planewave +0.5E^(I Arg[

interferogram] ))];
interferogramgrating=interferogrammasks [[ phase +1]]* Table[Abs

[interferogramplusPW ],{x,-(xpanelsize /2)+xStep/2,
xpanelsize /2-xStep/2,xStep},{y,-(ypanelsize /2)+yStep/2,
ypanelsize /2-yStep/2,yStep }];

AppendTo[phasegratings ,interferogramgrating ];
];

For[i=0,i <=3,i+=1,
(* Export Phase Gratings *)
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Export[filepath <>whichfile <>"_ph"<>ToString[i]<>".bmp",Image
[phasegratings [[i+1]]]];

]

C.1.2 Tanh Core Vortex Holograms

The following code shows a subset of the code from the previous section where

modifications were made to create a hyperbolic tangent core vortex lattice rather of

a linear core vortex lattice. The variables with new definitions as compared to the

previous section are highlighted in red.

Code Example: Hyperbolic tangent core vortex lattice holograms .

num = 10;
set = 1;
w0set = 2*10^ -3;
Nxset = 2; (* Number of Vortices in the x direction *)
Nyset = 1;(* Number of Vortices in the y direction *)
vsset = 1*10^ -3; (* vortex separation in m *)
crset = 0.25*10^ -3; (* vortex core size in m *)
alpha = 0 Degree;
.
.
.
filepath =

"D:\\ Dissertation \\Epson Gratings \\" <> ToString[num] <>
" pix grating constant \\Tanh Core\\" <> ToString[Nxset]
<> "x" <>
ToString[Nyset] <> " with input w0 " <> ToString[w0set
*10^3] <>
"mm\\set" <> ToString[set] <> "_" <> which <> "_vs " <>
ToString[vsset *10^3] <> " mm_cr " <> ToString[crset *10^3]
<> "\\";

.

.

.
(* ********* Create Vortex Field ************* *)
\[Psi]vortex[x_, y_, x0_, y0_, q_, cr_] := Tanh[Sqrt[(x - x0

)^2 + (y - y0)^2]/ cr] E^(I q ArcTan [(x - x0), (y - y0)
]);

\[Psi]vortexlattice =
Product[\[Psi]vortex[x, y, x0matrix [[nx, ny]], y0matrix [[
nx, ny]], qmatrix [[nx, ny]], crset], {nx, 1,
Dimensions[x0matrix ][[1]]} , {ny, 1, Dimensions[y0matrix
][[2]]}];

.

.

.
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C.3 Data Processing Mathematica Code

All of the data processing for the experiments of this dissertation was done with

Mathematica. In the next few sections, I will highlight the main processes used

for data processing and provide supplemental code. For each of the example codes

throughout the section, there were three different fields from three different sets of

holograms recorded: (i) a same charge vortex pair, (ii) an oppositely charged vortex

pair, and (iii) the single vortex (LG) mode, in that order (as determined by the order

of holograms in Figure C.3).

C.1.1 Initial Crop of the Data

The first step of data processing after the images are taken is to do an initial

crop around the beam. The full CCD window is not typically needed, and a lot of

time can be saved in processing if the fields are cropped. To determine the window

of the initial crop, I used MatrixPlot to quickly check that the beam at z = 0, the

beam at the final z value of the set and the beam halfway in between are all fully in

the cropped window. Once this is confirmed, to save both time and storage space

on the computer, the cropped data text file overwrites the initial data text file in the

same folder. The notebook is saved into the same file folder as the data, and sample

code for this is as follows:

Code Example: Initial crop of data.

(* Import file names *)
files = FileNames["*.txt", NotebookDirectory []];

Monitor[For[k = 1, k <= Length[files], k += 1,
x1 = 300;
x2 = 1200;
x3 = 300;
x4 = 1200;
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(* the initial crop of the vortex data - exported file
replaces file in same folder *)
Filename = files [[k]];
data = Import[Filename , "CSV"][[x1 ;; x2, x3 ;; x4]];
Export[files [[k]], data, "CSV"];
];

, k]

C.1.2 Phase-shifting Digital Holography Processing

Once the data is cropped, we can use all 5 images from each set of gratings to

construct the full complex field from each set according to Equation 5.1.5.

Code Example: Calculating the complex field via phase-shifting digital holography.

files = FileNames["*.txt", NotebookDirectory []];

filepathsint = Table[Table[StringDrop[files[[i]], -4], {i,
1, Length[files ]}][[j]], {j, 1, Length[files], 5}];

filepathsph = Table[Table[StringDrop[files [[i]], -4], {i, 1,
Length[files ]}][[
j]], {j, 2, Length[files], 5}];

croppeddata = {};
vortexlocations = {};
fields = {};

zvals = ToExpression[Table[Table[StringDrop[StringDrop[files
[[i]], -14], StringLength[NotebookDirectory []]], {i, 1,
Length[files ]}][[j]], {j, 1, Length[files], 5}]];]

fieldvalue = Flatten[Table[Table[i, {i, 1, 3}], {j, 1,
Length[zvals ]}]];

For[k = 1, k <= Length[files ]/5, k += 1,
fieldspath = StringDrop[files [[5*k]], -14] <> "field" <>

ToString[fieldvalue [[k]]] <> ".mat";

image2data = Import[StringJoin[files [[5*k - 4]]], "CSV"];

phase0data = Import[StringJoin[files [[5*k - 3]]], "CSV"];
phasepi2data = Import[StringJoin[files [[5*k - 2]]], "CSV"];
phasepidata = Import[StringJoin[files [[5*k - 1]]], "CSV"];
phase3pi2data = Import[StringJoin[files [[5*k - 0]]], "CSV"];

intensitydatasin = image2data;
phasedatasin = -ArcTan [( phase0data - phasepidata),(

phase3pi2data - phasepi2data)];
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beamsin = (Sqrt[Abs[intensitydatasin ]]* Exp[I *phasedatasin ])
// N;

Export[fieldspath , beamsin ];
]

Using the ArcTan Function

It is important to note the syntax of the ArcTan function in Mathematica (and

also in any other language as well). In Mathematica, the argument of the ArcTan

function takes the denominator first, and the numerator second. If the order is

reversed, the sign of the charges will be opposite than expected, and the comparison

between theory and experiment for the hydrodynamic models will be inconsistent.

C.1.3 Drift Calibration Code

After the complex field data is saved for each z-step, the next step is to crop

the data according to the drift calibration methods of Section 6.3. This ensures

accurate trajectory measurements that are not dependent on motion of the entire

beam. The Mathematica code to do so is written such that the real and imaginary

zeros intersection at the center of the LGℓ=1,p=0 mode for each z-step are located

and used as the center point of the cropping window. Since it is experimental data,

there are often many vortices near and outside the beam edges. In order to locate

the correct vortex, the location of the z = 0 vortex is approximated by the user

in looking at the plotted data and used as the initial guess. The measured vortex

nearest the guess (which is the central vortex of the LG mode) is stored and used to

crop the z = 0 data.

A plot of the vortex location in the beam is exported for comparison to ensure

the right vortex was selected, as shown in Figure C.5. The data in the figure was
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𝑧 = 0𝑐𝑚

𝑧 = 190𝑐𝑚𝑧 = 175𝑐𝑚𝑧 = 150𝑐𝑚𝑧 = 125𝑐𝑚

𝑧 = 100𝑐𝑚𝑧 = 75𝑐𝑚𝑧 = 50𝑐𝑚𝑧 = 25𝑐𝑚

Figure C.5: An example of the center vortex located by real and imaginary zeros
for an LG mode used to check the accuracy of the program. The red dots mark the
computationally determined vortex location.

taken with the Ball Screw Linear CNC Slide Stroke 1000mm Long Stage Actuator

Stepper Motor translation stage used in the two vortex experiments. For this specific

set, a small difference in the initial and final positions indicate that the beam is

aligned to the same position at the beginning and end of the translation. From the

images, we see minimal displacement in the x direction, and large displacement

in the y direction, indicating that the stage is bowed. The code used to generate

these images and crop the data with a window centered around the located vortex is

written out below:

Code Example: Removing beam drift.

(* Import 2D .mat data files *)
files=Partition[FileNames["*.mat",NotebookDirectory []] ,3];
(* allocate space to store vortex locations *)
priorvortexlocation = Table[0, {i, 1, Length[files ]}];
(* read z values from filenames *)
zvals = ToExpression[

Table[StringDrop[StringDrop[files[[i]], -10],
StringLength[NotebookDirectory []]], {i, 1, Length[files

]}]];

(* identify first center location based on plot of data at z
=0 *)

pick =1;
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window =150; (* specify size of cropped window /2 *)

(* import filepaths for data to be used *)
filepaths =

Table[StringTake[files[[i]],
3 + StringLength[NotebookDirectory []]], {i, 1,
Length[files ]}][[;; , 1]];

(* use single vortex data to identify vortex location *)
Filename = files [[pick ]][[3]];
fielddata = Import[Filename ][[1, ;; , ;;]] /. {Indeterminate

-> 0};
dim = Dimensions[fielddata ];
Clear[vorticesa]
(* identify real and imaginary zeros *)
vorticesa =

ComponentMeasurements[
Binarize[
GaussianFilter[

ImageMultiply[Image[CrossingDetect[Re[fielddata ]]],
Image[CrossingDetect[Im[fielddata ]]]], 1] //

ImageAdjust],
"Centroid"][[All , 2]];

(* identify vortex closest to initial guess *)
singindex = Flatten[Round[Nearest[vorticesa , {530, 188}(*

initial guess for central vortex location *)]]];
priorvortexlocation [[pick]] = singindex;
centimg =
HighlightImage[
Image[Abs[fielddata ]/Max[Abs[fielddata ]],
ImageSize -> Small], {singindex }]

(* export image to check that the correct vortex was
identified *)

Export[filepaths [[pick]] <> "highlightimg.png", centimg ];

(* use actual vortex location to crop the data for the
single vortex data and export *)

newfielddata3 =
fielddata [[( dim [[1]] - singindex [[2]]) -

window ;; (dim [[1]] - singindex [[2]]) + window ,
singindex [[1]] - window ;; singindex [[1]] + window ]];

Export[filepaths [[pick]] <> "croppedfield3.mat",
newfielddata3 ];

(* use actual vortex location to crop the data for the same
charge two vortex data and export *)

Filename = files [[pick ]][[1]];
fielddata = Import[Filename ][[1, ;; , ;;]] /. {Indeterminate

-> 0};
dim = Dimensions[fielddata ];

newfielddata1 =
fielddata [[( dim [[1]] - singindex [[2]]) -

window ;; (dim [[1]] - singindex [[2]]) + window ,
singindex [[1]] - window ;; singindex [[1]] + window ]];

Export[filepaths [[pick]] <> "croppedfield1.mat",
newfielddata1 ];
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(* use actual vortex location to crop the data for the
opposite charge two vortex data and export *)

Filename = files [[pick ]][[2]];
fielddata = Import[Filename ][[1, ;; , ;;]] /. {Indeterminate

-> 0};
dim = Dimensions[fielddata ];

newfielddata2 =
fielddata [[( dim [[1]] - singindex [[2]]) -

window ;; (dim [[1]] - singindex [[2]]) + window ,
singindex [[1]] - window ;; singindex [[1]] + window ]];

Export[filepaths [[pick]] <> "croppedfield2.mat",
newfielddata2 ];

C.1.4 Location and Storing the Vortex Locations

As mentioned in Section 6.3, we use real and imaginary zeros to track the field.

For the work done in this thesis, the code below was used to locate and store the

vortex locations via image processing techniques. A slight Gaussian filter can be

applied to reduce the effects of noise in the experimental fields.

Code Example: Locating and storing vortex locations from centered field data.

(* import files *)
files = Partition[FileNames["*.mat", NotebookDirectory []],

3];
filepathbmp = StringDrop[FileNames["*.bmp",

NotebookDirectory []], -4];

(* Allocate space to store vortices for each field*)
vortices1 = {};
vortices2 = {};
vortices3 = {};
(* read z locations from file names *)
zvals = ToExpression[Table[StringDrop[StringDrop[files [[i]],

-17], StringLength[NotebookDirectory []]], {i, 1, Length[
files ]}]];

(* identify vortices in each set of images at each z step*)
For[k = 1, k <= Length[files], k += 1,
fielddata = Import[files[[k]][[1]]][[1 , ;; , ;;]] /.{

Indeterminate -> 0};
(* find real and imaginary zeros *)
vorticesa = ComponentMeasurements[Binarize[GaussianFilter[

ImageMultiply[Image[CrossingDetect[GaussianFilter[Re[
fielddata], 1]]], Image[CrossingDetect[GaussianFilter[Im[
fielddata], 1]]]] ,1] // ImageAdjust], "Centroid"][[All ,
2]];

AppendTo[vortices1 , vorticesa ];
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fielddata = Import[files[[k]][[2]]][[1 , ;; , ;;]] /. {
Indeterminate -> 0};

vorticesb = ComponentMeasurements[Binarize[GaussianFilter[
ImageMultiply[Image[CrossingDetect[GaussianFilter[Re[
fielddata], 1]]], Image[CrossingDetect[GaussianFilter[Im[
fielddata], 1]]]] ,1] // ImageAdjust], "Centroid"][[All ,
2]];

AppendTo[vortices2 , vorticesb ];

fielddata = Import[files[[k]][[3]]][[1 , ;; , ;;]] /. {
Indeterminate -> 0};

vorticesc = ComponentMeasurements[Binarize[GaussianFilter[
ImageMultiply[Image[CrossingDetect[GaussianFilter[Re[
fielddata], 1]]], Image[CrossingDetect[GaussianFilter[Im[
fielddata], 1]]]] ,1] // ImageAdjust], "Centroid"][[All ,
2]];

AppendTo[vortices3 , vorticesc ];
]

(* Export vortex data to a new folder *)
Export[StringDrop[files [[1]][[1]] , -20]<>"vortices \\

vortices1.mat", vortices1 ];
Export[StringDrop[files [[1]][[1]] , -20]<>"vortices \\

vortices2.mat", vortices2 ];
Export[StringDrop[files [[1]][[1]] , -20] <>"vortices \\

vortices3.mat", vortices3 ];

C.1.5 Measuring and Plotting Vortex Separation

Once the locations are stored, they can be used to calculate relevant quantities

such as the vortex separation with propagation. The built in function “Euclidean-

Distance" to calculate the separation. An example of the full separation measure-

ment is written here:

Code Example: Measuring vortex separation.

(* import vortex location files *)
files = FileNames["*.mat", NotebookDirectory [] <> "vortices

\\"];

(* convert pixels to physical dimensions using pixel size *)
vortices1 =

5.5*10^ -3* Import[StringDrop[files [[1]], -13] <> "vortices1
.mat"];

vortices2 =
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5.5*10^ -3* Import[StringDrop[files [[1]], -13] <> "vortices2
.mat"];

vortices3 =
5.5*10^ -3* Import[StringDrop[files [[1]], -13] <> "vortices3
.mat"];

(* convert z values to mm *)
zprop = Table[zvals[[i]][[1]] , {i, 1, Length[zvals ]}]*10;

(* measure vortex separation for the same charge vortex pair
*)

dist1 = Table[EuclideanDistance[vortices1 [[i]][[1]] ,
vortices1 [[i]][[2]]] , {i, 1, Length[vortices1 ]}] // N;

points1 = Partition[Flatten[Riffle[zprop, dist1]], 2];
p1 = ListPlot[points1 , PlotRange -> {{0, 2000} , {0, 1.5}} ,

PlotStyle -> Red];

(* measure vortex separation for the opposite charge vortex
pair *)

dist2 = Table[EuclideanDistance[vortices2 [[i]][[1]] ,
vortices2 [[i]][[2]]] , {i,1, Length[vortices2 ]}] // N;

points2 = Partition[Flatten[Riffle[zprop, dist2]], 2];
p2 = ListPlot[points2 , PlotRange -> {{0, 2000} , {0, 1.5}} ,

PlotStyle -> Blue];

(* plot separation together with formatting *)
FinalPlot =
Labeled[Show[p1, p2, ImageSize -> {600, 400}, Frame -> True

,
FrameStyle -> Directive[Black , 16, FontFamily -> "
Helvetica"],
PlotLabel -> Style[" w0 = 1.553 vs = 0.594 mm \!\(\*
SubscriptBox [\(c\ \), \(r\)]\) = Linear ", Black , 16,
FontFamily -> "Helvetica"]], {Style["Separation (mm)",
Black , 16, FontFamily -> "Helvetica"], Style["Propagation
Distance (mm)", Black , 16, FontFamily -> "Helvetica"]},

{Left , Bottom}, RotateLabel -> True]

The output plot from the code is displayed in Figure C.6. The separation be-

tween both opposite (blue) and like (red) charge pairs are shown with propagation

for fitted beam parameters w0 = 1.553 mm, vs = 0.594 mm, and linear cores. The

separation shows an annihilation event between the oppositely charged vortex pair

while the same charge vortex pair appears to be at roughly the same separation

throughout the propagation for the data set used here.
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Figure C.6: The resulting vortex separation plot from the Mathematica code of
Section C.1.5.

C.4 Modal Decomposition Code

The modal decompositions described in Sections 5.3.1 and 5.3.2 are done dig-

itally using Mathematica. The code first downsamples the experimental data and

crops the field around the beam center. A set of digital LG filters are created, and

the overlap between the experimental field and each digital filter is calculated to

build a full ℓ, p spectrum. The total ℓ mode content is also calculated. The full code

is found just below.

Code Example: Modal decomposition on data.

(* Import amplitude and phase data *)
am = NotebookDirectory []<>"LG -1amp.txt";
ph = NotebookDirectory []<>"LG -1 phase.txt";
beam = (Sqrt[Abs[Import[am, "CSV"]]] Exp[I Import[ph, "CSV"

]]);

(* downsample data for processing *)
input = Downsample[beam, 10];

(* find beam center using image processing *)
cent2 = ComponentMeasurements[MorphologicalComponents[

Binarize[Image[Sqrt[Abs[input ]]/Max[Sqrt[Abs[input ]]]],
.95]],"Centroid"];

(* crop the data to a 100 X100 window around the beam *)
window =49;
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cropinput = input [[Round[cent [[2]]] - window ;; Round[cent
[[2]]]+( window +1) ]];

fullcropinput =
cropinput [[All ,Round[cent [[1]]] -( window +1);;Round[cent
[[1]]]+( window +1) ]];

(* Create definitions needed for modal decomposition *)
(* mathematical form of LG mode*)
LGfull[m_, q_]=Sqrt [(2 Factorial[q])/(\[Pi]( Factorial[q+Abs[

m]]) )] 1/wz ((r*Sqrt [2])/wz)^Abs[m]*Exp[-r^2/wz^2]
LaguerreL[q,Abs[m],2r^2/wz^2]* Exp[I \[Phi] m]*Exp[+I k r
^2/(2 Rz)]*Exp[-I (Abs[m]+2 q+1) ArcTan[z/zR]];

wz=w0 Sqrt [1+(z/zR)^2];(* beam waist divergence *)
Rz=z(1+(zR/z)^2); (* radius of curvature *)
zR=\[Pi] w0^2/\[ Lambda ]0; (* Rayleigh length *)
k=2\[Pi]/\[ Lambda ]0; (* wavenumber *)
\[ Lambda ]0=632*^ -9; (* laser wavelength *)

pix = 7.7 10^-6; (* size of pixels on camera *)
x0 = 0;(* x shift of digital filter center in fraction of a

pixel*)
y0 = 0;(* x shift of digital filter center in fraction of a

pixel*)

(* Center LG based on inputs above *)
LGcentered[m_, q_] =

LGfull[l, p] /. {w0 -> .0021049 , z -> 1*10^ -10,
r -> Sqrt[(x - pix x0)^2 + (y - pix y0)^2], \[Phi]->
ArcTan[y - pix y0, x - pix x0], l -> m, q -> p};

yRange = 2*5*^ -3; xRange = yRange;
Nsteps = 100;
xStep = 2* xRange/Nsteps; yStep = xStep // N;

(* Create digital filters over l-p spectrum *)
tabs = Monitor[Table[img1 = ParallelTable[LGcentered[l,p],{x

, -xRange - xStep/Nsteps , xRange - xStep , xStep}, {y, -
yRange - xStep/Nsteps , yRange - yStep, yStep}], {l, -10,
10}, {p, 0, 10}]

, {l, p}];

(* calculate overlap of data and digital filters *)
cc = Monitor[Table[input2 = tabs[[m, p]] fullcropinput [[1 ;;

100, 1 ;; 100]]; Total[Total[input2]], {m, 1, 21}, {p,
1, 11}], {m, p}];

(* Calculate the projection onto l to measure vortex purity
*)

ll = {};
For[i = 1, i <= 21, i++,
AppendTo[ll, Total [((Abs[cc]^2)/Max[Abs[cc]^2])[[i]]]]]

purity = ll [[12]]/ Total[ll[[1 ;; 21]]];
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Appendix D: Outreach

While pursuing an intense degree with many pressures, deadlines and never

ending to do lists, it can feel impossible to find the time to do outreach. Yet, it is

one of the most important aspects of the scientific field. Outreach not only helps

foster interest and curiosity amongst younger students who will become the next

generation of scientists, but it also increases our own ability to communicate com-

plex material to others in an accessible way. This is an often underdeveloped skill

set amongst scientists, and in an age of misinformation and pressing issues relevant

not only to scientists, but the general population and their quality of life, it is more

important than ever for those doing the work to save a little time for outreach. Out-

reach can be an ongoing process and doesn’t require formal events to do so. Reach

out to your friends and family, kids that they might have, and bring outreach as a

mindset into your daily life.

Through my time at DU, I was fortunate to participate as a camp counselor for

both the “Femme in STEM" summer camp (2017) and the “DU SciTech" summer

camp (2017, 2019). The latter was organized and run by Prof. Shannon Murphy,

Associate Prof. Robin Tinghitella, and Prof. Jennifer Hoffman. The camp included

many fun activities for students to engage in concepts, current research and the

scientific process. It also included tours of our (and other graduate students’) labs.

In my lab tours, I used holograms to generate fun patterns in beams for young
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folks that included pop culture references and other topics relevant to their lives.

Examples are shown in Figure D.1.

In the most recent SciTech camp before the pandemic hit, the students were

able to engage in real research including devising an experiment under the guid-

ance of Prof. Shannon M. Murphy (and the rest of the adults in the camp), going

out into the field, and taking real data [190]. This resulted in a publication (with

the writing and analysis pushed forward by Prof. Shannon M. Murphy, Teaching

Assistant Prof. Dhaval Vyas, and Associate Prof. Robin Tinghitella) of girls in the

summer camp and the graduate students who participated [191]. With creativity,

guidance, and collaboration, leading scientists can create inclusive environments to

engage younger students that also results in tangible and impactful outcomes for

both parties involved.

I also hosted a lab tour for high school students, co-presented with fellow stu-

dents Alisha Humphries and Angie Davidson in a faculty meeting centered around

gender discrimination issues, attended Inclusive Excellence workshops run by the

Director of Inclusive Teaching, Dr. Valentina Iturbe-LaGrave, and consistently en-

gaged in inclusive practices throughout my PhD. I was lucky to participate as an

(a) (b) (c) (d)

Figure D.1: A set of gratings is shown that were used during lab tours, particularly
inspired by the DU SciTech Summer Camp. Included are (a) a cat hologram, (b)
a Mind Flayer [178] hologram, (c) a set of insects inspired by the entomology unit
of the summer camp, and finally (d) a telescope hologram inspired by the astrono-
my/optics section of the summer camp.
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assistant for one quarter in the Academic Excellence Workshops spearheaded, de-

signed, and implemented by Angie Davidson during her time at DU. These work-

shops were made to provide extra help specifically to the bottom third of the stu-

dents in the University physics classes, and the preliminary data showed a positive

increase in the grades of students who participated. I am grateful to have had an

opportunity to make a difference and work with Angie in this, even for a short time.

I also must mention that I am grateful for the support and community of the

American Association of Physics Teachers CO/WY section. I have been a board

member since 2017, and that is because of the tremendous amount of support I have

received from the organization, starting all the way back in my undergraduate years.

I have been able to meet high school teachers, professors from other universities,

participate in and see wonderful demonstrations (with many thanks to The Little

Shop of Physics at CSU for their incredible outreach efforts) and better enjoy the

process of my career development. I strongly encourage anyone in the CO/WY

region to participate.
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