World Maritime University

The Maritime Commons: Digital Repository of the World Maritime University

World Maritime University Dissertations

Dissertations

10-31-2021

Fuzzy multi criteria decision making approach for technology selection for emissions reduction from seaborne transportation under uncertainty and vagueness

Rachid Mouaici

Follow this and additional works at: https://commons.wmu.se/all_dissertations

Part of the Theory and Algorithms Commons

Recommended Citation

Mouaici, Rachid, "Fuzzy multi criteria decision making approach for technology selection for emissions reduction from seaborne transportation under uncertainty and vagueness" (2021). *World Maritime University Dissertations*. 1721.

https://commons.wmu.se/all_dissertations/1721

This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact library@wmu.se.

WORLD MARITIME UNIVERSITY Malmö, Sweden

Fuzzy multi-criteria decision-making approach for technology selection for emissions reduction from seaborne transportation under uncertainty and vagueness

By RACHID MOUAICI ALGERIA

A dissertation submitted to the World Maritime University in partial fulfilment of the requirements for the reward of the degree of

MASTER OF SCIENCE in MARITIME AFFAIRS

(MARITIME ENERGY MANAGEMENT)

2021

Copyright Rachid Mouaici, 2021

Declaration

I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me.

The contents of this dissertation reflect my own personal views and are not necessarily endorsed by the University.

(Signature): Rachid Mouaici

(Date): 21/09/2021

Supervised by: Dr. Aykut I. Ölçer Dr. Alessandro Schönborn

Supervisor's affiliation. World Maritime University

Acknowledgements

I would like to express my sincere gratitude to Dr.Aykut I. Ölçer and Dr. Alessandro Schönborn, my research supervisors, for their patient guidance, enthusiastic encouragement, and useful feedback during the planning and development of this research work. My sincere thanks are also extended to Mrs. Sue Jackson and the staff at World Maritime University for the help, continued and valuable support, and facilitation, which enabled me smoothly conducting this research project at WMU.

My thanks also go to my former colleagues and classmates Mr. Moustafa Benotmane, Senior officer at Hyproc Shipping Company and Mr. Braham Bachioua, Chief Engineer at CNAN Nord-Shipping company; to Mr. Linus Edberg, Marine Manager at WISBY TANKERS, and Mr. Jonas Moberg, Manager NB Projects Fleet at Gotland Tankers AB; who helped with data collection and agreed to be interviewed during such stressful time under Corona pandemic. Without their support, I would not be able to complete this research project.

I would like to take this opportunity to express my deepest gratitude to my family members for their support.

Greeting to all my friends, former colleagues at sea, and all professors at WMU.

Abstract

Title of Dissertation: Fuzzy multi-criteria decision-making approach for technology selection for emissions reduction from seaborne transportation under uncertainty and vagueness

Degree: Master of Science

The trend towards sustainability and decarbonisation is increasingly gaining traction in shipping industry due to more stringent environmental regulations and the collective will from society around the world. The global sulphur regulation that came into effect in 2020 has become a pivotal figure in terms of fuel choices in the maritime industry. Decision-makers (ship-owners and ship operators) will have to choose fuel pathways in the future. In fact, the selection of a suitable alternative is a significant concern for decision makers. In this process, a number of conflicting criteria need to be considered as well as its complexity, which can be modelled as a multi-criteria decision-making (MCDM) problem. Considering the vagueness and imprecision often represented in decision data due to the lack of complete information and the ambiguity arising from the qualitative judgment of decision-makers when evaluating alternatives. Such an analysis involves a fuzzy concept into MCDM where prioritization of a set of feasible alternatives vis-à-vis a multi criteria evaluation is undertaken under vague environment. This study proposes an MCDM framework comprising Fuzzy Analytic Hierarchy Process (AHP), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and Technique for Order Performance by Similarity to Ideal Solution (TOPSIS), for technology selection for regulatory compliance towards emissions reduction from shipping under uncertainty and vagueness. Nineteen (19) criteria integrated into five (5) sustainability assessment factors (Technical, Environmental, Economic, Other-factors, and Social-political) were selected. Fuzzy AHP was employed to determine the priority weights of aspects/criteria and the performance of alternatives with regard to each criterion. Afterwards, alternatives were prioritized by VIKOR and TOPSIS. Based on the proposed framework outputs, Low-Sulphur Fuels are ranked as the best comprise solution for regulatory compliance. Scrubbers, Liquefied natural gas (LNG), Methanol and Ammonia follow in order, respectively. Sensitivity analysis was performed to validate the robustness of the results by varying the weights of the criteria. The proposed framework is an efficient and effective decision support model and can also be used for similar regulatory compliance problems in other modes of transportation.

KEYWORDS: Seaborne transportation, Emissions reduction, Alternative technologies, MCDM, Fuzzy AHP, VIKOR, TOPSIS

Table of Contents

Declarationi
Acknowledgements ii
Abstractiii
Table of Content iv
List of Tables vi
List of Figures vii
List of Abbreviations viii
Chapter 1. Intrdoduction11.1 Background11.2 Problem stataement61.3 Aims and objectives61.4 Research questions71.5 Research methodology71.6 Expected results81.7 Organisation of the study8
Chapter 2. Litertature review
Chapter 3. Methodology203.1 The proposed MCDM framework for the evaluation criterion system203.2 The proposed integrated Fuzzy MCDM methodology223.2.1 Fuzzy AHP for determining the decision-making matrix243.2.2 Apply VIKOR for prioritizing alternatives283.2.3 Apply TOPSIS for prioritizing alternatives313.2.4 Validation33
Chapter 4. Case study
Chapter 5. Sumamry and conclusion 60 5.1 Summary 60 5.2 Conclusion 61 References 63

List of Tables

Table 1. The criteria for evaluating the sustainability of low-emission	
technologies	34
Table 2. Linguistic scale and corresponding Triangular Fuzzy	
Numbers	35
Table 3. Decision makers´ preferences towards aspects	36
Table 4. Translating decision makers' preferences towards aspects into fuzzy	
triangular numbers	37
Table 5. Represents aggregated fuzzy comparison matrix of aspect	37
Table 6. Possibility matrix for aspects	39
Table 7. Weights of aspects determined using fuzzy AHP	40
Table 8. Global weights of the criteria determined using fuzzy AHP	42
Table 9. Decision-making matrix determined using fuzzy AHP	43
Table 10. The best and worst values of each criterion	45
Table 11. The values of S_i and R_i of alternatives	47
Table 12. The ranks of the scenarios according to values of S_i , R_i and Q_i based of	on
the data determined using fuzzy AHP	48
Table 13. Weighted normalized decision matrix	50
Table 14. The values of Ideal best (V_j^*) and Ideal worst (V_j^-)	51
Table 15. The ranking of alternatives based on descending order of the value of	P_i^* .
	52
Table 16. Comparison of VIKTOR vs TOPSIS ranking lists	52
Table 17. The compromise solutions determined under the conditions of differen	ıt
cases by VIKOR	56
Table 18. The ranking of alternatives determined under the conditions of differen	nt
cases by TOPSIS	58

List of Figures

Figure 1. The proposed MCDM for the evaluation criterion system21
Figure 2. The proposed integrated Fuzzy MCDM methodology23
Figure 3. Fuzzy Triangular Numbers \tilde{A}_1 and \tilde{A}_2
Figure 4. Sensitivity analysis by changing the weights of criteria performed by VIKOR
for cases (1-7)
Figure 5. Sensitivity analysis by changing the weights of criteria performed by VIKOR
for cases (8-14)
Figure 6. Sensitivity analysis by changing the weights of criteria performed by VIKOR
for cases (15-20)
Figure 7. Sensitivity analysis by changing the weights of criteria performed by
TOPSIS for different cases

List of Abbreviations

AHP	Analytic Hierarchy Process
BC	Black Carbone
CAPEX	Capital cost
CH ₄	Methane
CO ₂	Carbon dioxide
CII	Carbon intensity indicator
ECAs	Emission control areas
EEDI	Energy Efficiency Design Index
EEXI	Energy Efficiency Existing Ship Index
ELECTRE	Elimination and Choice Translating Reality
EU	European Union
NIS	Negative Ideal Solution
PIS	Positive Ideal Solution
GHG	Greenhouse Gases
GWP	Global warming potential
HFO	Heavy fuel oil
IMO	International Maritime Organization
IPCC	International Plant Protection Convention
LNG	Liquefied Natural Gas
LSFO	Low Sulphur Fuel Oil
MARPOL 73/78	The International Convention for the Prevention of
	Pollution from Ships
MCDM	Multi-criteria decision-making
MEPC	Marine Environment Protection Committee
MRV	Monitoring, Reporting and Verification
NECAs	Nitrogen oxide emission control areas
NH ₃	Ammonia
NO _X	Nitrogen oxides
OPEX	Operational cost

PM	Particular Matter
PROMETHEE	Preference Ranking Organization Method for Enrichment
	and Evaluations
SECAs	Sulphur emission control areas
SEEMP	Energy Efficiency Management Plan
SO _X	Sulphur oxides
TOPSIS	Technique for Order Performance by Similarity to Ideal
	Solution
VIKOR	Viekriterijumsko Kompromisno Rangiranje
WMO	World Meteorological Organization

Chapter 1. Introduction

1.1 Background

Maritime transportation is vital to the global economy. It is the most costefficient mode of transport (long-distance) per tonne-kilometre of freight transported (GloMEEP, 2018; Raza, 2020); and, in many cases, the only practical way to deliver goods around the world efficiently and economically (McCarney, 2020). Global maritime trade is expanding as international trade demand increases. An average annual growth rate of 3.5% is foreseen over 2019-2024 (Karam et al., 2020). While seaborne transportation only uses 7% of all energy consumed by global transportation movements (Nogué-Algueró, 2019), it contributes around 90% of international trade (ICS, 2020). International shipping has certain pros and cons. Although perceived as the most energy-efficient mode of transportation compared to other modes such as rail and road (Stalmokaitė, 2021), maritime transportation is also a major source of pollution. It contributes significantly to air emissions (Zhu and Wang, 2021). Shipping emissions negatively impact the planet; nonetheless, the maritime sector faces a major challenge in reducing these atmospheric gases (Poulsen et al., 2021). This is mainly due to the shipping industry still being powered by massive fossil fuels. Around 370 million tonnes/year (fuel oil equivalents) are consumed annually by maritime transportation (Herdzik, 2021), combined with the lack of technology available to completely remove gases emissions from ships (Ölçer, 2018). Therefore, air emissions associated with international shipping will continue to be a thorny issue for the shipping industry for the next decades.

Emissions being released into the atmosphere from maritime transportation can be divided into two major categories of gases. Firstly, greenhouse gases (GHG), such as carbon dioxide (CO_2) and methane (CH₄), are responsible for climate change. For instance, international shipping currently accounts for about 3% of total global greenhouse gas (GHG) emissions, but would continue to rise as transport capacity expands (Chen et al., 2019); in which nearly 2% of global energy-related CO_2

emissions per year (Müller-Casseres et al., 2021). Secondly, non-greenhouse gases, such as sulphur dioxide (SO_X), nitrogen oxides (NO_X), and particulate matter (PM), including black carbon (BC); which are responsible for poor air quality and health problems (Tang, et al., 2020). Distinct forms of PM negatively impact human health and the environment; on the other hand, SO_X and NO_X emissions have both acidifying and eutrophication effects (Bui & Perera, 2020a). It has been estimated that ships emit 0.9 million metric tonnes of PM into the atmosphere and account for 20-28% of total air pollutant emissions from the transportation sector (Mousavi et al., 2018). For instance, shipping represents 15% and 4-9% of global NO_X and SO_X emissions, respectively (Toscano & Murena, 2019; Lee et al., 2020); and 2% of global BC emissions (Yacout, et al., 2021). BC is generally known as soot. It has a strong positive radiative forcing in the atmosphere and is a major contributor to climate change (Takemura & Suzuki, 2019, Åström et al., 2021). These atmospheric emissions emitted by ships are expected to increase considerably in the future (EC, 2020); indeed, they are forecasted to more than triple between 2020 and 2050 without further actions (Gössling et al., 2021). In fact, total GHG emissions from ships increased by around 9,6 % between 2012 to 2018 despite improvements in the carbon intensity of international shipping, which ranged from 21% to 32% better than in 2008, and saw a sharp increase in short-lived climate pollutants, such as BC and methane emissions (IMO, 2021). There was an increase of approximately 12% in BC emissions (Psaraftis & Kontovas, 2020; KPMG, 2021); and about 150% growth in methane emissions (Lindstad et al., 2020; EP, 2020). These gases contribute considerably to the warming of the atmosphere (Zhang et al., 2018). According to WMO (2021), global warming continues to increase steadily, and 2020 was one of the hottest years on record; hence, keeping the global average temperature between 1.5 $^{\circ}$ C and 2 $^{\circ}$ C, outlined in the Paris Climate Agreement, above pre-industrial levels by the end of this century will require an effective global plan to reduce further air emissions. While to achieve the Paris objectives the maritime sector should reduce its GHG emissions by at least 50% by 2050 compared to 2008 and eliminate them thereafter (Christodoulou et al., 2021), significant reductions in methane and BC emissions

of 35% or more of both by 2050 compared to 2010 will also be required (IPCC, 2019; Comer, 2019). Therefore, a shift to cleaner and more energy-efficient solutions will be needed for shipping to meet its ambitious emissions targets.

Efficiency, linked to GHG and air pollution emissions, has been an issue within the IMO for a long time (IMO, 2016). Regarding the control of GHG emissions, IMO has been proactive in updating Chapter 4 of Annex VI of the International Convention for the Prevention of Pollution from Ships (MAROPOL) by introducing mandatory technical and operational measures for the control of emissions from ships, entered into force on January 1, 2013 (Anh Tran, 2016). The first measure is a technical standard represented by the Energy Efficiency Design Index (EEDI) that aims at promoting the use of innovative technologies when designing and building new ships in phased approach to reduce carbon intensity expressed in grams of CO₂ per ship's capacity-mile (Stec et al. 2021); the second, the operational measure described by the Ship Energy Efficiency Management Plan (SEEMP) that provides a mechanism to improve the energy efficiency of ships in a cost-effective manner by implementing new technologies and best practices on board ships (Hansen et al., 2020). Furthermore, the initial IMO's GHGs strategy was established by IMO in 2018 in accordance with the goals of the Paris Agreement. This ambitious IMO 2050 target sets out a vision to halve at least GHG emissions from international shipping by 2050 from their 2008 level and work towards their complete elimination as soon as possible over the course of this century (Joung et al., 2020). In addition, two data-driven approaches to reduce GHG emissions from ships introduced by the European Union (EU) and IMO (Panagakos et al., 2019; Kanberoğlu & Kökkülünk, 2021). The former is EU Monitoring, Reporting and Verification (EU MRV), which began collecting data from 1 January 2018 and tackles CO₂ emissions from maritime sector activities to, from and within the EU waters; the latter, namely the Data Collection System (IMO DCS), which started collecting data from 1 January 2019 and deals with emissions from maritime sector activities on a global scale (Rony et al., 2019). In 2021, two associated IMO indexes-EEXI and CII- have been adopted as amendments to MARPOL- Annex VI, taking effect from 2023. The first index is a retroactive and extended application of the EEDI to all existing ships, called Energy Efficiency Existing Ship Index (EEXI); the second is an annual operational carbon intensity indicator (CII) and rating scheme to provide ship-owners with a benchmark to reduce their levels and get on track to meet IMO's emissions targets (DNV, 2021). While CH₄ emissions from international shipping, mainly related to methane slip, have become an issue due to the growth in the use of LNG as a marine fuel, there are increasingly more requests submitted to IMO to regulate methane emissions (IMO, 2020). Accordingly, including CH₄ in IMO's EEDI regulations in future phases will be a step forward in tackling methane emissions from shipping (Lindstad & Rialland, 2020). Therefore, new regulations to mitigate methane emissions from marine engines are expected shortly.

Unlike GHG emissions, controlling the environmental impacts of SO_X, NO_X, and PM emissions is necessary to achieve IMO targets as well as to sustain the global environment and the well-being of population. Accordingly, Emission Control Areas (ECAs) were introduced in Chapter 3 of Annex VI of MARPOL (Bui & Perera, 2020b). Since January 1, 2015, the sulphur requirement has been set within the limits of the ECAs at 0.1% m/m on the sulphur content of fuel oil for ships (Yang et al., 2021; McCaffery et al. 2021). On January 1, 2020, the global sulphur cap, IMO 2020 regulation came into effect. This regulation sets limits of 0.5% m/m limits on the sulphur content of marine fuel oil; considering the three main key compliance options such as LNG (Liquefied Natural Gas), LSFOs (Low Sulphur Fuel Oils), and HFO (Heavy Fuel Oil) combined with Exhaust Gas System (EGS), commonly known by scrubber (Sáez ÁLvarez, 2021). While aiming to control and investigate marine pollution due to the use of scrubbers on-board ships, in 2005 IMO adopted the first IMO guidelines for scrubber wash-waters (Resolution MEPC.130(53)) and introduced the first discharge criteria for water pollutants in 2008 as revisions to the guidelines (Resolution MEPC.170(57). Indeed, the guidelines were revised in 2009, 2015, and 2020, but not tightened (Comer et al., 2020). On the other hand, NO_X emission limits have also been introduced with three distinct levels of compliance,

namely Tier I, Tier II, and Tier III standards, applying to marine diesel engines according to the maximum engine speed, installed on-board ships with different construction dates. The Tier III standards only apply to NO_X ECAs, while Tier I and Tier II limits are global (Perčić et al., 2020; Lu et al., 2021). New NO_X ECAs have been designed from 1 January 2021; such as, the Baltic Sea and the North Sea (Dall'Armi et al., 2021). While the control of BC emissions has recently emerged as a priority issue on the environmental agenda for IMO, a binding international policy aims at limiting BC emissions throughout the polar region is expected soon (Kong et al., 2021, Comer et al., 2020). In fact, a ban on the use of high black-carbon fuels such as HFO in the arctic waters after July 1, 2024, has been approved by IMO'MEPC 76 (ABS, 2021). In addition, black-carbon-based fuels would be extended to VLSFOs (blends) directly impacting the increase in BC emissions from ships (IMO, 2021). Thus, environmental regulations are increasingly stringent and progressing.

The aforementioned stricter environmental regulations will raise concerns among decision-makers about most suitable alternative compliant options that should be adopted on board their ships for regulatory requirements towards emission reduction from shipping. In fact, as IMO calls for wide adoption of cleaner alternative technologies on-board ships, following other energy efficiency measures, to meet its emission targets (Serra & Fancello, 2020; Christodoulou et al., 2021), many shipping companies are looking for the best trade-offs to consider on board ships to achieve the set (Irena al.. goals et 2021). Although several alternative technologies, for example Ammonia and Methanol, have been considered potential alternative fuels for maritime transportation to achieve IMO's sustainability goals (Ben Brahim et al., 2019), there are problems of uncertainly and vagueness in the decision making when evaluating alternative fuels for regulatory compliance (Shell, 2020). These are mainly related to the lack of relevant information and data among decision makers; combined with unpredictable volatility in fuel prices in the post-IMO2020 era (Zis & Cullinane, 2020).

5

Accordingly, selecting the best alternative for regulatory compliance involves a multicriteria decision-making analysis (MCDM), where prioritizing a potential set of alternatives vis- à-vis a multi-criteria analysis is undertaken. This also requires selecting the best suitable MCDM method. Two widely known ranking techniques in the literature are mainly applied in the MCDM problems, such as VIKOR Optimization and Compromise Solution) TOPSIS (Multi-criteria and (Technique for Order Performance by Similarity Ideal Solution). Thus, integrating fuzzy AHP (Analytic Hierarchy Process), which has the possibility of obtaining the criteria weightings and the relative performance of alternatives with regards to each evaluation criterion under vague environment, with VIKOR and TOPSIS will lead to an in-depth analysis on the final ranking of alternatives.

1.2 Problem statement

Shipping industry is now experiencing constant international pressure to comply with an increasingly stringent regulatory environment, coupled with volatile and expensive fuel oils. With the rapid development of new technologies, alternative fuels have been identified as promising solutions to achieve IMO regulatory framework for ship emissions. Nevertheless, decision-makers are challenged by the difficult task of selecting the most suitable solutions on board their ships. These are mainly due to the inaccurate incorporations of the preferences of the decision-makers and the problems of uncertainty that exist in the evaluations of alternatives towards emissions reduction. Therefore, there is a need to improve on similar studies already published to help decision-makers achieve their goals and reach a conclusion on the most preferred energy pathways in the near future.

1.3 Aims and objectives

The present research study aims to develop an MCDM model for technology selection for emissions reduction from shipping under uncertainty and vagueness. This MCDM framework will help decision-makers (ship-owners and operators) to choose the best alternative technologies on-board ships for regulatory compliance.

1.4 Research questions

The following research questions are selected to achieve the objectives of this study:

What are the alternative technologies available to decision-makers for meeting current and future environmental regulations?

➤ What are the factors influencing decision-makers on the choice of an alternative technology?

➢ How can decision-makers prioritize alternative technologies in a context of imprecision and incompleteness of data?

1.5 Research methodology

Both quantitative and qualitative approaches are involved in this research study. This study is expected to provide useful insights for the design and development of a fuzzy-MCDM framework integrating three techniques: fuzzy AHP, VIKOR and TOPSIS. Fuzzy AHP is employed to determine the weight of attributes (criteria and aspects), representing the relative importance of the evaluation criteria in the decisionmaking process, and the relative performance of alternatives with respect to each criterion. Subsequently, VIKOR and TOPSIS are used to prioritize the alternative technologies for selecting the best solutions for emissions reduction from shipping.

The qualitative method in this study is represented by a semi-structured interview. Questionnaire forms are used to facilitate pairwise comparisons with respect to different attributes and for the alternatives with regard to each evaluation criterion, allowing decision makers to use linguistic terms according to their preferences when evaluating the attributes and alternatives.

1.6 Expected results

A generic MCDM model is expected to be developed to help decision-makers select the best alternative technology for regulatory compliance towards emissions reduction from shipping. This model includes a system of evaluation criteria comprising five (5) factors (e.g., environmental, economic, and social). Thus, to demonstrate the effectiveness of the MCDM model, a case study will be presented considering five (5) feasible alternative technologies (e.g., LNG, Methanol, and Ammonia).

1.7 Organisation of study

This study is split into 5 chapters. Chapter 1 is a general introduction combining the background and overview of the research study, such as the problem statement and the research questions. Followed by Chapter 2, which describes the literature review on the MCDM problem. Chapter 3 discusses the methodology with the proposed MCDM model, integrating the three methods such as fuzzy AHP, VIKOR, and TOPSIS to prioritise alternative technologies for emissions reduction from maritime transportation. Afterwards, Chapter 4 demonstrate the effectiveness and efficiency of the developed MCDM framework in ranking alternatives under uncertainty and vagueness through a case study. Finally, Chapter 5 presents the summary and conclusion.

Chapter 2. Literature review

2.1 Review on MCDM Models

Multi-Criteria Decision Making (MCDM) methods in the maritime research domain became effective and popular solutions to help decision-makers reach a rational decision under uncertainty. Analytical Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIsekriterijumska optimizacija i KOmpromisno Resenje (VIKOR), ELECTRE (Elimination and Choice Translating Reality) and PROMETHEE (Preference Ranking Organization Method for Enrichment and Evaluations) are the standard frameworks of the most well established MCDM methodologies (Qu et al., 2017). These methods present a set of techniques applied to certain criteria to identify, compare and evaluate alternatives; in addition, they can be combined as a crisp framework applied to rank alternatives (Dammak et al., 2016). Nevertheless, the use of crisp values in the non-fuzzy environment in MCDM problems are not appropriate in many cases when considering the vagueness, imprecision and ambiguity arising from the qualitative judgment of decision-makers (Guo et al., 2017). This can be compensated through the use of fuzzy set theory (Kim and Sea, 2019). Accordingly, the mathematic fuzzy logic tool, known as fuzzy set theory, which Zadeh developed in 1965, was introduced in MCDM methods (Kahraman, 2008). Therefore, fuzzy-MCDM Models were developed and introduced in the literature.

AHP is the most widely used method in MCDM frameworks as an approach employed to quantify the decision criteria' weights; in binary comparison through square matrix obtained by using the scale graded 1-9 representing expert opinions (Doğan & Akbal, 2021; Efecan & Temiz, 2019). Although the AHP technique allowing for a hierarchical structure of criteria, which help users to better focus on specific criteria and sub-criteria when assigning weights (Ishizaka & Labib, 2009), it has some flaws in a fuzzy environment (Sun, 2010). Researchers integrate fuzzy theory with the AHP technique to overcome these issues to improve the uncertainty

and resolve ambiguity and imprecision in human judgment by using the fuzzy linguistic scale and correctly prioritising different criteria (Chang, 1996a; Liu et al., 2020). Nowadays, fuzzy AHP is one of the common methods employed to resolve MCDM problems and is generally used to determine the weights of criteria and the relative importance of alternatives in a structured manner based on a pairwise comparison when subjective judgments during the comparison may be inexact and uncertain, for instance (Celik et al., 2009; ÜNver et al., 2021).

Unlike AHP, TOPSIS and VIKOR techniques, based on the distance from the ideal solution, have become broadly employed for solving MCDM problems and have found use in maritime domains such as environmental management and energy management; for instance (Chai & Ngai, 2020; Sivaraja & Sakthivel, 2017; Demirel et al., 2020; Ross & Schinas, 2019; Nooramin et al., 2012). The TOPSIS method was developed based on the concept that the chosen alternative should have the furthest Euclidean distance from the negative ideal solution (NIS) and the shortest Euclidean distance from the positive ideal solution (PIS) for solving an MCDM problem, where the PIS maximize the benefit criteria and minimize cost criteria (Alpay & Iphar, 2018); nevertheless, it cannot consider the relative importance of these distances (Opricovic & Tzeng, 2004). Due to TOPSIS's features, such as simplicity, good computational efficiency, and ability to evaluate the relative performance for each alternative in a simple mathematical form (Wang, 2018), it has become a popular technique used by researchers around the world (Kaliszewski & Podkopaev, 2016). Nonetheless, TOPSIS fails to derive weights for the decision criteria, alleviate the requirement for pairwise comparisons, and maintain the consistency check of judgments (Shih et al., 2007). To overcome these shortcomings, TOPSIS is often integrated with the AHP technique and other MCDMs (Karahalios, 2017). Accordingly, an AHP-TOPSIS model, combining the AHP and TOPSIS techniques, is suggested. However, fuzzy AHP-TOPSIS model is the appropriate approach to deal with the problems associated with ambiguous, subjective, and imprecise human judgments under fuzzy based enhancement.

This model is flexible and practical for decision-makers and provides a more precise, efficient, and systematic decision support tool (Hoziari et al., 2019). Indeed, many examples of fuzzy AHP-TOPSIS based frameworks widely used to solve MCDM problems exist in the literature, for instance (Alarcin et al., 2014; Bucak et al., 2021; Ballini et al., 2021). On the other hand, the VIKOR technique was initially developed by Serafim Opricovic and presented as an efficient technique to deal with MCDM problems with conflicting and different criteria (Chang, 2014). VIKOR is a well-known technique employed to solve MCDM problems. It is frequently used and seen as producing solid results (Papathanasiou, 2021; Mardani et al., 2016; Tučník, 2016); mainly due to its simplified method with a small number of steps to compute the ranking of alternatives (Zimonjić et al., 2018); and its advantages over other MCDM methods in terms of accuracy in the final ranking (Fallahpour & Moghassem, 2012). Nevertheless, VIKOR extracts the compromise solution and the compromise ranking list with initial (given) weights (Kraujalienė, 2019). In the VIKOR method, the criteria usually describe the maximization of profit and minimization of expenses (Huang et al., 2021); and the alternatives are evaluated according to all established criteria (Liu et al., 2015). In addition, VIKOR prioritizes the alternatives and drives the compromise closest to the positive ideal solution (PIS) (Akram et al., 2021; Sayadi et al., 2009); accordingly, the results obtained by this method are such that they make trade-offs between desires and possibilities, but also between various interests of decisionmakers (Ahmed & Majid, 2019). To improve the reliability and validity of weighting in the VIKOR method, an AHP-VIKOR model integrating the AHP and VIKOR techniques is proposed to assign weights to criteria and rank the alternatives (Zhang et al., 2020; Panwar et al., 2020; Büyüközkan & Görener, 2015); researchers have broadly used this model due to its robustness and efficiency (Siew et al., 2021). Nevertheless, under a fuzzy environment where the uncertainties and subjectivities in judgments are encountered with linguistic variables and represented by fuzzy numbers, fuzzy AHP-VIKOR framework is suggested to solve MCDM problems (Radovanović et al., 2020; Awasthi et al., 2018; Demirel et al., 2020).

Although TOPSIS and VIKOR pursue the same goal of ranking the decision variants (Alternatives), from the best to the worst, the results obtained using both methods often differ (Shekhovtsov & Sałabun, 2020). Notwithstanding, several articles demonstrate that the TOPSIS and VIKOR methods can achieve almost identical results (Chauhan & Vaish, 2014).

Numerous studies have been proposed in the literature to solve MCDM issues, mainly related to regulatory framework for assessment and enhancement of measures to control air emissions and improve energy efficiency on board ships. Yang et al. (2012) employed an AHP-TOPSIS model for selecting NO_X and SO_X emissions control solutions. Schinas & Stefanakos (2014) proposed an AHP based approach for selecting technologies towards compliance with MARPOL Annex VI. Ölçer & Ballini (2015) used TOPSIS technique for evaluation of the trade-off solutions towards cleaner seaborne transportation. Ren & Lützen (2015a) developed a model integrating fuzzy AHP-VIKOR for technology selection for emissions reduction from shipping. Beşikçi et al. (2016) employed fuzzy-AHP to prioritize operational measures within the Ship Energy Efficiency Management Plan (SEEMP) scope. Wang & Nguyen (2016) used a combined method, fuzzy Quality Function Deployment (fuzzy QFD) and fuzzy TOPSIS, to prioritize the mechanism of low carbon shipping measures. Ren & Lützen (2017a) presented a combined Dempster-Shafer theory and trapezoidal fuzzy AHP for alternative sustainability energy source selection for shipping. Ren & Liang (2017) proposed an integrated method combining fuzzy logarithmic least squares and fuzzy TOPSIS to measure the sustainability of alternative marine fuels. Sahin & Yip (2017) employed an improved Gaussian fuzzy AHP model for shipping technology selection for dynamic capability. Animah et al. (2018) used an AHP-TOPSIS model to resolve the shipowners' challenges and compliance with MARPOL Annex VI regulation 14. Bui & Perera (2019a) employed an integrated method combining fuzzy AHP and fuzzy TOPSIS to address compliance challenges for reducing air pollution from shipping. Bui et al. (2020a) used fuzzy-based approach, which integrated fuzzy AHP and TOPSIS to select technological alternatives for regulatory compliance under vague

environment. Aspen & Sparrevik (2020) presented an approach based on TOPSIS for evaluating alternative energy carriers in shipping. Tran (2020) proposed fuzzy AHP method to optimize ship energy efficiency management in shipping. In fact, each of the above approaches has advantages and disadvantages. It should be noted that the aforementioned research studies were carried out either with an AHP-TOPSIS model or with an AHP-VIKOR model. Nevertheless, no research study is suggested using both models at the same time. Thus, an integrated model combining fuzzy AHP-TOPSIS-VIKOR is proposed for this research study.

2.2 Criteria for evaluating the sustainability of alternative technologies

Sustainability has recently been one of the main focuses of developments in Industry and society (Karimpour et al., 2019). Experts, policymakers, and activists are working together to achieve the set goal. To meet IMO's 2050 target, various feasible alternatives for reducing emissions associated with seaborne transportation are proposed in the literature (Perčić et al., 2021; Xing et al., 2021). For instance, LSFOs; LNG; Scrubbers; Methanol; and Ammonia. While many decision-makers are looking for a cost-effective and compliant alternative technology (Andersson et al., 2020), prioritization of alternatives vis-à-vis certain criteria evaluation should also be involved. However, when it comes to evaluating alternative regulatory compliance options, decision-makers (ship-owners and operators) may consider many factors and sub-factors. These factors are primarily based on aspects of sustainable development, generally represented as three pillars: economic, social and environmental, aiming at simultaneously achieving economic prosperity, environmental health and social responsibility (Andersson et al., 2016). In addition, technical and political factors also have been integrated into the sustainability assessment for selecting alternative technologies (Ren & Lützen, 2017b). These two factors influence the pillars of sustainability. While certain sub-factors (e.g., ethics, logistics, and security) can be considered as criteria in the decision-making process for prioritization of alternative options (Bui& Perera, 2019b), other sub-factors (e.g., ship size, ship age, and primary trading area) should also be judiciously analyzed and considered by decision-makers.

These criteria are difficult to categorize into other categories and significantly influence the outcome of the decision making. Thus, decision-makers can consider a large number of sub-factors "criteria" under the aforementioned dimensional factors "aspects" when selecting the most suitable alternatives for emissions reduction from shipping with regard to an evaluation criterion system, as proposed in the following analytical framework.

2.2.1 Technical factor

Energy efficiency:

Energy efficiency means that every unit of energy used in a ship's engine translates into greater efficiency or greater service output (EEC, 2019). This can be performed by using the superior physical or chemical properties of alternative fuels, leading to improved engine efficiency and gas emissions (Bae & Kim, 2017).

> Technology reliability:

Technological reliability refers to the reliability of the propulsion systems onboard ships when using the proposed compliant fuel options. This is of the utmost importance, as failures of critical components of ships at sea pose a huge safety risk (Popp & Müller, 2021).

➤ Safety:

The safety represents the impacts of the proposed alternative fuel options on the crew and the environment in case of leakage or potential human exposure (Hansson et al., 2020); (e.g., Ammonia and Methanol). This is mainly related to bunkering operations, storage and the use of fuel options on-board ships (Hansson et al., 2019).

➤ Maturity:

The various alternative technologies are currently at different levels of maturity. Amongst these alternatives can be used as fuel in diesel engines with minor or more significant technical changes (ITF, 2018). Nevertheless, some technology alternatives are used commercially, such as LNG and Methanol, some have been tested on-board ships in different pilot projects, some fuels have only been tested in test benches or on a smaller scale or have not reached the stage beyond being discussed (Hansson et al., 2018).

2.2.2 Economic factor

> Profit Margin:

The profit margin refers to the percentage of the total revenue that remains with the ship after deducting all costs when using the proposed alternative technology on-board the ship. The costs are particularly related to the daily fuel consumption prices for the ship's operations (Wu et al., 2021).

Operational cost

The operating cost represents the expenses related to the day-to-day operation of the vessel, mainly related to the price of fuel, consumables, and maintenance (Bernacki, 2021).

> Capital cost

The capital cost represents upgrading or retrofitting existing vessels to operate alternative technologies such as scrubbers or LNG as a marine fuel, which required investment costs for an existing vessel (Zhu et al., 2020).

 \succ Life cycle cost

The life-cycle cost mentions the costs for manning, building, operating and maintaining over the lifespan of a ship (Favi et al., 2017; Dinu & Ilie, 2015).

2.2.3 Environmental factor

Environmental factor refers to the influence of using the proposed alternative technologies on-board ship to reduce its overall environmental impact (e.g., GHG; NO_{X;} SO_{X;} and BC emissions) (Smith et al., 2019).

2.2.4 Other-factors

 \succ Ship age:

The vessel's age refers to the number of years of service and the vessel's condition, whether retrofitting the proposed alternative technologies is viable and competitive for the vessel during the remaining years of its operation or not. Finding capital to finance proven efficient alternative fuels for shipping can be challenging for some ship-owners, even for technologies that payback for themselves in a few years (Nugroho, 2021).

> Ship size

Vessel size refers to the possibility of adopting the alternative technologies offered on-board a vessel due to the space required. When introducing a new fuel, existing vessels may need to be upgraded or retrofitted. However, issues can arise with small vessels regarding engine space and adaptability (ABS, 2021).

Primary trading region

The primary trading region represents the main trade zone where the ship is designed to operate first. The availability of the proposed compliant fuel options in and beyond the primary commercial region of the ship, such as bunkering facilities and the supply chain, and the certainty of long-term fuel availability; can help decision-makers consider alternative technologies (Al-Enazi, 2021).

> Other sub-factors

The other sub-factors include sub-factors such as logistics, security, and ethics. Some compliant alternative fuels require further consideration for other concerns. For example, fertilizers such as Ammonia are indispensable for agriculture (Palys et al., 2021). In case of an increased demand for Ammonia as a marine fuel, its production would need to increase significantly (Hansson et al., 2020).

2.2.5 Social-political factor

Government support

Government support represents the government's initiative and contribution, such as facilitation measures to help decision-makers adopt alternative technologies on-board ships. For instance, a government strategic deployment plan can define a set of subsidiary actions to support the rapid deployment of alternative technologies for a clear policy and the establishment of effective incentives (Ezinna, et al., 2021).

> Externalities:

The externalities represent an environmental assessment of the damage and control costs associated with international shipping to people and the global environment when using the proposed alternative technologies on-board ships. Indeed, seaborne transportation has negative externalities (Vakili et al., 2020). The costs of environmental pollution from ships are mainly related to engine exhaust emissions, especially in port areas, which depend on alternative technologies on-board ships (Dragović et al., 2018; Spengler and Tovar, 2021).

It is noteworthy to highlight the vagueness and inconsistencies of the values of a number of criteria concerning certain alternatives according to the literature. For example, although Ammonia is a carbonless fuel, having no emissions of SO_X and CO₂ (Al-Aboosi, 2021; Cheliotis et al., 2021), there are uncertainties surrounding NO_X and NH₃ slip emissions when using Ammonia as compliant fuel as well as the lack of relevant information on the investment cost of the propulsion system and the operating cost of the ship (ABS, 2020b). While the use of scrubbers can reduce SO_X emissions by more than 95%, and by about 50% to 60% of PM emissions (Zisi et al., 2021), there's uncertainty about their future use as a compliant fuel option. This is mainly due to marine pollution resulting from the discharge of scrubber washwater into the sea (Stokstad, 2021; Comer, 2020; Osipova et al., 2021; Thor et al., 2021; Teuchies et al., 2020). Moreover, giving an example for the vague problem, the economic sub-factors such as the capital cost and operational cost, are difficult to quantify due to fluctuations in fuel oil prices in the market. Furthermore, several criteria tend to be described as intervals instead of crisp numbers; of for instance. the values environmental sub-factors (e.g., impact on NO_X, SO_X, and BC emissions reduction) relative to alternative technologies are shown as intervals rather than crisp values. addition, sub-criteria unquantifiable In some are primary trading ethics). (e.g., area. government support, and

Hence, carrying out the prioritisation of some alternatives based on the proposed evaluation criterion system detailed above involves a multi-criteria decision-making analysis conducted under vague environment. This allows for subjective decision making based on the preferences of the decision-makers. Thus, the proposed MCDM method (Fuzzy AHP, VIKOR and TOPSIS) is a suitable approach to deal with the aforementioned issues. It will be detailed in the following chapter 3.

Chapter 3. Methodology

3.1 The proposed MCDM framework for the evaluation criterion system

An MCDM model is proposed to select the best solution for emissions reduction from shipping under uncertainty and vagueness. The framework is divided into two parts. Part (1) represents an evaluation criterion system, and part (2) describes an integrated fuzzy MCDM methodology. The data in part (1), as illustrated by Figure 1, is designed and structured hierarchically according to the AHP technique. It is used to develop aspects, criteria, and alternatives, which are identified according to the literature review. Accordingly, five (5) feasible alternative technologies (LNG; LSFOs; Scrubbers; Methanol; and Ammonia) and nineteen (19) criteria integrated into five (5) factors were selected in this study. For instance, Economic factor (Capital cost; Operational cost; Life cycle cost; and Profit margin); Environment factor (Impact on the reduction of SO_X emissions; Impact on the reduction of NO_X emissions; Impact on the reduction of CO₂ emissions; Impact on the reduction of BC emissions; and Impact on the reduction of CH₄ emissions); Technical factor (Maturity; Energy efficiency; Technology reliability; and Safety); Other-factors (Ship age; Ship size; Primary trading area; and Other sub-factors); and Social-political factor (Government support and externalities). Externalities can be identified as a cost criterion related to environmental issues linked to maritime transportation. They will be proportional to some of the environmental impacts, such as BC, SO_X and NO_X emissions.

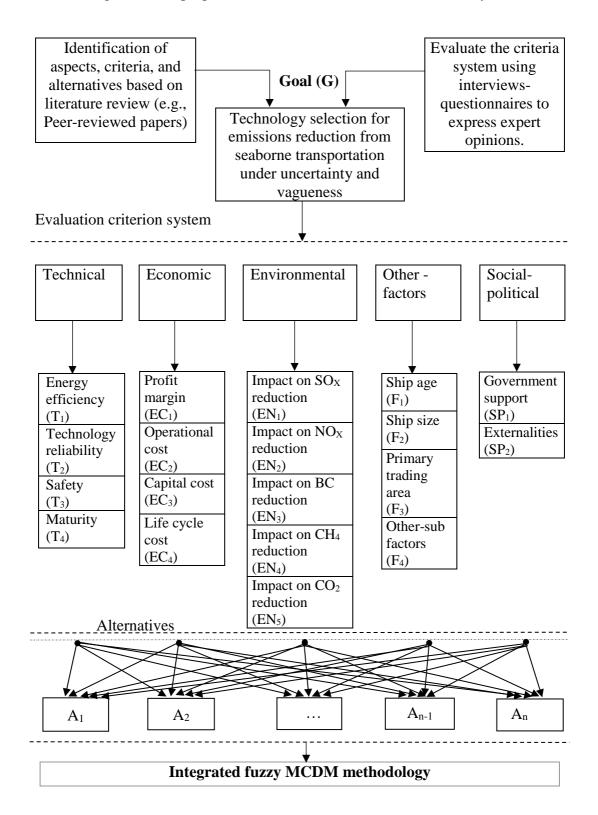


Figure 1. The proposed MCDM for the evaluation criterion system

3.2 The propose integrated fuzzy MCDM methodology

The intergraded fuzzy MCDM approach proposed in part (2) of the MCDM framework is employed to prioritize technological alternatives towards the set goal. Some of the data of the alternatives with regard to some of the criteria are not crisp values or cannot be represented quantitatively. To overcome these shortcomings, fuzzy AHP was used to determine not only the weight of each criterion, which represents its relative importance of the evaluation criteria in the decision-making, but also the relative performance of alternatives for emissions reduction with respect to each criterion. In fuzzy AHP, such a term is represented by a fuzzy set that consists of two components, a set of elements x and an associated membership function u(x)(Zimmermann, 2011). The fuzzy AHP technique is widely employed to determine the weights of criteria and the relative importance of alternatives in a structured way based on a pairwise comparison when subjective judgments may be inaccurate and uncertain (Celik & Akyuz, 2018; Ecer, 2020). While using the fuzzy-AHP method, experts' linguistic preferences (e.g., 'equal importance', 'moderately importance', and 'more importance') are mapped with fuzzy numbers, for example trapezoidal fuzzy number and (TraFN) Triangular fuzzy number (TFN), to decide the preferences and importance of one criterion over another. Subsequently, TOPSIS and VIKOR techniques are applied to rank the alternative technologies based on their overall performance. The proposed fuzzy integrated MCDM approach consists of four stages, as shown in Figure 2. It will be discussed in detail in this chapter.

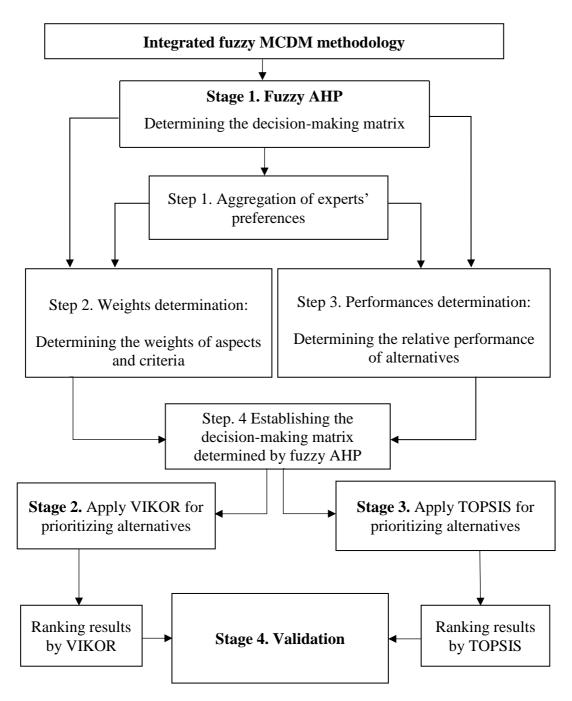


Figure 2. The proposed integrated fuzzy MCDM methodology

The four the stages of the proposed integrated fuzzy MCDM approach are presented in the following steps;

3.2.1 Fuzzy AHP for determining the decision-making matrix

According to Liu et al., (2020), the fuzzy AHP method includes the following steps;

Given any real number k and two fuzzy triangular numbers $\tilde{A}_1 = (l_1, m_1, u_1)$ and $\tilde{A}_2 = (l_2, m_2, u_2)$, the basic fuzzy arithmetic operations are summarised (Lima et al., 2014); as shown in Eq. (1).

$$\tilde{A}_{1} \bigoplus \tilde{A}_{2} = (l_{1} + l_{2}, m_{1} + m_{2}, u_{1} + u_{2})$$

$$\tilde{A}_{1} \bigoplus \tilde{A}_{2} = (l_{1} - l_{2}, m_{1} - m_{2}, u_{1} - u_{2})$$

$$\tilde{A}_{1} \bigotimes \tilde{A}_{2} = (l_{1}/l_{2}, m_{1}/m_{2}, u_{1}/u_{2})$$

$$\tilde{A}_{1} \bigotimes \tilde{A}_{2} = (l_{1}.l_{2}, m_{1}.m_{2}, u_{1}.u_{2})$$

$$k \bigotimes \tilde{A}_{2} = (k.l_{2}, k.m_{2}, k.u_{2})$$
Inverse $(\tilde{A}_{1}) = (l_{1}, m_{1}, u_{1})^{-1} \approx (1/u_{1}, 1/m_{1}, 1/l_{1})$
(1)

3.2.1.1 Aggregation of experts' preferences

One challenge of using subjective values is that the opinions of different decision-makers or experts could differ. Their preferences need to be aggregated into an overall preference relation that can be used as a foundation for pairwise comparison to generate a concluding result for ranking alternatives (Beliakov et al., 2015). Geometric mean (Zimmer et al., 2017) and arithmetic mean (Ahmet Kilic, 2019) are two different mean methods used to deduct the average among experts' judgements. The arithmetic mean is chosen because it is easy, involving only arithmetic addition and division, which is described as follows:

Let $(DM_1, DM_2... DM_q)$ be the q experts and $(C_1, C_2... C_n)$ be the n performance criteria and Let $\tilde{C}_{ij}^{(t)} = (l_{ij}^{(t)}, m_{ij}^{(t)}, u_{ij}^{(t)})$ be a TFN representing the relative importance C_i over C_j evaluated by DM_t . The average aggregated relative importance $\tilde{C}_{ij} = (l_{ij}, m_{ij}, u_{ij})$ for C_i over C_j can be calculated using Eq. (2).

$$\tilde{\mathcal{C}}_{ij} = \frac{1}{q} \sum_{t=1}^{q} \tilde{\mathcal{C}}_{ij}^{(t)}$$
Or,
$$\tilde{\mathcal{C}}_{ij} = \frac{1}{q} \bigotimes (\tilde{\mathcal{C}}_{ij}^{-1} \oplus \tilde{\mathcal{C}}_{ij2}^{-2} \oplus \dots \oplus \tilde{\mathcal{C}}_{ij}^{-q})$$
(2)

Where

$$\begin{split} l_{ij} &= \frac{1}{q} \sum_{t=1}^{q} l_{ij}{}^{(t)}, m_{ij} = \frac{1}{q} \sum_{t=1}^{q} m_{ij}{}^{(t)}, u_{ij} = \frac{1}{q} \sum_{t=1}^{q} u_{ij}{}^{(t)} \\ Where \ t &= 1, 2 \dots ... q; \ i, j = 1, 2 \dots ... n \end{split}$$

3.2.1.2 Weights importance determination

Researchers apply two dominant defuzzification methods, namely the centroid method (Ross, 2004) and the extent analysis method (Chang, 1996b), which are used to calculate weights/priorities and translate TFNs into crisp values in the fuzzy pairwise comparison matrix. In this study, the extent analysis method (EAM) is chosen for the simplicity of its arithmetic operations but having the following few steps.

3.2.1.3 Determination of the value of the fuzzy synthetic extent with respect to each attribute (criterion/ factor)

Let $F = [\tilde{C}_{ij}]_{n \times n}$ be a fuzzy pairwise comparison matrix, calculating the value of the fuzzy synthetic extent with respect to each criterion/factor can be represented by the fuzzy weight (\tilde{W}_i) of element *i*, which can be determined according to Eq. (3).

$$\widetilde{W}_{i} = \sum_{j=1}^{m} \widetilde{C}_{ij} \otimes \left[\sum_{i=1}^{n} \sum_{j=1}^{m} \widetilde{C}_{ij}\right]^{-1}$$

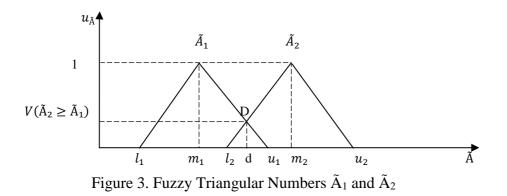
$$Where$$

$$\sum_{j=1}^{m} \widetilde{C}_{ij} = \left(\sum_{j=1}^{m} \widetilde{C}_{ijl}, \sum_{j=1}^{m} \widetilde{C}_{ijm}, \sum_{j=1}^{m} \widetilde{C}_{iju}\right), j = 1,2,3 \dots , m \text{ and } i = 1,2,\dots,n$$

$$(3)$$

$$\left[\sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{C}_{ij}\right]^{-1} = \left(\frac{1}{\sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{C}_{iju}}, \frac{1}{\sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{C}_{ijm}}, \frac{1}{\sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{C}_{ijl}}\right)$$

3.2.1.4 Calculating the degree of possibility


The crisp weight of *i* is determined as the minimum degree of possibility that its fuzzy weight (\tilde{W}_i) is greater than the fuzzy weight of the others. Considering two TFNs as presented by Eq. (4) and illustrated in figure 3.

$$\tilde{A}_1 = (l_1, m_1, u_1) \quad ; \; \tilde{A}_2 = (l_2, m_2, u_2)$$
(4)

The degree of possibility of $\tilde{A}_2 \ge \tilde{A}_1$ can be determined using Eq. (5).

$$V(\tilde{A}_{2} \geq \tilde{A}_{1}) = \sup_{y \geq x} [min(u_{\tilde{A}_{1}(x)}, u_{\tilde{A}_{2}(y)})] = hgt (\tilde{A}_{1} \cap \tilde{A}_{2}) = u_{\tilde{A}_{2}(d)}$$

$$\begin{cases} 1, \ if \ m_{2} \geq m_{1} \\ 0, \ l_{1} \geq u_{2} \\ \frac{(l_{1}-u_{2})}{(m_{2}-u_{2})-(m_{1}-l_{1})}, \ otherwise \end{cases}$$
(5)

3.2.1.5 Local weight determination

The crisp weight of i (w_i) is then calculated by Eq. (6).

$$w_{i} = V(\tilde{A}_{i} \ge \tilde{A}_{1}, \tilde{A}_{2}, ..., \tilde{A}_{n}) = V[(\tilde{A}_{i} \ge \tilde{A}_{1}) and (\tilde{A}_{i} \ge \tilde{A}_{2}) and....and (\tilde{A}_{i} \ge \tilde{A}_{n})] = min V(\tilde{A}_{i} \ge \tilde{A}_{k}), \ k = 1,2,3 ... n and \ k \neq i$$
(6)

The local weight (the weight vector of the n criteria/factors) is defined by Eq. (7).

$$w_i = (w_1, w_2, \dots, w_n)$$
, $i = 1, 2 \dots n$ (7)

3.2.1.6 Normalized weight determination

The normalised weight vector is calculated by Eq.s,(8; 9).

$$W_i = \frac{w_i}{\sum_{i=1}^n w_i}, \quad i = 1, 2 \dots n$$
 (8)

$$W_i = (w_1, w_2, \dots w_n)$$
 (9)

Fuzzy AHP is first used for determining the weights of each aspect and that of the criterion in each aspect; subsequently, the global weight of each criterion can be obtained by calculating the product of the weight of each criterion and the weight of the aspect to which this criterion belongs. Thus, the global weight of each criterion is determined by Eq. (10).

$$W_{iglobal} = (W_{iaspect} \times W_{icreteria}) , \quad i = 1, 2, \dots, n$$
(10)

3.2.1.7 Relative performances determination

The relative performance of alternatives with regard to each criterion are determined according to the previous steps of Fuzzy AHP.

3.2.1.8 Establish the decision-making matrix determined by fuzzy AHP

The decision decision-making matrix with *m* alternatives and *n* criteria is represented as $X = (x_{ij})_{m \times n}$ and be the data of the j-th criterion with respect to the i-th alternative and w_j be the weight of the j-th criterion, which are determined by the fuzzy AHP. In fact, all data reflecting the values of the alternative technologies with respect to each criterion can be considered as normalized data as they are determined based on their relative priorities by the fuzzy AHP (Ren & Lützen, 2015b). Thus, after establishing the decision-making matrix, the VIKOR and TOPSIS techniques are applied to prioritize the technological alternatives and provide a preliminary sequence to the decision-makers for the set goal (G).

3.2.2 Apply VIKOR technique for prioritizing alternatives

The VIKOR approach consists of the following steps (Więckowski' & Sałabun, 2020; Kim & Ahn, 2019);

Let it be assumed that a decision decision-making matrix with *m* alternatives and *n* criteria is represented as $X = (x_{ij})_{m \times n}$ and be the data of the j-th criterion with respect to the i-th alternative and w_j be the weight of the j-th criterion, which can be determined by fuzzy AHP.

3.2.2.1 Criteria normalisation

The data of the alternatives with regard to the cost criteria and the beneficial criteria can be normalized using Eqs. (11; 12), respectively; consequently, the cost criteria can be transformed into a set of beneficial criteria.

$$f_{ij} = \frac{x_{ij} - d_j}{D_j - d_j} \tag{11}$$

$$f_{ij} = \frac{D_j - x_{ij}}{D_j - d_j} \tag{12}$$

Where

$$D_j = max_i(x_{ij}), and d_j = min_i(x_{ij}); i = 1, 2..., m; j = 1, 2..., n$$

3.2.2.2 Determining the *L*_P metric

Defining the L_p -metric as represented by Eq. (13)

$$L_{p,i} = \left\{ \sum_{j=1}^{n} \left[\frac{w_j (f_j^* - f_{ij})}{(f_j^* - f_j^-)} \right]^p \right\}^{\frac{1}{p}}, l \le p \le \infty; \quad for \ i = 1, 2, \dots, m$$
(13)

Where w_j represents the weight of the j-th criterion, and the best f_j^* and worst f_j^- values of the j-th criterion. If the j-th function represents a benefit f_j^* and f_j^- are represented by Eq. (14)

$$f_j^* = max(x_{ij}), \quad f_j^- = min f_{ij}; \quad j = 1.2....m$$
 (14)

3.2.2.3 Calculate the values of S_i and R_i

Calculate the values S_i and R_i by Eqs. (15; 16), respectively.

$$S_{i} = \sum_{j=1}^{n} \frac{w_{j}(f_{j}^{*} - f_{ij})}{(f_{j}^{*} - f_{j}^{-})} = L_{p=1,i}; \text{ for } i = 1.2....m$$
(15)

$$R_{i} = max_{j} \frac{w_{j}(f_{j}^{*} - f_{ij})}{(f_{j}^{*} - f_{j}^{-})} = L_{p=\infty,j}; \text{ for } i = 1.2....m$$
(16)

The values of S_i and R_i are included to develop the ranking measurements in the VIKOR method. The solutions obtained by min S_i and min R_i have a maximum group utility ("majority" rule) and a minimum of the individual regret of the "opponent", respectively.

3.2.2.4 Calculate the values of Q_i

 Q_i values can be determined by using Eq. (17).

Factor (v) is introduced as the weight of the strategy of 'the majority of attributes', which could take a value of [0 1] and is generally taken as 0.5.

$$Q_i = v \frac{(S_i - S^*)}{(S^- - S^*)} + (1 - v) \frac{(R_i - R^*)}{(R^- - R^*)}, \ i = 1, 2, \dots, m$$
(17)

Where

 $S^* = \min S_i$; $S^- = \max S_i$; $R^* = \min R_i$; $R^- = \max R_i$ and v = 0.5

3.2.2.5 Ranking of the alternatives based on the values Q_i , S_i , and R_i

Rank alternatives, sorting by the minimum values of Q_i , S_i , and R_i , in descending order. Note that the greater the values of Q_i , S_i , or R_i , the less superior the corresponding alternative will be, which result is three ranking lists (RLs).

3.2.2.6 Suggest a compromise solution or set of compromise solutions according to the three ranking lists (RLs)

Suggest the compromise solution or set of compromise solutions by using the three ranking lists (RLs) according to the values of Q_i , S_i , and R_i . The alternative $A^{(1)}$ is ranked as the best solution by the measure Q_i (minimum) if the following two conditions can be satisfied:

C₁ - Acceptable advantage:

$$Q(A^{(2)}) - Q(A^{(1)}) \ge DQ$$
(18)

Where

 $A^{(2)}$ is the alternative with second the position in the ranking list by Q_i ; DQ = 1/(m-1); *m* is the number of alternatives. C₂ - Acceptable stability in decision making:

Alternative $A^{(1)}$ must also be ranked as the best by S_i and/or R_i . This compromise solution is stable within a decision-making process, which could be "voting by majority rule" (when v > 0.5 is needed), or "by consensus" v \approx 0.5, or "with veto" (v < 0.5).

If one of the conditions is not met, the set of compromise solutions is suggested as follows:

- 1- If C₁ is satisfied and C₂ is not satisfied, then both scenarios $A^{(1)}$ and $A^{(2)}$ are proposed as the best solutions.
- 2- If C₁ is not satisfied, then a set of scenarios $A^{(1)}$, $A^{(2)}$,..., $A^{(M)}$ is proposed as the best choices, where $A^{(M)}$ is defined by Eq. (19) for maximum *M* (the positions of these alternatives are 'in closeness').

$$Q(A^{(M)}) - Q(A^{(1)}) < DQ$$
(19)

3.2.3 Apply TOPSIS technique to prioritize the alternatives

According to Dymova et al., (2021), the TOPSIS method includes the followings steps;

We assume that we have the decision decision-making matrix with *m* alternatives and *n* criteria, is represented as $X = (x_{ij})_{m \times n}$ and let be the data of the j-th criterion with respect to the i-th alternative and w_j be the weight of the j-th criterion, which can be determined by fuzzy AHP.

3.2.3.1 Determination of the normalized decision matrix

The normalized values (r_{ij}) are calculated according to Eq. (20) for profit criteria and Eq. (21) for cost criteria as follows:

$$r_{ij} = \frac{x_{ij} - \min_i(x_{ij})}{\max_i(x_{ij}) - \min_i(x_{ij})}; \quad i = 1, 2, \dots, m; \quad j = 1, 2, \dots, n$$
(20)

$$r_{ij} = \frac{\max_i(x_{ij}) - x_{ij}}{\max_i(x_{ij}) - \min_i(x_{ij})} \; ; \; i = 1, 2 \dots, m \; ; \; \; j = 1, 2 \dots, n$$
(21)

3.2.3.2 Determination of the weighted normalized decision matrix

Calculate the weighted normalized decision matrix by computing the values of V_{ij} according to Eq. (22).

$$V_{ij} = w_j r_{ij}; i = 1, 2, ..., m; j = 1, 2, ..., n$$
 (22)

3.2.3.3 Determination of the Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS)

PIS is defined as maximum values for each criterion Eq. (23) and NIS as minimum values for each criterion Eq. (24).

$$V_j^* = \{V_1^*, V_2^*, \dots, V_n^*\} = \{max_i(V_{ij})\}; \ i = 1, 2, \dots, m; \ j = 1, 2, \dots, n$$
(23)

$$V_j^- = \{V_1^-, V_2^-, \dots, V_n^-\} = \{min_i(V_{ij})\}; \ i = 1, 2, \dots, m; \ j = 1, 2, \dots, n$$
(24)

3.2.3.4 Calculate the distance from PIS and NIS for each alternative

Calculate distance from PIS and NIS for each alternative using Eqs. (25; 26).

$$D_i^* = \sqrt{\sum_{J=1}^n (V_{ij} - V_j^*)^2} ; i = 1, 2 \dots, m$$
 (25)

$$D_i^- = \sqrt{\sum_{J=1}^n (V_{ij} - V_j^-)^2} ; i = 1, 2 ..., m$$
 (26)

3.2.3.5 Calculate score (P_i^*) of each alternative

Calculate the score (P_i^*) of each alternative using Eq. (27).

$$P_i^* = \frac{D_i^-}{D_i^- + D_i^*}$$
; ; $i = 1, 2, ..., m$ (27)

Where $0 \le Pi^* \le 1$

3.2.3.6 Rank the alternative according to the score (P_i^*) of each alternative

A set of alternatives can now be sorted by preference based on descending order of the value of P_i^* . The higher the value of the index, the better the performance of the alternative.

 ${P_i^* = 1 \text{ only if the alternative solution presents the best conditions;}$ $<math>P_i^* = 0$ if and only if the alternative solution presents the worst conditions.

3.2.4 Validation

At this stage, the results (ranking lists) of the two applied ranking methods (VIKOR and TOPSIS) can be analysed and compared to conclude on the best suitable solutions for emissions reduction from shipping. Afterwards, sensitivity analysis will be performed using the afore-mentioned ranking techniques to validate the robustness of the results.

Chapter 4. Case study

To illustrate the proposed MCDM framework, five feasible alternative technologies, such as LSFOs (A₁); Scrubbers (A₂); LNG (A₃); Methanol (A₄); and Ammonia (A₅), are preselected and analysed for regulatory compliance for emissions reduction from shipping. In addition, nineteen (19) criteria under five (5) factors are considered, as presented in Table 1. Decision criteria can be classified into two opposing categories: "benefit" and "cost" criteria. The benefit criteria can be named "reward" criteria and cost criteria, "regret" or "loss" criteria. In contrast to cost criteria, a benefit criterion means that the higher an alternative score in terms of it, the better the alternative is (Triantaphyllou & Baig, 2005); as shown in Table 1.

Factors (Aspects)	Sub-factors (Criteria)	Abbreviation	Category
	Energy efficiency	T ₁	Beneficial
	Technology reliability	T ₂	Beneficial
Technical (TC)	Safety	T ₃	Beneficial
	Maturity	T 4	Beneficial
	Margin profit	EC_1	Beneficial
Economic (EC)	Operational Cost	EC_2	Cost
	Capital Cost	EC ₃	Cost
	Life cycle Cost	EC_4	Cost
	Impact on SO _X emissions	EN_1	Beneficial
Environmental	reduction		
(EN)	Impact on NO _X emissions	EN_2	Beneficial
	reduction		
	Impact on BC emissions	EN ₃	Beneficial
	reduction		
	Impact on CH ₄ emissions	EN_4	Beneficial
	reduction		
	Impact on CO ₂ emissions	EN ₅	Beneficial
	reduction		
	Ship age	F ₁	Beneficial
Other-Factors (OP)	Ship size	F ₂	Beneficial
	Primary trade Areas	F ₃	Beneficial
	Sub-factor criteria	F ₄	Beneficial
Social-Political	Government support	SP ₁	Beneficial
(SP)	Externalities	SP ₂	Cost

Table 1. The criteria for evaluating the sustainability of low-emission technologies.

Semi-structured interviews were conducted to collect the data used as input for processing the proposed decision-making framework. This was achieved by undertaking interviews with various officials (decision-makers) of shipping companies in Sweden and Algeria. For instance, Mr. Jonas Moberg, Manager NB Projects Fleet at Gotland Tankers AB (Stockholm); Mr. Linus Edberg, Marine Manager at WISBY TANKERS AB (Gothenburg); and Mr. Benotmane Moustafa, Senior officer at Hyproc Shipping Company (Oran). Questionnaire forms representing pairwise comparisons for criteria/aspects and alternatives were prepared. These questionnaires allow interviewees to evaluate based on their preferences the importance weights of each selected attribute (aspects and criteria) and relative performance of each alternative technology with respect to each criterion, using fuzzy linguistic term sets. Accordingly, a "Likert scale" of fuzzy numbers ranging from 1 to 9 is used to translate linguistic expressions into triangular fuzzy numbers (Yazır, et al., 2021); as illustrated in Table 2.

Fuzzy number	Linguistic expressions	Membership function
- Ã1	Equally important	(1,1,1)
Ã ₂	Moderately important	(1,1,3)
Ã ₃	More important	(1,3,5)
Ã4	Strongly important	(3,5,7)
Ã5	Very strongly important	(5,7,9)
Ã ₆	Extremely important	(7,9,9)

Table 2. Linguistic scale and corresponding Triangular Fuzzy Numbers

4.1 Fuzzy AHP for determining the decision-making matrix

4.1.1 Aggregation of experts' preferences

Based on the pairwise comparison, decision-makers were asked to assign the weight of one aspect over another aspect. The results are presented in Table 3. The data were transformed into triangular fuzzy numbers, as shown in Table 4.

Aspect	Decision	TC	EC	EN	SP	OF
.1	makers					
	DM ₁	EI	MOI	MOI	MOI	MOI
TC	DM ₂	EI	EI	EI	MI	MOI
	DM ₃	EI	MI	EI	EI	EI
	DM_1		EI	MI	MOI	MOI
EC	DM_2		EI	EI	EI	EI
	DM ₃		EI	EI	EI	EI
	DM_1			EI	SI	MOI
EN	DM ₂			EI	MOI	MI
	DM ₃			EI	EI	EI
	DM_1				EI	MOI
SP	DM ₂				EI	EI
	DM ₃				EI	MI
	DM_1					EI
OF	DM ₂					EI
	DM ₃					EI

Table 3. Decision makers' preferences towards aspects.

Aspect	Decision	TC	EC	EN	SP	OF
	makers					
	DM_1	(1,1,1)	(1,3,5)	(1,3,5)	(1,3,5)	(1,3,5)
TC	DM ₂	(1,1,1)	(1,1,1)	(1,1,1)	(1,1,3)	(1,3,5)
	DM ₃	(1,1,1)	(1,1,3)	(1,1,1)	(1,1,1)	(1,1,1)
	DM_1		(1,1,1)	(1,1,3)	(1,3,5)	(1,3,5)
EC	DM ₂		(1,1,1)	(1,1,1)	(1,1,1)	(1,1,1)
	DM ₃		(1,1,1)	(1,1,1)	(1,1,1)	(1,1,1)
	DM_1			(1,1,1)	(3,5,7)	(1,3,5)
EN	DM ₂			(1,1,1)	(1,3,5)	(1,1,3)
	DM ₃			(1,1,1)	(1,1,1)	(1,1,1)
	DM_1				(1,1,1)	(1,3,5)
SP	DM ₂				(1,1,1)	(1,1,1)
	DM ₃				(1,1,1)	(1,1,3)
	DM_1					(1,1,1)
OF	DM_2					(1,1,1)
	DM ₃					(1,1,1)

Table 4. Translating decision makers' preferences towards aspects into fuzzy triangular numbers.

The figures are completed in Table 4, using the corresponding fuzzy reciprocal data (fuzzy numbers) expressing the fuzzy reciprocal linguistic preferences; determined according to Eq. (1). Afterwards, the aggregation of experts' preferences is performed using the Eq. (2). As a result, the aggregated fuzzy comparison matrix determining the priority weights of five aspects is defined, as shown in Table 5.

Asp	TC	EC	EN	SP	OP
TC	(1, 1, 1)	(1, 1.67, 3)	(1, 1.67, 2.33)	(1, 1.67, 3)	(1, 2.33, 3.67)
EC	(0.51, 0.78, 1)	(1, 1, 1)	(1, 1, 1.67)	(1, 1.67, 2.33)	(1, 1.67, 2.33)
EN	(0.73, 0.77, 1)	(0,77, 1, 1)	(1, 1, 1)	(1.66, 3, 4.33)	(1, 1.66, 3)
SP	(0.51, 0.77, 1)	(0.73, 077, 1)	(0.44, 0.51, 0.77)	(1, 1, 1)	(1, 1. 66, 3)
OF	(0.46, 0.55, 1)	(0.73, 0.77, 1)	(0.51, 0.77, 1)	(0.51, 0.77, 1)	(1, 1, 1)

Table 5. Represents aggregated fuzzy comparison matrix of aspects

4.1.2 Fuzzy synthetic extent calculation

Considering data from the aggregated fuzzy comparison matrix from Table 6 (above for aspects); the Eq. (3) can be used for calculation of values of fuzzy synthetic extent of five aspects with regard to the set goal as follows:

$$\begin{split} \widetilde{W}_{TC} &= (5, 8.33, 13) \otimes (21.60, 30.51, 43.44)^{-1} = (5, 8.33, 13) \otimes \\ \left(\frac{1}{43.44}, \frac{1}{30.51}, \frac{1}{21.60}\right) = (0.1150, 0.2731, 0.6017) \\ \widetilde{W}_{EC} &= (4.51, 6.11, 8.33) \otimes (21.60, 30.51, 43.44)^{-1} = (4.51, 6.11, 8.33) \otimes \\ \left(\frac{1}{43.44}, \frac{1}{30.51}, \frac{1}{21.60}\right) = (0.1038, 0.2002, 0.3857) \\ \widetilde{W}_{EN} &= (5.17, 7.44, 10.33) \otimes (21.60, 30.51, 43.44)^{-1} = (5.17, 7.44, 10.33) \otimes \left(\frac{1}{43.44}, \frac{1}{30.51}, \frac{1}{21.60}\right) = (0.1191, 0.2439, 0.4783) \\ \widetilde{W}_{SP} &= (3.69, 4.73, 6.77) \otimes (21.60, 30.51, 43.44)^{-1} = (3.69, 4.73, 6.77) \otimes \\ \left(\frac{1}{43.44}, \frac{1}{30.51}, \frac{1}{21.60}\right) = (0.0849, 0.1551, 0.3137) \\ \widetilde{W}_{OF} &= (3.22, 3.88, 5) \otimes (21.60, 30.51, 43.44)^{-1} = (3.22, 3.88, 5) \otimes \\ \left(\frac{1}{43.44}, \frac{1}{30.51}, \frac{1}{21.60}\right) = (0.0741, 0.1274, 0.2314) \end{split}$$

4.1.3 Comparison of fuzzy values

The possibility matrix can be determined. All elements, see Table 6, are calculated based on Eqs. (4; 5). Taking cell (2, 1) in this matrix as an example, the degree of possibility of $\widetilde{W}_{EC} \ge \widetilde{W}_{TC}$ can be calculated as follows: $V(\widetilde{W}_{EC} \ge \widetilde{W}_{TC}) = \frac{0.1150 - 0.3857}{(0.2002 - 0.3857) - (0.2731 - 0.1150)} = 0.79$

Likewise, the other data of Table 6 are determined according to the same procedure.

Aspects	TC	EC	EN	SP	OF	weight	Normalized weight
TC	/	1.00	1.00	1.00	1.00	1.00	0.264191
EC	0.79	/	0.86	1.00	1.00	0.79	0.208172
EN	0.93	1.00	/	1.00	1.00	0.93	0.244574
SP	0.63	0.82	0.69	/	1.00	0.63	0.165744
OF	0.44	0.64	0.49	0.84	/	0.44	0.117319

Table 6. Possibility matrix for aspects

4.1.4 Local weight determination of aspects

The crisp weight (w_i) can be determined from data in Table 7 by using Eq. (6).

 $w_{EC} = \min V(\widetilde{W}_{EC} \ge \widetilde{W}_{TC}, \widetilde{W}_{EN}, \widetilde{W}_{SP}, \widetilde{W}_{OF}) = \min(0.79, 0.86, 1, 1) = 0.79$

Similarly, $w_{TC} = 1.0000$, $w_{EN} = 0.93$, $w_{SP} = 0.63$, and $w_{OF} = 0.44$. Subsequently, the local weight (the weight vector) is defined by Eq. (7).

 $w_i = (1, 0.79, 0.93, 0.63, 0.44)$

4.1.5 Normalized weight determination of aspects

Finally, the normalized weights of the five aspects can be determined using Eqs. (8; 9). As presented in Table 7.

 $W_i = (0.2641, 0.2081, 0.2445, 0.1657, 0.1173)$

Aspects	Fuzzy weight			Local weight	Normalized weight
TC	0.11509	0.273126	0.601765	1.00	0.264190508
EC	0.103836	0.200292	0.385747	0.79	0.208171611
EN	0.119181	0.243992	0.478326	0.93	0.244574203
SP	0.084983	0.155134	0.31374	0.63	0.165744427
OF	0.074168	0.127457	0.231448	0.44	0.117319251

Table 7. Weights of aspects determined using fuzzy AHP

According to Table 7, the technical aspect emerges as an essential factor influencing the decision-making process for selecting the best technologies on-board ships for regulatory compliance, followed by environmental, economic, socio-political, and other-factors. These results are conceivable, logical, and plausible. The technologies used on board ships are crucial and the prerequisite for reducing emissions from seaborne transportation. The environmental aspect is the second factor considered by decision-makers given its importance in the decision-making process regarding the choice of technology on-board a ship, taking into account current and future environmental regulations (e.g., BC and SO_X emission controls). On the other hand, economic aspect should also be considered when selecting a compliant fuel option onboard a ship in line with profitability as a key element for the sustainability and growth of shipping companies. Although decision-makers do not prioritize socio-political factor over the above-mentioned factors, the support of the public and authorities in decision-making is essential to facilitate the adoption of low carbon alternative fuels on-board ships to meet IMO targets. This can be achieved through adequate incentives and the dissemination of up-to-date and necessary information to ship owners and operators on the latest developments in new alternative technologies. Finally, decisionmakers consider other-factors (e.g., ship size, ship age, and primary trading area) less than the aforementioned aspects; notwithstanding, this aspect also has a significant role in decision making for selecting the best alternative technologies for emissions reduction from shipping, particularly when considering the issues of adaptability of engines and installation on-board small ships, the cost of investing in alternative technologies on-board old ships, and the availability of compliant alternative fuels in and beyond the primary trading area.

Following same method as discussed before and using the input data from the pairwise comparison for criteria in each aspect with regard to preferences of decision makers. The calculations are not given here since they follow the same method as discussed above. The weights of the criteria in each aspect can now be calculated, and the global weights of the criteria with respect to the set goal can be determined using Eq. (10).

Taking as example criterion for effect of energy efficiency (T₁), the global weight of T₁ = the weight of T₁ in technical aspect \times the weight technical aspect, namely, $0.3397 \times 0.2641 = 0.0897$. Similarly, the global weights of the other criterion can be calculated and then normalized (See Table 8).

Criteria	Normalized weight	Global Weight	Normalized Global Weight
T ₁	0.339780834	0.08976687	0.0897
T ₂	0.284590343	0.07518607	0.0751
T ₃	0.295475781	0.0780619	0.07806
T ₄	0.080153042	0.02117567	0.0211
EC ₁	0.340465558	0.07087526	0.07087
EC ₂	0.325471837	0.067754	0.0677
EC ₃	0.161352342	0.03358898	0.0335
EC ₄	0.172710264	0.03595337	0.0359
EN ₁	0.221770887	0.05423944	0.0542
EN ₂	0.221770887	0.05423944	0.05423
EN ₃	0.221770887	0.05423944	0.05423
EN ₄	0,221770887	0.05423944	0.0542
EN ₅	0.112916453	0.02761645	0.02761
F ₁	0.25416907	0.02981892	0.0298
F ₂	0.273676253	0.03210749	0.0321
F ₃	0.301021463	0.03531561	0.0353
F ₄	0.171133214	0.02007722	0.0200
SP ₁	0.691782595	0.11465911	0.1146
SP ₂	0.308217405	0.05108532	0.0510

Table 8. Global weights of the criteria determined using fuzzy AHP

The determination of the relative performances of alternative technologies for reducing shipping's emissions with respect to each criterion is performed using fuzzy AHP. Accordingly, the processing of decision makers' data preferences follows the

same procedure described above with aspects. Thus, the decision-making matrix determined using fuzzy AHP for the criteria and relative performance of alternative technologies with regard to each criterion is presented in Table 9.

Criteria	Normalized weight	A ₁	A ₂	A ₃	A ₄	A ₅
T ₁	0.0897	0.2367	0.2007	0.2182	0.2061	0.1381
T ₂	0.0751	0.2750	0.1960	0.2178	0.1985	0.1124
T ₃	0.07806	0.2898	0.2369	0.1907	0.1632	0.1192
T ₄	0.0211	0.2775	0.2108	0.1895	0.1895	0.1324
EC ₁	0.07087	0.2762	0.2047	0.1983	0.1886	0.1318
EC ₂	0.0677	0.2639	0.2110	0.2061	0.1851	0.1337
EC ₃	0.0335	0.2943	0.2788	0.0571	0.2105	0.1590
EC_4	0.0359	0.2632	0.2337	0.1943	0.1778	0.1307
EN ₁	0.0542	0.3026	0.3248	0.1677	0.1005	0.1041
EN ₂	0.05423	0.3213	0.3390	0.1482	0.0945	0.0967
EC ₃	0.05423	0.3009	0.3589	0.1518	0.0929	0.0952
EC ₄	0.0542	0.3281	0.1723	0.3945	0.0524	0.0524
EC ₅	0.02761	0.2672	0.2519	0.2305	0.1218	0.1284
F ₁	0.0298	0.2824	0.2661	0.1504	0.1504	0.1504
F ₂	0.0321	0.3772	0.2170	0.1352	0.1352	0.1352
F ₃	0.0353	0.3209	0.3077	0.2254	0.0729	0.0729
F ₄	0.0200	0.3539	0.3347	0.1672	0.0731	0.0707
SP ₁	0.1146	0.2647	0.2139	0.1901	0.1901	0.1410
SP ₂	0.0510	0.3068	0.1879	0.1927	0.1927	0.1197

Table 9. Decision-making matrix determined using fuzzy AHP

The decision matrix data determined using fuzzy AHP will be used for the presequence of the prioritization of the selected alternatives for emissions reduction from shipping. All data representing the values of the five alternative technologies with respect to each criterion presented in Table 9, can be regarded as normalized data because they are determined according to their relative priorities by the fuzzy AHP. VIKOR and TOPSIS methods are employed to prioritize the alternative technologies.

4.2 Prioritization by VIKOR

Taking the data of decision-making matrix determined using fuzzy AHP, in Table 9. The best and the worst values of each criterion are determined using the Eq. (14). The first criterion-maturity (T₁) can be determined by: $min \{0.2367, 0.2007, 0.2182, 0.2061, 0.1381\} = 0.1381;$

 $\max\left\{0.2367, 0.2007, 0.2182, 0.2061, 0.1381\right\} = 0.2367.$

Accordingly, the best and the worst values of the other criteria can also be determined as illustrated in Table 10.

Criteria	f_i^*	f_j
T ₁	0,2367	0,1381
11	0,2307	0,1501
T	0,2750	0,1124
T ₂	0,2750	0,1124
	0.2000	0.1102
T ₃	0,2898	0,1192
	0.0555	0.1001
T_4	0,2775	0,1324
EC ₁	0,2762	0,1318
EC_2	0,2639	0,1337
EC ₃	0,2943	0,0571
EC ₄	0,2632	0,1307
204		
EN ₁	0,3248	0,1005
	0,0210	0,1000
ENL	0,3390	0,0945
EN_2	0,5570	0,0745
	0,3589	0,0929
EN ₃	0,5589	0,0929
	0.2045	0.0524
EN_4	0,3945	0,0524
EN ₅	0,2672	0,1218
F_1	0,2824	0,1504
F ₂	0,3772	0,1352
F ₃	0,3209	0,0729
F ₄	0,3539	0,0707
- 4	,	,
SP ₁	0,2647	0,1410
	5,2017	0,1110
CD	0,3068	0,1197
SP_2	0,5000	0,1177

Table 10. The best and worst values of each criterion

Subsequently, the values of S_i and R_i with respect to the five alternatives can be calculated using Eqs. (15;16). Taking the values of S_i and R_i with respect to A₁ as an example.

$S_{A_1} = \frac{0.0897(0.2367 - 0.2367)}{(0.2367 - 0.1381)} + \frac{0.07516(0.2750 - 0.2750)}{(0.2750 - 0.1124)} + \frac{0.0780(0.2898 - 0.2898)}{(0.2898 - 0.1192)} + \frac{0.0780(0.2898 - 0.2898)}{(0.2898 - 0.2898)} + 0.0780(0.2898 -$
$\frac{0.0211(0.2775-0.2775)}{(0.2775-0.1324)} + \frac{0.0708(0.2762-0.2762)}{0.2762-0.1318} + \frac{0.0677(0.2639-0.2639)}{0.2639-0.1337} +$
$\frac{0.0335(0.2943-0.2943)}{0.2943-0.0571} + \frac{0.0359(0,2632-0,2632)}{0.2632-0.1307} + \frac{0.05423(0,3248-0,3026)}{0.3248-0,1005} +$
$\frac{0.05423(0.3390-0.3213)}{0.3390-0.0945} + \frac{0.0542(0.3589-0.3009)}{0.3589-0.0929} + \frac{0.0542(0.3945-0.3281)}{0.3945-0.0524} + $
$\frac{0.0276(0.2672 - 0.2672)}{0.2672 - 0.1218} + \frac{0.0298(0.2824 - 0.2824)}{0.2824 - 0.1504} + \frac{0.0321(0.3772 - 0.3772)}{0.3772 - 0.1352} +$
$\frac{0.0353(0.3209-0.3209)}{0.3209-0.0729} + \frac{0.0200(0.3539-0.3539)}{0.3539-0.0707} + \frac{0.1146(0.2647-0.2647)}{0.2647-0.1410} +$
$\frac{0.0510(0.3068 - 0.3068)}{0.3068 - 0.1197} = 0,0316$

$R_{A_1} = max \left\{ \frac{0.0897(0.2367 - 0.2367)}{(0.2367 - 0.1381)}, \frac{0.07516(0.2750 - 0.2750)}{(0.2750 - 0.1124)} \right\},$
$\frac{0.0780(0.2898-0.2898)}{(0.2898-0.1192)}, \frac{0.0211(0.2775-0.2775)}{(0.2775-0.1324)}, \frac{0.0708(0.2762-0.2762)}{0.2762-0.1318},$
$\frac{0.0677(0.2639-0.2639)}{0.2639-0.1337}, \frac{0.0335(0.2943-0.2943)}{0.2943-0.0571}, \frac{0.0359(0.2632-0.2632)}{0.2632-0.1307},$
$\frac{0.05423(0.3248-0.3026)}{0.3248-0.1005}, \frac{0.05423(0.3390-0.3213)}{0.3390-0.0945}, \frac{0.0542(0.3589-0.3009)}{0.3589-0.0929},$
$\frac{0.0542(0.3945-0.3281)}{0.3945-0.0524}, \frac{0.0276(0.2672-0.2672)}{0.2672-0.1218}, \frac{0.0298(0.2824-0.2824)}{0.2824-0.1504},$
$\frac{0.0321(0.3772-0.3772)}{0.3772-0.1352}, \frac{0.0353(0.3209-0.3209)}{0.3209-0.0729}, \frac{0.0200(0.3539-0.3539)}{0.3539-0.0707},$
$\frac{0.1146(0.2647 - 0.2647)}{0.2647 - 0.1410}, \frac{0.0510(0.3068 - 0.3068)}{0.3068 - 0.1197} \Big\} = 0.0118$

Similarly, S_i and R_i with regard to A₂; A₃; A₄; and A₅, can also be determined, as presented in Table 11. Accordingly, we can deduct the values of S^* , S^- , R^* and R^- from Table 11 and we obtain as follows:

 $S^* = min\{0.0316, 0.3219, 0.5407, 0.7151, 0.9824\} = 0.0316$ $S^- = max\{0.0316, 0.3219, 0.5407, 0.7151, 0.9824\} = 0.9824$ $R^* = min\{0.0118, 0.0470, 0.0691, 0.0691, 0.1146\} = 0.0118$ $R^- = max\{0.0118, 0.0470, 0.0691, 0.0691, 0.1146\} = 0.1146$

Alternatives	S_i	R_i	
A ₁	0,0316	0,0118	
A ₂	0,3219	0,0470	
A ₃	0,5407	0,0691	
A4	0,7151	0,0691	
A ₅	0,9824	0,1146	
S*, R*	0,0316	0,0118	
<i>S</i> ⁻ , <i>R</i> ⁻	0,9824	0,1146	

Table 11. The values of S_i and R_i of alternatives

Next, the values of Q_i with respect to the five alternatives under different conditions (v = 0.1, 0.3, 0.5, 0.7, 0.9) can be determined using Eq. (17). Taking the values of S_i and R_i with respect A₁ as an example, and when v = 0.5 the value of Q_1 with respect to A₁ is:

$$Q_{A_1} = 0.5 \frac{(0.0316 - 0.0316)}{(0.9824 - 0.0316)} + (1 - 0.5) \frac{(0.0118 - 0.0118)}{0.1146 - 0.0118} = 0$$

Similarly, the other values of Q_i with regard to alternatives can also be calculated, as presented in Table 12.

Criteria or attribute	A1	A ₂	A ₃	A4	A5
Si	0,0316	0,3219	0,5407	0,7151	0,9824
R _i	0,0118	0,047	0,0691	0,0691	0,1146
Rank based S _i	1	2	3	4	5
Rank based R _i	1	2	3	4	5
$Q_i = (v = 0.1)$	0	0,3391	0,5555	0,5739	1
Rank based Qi	1	2	3	4	5
$Q_i = (v = 0.3)$	0	0,3316	0,5510	0,6061	1
Rank based Qi	1	2	3	4	5
$Q_i = (v = 0.5)$	0	0,3241	0,5466	0,6383	1
Rank based Q _i	1	2	3	4	5
$Q_i = (v = 0.7)$	0	0,3166	0,54214	0,6705	1
Rank based Qi	1	2	3	4	5
$Q_i = (v = 0.9)$	0	0,3091	0,5376	0,7027	1
Rank based Q _i	1	2	3	4	5

Table 12. The ranks of the scenarios according to values of S_i , R_i , and Q_i based on the data determined using fuzzy AHP

Accordingly, the alternatives can be ranked based on the values Q_i , S_i , and R_i . The ranking lists determined by Q_i , S_i and R_i (under different v values) are obviously the same, and the prior sequence in the descending order is A₁; A₂; A₃; A₄; and A₅. Finally, the best solution can be determined. The condition 1 (**C**₁) can be checked using Eq. (18); for example, Q_i (v = 0.5) we obtain results as follows:

0, 3241-0 > 0, 25; and condition 2 (C₂) is also satisfied as A₁ also be ranked as the best by *S* or/and *R*. Accordingly, condition 1 (C₁) and (C₂) are satisfied, as result, the compromise best solution is A₁. Therefore, LSFOs are ranked as the best solution for emissions reduction according to the data determined using fuzzy AHP.

For factor (v) of [0 1] same ranking results found for (Q_i); A₁ ranked first in the list by the VIKOR method and conditions (C₁) and (C₂) are fulfilled. Thus, the compromise best solution ranked by VIKOR is LSFOs.

4.3 Prioritization by TOPSIS

Taking the data of normalized decision-making matrix determined using fuzzy AHP as presented above in Table 9. We calculate the weighted normalized decision matrix by commuting the values (V_{ij}) according to Eq. (22). Taking example of cell (1/1):

 $V_{11} = 0,089766871 \times 0,236757125 = 0,0212$

We continue in the same way with other values (V_{ij}) . The results as shown in Table 13.

Criteria	A ₁	A ₂	A ₃	A4	A5
T_1	0,0212	0,0180	0,0195	0,0185	0,0124
T ₂	0,0206	0,0147	0,0163	0,0149	0,0084
T ₃	0,0226	0,0184	0,0148	0,0127	0,0093
T_4	0,0058	0,0044	0,0040	0,0040	0,0028
EC ₁	0,0195	0,0145	0,0140	0,0133	0,0093
EC ₂	0,0178	0,0142	0,0139	0,0125	0,0090
EC ₃	0,0098	0,0093	0,0019	0,0070	0,0053
EC ₄	0,0094	0,0084	0,0069	0,0063	0,0047
EN ₁	0,0164	0,0176	0,0090	0,0054	0,0056
EN ₂	0,0174	0,0183	0,0080	0,0051	0,0052
EN ₃	0,0163	0,0194	0,0082	0,0050	0,0051
EN ₄	0,0177	0,0093	0,0214	0,0028	0,0028
EN ₅	0,0073	0,0069	0,0063	0,0033	0,0035
F ₁	0,0084	0,0079	0,0044	0,0044	0,0044
F ₂	0,0121	0,0069	0,0043	0,0043	0,0043
F ₃	0,0113	0,0108	0,0079	0,0025	0,0025
F ₄	0,0071	0,0067	0,0033	0,0014	0,0014
SP ₁	0,0303	0,0245	0,0217	0,0217	0,0161
SP ₂	0,0156	0,0096	0,0098	0,0098	0,0061

Table 13. Weighted Normalized Decision Matrix

Afterwards, Ideal best (V_j^*) and Ideal worst (V_j^-) are determined using Eqs. (23; 24). The results as shown in the Table 14.

Criteria	V_j*	V_j
T ₁	0,0212	0,0124
T ₂	0,0206	0,0084
T ₃	0,0226	0,0093
T 4	0,0058	0,0028
EC ₁	0,0195	0,0093
EC ₂	0,0178	0,0090
EC ₃	0,0098	0,0019
EC ₄	0,0094	0,0047
EN ₁	0,0176	0,0054
EN ₂	0,0183	0,0051
EN ₃	0,0194	0,0050
EN ₄	0,0214	0,0028
EN ₅	0,0073	0,0033
F ₁	0,0084	0,0044
F ₂	0,0121	0,0043
F ₃	0,0113	0,0025
F ₄	0,0071	0,0014
SP ₁	0,0303	0,0161
SP ₂	0,0156	0,0061

Table 14. The values of Ideal best (V_j^*) and Ideal worst (V_j^-)

Calculate distance from PIS and NIS for each alternative

Calculate the distance from PIS (D_i^*) and NIS (D_i^-) for each alternative using the Eqs. (25; 26). The resulting will be used to calculate performance score (P_i^*) of each alternative using Eq. (24). Afterwards, a set of alternatives can now be sorted by preference based on descending order of the value of P_i^* determined by Eq. (24). As presented in table 15.

Table 15. The ranking of the alternatives based on descending order of the value of P_i^*

Alternatives	D_i^*	D_i^-	$D_i^*+D_i^-$	P_i^*	Rank
A1	0,0050	0,0424	0,0474	0,8940	1
A ₂	0,0186	0,0326	0,0513	0,6363	2
A ₃	0,0267	0,0257	0,0524	0,4902	3
A ₄	0,0375	0,0139	0,0515	0,2713	4
A ₅	0,0446	0,0034	0,0481	0,0714	5

As shown in the results presented in the Table.16, A_1 presents the highest performance score (P_i^*). Therefore, LSFOs is ranked the best alternative for emissions reduction from shipping by TOPSIS.

4.4 Validation

The results presented in Table 16 illustrate a similar ranking for the alternatives by VIKTOR and TOPSIS. In VIKOR, both conditions C_1 and C_2 are fulfilled. Thus, the best compromise solution for emissions reduction from seaborne transportation is low sulphur fuels.

Table 16. Comparison of VIKTOR vs TOPSIS ranking lists.

Alternatives	Rank-VIKOR (For v [0 1];	Rank-TOPSIS (P_i^*)
	$Qi, S_i \text{ and } R_i$)	
A1	1	1
A2	2	2
A3	3	3
A4	4	4
A5	5	5

Sensitivity analysis by varying the weights of the criteria is a relevant approach to investigate the robustness of the ranking results (Pham & 2019).

A sensitivity analysis was performed, using VIKOR and TOPSIS to prioritize the alternative measures for emissions reduction from shipping, to validate to the robustness of the results of this study by assigning different weights to the criteria by considering the following twenty cases.

Case (1): An equal weight of 0.052631579 was assigned to all criteria.

Cases (2–20): While the other criteria were given equal weight, a dominant weight was given to one criterion. For instance, an equal weight of 0.034 was assigned to the other 18 criteria in the case i (i=2, 3..., 20); on the other hand, a dominant weight of 0.388 was assigned to the (i-1)-th criterion. As an example of case 2, a weight of 0.034 was assigned to the other criteria, and a dominant weight of 0.388 was assigned to the first criterion (T_1), "Energy efficiency."

4.4.1 Sensitivity analysis using VIKOR

A sensitivity analysis was performed for the twenty cases by computing VIKOR under the proviso of "v = 0.5"

The values of Q_i , S_i , and R_i with regard to the five alternative technologies in the various cases are presented in Figure 4, Figure 5, and Figure 6. It can be observed that these values are sharply sensitive to the weights of the criteria. In addition, the compromise solutions under the terms of the aforementioned cases can also vary, as shown in Table 17. Consequently, the ranking of alternatives by VIKOR is very sensitive to the variation of the weights of the criteria.

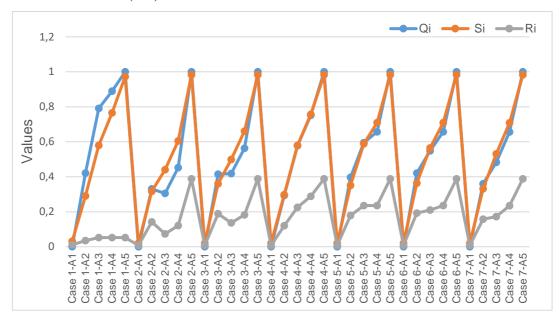
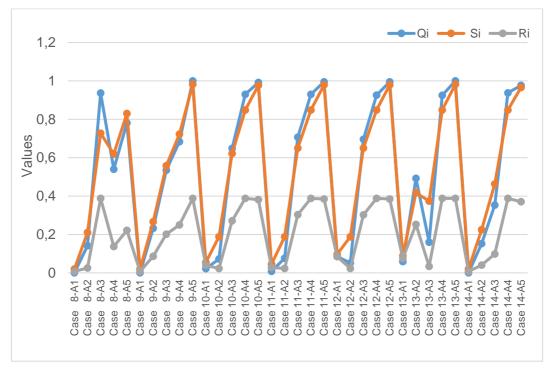



Figure 4. Sensitivity analysis by changing the weights of criteria performed by VIKOR for cases (1-7)

Figure 5. Sensitivity analysis by changing the weights of criteria performed by VIKOR for cases (8-14)

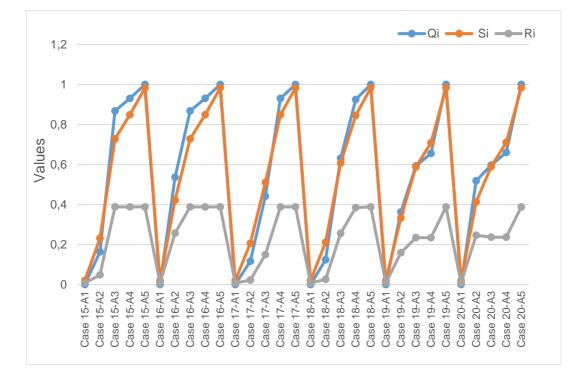


Figure 6. Sensitivity analysis by changing the weights of criteria performed by VIKOR for cases (15-20)

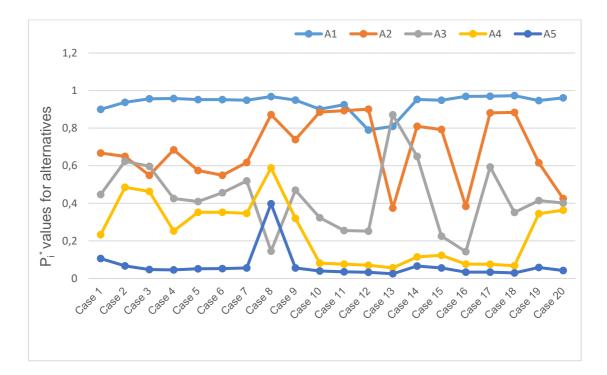

Cases	Compromise solutions
Case 1	A ₁
Case 2	A ₁ , A ₃
Case 3	A1
Case 4	A ₁
Case 5	A ₁
Case 6	A1
Case 7	A ₁
Case 8	A_1, A_2
Case 9	A ₁ , A ₂
Case 10	A ₁ , A ₂
Case 11	A ₁ , A ₂
Case 12	A ₁ , A ₂
Case 13	A ₁ , A ₃
Case 14	A ₁ , A ₂
Case 15	A_1, A_2
Case 16	A ₁
Case 17	A ₁ , A ₂
Case 18	A_1, A_2
Case 19	A ₁
Case 20	A ₁

Table 17. The compromise solutions determined under the conditions of different cases by VIKOR

4.4.1 Sensitivity analysis using TOPSIS

A sensitivity analysis was conducted by assigning different weights to the criteria by studying the twenty cases mentioned above for running TOPSIS. The values of Pi^* with respect to these five alternatives in the different cases are presented in Figure 7. This figure shows that the value of Pi^* are highly sensitive to the weights of the criteria, which can affect the ranking of the alternatives. The ranking results determined in the different cases is represented in Table 18.

Cases	A ₁	A ₂	A ₃	A4	A ₅
Case 1	1	2	3	4	5
Case 2	1	2	3	4	5
Case 3	1	3	2	4	5
Case 4	1	2	3	4	5
Case 5	1	2	3	4	5
Case 6	1	2	3	4	5
Case 7	1	2	3	4	5
Case 8	1	2	5	3	4
Case 9	1	2	3	4	5
Case 10	1	2	3	4	5
Case 11	1	2	3	4	5
Case 12	2	1	3	4	5
Case 13	2	3	1	4	5
Case 14	1	2	3	4	5
Case 15	1	2	3	4	5
Case 16	1	2	3	4	5
Case 17	1	2	3	4	5
Case 18	1	2	3	4	5
Case 19	1	2	3	4	5
Case 20	1	2	3	4	5

Table 18. The ranking of alternatives determined under the conditions of different cases by TOPSIS

It can be observed that the ranking of the alternatives is very sensitive to the weights of the criteria, as shown by the outcomes of the sensitivity analysis carried out when using VIKOR and TOPSIS to prioritize the alternative technologies for emissions reduction from shipping. This can reflect the relative importance of the criteria and the preferences of decision-makers in the decision making. Hence, determining the correct specific weights of the criteria in an appropriate manner that exactly matches the preferences of the decision-makers is a precondition for selecting the best alternative. For this reason, fuzzy AHP has been used to determine the weights of the criteria for sustainability evaluation of alternatives for regulatory compliance for emissions reduction from shipping. Alternative LSFOs (A₁) is included in the compromise solutions for all the cases mentioned above when using VIKOR. Similarly, A1 takes the lead in most cases when using TOPSIS, except for the cases 12 and 13, where scrubbers (A₂) and LNG (A_3) are ranked as the best measures for emissions reduction from shipping following respectively the dominant assigned weights for the criterion representing impact on the reduction of BC emissions (EN₃) and the criterion representing impact on the reduction of CH₄ emissions (EN₄). Indeed, the compromise solutions ranked by VIKOR in cases 12 and 13 are A₁, A₂ and A₁, A₃, respectively. These results are reasonable given the requirements to control BC and methane slip emissions from ships prior to the adoption of the alternatives A_2 and A_3 as compliant alternative fuels in accordance with new emissions regulations. Furthermore, the common top weights of criteria affecting the ranking of alternatives based on the sensitivity analysis performed when running VIKOR vs TOPSIS are EC₃, EN₃, and EN₄. Accordingly, the capital cost (EC₃) is also a determining criterion in the decision-making for the choice of an alternative technology on board a ship. In addition, it is apparent from Table 17 and Table 18 that the ranking of alternatives using VIKOR was affected by elven (11) criteria weights (e.g., T₁, EC₄, and EN₁) higher than TOPSIS, which was influenced only by four (4) criteria (e.g., T₂). Hence, the compromise solutions are highly sensitive to the weights of the criteria in VIKOR. Thus, VIKOR can lead to more accurate results than TOPSIS.

Chapter 5 Summary and conclusion

5.1 Summary

Due to the uncertainty surrounding fuel prices in the post-IMO-2020 and increasingly stringent environmental regulations, alternative technologies have become the top priority of numerous shipping companies looking for the best trade-off solutions, cost-effective energy-efficient options, for compliance. According to the results presented in the case study, energy efficiency is the most important criterion in decision-making regarding the choice of alternative fuels for regulatory compliance. In terms of environmental compliance, the reduction of SO_X, NO_X, BC and CH₄ emissions has been equally and importantly considered by decision-makers. However, the lack of sanctions and penalties lessens the concerns of decision-makers about CO₂ emissions. Although decision-makers less prioritize the socio-political factor over the other factors, government support is needed for the widespread and effective uptake of future low-carbon and zero-carbon fuels (e.g., hydrogen, fuel cells and batteries, and green ammonia...etc.) in the shipping industry to meet IMO 'emissions target.

LSFOs are ranked as the best compromise solution for emissions reduction from seaborne transportation as revealed by this case study, which is also consistent with the outcomes of some previous studies in the literature where LSFOs were considered as the best option in the short-term (Bui et al., 2020b; Bui & Perera, 2019c). These results reflect the issues of uncertainty and/or vagueness surrounding future low carbon alternative fuels within many shipping companies where financial factors strongly influence decision making, particularly in times of global crisis such as coronavirus pandemic. Although LSFOs are considered as the best compromise solution in the medium to long term for regulatory compliance, more attention should be paid by decision-makers (ship-owners and ship operators) to the latest research studies on low or zero-carbon fuels. Thus, decision makers can decide and invest in the best compliant fuel options based on their preferred interests while ensuring the sustainability of shipping companies and the global environment.

5.2 Conclusion

A holistic framework, a fuzzy MCDM approach, has been developed comprising nineteen criteria integrated into five aspects to assess and prioritize alternative technologies for regulatory frameworks. Five feasible alternative technologies, such as LSFOs; Scrubbers; LNG; Methanol; and Ammonia, were used to demonstrate the effectiveness of the proposed MCDM method. The output of this research study indicated that LSFOs is the best compromise solution for emissions reduction from seaborne transportation sequenced respectively by scrubbers, LNG, Methanol, and Ammonia.

In the proposed MCDM framework, fuzzy AHP was employed to determine the decision-making matrix, including the weights of the attributes (aspects/criteria) and the relative performance of alternatives with respect to each criterion, by involving different experts' opinions. The VIKOR and TOPSIS techniques were used to determine the concluding prioritization of alternatives. Afterwards, the ranking lists obtained using the VIKOR method and TOPSIS method were compared to conclude on the best alternative for regulatory compliance. As results, the ranking of the alternatives found to be similar for the two techniques in the case study. To validate the study results' robustness, sensitivity analysis was performed by varying the weights of criteria for running VIKOR and TOPSIS in 20 similar scenarios for each. This study revealed that the precision of the prioritization of alternatives is more sensitive to the weights of the criteria in VIKOR compared to TOPSIS.

All in all, the proposed framework has several advantages. For instance, to determine the weights of the criteria and relative performances of the alternatives with respect to each criterion, decision-makers are allowed to use linguistic terms to establish the comparison matrices. This framework does not require obtaining accurate data of the alternatives with respect to each criterion. It facilitates decision making under uncertainty and directly leads to the establishment of the normalized decision matrix in which the challenges encountered in the cost-benefit analysis have been overcome. In addition, the suggested MCDM methodology helps to achieve rational and accurate alternative ranking results. This can be reached directly by comparing the results of two well-known techniques (VIKOR and TOPSIS) for ranking alternatives

Unlike advantages, inevitable drawbacks exist in the proposed method. For instance, all the data in the decision-making matrix is procured using fuzzy AHP. Although this technique can resolve the acute uncertainty in MCDM problems to select the most appropriate alternative technologies towards regulatory compliance, the final results will depend on the opinions and preferences of decision-makers following their up-to-date expertise, experience, and knowledge on the topic as the evaluation of attributes/alternatives carried out using subjectivity. In addition, some information that can be performed from literature, surveys, and statistics might be missing; for instance, some of the existing data, which can be represented by crisp numbers, were not used in the proposed MCDM method. Another disadvantage is that this form of scrutiny does not take into account the interrelationships among attributes; however, there are generally diverse correlations and interconnections among these attributes.

The proposed framework is a generic decision-making model for selecting the most sustainable technology. It can be effectively applied for regulatory compliance problems in the shipping industry and help decision-makers make the most rational decision under uncertainty and vagueness. Thus, the suggested model can also be used for similar regulatory compliance problems in other modes of transportation such as rail and road.

62

References

- ABS. (2021, June). *MEPC 76 BRIEF*. https://ww2.eagle.org/content/dam/eagle/regulatorynews/2021/mepc-76-brief.pdf
- ABS. (2020a). SUSTAINABILITY WHITEPAPER AMMONIA AS MARINE FUEL. American Bureau of Shipping (ABS). <u>https://safety4sea.com/wp-</u> content/uploads/2021/01/Ammonia_as_Marine_Fuel_Whitepaper_20188.pdf
- ABS. (2020b). *SUSTAINABILITY WHITEPAPER AMMONIA AS MARINE FUEL*. American Bureau of Shipping (ABS). <u>https://safety4sea.com/wp-</u> content/uploads/2021/01/Ammonia_as_Marine_Fuel_Whitepaper_20188.pdf
- ABS. (2021). *SUSTAINABILITY WHITEPAPER METHANOL AS MARINE FUEL*. American Bureau of Shipping (ABS). <u>https://safety4sea.com/wpcontent/uploads/2021/02/Sustainability-Methanol-as-Marine-Fuel.pdf?_cf_chl_jschl_tk_=pmd_CchI7ZX2NfTORd9HamNpXXhZx_scrngAR8 UGYAgQAuw-1629455232-0-gqNtZGzNAiWjcnBszQj9</u>
- Æsøy, V., & Stenersen, D. (2013). Low Emission LNG Fuelled Ships for Environmental Friendly Operations in Arctic Areas. Volume 6: Polar and Arctic Sciences and Technology; Offshore Geotechnics; Petroleum Technology Symposium. Published. <u>https://doi.org/10.1115/omae2013-11644</u>
- Ahmed, F. D., & Majid, M. A. (2019). Towards agent-based petri net decision making modelling for cloud service composition: A literature survey. *Journal of Network and Computer Applications*, 130, 14–38. https://doi.org/10.1016/j.jnca.2018.12.001
- Ahmed, F., & Kilic, K. (2019). Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms. *Fuzzy Sets and Systems*, 362, 110–128. <u>https://doi.org/10.1016/j.fss.2018.08.009</u>
- Akram, M., Kahraman, C., & Zahid, K. (2021). Group decision-making based on complex spherical fuzzy VIKOR approach. *Knowledge-Based Systems*, 216, 106793. https://doi.org/10.1016/j.knosys.2021.106793
- Al-Aboosi, F. Y., El-Halwagi, M. M., Moore, M., & Nielsen, R. B. (2021). Renewable ammonia as an alternative fuel for the shipping industry. *Current Opinion in Chemical Engineering*, 31, 100670. <u>https://doi.org/10.1016/j.coche.2021.100670</u>
- Alarcin, F., Balin, A., & Demirel, H. (2014). Fuzzy AHP and Fuzzy TOPSIS integrated hybrid method for auxiliary systems of ship main engines. *Journal of marine engineering & technology*, *13*(1), 3-11. https://www.tandfonline.com/doi/pdf/10.1080/20464177.2014.11020288?needAcces s=true
- Al-Enazi, A., Okonkwo, E. C., Bicer, Y., & Al-Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. *Energy Reports*, 7, 1962–1985. <u>https://doi.org/10.1016/j.egyr.2021.03.036</u>
- Alpay, S., & Iphar, M. (2018). Equipment selection based on two different fuzzy multi criteria decision making methods: Fuzzy TOPSIS and fuzzy VIKOR. *Open Geosciences*, 10(1), 661–677. https://doi.org/10.1515/geo-2018-0053
- Andersson, K., Brynolf, S., Lindgren, F., & Wilewska-Bien, M. (2016). Shipping and the Environment: Improving Environmental Performance in Marine Transportation (1st ed. 2016 ed.) [E-book]. Springer. <u>https://doi.org/10.1007/978-3-662-49045-7 ISBN</u> <u>978-3-662-49045-7</u>

- Andersson, K., Brynolf, S., Hansson, J., & Grahn, M. (2020). Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels. *Sustainability*, 12(9), 3623. https://doi.org/10.3390/su12093623
- Anh Tran, T. (2016). Calculation and Assessing the EEDI Index in the Field of Ship Energy Efficiency for M/V Jules Garnier. *Journal of Marine Science: Research & Development*, 06(06). https://doi.org/10.4172/2155-9910.1000212
- Animah, I., Addy-Lamptey, A., Korsah, F., & Sackey, J. S. (2018). Compliance with MARPOL Annex VI regulation 14 by ships in the Gulf of Guinea sub-region: Issues, challenges and opportunities. *Transportation Research Part D: Transport and Environment*, 62, 441–455. https://doi.org/10.1016/j.trd.2018.03.020
- Aspen, D. M., & Sparrevik, M. (2020). Evaluating alternative energy carriers in ferry transportation using a stochastic multi-criteria decision analysis approach. *Transportation Research Part D: Transport and Environment*, 86, 102383. https://doi.org/10.1016/j.trd.2020.102383
- ÅStröm, S., Hildén, M., & Matthews, B. (2021). *Elements in the policy landscape for action on black carbon in the Arctic*. IVL Swedish Environmental Research Institute. ISBN 978-91-7883-279-8 https://www.ivl.se/download/18.1ee76657178f8586dfc16be/1621322838082/E0038.
- Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. *International Journal of Production Economics*, 195, 106–117. <u>https://doi.org/10.1016/j.ijpe.2017.10.013</u>

pdf

- Bae, C., & Kim, J. (2017). Alternative fuels for internal combustion engines. *Proceedings of the Combustion Institute*, 36(3), 3389–3413. https://doi.org/10.1016/j.proci.2016.09.009
- Balcombe, P., Staffell, I., Kerdan, I. G., Speirs, J. F., Brandon, N. P., & Hawkes, A. D. (2021). How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis. *Energy*, 227, 120462. https://doi.org/10.1016/j.energy.2021.120462
- Ballini, F., Vakili, S., Schönborn, A., Olcer, A., Canepa, M., & Sciutto, D. (2021). Optimal decision making for emissions reduction measures for Italian container terminals. *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment*, 147509022110276. https://doi.org/10.1177/14750902211027680
- Beliakov, G., James, S., Smith, L., & Wilkin, T. (2015). Biased experts and similarity based weights in preferences aggregation. *Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology*. Published. https://doi.org/10.2991/ifsa-eusflat-15.2015.53
- Ben Brahim, T., Wiese, F., & Münster, M. (2019). Pathways to climate-neutral shipping: A Danish case study. *Energy*, 188, 116009. https://doi.org/10.1016/j.energy.2019.116009
- Bernacki, D. (2021). Assessing the Link between Vessel Size and Maritime Supply Chain Sustainable Performance. *Energies*, 14(11), 2979. https://doi.org/10.3390/en14112979
- Beşikçi, E. B., Kececi, T., Arslan, O., & Turan, O. (2016). An application of fuzzy-AHP to ship operational energy efficiency measures. *Ocean Engineering*, 121, 392–402. <u>https://doi.org/10.1016/j.oceaneng.2016.05.031</u>

- Bilgili, L. (2021). Comparative assessment of alternative marine fuels in life cycle perspective. *Renewable and Sustainable Energy Reviews*, 144, 110985. https://doi.org/10.1016/j.rser.2021.110985
- Bucak, U., Arslan, T., Demirel, H., & Balın, A. (2021). Analysis of Strategies to Reduce Air Pollution from Vessels: A Case for the Strait of Istanbul. *Journal of ETA Maritime Science*, 9(1), 22–30. https://doi.org/10.4274/jems.2021.19327
- Bui, K. Q., Ölçer, A. I., Kitada, M., & Ballini, F. (2020a). Selecting technological alternatives for regulatory compliance towards emissions reduction from shipping: An integrated fuzzy multi-criteria decision-making approach under vague environment. *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 235*(1), 272–287. https://doi.org/10.1177/1475090220917815
- Bui, K. Q., Ölçer, A. I., Kitada, M., & Ballini, F. (2020b). Selecting technological alternatives for regulatory compliance towards emissions reduction from shipping: An integrated fuzzy multi-criteria decision-making approach under vague environment. *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment*, 235(1), 272–287. https://doi.org/10.1177/1475090220917815
- Bui, K. Q., & Perera, L. P. (2019a). The Compliance Challenges in Emissions Control Regulations to Reduce Air Pollution from Shipping. OCEANS 2019 - Marseille, 1–8. https://doi.org/10.1109/oceanse.2019.8867420
- Bui, K. Q., & Perera, L. P. (2019b). The Compliance Challenges in Emissions Control Regulations to Reduce Air Pollution from Shipping. OCEANS 2019 - Marseille. Published. <u>https://doi.org/10.1109/oceanse.2019.8867420</u>
- Bui, K. Q., & Perera, L. P. (2019c). The Compliance Challenges in Emissions Control Regulations to Reduce Air Pollution from Shipping. OCEANS 2019 - Marseille. Published. <u>https://doi.org/10.1109/oceanse.2019.8867420</u>
- Bui, K. Q., & Perera, L. P. (2020a). A Decision Support Framework for Cost-Effective and Energy-Efficient Shipping. *Volume 6A: Ocean Engineering*, 1. https://doi.org/10.1115/omae2020-18368
- Bui, K. Q., & Perera, L. P. (2020b). A Decision Support Framework for Cost-Effective and Energy-Efficient Shipping. *Volume* 6A: Ocean Engineering, 1. https://doi.org/10.1115/omae2020-18368
- Büyüközkan, G., & Görener, A. (2015). Evaluation of product development partners using an integrated AHP-VIKOR model. *Kybernetes*, 44(2), 220–237. <u>https://doi.org/10.1108/k-01-2014-0019</u>
- CANCA, A. Y., & Kökkülünk, G. (2020). Is Existing Maintenance System Adequate for Sulphur 2020 Amendments? *Journal of ETA Maritime Science*, 8(4), 302–308. https://doi.org/10.5505/jems.2020.89421
- Celik, E., & Akyuz, E. (2018). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: The case of ship loader. *Ocean Engineering*, 155, 371–381. https://doi.org/10.1016/j.oceaneng.2018.01.039
- Celik, M., Deha Er, I., & Ozok, A. F. (2009). Application of fuzzy extended AHP methodology on shipping registry selection: The case of Turkish maritime industry. *Expert Systems with Applications*, *36*(1), 190–198. <u>https://doi.org/10.1016/j.eswa.2007.09.004</u>
- Chai, J., & Ngai, E. W. (2020). Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. *Expert Systems with Applications*, 140, 112903. https://doi.org/10.1016/j.eswa.2019.112903

- Chang, D. Y. (1996a). Applications of the extent analysis method on fuzzy AHP. *European Journal of Operational Research*, 95(3), 649–655. <u>https://doi.org/10.1016/0377-2217(95)00300-2</u>
- Chang, D. Y. (1996b). Applications of the extent analysis method on fuzzy AHP. *European Journal of Operational Research*, 95(3), 649–655. <u>https://doi.org/10.1016/0377-2217(95)00300-2</u>
- Chang, T. H. (2014). Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. *Information Sciences*, 271, 196–212. https://doi.org/10.1016/j.ins.2014.02.118
- Chauhan, A., & Vaish, R. (2014). A Comparative Study on Decision Making Methods with Interval Data. *Journal of Computational Engineering*, 2014, 1–10. https://doi.org/10.1155/2014/793074
- Cheliotis, M., Boulougouris, E., Trivyza, N. L., Theotokatos, G., Livanos, G., Mantalos, G., Stubos, A., Stamatakis, E., & Venetsanos, A. (2021). Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry. *Energies*, 14(11), 3023. <u>https://doi.org/10.3390/en14113023</u>
- Chen, J., Fei, Y., & Wan, Z. (2019). The relationship between the development of global maritime fleets and GHG emission from shipping. *Journal of Environmental Management*, 242, 31–39. https://doi.org/10.1016/j.jenvman.2019.03.136
- Christodoulou, A., Dalaklis, D., Ölcer, A., & Ballini, F. (2021). Can Market-based Measures Stimulate Investments in Green Technologies for the Abatement of GHG Emissions from Shipping? A Review of Proposed Market-based Measures. *Transactions on Maritime Science*, 10(1). <u>https://doi.org/10.7225/toms.v10.n01.017</u>
- Christodoulou, A., Dalaklis, D., ÖLçer, A. I., & Ghaforian Masodzadeh, P. (2021). Inclusion of Shipping in the EU-ETS: Assessing the Direct Costs for the Maritime Sector Using the MRV Data. *Energies*, *14*(13), 3915. https://doi.org/10.3390/en14133915
- Comer, B. (2019). Including estimates of Black Carbon emissions in the Fourth IMO GHG Study. THE INTERNATIONAL COUNCIL OF ON CLEAN TRANSPORTATION (ICCT).

https://www.cdn.imo.org/localresources/en/OurWork/Environment/Documents/CSC-Bryan%20Comer.pdf

- Comer, B. (2020). Scrubbers on ships: Time to close the open loop(hole) | International Council on Clean Transportation. THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION (ICCT). <u>https://theicct.org/blog/staff/scrubbers-open-loophole-062020</u>
- Comer, B., Georgef, E., & Osipova, L. (2020). Air emissions and water pollution discharges from ships with scrubbers. International Council on Clean Transportation (ICCT). https://theicct.org/sites/default/files/publications/Air-water-pollution-scrubbersdec2020.pdf
- Comer, B., Osipova, L., Georgeff, E., & Mao, X. (2020, September). *THE INTERNATIONAL MARITIME ORGANIZATION'S PROPOSED ARCTIC HEAVY FUEL OIL BAN: LIKELY IMPACTS AND OPPORTUNITIES FOR IMPROVEMENT*. The International Council On Clean Transportation (ICCT). https://theicct.org/sites/default/files/publications/Arctic-HFO-ban-sept2020.pdf
- Dall'Armi, C., Micheli, D., & Taccani, R. (2021). Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. *International Journal of Hydrogen Energy*, 46(26), 13878–13897. https://doi.org/10.1016/j.ijhydene.2021.02.138

- Dammak, F., Baccour, L., & Alimi, A. M. (2016). Crisp multi-criteria decision making methods: State of the art. *International Journal of Computer Science and Information Security*, 14(8), 252.
- Demirel, H., Mollaoglu, M., Bucak, U., Arslan, T., & Balin, A. (2020). The Application of Fuzzy AHP - VIKOR Hybrid Method to Investigate the Strategy for Reducing Air Pollution from Diesel Powered Vessels. *International Journal of Maritime Engineering*, 162(A3). https://doi.org/10.3940/rina.ijme.2020.a3.621
- Demirel, H., Şener, B., Yildiz, B., & Balin, A. (2020). A real case study on the selection of suitable roll stabilizer type for motor yachts using hybrid fuzzy AHP and VIKOR methodology. Ocean Engineering, 217, 108125. https://doi.org/10.1016/j.oceaneng.2020.108125
- Deng, J., Wang, X., Wei, Z., Wang, L., Wang, C., & Chen, Z. (2021). A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. *Science of The Total Environment*, 766, 144319. https://doi.org/10.1016/j.scitotenv.2020.144319
- Dinu, O., & Ilie, A. M. (2015). Maritime vessel obsolescence, life cycle cost and design service life. *IOP Conference Series: Materials Science and Engineering*, 95, 012067. https://doi.org/10.1088/1757-899x/95/1/012067
- DNV. (2021, June). *IMO UPDATE: MARINE ENVIRONMENT PROTECTION COMMITTEE* – *MEPC* 76. <u>https://brandcentral.dnvgl.com/download/DownloadGateway.dll?h=BE1B38BB718</u> <u>539CC0AB58A5FF2EA7A83A9BEE20B94A6E6E131B40D0FB63F37DE720913C</u> E8CE90749FD00F21BB5C6C1E4
- Doğan, N. Z., & Akbal, H. (2021). Identification and Evaluation of the Ways of Meeting Patients' Expectations from a Hospital: An AHP-Weighted QFD Case Study In A Pediatric Hospital. *Istanbul Business Research*. Published. https://doi.org/10.26650/ibr.2020.49.0070
- Dragović, B., Tzannatos, E., Tselentis, V., Meštrović, R., & ŠKurić, M. (2018). Ship emissions and their externalities in cruise ports. *Transportation Research Part D: Transport and Environment*, 61, 289–300. https://doi.org/10.1016/j.trd.2015.11.007
- Dymova, L., Kaczmarek, K., Sevastjanov, P., Sułkowski, U., & Przybyszewski, K. (2021). An Approach to Generalization of the Intuitionistic Fuzzy Topsis Method in the Framework of Evidence Theory. *Journal of Artificial Intelligence and Soft Computing Research*, *11*(2), 157–175. <u>https://doi.org/10.2478/jaiscr-2021-0010</u>
- EC. (2020). Report from the Commission 2019 Annual Report on CO2 Emissions from Maritime Transport. EUROPEAN COMMISSION (EC). https://ec.europa.eu/clima/sites/clima/files/transport/shipping/docs/swd_2020_82_en .pdf
- Ecer, F. (2020). Multi-criteria decision making for green supplier selection using interval type-2 fuzzy AHP: a case study of a home appliance manufacturer. *Operational Research*. Published. https://doi.org/10.1007/s12351-020-00552-y
- Efecan, V., & Temiz, I. (2019). DETERMINATION OF MARINE SELECTION CRITERIA FOR FOREIGN YACHTERS BY AHP METHOD. CICET. https://www.researchgate.net/publication/338548090_DETERMINATION_OF_MA RINE_SELECTION_CRITERIA_FOR_FOREIGN_YACHTERS_BY_AHP_MET HOD/link/5e1c2112a6fdcc28376e4aef/download
- Einemo, U. (2020, July 27). *IMO 2020: New fuel blends, new challenges*. IBIA. https://ibia.net/2019/04/17/imo-2020-new-fuel-blends-new-challenges/

- Energy Efficiency Council (EEC). (2019). *The World's First Fuel. How energy efficiency reshaping global energy systems*. https://www.eec.org.au/uploads/Documents/The%20Worlds%20First%20Fuel%20-%20June%202019.pdf
- European Parliament (EP). (2020, September). Greenhouse gas emissions from shipping: waiting for concrete progress at IMO level. https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652754/IPOL_BRI(202 0)652754_EN.pdf
- Ezinna, P. C., Nwanmuoh, E., & Ozumba, B. U. I. (2021). Decarbonization and sustainable development goal 13: a reflection of the maritime sector. *Journal of International Maritime Safety, Environmental Affairs, and Shipping*, 5(2), 98–105. https://doi.org/10.1080/25725084.2021.1949136
- Faber, J., Kleijn, A., & Jaspers, D. (2020). Comparison of CO2 emissions of MARPOL Annex VI compliance options in 2020. CE Delft. https://cedelft.eu/wpcontent/uploads/sites/2/2021/03/CE_Delft_190191E_Comparison_of_CO2_emissio ns_of_MARPOL_Annex_VI_compliance_options_in_2020_FINAL.pdf
- Fallahpour, A. R., & Moghassem, A. R. (2012). Evaluating applicability of VIKOR method of multi-criteria decision making for parameters selection problem in rotor spinning. *Fibers and Polymers*, 13(6), 802–808. https://doi.org/10.1007/s12221-012-0802-8
- Favi, C., Raffaeli, R., Germani, M., Gregori, F., Manieri, S., & Vita, A. (2017). A Life Cycle Model to Assess Costs and Environmental Impacts of Different Maritime Vessel Typologies. Volume 4: 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems. Published. https://doi.org/10.1115/detc2017-68052
- Fridell, E., Salberg, H., & Salo, K. (2020). Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. *Journal of Marine Science and Application*, 20(1), 138– 143. https://doi.org/10.1007/s11804-020-00150-6
- GloMEET. (2018). SHIP EMISSIONS TOOLKIT, Guide No.1: Rapid assessment of ship emissions in the national context. Global Maritime Energy Efficiency Partnerships (GloMEET). https://glomeep.imo.org/wpcontent/uploads/2019/03/ship emissions toolkit-g1-online New.pdf
- Gössling, S., Meyer-Habighorst, C., & Humpe, A. (2021). A global review of marine air pollution policies, their scope and effectiveness. *Ocean & Coastal Management*, 212, 105824. https://doi.org/10.1016/j.ocecoaman.2021.105824
- Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. *Knowledge-Based Systems*, *121*, 23–31. https://doi.org/10.1016/j.knosys.2017.01.010
- Hansen, E. K., Rasmussen, H. B., & Lützen, M. (2020). Making shipping more carbonfriendly? Exploring ship energy efficiency management plans in legislation and practice. *Energy Research & Social Science*, 65, 101459. https://doi.org/10.1016/j.erss.2020.101459
- Hansson, J., Brynolf, S., Andersson, K., Månsson, S., Grahn, M., & Fridell, E. (2018). PROSPECTS FOR ALTERNATIVE MARINE FUELS. THE SWEDISH KNOWLEDGE CENTER FOR RENEWABLE TRANSPIRATION FUELS. <u>https://f3centre.se/app/uploads/2018-11_42403-1_Hansson-et-</u> al_FINAL_180530.pdf
- Hansson, J., Brynolf, S., Fridell, E., & Lehtveer, M. (2020). The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. *Sustainability*, 12(8), 3265. https://doi.org/10.3390/su12083265

Hansson, J., Fridell, E., & Brynolf, S. (2020). *On the potential of ammonia as fuel for shipping*. LIGHTHOUSE.

https://www.lighthouse.nu/sites/www.lighthouse.nu/files/rapport ammoniak.pdf

- Hansson, J., Månsson, S., Brynolf, S., & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. *Biomass* and Bioenergy, 126, 159–173. https://doi.org/10.1016/j.biombioe.2019.05.008
- Herdzik, J. (2021). Decarbonization of Marine Fuels—The Future of Shipping. *Energies*, 14(14), 4311. https://doi.org/10.3390/en14144311
- Hozairi, H., Buhari, B., Lumaksono, H., & Tukan, M. (2019). Selection of Marine Security Policy using Fuzzy-AHP TOPSIS Hybrid Approach. *Knowledge Engineering and Data Science*, 2(1), 19. <u>https://doi.org/10.17977/um018v2i12019p19-30</u>
- Huang, S. W., Liou, J. J. H., Chuang, H. H., & Tzeng, G. H. (2021). Using a Modified VIKOR Technique for Evaluating and Improving the National Healthcare System Quality. *Mathematics*, 9(12), 1349. <u>https://doi.org/10.3390/math9121349</u>
- Joung, T. H., Kang, S. G., Lee, J. K., & Ahn, J. (2020). The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. *Journal* of International Maritime Safety, Environmental Affairs, and Shipping, 4(1), 1–7. https://doi.org/10.1080/25725084.2019.1707938
- ICS. (2020). *Catalysing the fourth propulsion revolution*. The International Chamber of Shipping (ICS). https://www.ics-shipping.org/wp-content/uploads/2020/11/Catalysing-the-fourth-propulsion-revolution.pdf
- IMO. (2016). STUDY ON THE OPTIMIZATION OF ENERGY CONSUMPTION AS PART OF IMPLEMENTATION OF A SHIP ENERGY EFFICIENCY MANAGEMENT PLAN (SEEMP). https://greenvoyage2050.imo.org/wp-content/uploads/2021/01/STUDY-ON-THE-OPTIMIZATION-OF-ENERGY-CONSUMPTION-AS-PART-OF-IMPLEMENTATION-OF-A-SHIP-ENERGY-EFFICIENCY-MANAGEMENT-PLAN-SEEMP.pdf
- IMO. (2020). REDUCTION OF GHG EMISSIONS FROM SHIPS Fourth IMO GHG Study: comments on the final report. IMO, MEPC 75/7/16. http://shippingregs.org/Portals/2/PDF/MEPC% 2075-7-16% 20-% 20Fourth% 20IMO% 20GHG% 20Study% 20comments% 20on% 20the% 20final% 20 report% 20(SGMF).pdf?ver=2020-10-01-114709-973
- IMO. (2021). Fourth IMO GREENHOUSE GAS STUDY. https://www.cdn.imo.org/localresources/en/OurWork/Environment/Documents/Fourt h%20IMO%20GHG%20Study%202020%20Executive-Summary.pdf
- IMO. (2021, April). MARINE ENVIRONMENT PROTECTION COMMITTEE (MEPC 76/9/9). International Maritime Organization. https://imoarcticsummit.org/wpcontent/uploads/2021/06/MEPC-76-9-9-Comments-on-the-outcome-of-PPR-8-FOEI-WWF-Pacific-Enviro. ...pdf
- IPCC. (2019). *Global warming of 1.5°C*. Intergovernmental Panel on Climate Change (IPCC). <u>https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf</u>
- Irena, K., Ernst, W., & Alexandros, C. G. (2021). The cost-effectiveness of CO2 mitigation measures for the decarbonisation of shipping. The case study of a globally operating ship-management company. *Journal of Cleaner Production*, 316, 128094. https://doi.org/10.1016/j.jclepro.2021.128094
- Ishizaka, A., & Labib, A. (2009). Analytic Hierarchy Process and Expert Choice: Benefits and limitations. *OR Insight*, 22(4), 201–220. <u>https://doi.org/10.1057/ori.2009.10</u>

- ITF. (2018). *Decarbonising Maritime Transport*. International Transport Forum (ITF). https://www.itf-oecd.org/sites/default/files/docs/decarbonising-maritimetransport.pdf
- Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. *Expert Systems with Applications*, 54, 155–161. https://doi.org/10.1016/j.eswa.2016.01.042
- Kanberoğlu, B., & Kökkülünk, G. (2021). Assessment of CO2 emissions for a bulk carrier fleet. *Journal of Cleaner Production*, 283, 124590. https://doi.org/10.1016/j.jclepro.2020.124590
- Karahalios, H. (2017). The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. *Transportation Research Part D: Transport and Environment*, 52, 172–184. <u>https://doi.org/10.1016/j.trd.2017.03.001</u>
- Karam, A., Eltawil, A., & Hegner Reinau, K. (2020). Energy-Efficient and Integrated Allocation of Berths, Quay Cranes, and Internal Trucks in Container Terminals. *Sustainability*, 12(8), 3202. <u>https://doi.org/10.3390/su12083202</u>
- Karimpour, R., Ballini, F., & ÖLcer, A. I. (2019). Circular economy approach to facilitate the transition of the port cities into self-sustainable energy ports—a case study in Copenhagen-Malmö Port (CMP). WMU Journal of Maritime Affairs, 18(2), 225–247. https://doi.org/10.1007/s13437-019-00170-2
- Kim, A. R., & Seo, Y. J. (2019). The reduction of SOx emissions in the shipping industry: The case of Korean companies. *Marine Policy*, 100, 98–106. https://doi.org/10.1016/j.marpol.2018.11.024
- Kim, J. H., & Ahn, B. S. (2019). Extended VIKOR method using incomplete criteria weights. *Expert* Systems with Applications, 126, 124–132. https://doi.org/10.1016/j.eswa.2019.02.019
- Kong, Q., Jiang, C., & Ng, A. K. (2021). The economic impacts of restricting black carbon emissions on cargo shipping in the Polar Code Area. *Transportation Research Part* A: Policy and Practice, 147, 159–176. https://doi.org/10.1016/j.tra.2021.02.017
- KPMG. (2021, March). *The pathway to green shipping*. https://assets.kpmg/content/dam/kpmg/xx/pdf/2021/03/the-pathway-to-green-shipping.pdf
- Kraujalienė, L. (2019). COMPARATIVE ANALYSIS OF MULTICRITERIA DECISION-MAKING METHODS EVALUATING THE EFFICIENCY OF TECHNOLOGY TRANSFER. *Business, Management and Education, 17*(0), 72–93. https://doi.org/10.3846/bme.2019.11014
- Kahraman, C. (2008). Multi-Criteria Decision Making Methods and Fuzzy Sets. Springer Optimization and Its Applications, 1–18. <u>https://doi.org/10.1007/978-0-387-76813-7_1</u>
- Kochunni, S. K., & Chowdhury, K. (2021). Effect of precooling with transcritical CO2 cycle on two types of LNG boil-off gas reliquefaction systems. Journal of Natural Gas Science and Engineering, 89, 103876. https://doi.org/10.1016/j.jngse.2021.103876
- Lee, H., Park, D., Choo, S., & Pham, H. T. (2020). Estimation of the Non-Greenhouse Gas Emissions Inventory from Ships in the Port of Incheon. *Sustainability*, 12(19), 8231. <u>https://doi.org/10.3390/su12198231</u>
- Li, K., Wu, M., Gu, X., Yuen, K. F., & Xiao, Y. (2020). Determinants of ship operators' options for compliance with IMO 2020. *Transportation Research Part D: Transport* and Environment, 86, 102459. https://doi.org/10.1016/j.trd.2020.102459

- Lindstad, E., Eskeland, G. S., Rialland, A., & Valland, A. (2020a). Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. *Sustainability*, *12*(21), 8793. https://doi.org/10.3390/su12218793
- Lindstad, E., Eskeland, G. S., Rialland, A., & Valland, A. (2020b). Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel. *Sustainability*, 12(21), 8793. <u>https://doi.org/10.3390/su12218793</u>
- Lindstad, E., & Rialland, A. (2020). LNG and Cruise Ships, an Easy Way to Fulfil Regulations—Versus the Need for Reducing GHG Emissions. *Sustainability*, *12*(5), 2080. https://doi.org/10.3390/su12052080
- Liu, H. C., You, J. X., You, X. Y., & Shan, M. M. (2015). A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. *Applied Soft Computing*, 28, 579–588. <u>https://doi.org/10.1016/j.asoc.2014.11.036</u>
- Liu, M., Li, C., Koh, E. K., Ang, Z., & Lee Lam, J. S. (2019). Is methanol a future marine fuel for shipping? *Journal of Physics: Conference Series*, 1357, 012014. https://doi.org/10.1088/1742-6596/1357/1/012014
- Liu, X., Tian, G., Fathollahi-Fard, A. M., & Mojtahedi, M. (2020). Evaluation of ship's green degree using a novel hybrid approach combining group fuzzy entropy and cloud technique for the order of preference by similarity to the ideal solution theory. *Clean Technologies and Environmental Policy*, 22(2), 493–512. https://doi.org/10.1007/s10098-019-01798-7
- Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. *Expert Systems with Applications*, 161, 113738. <u>https://doi.org/10.1016/j.eswa.2020.113738</u>
- Lu, T., Lu, Z., Shi, L., Wang, T., Liu, M., & Wang, H. (2021). Improving the fuel/air mixing and combustion process in a low-speed two-stroke engine by the IFA strategy under EGR atmosphere. *Fuel*, 302, 121200. https://doi.org/10.1016/j.fuel.2021.121200
- Mardani, A., Zavadskas, E., Govindan, K., Amat Senin, A., & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. *Sustainability*, 8(1), 37. <u>https://doi.org/10.3390/su8010037</u>
- McCaffery, C., Zhu, H., Karavalakis, G., Durbin, T. D., Miller, J. W., & Johnson, K. C. (2021). Sources of air pollutants from a Tier 2 ocean-going container vessel: Main engine, auxiliary engine, and auxiliary boiler. *Atmospheric Environment*, 245, 118023. https://doi.org/10.1016/j.atmosenv.2020.118023
- McCarney, J. (2020). Evolution in the Engine Room: A Review of Technologies to Deliver Decarbonised, Sustainable Shipping. Johnson Matthey Technology Review. Published. https://doi.org/10.1595/205651320x15924055217177
- Mousavi, A., Sowlat, M. H., Hasheminassab, S., Pikelnaya, O., Polidori, A., Ban-Weiss, G., & Sioutas, C. (2018). Impact of particulate matter (PM) emissions from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county. *Atmospheric Environment*, 195, 159–169. https://doi.org/10.1016/j.atmosenv.2018.09.044
- Müller-Casseres, E., Edelenbosch, O. Y., Szklo, A., Schaeffer, R., & van Vuuren, D. P. (2021). Global futures of trade impacting the challenge to decarbonize the international shipping sector. *Energy*, 237, 121547. https://doi.org/10.1016/j.energy.2021.121547
- Nogué-Algueró, B. (2019). Growth in the docks: ports, metabolic flows and socioenvironmental impacts. *Sustainability Science*, 15(1), 11–30. https://doi.org/10.1007/s11625-019-00764-y

- Nooramin, A. S., Sayareh, J., Moghadam, M. K., & Alizmini, H. R. (2012). TOPSIS and AHP techniques for selecting the most efficient marine container yard gantry crane. *OPSEARCH*, 49(2), 116–132. https://doi.org/10.1007/s12597-012-0071-8
- Nugroho, S., Lazuardi, S. D., Faida, E. E. N., Mustakim, A., Yunianto, I. T., & Buana, I. G. N. S. (2021). Addressing the challenges of Global Sulphur Cap 2020: case study Indonesian tanker shipping. *IOP Conference Series: Earth and Environmental Science*, 649(1), 012005. https://doi.org/10.1088/1755-1315/649/1/012005
- ÖLçer, A., & Ballini, F. (2015). The development of a decision making framework for evaluating the trade-off solutions of cleaner seaborne transportation. *Transportation Research Part D: Transport and Environment*, 37, 150–170. https://doi.org/10.1016/j.trd.2015.04.023
- Ölçer A.I. (2018) Introduction to Maritime Energy Management. In: Ölçer A., Kitada M., Dalaklis D., Ballini F. (eds) Trends and Challenges in Maritime Energy Management. WMU Studies in Maritime Affairs, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-74576-3_1
- Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European Journal of Operational Research*, 156(2), 445–455. https://doi.org/10.1016/s0377-2217(03)00020-1
- Osipova, L. I. U. D. M. I. L. A., GEORGEFF, E. L. I. S. E., & COMER, B. R. Y. A. N. (2021). *Global scrubber washwater discharges under IMO's 2020 fuel sulfur limit.* THE INTERNATIONAL COUNCIL OF CLEAN TRANSPORTATION. https://theicct.org/sites/default/files/publications/scrubber-discharges-Apr2021.
- Palys, M. J., Wang, H., Zhang, Q., & Daoutidis, P. (2021). Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities. *Current Opinion in Chemical Engineering*, 31, 100667. https://doi.org/10.1016/j.coche.2020.100667
- Panagakos, G., Pessôa, T. D. S., Dessypris, N., Barfod, M. B., & Psaraftis, H. N. (2019). Monitoring the Carbon Footprint of Dry Bulk Shipping in the EU: An Early Assessment of the MRV Regulation. *Sustainability*, 11(18), 5133. https://doi.org/10.3390/su11185133
- Panwar, N., Kumar, S., & Attri, R. (2020). AHP-VIKOR-based methodology for determining maintenance criticality. *International Journal of Productivity and Quality Management*, 29(2), 167. https://doi.org/10.1504/ijpqm.2020.105964
- Papathanasiou, J. (2021). An example on the use and limitations of MCDA: The case of fuzzy VIKOR. *Examples and Counterexamples*, 1, 100001. <u>https://doi.org/10.1016/j.exco.2020.100001</u>
- Peng, Y., Zhao, X., Zuo, T., Wang, W., & Song, X. (2021). A systematic literature review on port LNG bunkering station. Transportation Research Part D: Transport and Environment, 91, 102704. https://doi.org/10.1016/j.trd.2021.102704
- Perčić, M., Ančić, I., & Vladimir, N. (2020). Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector. *Renewable and Sustainable Energy Reviews*, 131, 110028. <u>https://doi.org/10.1016/j.rser.2020.110028</u>
- Perčić, M., Vladimir, N., & Fan, A. (2021). Techno-economic assessment of alternative marine fuels for inland shipping in Croatia. *Renewable and Sustainable Energy Reviews*, 148, 111363. <u>https://doi.org/10.1016/j.rser.2021.111363</u>
- Perez, F., Al Ghafri, S. Z., Gallagher, L., Siahvashi, A., Ryu, Y., Kim, S., Kim, S. G., Johns, M. L., & May, E. F. (2021). Measurements of boil-off gas and stratification in

cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas. *Energy*, 222, 119853. https://doi.org/10.1016/j.energy.2021.119853

- Popp, L., & Müller, K. (2021). Technical reliability of shipboard technologies for the application of alternative fuels. *Energy, Sustainability and Society*, 11(1). https://doi.org/10.1186/s13705-021-00301-9
- Poulsen, R. T., Ponte, S., van Leeuwen, J., & Rehmatulla, N. (2021). The Potential and Limits of Environmental Disclosure Regulation: A Global Value Chain Perspective Applied to Tanker Shipping. *Global Environmental Politics*, 21(2), 99–120. https://doi.org/10.1162/glep_a_00586
- Psaraftis, H. N., & Kontovas, C. A. (2020). Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel? *Sustainability*, *13*(1), 237. https://doi.org/10.3390/su13010237
- Pham, T., & Yeo, G. T. (2019). Evaluation of Transshipment Container Terminals' Service Quality in Vietnam: From the Shipping Companies' Perspective. Sustainability, 11(5), 1503. https://doi.org/10.3390/su11051503
- Qu, Z., Wan, C., Yang, Z., & Lee, P. T. W. (2017). A Discourse of Multi-criteria Decision Making (MCDM) Approaches. *Multi-Criteria Decision Making in Maritime Studies* and Logistics, 7–29. https://doi.org/10.1007/978-3-319-62338-2_2
- Radovanović, M., Ranđelović, A., & Jokić, E. (2020). Application of hybrid model fuzzy AHP
 VIKOR in selection of the most efficient procedure for rectification of the optical sight of the long-range rifle. *Decision Making: Applications in Management and Engineering*, 3(2), 131–148. https://doi.org/10.31181/dmame2003131r
- Raza, Z. (2020). Effects of regulation-driven green innovations on short sea shipping's environmental and economic performance. *Transportation Research Part D: Transport and Environment*, 84, 102340. https://doi.org/10.1016/j.trd.2020.102340
- Ren, J., & Liang, H. (2017). Measuring the sustainability of marine fuels: A fuzzy group multicriteria decision making approach. *Transportation Research Part D: Transport and Environment*, 54, 12–29. https://doi.org/10.1016/j.trd.2017.05.004
- Ren, J., & Lützen, M. (2015a). Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. *Transportation Research Part D: Transport and Environment*, 40, 43–60. https://doi.org/10.1016/j.trd.2015.07.012
- Ren, J., & Lützen, M. (2015b). Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. *Transportation Research Part D: Transport and Environment*, 40, 43–60. https://doi.org/10.1016/j.trd.2015.07.012
- Ren, J., & Lützen, M. (2017a). Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information. *Renewable and Sustainable Energy Reviews*, 74, 1003–1019. https://doi.org/10.1016/j.rser.2017.03.057
- Ren, J., & Lützen, M. (2017b). Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information. *Renewable and Sustainable Energy Reviews*, 74, 1003–1019. https://doi.org/10.1016/j.rser.2017.03.057
- Rony, A. H., Kitada, M., Dalaklis, D., ÖLçer, A. I., & Ballini, F. (2019). Exploring the new policy framework of environmental performance management for shipping: a pilot study. WMU Journal of Maritime Affairs, 18(1), 1–24. https://doi.org/10.1007/s13437-019-00165-z

- Ross, H. H., & Schinas, O. (2019). Empirical evidence of the interplay of energy performance and the value of ships. *Ocean Engineering*, 190, 106403. https://doi.org/10.1016/j.oceaneng.2019.106403
- Ross, T. J. (2005). *Fuzzy logic with engineering applications*. John Wiley & Sons. ISBN 0-470-86074-X
- Sáez ÁLvarez, P. (2021). From maritime salvage to IMO 2020 strategy: Two actions to protect the environment. *Marine Pollution Bulletin*, *170*, 112590. https://doi.org/10.1016/j.marpolbul.2021.112590
- Sahin, B., & Yip, T. L. (2017). Shipping technology selection for dynamic capability based on improved Gaussian fuzzy AHP model. *Ocean Engineering*, 136, 233–242. https://doi.org/10.1016/j.oceaneng.2017.03.032
- Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. *Applied Mathematical Modelling*, 33(5), 2257–2262. <u>https://doi.org/10.1016/j.apm.2008.06.002</u>
- Schinas, O., & Stefanakos, C. (2014). Selecting technologies towards compliance with MARPOL Annex VI: The perspective of operators. *Transportation Research Part D: Transport and Environment*, 28, 28–40. <u>https://doi.org/10.1016/j.trd.2013.12.006</u>
- Serra, P., & Fancello, G. (2020). Towards the IMO's GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability, 12(8), 3220. https://doi.org/10.3390/su12083220
- Shekhovtsov, A., & Sałabun, W. (2020). A comparative case study of the VIKOR and TOPSIS rankings similarity. *Procedia Computer Science*, *176*, 3730–3740. https://doi.org/10.1016/j.procs.2020.09.014
- Shell. (2020). *Decarbonising Shipping: ALL HANDS ON DECK*. Shell International B.V. <u>https://www.shell.com/promos/energy-and-innovation/executive-</u> <u>summary/ jcr content.stream/1594141816703/b185c072b017f2a26d4ef94b18cacd2</u> <u>01b24d2be/decarbonising-shipping-exec-sum.pdf</u>
- Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. *Mathematical and Computer Modelling*, 45(7–8), 801–813. https://doi.org/10.1016/j.mcm.2006.03.023
- Siew, L. W., Hoe, L. W., Fai, L. K., Bakar, M. A., & Xian, S. J. (2021). Analysis on the e-Learning Method in Malaysia with AHP-VIKOR Model. International Journal of Information and Education Technology, 11(2), 52–58. https://doi.org/10.18178/ijiet.2021.11.2.1489
- Sivaraja, C., & Sakthivel, G. (2017). Compression ignition engine performance modelling using hybrid MCDM techniques for the selection of optimum fish oil biodiesel blend at different injection timings. *Energy*, *139*, 118–141. <u>https://doi.org/10.1016/j.energy.2017.07.134</u>
- Smith, T., Lewis, C., Faber, J., Wilson, C., & Deyes, K. (2019). *REDUCING THE MARITIME* SECTOR'S CONTRIBUTION TO CLIMATE CHANGE AND AIR POLLUTION. Department for Transport (dft). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachm ent_data/file/816015/maritime-emission-reduction-options.pdf
- Spengler, T., & Tovar, B. (2021). Potential of cold-ironing for the reduction of externalities
from in-port shipping emissions: The state-owned Spanish port system case. Journal
of
Environmental
Management, 279, 111807.
https://doi.org/10.1016/j.jenvman.2020.111807

- Sphera. (2019). *Life Cycle GHG Emission Study on the Use of LNG as Marine Fuel*. https://sustainableworldports.org/wp-content/uploads/thinkstep_2019_Life-cycle-GHG-emission-study-on-LNG-Executive-summary-report.pdf
- Stalmokaitė, I. ė. (2021). New Tides in Shipping Studying incumbent firms in maritime energy transitions (Doctoral dissertation, Södertörns högskola). ISBN 978–91-89109-77-3. http://sh.diva-portal.org/smash/get/diva2:1554371/FULLTEXT01.pdf
- Stec, M., Tatarczuk, A., Iluk, T., & Szul, M. (2021). Reducing the energy efficiency design index for ships through a post-combustion carbon capture process. *International Journal of Greenhouse Gas Control*, 108, 103333. https://doi.org/10.1016/j.ijggc.2021.103333
- Stokstad, E. (2021). Shipping rule cleans the air but dirties the water. *Science*, *372*(6543), 672–673. https://doi.org/10.1126/science.372.6543.672
- Sun, C. C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. *Expert Systems with Applications*, 37(12), 7745–7754. https://doi.org/10.1016/j.eswa.2010.04.066
- Svanberg, M., Ellis, J., Lundgren, J., & Landälv, I. (2018). Renewable methanol as a fuel for the shipping industry. *Renewable and Sustainable Energy Reviews*, 94, 1217–1228. <u>https://doi.org/10.1016/j.rser.2018.06.058</u>
- Takemura, T., & Suzuki, K. (2019). Weak global warming mitigation by reducing black carbon emissions. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-41181-6
- Tang, L., Ramacher, M. O. P., Moldanová, J., Matthias, V., Karl, M., Johansson, L., Jalkanen, J. P., Yaramenka, K., Aulinger, A., & Gustafsson, M. (2020). The impact of ship emissions on air quality and human health in the Gothenburg area Part 1: 2012 emissions. *Atmospheric Chemistry and Physics*, 20(12), 7509–7530. https://doi.org/10.5194/acp-20-7509-2020
- Teuchies, J., Cox, T. J. S., Van Itterbeeck, K., Meysman, F. J. R., & Blust, R. (2020). The impact of scrubber discharge on the water quality in estuaries and ports. *Environmental Sciences Europe*, 32(1). https://doi.org/10.1186/s12302-020-00380-z
- Thor, P., Granberg, M. E., Winnes, H., & Magnusson, K. (2021). Severe Toxic Effects on Pelagic Copepods from Maritime Exhaust Gas Scrubber Effluents. *Environmental Science & Technology*, 55(9), 5826–5835. <u>https://doi.org/10.1021/acs.est.0c07805</u>
- Toscano, D., & Murena, F. (2019). Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. *Atmospheric Environment: X*, *4*, 100050.
- Tran, T. A. (2020). Effect of ship loading on marine diesel engine fuel consumption for bulk carriers based on the fuzzy clustering method. *Ocean Engineering*, 207, 107383. <u>https://doi.org/10.1016/j.oceaneng.2020.107383</u>
- Triantaphyllou, E., & Baig, K. (2005). The Impact of Aggregating Benefit and Cost Criteria in Four MCDA Methods. *IEEE Transactions on Engineering Management*, 52(2), 213–226. https://doi.org/10.1109/tem.2005.845221
- Tučník, P. (2016, November 2). Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations. PLOS ONE. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165171
- ÜNver, B., Altın, S., & Gürgen, S. (2021). Risk ranking of maintenance activities in a twostroke marine diesel engine via fuzzy AHP method. *Applied Ocean Research*, *111*, 102648. https://doi.org/10.1016/j.apor.2021.102648
- Vakili, S., ÖLçer, A., & Ballini, F. (2020). The development of a policy framework to mitigate underwater noise pollution from commercial vessels: The role of ports. *Marine Policy*, *120*, 104132. https://doi.org/10.1016/j.marpol.2020.104132

- Wang, H., Dai, H., Dong, L., Xie, Y., Geng, Y., Yue, Q., Ma, F., Wang, J., & Du, T. (2018). Co-benefit of carbon mitigation on resource use in China. *Journal of Cleaner Production*, 174, 1096–1113. <u>https://doi.org/10.1016/j.jclepro.2017.11.070</u>
- Wang, H., & Nguyen, S. (2016). Prioritizing mechanism of low carbon shipping measures using a combination of FQFD and FTOPSIS. *Maritime Policy & Management*, 44(2), 187–207. https://doi.org/10.1080/03088839.2016.1245878
- Więckowski', J., & Sałabun, W. (2020). How the normalization of the decision matrix influences the results in the VIKOR method? *Procedia Computer Science*, *176*, 2222–2231. https://doi.org/10.1016/j.procs.2020.09.259
- WMO. (2021). *State of the Global Climate 2020* (No. 1264). World Meteorological Organization (WMO). ISBN 978-92-63-11264-4 https://library.wmo.int/doc_num.php?explnum_id=10618
- Wu, L., Wang, S., & Laporte, G. (2021). The Robust Bulk Ship Routing Problem with Batched Cargo Selection. *Transportation Research Part B: Methodological*, 143, 124–159. https://doi.org/10.1016/j.trb.2020.11.003
- Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. *Journal of Cleaner Production*, 297, 126651. https://doi.org/10.1016/j.jclepro.2021.126651
- Yacout, D. M., Tysklind, M., & Upadhyayula, V. K. (2021). Assessment of forest-based biofuels for Arctic marine shipping. *Resources, Conservation and Recycling*, 174, 105763. <u>https://doi.org/10.1016/j.resconrec.2021.105763</u>
- Yang, J., Tang, T., Jiang, Y., Karavalakis, G., Durbin, T. D., Wayne Miller, J., Cocker, D. R., & Johnson, K. C. (2021). Controlling emissions from an ocean-going container vessel with a wet scrubber system. *Fuel*, 304, 121323. https://doi.org/10.1016/j.fuel.2021.121323
- Yang, Z., Zhang, D., Caglayan, O., Jenkinson, I., Bonsall, S., Wang, J., Huang, M., & Yan, X. (2012). Selection of techniques for reducing shipping NOx and SOx emissions. *Transportation Research Part D: Transport and Environment*, 17(6), 478–486. https://doi.org/10.1016/j.trd.2012.05.010
- Yazır, D., Şahin, B., & Yip, T. L. (2021). Selection of new design gas carriers by using fuzzy EVAMIX method. *The Asian Journal of Shipping and Logistics*, 37(1), 91–104. https://doi.org/10.1016/j.ajsl.2020.10.001
- Zhang, H., Xie, B., & Wang, Z. (2018). Effective Radiative Forcing and Climate Response to Short-Lived Climate Pollutants Under Different Scenarios. *Earth's Future*, 6(6), 857– 866. https://doi.org/10.1029/2018ef000832
- Zhu, J., & Wang, J. (2021). The effects of fuel content regulation at ports on regional pollution and shipping industry. *Journal of Environmental Economics and Management*, 106, 102424. https://doi.org/10.1016/j.jeem.2021.102424
- Zhang, J., Yang, D., Li, Q., Lev, B., & Ma, Y. (2020). Research on Sustainable Supplier Selection Based on the Rough DEMATEL and FVIKOR Methods. *Sustainability*, 13(1), 88. https://doi.org/10.3390/su13010088
- Zhu, M., Li, K. X., Lin, K. C., Shi, W., & Yang, J. (2020). How can shipowners comply with the 2020 global sulphur limit economically? *Transportation Research Part D: Transport and Environment*, 79, 102234. https://doi.org/10.1016/j.trd.2020.102234
- Zimmer, K., Fröhling, M., Breun, P., & Schultmann, F. (2017). Assessing social risks of global supply chains: A quantitative analytical approach and its application to supplier selection in the German automotive industry. *Journal of Cleaner Production*, 149, 96– 109. <u>https://doi.org/10.1016/j.jclepro.2017.02.041</u>

- Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.
- Zimonjić, S., ĐEkić, M., & Kastratović, E. (2018). *APPLICATION OF VIKOR METHOD IN RANKING THE INVESTMENT PROJECTS*. Faculty for Business Economics and Entrepreneurship, Belgrade, Srbija. http://media3.novi.economicsandlaw.org/2017/07/Vol22/IJEAL-22-011.pdf
- Zincir, B., & Deniz, C. (2021). Methanol as a Fuel for Marine Diesel Engines. Alcohol as an Alternative Fuel for Internal Combustion Engines, 45–85. https://doi.org/10.1007/978-981-16-0931-2_4. ISBN 978-981-16-0931-2
- Zis, T. P., & Cullinane, K. (2020). The desulphurisation of shipping: Past, present and the future under a global cap. Transportation Research Part D: Transport and Environment, 82, 102316. https://doi.org/10.1016/j.trd.2020.102316
- Zisi, V., Psaraftis, H. N., & Zis, T. (2021). The impact of the 2020 global sulfur cap on maritime CO2 emissions. *Maritime Business Review*, *ahead-of*(ahead-of-print), 1. <u>https://doi.org/10.1108/mabr-12-2020-0069</u>

Appendices

Appendix A. Questionnaire form to facilitate the pairwise comparison of the aspects with regards to goal, using linguistic terms

How important is aspect *Technical* when it is compared to aspect *Economic*? How important is aspect *Technical* when it compared to aspect *Environmental*? How important is aspect *Technical* when it is compared to aspect *Social-Political*? How important is aspect *Technical* when it is compared to aspect *Other factors*? How important is aspect *Economic* when it is compared to aspect *Environmental*? How important is aspect *Economic* when it is compared to aspect *Social-Political*? How important is aspect *Economic* when it is compared to aspect *Social-Political*? How important is aspect *Economic* when it is compared to aspect *Social-Political*? How important is aspect *Economic* when it is compared to aspect *Other factors*? How important is aspect *Economic* when it is compared to aspect *Other factors*? How important is aspect *Economic* when it is compared to aspect *Social-Political*?

How important is aspect *Environmental* when it is compared to aspect *Other factors*?

How important is aspect *Social-Political* when it is compared to aspect *Other factors*?

Please select your choice by ticking (X)

Aspects		Ex	pert´s prefei	rence			Aspects				
	c	Comparison of aspects using linguistic terms									
	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important					
Technical							Economic				
Technical							Environmental				
Technical							Social-Political				
Technical							Other factors				
Economic							Environmental				
Economic							Social-Political				
Economic							Other factors				
Environmental							Social-Political				
Environmental							Other factors				
Social- Political							Other factors				

Appendix B. Questionnaire form to facilitate the pairwise comparison of each criterion with respect to another criterion, using linguistic terms

How important is criterion *Energy efficiency* when it is compared to criterion *Technology reliability*?

How important is criterion *Energy efficiency* when it is compared to criterion *Safety*?

How important is criterion *Energy efficiency* when it is compared to criterion *Maturity*?

How important is criterion *Technology reliability* when it is compared to criterion *Safety*?

How important is criterion *Technology reliability* when it is compared to criterion *Maturity*?

How important is criterion *Safety* when it is compared to criterion *Maturity*?

Technical Criteria		Ex	pert's prefe	rence			Technical Criteria			
	C	Comparison of criterion using linguistic terms								
	Equally important	Moderately important	More important	Strongly important	Very strongly	Extremely important				
Criterion					important		Criterion			
Energy efficiency							Technology reliability			
Energy efficiency							Safety			
Energy efficiency							Maturity			
Technology reliability							Safety			
Technology reliability							Maturity			
Safety							Maturity			

How important is criterion *Margin profit* when it is compared to criterion *Operational cost*?

How important is criterion *Margin profit* when it is compared to criterion *Capital cost*? How important is criterion *Margin profit* when it is compared to criterion *Life cycle cost*?

How important is criterion *Operational cost* when it is compared to criterion *Capital cost*?

How important is criterion *Operational cost* when it is compared to criterion *Life cycle cost*?

How important is criterion *Capital cost* when it is compared to criterion *Life cycle cost*?

Economic Criteria		Ex	pert´s prefei	rence			Economic Criteria			
	C	Comparison of criterion using linguistic terms								
	Equally important	Moderately important	More important	Strongly important	Very strongly	Extremely important				
Criterion	important	important	important	important	important	inpontant	Criterion			
Margin profit							Operational cost			
Margin profit							Capital cost			
Margin profit							Life cycle cost			
Operational cost							Capital cost			
Operational cost							Life cycle cost			
Capital cost							Life cycle cost			

How important is criterion *Impact on reduction of SOx emissions* when it is compared to criterion *Impact on the reduction of NOx emissions*?

How important is criterion *Impact on reduction of SOx emissions* when it is compared to criterion *Impact on reduction of BC emissions*?

How important is criterion *Impact on reduction of SOx emissions* when it is compared to criterion *Impact on the reduction of CH4 emissions*?

How important is criterion *Impact on reduction of SOx emissions* when it is compared to criterion *Impact on the reduction of the CO2 emissions*?

How important is criterion *Impact on the reduction of NOx emissions* when it is compared to criterion *Impact on the reduction of BC emissions*?

How important is criterion *Impact on the reduction of NOx emissions* when it is compared to criterion *Impact on the reduction of CH4 emissions*?

How important is criterion *Impact on the reduction of NOx emissions* when it is compared to criterion *Impact on the reduction of the CO2 emissions*?

How important is criterion Impact on the reduction of BC emissions when it is compared to criterion Impact on the reduction of CH4 emissions?

How important is criterion *Impact on the reduction of BC emissions* when it is compared to criterion *Impact on the reduction of the CO2 emissions*?

How important is criterion *Impact on the reduction of CH4 emissions* when it is compared to criterion *Impact on the reduction of the CO2 emissions*?

Environmental Criteria		Ex	pert's prefei	rence			Environmental Criteria	
	С	omparison o	f criterion us	sing linguist	ic terms			
Criterion	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Criterion	
Impact on the reduction of SOx emissions							Impact on the reduction of NOx emissions	
Impact on the reduction of SOx emissions							Impact on the reduction of BC emissions	
Impact on the reduction of SOx emissions							Impact on the reduction of CH4 emissions	
Impact on the reduction of SOx emissions							Impact on the reduction of the CO2 emissions	
Impact on the reduction of NOx emissions							Impact on the reduction BC emissions	
Impact on the reduction of NOx emissions							Impact on the reduction of CH4 emissions	
Impact on the reduction of NOx emissions							Impact on the reduction of the CO2 emissions	
Impact on the reduction of BC emissions							Impact on the reduction of CH4 emissions	
Impact on the reduction of BC emissions							Impact on the reduction of the CO2 emissions	
Impact on the reduction of CH4 emissions							Impact on the reduction of the CO2 emissions	

How important is criterion *Ship age* when it is compared to criterion *Ship size*? How important is criterion *Ship age* when it is compared to criterion *Primary trade area*?

How important is criterion *Ship age* when it is compared to criterion *Sub-factors*? How important is criterion *Ship size* when it is compared to criterion *Primary trade area*?

How important is criterion *Ship size* when it is compared to criterion *Sub-factors*? How important is criterion *Primary trade area* when it is compared to criterion *Sub-factors*?

Other factors Criteria		Expert´s preference								
	C									
Criterion	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Criterion			
Ship age					important		Ship size			
Ship age							Primary trade area			
Ship age							Sub-factors			
Ship size							Primary trade area			
Ship size			1		1		Sub-factors			
Primary trade area							Sub-factors			

Please select your choice by ticking (X)

How important is criterion Government support when it is compared to Externalities?

Social- Political Criterion	C	Social- Political Criteria							
Criteria	Equally important								
Government support									

Appendix C. Questionnaire form to facilitate the pairwise comparison of technological alternatives with respect to each criterion, using linguistic terms

The comparison term "important" is the degree of efficiency in the pairwise comparison of technological alternatives with regards to each criterion.

Regarding energy efficiency criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

How important is *Low sulphur fuels alternative* when it is compared to *LNG alternative*?

How important is *Low sulphur fuels alternative* when it is compared to *Methanol alternative*?

How important is *Low sulphur fuels alternative* when it is compared to *Ammonia alternative*?

How important is *HFO with scrubber alternative* when it is compared to *LNG alternative*?

How important is *HFO with scrubber alternative* when it is compared to *Methanol alternative*?

How important is *HFO with scrubber alternative* when it is compared to *Ammonia alternative*?

How important is *LNG alternative* when it is compared to *Methanol alternative*? How important is *LNG alternative* when it is compared to *Ammonia alternative*?

How important is *Methanol alternative* when it is compared to *Ammonia alternative*?

		E		ency criteric	n		-			
		Expert's preference								
	Compa									
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives			
Low sulphur fuels							HFO with scrubber			
Low sulphur fuels							LNG			
Low sulphur fuels							Methanol			
Low sulphur fuels							Ammonia			
HFO with scrubber							LNG			
HFO with scrubber							Methanol			
HFO with scrubber							Ammonia			
LNG							Methanol			
LNG							Ammonia			
Methanol							Ammonia			

Regarding *Technology reliability criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		Tec	hnology rel	iability crite	rion		
	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur							HFO with
fuels							scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Safety criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

			Safety o Expert's p	criterion preference			
Technological Alternatives	Compa						
	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Maturity Criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

			Expert's p	criterion preference			
	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Margin profit criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Operational cost criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		0	Dperational Expert's p	cost criterio	n		1			
	Compa	Comparison of technological alternatives using linguistic terms								
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives			
Low sulphur fuels							HFO with scrubber			
Low sulphur fuels							LNG			
Low sulphur fuels							Methanol			
Low sulphur fuels							Ammonia			
HFO with scrubber							LNG			
HFO with scrubber							Methanol			
HFO with scrubber							Ammonia			
LNG							Methanol			
LNG							Ammonia			
Methanol							Ammonia			

Regarding *Capital cost criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

			Capital co	st criterion				
	Expert's preference							
	Compa	-						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives	
Low sulphur fuels							HFO with scrubber	
Low sulphur fuels							LNG	
Low sulphur fuels							Methanol	
Low sulphur fuels							Ammonia	
HFO with scrubber							LNG	
HFO with scrubber							Methanol	
HFO with scrubber							Ammonia	
LNG							Methanol	
LNG							Ammonia	
Methanol							Ammonia	

Regarding *Life cycle cost criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

	Expert's preference							
	Compa							
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives	
Low sulphur fuels							HFO with scrubber	
Low sulphur fuels							LNG	
Low sulphur fuels							Methanol	
Low sulphur fuels							Ammonia	
HFO with scrubber							LNG	
HFO with scrubber							Methanol	
HFO with scrubber							Ammonia	
LNG							Methanol	
LNG							Ammonia	
Methanol							Ammonia	

Regarding Impact on the reduction of SOx emissions criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		Impact on the	reduction c Expert's p		sions criteri	on	1
Technological Alternatives	Compa						
	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Impact on the reduction of NOx emissions criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Impact on the reduction of BC emissions criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

	Expert's preference							
	Compa							
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives	
Low sulphur fuels							HFO with scrubber	
Low sulphur fuels							LNG	
Low sulphur fuels							Methanol	
Low sulphur fuels							Ammonia	
HFO with scrubber							LNG	
HFO with scrubber							Methanol	
HFO with scrubber							Ammonia	
LNG							Methanol	
LNG							Ammonia	
Methanol							Ammonia	

Regarding Impact on the reduction of CH4 emissions criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Impact on the reduction of CO2 emissions criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		mpact on the			sions criterie	on	
			Expert's p	reference			
	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Ship age criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

				criterion			
	Compa	rison of tech	Expert's p		sing linguist	ic terms	
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Ship size criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

			Ship size	criterion			
			Expert's p				
	Compa	rison of tech	nological alt	ernatives us	sing linguist	ic terms	
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Primary trade area criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		P	rimary trade	area criterio	on		
			Expert's p				
	Compa	rison of tech	nological alt	ernatives us	sing linguist	ic terms	
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Other sub-factors criterion:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

		C	Other sub fac	ctors criterio	on		
			Expert's p	oreference			
	Compa						
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding Government support criterion:

How important is *Low sulphur fuels* alternative when it is compared to *HFO with scrubber alternative*?

And so on...

			Expert's p	upport criter preference			
	Compa	rison of tech	nological alt	ernatives us	sing linguist	ic terms	
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Regarding *Externalities criterion*:

How important is *Low sulphur fuels alternative* when it is compared to *HFO with scrubber alternative*?

And so on...

			Expert's p	oreference			
	Compa	rison of tech	nological alt	ernatives us	sing linguist	ic terms	
Technological Alternatives	Equally important	Moderately important	More important	Strongly important	Very strongly important	Extremely important	Technological Alternatives
Low sulphur fuels							HFO with scrubber
Low sulphur fuels							LNG
Low sulphur fuels							Methanol
Low sulphur fuels							Ammonia
HFO with scrubber							LNG
HFO with scrubber							Methanol
HFO with scrubber							Ammonia
LNG							Methanol
LNG							Ammonia
Methanol							Ammonia

Appendix D. Excel template for determining weights of aspects, criteria and relative performances of alternatives using Fuzzy AHP

SP 0,5111 0,777766667 1 0,73333 0,77777 1 1 1 1 1,66666667 3 3,69203 4,7333 6 OF 0,466666667 0,555533333 1 0,73333 0,77777 1 0,5111 0,77777 1 1 1 1 1 3,2222 3,88883																					
Version decision all server of a constrained as precision duration and as precision duration duration and as precision duration duratingequartere duration duration duration duration duratin duration du	A	В	С	D	E	F	G	Н			К	L	М	N	0	Р	Q	R	S	T	U
Appent m C<	Weight	s determin	ation (Aspects)			Preferen	ices of d	ecision ma			cts into fu	uzzy trian	gular nur	nbers							
Images Images<	Aroart	Decision	TC	_		50			CN .			CD.			OF.		_				
TC Ms 1 5 7 1	Aspect	_							EN.		_										
Mg I			1	1			2			3	5		3	5		3	5				
Mi 0.2 0,3332 1	IC .		1	1						-					-	3					
EC M4 1			-	0 2222				4		-	6										
DNs, 0,3333 1 <th1< th=""> 1 1 <th1< <="" td=""><td>FC</td><td></td><td>0,2</td><td>0,0000</td><td>1</td><td>4</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td></th1<></th1<>	FC		0,2	0,0000	1	4	1	1	1	1			1	1	1		1				
DM_1 0.2 0.333 1 0.333 1			0 2222	1	1	1	1	1		1			1	1	1		1				
EN DM_1 1 <td></td> <td></td> <td></td> <td>0 3333</td> <td>1</td> <td>0 3333</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>-</td> <td>5</td> <td>7</td> <td>1</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td>				0 3333	1	0 3333	1		1	1	1	-	5	7	1		5				
DM_1 0 1 <th1< th=""> <th1< th=""></th1<></th1<>	EN		6	1	1	1	1	1	1	1	1	1	3	5	1		3		1		
p DM_1 0,3333 1		DM ₃	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		-		
DMg 1		DM ₁	0,2	0,3333	1	0,2	0,3333	1	0,1428	0,2	0,3333	1	1	1	1	3	5				
DM_1 0,2 0,3333 1 0,2 0,3333 1 0,2 0,3333 1 <td>SP</td> <td>DM₂</td> <td>0,3333</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0,2</td> <td>0,3333</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	SP	DM ₂	0,3333	1	1	1	1	1	0,2	0,3333	1	1	1	1	1	1	1				
OF DM1 0,2 0,3333 1 <th< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>3</td><td></td><td></td><td></td><td></td></th<>			1	1	1	1	1	1	1	1	1	1	1	1	1	1	3				
DM ₃ 1 1 <td></td> <td></td> <td>0,2</td> <td>0,3333</td> <td>1</td> <td>0,2</td> <td>0,3333</td> <td>1</td> <td>0,2</td> <td>0,3333</td> <td>1</td> <td>0,2</td> <td>0,3333</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>L</td> <td></td> <td></td> <td></td>			0,2	0,3333	1	0,2	0,3333	1	0,2	0,3333	1	0,2	0,3333	1	1	1	1	L			
Aggregated fuzzy comparison matrix of aspect EX SP OF Aggregated fuzzy comparison matrix of aspect EX SP OF OF TC 1.00 1.00 1.00 1.00 1.00 1.67 2.33 1.00 1.67 2.33 3.67 EC 0.51 0.78 1.00 1.00 1.00 1.00 1.67 2.33 1.00 1.67 2.33 3.67 5.00 8.33 EC 0.511 0.778 1.00 1.00 1.00 1.00 1.67 2.33 1.00 1.67 2.33 4.55 6.11 EN 0.733333333 0.777766657 1 0.77777 1 0.4476 0.5111 0.77777 1 1.1 1 1.66666667 3 3.17777 7.44443 1 SP 0.666666667 0.55533333 1 0.73333 0.77777 1 0.5111 0.77777 1 1 1 1 2 3.69033 Applc	OF		0,2	0,3333	1	1	1	1	0,3333	1	1	1	1	1	1	1	1				
Appets TC EX	1.00	DM ₃	1	1	1	1	1	1	1	1	1	0,3333	1	1	1	1	1				
Aspects TC E0																					
Aspects TC E0			Angregated fuzzu comp	arison matrix of as	neet																
TC 1,00 <			Aggregated tuzzy comp	ansormatik or as	peut																
TC 1,00 <		Aspects	TC			EC		_	EN			\$P			OF						
EN 0,733333333 0,777766667 1 0,77777 1 <td< td=""><td></td><td>TC</td><td>1,00</td><td>1,00</td><td>1,00</td><td>1,00</td><td>1,67</td><td>3,00</td><td>1,00</td><td>1,67</td><td>2,33</td><td>1,00</td><td>1,67</td><td>3,00</td><td>1,00</td><td>2,33</td><td>3,67</td><td></td><td>5,00</td><td>8,33</td><td></td></td<>		TC	1,00	1,00	1,00	1,00	1,67	3,00	1,00	1,67	2,33	1,00	1,67	3,00	1,00	2,33	3,67		5,00	8,33	
SP 0,5111 0,7777666657 1 0,73333 0,77777 1 0,77777 1		EC	0,51	0,78	1,00	1,00	1,00	1,00	1,00	1,00	1,67	1,00	1,67	2,33	1,00	1,67	2,33		4,51	6,11	r
OF 0,466666667 0,55553333 1 0,73333 0,77777 1 0,5111 0,77777 1 1 1 1 3,2222 3,88883 Application of fuzzy AHP in determining priority weights Image: State of the state of th		EN	0,733333333	0,777766667	1	0,77777	1	1	1	1	1	1,66667	3	4,33333	1	1,66666667	3		5,17777	7,44443	10,
Apploation of fuzzy AHP in determining priority weights of aspect Som Z1.60 30.51 Apploation of fuzzy AHP in determining priority weights of aspect Comparison of fuzzy values V values for aspects Veights Sum Z1.60 30.51 Aspects TC BC EN SP OF weight read Aspects Fuzzy weight Normalized weight Fuzzy weight Normalized weight Weight SUM Z1.60 30.51 TC 1,00 1,00 1,00 0.00 2.622 C 0.0034 0.20021 0.3875 0.73 0.60177 0.00 0.004172 Image: Sum					1			1			0,77777	1	1	1	1	1,66666667	3				
Apploation of fuzzy APP in determining pionity weights of aspect Comparison of fuzzy values P values for aspects Veights Aspects TC EN SP OF weight zed weight Pualues for aspects Veights TC 1,00 1,00 1,00 1,00 1,00 0.2642 TC 0,100 0,264191 EC 0,79 0.86 1,00 0,00 0.789 0.2002 0.2875 0.797 0.264191 EN 0.93 1,00 1,00 0,00 0.89 0.2446 EN 0.11918 0.2433 0.69177 1.00 0.264191 EN 0.93 1,00 1,00 0.98 0.2446 EN 0.11918 0.2433 0.33 0.244574 SP 0.63 0.82 0.69 1,00 0.783 0.01173 0.63 0.165774 0.79 0.2345 0.44 0.117319 0F 0.07470 0.2745 0.2445 0.117319 0F 0.07470 0.12747 0.2345		OF	0,466666667	0,555533333	1	0,73333	0,77777	1	0,5111	0,77777	1	0,5111	0,77777	1	1	1	1	1	3,2222	3,88883	9-105- 1
Appleation of fuzzy APP in determining pionty weights of aspect Comparison of fuzzy values V values for aspects Veights Aspects TC 20 EN SP 0/F weight Zeid Normali veight Normali zeid Normali veight																					-
Aspects TC BC SP OF weight weight Normali zed weight Fuzzy weight Fuzzy weight Normalized weight TC 1,00 1,00 1,00 1,00 0,00 0,242 TC Normalized weight Normalized weight EC 0,79 0,86 1,00 1,00 0,202 0,2373 0,6077 10.0 0,264191 EN 0,93 1,00 1,00 0,00 0,79 0,2082 EC 0.00384 0,2033 0,3875 0,73 0,208172 EN 0,93 1,00 1,00 0,03 0,2446 EN 0,11310 0,24333 0,333 0,244574 SP 0.65 0.821 0.69 1,00 0,63 0,1657 SP 0.08490 0,5515 0,31374 0.63 0,165744 OF 0,44 0,54 0,84 0,44 0,1173 OF 0,07417 0,27445 0,23445 0,44 0,117319		Analtania	a séé ann AUD is dataint	a a a statut constala				Compariso		l.com	Varhand			Uninkan				Sum	21,60	30,51	43
Aspects TC EV S2 OF weight weight zed weight weight Aspects "weight weight "weight weight "orange weight formatified weight TC 1,00 1,00 1,00 1,00 1,00 0.2642 TC 0,1503 0,26017 1.00 0.264191 EC 0,75 0,86 1,00 0,00 0.2082 EC 0,01504 0.2032 0.38575 0.73 0.208172 EN 0,93 1,00 1,00 0,03 0.1857 SP 0.0843 0.5513 0.31374 0.63 0.165744 SP 0,64 0,64 0,49 0.44 0,49 0.44 0.17319 0.07470 0.17470 0.12745 0.23445 0.44 0.117319		Applicatio	on or ruzzy when in determin	ing plionty weigh	is or aspeci			Companso	n or ruzzy va	lues	v values n	or aspects		weights					-		
Aspects TC EV S2 OF weight weight zed weight weight Aspects "weight weight "weight weight "orange weight formatified weight TC 1,00 1,00 1,00 1,00 1,00 0.2642 TC 0,1503 0,26017 1.00 0.264191 EC 0,75 0,86 1,00 0,00 0.2082 EC 0,01504 0.2032 0.38575 0.73 0.208172 EN 0,93 1,00 1,00 0,03 0.1857 SP 0.0843 0.5513 0.31374 0.63 0.165744 SP 0,64 0,64 0,49 0.44 0,49 0.44 0.17319 0.07470 0.17470 0.12745 0.23445 0.44 0.117319		-			£	i			Normali		8 8		-	-	Non-						
TC 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,2642 TC 0,1569 0,2735 0,0707 1,00 0,264191 EC 0,79 0.86 1,00 1,00 0,79 0,2082 EC 0,1084 0,2035 0,873 0,00172 EN 0.93 1,00 1,00 0,093 0,2446 EN 0,1158 0,2433 0,433 0,24574 SP 0,63 0,62 0,69 1,00 0,03 0,1657 SP 0.08483 0,5515 0,31374 0.63 0,165744 OF 0,44 0,49 0,84 0,1173 OF 0,07477 0,12746 0,23145 0,44 0,117319		Aspects	TC		EN	SP	OF	weight			Aapects					INVESTIGATION OF TAXABLE					
EC 0,79 0,86 1,00 1,00 0,79 0,2082 EC 0,034 0,20023 0,38575 0,79 0,208172 EN 0,93 1,00 1,00 0,93 0,2446 EN 0,11818 0,2433 0,433 0,33 0,244574 SP 0,63 0,62 0,69 1,00 0,63 0,1657 SP 0,0848 0,15518 0,31374 0,63 0,165744 OF 0,444 0,49 0,444 0,1173 OF 0,074471 0,12746 0,21445 0,117319		1015-02000					0520	0437673000	weight		and Broodware		weight		weight	weight					
EN 0,93 1,00 1,00 0,09 0,2446 EN 0,11918 0,24338 0,47833 0,33 0,244574 SP 0,63 0,22 0,69 1,00 0,653 0,1657 SP 0,08438 0,15513 0.31374 0.63 0,165744 OF 0,444 0,64 0,49 0,444 0,1173 OF 0,07471 0,12746 0,23455 0,417319		TC		1,00	1,00		1,00														
SP 0,63 0,82 0,69 1,00 0,63 0,1657 SP 0,08498 0,15573 0,31374 0,63 0,165744 OF 0,44 0,64 0,49 0,44 0,1173 OF 0,07477 0,12746 0,23445 0,44 0,117319				10	0,86																
OF 0,44 0,54 0,49 0,84 0,44 0,1173 DF 0,07417 0,12746 0,23145 0,44 0,117319																					
Sum normalized vieights 1		OF	0,44	0,64	0,49	0,84		0,44	0,1173		OF	0,07417	0,12746	0,23145	0,44	0,117319					
Sum normalized vieights I						0	6 1 · · ·	1020													
						Jum norm	alized viei	gints	<u> </u>										-		

Appendix E. Excel template for ranking alternatives using VIKOR

2 3 Criteria T1 T2 Wreight (Global) 0.08976871 0.08976871 Criteria T1 T2 (Ab) LSFO 0.26577125 0.26577125 (A2) BSFO 0.2015201604 0.430 LSG (A3) LSG 0.218201604 0.430 LSG (A3) Methanol 0.26677125 0 (J4) Methanol 0.23677125 0 (J5) LSG 0.23677125 0 (J5) LSG 0.236757125 0 (J1) LSFO 0.03276518 0 Criteria T1 T2 Criteria 0.03276518 CA3) DSC 0.032765185 Calculating Qi values 0.059766871	D 0.075186067 0.075186067 0.275046464 0.1965000752 0.217874188 0.198538861 0.11248736 0.275046464 0.11248736 0.11248736 0.11248736 0.00000000000000000000000000000000000	T3 0,078061897 T3 0,289845891 0,236921829 0,19073105 0,119271483 0,289845891 0,119271483 0,119271483 0,119271483 0,119271483 0,119271483	7 0,021175673 T4 1 0,277539265 9 0,210891124 0,189541021 7 0,189541021 0,132487568 1 0,277539265 0,132487568 1 0,277539266 1 1 0,277539266 1 1 0,277539266 1 1 0,277539266 1	0,070875264 EC1 0,276289134 0,204762954 0,198369845 0,188687264 0,131890795 0,276289134	0.067753997 EC2 0.263947943 0.211018976 0.206118434 0.185163803 0.133750843 0.263947943 0.133750843	0,29437551 0,057124248	$\begin{array}{c} 0.035953374\\ \textbf{EC4}\\ 0.0632622227\\ 0.23377643\\ 0.194384834\\ 0.177887702\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ R_i = max_j \frac{w_j(j)}{(f_j^i)}\\ \textbf{EC4} \end{array}$	EN1 0.054239438 0.054239438 EN1 0.302673303 0.324884924 0.167768658 0.100557004 0.104116111 0.324884924 0.100557004 $\frac{r_{f}}{r} - f_{(f)}$ EN1	EN2 EN2 0.32136992; 0.33008353; 0.1482647; 0.09452265; 0.09452265; 0.09452265;	B 0.054239438 EN3 2 0.000954249 2 0.55897709 1 0.151846436 7 0.092391744 0.095269863 2 0.55899770 7 0.0922931744 EN3	EN4 0,328147 0,1723200 0,3945710 0,0524800 0,0524800 0,0524800 0,0524800
1 Nonalized Decision-Making Matrix 7 2 7 4 Criteria T1 T2 5 0.089766871 0.089766871 5 Normalized weight (Global) 0.089766871 1 6 (Ab) LSFO 0.200772155 0 6 (Ab) LSFO 0.200772155 0 7 (Ab) Methanol 0.200772155 0 7 (Ab) Methanol 0.200772155 0 7 (Ab) Methanol 0.2018201604 1 7 (Ab) Methanol 0.2018201604 1 9 (Ab) Methanol 0.2018201604 1 1 (Ab) LSFO 0.138168919 5 6 7 0.23857125 7 (Determing values of Si and Ri with respect to the five alternation of the set of	0 075186067 0 075186067 0 0,75186067 0 0,27504646 0 0,196000752 0 0,217874188 0 0,18589861 0 0,112488736 0 0,27504646 0 0,112488736 0 112488736 0 1124887 0 112488736 0 11248736 0 11248736 0 11248736 0 11248736 0 11248736 0 1124875 0	T3 7 0.0780618978 0.289845891 0.289845891 0.236921828 0.10073105 0.119271483 0.28984589 0.119271483 0.119271483 0.1000 0.004220373	T4 7 0.021176673 7 0.021176673 74 10.0271539266 9 0.210891124 9 0.210891124 9 0.210891124 9 0.213487568 9 0.132487568 9 0.132487568	$\begin{array}{c} \text{EC1} \\ 0.070875265 \\ \textbf{O.27087526} \\ \textbf{O.27087526} \\ \textbf{O.27087526} \\ \textbf{O.27087526} \\ \textbf{O.28875264} \\ \textbf{O.28875264} \\ \textbf{O.28875264} \\ \textbf{O.28875264} \\ \textbf{O.2188675264} \\ \textbf{O.218867564} \\ \textbf{O.21867564} \\ \textbf{O.218867564} \\ \textbf{O.2188675644} \\ \textbf{O.2188675644} \\ \textbf{O.2188675644} \\ O.218867564444444444444444444444444444444444$	EC2 0.067753997 0.067753997 C.263947943 0.211018976 0.206118434 0.185163803 0.133750843 0.263947945 0.263947945	0.033688977 0.033588977 FC3 0.29437551 0.278836903 0.057124248 0.210577140 0.15908559 0.29437551 0.057124248	VIKOR Techni EC4 0.035953374 0.035953374 0.035953374 EC4 0.035850227 0.13376433 0.194384833 0.194384833 0.19727594 0.130727594 R_i = max_j <u>v'j(j'</u> EC4	que EN1 0.054239438 0.054239438 EN1 0.302673303 0.324884924 0.100557004 0.100557004 0.100557004 0.100557004 0.100557004 0.100557004 EN1 EN1	0.05423943 0.06423943 EN2 0.32136992 0.33908353 0.14826437 0.06452265 0.094522657	EN3 8 0.054239438 8 0.054239438 2 0.30054249 2 0.55897709 1 0.151846436 7 0.09229437 3 0.0556997709 7 0.092391744 EN3	EN4 0.054239 0.064239 EN4 0.328147- 0.1723200 0.3945710 0.0524800 0.0524800
2 3 4 Criteria TI T2 5 Wreight (Global) 0.08976871 0.08976871 7 Criteria TI T2 6 (Ab) LSFO 0.23677125 0.089766871 7 Criteria TI T2 6 (Ab) LSFO 0.23677125 0.430 LNC 0 (Ab) LSFO 0.2015201644 (14) Methanol 1 (Ab) Methanol 0.236177125 0 4 (F) 0.138168919 3 5 - 0 236577125 4 (F) 0.138168919 - 1 7 Determing values of Si and Ri with respect to the five alternative of Criteria 1 T2 6 - - 0 2 7 Determing values of Si and Ri with respect to the five alternative of Criteria T1 T2 8 - - 0 2 9 - 0 0 0 1 (Ab) LSFO 0.032765158 0 0 1 (Ab) Methanol 0.0237913852 0	0,075186067 0,275046464 0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 112488736 atives	T3 0.078061897 0.078061897 13 0.289845891 0.230621829 0.19073105 0.19073105 0.19271483 0.289845891 0.119271483 0.29984589 0.119271483	7 0,02117667 7 14 1 0,02117667 9 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 0,132487568	$\begin{array}{c} 0,070875264\\ \hline 0,070875264\\ \hline {\rm Ec1}\\ \hline 0,276289134\\ \hline 0,204762954\\ 0,108369844\\ \hline 0,188687264\\ \hline 0,131890795\\ \hline 0,276289134\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,2768$	0.067753997 0.067753997 EC2 0.263947943 0.211018976 0.206118434 0.1831530843 0.263947943 0.133750843 +f _{ij}) f _j	0.033688977 0.033588977 FC3 0.29437551 0.278836903 0.057124248 0.210577140 0.15908559 0.29437551 0.057124248	EC4 0.035953374 0.035953374 0.263362227 0.130737594 0.104354833 0.104354833 0.104354833 0.10778570 0.130727594 0.130727594 R_i = max_j \frac{w_j(j)}{(f_j^i)}	EN1 0.054239438 0.054239438 EN1 0.302673303 0.324884924 0.167768658 0.100557004 0.104116111 0.324884924 0.100557004 $\frac{r_{f}}{r} - f_{(f)}$ EN1	0.05423943 0.06423943 EN2 0.32136992 0.33908353 0.14826437 0.06452265 0.094522657	8 0,054239438 8 0,054239438 EN3 2 0,300954249 2 0,358997709 1 0,151846436 0,0922931744 8 0,095269863 2 0,358997709 7 0,0922931744	0,0542394 0,0542394 EN4 0,3281474 0,1723200 0,3945710 0,0524800 0,0524800 0,0524800 0,0524800
Criteria TI T2 Weight (Global) 0.08976871 Criteria Normalized weight (Global) 0.08976871 Criteria (A) LSFO 0.26757125 Criteria (A) LSFO 0.20077135 Criteria (A) Methanol 0.08076819 Criteria (A) Determing values of Si and Ri with respect to the five alternative and the second secon	0,075186067 0,275046464 0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 112488736 atives	T3 0.078061897 0.078061897 13 0.289845891 0.230621829 0.19073105 0.19073105 0.19271483 0.289845891 0.119271483 0.29984589 0.119271483	7 0,02117667 7 14 1 0,02117667 9 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 0,132487568	$\begin{array}{c} 0,070875264\\ \hline 0,070875264\\ \hline {\rm Ec1}\\ \hline 0,276289134\\ \hline 0,204762954\\ 0,108369844\\ \hline 0,188687264\\ \hline 0,131890795\\ \hline 0,276289134\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,2768$	0.067753997 0.067753997 EC2 0.263947943 0.211018976 0.206118434 0.1831530843 0.263947943 0.133750843 +f _{ij}) f _j	0.033688977 0.033588977 FC3 0.29437551 0.278836903 0.057124248 0.210577140 0.15908559 0.29437551 0.057124248	$\begin{array}{c} 0.035953374\\ 0.035953374\\ \textbf{EC4}\\ 0.263262227\\ 0.233737643\\ 0.194384854\\ 0.17788702\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ \textbf{R}_i = max_j \frac{w_j(j)}{(f_j^i)}\\ \textbf{EC4} \end{array}$	$\begin{array}{c} 0.054239436\\ 0.054239438\\ \hline 0.054239438\\ \hline end{tabular}\\ 0.302673303\\ 0.324884924\\ 0.167768658\\ 0.100557004\\ 0.100557004\\ 0.100557004\\ \hline 0.10057004\\ \hline 0.100570$	0.05423943 0.06423943 EN2 0.32136992 0.33908353 0.14826437 0.06452265 0.094522657	8 0,054239438 8 0,054239438 EN3 2 0,300954249 2 0,358997709 1 0,151846436 0,0922931744 8 0,095269863 2 0,358997709 7 0,0922931744	0,054239 0,054239 EN4 0,328147 0,172320 0,394571 0,052480 0,052480 0,052480
Citherin TI T2 Citherin 0.089766871 Normalized weight (Global) 0.089766871 Criteria TI T2 Criteria TI T2 (A) LSFO 0.26677125 (A) LSFO (A) LSFO 0.26677125 (A) LSFO (A) Methanol 0.218201604 (A) Methanol (A) Morthanoit 0.138168919 (A) Methanol (A) Mamonia 0.138168919 (A) Methanol (A) INFO 0.23677125 (A) Methanol (A) Strange of Si and Ri with respect to the five alternath (A) Methanol (Chernia T1 T2 (A) INFO 0.0226757125 (A) Methanol 0.02265718 (A) INFO 0.023765158 (A) INFO 0.023765158 (A) Methanol 0.022765138 (A) Methanol 0.022765138 (A) Methanol 0.023765138 (C) Calculating Qi values (Calculating Qi values (Calculating Qi values (Calculating Qi values (Critheria or attrithute	0,075186067 0,275046464 0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 112488736 atives	T3 0.078061897 0.078061897 13 0.289845891 0.230621829 0.19073105 0.19073105 0.19271483 0.289845891 0.119271483 0.29984589 0.119271483	7 0,02117667 7 14 1 0,02117667 9 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 0,132487568	$\begin{array}{c} 0,070875264\\ \hline 0,070875264\\ \hline {\rm Ec1}\\ \hline 0,276289134\\ \hline 0,204762954\\ 0,108369844\\ \hline 0,188687264\\ \hline 0,131890795\\ \hline 0,276289134\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,2768$	0.067753997 0.067753997 EC2 0.263947943 0.211018976 0.206118434 0.1831530843 0.263947943 0.133750843 +f _{ij}) f _j	0.033688977 0.033588977 FC3 0.29437551 0.278836903 0.057124248 0.210577140 0.15908559 0.29437551 0.057124248	$\begin{array}{c} 0.035953374\\ 0.035953374\\ \textbf{EC4}\\ 0.263262227\\ 0.233737643\\ 0.194384854\\ 0.17788702\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ \textbf{R}_i = max_j \frac{w_j(j)}{(f_j^i)}\\ \textbf{EC4} \end{array}$	$\begin{array}{c} 0.054239436\\ 0.054239438\\ \hline 0.054239438\\ \hline end{tabular}\\ 0.302673303\\ 0.324884924\\ 0.167768658\\ 0.100557004\\ 0.100557004\\ 0.100557004\\ \hline 0.10057004\\ \hline 0.100570$	0.05423943 0.06423943 EN2 0.32136992 0.33908353 0.14826437 0.06452265 0.094522657	8 0,054239438 8 0,054239438 EN3 2 0,300954249 2 0,358997709 1 0,151846436 0,0922931744 8 0,095269863 2 0,358997709 7 0,0922931744	0,054239 0,054239 EN4 0,328147 0,172320 0,394571 0,052480 0,052480 0,052480
Si Weight (Global) 0.09576871 Normalized weight (Global) 0.09976871 Criteria T1 T2 (A1) LSFO 0.26757125 (A2) DSFO 0.20077135 (A3) LSFO 0.20077135 (A3) LSFO 0.20077135 (A3) LSFO 0.20077135 (A3) Methanol 0.2010197 (A5) Ammonia 0.138168919 Fj 0.268757125 (J5) Ammonia 0.138168919 Si 0.138168919 Conternia T1 Criteria T1 Criteria T1 Criteria T1 Criteria T1 Criteria T1 Criteria T1 Calculating Q1 values 0.0275158 Calculating Q1 values Calculating Q1 values Calculating Q1 values Si Criteria or attribute Si	0,075186067 0,275046464 0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 112488736 atives	T3 0.078061897 0.078061897 13 0.289845891 0.230621829 0.19073105 0.19073105 0.19271483 0.289845891 0.119271483 0.29984589 0.119271483	7 0,02117667 7 14 1 0,02117667 9 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 0,132487568	$\begin{array}{c} 0,070875264\\ \hline 0,070875264\\ \hline {\rm Ec1}\\ \hline 0,276289134\\ \hline 0,204762954\\ 0,108369844\\ \hline 0,188687264\\ \hline 0,131890795\\ \hline 0,276289134\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,27628914\\ \hline 0,2768914\\ \hline 0,2768$	0.067753997 0.067753997 EC2 0.263947943 0.211018976 0.206118434 0.1831530843 0.263947943 0.133750843 +f _{ij}) f _j	0.033688977 0.033588977 FC3 0.29437551 0.278836903 0.057124248 0.210577140 0.15908559 0.29437551 0.057124248	$\begin{array}{c} 0.035953374\\ 0.035953374\\ \textbf{EC4}\\ 0.263262227\\ 0.233737643\\ 0.194384854\\ 0.17788702\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ \textbf{R}_i = max_j \frac{w_j(j)}{(f_j^i)}\\ \textbf{EC4} \end{array}$	$\begin{array}{c} 0.054239436\\ 0.054239438\\ \hline 0.054239438\\ \hline end{tabular}\\ 0.302673303\\ 0.324884924\\ 0.167768658\\ 0.100557004\\ 0.100557004\\ 0.100557004\\ \hline 0.10057004\\ \hline 0.100570$	0.05423943 0.06423943 EN2 0.32136992 0.33908353 0.14826437 0.06452265 0.094522657	8 0,054239438 8 0,054239438 EN3 2 0,300954249 2 0,358997709 1 0,151846436 0,0922931744 8 0,095269863 2 0,358997709 7 0,0922931744	0,054239 0,054239 EN4 0,328147 0,172320 0,394571 0,052480 0,052480 0,052480
Citeria TI F2 (A1) LSFO 0,236757125 (A2) BSFO 0,236757125 (A2) BSFO 0,236757125 (A3) CONTRACTORNO 0,20077135 (A3) LNC 0,138168919 0,138168919 0,138168919 (Fj 0,236757125 0,138168919 0,138168919 Determing values of Si and Ri with respect to the five alternative and the second	0,27504464 0,196000752 0,217874188 0,198539851 0,11248873 0,275046464 0,112488736 atives	T3 0,289845891 0,289845891 0,26921829 0,19073105 0,163229747 5,0,119271483 0,289845891 5,0,119271483 0,119271483 0,119271483 0,0289845891 0,019271483	T4 1 0.277539266 9 0.210891124 5 0.189541021 7 0.189541021 3 0.132487568 1 0.277539266 3 0.132487568 1 0.277539266 1 0.277539266 1 0.277539266	$\label{eq:states} \begin{split} & \textbf{EC1} \\ \hline \textbf{EC1} \\ & 5 & 0.276289134 \\ & 0.204762954 \\ & 0.198369846 \\ & 0.188687264 \\ & 0.188687264 \\ & 0.131890795 \\ & 0.276289134 \\ & 0.131890795 \\ & 0.276289134 \\ & 0.131890795 \\ & 0.276289134 \\ & 0.131890795 \\ & 0.767289134 \\ & 0.131890795 \\ & 0.767289134 \\ & 0.76728914 \\ & 0.76728$	FC2 0,263947943 0,211018976 0,206118434 0,185163803 0,185163803 0,133750843 0,263947943 0,133750843	EC3 0,29437551 0,278836903 0,057124248 0,210577749 0,15908559 0,29437551 0,057124248	$\label{eq:response} \begin{array}{l} \mathbf{EC4} \\ 0,263262227 \\ 0,233737643 \\ 0,194384854 \\ 0,177887702 \\ 0,130727594 \\ 0,263262227 \\ 0,130727594 \\ R_i = max_j \frac{w_j(j)}{(f_j^*)} \\ \mathbf{EC4} \end{array}$	EN1 0,302673303 0,324884924 0,167768658 0,100557004 0,104116111 0,324884924 0,100557004 $\frac{e_j}{f} - f_{ij})$ $- f_j^-)$ EN1	EN2 0,31306952; 0,33908333; 0,14826437; 0,006759513; 0,39082565; 0,00452265; EN2	EN3 2 0,300954249 0,358997709 1 0,151846436 7 0,092931744 8 0,0952698763 0,35899770 0,092931744 0,092931744 EN3	EN4 0,328147 0,172320 0,394571 0,052480 0,394571 0,052480 EN4
(A1) LSFO 0.236757125 (A2) ILSFO 0.200772135 (A3) LKO 0.200772135 (A3) LKO 0.200772135 (A3) LKO 0.218201604 (A3) LKO 0.236757125 (J) LSTO 0.236757125 (J) LSTO 0.138168919 Criteria T1 Criteria T1 Criteria T1 (A3) LSTO 0 (A4) MEAnol 0.00595337 (A5) Akmonia 0.089766871 S Calculating Qi values (S'=Min R); R'= Min R); S: =Max Si; R: = Ma S Si Ri	0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 0,11248736 0,11248748	0.289845891 0.236921829 0.19073105 0.163229747 0.119271483 0.289845891 0.119271483 0.299845891 0.119271483 0.209842697 0.119271483 0.1002100 0.1002100 0.1002100 0.1002100 0.1002100 0.0024220237	1 0,277539265 9 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 1 0,277539266 3 0,132487568 1 1,32487568	$\begin{array}{c} 0.276289134\\ 0.204762954\\ 0.1983689845\\ 0.188687264\\ 0.188687264\\ 0.131890795\\ 0.276289134\\ 0.131890795\\ 0.276289134\\ 0.131890795\\ S_i = \sum_{j=1}^{n} \frac{w_j(f_j^*)}{(f_j^*)} \end{array}$	0.263947943 0.211018976 0.206118434 0.185163803 0.263947943 0.133750843 $f_{ij})$ $f_{ij}^{-})$	0,29437551 0,278836903 0,057124248 0,210577749 0,15908559 0,29437551 0,057124248	$\begin{array}{c} 0.263262227\\ 0.233737643\\ 0.194384834\\ 0.177887702\\ 0.130727594\\ 0.263262227\\ 0.130727594\\ R_i = max_j \frac{w_j(j)}{(f_j^i)}\\ \textbf{EC4} \end{array}$	$\begin{array}{c} 0.302673303\\ 0.324884924\\ 0.167768658\\ 0.100557004\\ 0.104116111\\ 0.324884924\\ 0.100557004\\ \hline \\ f_{j}^{*} - f_{ij})\\ - f_{j}^{-})\\ \hline \mathbf{EN1} \end{array}$	0,32136992; 0,33908353; 0,1482647; 0,09452265; 0,09452265; 0,09452265; EN2	2 0,300554249 2 0,358997709 1 0,15184643 7 0,092931744 8 0,09526963 2 0,358997709 7 0,092931744	0,328147 0,172320 0,394571 0,052480 0,052480 0,394571 0,052480 0,052480 EN4
(A2) BFO 0.20077135 (A3) LNG 0.218201604 (A3) Methanol 0.201601604 (A3) Methanol 0.201601604 (A3) Methanol 0.218201604 (A3) Methanol 0.20160177 (A3) Methanol 0.230177125 (A4) Methanol 0.230177125 (A5) LNG 0.138168919 Determing values of Si and Ri with respect to the five alternative Criteria T1 T2 (A1) LSFO 0 0 (A2) BSFO 0.032761518 0.032761518 (A5) Ammonia 0.089766871 0 (A5) Ammonia 0.089766871 0 (A5) Ammonia 0.089766871 0 Calculating Qi values 0 0 Criteria or attribute SI Ri	0,196000752 0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 0,11248736 0,11248748	0,236921829 0,19073103 0,19073103 0,119271483 0,119271483 0,119271483 0,119271483 0,119271483 0,019271483 0,019271483	P 0,210891124 5 0,189541021 7 0,189541021 3 0,132487568 1 0,277539265 3 0,132487568 1 12487568 1 14 0 0 0	$\begin{split} & 0.204762954 \\ & 0.198369845 \\ & 0.188687264 \\ & 0.188687264 \\ & 0.131890795 \\ & 0.276289134 \\ & 0.131890795 \\ & 0.276289134 \\ & 0.131890795 \\ & S_i = \sum_{j=1}^n \frac{w_j(f_j^+)}{(f_j^+)} \end{split}$	0,211018976 0,206118434 0,185163803 0,133750843 0,263947943 0,133750843 $-f_{ij})$	0,278836903 0,057124248 0,210577749 0,15908559 0,29437551 0,057124248	$0,233737643 \\ 0,194384834 \\ 0,177887702 \\ 0,130727594 \\ 0,263262227 \\ 0,130727594 \\ R_i = max_j \frac{w_j(j)}{(f_j')} \\ EC4$	$\begin{array}{c} 0,324884924\\ 0,167768658\\ 0,100557004\\ 0,104116111\\ 0,324884924\\ 0,100557004\\ \hline \\ f_{j}^{*}-f_{ij})\\ -f_{j}^{-})\\ \hline \\ EN1 \end{array}$	 0,33908353; 0,14826437; 0,09452265; 0,09452265; 0,09452265; 	2 0,358997709 1 0,151846436 7 0,092931744 8 0,095269863 2 0,358997709 7 0,092931744 EN3	0,172320 0,394571 0,052480 0,052480 0,394571 0,052480 EN4
(A5) LNC 0.218201604 (A4) Methanol 0.20610197 (A5) Ammonia 0.138168919 Pf 0.286757125 g. 0.138168919 Determing values of Si and Ri with respect to the five alternative Criteria TI Criteria TI Criteria TI CA2) BSFO 0 (A2) BSFO 0 (A2) BSFO 0 (A2) BSFO 0 (A3) LNG 0,01295138 (A5) Ammonia 0,029765138 Calculating Qi values (S'=Min Ri; S S-=Max Si; R'= Min Ri; Criteria or attribute SI	0,217874188 0,198589861 0,112488736 0,275046464 0,112488736 atives	3 0,19073105 0,163229747 5 0,119271483 6 0,289845891 0,119271483 0,119271483 1 0,119271483 1 0,0119271483	5 0,189541021 7 0,189541021 3 0,132487568 1 0,277539266 3 0,132487568 1 1,22487568	$S_i = \sum_{j=1}^{n} \frac{w_j(f_j^*)}{(f_j^* - f_j^*)}$	0,206118434 0,185163803 0,133750843 0,263947943 0,133750843 $-f_{ij})$ $f_{j}^{-})$	0,057124248 0,210577749 0,15908559 0,29437551 0,057124248	$0,194384834 \\ 0,177887702 \\ 0,130727594 \\ 0,263262227 \\ 0,130727594 \\ R_i = max_j \frac{w_j(j)}{-(f_j')} \\ EC4$	0,167768658 0,100557004 0,104116111 0,324884924 0,100557004 $f_{j}^{*} - f_{ij})$ $- f_{j}^{-})$ EN1	8 0,14826437: 4 0,09452265: 1 0,096759511 9 0,33908353; 4 0,09452265; 1 0,09452265; EN2	1 0,151846436 7 0,092931744 8 0,095269863 2 0,358997709 7 0,092931744	0,394571 0,052480 0,052480 0,394571 0,052480
1 (A0) Methanol 0.260(010)97 2 (A5) Ammonia 0.138168919 F] 0.238757125 6 [5] 0.138168919 7 0.38168919 0 Citaria 1 T1 12 T1 13 1 14 T2 15 0 16 0 17 T2 18 0 19 0 10 0 10 0 11 T2 12 0 13 0 14 14 15 0 16 0 16 0 17 0 18 0 19 0 10 0 10 0.008976871 10 0 10 0 10 0 10 0 10	0,198589861 0,112488736 0,275046464 0,112488736 atives	0,163229747 5 0,119271483 6 0,289845891 5 0,119271483 0,119271483 73 0,019271483 0,019271483	7 0,189541021 3 0,132487568 1 0,277539265 3 0,132487568 1 1,12487568 1 1,12487568	$S_i = \sum_{j=1}^{n} \frac{w_j(f_j^*)}{(f_j^* - f_j^*)}$	0,206118434 0,185163803 0,133750843 0,263947943 0,133750843 $-f_{ij})$ $f_{j}^{-})$	0,057124248 0,210577749 0,15908559 0,29437551 0,057124248	0,177887702 0,130727594 0,263262227 0,130727594 $R_i = max_j \frac{w_j(j)}{(f_j^i)}$ EC4	0,100557004 0,104116111 0,324884924 0,100557004 $f_{j}^{e^{a}} - f_{ij})$ $-f_{j}^{-})$ EN1	4 0,09452265 0,096759511 1 0,339083533 4 0,094522655 EN2	7 0,092931744 8 0,095269863 2 0,358997709 7 0,092931744 EN3	0,052480 0,052480 0,394571 0,052480 0,052480
1 (A0) Methanol 0.260(010)97 2 (A5) Ammonia 0.138168919 F] 0.238757125 6 [5] 0.138168919 7 0.38168919 0 Citaria 1 T1 12 T1 13 1 14 T2 15 0 16 0 17 T2 18 0 19 0 10 0 10 0 11 T2 12 0 13 0 14 14 15 0 16 0 16 0 17 0 18 0 19 0 10 0 10 0.008976871 10 0 10 0 10 0 10 0 10	0,198589861 0,112488736 0,275046464 0,112488736 atives	0,163229747 5 0,119271483 6 0,289845891 5 0,119271483 0,119271483 73 0,019271483 0,019271483	7 0,189541021 3 0,132487568 1 0,277539265 3 0,132487568 1 1,12487568 1 1,12487568	$S_i = \sum_{j=1}^{n} \frac{w_j(f_j^*)}{(f_j^* - f_j^*)}$	0,185163803 0,133750843 0,263947943 0,133750843 $-f_{ij})$ $f_{j}^{-})$	0,210577749 0,15908559 0,29437551 0,057124248	0,177887702 0,130727594 0,263262227 0,130727594 $R_i = max_j \frac{w_j(j)}{(f_j^i)}$ EC4	0,100557004 0,104116111 0,324884924 0,100557004 $f_{j}^{e^{a}} - f_{ij})$ $-f_{j}^{-})$ EN1	4 0,09452265 0,096759511 1 0,339083533 4 0,094522655 EN2	7 0,092931744 8 0,095269863 2 0,358997709 7 0,092931744 EN3	0,052480 0,052480 0,394571 0,052480 0,052480
2 (A5) Ammonia 0.133163919 PT 0.2367125 (F) 0.138168919 5 0.138168919 7 0.138168919 7 0.138168919 7 0.138168919 7 0.138168919 8 0.138168919 9 0.138168919 9 0.138168919 9 0.138168919 9 0.138168919 9 0.138168919 9 0.138168919 9 0.0138152 1 (A3) LNC 0.01685237 1 (A3) LNG 0.01685237 1 (A3) LNG 0.0185237 1 (A3) LNG 0.0185237 1 (A3) LNG 0.01895237 1 (A3) LNG 0.01895237 2 (A4) Methanol 0.02791382 2 (Calculating Ci values 0.0189766371 3 (S*=Mim R); S*=Max St; 1 (S*=Mim R); S*=Max St; 2 (Criteria or attribute SI	0,112488736 0,275046464 0,112488736 atives 0,112488736	5 0,119271483 0,289845891 0,119271483 10,119271483 13 0,119271483 13 0,019271483	3 0,132487568 1 0,277539265 3 0,132487568 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$S_i = \sum_{j=1}^{n} \frac{w_j(f_j^*)}{(f_j^* - f_j^*)}$	0,133750843 0,263947943 0,133750843 $-f_{ij})$ $f_{j}^{-})$	0,15908559 0,29437551 0,057124248	$R_{i} = max_{j} \frac{w_{j}(j)}{(f_{j}^{2})}$ EC4	0,104116111 0,324884924 0,100557004 $f_{j}^{*} - f_{ij}$ $- f_{j}^{-}$ EN1	0,096759511 0,339083533 0,094522653	8 0,095269863 2 0,358997709 7 0,092931744 EN3	0,0524800 0,3945716 0,0524800 EN4
3 Pj 0.228757125 4 Fj. 0.138168919 5 0.138168919 6 0.138168919 7 Determing values of Si and Ri with respect to the five alternative attribution of the second	0.275046464 0.112488736 atives 0	0,289845891 0,119271483 T3 0 0,024220237	1 0,277539265 3 0,132487568 T4 0 0	$S_{i} = \sum_{j=1}^{n} \frac{w_{j}(f_{j}^{*})}{(f_{j}^{*} - f_{j}^{*})}$	0,263947943 0,133750843 - f _{ij}) f _j)	0,29437551 0,057124248	0,263262227 0,130727594 $R_i = max_j \frac{w_j(j)}{(f_j')}$ EC4	0,324884924 0,100557004 $f_j^* - f_{ij}$ $- f_j^-$ EN1	0,33908353; 0,09452265; EN2	2 0,358997703 7 0,092931744 EN3	0,3945716 0,0524800 EN4
tip 0,138168919 5 0 7 Determing values of Si and Ri with respect to the five alternatix 9 0 1 T1 1 T2 1 (A) LSFO 0 0 2 (A) Methanol 0 0,03276158 3 (A3) LNC 0 0,03276158 3 (A5) Ammonia 0 0,039766871 6 7 8 2 9 2 10 2 10 2 13 0 14 0 15 0 16 1 17 1 18 1 19 1 10 1 10 1 11 1 12 1 13 1 14 1 15 1 <	0,112488736 atives 0	T3 0,024220237	3 0,132487566 T4 0 0	$S_i = \sum_{j=1}^{n} \frac{w_j (f_j^*)}{(f_j^* - f_j^*)}$	0,133750843 - f _{ij}) f _j)	0,057124248	$0,130727594$ $R_i = max_j \frac{w_j(j)}{(f_j')}$ EC4	$(j_{j}^{*} - f_{ij})$ $(j_{j}^{*} - f_{ij})$ $(j_{j}^{*} - f_{j})$ EN1	0,09452265 EN2	7 0,092931744 EN3	0,0524800 EN4
Ceterming values of Si and Ri with respect to the five alternativ Determing values of Si and Ri with respect to the five alternativ Criteria TI Criteria TI Colored 0 (At) LSFO 0 (At) LSFO 0,0022765158 (At) LSFO 0,002975158 (At) Arbanol 0,002913852 (At) Arbanol 0,0099766871 Calculating Ci values 0 (S'=Min Si, R'= Min Ri; S-=Max Si; Criteria or attribute Si	atives 0	T3 0 0,024220237	T4 0 C	$S_i = \sum_{j=1}^n \frac{w_j(f_j^*)}{(f_j^* - f_j^*)}$	$\frac{f_{ij}}{f_j}$		$R_i = max_j \frac{w_j(j)}{(f_j')}$ EC4	$\frac{f_j^* - f_{ij}}{-f_j^-)}$ EN1	EN2	EN3	EN4
Determing values of Si and Ri with respect to the five alternative Criteria T1 T2 Criteria T1 T2 (A1) LSFO 0 0 (A3) LNC 0,03265138 0 (A3) LNG 0,03265138 0 (A3) LNG 0,02791382 0 (A5) Ammonia 0,089766871 0 Calculating Qi values 0 0 (S'=Min Si, R'= Min Ri; S ==Max Si; R. = Max Criteria or attribute Si Ri	0	0 0,024220237	T4 0 0	4			EC4	EN1			
Criteria T1 T2 (A1) LSFO 0 0 (A2) ISFO 0,032765138 0 (A3) ILSFO 0,01695237 0 (A4) ILSFO 0,02791382 0 (A4) ILSFO 0,029766871 0 (A5) Ammonia 0,089766871 0 (A5) Caclulating Qi values 0 0 (C'=Min Si, R'= Min Ri; S- =Max Si; R- = Ma (S'=Min Si, R'= Min Ri; S- =Max Si; R = Ma (S' Si Ri	0,036560158	0 0,024220237	T4 0 0	4			EC4	EN1			
(A1) LSFO 0 (A2) BSFO 0,022765158 (A3) LSC 0,016895237 (A4) Methanol 0,022913852 (A5) LSC 0,089766871 (A5) Ammonia 0,089766871 7 3 9 Calculating Qi values 3 (S ⁻ Min Si, R ⁺ = Min Ri; S. =Max Si; R. = Mat Si 1 5 5 5 5 5 6 5 6 1 5 7 3 6 7 4 5 7 5 6 7 6 5 7 7 7 7 8 7 7 9 5 7 10 5 7 11 5 7 12 5 7 13 5 7 14 5 7 15 5 8	0,036560158	0 0,024220237	D C) (EC2 0	LLS (
2 (A2) BSFO 0,03275138 (A3) LNG 0,01689237 (A4) Methanol 0,01689237 5 (A5) Ammonia 0,08976871 7 8 Calculating Cirvalues 1 (S*=Min R); R*= Min R); S-=Max Si; R-= Ma 2 3 5 (Criteria or attribute Si Ri	0,036560158		7 0.000730767	1				0.005370468			0,010531
1 (A3) LNC 0.01689237 (A4) Methanol 0.027913852 (A5) Ammonia 0.08976671 7 0.08976671 9 0.01049124 9 0.029713852 9 0.01049124 9 0.01049124 9 0.01049124 9 0.01049124 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 11 5 12 5 13 5 14 5 15 5	0,050500158			0,035107308	0.027544001	0.000100007	0,008009291	0,003370408	0,00392857	7 0,011832572	0,010331
(A4) Methanol 0,022913852 (A5) Ammonia 0,089766871 0 0 0 Calculating Qi values (S ⁼ -Min Si; R ⁱ = Min Ri; S-=Max Si; R-= Max 1 S 2 S 3 S 4 S 5 S 6 Si 8 Ri	0.026443274				0,027344001		0,008009291	0,037988575	0,04232044	0.042229259	
5 (A5) Ammonia 0,089766871 6 (A5) Ammonia 0,089766871 9 Calculating Qi values 0 167=Min Si; R'= Min Ri; S-=Max Si; R- = Ma 2 3 5 6 Criteria or attribute Si Ri	0.035362645				0,030094221		0.023160001				
5 9 Calculating Qi values 9 (S'=Nún Si; R'= Min Ri; S-=Max Si; R. = Ma 2 3 4 5 5 Criteria or attribute Si Ri											0,054239
1 (S'=Min Ri; S-=Max Si; R- = Ma 2 5 Criteria or attribute SI Ri	0,075186067	7 0,078061897	7 0,021175673	0,070875264	0,007753997	0,019153744	0,035953374	0,055578894	4 0,05374334	4 0,053762796	0,054239
1 2 3 4 5 5 Criteria or attribute Si Ri	Mau Di)					Faster in		a mainte añola	strategy of 'the major	المراجع والمتعادية والمراجع	
2 3 4 5 6 Criteria or attribute Si Ri	max ruj							New grant B	100 000 00	12	STI COULU Lake a va
I S Criteria or attribute Si Ri						$Q_i =$	$v \frac{(S_i - S^*)}{(S^ S^*)} + ($	$(1-v)\frac{(R_i-k)}{(R^{-}-k)}$	$\frac{R^*}{R^*}$, $i = 1, 2,,$	m	
Criteria or attribute Si Ri		Factor v	-			Factor v				Factor v	
		0,1	1			0,3	1			0,5	
		Qi	Rank based Qi	Rank based Si	Rank based Ri	Qi	Rank based C	Rank based	Rank based Ri	Qi	Rank based Qi
(Al) LSFO 0.031663338	0.011832572		0 1	1	1	-	1	1	1	1 0	
(A2) HSFO 0,321993626	0.047097319		4 2	2 3	2	0,331673392	2	2		0.32415315	
(A3) LNG 0,540760488	0.069189073	0.555562644				0.551090685					
(A4) Methanol 0,715142941	0,069189073					0.606112288		-		4 0.638321398	
(A5) Ammonia 0.982466904			1 5				5	2.05			
S*R* 0.031663338	0 11/66011		1	1 .	3	-	3	J J	1	- I	
3 S-,R- 0,982466904	0,11465911										
0,302400304	0,11465911 0,011832572 0,11465911	1					C1 (Acceptabl	o advantage)			

G47 👻 i 🗙	second se	7;F47:F51;0)								
в	с	D	E	F	G	н		J	к		L
8 Weighted Normalized Dec	cision Matrix		$V_{ij} = w_j r_{ij}$					TOSIS Technique			
9											
0											
1 Criteria	T1	T2	T3	T4	EC1	EC2	EC3		ENI	EN2	
2 (Al) LSFO		0,020679662		0,0058771	0,019582065		0,009887772	0,009465165	0,01641683		0,01743092
3 (A2) HSFO		0,014736526		0,0044658			0,009365846	0,008403657	0,017621576		0,018391
4 (A3) LNG		0,016381103			0,014059515		0,001918745	0,006988791	0,009099678		0,00804177
5 (A4) Methanol		0,014931191			0,01337326		0,007073091	0,006395663	0,005454155		0,00512685
6 (A5)Ammonia	0,012402992	0,008457586	0,00931056	0,0028055	0,009347795	0,009062154	0,005343522	0,004700098	0,005647199	3	0,00524818
7 8											
0 1-Determine Ideal best (V						ance from PIS and		(Di* and Di-)			
29 10 1-Determine Ideal best (V 11 Vj*= Max (Vij) and V-j = Min								(Di* and Di-)			
 1-Determine Ideal best (V Vj*= Max (Vij) and V-j = Min 2 	(Vij) for all criteria becau	use the decisi	on -making m	natrice is alr	eady normalized by	y Fuzzy AHP metho	ode	•		-	
0 1-Determine Ideal best (V 1 Vj*= Max (Vij) and V-j = Min 2 3 Criteria	(Vij) for all criteria becau	use the decisi	on -making m T3	natrice is alr T4	eady normalized by	y Fuzzy AHP metho	ode EC3	EC4	EN1	EN2	
1-Determine Ideal best (V) Vi*= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO	(Vij) for all criteria becau T1 0,021252946	T2 0,020679662	on -making m T3 0,02262592	natrice is alr T4 0,0058771	eady normalized by EC1 0,019582065	y Fuzzy AHP metho EC2 0,017883528	EC3 0,009887772	EC4 0,009465165	0,01641683		
1-Determine Ideal best (V) 1 Vj*= Max (Vij) and V-j = Min 2 3 3 Criteria 4 (A1) LSFO 5 (A2) HSFO	(Vij) for all criteria becau T1 0,021252946 0,018022688	T2 0,020679662 0,014736526	on -making m T3 0,02262592 0,01849457	natrice is alr T4 0,0058771 0,0044658	eady normalized by EC1 0,019582065 0,014512628	y Fuzzy AHP metho EC2 0,017883528 0,014297379	ode EC3 0,009887772 0,009365846	EC4 0,009465165 0,008403657	0,01641683 0,017621576		0,018391
0 1-Determine Ideal best (V 1 Vj*= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG	T1 0,021252946 0,018022688 0,019587275 0,019587275	T2 0,020679662 0,014736526 0,016381103	on -making m T3 0,02262592 0,01849457 0,01488883	T4 0,0058771 0,0044658 0,0040137	eady normalized by EC1 0,019582065 0,014512628 0,014059515	y Fuzzy AHP metho EC2 0,017883528 0,014297379 0,013965348	EC3 0,009887772 0,009365846 0,001918745	EC4 0,009465165 0,008403657 0,006988791	0,01641683 0,017621576 0,009099678		0,018391 0,00804177
0 1-Determine Ideal best (V 1 V/i ⁼ Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol	(Vij) for all criteria becau T1 0,021252946 0,018022688 0,019587275 0,01850097	T2 0,020679662 0,014736526 0,016381103 0,014931191	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202	T4 0,0058771 0,0044658 0,0040137 0,0040137	eady normalized b EC1 0,019582065 0,014512628 0,014059515 0,01337326	y Fuzzy AHP metho EC2 0,017883528 0,014297379 0,013965348 0,012545588	EC3 0,009887772 0,009365846 0,001918745 0,007073091	EC4 0,009465165 0,008403657 0,006988791 0,006395663	0,01641683 0,017621576 0,009099678 0,005454155		0,018391 0,00804177 0,00512685
0 1-Determine Ideal best (V 1 VJ ² - Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol 8 (A5) Ammonia	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.01850097 0.012402992	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055	eady normalized b EC1 0,019582065 0,014512628 0,014059515 0,01337326 0,009347795	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522	EC4 0,009465165 0,008403657 0,006988791 0,006395663 0,004700098	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199		0,018391 0,00804177 0,00512685 0,00524818
0 1.Determine Ideal best (V 1 Vj- Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol 8 (A5) Anmonia 9 Vj [*]	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.01850097 0.01820092 0.021252946	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154 0.017883528	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 VJ ⁻ Max (Vij) and V-j = Min 2	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.01850097 0.01820092 0.021252946	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154 0.017883528	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522	EC4 0,009465165 0,008403657 0,006988791 0,006395663 0,004700098	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 Vj ⁺ = Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Ammonia 9 Vj ⁺ 0 Vj- 1	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.01850097 0.01820092 0.021252946	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154 0.017883528	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 V[- Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol 8 (A5) Ahmonia 9 V[7] 0 V[3- 1 2	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.01850097 0.01820092 0.021252946	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154 0.017883528	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 Vjr = Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Amonia 9 Vjr. 0 Vjr. 2 3	(Vij) for all criteria becau T1 0,021252946 0,01802268 0,01857275 0,01850097 0,012402992 0,021252946 0,012402992	T2 0,020679662 0,014736526 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662 0,008457586	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592 0,00931056	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771 0,0028055	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,01743092 0,018391 0,00804177 0,00512685 0,00524818 0,018391 0,00512685
0 1-Determine Ideal best (V 1 Vj*= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Anmonia 9 Vj* 0 Vj- 1 4 Calculate Performace Sc	(Vij) for all criteria becau T1 0,021252946 0,01802268 0,01857275 0,01850097 0,012402992 0,021252946 0,012402992	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662	on -making m T3 0,02262592 0,01849457 0,01488883 0,01274202 0,00931056 0,02262592 0,00931056	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771 0,0028055	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	y Fuzzy AHP metho EC2 0.017883528 0.014297379 0.013965348 0.012545588 0.009062154 0.017883528	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 VJ- Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol 8 (A5) Ammonia 9 VJ' 0 VJ- 1 2 2 3 4 Calculate Performace Sc 5	(Vij) for all criteria becau T1 0,021252946 0,018022688 0,019587275 0,019587275 0,01958097 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 0,021262946 0,012402992 0,01240299 0,01240299 0,01240299 0,0124029 0,0124029 0,0124029 0,0124029 0,0124029 0,0124029 0,0124029 0,0124029 0,0124029 0,012 0,012 0,01 0,01 0,01 0,01 0,01 0,	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662 0,008457586 Rank Alternat	on -making n T3 0.02262592 0.01849457 0.01488883 0.01274202 0.00931056 0.02262592 0.00931056	T4 0,0058771 0,0044658 0,0044658 0,0040137 0,0040137 0,0028055 0,0028055 0,0028055	eady normalized by EC1 0.019582065 0.014512628 0.014059515 0.01337326 0.009347795 0.009347795	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V Vj'= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 6 (A3) ISFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Ammonia 9 Vj. 1 2 3 4 Calculate Performace Sc 6 (Attribute or Criteria	(Vij) for all criteria becau T1 0,021252946 0,01802268 0,01850097 0,01850097 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 core Pi Dt	T2 0,020679662 0,014736526 0,016381103 0,014931191 0,008457586 0,020679662 0,008457586 Rank Alternat Di-	on -making m T3 0.02262592 0.01849457 0.01488883 0.01274202 0.00931056 0.02262592 0.00931056 ives Technolc Di*+Di-	T4 0,0058771 0,0044658 0,0044658 0,0040137 0,0040137 0,0028055 0,0028055 0,0028055 0,0028055 Pi	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019582065	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 VJ'= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Antmonia 9 VJ' 0 VJ- 1 4 Colculate Performace Sc 5 6 Attribute or Criteria 7 (A1) LSFO	(Vij) for all criteria becau T1 0.021252946 0.018022688 0.019587275 0.019587275 0.012402992 0.021252946 0.012402992 0.012402992 oore Pi Di* 0.005026551	use the decision T2 0.020679662 0.014736526 0.014331103 0.008457586 0.008457586 0.008457586 Rank Alternat Di- 0.042415588	on -making m T3 0.02262592 0.01849457 0.01488883 0.01274202 0.00931056 0.02262592 0.00931056 ives Technolc Di*-Di- 0.04744214	T4 0,0058771 0,004658 0,0040137 0,0040137 0,0028055 0,0058771 0,0028055 0,0058771 0,0028055 9 9 9 9 9 10,0280488	eady normalized by EC1 0.019582066 0.014612628 0.014059515 0.01337326 0.009347795 0.009347795 Rank 1 1 1 1 1 1 1 1 1 1 1 1 1	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V Vj'= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNG 7 (A4) Methanol 8 (A5) Ammonia 9 Vj'- 1 2 4 Calculate Performace Sc 5 6 Attotute or Criteria 7 (A1) LSFO 8 (A2) HSFO	(Vij) for all criteria becau T1 0,021252946 0,018022688 0,019587275 0,019587275 0,019587275 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 0,021262946 0,012402992 0,021262946 0,012402992 0,021262946 0,012402992 0,021262946 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,012402992 0,02126294 0,01966513 0,018665139 0,01866513 0,01866513 0,018665 0,018 0,018 0,018 0,018 0,018 0,01 0,01	use the decision 0.020679662 0.014736526 0.0143736526 0.01483103 0.014831101 0.008457586 0.020679662 0.008457586 0.004311518 0.004215186 0.004215588 0.042415588 0.042415588 0.04245586	on -making m T3 0.02262592 0.01849457 0.01848883 0.01274202 0.00931056 0.02262592 0.00931056 ives Technolo Di*Di- 0.04744214 0.05131408	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771 0,0028055 0,0058771 0,0028055 0,0058771 0,0028055 9 9 9 9 9 9 9 10 0,0058071 0,0058071 0,0040137 0,0040137 0,0058071 0,0040137 0,0058711 0,0058711 0,0058711 0,0058711 0,0058711 0,0058711 0,0058711 0,0058711 0,0058711 0,005871 0,005971 0,0058710000000000000000000000000000000000	eady normalized by EC1 0.019582065 0.014512628 0.014059515 0.01337326 0.009347795 0.019582065 0.009347795 Rank 1 2	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V Vj'= Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Ammonia 9 Vj' 1 2 3 4 Calculate Performace Sc 6 6 Attribute or Criteria 7 (A1) LSFO 8 (A2) HSFO 9 (A3) LNC	(Vij) for all criteria becau T1 0,021252946 0,018022688 0,019597275 0,01850097 0,0124203992 0,021252946 0,0124203992 0,021252946 0,012402992 0,01240392 0,01240392 0,01240392 0,01240392 0,01240392 0,01240595 0,012555 0,0124555 0,01245555 0,01245555 0,01245555 0,01245555 0,0125555 0,0125555 0,0125555 0,01255555 0,01255555 0,01255555 0,012555555 0,0125555555 0,01255555555555555555555555555555555555	use the decision T2 0.020679662 0.014736526 0.014336526 0.008457586 0.008457586 0.008457586 0.008457586 0.008457586 0.0042115588 0.032655943 0.032657943	on -making m T3 0.02262592 0.01849457 0.01848883 0.01274202 0.00931056 0.02262592 0.00931056 vives Technolo Di*Di- 0.06131408 0.05248005	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055 0,0058771 0,0028055 0,0040137 0,0058771 0,0040137 0,0040137 0,0058751 0,0058771 0,0040137 0,0040137 0,0058711 0,0058711 0,0040137 0,004014 0,00505 0,0050 0,00505 0,00500000000	eady normalized by EC1 0,019582065 0,014512628 0,01459515 0,01337326 0,009347795 0,019682065 0,019682065 0,009347795 Rank 1 2 3 3	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391
0 1.Determine Ideal best (V 1 Vjr = Max (Vij) and V-j = Min 2 3 Criteria 4 (A1) LSFO 5 (A2) HSFO 6 (A3) LNC 7 (A4) Methanol 8 (A5) Ammonia 9 Vjr 0 Vjr 2 3	(Vij) for all criteria becau T1 0,021252946 0,018022688 0,019567275 0,01350097 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 0,021252946 0,012402992 0,02125294 0,013265813 0,013658139 0,0265551 0,0136564839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,026750073 0,037554839 0,0375548 0,0375548 0,037554 0,037554 0,03755 0,037554 0,03755 0,03755 0,0375 0,0375 0,0375 0,0375 0,0375 0,037 0,0375 0,037 0,0375 0,037 0,0375 0,037 0,03 0,03	use the decision 0.020679662 0.014736526 0.0143736526 0.01483103 0.014831101 0.008457586 0.020679662 0.008457586 0.004311518 0.004215186 0.004215588 0.042415588 0.042415588 0.04245586	on -making m T3 0.02262592 0.01849457 0.01488883 0.01274202 0.00931056 0.02262592 0.00931056 Di*•Di- 0.04744214 0.05148036	T4 0,0058771 0,0044658 0,0040137 0,0040137 0,0028055	eady normalized by EC1 0.019582065 0.014512628 0.014059515 0.01337326 0.009347795 0.019582065 0.009347795 Rank 1 2	Fuzzy AHP mether EC2 0.017883528 0.014297379 0.013965348 0.009062154 0.012545588 0.009062154	EC3 0,009887772 0,009365846 0,001918745 0,007073091 0,005343522 0,009887772	EC4 0.009465165 0.008403657 0.006988791 0.006395663 0.004700098 0.009465165	0,01641683 0,017621576 0,009099678 0,005454155 0,005647199 0,017621576		0,018391 0,00804177 0,00512685 0,00524818 0,018391

Appendix I. Fuzzy Analytical Hierarchy Process (Fuzzy AHP)

According to Liu et al., (2020), the principle of Fuzzy AHP method is described as follows:

The representation for the pairwise comparison is the primary step in a fuzzy AHP method to establish the pairwise comparison matrix with respect to experts' opinions, using the linguistic terms (e.g., Equal importance (EQI); Moderately importance (MI); More importance (MI); Strongly importance (SI); and Very strong importance (VSI); and Extremely strong importance (ESI)), to assign relative importance to one criterion/alternative over another criterion/alternative where a fuzzy set represents the linguistic terms; hence, a value between 0 and 1 is assigned by the membership function to each element. The correspondences between the fuzzy set and the linguistic terms must conform to fuzzy scale, which links the verbal and numerical expressions; for instance, fuzzy scales of 9 and 5 relative importance levels are widely used as depicted in Fig.1; thus, the same judgment produces the same measurable values.

Fig. 1. Fuzzy scale of 5-level and 9-level.

Mathematically, a fuzzy number is a convex normalized fuzzy set of the real line where its associated membership function is piecewise continuous; and a crisp number can be fuzzified. Various simple and representative fuzzy types have been proposed, for instance, trapezoidal fuzzy number and (TraFN) Triangular fuzzy number (TFN), to facilitate data processing such as arithmetic operations.

TFN is the most popular means of judgement representation and is easy to compute. It can be represented as a triple $\tilde{A} = (l, m, u)$, where l and u are respectively the smallest and the largest values with the smallest membership, but m is the value with the largest membership, as illustrated by Figure 4 (a). The TFN's membership function is determined as follows (Eq.1).

$$u(x) = \begin{cases} \frac{x-l}{m-l} & , \ l \le x \le m \\ \frac{(u-x)}{(u-m)} & , \ m \le x \le u \end{cases}$$
(1)

The a-cut set of a fuzzy set \tilde{A} described as \tilde{A}_{α} , is a crisp value set including all the elements with membership degrees greater than or equal to the specified value of α , as illustrated in Figure 4 (b) and Eq. (3).

$$\tilde{A}_{\alpha} = \{x, u(x) \ge \alpha\}$$
⁽²⁾

The a-cut set of a TFN can be depicted as an interval, as shown in Figure 4 (b). It helps de-fuzzily a TFN.

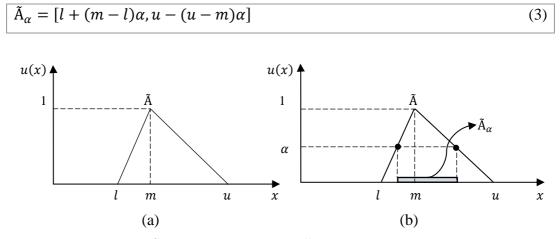


Figure 2. (a) A TFN, \tilde{A} ; (b) α -cut of a TFN, \tilde{A}_{α}

Appendix G. The pros and cons of the five alternatives selected for the case study

Alternative	Pros	Cos
technologies		
HSFO	-Outperforms other fuels in	-The least suitable option for both
	terms of total SO ₂	global warming potential (GWP)
	(associated SOx) emissions	and non-GWP gases ((Bilgili, 2021)
	during all life cycle	-The CO ₂ footprint associated with
	processes (Bilgili, 2021).	the use of a scrubber, as a compliant
	-Scrubbers can reduce SO _X	fuel option, increase from 1.5% to
	emissions by more than	3% (well-to-wake CO ₂ emissions)
	95%, and by about	(Faber et al., 2020).
	50% to 60% of PM	-Dump acidic washing water and
	emissions including BC	toxic mixture from the scrubber into
	emissions (Zisi et al., 2021).	the ocean that will damage the
		marine environment (Teuchies et
		al., 2020).
		-The costs of installing scrubbers'
		on board ships are costly and they
		are difficult to retrofit on small ships
		(Peng et al., 2021).
		-The installation costs of the
		different types of scrubbers are
		estimated at around 2-3 million
		euros (Bergqvist et al., 2015).
		-Retrofitting an existing ship
		typically costs 40% more than the
		installation of a scrubber on a new
		ship (Zhu et al., 2020).

LSFO	-LCA-Total environmental	-VLSFOs (blends) has the highest
	effects are higher than other	black carbon aerosol (BCA) (Bilgili,
	fuels (Bilgili, 2021).	2021).
	-Blended VLSFOs can	-An increase in the CO2 footprint,
	achieve low fuel prices and	well to wake, of 1% and 25% in
	can be produced in	refinery is projected during the
	sufficient quantities in the	desulfurization process to produce
	refinery compared to other	VLSFOs; principally due to the
	compliant fuels ISO 8217	process itself and throughout
	DM quality specifications;	refining the fuels depend to the level
	for instance, marine diesel	of desulfurization and the quality of
	(MDO) and gas oil (MGO)	the fuel produced (Faber et al.,
	(Einemo, 2020).	2020).
		-The price of VLSFO (0,5%m/m
		Sulphur content) is 30% higher than
		that of HFO (Peng et al., 2021).
		-Technical changes, on board ships,
		were mainly required for
		adaptability of engines related to the
		quality and the propriety of
		VLSFOs available in the market
		(CANCA & Kökkülünk, 2020).

LNG	-LNG fuelled engines have	-Issue with methane slip (Sphera,
	lower fuel costs per kWh	2019).
	(Output) (Balcombe et al.,	-Methane emissions must be
	2021).	reduced to 0.8-1.6% to ensure a
	-LNG as a marine fuel is	climate advantage over HFO.
	considered one of the most	-More than 10% of boil-off gas is
	promising alternative	released as methane emissions for a
	marine fuels in terms of	storage period of only 0 to 2 days
	economy and environmental	(Balcombe et al., 2021).
	benefits (Deng, 2021).	-GHG emissions resulting from CH4
	-LNG as a fuel reduces SO _X	emissions account for around 3 % of
	and particulate matter (soot)	the total WtW GHG emissions of
	emissions, CO2 emissions	oil-based fuels (Sphera, 2019).
	and NOx emissions by 95-	-Capital costs vary 5-40% higher
	100%, up to 25% and up to	than diesel engines (Balcombe et al.,
	90%, respectively,	2021).
	compared to traditional	-With methane emissions reduced to
	marine fuels such as HFO	0.5% of throughput, energy
	(Æsøy & Stenersen, D.	efficiency must increase 35% to
	2013; Choi et al., 2020)	meet a 50% decarbonisation target
	-Reduce GHGs up to 21%	(Balcombe et al., 2021).
	(WtW) (Sphera, 2019).	-Issues with boil-off gas
	-Reduce GHGs up to 28	(BOG/LNG) in marine
	% (TtW) (Sphera, 2019).	transportation and storage facilities
	-May offer ~30% reduced	as well as along LNG supply chains,
	CO2 emissions (Balcombe	resulting in more CH4 emissions
	et al., 2021).	into the atmosphere due to some
	-Enable IMO Tier III	existing operational inefficiencies
	compliance (Sphera, 2019).	(Perez et al., 2021; Kochunni &
		amp; Chowdhury, 2021).

		-The retrofitting of ship with LNG fuel is estimated to cost of up to 20% to 30% of the price of the ship because it requires an upgrade of
		the installation on board; such as,
		installing a LNG tank, a fuel gas
		supply system, and a gas value unit
		(Li et al.,2020).
Methanol	-Lower CO ₂ and does not	-The emission factor for nitrogen
	emit SO_X emissions and	oxides does not reach the tier III
	extremely decreases PM	limit (Fridell et al., 2021).
	emission formation (Zincir	-Produce higher life cycle GHG
	& Deniz,2021).	emission than conventional fuels.
	-Lower NO _X emissions by	-Must be produced from renewable
	30% (Svanberg et al., 2018).	feedstock/ biomass to offers great
	-PM emissions are	potential to reduce the life cycle
	significantly lower than for	GHG emission compared to
	fuel oils and similar to what	conventional fuel oils (Liu et
	is found for LNG engines	al.,2019).
	(Fridell et al., 2020).	-Methanol is worst for cost. It is 10–
	-Methanol from natural gas	140% higher than HFO (Balcombe
	performs well for air quality	et al., 2021).
	but poorly for both short and	
	long-term climate impacts	
	(Balcombe et al., 2021).	
	-Methanol is a unique fuel	
	that can provide high	

	engine efficiency and low	
	emissions than diesel fuel	
	(Zincir & Deniz, 2021)	
	-Required space and a very	
	toxic chemical (ABS, 2021).	
Ammonia	-Low GHG emissions (Al-	-Environmental benefits are
	Aboosi, 2021).	improved when it is produced from
	-Free carbon fuel, having	renewable energy and feedstocks.
	zero SO _X and	(Al-Aboosi, 2021).
	CO ₂ emissions (Cheliotis et	-Ammonia's high nitrogen content,
	al., 2021).	its combustion in high temperatures
		leads to increased NO _X emissions
		(Cheliotis et al., 2021).
		-Larger space requirement onboard
		ships than LNG and methanol
		cryogenic storage, which is required
		for liquefied hydrogen.
		-The additional propulsion system
		cost for an ammonia-fuelled vessel
		with an internal combustion engine
		has been estimated to approximately
		2-60% compared to a conventional
		HFO-fuelled vessel.
		-Ammonia is a toxic substance.
		(Hansson et al., 2020; ABS, 2020).
L	1	