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ABSTRACT 

Genotyping arrays have greatly facilitated genetic epidemiological studies 

into genetic risk factors for numerous complex diseases such as psychiatric 

disorders. The use of genome-wide association analysis (GWAS) is 

unequivocally established. More recently, DNA methylation arrays have 
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enabled genome-wide profiling of the methylome, in addition to 

contemporary genetic epidemiology study design. An example of one such 

study is the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) 

Lipidomics Study, which identified methylation markers (CpG markers) 

and single nucleotide polymorphisms (SNPs), associated with the change 

in triglyceride levels after drug intervention.  

Genotyping and methylation arrays assay several hundred thousand 

markers; however, single-marker association analysis suffers greatly from 

the burden of multiple testing. Set-based (SNP or CpG set) association 

approaches offer great flexibility, thus allowing the joint testing of a set of 

variants. For instance, a polygenic risk score (PRS) is a set-based approach, 

which, in addition to the strongly associated SNPs identified by large-scale 

GWAS, recruits SNPs with moderate to weak effects. The genotype 

information of the SNP set in the PRS is taken from an independent sample 

(target sample) and is then weighted by individual SNP effects derived 

from a relevant GWAS performed on a separate sample (discovery sample) 

into a cumulative score for each individual in the target sample. The 

resulting score, based on a SNP set or the PRS, is then regressed on the 

target phenotype. Such a regression model is evaluated by the amount of 

variance explained (R2) by the PRS in the target phenotype. Another 

strategy of set-based association analysis is kernel machine regression 

(KMR): a semi-parametric regression approach, in which the effects of 

markers within a set (CpG set or SNP set) are modelled via a kernel function 

and thus evaluated by a single-component variance test. A kernel function 

computes pairwise genomic similarity between the individuals, that is, the 

inner product of a set of variants under analysis, maybe comprising a gene 

or a biological pathway. 

For my first article, I performed a simulation study to evaluate the 

performance of PRS in correlated discovery and target traits by considering 

various sample sizes of the target sample, namely n=200, 500, and 1000. The 

PRS for correlated traits can be viewed as a situation of calculating 
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schizophrenia-PRS for psychosocial endophenotypes such as global 

assessment functioning (GAF) score or positive and negative syndrome 

scale (PANSS) score. Considering such a situation, I simulated four 

correlated target traits that had varying degrees of correlation (r2) with the 

discovery trait, i.e., r2= 1.00, 0.8, 0.6, and 0.4. The results demonstrated that 

the average R2 estimates by the PRS roughly decreased by the square of the 

correlation between the target traits. In addition, the range of estimated R2 

is most inflated in the sample size of the target trait n=200. Thus, the 

simulation findings alert researchers conducting clinical studies with 

endophenotypes to the fact that they need to pay attention to two important 

factors: first, the sample size of the target trait and secondly, the shared 

amount of genetic correlation between the target and discovery traits.  

In my second article, I implemented a KMR approach for set-based 

association testing of a CpG set. KMR has been successfully employed on 

SNP sets. In preparation of the second article, I used real and simulated 

datasets (based on a real dataset) provided by the Genetic Analysis 

Workshop 20 (GAW20) from the GOLDN study. GOLDN is a longitudinal 

study with individuals recruited from pedigrees. In my analysis, I only 

used independent individuals, which restricted the sample size in the real 

and simulated datasets to n<200. CpG sets were devised using the evidence 

of association reported by the GOLDN study in the real data set. For 

simulated datasets, true causal CpGs were provided by GAW20. Thus, I 

formulated candidate genomic regions of varying lengths while keeping 

the associated CpG(s) inside the region. The results replicated the evidence 

of association reported by GOLDN in the real data, and in simulated 

datasets albeit nominally. Moreover, in the simulated data, causal SNPs 

exert their full effect on the phenoytpes given when the causal CpG loci had 

no methylation (B-value=0). Thus, I also considered modelling an 

interaction term along with the main effects. The results yielded significant 

association.  
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As part of the discussion, simulation results on the performance of 

the linear kernel for a CpG set with original (B-values) and logit 

transformed methylation values (M-values) indicated that logit 

transformation results in a loss of power. There, I also considered analysing 

an additive kernel that combines the genotype kernel and the methylation 

kernel and then tests for association with the phenotype. The initial 

simulations suggest that an additive kernel with a CpG set including hypo, 

semi, and hypermethylated sites simultaneously might not improve the 

model over only including a SNP set. However, it appears fruitful to 

investigate further the situation in which only one type of methylation state 

is present in a CpG set. 
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1 INTRODUCTION 

The completion of the Human Genome Project in 2003 enabled researchers 

to search extensively for genetic loci responsible for diseases such as type 2 

diabetes mellitus (T2DM), coronary artery disease (CAD), cancer, and 

psychiatric disorders [1]. Since 2003, there have been extensive advances in 

numerous molecular techniques, from the first-generation DNA 

sequencing using Sanger’s method to massively parallel sequencing 

technologies enabling rapid sequencing of the whole genome. The 

application of these new technologies led to a considerable amount of 

development in statistical genetics methods. Thus, a key focus of genetic 

research has been to identify the molecular aberrations that make humans 

more susceptible to disease or a more severe disease course, and to explain 

the genetic architecture of a disease (or a phenotype).  

The molecular aetiology of diseases is complex; in addition to 

genetics, numerous other factors such as epigenetics and the environment 

also play some role in the susceptibility, development, and progression of 

diseases [2]. Various classifications of disease exist; for instance the number 

of genes causing and/or influencing a disease is one of the common 

methods to classify diseases, as in the terms monogenic – a single gene; 

oligogenic – a few genes; and polygenic – several to many genes [3]. 

Another classification bases on the disease prevalence in populations, i.e., 

the number of affected individuals in a population for a particular disease 

thus dichotomised into a rare or common disease [4].  
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Existing evidence suggests that most rare diseases exhibit a 

Mendelian pattern of inheritance, an example of which being maturity-

onset diabetes of the young (MODY), which displays autosomal 

dominant inheritance [5]. Mendelian diseases are rare in population, i.e., 

in a sample of unrelated individuals with European ancestry, the 

proportion of affected individuals carrying the pathogenic variant(s) is 

small-this is also defined as penetrance. However, this is otherwise for a 

sample comprised of related individuals such as those belonging to a 

pedigree. In a pedigree, the penetrance of Mendelian diseases is high or 

even complete i.e., all individuals that inherited pathogenic variant(s) 

exhibit disease. This hints towards searching for chromosomal segment(s) 

harbouring disease-causing mutation(s) that tend to be localised within a 

pedigree owing to co-segregation. Thus, mapping of such loci has been very 

fruitful via linkage analysis, which is a statistical genetics method of 

locating chromosomal segments that co-segregate with the disease 

phenotype through families [6].  

To date, the loci for almost 6,800 phenotypes have been successfully 

mapped using linkage analysis [7], for instance CFTR for cystic fibrosis, 

HNF1α for maturity-onset diabetes of the young (MODY), and BRCA1 

and BRCA2 for breast cancer [8]. However, an important fact is that 

localization of co-segregated genomic regions with disease causing 

mutation(s) for individuals belonging to a pedigree does not necessarily 

mean that all such individuals will exhibit the disease, this is also referred 

to as reduced or incomplete penetrance. Incomplete penetrance has been 

observed in the pedigree studies for breast cancer i.e., individuals albeit 

carrying pathogenic mutations in BRCA1 and BRCA2 do not have breast 

cancer [8]. 

On other hand, the majority of common diseases exhibit a complex 

polygenic architecture, that is, an intricate interplay between several to 

many genetic loci spanned across the coding and non-coding parts of the 
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human genome [6]. The pattern of inheritance of these loci is not yet fully 

understood. Indeed, they seem to influence disease aetiology by 

interrupting multiple biological pathways and gene regulatory networks 

[3, 6]. One well-studied example of such a complex disease aetiology is 

diabetes mellitus - a highly heterogeneous group of diseases exhibiting 

different pathophysiology with hypoglycaemia as a common feature [5]. 

The identification of the genes behind MODY encouraged and accelerated 

the genetic studies into T2DM, the more prevalent diabetic phenotype [9]. 

Using pedigree-based study designs, genome-wide linkage analysis 

revealed an initial set of loci at PPARG, KCNJ11, and near TCF7L2 for T2DM 

[5]. The linkage‐based analysis for T2DM was not particularly fruitful; the 

acceleration in risk‐variant discovery for T2DM has been primarily driven 

by the introduction of genome-wide association studies (GWASs). By 

definition, a GWAS is a statistical approach that scans genetic variants, 

genotyped on a commercial array for a number of unrelated individuals 

sampled from a population, to find statistical evidence of genetic variations 

associated with a particular disease. The first round of findings from the 

GWASs for T2DM confirmed evidence of strong association (odds ratio 

(OR) > 4.0) for previously identified loci through linkage analysis. In 

addition, it revealed a set of novel loci with modest to weak signals (OR 

approximately 1.05–1.35) near CDKAL1, HHEX, SLC30A8, IGF2BP2, and 

CDKN2A [5]. Nevertheless, the contributions made by pedigree-based 

study designs are unprecedented in both rare as well as common diseases.  

Another well-known example of a common disease is CAD, for 

which genome-wide linkage analysis also unravelled an initial set of 

genetic variants, in a similar fashion to T2DM. For instance, a genome-wide 

linkage analysis conducted on the U.S GeneQuest cohort with 428 nuclear 

families identified six novel loci on chromosomes 3p25.1, 3p29, 9q22.3, 

9p34.11, 17p12, and 21q22.3 [10]. Also for CAD, another genome-wide 

linkage analysis of 156 sibling pairs revealed two more genetic loci on 
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chromosomes 2q21.1–22 and Xq23–26 [11]. Thus, genome-wide linkage 

analysis enabled the discovery of only a handful of variants (with strong 

effect sizes) for common diseases with a polygenic architecture [12].  

With the increasing amount of evidence furnished by the GWASs it 

became clearer that polygenic diseases are driven by several to many 

genetic variants with modest-to-weak effect sizes and minor allele 

frequencies (MAFs) >1% (also called common variants). These common 

variants do not necessarily cause the disease but rather influence the risk of 

developing the disease [13].  

Along with the polygenic and highly multifactorial nature, the diagnosis of 

one common disease might also confer genetic predisposition to 

developing another distinct disease.  For instance, patients with T2DM are 

at a higher risk of developing CAD than are non-T2DM patients - hinting 

towards a shared set of genetic variants in both distinct disease aetiologies. 

Results from a large-scale GWAS for T2DM and CAD has also shown a 

strong evidence of shared genetic correlation in both diseases i.e., genetic 

variants associated with increased risk of CAD are also associated with 

increased risk of T2DM [1, 14].  

1.1 Association Analysis 

Association determines whether a particular allele or genotype in a 

population is associated with the disease more often than expected by 

chance. Those positions in the DNA sequence displaying an exchange of a 

single nucleotide are called single nucleotide polymorphisms (SNPs). Let 

the alleles be denoted by A, and a, so that the individual genotype at any 

bi-allelic SNP site is AA, Aa, or aa.  

In statistical modelling, in a traditional GWAS, the most common 

outcome of interest is either a quantitative measure of phenotype such as 

height, body mass index, or disease status such as diagnosis of T2DM 
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(yes/no), and the features (or variables) are several hundred thousands or 

millions of genotyped or imputed SNPs. The standard approach to 

analysing a GWAS is based on testing each genotyped SNP in the genome 

individually for statistical significance of its association with the phenotype 

under investigation. Logistic regression is employed for a binary 

phenotype and linear regression for a quantitative phenotype [15]. The first 

GWAS in 2005 on 100K genotyped SNPs with a sample size of 146 

individuals gave robust evidence of association for complement factor H 

(CFH) with age-related macular degeneration with an Odds Ratio (OR) of 

4.6 [15]. Later on in 2007, the explosion in GWAS analyses revealed that the 

majority of common risk alleles conferred effect sizes of < 1.5 OR [15]. 

It is estimated that a typical human genome differs from the 

reference human genome at 4.1 million to 5.0 million sites [16]. The latest 

information available at the 1000 Human Genomic Consortium project 

website for the phase 3 reports 84.4 million variants in  n= 2504 individuals 

from 26 populations [17]. Nevertheless, SNP arrays genotype far less 

variants. This can be explained by the phenomenon of linkage 

disequilibrium (LD). In a sample of individuals from a population with a 

common genetic ancestry such as European, alleles in two SNPs that are 

physically close to each other appear together more often than would be 

expected by chance , thus these two SNPs are said to be in LD with each 

other [18]. Mathematically, the LD between two genetic variants can be 

quantified as a correlation between SNPs across a population. Two SNPs 

that are in strong LD can serve as proxies for one another [19, 6]. That is, if 

the correlation between the two SNPs is high, genotyping one of these 

provides almost complete genotype information of another. Therefore, a 

SNP array that genotypes ~1 million SNPs can effectively assay a larger 

proportion of the human genome [19]. However, the issue of array coverage 

also needs to be considered while performing the quality control and 

imputation of genotypes. Taking advantage of high LD among SNPs, 
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commercial genotyping arrays have been specifically designed to genotype 

SNPs that correlate with, or ‘tag/represent’, a large number of other SNPs 

in the human genome [19].  

Over the last years, GWASs have made major contributions to the 

efforts of gene mapping by identifying numerous novel genetic 

associations. However, early studies had small sample sizes [15] and were 

thus underpowered to detect the small effect sizes expected for the common 

variants, hinting that these variants require large sample sizes. Hence, 

meta-analysis of available GWAS data from different studies was soon 

recognized as an appropriate method in order to achieve adequate sample 

sizes and the optimum power to discover genetic associations with modest 

to weak effect sizes [20]. For instance, a meta-analysis GWAS of T2DM, with 

~16 million genetic variants in 62,892 cases and 596,424 controls identified 

143 SNPs [21]. This approach led to the establishment of disease-specific 

consortia such as the Psychiatric GWAS Consortium (PGC), the Cognitive 

Genomics Consortium (COGENT), and the Genetic Investigation of 

ANthropometric Traits Consortium (GIANT).  

Undoubtedly, the contribution of GWASs to a better understanding of 

complex diseases is unprecedented, but it does suffer several limitations. 

The following are some of the key limitations of GWAS:  

1. High dimensionality – Multiple testing problem  

A large sample size for performing a GWAS is necessary because it 

essentially requires testing hundreds of thousands of SNPs (high 

dimensionality of the data), resulting in hundreds of thousands of tests (the 

multiple testing problem). As a result, GWASs are underpowered to detect 

a major part of the genetic variance in a phenotype that might be explained 

by SNPs, which do not achieve the required significance level owing to 

multiple testing correction. The fraction of total variance (V) determined by 

genetics is often terms as genetic variance (Vg) or heritability (h2). In human 
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genetics, an additive model of heritability is often assumed, simply 

summing the contributions of all the additive alleles influencing that trait 

[22].  

2. LD hinders pinpointing the causal variants  

Local correlation between SNPs in LD facilitates the initial identification 

of a locus i.e., genomic region but makes it difficult to discern the causal 

variant(s). Most GWAS-identified association signals so far map to non-

coding regions of the genome [22], for which any biological interpretation 

is inherently challenging.  

3. Missing Heritability: A post-GWAS challenge  

The variance (V) of a phenotype can be sub-divided as a sum of two 

components, one part explained by genetics (heritability) and the other 

explained by environmental or other unknown factors. Given the polygenic 

architecture of complex diseases and unknown patterns of Mendelian 

inheritance, we assume an additive model of genetics for polygenic 

diseases; all genetic factors contribute towards VG in an additive fashion. 

Although evidence of a non-additive model of genetics (or heritability) is 

difficult to assess in humans, model organisms (for example, yeast, worm, 

fly, or mouse) have established epistasis as a pivotal component of the 

genetic architecture of complex traits [22, 23]. However, the identification 

of significant gene–gene interactions has been challenging in GWAS and 

post-GWAS experiments in humans, owing primarily to a lack of statistical 

power and to methodological challenges.  

1.2 The Post GWAS -Era  

In order to enhance our existing understanding of molecular 

underpinnings behind complex diseases, in addition to genetic variations, 

geneticists have investigated various other -omic or molecular processes 

such as epigenetic events. An epigenetic event can be defined as the 
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reversible attachment of a chemical cap that does not change the DNA 

sequence such as the addition of a functional group (methyl) or a protein 

(histone) to the DNA sequence [23]. These events control various molecular 

processes such as regulation of the transcriptional state of a gene, i.e. gene 

activation or gene silencing. In other words, it controls the production of 

the functional form of gene(s). Thus, epigenetic processes have also been 

exploited as biological markers for disease characterization. For example, 

in cancer, the over-expression of gene(s) is suspected as a function of 

observed high levels of DNA methylation (DNAm) in the blood sample. 

DNAm refers to the reversible addition of a methyl group to cytosine-

guanine dinucleotide (CpG) sites in the DNA sequence. In parallel to the 

progress made by molecular techniques, numerous statistical methods 

have been developed to address the computational limitations of GWAS 

such as set-based approaches for association analysis.  

1.2.1 Set-based approaches for association analysis 

The GWAS design suffers from the curse of high dimensionality of the data, 

strong LD between variants, and multiple weakly associated variants, 

while set-based approaches allow joint testing of a subset of variants from 

the total set of genotyped variants, greatly reducing dimensions of the data 

[22].   

Several methods have been proposed to combine SNPs in a set. One 

such method is to use the genomic annotation and/or genomic features of 

SNPs and then mapping these to a gene or multiple genes(s) involved in 

biological pathway(s) [13]. Another strategy is to exploit the statistical 

evidence of association obtained through GWAS analysis of SNPs such as 

p-value and thus partitioning the genome-wide SNPs into several subsets 

of SNPs ranked by their p-values. The joint analysis of several SNPs together 

not only yields improved power in settings where SNPs individually have 

moderate to small effect size but also greatly reduces the burden of multiple 
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testing (Single marker analysis in the GWAS design). In addition, tag SNPs 

are in LD with causal loci and thus a set-based approach allows testing the 

association of a batch of biologically important SNPs with the phenotype 

[24], instead of an individual SNP. Many GWASs may not release 

individual-level data owing to logistic challenges or data confidentiality 

agreements. Instead, it is much more likely that a marginal test statistic for 

association with the outcome is available for each individual SNP. The 

individual SNP association estimates for numerous complex phenotypes 

such as schizophrenia (SZ), major depression disorder (MDD), and autism 

are publically accessible. These statistical estimates from large consortia 

have been used as weights to aggregate the genome-wide genotype SNPs 

for an individual into a single value estimate, named the polygenic risk 

score (PRS). PRS can be viewed as a set-based approach, which initially 

recruits all genotyped SNPs whose association estimates are available. Let 

us assume the set with all genotyped SNPs is a superset M. In the next steps, 

several proper subsets of SNPs from the set M are formulated, ranked by 

the p-values of single SNPs. S is a proper subset of M, if there is at least one 

element of M that is not an element of S. Moreover, all the elements in these 

proper subsets are necessarily members of the superset M. From these 

several proper subsets of SNPs, several PRSs are then constructed. Each 

PRS is then associated with the phenotype of interest and through several 

regressions, the optimal PRS is selected, which is actually constructed on a 

subset of SNPs (more details in the methods chapter). 

Building the additive, albeit weighted sum of additive genetic 

heritability is the most commonly exploited model, as it allows parametric 

modelling based on linear regression. However, this model is indeed an 

oversimplification for polygenic diseases. Therefore, a hybrid regression 

approach called kernel machine regression (KMR) is proposed. In KMR 

covariates such as age, gender, and smoking status are modelled 

parametrically, and the joint effect of a set of genetic or epigenetic markers 
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non-parametrically. More specifically, the non-parametric effect of multiple 

markers is modelled via a kernel (more details in the methods chapter). The 

KMR framework has shown to be robust as it allows great flexibility in the 

functional relationship between the SNPs belonging to a set and the disease 

or the outcome of interest. Numerous kernels exist, such as the linear 

kernel, Gaussian kernel, and quadratic kernel. For genetic variants, the 

linear kernel has been successfully employed in association testing [25].  

1.2.2 DNA methylation: CpG sites  

A big challenge after GWAS is to explain the functions of the identified 

SNPs, and to illustrate the mechanisms underlying the associations. The 

current GWAS catalog stats released on 04th April 2021, hosts data for 

158,358 SNPs with 255,015 associations from 5002 GWAS publications [26]. 

Most of these associated SNPs are located in the non-coding region of DNA, 

which might be the genomic regions harbouring the transcriptional 

machinery of gene(s) such as promoters, enhancers, or silencers [27].  

DNAm is a reversible-dynamic epigenetic event; thus, the degree of 

methylation at a CpG site or several closely located CpG sites of DNA 

determines the transcriptional state of nearby gene(s) [28, 29, 30]. For 

instance, hypo-methylation of a DNA sequence in a promoter triggers gene 

activation while hyper-methylation signals gene silencing [28, 29]. 

According to the ENCODE database, the human genome has 

approximately 28 million CpG sites that exhibit varying methylation 

patterns [31]. Similar to genotyping arrays, Illumina also provides DNAm 

arrays, namely the Illumina Human Methylation 450 K (also 850K: K refers 

to 1000 i.e., 1K=1000 sites) and Infinium Methylation EPIC (EPIC) 

BeadChips (Illumina Inc, San Diego, CA) [32]. These arrays have limited 

coverage of the methylome and can only detect up to 870K CpGs across the 

human epigenome, leaving a large proportion of CpG sites unmeasured. 

DNAm patterns are specific to tissues and developmental stages, and 
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change over time [28]. DNAm via arrays is usually profiled in the whole 

blood samples. Whole blood contains several cells of distinct types in 

various proportions; this is one of the prominent confounding factors of 

DNAm data generated from arrays. Analogous to the whole-genome 

sequencing technique of DNA, DNAm profiling can also be done at single-

base-pair resolution using the whole-genome bisulphite technique, but is 

expensive. In the whole-genome bisulphite technique, DNAm is profiled in 

the cell lines.  

The DNAm level of a CpG site is a beta-distributed continuous value 

varying from 0 to 1. At each CpG site, methylation is quantified by the beta 

value, denoted as: 

B-value: = M / (M + U + a), 

where M > 0 and U > 0 denote the methylated and unmethylated signal 

intensities [33, 34]. The offset a ≥ 0 is usually set equal to 100 and is added 

to M+U to stabilize beta values when both M and U are small [34]. The 

distribution of an individual CpG site across various individuals can be 

considered as beta-distributed with values bounded between zero and one 

[33]. If the methylation of a site is zero, it refers to a state of no methylation, 

a biological indicator of transcriptional activity; and a value of one is 

maximum methylation, a biological indicator of minimum or no 

transcriptional activity. In practice, the methylation state of a CpG site 

depending upon the corresponding measured B-value of DNAm belongs to 

one of the three classes, i.e., hypo-methylated (B-value <0.20), semi-

methylated (B-value >0.20 and <0.70), or hyper-methylated (B-value >0.70) 

[35]. Gaussian regression with the beta-distributed B-values of DNAm data 

is problematic. The variance of B-values is usually smaller near the 

boundaries than the middle of the interval (0 (, 1), implying violation of the 

homoscedasticity assumption required in Gaussian regression [35]. To 

address this problem, several modelling strategies have been proposed, 
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including Gaussian regression with logit-transformed B-values, called M-

values, and generalized regression models incorporating B-values as 

responses, e.g. beta regression.  

In addition, alike GWASs epigenome-wide association studies 

(EWAS) analyses have been conducted to study the disrupted genome-

wide patterns of DNAm for numerous diseases such as for metabolic 

syndrome, schizophrenia, and inflammatory or autoimmune disorders 

[35]. For EWAS analysis, an identical approach to the traditional GWAS has 

been used, which also suffers from similar limiting factors.  Moreover, 

recent studies have demonstrated evidence for loci harbouring SNPs that 

influence the methylation state [31]. Such loci have been termed 

methylation quantitative trait loci (methQTLs). In most methQTL, the 

correlations with the nearby genotypes (cis-genotype: on same DNA 

strand) are most pronounced. There is some evidence that SNPs can also 

influence methylation state(s) of CpG site(s) in trans (located on another 

strand of DNA), but this does not seem to be as prevalent as cis-effects. It is 

also important to note that in most of these previous studies, the true 

causative SNP was not identified unequivocally [22]. In some cases, 

disease-associated epigenetic variation could arise prior to disease onset, 

but still not be causative for the disease [23]. This type of epi-phenomenon 

could be a result of confounding, when an environmental factor such as 

smoking, or a genetic variant, induces both aberrant epigenetic states and 

disease. These potential relationships between epigenetic variation and 

complex disease have important implications for the design and analysis of 

EWAS [30]. There are several EWAS designs being opted, such as 

monozygotic twins, and longitudinal cohorts [35]. In addition to single 

marker association analysis, EWAS has also been employed in the 

elucidation of the drug response by recording pre and post-treatment 

methylation data.  



Introduction 

 

13 
 

More recently along with GWAS, researchers have started performing 

EWAS on the same individuals along with considering the gene expression 

datasets as well. These datasets have enabled integrated analysis of 

multiple layers of omics data for the phenotype of interest with the aim of 

improving our existing understanding of disease. One of the noticeable 

examples is the integration of the gene expression data from blood 

(n = 14,115 and 2765) with the GWAS results for T2DM, which identified 33 

putative functional genes, three of which were targeted by approved drugs 

[21]. A further integration of DNAm (n = 1980) and epigenomic annotation 

data highlighted three genes (CAMK1D, TP53INP1, and ATP5G1) with 

plausible regulatory mechanisms, whereby a genetic variant exerted an 

effect on T2DM through epigenetic regulation of gene expression [21].



Introduction 

 

14 
 

1.3 Objectives and Outline of Thesis 

The main objective of the research work done for this thesis is an evaluation 

of the set-based association approaches. Two statistical approaches are part 

of this thesis; one is a purely parametric regression approach: the polygenic 

risk score. The other approach is semi-parametric in nature and is named 

kernel machine regression. The research towards this thesis aims to 

enhance the existing understanding of both methods through an extensive 

simulation study and by using other omics data (epigenetic data: DNA 

methylation) with and without considering the interaction between genetic 

and epigenetic data. For the PRS method, I performed extensive 

simulations with varying sample sizes (small to moderate as is common in 

clinical studies). In addition, I evaluated the performance of PRS for 

correlated complex phenotypes instead of only using identical or similar 

phenotype. The KMR method has been exploited fairly well for SNP sets.  

In this thesis, my focus was to review the performance of the kernel for CpG 

markers. In addition, I also considered modelling an interaction term 

between SNPs and CpGs
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2 METHODS 

2.1 Model Notation 

Let us suppose we have genotyped m SNPs for n individuals, for which we 

measured a quantitative, normally distributed phenotype y. A traditional 

GWAS analysis proceeds by sequentially testing the null hypothesis of no 

association between the SNP and the phenotype for each single SNP [36, 

37]. For a bi-allelic SNP with alleles denoted as A and a, there are various 

genotype-coding methods for the three possible genotypes i.e., AA, Aa, and 

aa. I will use the count of minor alleles in a genotype. Let us assume allele 

a is the minor allele, thus 0 for genotype AA, 1 for Aa, and 2 for aa. In GWAS 

analysis, an additive model is assumed, which implies that if the risk 

conferred by the minor allele a increases by r-fold for the heterozygous 

genotype (Aa) then it increases 2r-fold for the homozygous genotype (aa) 

[38]. 

The linear regression model in a typical GWAS for a quantitative 

outcome for an individual i is as follows: 

𝑦𝑖 =  𝑥𝑖
𝑇𝛽 +  𝛽𝑞𝑔𝑖𝑞 + 𝜀𝑖 ;      𝜀𝑖~

𝑖.𝑖.𝑑𝒩(0, 𝜎2)                   Eq. 2.1 

where 𝑔𝑖𝑞  denotes the minor allele count for qth SNP;  𝑞 =1,…,m  in 

the ith individual;  i =1,…,n , and 𝛽𝑞 is the regression coefficient for the qth 

SNP. 𝑥𝑖
𝑇 denotes the transposed (𝑇) vector of considered covariates, such as 

age, gender, and/or smoking status including the intercept; 𝛽𝑥 denotes the 

vector of corresponding regression coefficients.  𝜀𝑖 is the vector of error 
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terms, which are  identically independently  distributed (i.i.d.) and follow 

a normal distribution. We consider a test for no association between the 

genotype 𝑔𝑖𝑞 and outcome 𝑦𝑖 , i.e., 𝛽𝑞 = 0 as given in Eq. 2.1. Given m 

genotyped SNPs, m linear regression models are performed for a traditional 

GWAS. Thus, for the qth SNP, the fitted regression model estimates the 

regression coefficient 𝛽̂𝒒; this is also called the estimated effect size. In 

addition, the fitted regression model also provides association statistics for 

the estimated effect size 𝛽̂𝒒, which includes the standard error (SE) of the 

estimated effect 𝛽̂𝒒, and the p-value for the qth SNP with the outcome 𝑦𝑖. If 

the p-value for 𝛽̂𝒒 is less than the defined level of significance α, the null 

hypothesis can be rejected. The commonly used alpha values are 0.01 and 

0.05. However, in a GWAS for m genotyped SNPs, m regression analyses 

are performed, i.e. simultaneously testing m null hypotheses of no 

association between the genotypes of m SNPs and the phenotype 𝑦, for n 

individuals. Thus, the individual p-values for the m SNPs need to be 

corrected for multiple testing. A commonly used method for multiple-

comparison correction is the Bonferroni correction; other methods include 

the Tukey-Kramer and Scheffe method [39, 40]. The Bonferroni correction 

is a conservative multiple-comparison correction method that resets the 

alpha value (α =0.05) for the m regression tests to 𝛼/𝑚 and thus the 

signficance level for the estimated p-value is adjusted for multiple tests. For 

GWAS analysis, the proposed genome-wide significance level is 5 × 10−8 

[39]. 

The association statistics for the m tested SNPs altogether are termed 

summary statistics of a GWAS analysis. In a typical summary statistics 

report of a GWAS analysis, each line represents the association statistic 𝐴𝑞 

for the qth SNP, such that 𝐴𝑞 = {𝛽̂𝑞, 𝑆𝐸𝑞 , 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑞}. Along with the 

association statistics, other information such as the genomic location of 

SNPs is also given. These summary statistics reports are publicly available 

for a number of published GWASs on the GWAS catalogue database [26]. 
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2.2 Polygenic Risk Score Analysis 

The main goal of GWASs so far has been to identify causal variants that tell 

us about the biology of the phenotype and propose ways for targeted 

treatments [22, 36, 41]. GWAS findings have unravelled robust statistical 

association evidence for quite a number of loci, albeit the number of 

statistically significant SNPs is small and the effects are far from explaining 

the missing heritability [6, 22]. Even though many SNPs with weak to 

moderate effects can be assumed as associated to phenotypes however, a 

wide majority of loci do not achieve any genome-wide significance level 

owing to the multiple testing burden [22, 37, 41].  

A polygenic risk score (PRS) is an individual-level score of genetic 

risk, which can be conceptualised as an aggregate measure of allelic counts 

across a set of genetic variants weighted by effect sizes, derived from an 

appropriate GWAS result [42, 43]. Initially, PRS computation was restricted 

to SNPs that reached genome-wide significance [42]. However, with the 

availability of GWAS results from much larger studies such as those from 

consortia, PRS also included SNPs that did not reach genome-wide 

significance [43, 44, 45, 46, 47].  

In principle, the computation of PRS requires two main ingredients: 

First a sample of independent individuals with genotype and phenotype 

information for a complex trait/disease - the so-called target trait. Secondly, 

an appropriate GWAS summary statistic estimated in an independent 

sample with identical or correlated phenotype to that of the target trait is 

needed. This phenotype is termed the discovery phenotype. Usually the 

sample size of GWAS for the discovery phenotype is quiet large in 

comparison to the target trait. Let us suppose a SNP set R, which is a proper 

subset of SNP set M. Here SNP set M refers to the m genotyped SNPs for 

the target trait. For simplicity, we assume the GWAS summary statistics 

information is available for the genotyped SNPs in the SNP set M. The SNP 
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set R has 𝑟 SNPs. G is then an 𝑛 × 𝑟 matrix, which has genotype information 

for the r  SNPs and 𝑛 individuals in the target sample. Each element of the 

matrix G, denoted as 𝑔𝑖𝑞 is the genotype information (0, 1, or 2) for the qth 

SNP, q=1, …,r , in the  ith individual i=1, …,n.  𝛽̂𝑞 is the  genetic effect size 

estimated for  a single SNP in an external large-scale GWAS of a discovery 

trait. Thus, PRS for the individual 𝑖 can be computed as follows:  

𝑃𝑅𝑆𝑖 =  ∑ 𝛽̂𝑞𝐺𝑖𝑞
𝑟
𝑞=1              Eq. 2.2 

PRSi is the cumulative sum of minor allele counts of genotypes across the r  

SNPs, weighted by the respective estimated effect of the SNPs [42]. The 

GWAS summary statistics for the discovery trait are usually estimated on a 

very large sample size, such as several thousand individuals, and are 

publicly accessible. For instance, at the Psychiatric Genomic Consortium 

(PGC) for schizophrenia, performed a GWAS analysis on 36,989 cases and 

113,075 controls with European ancestry, and published the GWAS 

summary statistics [44].  

PRS analysis can be viewed as a search of the SNP set R, such that 𝑅 ⊂

𝑀. In order to find the SNP set R, several subsets of SNP set M are 

formulated. Prior to sub-setting the SNP set M, preliminary SNP filtering is 

recommended to address problems such as multicollinearity. Thus, SNP 

filtering followed by the sub-setting of SNP set M is a two-stepped 

approach. The first step is clumping, which removes correlated SNPs from 

the SNP-set M; the resulting SNP set is denoted as Mclumped, followed by the 

second step of sub-setting SNPs in the SNP set Mclumped, using a 

thresholding-based criterion. This approach is called clumping and 

thresholding (C+T), sometimes also known as pruning and thresholding 

(P+T). 

In the first step, clumping (C) is performed such that SNPs in set M, 

which have weak correlation with one another, are retained, thus avoiding 
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multicollinearity among SNPs [45]. Clumping selects the most significant 

SNPs iteratively by computing the correlation (𝑟2) between an index SNP 

and its nearby SNPs within a window based on genetic distance between 

SNPs [43]. This removes the nearby SNPs that demonstrate greater 

correlation with the index SNP beyond a given threshold [45]. The 

recommended threshold is 𝑟2 = 0.8, which we also used in our analysis 

[43]. The clumping step prunes redundant correlated effects caused by 

linkage disequilibrium (LD) between SNPs [43]. For clumping, keeping in 

consideration the LD pattern in the human genome, a window size between 

250 kbp to 500 kbp is recommended [43, 46]. However, this procedure may 

also remove independently predictive SNP(s) that are in LD with the index 

SNP.  

The second step is thresholding (T). The GWAS summary statistics 

of SNPs in SNP-set Mclumped obtained from the discovery sample are ranked 

from lowest to highest p-value [43]. Let us suppose a vector S of length s 

comprises of positive real numbers ranging between 0 and 1. Each element 

in the vector S represents the discrete p-value grid points deployed as the p-

value threshold to create s number of proper SNP subsets from the SNP set 

Mclumped. Each subsequent SNP set which is subset of SNP set Mclumped, 

necessarily incorporates cumulatively SNPs from the previous p-

value threshold. That is, SNPs at the 0.001 p-value threshold are a proper 

subset of SNPs at the p-value threshold of 0.01. 

In this way, a PRS that considers genome-wide SNPs can be defined 

as a weighted sum of allele counts for SNPs meeting a p-value threshold, 

yielding a set of PRSs for a vector of thresholds. In theory, this p-value based 

thresholding approach is also applicable to considering SNPs only within a 

gene set or a pathway instead of all genome-wide genotyped SNPs on an 

array.  
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Combining information for non-significant SNPs, but with lower-

ranked p-values, in addition to significant SNPs, the PRS analysis can be 

considered as a search to find an “optimal” p-value threshold corresponding 

to the SNP set R, which has the maximum possible predictive power 

compared to all other selected p-value thresholds. Thus in a parametric 

regression framework, the resulting PRS for each grid point or p-value 

threshold is regressed on the phenotype as target trait.  

Let us assume 𝑦𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

 denotes a normally distributed phenotype of 

the target trait, the regression model is as follows: 

𝑦𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

= 𝛽𝑃𝑅𝑆𝑃𝑅𝑆𝑖  + 𝜀𝑖        Eq 2.3  

where 𝛽𝑃𝑅𝑆 is the regression coefficient of PRS. The s number of distinct p-

value thresholds defined in the vector S, also determine the number of 

computed PRSs and thus the number of regression models in Eq. 2.3. The 

explained variance (R2) and association p-value of 𝑦𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

 with the PRS is 

compared for those analysed models. The PRS among s the PRSs that 

explains the maximum variance in the phenotype, with significant evidence 

of association between yi
target

 and PRS of the model, is referred to as the 

optimal PRS (𝑃𝑅𝑆opt), and the corresponding p-value  threshold is called the 

optimal p-value  threshold (popt-value). Both steps, clumping and 

thresholding represent a statistical compromise between signal and noise 

[43]. Clumping aims to ensure the inclusion of truly predictive variants and 

reducing noise in the score by excluding variants that are highly correlated, 

while thresholding allows consideration of SNPs beyond the significance 

level [43, 45]. Thus using genome-wide SNPs, PRS analysis outputs a SNP 

set R, which can be further subjected to gene or pathway-based enrichment 

analysis. 
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2.3 Kernel Machine Regression  

Kernel methods are a machine learning class of algorithms that allow 

association testing of a SNP set with a phenotype of interest, reducing the 

dimensionality of tests greatly in comparison to the traditional GWAS [47]. 

Instead of single SNP analyses as in Eq. 2.1 we now consider a SNP set R 

with 𝑟 number of SNPs where  𝑔𝑖 denotes the vector of genotypes for the ith 

individual, such that 𝑔𝑖 = (𝑔𝑖1, 𝑔𝑖2, … , 𝑔𝑖𝑟)𝑇 , 𝑖 = 1. , . . , 𝑛. Unlike the 

definition of SNP set R in the PRS analysis section, here the SNP set R can 

be the SNPs in the SNP set M, mapped to a gene or multiple genes 

belonging to a pathway.  

The regression model for the phenotype 𝑦𝑖  is as follows: 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + ℎ(𝑔𝑖) + 𝜀𝑖      Eq. 2.4  

where ℎ(𝑔𝑖) is an unknown function, which models the genetic information 

for individual i in the model. 𝑥𝑖
𝑇 is the transposed vector of covariates that 

are parametrically modelled by the linear model. The genetic effects can be 

modelled via the function h with great flexibility, e.g., parametrically (such 

as via a PRS) or non-parametrically via a kernel function. Thus, in the kernel 

machine regression (KMR) model in Eq. 2.4, we test for association between 

a SNP set modelled via function ℎ(∙) and the phenotype, the hypothesis is 

as follows:  

𝐻0 ∶ ℎ(∙) = 0  𝑣𝑒𝑟𝑠𝑢𝑠    𝐻1 : ℎ(∙) ≠ 0         

2.3.1 Kernel function and association testing  

Let us assume the unknown function ℎ(𝑔𝑖) lies within a reproducing kernel 

Hilbert space ℋ𝐾 generated by a positive definite kernel function 𝑘(·,·). A 

reproducing kernel Hilbert space ℋ𝐾 allows the specification of a user-

defined feature map  𝜑 that in turn allows the transformation of data points 

from their original space into a higher dimensional feature space [48, 49]. 
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The specific properties of the defined feature space 𝜑 do not require its 

explicit evaluation [49]. However, as per Mercer’s theorem, if a function 

𝑘(·,·) on the data points 𝑖 and 𝑗 satisfy Mercer’s constraints, then there exists 

a function 𝜑(·,·)  that maps 𝑖,  and 𝑗 into a higher dimension [50]. 

Mathematically, a kernel can be represented as follows:  

𝑘(𝑔𝑖, 𝑔𝑗) = <  𝜑(𝑔𝑖), 𝜑(𝑔𝑗) >      

Here 𝑘 denotes the kernel function, 𝑔𝑖 and 𝑔𝑗 are the r dimensional inputs 

from the genotype matrix G for any two individuals 𝑖 and 𝑗. 𝜑 is a map from 

𝑛 × 𝑟 −dimensional space to 𝑛 × 𝑛 −dimensional space. Thus, the 𝑛 ×

𝑟 −dimensional matrix G is converted into a 𝑛 × 𝑛 −dimensional kernel 

matrix 𝐾 , which is a symmetric and semi-definite positive matrix. Any 

element of the resulting 𝑛 × 𝑛 −dimensional matrix quantifies the similarity 

between any two individuals 𝑖 𝑎𝑛𝑑 𝑗 determined by the specified kernel 

function  𝑘(𝑔𝑖, 𝑔𝑗) . Thus, 𝐾 is also called the genomic similarity matrix [50].  

For genetic data, a simple and popular choice of kernel function is 

the linear kernel:  𝑘(𝑔𝑖, 𝑔𝑗) = 𝑔𝑖
𝑇 𝑔𝑗, which is a dot product between any two 

data points [47]. This indicates that the overall genetic effect is a linear 

combination of the individual effects in the SNP set R. Other kernels include 

the polynomial kernel 𝑘(𝑔𝑖, 𝑔𝑗) =  (𝑔𝑖
𝑇 𝑔𝑗 + 𝑐)

𝑑
 where c is a constant term 

and d is the polynomial degree, and the Gaussian kernel  𝑘(𝑔𝑖, 𝑔𝑗) =

 𝑒𝑥𝑝 (
−‖𝑔𝑖  − 𝑔𝑗‖

2

𝜌
⁄ ) [47]. To quantify similarity or dissimilarity between 

any two data points, numerous distance-based methods are available, such 

as Euclidian distance, Manhattan distance, Cosine similarity, Minkowski 

similarity, and Jackard Index [51]. For genetic data, methods such as 

identity–by-state, identity-by-descent, or shared-haplotype-based 

measures have been frequently opted. The details on these various general 
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as well as genomic similarity measures, and relationships between them 

can be found elsewhere [25, 26, 52, 54]. 

In the KMR framework, once the kernel function is specified, the next 

step is to test the hypothesis. In Eq. 2.5, 𝐻0 ∶ ℎ(𝑔𝑖) = 0,  is equivalent 

to 𝐻0 : 𝜎Κ 
2 = 0,  where 𝜎Κ 

2  is the variance explained by the kernel function. 

Thus, a high-dimensional test is reduced to testing a single variance 

component. The regression model presented in Eq. 2.4 can also be viewed 

as a linear mixed model (LMM), assuming fixed effects for the design 

matrix 𝑋, a nonparametric function ℎ(𝐺) modelling the genetic information 

as random effect with ℎ(∙) ~ N(0, 𝜏2𝛫),  and 𝜀~𝒩(0, 𝜎𝜀
2𝛪) [52, 50, 47]. τ2 is 

the unknown variance component, which is expressed as a function of the 

scaling parameter 𝜆 and the variance σK
2   as follows: τ2 = λ−1σK

2  [47]. The 

overall variance 𝜎2 can be defined as 𝜎2 = 𝜎𝐾
2   + 𝜎𝜀

2 , and 𝜎𝜀
2 is the residual 

variance. The conditional distribution of  𝑦 given the random effects ℎ is 

normal:  𝑦|ℎ ~𝒩(𝑋𝛽 + ℎ,  𝜎2𝛪) and marginally (averaged across the 

individuals) 𝑦 ~ 𝒩(𝑋𝛽 ,  𝜏2𝛫 + 𝜎2𝛪) [49, 52, 54]. We can estimate ℎ by 

noticing the fact that the distribution of 𝑦 and ℎ is jointly normal and their 

covariance is  𝜏2𝛫 [52, 50, 47]. Making use of the conditional multivariate 

normal distribution, the expectation of ℎ given the observation 𝑦 can be 

estimated as  𝜏2𝛫 ∑−1(𝑦 − 𝑋𝛽 ̂) [49, 52, 54]. The estimates 𝛽 ̂ and ℎ are 

obtained by minimizing the penalized likelihood function for the KMR, 

which are equivalent to the best linear unbiased estimator and the best 

linear unbiased predictor of the LMM [47]. This connection bridges 

machine learning and regression statistics, specifically LMM and KMR, and 

allows for a unified framework of model fitting and statistical inferences 

[47]. We can estimate the variance component parameters  𝜏2 and 𝜎2 and 

any unknown parameter in the kernel function by maximizing the 

likelihood of the LMM. Thus, within the KMR framework, we test the 

following hypotheses, which intuitively are all the same:  𝐻0 ∶ ℎ(𝐺𝑖) =

0  𝑜𝑟  𝐻0 : 𝜎Κ 
2 = 0  𝑜𝑟 𝐻0: 𝜏 = 0 
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The score test statistic can be derived by taking the first derivative of 

the restricted maximum likelihood (REML) equation with respect to 𝜎Κ 
2  and 

evaluating it under the null hypothesis [47].  The score statistic 𝑄 follows a 

mixture of chi-squared distributions under 𝐻0 and takes on the following 

quadratic form:  

𝑄 =
1

2𝜎𝜀 
2  (𝑦 −  𝑦̂)𝑇𝛫(𝑦 −  𝑦̂)         Eq. 2.5 

 

where 𝑦̂ is the fitted value of 𝑦 under the null model, and is easy to fit with 

standard regression models for fixed effects (e.g. linear regression for 

quantitative traits, or logistic regression for binary traits). The test statistic 

𝑄 depends on the true covariance matrix 𝛴 of  𝑦𝑖 , which is often unknown 

in practice and requires estimation of a large number of parameters. 

Although the sample covariance can be used to estimate 𝛴, it is not stable 

when the number of SNPs in the SNP set R is large or moderate and the 

number of individuals 𝑛 is small. Some statisticians use 𝜎𝜀 
2 in the 

denominator to compute the test statistics; others ignore this term and a 

formal derivation based on derivatives of the log-likelihood function would 

use 𝜎𝜀 
4 in the denominator. However, these variations are just different 

scalings of the quadratic form. As long as the scaling is considered, i.e. 

assuring that Q follows a mixture of chi-squared distributions, the resulting 

p-value will be valid [26, 49, 54]. The Satterthwaite approximation - an anti-

conservative approach and the Davies method- an analytical solution, have 

been used to compute p-values in the KMR. Between both computation 

methods for the p-value, the Davies method is more accurate. However, 

owing to computational constraints, the Satterthwaite approximation can 

also be used [47].
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3 SUMMARIES 

3.1 PRS Approach in Correlated Phenotypes with Moderate to 

Small Sample Sizes 

My first article is a simulation study aimed at investigating the performance 

of polygenic risk scores (PRSs) in correlated phenotypes with varying 

sample sizes, typical in the clinical setting; with an application to real data 

[53]. The aims and questions of this study were motivated by our 

collaboration with the researchers from the PsyCourse study. As stated 

above, PsyCourse is a multicentre, transdiagnostic longitudinal study of the 

affective‐to‐psychotic continuum that combines longitudinal deep 

phenotyping and dimensional assessment of psychopathology [54].  

It is known that affective and psychotic disorders partially share 

psychopathological features and are genetically correlated [55]. Affective 

disorders, also called mood disorders, are mainly characterised by mood 

episodes and most typically involve bipolar disorders (Bipolar I and II), 

major depressive disorder, and mania [56]. Psychotic disorders, also 

referred to as delusion disorders, are mainly characterised by severe mental 

disorder that causes abnormal thinking and perceptions such as 

schizophrenia and schizoaffective disorder [56].   

At the time I employed the data from the PsyCourse study [54], the 

sample size was n= 771 individuals. Key questions addressed in this 

research work are as follows:  
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I. How much variance in the target traits of various sample sizes i.e., 

n=200, 500, and 1000 can be explained by the PRS, if both discovery 

and target trait are identical? 

II. In another situation in which the target and discovery trait are not 

the same but are correlated, how much variance can the PRS still 

explain in the target trait? 

III. How much prediction capability of the PRS is lost for target traits of 

multiple sample sizes that have a strong to weak degree of 

correlation with the discovery trait? 

IV. Can the results of the simulation analysis performed to address the 

questions stated in I, II, and III be interpreted with the real data 

application from the PsyCourse study? If Yes, then how? 

 

Before stating the findings of the simulation study, I would first like to 

introduce the simulation setup briefly. Keeping in consideration the sample 

size used in the GWAS summary statistics available for schizophrenia from 

the Psychiatric Genomic Consortium(PGC) [44], I simulated datasets for a 

quantitatively distributed discovery phenotype for N=34,000 individuals. 

Effect sizes for the causal markers were derived from the total heritability 

assumed for the discovery trait, i.e., 80%. I then performed a GWAS 

analysis to generate the summary statistics for the discovery sample. 

Furthermore, I generated datasets for four target traits, namely T1, T2, T3, 

and T4. The phenotype generation model for T1 was identical to that of the 

discovery trait. The target traits T2 to T4 were generated keeping a 

correlation r2 =0.8, 0.6, and 0.4 with T1. For all target traits, we generated 

datasets with varying sample sizes, namely n=200, 500, and 1000. The 

number of replicates for the simulation analysis described above was set to 

100.  

Given an identical discovery and target trait scenario as stated in 

question I, i.e. 100% common genetic aetiology, the variance (R2) explained 

by PRS substantially reduced from that of the total simulated trait 

heritability. The loss in R2 becomes more evident with the decreasing 
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sample sizes for T1. On average, the PRS based on summary statistics of the 

discovery trait explained 40% of the true simulated heritability. With the 

correlation structure between T1 and other target traits (T2-T4), the 

simulation results demonstrated an interesting agreement with a formula 

for loss in average explained variance by the PRS for sample size n=1000. 

On average, the loss in R2 decreased by the square of the correlation 

between T1 and other target traits. Thus, from T1 (average R2 = 0.32), the 

average R2 estimates decrease for T2 to R2 = 0.82 × 0.32 = 0.21, for T3 to R2 

= 0.62 × 0.32 = 0.12, and for T4 to R2 = 0.42 × 0.32 = 0.05. This gradual 

decrease in the average R2 estimates by the PRS from T1 to T4 corresponds 

well with decreasing empirical correlation among target traits. With the 

decreasing sample size for T2-T4, the loss in R2 by PRS became more 

evident. Moreover, the difference in the smallest and largest values of R2 

across the 100 simulation replicates increased with decreasing sample size, 

indicating a higher probability of finding false positive results.  

I compare these findings of my simulation analysis with results of a 

dataset from the PsyCourse study. Briefly, after removing missing data 

from our considered phenotypes for the analysis, our sample size reduced 

to n=653 individuals. The individuals in the PsyCourse study belonged to 

two diagnostic groups: affective (n= 266) and psychotic (n=386). Thus, I 

analysed the total dataset and each diagnostic group separately. In the 

analysis, I used two well-developed psychosocial functioning scores, 

namely the Global Assessment Function (GAF) score and the Positive and 

Negative Syndrome Scale (PANSS) score from the PsyCourse dataset as 

target phenotypes. I used the GWAS summary statistics for schizophrenia 

(SZ; as discovery trait) available from the Psychiatric Genomic consortium. 

Only a small amount of variance was explained by the SZ-based PRS for 

GAF and PANSS. 
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3.2 Kernel Machine Regression for DNA Methylation Data 

(CpG) and Modelling the Interaction Term between SNPs 

and CpG Variants 

In the second article, I investigated a very well-known set-based semi-

parametric regression approach called kernel machine regression (KMR) 

now for DNA methylation (DNAm) data [57]. Previous research done by 

our group [58, 59] investigated the existing kernels and developed new 

kernels for genetic data association testing with the KMR approach. In the 

methods section, I have briefly highlighted how KMR works for genetic 

datasets. However, unlike the SNP or genotype data that are encoded as the 

count of minor alleles in a SNP (i.e. 0, 1, or 2 respectively), the DNAm data 

for CpG markers vary continuously between 0 and 1, depicting the 

methylation state of the respective marker. An individual CpG marker is 

assumed to have beta distribution, with two parameters α and β controlling 

the shape of distribution. Thus, data from methylation are not necessarily 

normal.  

The research work towards the second article is my contribution to 

Genetic Analysis Workshop 20 (GAW20). GAW20 provided genome-wide 

genotype (bi-allelic SNPs) and DNA methylation levels (CpG) from the 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study [60]. 

GOLDN is a longitudinal (four data points: visits 1 to 4) family-based study 

involving 991 participants of European descent. The study goal was to 

localize novel loci contributing to triglyceride (TG) and very-low-density 

lipoprotein cholesterol (VLDL-C) response in connection with a lipid-

lowering drug. Blood levels of TG and VLDL-C were measured before the 

diet (visits 1 and 2) and after drug intervention (visits 3 and 4). DNAm 

levels of CpGs were collected only at two time points, during visits 2 and 4. 

Visit 1 and 2 were one day apart from each other, as was the case for visits 

3 and 4. However, visit 2 and 4 were three weeks apart from each other. The 

data obtained on DNA methylation during visit 2 and 4 were generated 

using the 450K Illumina methylation array. EWAS analysis revealed four 
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CpGs markers, namely cg00574958, cg17058475, cg01082498, and 

cg09737197 in intron 1 of the carnitine palmitoyltransferase 1A (CPT1A) 

gene with strong evidence of association with VLDL-C and TG (Irvin et al., 

2014). 

 In addition to the real datasets from GOLDN study, GAW20 also 

provided simulated datasets generated with a model using the GOLDN 

study real sample, genotype, and methylation datasets. The answer sheet 

provided by GAW20 described the simulation model. Post-treatment 

methylation levels were modelled based on pre-methylation with a higher 

variation at ten CpG markers than for the remaining CpG markers. Post-

TG levels were influenced by five causal SNPs with decreasing heritability 

and several polygenes. However, the influence of each of the five causal 

SNPs on the TG levels (pre to post) decreased with increasing degree of 

methylation of nearby CpG markers to the causal SNPs, such that five out 

of ten CpG markers were close to the causal SNPs. Using the information 

from the findings of the GOLDN study and the answer sheet for the 

simulated data from GAW20, I defined genomic regions harbouring causal 

and non-causal SNPs and their nearby causal and non-causal CpGs.  

I investigated both simulated and real datasets and our research aimed 

to address the following questions:  

I. Can KMR be implemented for the sets of CpG markers that do not 

follow a normal distribution?  

II. How does the kernel work, by increasing the size of genomic region 

under analysis or by incorporating more CpGs into the kernel? 

III. Does a model that considers an interaction term between the pair(s) 

of nearby SNP and CpG markers improve the overall performance 

of the model? This corresponds to a genetic by epigenetic interaction 

term (genome-by-epigenome interactions)? 

I restricted my analysis only to independent individuals in both 

simulated as well as real datasets. This reduced the sample size from n= 991 
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to n=150 individuals in the real dataset and n=111 individuals in the 

simulated datasets. Thus, a loss of power in the analysis was expected. A 

research focus of our group was on kernel methods for genetic datasets, so 

that SNP-sets were jointly tested for association. I also adapted the set-

based approach for CpG markers. Here, two crucial aspects concerning 

CpG markers need attention: first, the 450K methylation array only gives 

information for CpGs that are located either inside or close to protein-

coding genes. Secondly, the CpG density in the human genome is not 

uniform. Research has revealed that instead of a single CpG site/variant, 

few to several CpGs as a CpG-set within a genomic region exhibit a similar 

pattern of methylation [29, 61]. This CpG-set controls the transcriptional 

activity of nearby genes. Considering the non-uniform density and the set-

based behaviour of CpGs, I defined genomic regions of interest of varying 

length. In the simulated data, the genomic regions were defined within the 

boundaries of lying zero kilobase pairs (kbp), 3 kbp, and 15 kbp upstream 

and downstream of true causal markers. In the real data, the boundaries of 

genomic regions were defined using the intronic boundaries of CPT1A, as 

reported evidence by the GOLDN study findings for association of CpG 

markers with the TG levels are mapped to CPT1A.  

Overall, the analyses for both the real and simulated data indicated that 

the use of KMR for CpG markers is feasible. I modelled the set of CpGs in 

defined genomic regions via a linear kernel in the KMR. In addition, a linear 

model was used to validate the findings by the linear-kernel-based KMR. 

In particular, even though I only considered independent individuals for 

analyses, KMR was able to replicate the association from the original study, 

albeit nominally. For simulated data, no direct effect of CpG markers was 

modelled; the KMR approach did not yield any significant findings. My 

results for KMR were supported with that of linear regression analysis. 

Most importantly, an interaction regression model for the causal SNP with 

the nearest CpG marker identified an effect for the SNPs with the three 

greatest heritabilities simulated. The simulation model assumed full SNP 
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effect only for unmethylated regions, decreasing to zero in the case of full 

methylation. Thus, in the context of a clear candidate setting, interaction 

between epigenetic and genetic data may enhance information, albeit 

nominally, even with small sample sizes.  
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4 DISCUSSION 

Many parametric and non-parametric methods have been developed and 

tested for the set-based association testing of genetic datasets with complex 

phenotypes. In this thesis, I present two set-based approaches, polygenic 

risk scores (PRSs) for genetic data and kernels for genetic and methylation 

data. PRS is an often-applied strategy that calculates a genetic risk score for 

a particular phenotype based on GWAS summary statistics obtained from 

an independent sample.  

In my first research article [53], I investigated the use of GWAS 

results for target traits that are not identical to the discovery trait but might 

have a strong-to-moderate correlation. Our collaboration with psychiatrists 

based in Munich working on the Psycourse study [54], motivated this 

research. Sergi Papiol and his workgroup conducted a longitudinal study 

in 2019 recruiting schizophrenia patients and healthy controls, in which all 

study participants went through aerobic endurance training for three 

months [62].  Magnetic resonance imaging (MRI) scans were collected at 

baseline and at the end of training. PRSs were calculated using the GWAS 

summary statistics of schizophrenia available at the PGC [44]. A change in 

hippocampal volume before and after training was found to be associated 

with the schizophrenia PRS. Change in hippocampal volume is a 

psychopathological endophenotype [63]; when used as a target trait, it 

reflects a situation of modest to strong correlation between the target and 

discovery traits. In the PsyCourse study, several other psychopathological 

endophenotypes such as cognitive functions investigating the working 

memory or scores assessing psychological functioning were recorded. 
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In molecular psychiatric research, endophenotypes have gained 

quite a lot in momentum in the last few years [54]. It is speculated that 

endophenotypes share genetic burden in the affective-to-psychotic 

continuum of psychiatric disorders, and they tend to appear in both 

patients and their unaffected relatives [64]. Hence, endophenotypes can 

potentially decipher the genetic burden of disease better than the 

transdiagnostic groups. Significant associations have been reported for 

schizophrenia-based PRS analysis with P300 and the digit-span test, two 

commonly recorded psychopathological endophenotypes [65].  

My simulation study provides an insight into using various 

endophenotypes where the magnitude of genetic correlation between an 

endophenotype and the discovery trait is different. The relevant GWAS 

summary statistics can be used while taking into account the sample size of 

the target trait under PRS analysis. The findings of my study can also be 

used for situations of correlated diseases, such as taking T2DM as an 

endophenotype/risk factor in cardiovascular disease. 

Although the applications of PRS have been useful for various 

complex diseases, this method has many limitations. First, PRS requires 

appropriate and relevant GWAS summary statistics calculated on a very 

large sample [43]. Such large-scale GWAS results are only available for a 

few complex diseases. Moreover, a wide majority of these GWASs are 

performed on individuals with European ancestry [46]. Therefore, PRS is 

calculated for the target sample with the same genetic ancestry.  

In the PRS studies conducted between 2008 and 2017, 67% of these 

studies included participants exclusively with European ancestry, 19% 

included participants with East Asian ancestry and only 3.8 % of studies 

were performed for African, Hispanic, or other indigenous ancestry [46]. 

Duncan et al., 2019 performed an interesting PRS analysis with admixture 

populations using height as discovery and target trait. In the above state of 

analysis, the GWAS summary statistics for height, calculated for European 
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individuals, were used from the UK Biobank. However, for the target trait, 

individuals with African ethnic ancestry were employed. A linear 

regression model as function of age, gender, as well as European ancestry 

components with and without PRS revealed that the predictive 

performance of European ancestry-derived polygenic scores is lower in 

non-European ancestry samples [46]. Thus, the underrepresentation of non-

European GWASs limits the predictive power of PRSs.  

More recently, Middle East Asian countries [66, 67] have taken the 

initiative and established data banks similar to the UK Biobank such as the 

Saudi Human Genome Project and Qatar Biobank for medical research. 

Biobanks in East Asian countries such as China (Pan-Asia Population SNP 

Database; Human Genetic Resources Platform), South Korea (Korean 

Genomic Variant Database; Korea Biobank Project), Japan (Japanese 

Genotype-Phenotype Archive; Biobank Japan), and Taiwan (Taiwan 

Biobank) were established earlier. In the South East Asian countries such as 

Pakistan and India, no biobanks have been established yet; however, 

numerous GWASs targeting phenotypes such as T2DM and lung cancer 

have been carried out there. In PRS analysis, the model is adjusted for 

population stratification; principal component analysis (PCA) and 

multidimensional scaling (MDS) are frequently used. However, there is 

need for development of methods that allow combining data from admixed 

populations. In addition, there is the need to conduct well-powered studies 

in non-white populations. 

PRS facilitates the evaluation of relative risk in individuals. Hence, it 

cannot be used to infer the absolute risk of genetic predisposition for a 

particular disease in a particular individual. Numerous PRS analyses have 

demonstrated that adding known non-genetic risk factors along with the 

PRS in the regression model has resulted in an increase in the explained 

variance of the target trait, thus improving the risk stratification in 

individuals in the target sample. The performance of risk models can be 

evaluated with the ROC (receiver operating characteristics) curve and the 
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area under the curve (AUC) [68]. The clinical utility of models with an AUC 

< 0.65 is generally not very great. Models with an AUC > 0.8 are generally 

informative for most patients, and can be used for clearer stratification of 

study participants into groups of high, intermediate, and low risk.  

In the second article, I implemented a kernel method, which allows 

joint testing of a set of markers with a phenoytpe. Kernel methods have 

been well exploited for genetic datasets based on SNPs. Previous research 

work done by our group has demonstrated the use of kernels for dependent 

and independent individuals in a dataset, as well as developing a kernel 

that allows the incorporation of pathways with interacting genes. For my 

research work, I used the linear kernel for methylation datasets (set of CpG 

markers). CpG markers have often been employed as response variable and 

associated with gene expression datasets. In my work, I considered a 

reverse regression model that associates the phenotype with the CpG 

markers. For the regression model in which CpG markers are employed as 

response variable, a logit transformation is applied to normalise the CpG 

values, as these are beta-distributed. However, a CpG value that is 

continuous from 0 to 1 yields infinity and zero for 0s and 1s in the data after 

logit transformation. In order to overcome this problem, the original data 

interval of values is reduced such that 0s and 1s are replaced. This results 

in a severe loss of information. The untransformed value is referred to as B-

value. After logit transformation, these are called M-values. In my second 

article, I used B-values with a limited sample size of n<200 individuals in a 

linear kernel. 

Subsequently, I performed simulations (results not published) to 

compare the performance of the linear kernel by using B-values versus M-

values. Using a copula-based approach through beta distribution, I 

generated methylation datasets for a quantitative phenotype y. I considered 

various scenarios based on correlation structure, i.e., from no correlation to 

0.10, and 0.25 or block-wise correlation among the simulated CpG markers. 
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In all these scenarios, I found that using the logit transformed M-values 

resulted in a loss of power, albeit not significant. 

Furthermore (results not published), I considered using an additive 

kernel that combined genotype and methylation datasets in one kernel, and 

testing the association with the outcome y. The simulation scenarios were 

the same as stated above, with varying numbers of SNPs and CpGs in each 

dataset. First, simulation results testing the association with the outcome 

revealed that the power remained approximately the same for an additive 

kernel for a SNP set, regardless of whether or not the CpG set was added 

into the kernel. These results are in good agreement with Zhao et al., 2018 

[69]. In these simulations however, I simulated CpG markers that were a 

mixture from the three distributional shapes for methylation, i.e. 

hypo/semi/hyper-methylated, and this, along with the SNP set, did not 

really improve power. Thus, I subsequently simulated CpG markers only 

from one distributional pattern; the performance of the additive kernel 

varied then. More simulations are required to test the power of an additive 

kernel integrating a methylation-state-specific CpG set with a SNP set into 

one kernel.  

The research work completed in preparation of this thesis 

contributes to the use of the PRS technique for correlated target traits with 

careful consideration of the sample size, in particular for clinical studies. In 

addition, the research into implementing kernels for methylation datasets 

hints towards exploiting the opportunity of investigating other -omics 

datasets by deploying other kernels. Given the existing understanding of 

the genetic architecture of complex diseases, an additive model of 

heritability is used.  The importance of interactions is unclear and the 

additive model seems to capture more variance than the interactions when 

simple models for the interaction are employed. Kernel methods seem a 

promising strategy for multi-omics data integration. Moreover, the 

integration of multi-omics data can be more profitable by taking existing 
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knowledge such as that available on the ENCODE database or the Gene 

Expression Omnibus (GEO) into account.  



References 

 

38 
 

5 REFERENCES 

[1]  R. Pranavchand and B. M. Reddy, “Genomics era and complex 

disorders: Implications of GWAS with special reference to coronary 

artery disease, type 2 diabetes mellitus, and cancers,” Journal of 

Postgradaute Medicine, vol. 62, no. 3, pp. 188-198, 2016.  

[2]  E. B. Bookman, K. McAllister, E. Gillanders , K. Wanke, D. Balshaw , 

J. Rutter, J. Reedy , D. Shaughnessy , T. Agurs‐Collins, D. Paltoo, A. 

Atienza , L. Bierut , M. D. Fallin , F. Perera , E. Turkheimer , J. 

Boardman, M. L. Marazita , S. M. Rappaport , E. Boerwinkle , . S. J. 

Suomi , N. E. Caporas, I. Hertz‐Picciotto , K. C. Jacobson , W. L. 

Lowe, L. R. Goldman , P. Duggal , M. R. Gunnar , T. A. Manolio , E. 

D. Green, D. H. Olster and L. S. Birnbaum, “Gene‐environment 

interplay in common complex diseases: forging an integrative 

model—recommendations from an NIH workshop,” Genetic 

Epidemiology, vol. 35, no. 4, pp. 217-225, 2011.  

[3]  M. Darrason, “Unifying diseases from a genetic point of view: the 

example of the genetic theory of infectious diseases,” Theoretical 

Medicine and Bioethics, vol. 34, no. 4, p. 327–344, 2013.  

[4]  B. H. Y. Chung, J. F. T. Chau and G. K.-S. Won, “Rare versus 

common diseases: a false dichotomy in precision medicine,” Genomic 

Medicine, vol. 6, no. 19, 2021.  

[5]  A. Pal and M. McCarthy, “The genetics of type 2 diabetes and its 

clinical relevance,” Clinical Genetics, vol. 83, no. 4, pp. 297-306, 2013.  

[6]  G. M. Cooper and J. Shendure , “Needles in stacks of needles: 

finding disease-causal variants in a wealth of genomic data,” Nature 

Reviews Genetics, vol. 12, no. 9, p. 628–640, 2011.  

[7]  Online Inheritance in Man (OMIM), “Online Inheritance in Man,” 

1960. [Online]. Available: 

https://www.omim.org/statistics/geneMap. [Accessed 12 May 

2021]. 

[8]  S. Shiovitz and L. A. Korde, “Genetics of breast cancer: a topic in 

evolution,” Annals of oncology : official journal of the European Society 

for Medical Oncology, vol. 26, no. 7, pp. 1291-1299, 2015.  



References 

 

39 
 

[9]  M. T. Malecki, “Genetics of type 2 diabetes mellitus,” Diabetes 

Research and Clinical Practice, vol. 68, no. 1, pp. 10-21, 2005.  

[10]  H. Gao, L. Li, S. Rao, G. Shen, Q. Xi, S. Chen, Z. Zhang, K. Wang, S. 

G. Ellisi, Q. Chen, E. J. Topol and Q. K. Wang, “Genome-Wide 

Linkage Scan Identifies Two Novel Genetic Loci for Coronary Artery 

Disease: In GeneQuest Families,” PLoSONE, vol. 9, no. 12, 2014.  

[11]  Y. Guo, F. Wang, L. Li, H. Gao, . S. Arckacki, I. Z. Wang, J. Barnard, 

S. Elis, C. Hubbard, . E. J. Topol, Q. Chen and Q. K. Wang, “Genome-

Wide Linkage Analysis of Large Multiple Multigenerational Families 

Identifies Novel Genetic Loci for Coronary Artery Disease,” Scientific 

Reports, vol. 7, no. 1, 2017.  

[12]  G. Lett and P. L. Auer, “Rare variant association studies: 

considerations, challenges and opportunities,” Genome medicine, vol. 

7, no. 1, 2015.  

[13]  R. M. Cantor, K. Lange and J. S. Sinsheimer, “Prioritizing GWAS 

Results: A Review of Statistical Methods and Recommendations for 

Their Application,” The American Journal of Human Genetics, vol. 1, 

no. 86, pp. 6-22, 2010.  

[14]  C. S. Ku, E. Y. Loy, Y. Pawitan and K. S. Chia, “The pursuit of 

genome-wide association studies: where are we now?,” Journal of 

Human Genetics, vol. 55, pp. 195-206, 2010.  

[15]  J. K. Pritchard and M. Przeworski, “Linkage Disequilibrium in 

Humans: Models and Data,” American Journal of Human Genetics, vol. 

69, no. 1, pp. 1-14, 2001.  

[16]  T. LaFramboise, “Single nucleotide polymorphism arrays: a decade 

of biological, computational and technological advances,” Nucleic 

Acids Research, vol. 37, no. 4, p. 4181–4193, 2009.  

[17]  O. A. Panagiotou, C. J. Wille, J. N. Hirschhorn and J. P. A. Ioannidis, 

“The Power of Meta-Analysis in Genome Wide Association Studies,” 

Annual Review of Genomics and Human Genetics, vol. 65, pp. 441- 465, 

2013.  

[18]  A. Xue, Y. Wu, Z. Zhu, . F. Zhang, K. E. Kemper, Z. Zheng, L. Yengo, 

L. R. Lloyd-Jones, J. Sidorenko, Y. Wu, A. F. McRae, P. M. Visscher, J. 

Zeng, J. Yang and eQTLGen Consortium, “Genome-wide association 



References 

 

40 
 

analyses identify 143 risk variants and putative regulatory 

mechanisms for type 2 diabetes,” Nature Communications, vol. 9, 

2018.  

[19]  V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré and D. Meyre, 

“Benefits and limitations of genome-wide association studies,” 

Nature Reviews Genetics, vol. 20, pp. 467- 484, 2019.  

[20]  M. Civelek and A. J. Lusis, “Systems genetics approaches to 

understand complex traits,” Nature Reviews Genetics, vol. 15, pp. 34 - 

48, 2014.  

[21]  A. E. Handel, G. C. Ebers and S. V. Ramagopalan, “Epigenetics: 

molecular mechanisms and implications for disease,” Trends in 

Molecular Medicine, vol. 16, no. 1, pp. 7-16, 2010.  

[22]  D. J. Schaid, C. M. Rowland, D. E. Tines, R. M. Jacobso and G. A. 

Poland, “Score tests for association between traits and haplotypes 

when linkage phase is ambiguous,” American Journal of Human 

Genetics, vol. 70, no. 2, pp. 425-434, 2002.  

[23]  D. J. Schaid, S. K. McDonnell, S. J. Hebbring, J. M. Cunningham and 

S. N. Thibodeau, “Nonparametric Tests of Association of Multiple 

Genes with Human Disease,” The American Journal of Human Genetics, 

vol. 76, no. 5, pp. 780-793, 2005.  

[24]  GWAS catalog, “GWAS catalog,” 04 April 2021. [Online]. Available: 

https://www.ebi.ac.uk/gwas/docs/about. [Accessed 30 April 

2021]. 

[25]  Y. G. Tak and P. J. Farnham, “Making sense of GWAS: using 

epigenomics and genome engineering to understand the functional 

relevance of SNPs in non-coding regions of the human genome,” 

Epigenetics & Chromatin, vol. 57, no. 8, 2015.  

[26]  E. R. Gibney and C. M. Nolan, “Epigenetics and gene expression,” 

Heredity, vol. 105, pp. 4-13, 2010.  

[27]  L. D. Moore, T. Le and G. Fan, “DNA Methylation and Its Basic 

Function,” Neuropsychopharmacology, vol. 38, no. 1, pp. 23-38, 2013.  



References 

 

41 
 

[28]  C. Luo, P. Hajkova and J. R. Ecker, “Dynamic DNA methylation: in 

the right place at the right time,” Science, vol. 361, no. 6409, pp. 1336-

1340, 2019.  

[29]  The ENCODE Project Consortium, “Expanded encyclopaedias of 

DNA elements in the human and mouse genomes,” Nature, vol. 583, 

pp. 699-710, 2020.  

[30]  L. H. Chadwick, A. Sawa, I. V. Yang, A. Baccarelli, X. O. Breakefield, 

H.-W. Deng, D. C. Dolinoy, M. . D. Fallin, N. T. Holland, E. A. 

Houseman, S. Lomvardas, M. Rao, J. S. Satterlee, F. L. Tyson, P. 

Vijayanand and J. M. Greally, “New insights and updated guidelines 

for epigenome-wide association studies,” Neuroepigenetics, vol. 1, pp. 

14-19, 2015.  

[31]  E. Raineri, M. Dabad and S. Heath, “A Note on Exact Differences 

between Beta Distributions in Genomic (Methylation) Studies,” 

PlosONE, 2014.  

[32]  L. Weinhold, S. Wahl, S. Pechlivanis, P. Hoffman and M. Schmid, “A 

statistical model for the analysis of beta values in DNA methylation 

studies,” BMC Bioinformatics, vol. 17, 2016.  

[33]  J. M. Flanagan, “Epigenome-wide association studies (EWAS): past, 

present, and future,” Methods in Molecular Biology, pp. 51-63, 2015.  

[34]  P. Zeng, Y. Zhao, C. Qian, L. Zhang, R. Zhang, J. Gou, J. Liu, L. Liu 

and F. Chen, “Statistical analysis for genome-wide association 

study,” The Journal of Biomedical Research, vol. 29, no. 4, pp. 285-297, 

2015.  

[35]  A. T. Marees, H. d. d. Kluiver, S. Stringer, F. Vorspan, E. Curis, C. 

Marie‐Claire and E. M. Derks, “A tutorial on conducting genome‐

wide association studies: Quality control and statistical analysis,” 

International Journal of Methods in Psychological Research, vol. 27, no. 2, 

p. e1608, 2018.  

[36]  M. T. Dorak, “Genome Biology for Genetic Epidemiologists,” 07 

April 2018. [Online]. Available: 

http://www.dorak.info/epi/glosge.html. [Accessed 04 January 

2021]. 



References 

 

42 
 

[37]  J. D. Storey and R. Tibshirani, “Statistical significance for 

genomewide studies,” PNAS, vol. 100, no. 16, pp. 9440-9445, 2003.  

[38]  J. Fadista, A. K. Manning, J. C. Florez and L. Groop , “The (in)famous 

GWAS P-value threshold revisited and updated for low-frequency 

variants,” European Journal of Human Genetics, vol. 24, pp. 1202-1205, 

2016.  

[39]  F. Dudbridge, “Power and Predictive Accuracy of Polygenic Risk 

Scores,” PLoS Genetics, vol. 9, no. 3, p. e1003348, 2013.  

[40]  S. W. Choi, T. S.-H. Mak and P. F. O’Reilly, “Tutorial: a guide to 

performing polygenic risk score analyses,” Nature Protocols, vol. 15, 

pp. 2759-2722, 2020.  

[41]  Psychiatric GWAS Consortium Steering Committee, “A framework 

for interpreting genome-wide association studies of psychiatric 

disorders,” Molecular Psychiatry, vol. 14, no. 1, 2009.  

[42]  L. Duncan, H. Shen, B. Gelaye, J. Meijsen, K. Ressler, M. Feldman, R. 

Peterson and B. Domingue, “Analysis of polygenic risk score usage 

and performance in diverse human populations,” Nature 

Communications, vol. 10, 2019.  

[43]  S. Gunn, “How to: perform polygenic risk score analysis,” 08 August 

2020. [Online]. Available: https://frontlinegenomics.com/how-to-

perform-polygenic-risk-score-analysis/. [Accessed 11 January 2021]. 

[44]  Schizophrenia Working Group of the Psychiatric Genomics 

Consortium, “Biological insights from 108 schizophrenia-associated 

genetic loci,” Nature, vol. 511, pp. 421-427, 2014.  

[45]  N. B. Larson, J. Chen and D. J. Schaid, “A Review of Kernel Methods 

for Genetic Association Studies,” Genetic Epidemiology, vol. 43, no. 2, 

pp. 122-136, 2019.  

[46]  T. Hofmann, B. Schölkopf and A. J. Smola, “Kernel methods in 

machine learning,” The Annals of Statistics, vol. 36, no. 3, pp. 1171-

1220, 2005.  

[47]  J. H. Manton, “A Primer on Reproducing Kernel Hilbert Spaces,” 

Foundations and Trends® in Signal Processing, vol. 8, no. 1-2, pp. 1-126, 

2015.  



References 

 

43 
 

[48]  D. J. Schaid, “Genomic similarity and kernel methods II: methods for 

genomic information,” Human Heridity, vol. 70, no. 2, pp. 132-140, 

2010.  

[49]  K. Gohrani, “Different Types of Distance Metrics used in Machine 

Learning,” 10 November 2019. [Online]. Available: 

https://medium.com/@kunal_gohrani/different-types-of-distance-

metrics-used-in-machine-learning-e9928c5e26c7. [Accessed 14 March 

2021]. 

[50]  D. J. Schaid, “Genomic similarity and kernel methods I: 

advancements by building on mathematical and statistical 

foundations,” Human Heridity, vol. 70, no. 1, pp. 109-131, 2010.  

[51]  S. Yasmeen, S. Papiol, P. Falkai, T. G. Schulze and H. Bickeböller, 

“Polygenic Risk for Schizophrenia and Global Assessment of 

Functioning—A Comparison with In-Silico Data,” Journal of 

Psychiatry and Brain Science, vol. 4, 2019.  

[52]  M. Budde, H. A. Schmidt, K. Gade, D. . R. Erkelenz, K. Adorjan, J. . 

L. Kalman, F. Senner, . S. Papiol, T. . F. M. Andlauer , A. L. Comes, E. 

C. Schulte , P. Falkai, T. G. Schulze and U. Heilbronner , “A 

longitudinal approach to biological psychiatric research: The 

PsyCourse study,” American Journal of Medical Genetics Part B 

Neuropsychiatric Genetics, vol. 180, no. 2, pp. 89-102, 2019.  

[53]  B. Bulik-Sullivan, H. K. Finucane, V. Anttila, A. Gusev, F. R. Day, P.-

R. Loh, ReproGen Consortium and Psychiatric Genomics 

Consortium, “An atlas of genetic correlations across human diseases 

and traits,” Nature Genetics, vol. 47, p. 1236–1241, 2015.  

[54]  A. Reichenberg, P. D. Harvey, C. R. Bowie, R. Mojtabai, J. 

Rabinowitz, . R. K. Heaton and . E. Bromet, “Neuropsychological 

Function and Dysfunction in Schizophrenia and Psychotic Affective 

Disorders,” Schizophrenia Bulletin, vol. 35, no. 5, p. 1022–1029, 2009.  

[55]  S. Yasmeen, P. Burger, S. Friedrichs, S. Papiol and H. Bickeböller, 

“Relating drug response to epigenetic and genetic markers using a 

region-based kernel score test,” BMC Proceedings, vol. 12, 2018.  

[56]  M. R. Irvin, D. Zhi, R. Joehanes, M. Mendelson, S. Aslibekyan, S. A. 

Claas, K. S. Thibeault, N. Patel, K. Day, L. W. Jones, L. Liang, B. H. 

Chen, C. Yao, H. K. Tiwari, J. M. Ordovas, D. Levy, D. Absher and D. 



References 

 

44 
 

K. Arnett, “Epigenome-Wide Association Study of Fasting Blood 

Lipids in the Genetics of Lipid Lowering Drugs and Diet Network 

Study,” Circulation, vol. 130, no. 7, pp. 565-572, 2014.  

[57]  S. Papiol, D. Keeser, A. Hasan, T. Schneider-Axmann, F. Raabe, F. 

Degenhardt, M. J. Rossner, H. Bickeböller, L. Cantuti-Castelvetri, M. 

Simons, T. Wobrock, A. Schmitt, B. Malchow and P. Falkai, 

“Polygenic burden associated to oligodendrocyte precursor cells and 

radial glia influences the hippocampal volume changes induced by 

aerobic exercise in schizophrenia patients,” Translational Psychiatry, 

vol. 9, no. 284, 2019.  

[58]  A. C. Ruocco , S. Amirthavasagam and K. K. Zakzanis, “Amygdala 

and hippocampal volume reductions as candidate endophenotypes 

for borderline personality disorder: a meta-analysis of magnetic 

resonance imaging studies,” Psychiatry Research, vol. 201, no. 3, pp. 

245-252, 2012.  

[59]  W. G. Iacono, “Endophenotypes in psychiatric disease: prospects 

and challenges,” Genome Medicine, vol. 10, no. 11, 2018.  

[60]  S. Ranlund, S. Calafato, J. H. Thygesen, K. Lin, W. Cahn, B. Crespo-

Facorro, S. M. de Zwarte, Á. Díez, M. D. Forti, GROUP*, C. Iyegbe, 

A. Jablensky, R. Jones, M.-H. Hall, R. Kahn, L. Kalaydjieva, E. 

Kravariti, C. McDonald, A. M. McIntosh, A. McQuillin, PEIC, M. 

Picchion, D. P. Prata, D. Rujescu, K. Schulze, M. Shaikh, T. 

Toulopoulou, N. v. Haren, J. v. Os, E. Vassos, M. Walshe, WTCCC2, 

C. Lewis, R. M. Murray, J. Powell and E. Bramon, “A polygenic risk 

score analysis of psychosis endophenotypes across brain functional, 

structural, and cognitive domains,” American Journal of Medical 

Genetics, vol. 177, no. 1, p. 21–34, 2017.  

[61]  S. Stuart G Baker, “Metrics for Evaluating Polygenic Risk Scores,” 

JNCI Cancer Spectrum, vol. 5, no. 1, 2021.  

[62]  N. Zhao, X. Zhan, Y.-T. Huang, L. M. Almli, A. Smith, M. P. Epstein, 

K. Conneely and M. C. Wu, “Kernel machine methods for integrative 

analysis of genome-wide methylation and genotyping studie,” 

Genetic Epidemiology, vol. 42, no. 2, pp. 156-167, 2018.  



References 

 

45 
 

[63]  T. Cai, “Kernel Machine Approach to Testing the Significance of 

Multiple Genetic Markers for Risk Prediction,” Biometrics, vol. 67, no. 

3, p. 975–986, 2011.  

 

 



     Appendix   

 

46 
 

6 APPENDIX 

I. References, Web-Links and Digital Object Identifiers of 

Original Articles 

S Yasmeen, P Burger, S Friedrichs, S Papiol, and H Bickeböller. 

Relating drug response to epigenetic and genetic markers using a region-
based kernel score test.  
BMC proceedings 2018; 12 (9), 47.  
URL: https://pubmed.ncbi.nlm.nih.gov/30275895/ 
DOI: 10.1186/s12919-018-0154-5 

    S Yasmeen, S Papiol, P Falkai, TG Schulze, and H Bickeböller. 

Polygenic Risk for Schizophrenia and Global Assessment of Functioning - 
A Comparison with In-Silico Data.  
Journal of Psychiatry and Brain Science, 2019; 4: e190003.  
URL: https://doi.org/10.20900/jpbs.20190003 
DOI: 10.20900/jpbs.20190003 
 
 
PDF copies of both articles are compiled with the thesis. 

https://pubmed.ncbi.nlm.nih.gov/30275895/
https://doi.org/10.20900/jpbs.20190003

