
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2021 

Modeling driver distraction mechanism and its safety impact in Modeling driver distraction mechanism and its safety impact in 

automated vehicle environment. automated vehicle environment. 

Song Wang 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Transportation Engineering Commons 

Recommended Citation Recommended Citation 
Wang, Song, "Modeling driver distraction mechanism and its safety impact in automated vehicle 
environment." (2021). Electronic Theses and Dissertations. Paper 3796. 
Retrieved from https://ir.library.louisville.edu/etd/3796 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=ir.library.louisville.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3796?utm_source=ir.library.louisville.edu%2Fetd%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu


 

 

MODELING DRIVER DISTRACTION MECHANISM AND ITS SAFETY 

IMPACT IN AUTOMATED VEHICLE ENVIRONMENT 

 

By 

 

Song Wang 

B.S., Chongqing Jiaotong University, China, 2013 

M.Sc., Chongqing Jiaotong University, China, 2016 

 

 

 

 

A Dissertation  

Submitted to the Faculty of the 

J. B. Speed School of Engineering of the University of Louisville  

in Partial Fulfilment of the Requirements 

for the Degree of  

 

 

 

 

Doctor of Philosophy in Civil Engineering 

 

Department of Civil and Environmental Engineering Department 

University of Louisville 

Louisville, Kentucky 

 

December 2021 



 

 

 

 

Copyright 2021 by Song Wang 

 

All rights reserved 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

MODELING DRIVER DISTRACTION MECHANISM AND ITS SAFETY 

IMPACT IN AUTOMATED VEHICLE ENVIRONMENT 

 

By 

 

Song Wang 

B.S., Chongqing Jiaotong University, China, 2013 

M.Sc., Chongqing Jiaotong University, China, 2016 

 
A Dissertation Approved on 

 

 

November 30, 2021 

 

 

By the following Dissertation Committee: 

 

 

 

 

 

_______________________________________ 
Dr. Zhixia Li, Dissertation Director 

 

_______________________________________ 
Dr. Zhihui Sun 

 

_______________________________________ 
Dr. J.P. Mohsen 

 

_______________________________________ 
Dr. Ahmed Desoky 



iii 

 

DEDICATION 

 

 

This dissertation is dedicated to my parents 

Mr. Xu Wang 

and 

Mrs. Ping Li 

who have been giving me their unconditional love and full support. 

 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Zhixia 

Li, for his continuous guidance and support of my Ph.D. study and research. Dr. Li’s 

insights and comments helped me with establishing the overall direction of my dissertation. 

More importantly, Dr. Li taught me what research is and how research can benefit the 

general public in a great magnitude. I sincerely believe I will always benefit from the past 

five years' work with Dr. Li throughout my professional career. Five years ago, when I 

came to the University of Louisville for the first time, I was unsure how my future would 

be like. Five years later, I clearly understand where my career path will lead me and what 

kind of scientific researcher I should be. I am truly grateful for that.  

 I want to thank my dissertation committee members for their support and 

encouragement throughout my study at the University of Louisville. My thankfulness goes 

to Dr. J.P. Mohsen. I met Dr. Mohsen in Chongqing six years ago, and I appreciated that I 

could have a chance to discuss the potential opportunity of starting my Ph.D. journey in 

the United States. I also would like to thank Dr. Zhihui Sun for accepting being my 

dissertation committee. Dr. Sun offered me support and encouragement when I felt 

depressed with my research. I am very grateful to have Dr. Ahmed Desoky as my 

dissertation committee member. He offered me so much guidance and helped when I 

learned statistical modeling with continuous support and constructive comments on my 

research. In addition, I was also grateful that I could have the opportunity to work with 



v 

 

some of the excellent professors at the University of Louisville. Thank Dr. Yi Wang from 

the Department of Communication and Dr. Qi Zheng from the Department of 

Bioinformatics and Biostatistics for sharing their knowledge of their specialized field. 

 Many thanks go to the Kentucky Transportation Cabinet (KYTC) for their funding 

support through my research. Specifically, I would like to express my appreciation to Ms. 

Shane McKenzie, Mr. Jarrod Stanley, Mr. Jason Siwula, Mr. David Durman, Mr. Brad 

Franklin, and Mr. Brian Schroeder. All of my research data came from the research projects 

funded by KYTC.  

I also would like to thank my fellow graduate researchers, Mr. Abdulmaged 

Algomaiah, Mr. Muting Ma, Mr. Taoran Li, and Mr. Yingfan Gu from the Center for 

Transportation Innovation, University of Louisville, for their help during data collection, 

sharing research ideas, and most importantly, being such good friends. Also, I would like 

to thank Mr. Shang Jiang from the University of Canterbury for the guidance in terms of 

deep learning-based modeling techniques. 

A big shout-out also goes to the Orangetheory Fitness Studio at the Highland, 

Louisville. I feel extremely grateful for joining this tremendous studio and working out 

after a busy day of work so that I can stay positive for conquering any obstacles during the 

pursuit of my Ph.D. title. I have always been inspired by all coaches and staffs at the 

Highland studio and learnt that I can always go “all out” for any tasks in my life.  

Last but not least, this dissertation is dedicated to my parents, Mr. Xu Wang, and 

Mrs. Ping Li. They offered me their unconditional love and support throughout my study 

in a different country. 

 



vi 

 

ABSTRACT 

MODELING DRIVER DISTRACTION MECHANISM AND ITS SAFETY 

IMPACT IN AUTOMATED VEHICLE ENVIRONMENT 

Song Wang 

November 30, 2021 

Automated Vehicle (AV) technology expects to enhance driving safety by eliminating 

human errors. However, driver distraction still exists under automated driving. The Society 

of Automotive Engineers (SAE) has defined six levels of driving automation from Level 

0~5. Until achieving Level 5, human drivers are still needed. Therefore, the Human-

Vehicle Interaction (HVI) necessarily diverts a driver’s attention away from driving.  

 Existing research mainly focused on quantifying distraction in human-operated 

vehicles rather than in the AV environment. It causes a lack of knowledge on how AV 

distraction can be detected, quantified, and understood. Moreover, existing research in 

exploring AV distraction has mainly pre-defined distraction as a binary outcome and 

investigated the patterns that contribute to distraction from multiple perspectives. However, 

the magnitude of AV distraction is not accurately quantified. Moreover, past studies in 

quantifying distraction have mainly used wearable sensors’ data. In reality, it is not realistic 

for drivers to wear these sensors whenever they drive. Hence, a research motivation is to 

develop a surrogate model that can replace the wearable device-based data to predict 



vii 

 

AV distraction. From the safety perspective, there lacks a comprehensive understanding of 

how AV distraction impacts safety. Furthermore, a solution is needed for safely offsetting 

the impact of distracted driving. 

In this context, this research aims to (1) improve the existing methods in 

quantifying Human-Vehicle Interaction-induced (HVI-induced) driver distraction under 

automated driving; (2) develop a surrogate driver distraction prediction model without 

using wearable sensor data; (3) quantitatively reveal the dynamic nature of safety benefits 

and collision hazards of HVI-induced visual and cognitive distractions under automated 

driving by mathematically formulating the interrelationships among contributing factors; 

and (4) propose a conceptual prototype of an AI-driven, Ultra-advanced Collision 

Avoidance System (AUCAS-L3) targeting HVI-induced driver distraction under 

automated driving without eye-tracking and video-recording. 

Fixation and pupil dilation data from the eye tracking device are used to model 

driver distraction, focusing on visual and cognitive distraction, respectively. In order to 

validate the proposed methods for measuring and modeling driver distraction, a data 

collection was conducted by inviting drivers to try out automated driving under Level 3 

automation on a simulator. Each driver went through a jaywalker scenario twice, receiving 

a takeover request under two types of HVI, namely “visual only” and “visual and audible”. 

Each driver was required to wear an eye-tracker so that the fixation and pupil dilation data 

could be collected when driving, along with driving performance data being recorded by 

the simulator. In addition, drivers’ demographical information was collected by a pre-

experiment survey.  
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As a result, the magnitude of visual and cognitive distraction was quantified, 

exploring the dynamic changes over time. Drivers are more concentrated and maintain a 

higher level of takeover readiness under the “visual and audible” warning, compared to 

“visual only” warning. The change of visual distraction was mathematically formulated as 

a function of time. In addition, the change of visual distraction magnitude over time is 

explained from the driving psychology perspective. Moreover, the visual distraction was 

also measured by direction in this research, and hotspots of visual distraction were 

identified with regard to driving safety. When discussing the cognitive distraction 

magnitude, the driver’s age was identified as a contributing factor. HVI warning type 

contributes to the significant difference in cognitive distraction acceleration rate. After 

drivers reach the maximum visual distraction, cognitive distraction tends to increase 

continuously. Also, this research contributes to quantitatively revealing how visual and 

cognitive distraction impacts the collision hazards, respectively. 

Moreover, this research contributes to the literature by developing deep learning-

based models in predicting a driver’s visual and cognitive distraction intensity, focusing 

on demographics, HVI warning types, and driving performance. As a solution to safety 

issues caused by driver distraction, the AUCAS-L3 has been proposed. The AUCAS-L3 is 

validated with high accuracies in predicting (a) whether a driver is distracted and does not 

perform takeover actions and (b) whether crashes happen or not if taken over. After 

predicting the presence of driver distraction or a crash, AUCAS-L3 automatically applies 

the brake pedal for drivers as effective and efficient protection to driver distraction under 

automated driving. And finally, a conceptual prototype in predicting AV distraction and 
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traffic conflict was proposed, which can predict the collision hazards in advance of 1.10 

seconds on average.
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CHAPTER 1: INTRODUCTION 

1.1 Background 

While Automated Vehicle (AV) technology has emerged to provide warnings, assistance, 

or guidance to ensure safe driving, driver distraction is still a critical component under 

automated driving in terms of driving safety. A notable reason is that the Society of 

Automotive Engineers (SAE) has defined six levels of automation from Level 0 (zero 

automation) to Level 5 (full automation) (SAE International, 2016). As long as Level 5 

automation has not been achieved, human drivers are still needed in the automated driving 

environment. For example, human drivers are responsible for monitoring the driving 

environment and taking over the vehicle, if necessary, under Level 1 or 2 automation. 

Although human drivers do not need to monitor the driving environment under Level 3 

automation, they are still required for taking over the vehicle if the Level 3 Automated 

Driving System (ADS) requests. Therefore, human drivers need to be alerted if in a vehicle 

operating under Level 3 automation. Under this context, the Human-Vehicle Interaction 

(HVI) necessarily diverts a driver’s attention away from safe driving. Moreover, existing 

research has suggested that the delayed response to HVI under AV disengagement causes 

safety issues (S. Wang & Li, 2019a, 2019b). To summarize, it is imperative to understand, 

quantify, and predict driver distraction under automated driving so that strategies can be 

proposed in alleviating the impact of driver distraction on safety. 
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Driver distraction has been widely studied, along with modeling visual and 

cognitive distraction as well as their influences on driving safety (Choudhary & Velaga, 

2017a; Hansen et al., 2017; P. Li et al., 2021; Y. Liang & Lee, 2014; Oviedo-Trespalacios 

et al., 2016; Y. Zhang et al., 2021a). Existing research mainly focuses on measuring non-

AV-related driver distraction. Specifically, these driver distraction methods are typically 

achieved through Detection Response Task (DRT) (Bruyas & Dumont, 2013; Conti-

Kufner, 2017; Engström et al., 2013; Innes et al., 2019; Thomas A Ranney et al., 2014; 

Stojmenova & Sodnik, 2018a), including some of the most recent studies (Biondi et al., 

2020; G. Li et al., 2021; Trommler et al., 2021b). Distraction was quantified by the 

response times and the hit rates as participants are required to respond to a sensory stimulus 

every 3-5 seconds (Standardization, 2016). Longer reaction times or lower hit rates indicate 

a higher level of driver distraction. Moreover, similar techniques have been employed in 

measuring driver distraction, such as the box task method (Morgenstern et al., 2020; 

Trommler et al., 2021a) and the occlusion technique (Foley, 2008). Although these studies 

measured the magnitude of driver distraction by conducting various experiments, there are 

limitations with the existing research in modeling driver distraction from experimental 

design. 

 First, many existing studies quantified driver distraction while a human driver is 

operating the vehicle rather than in the automated driving environment (Morgenstern et al., 

2020; Stojmenova & Sodnik, 2018a; Trommler et al., 2021a). Hence, there is a lack of 

knowledge on how we can understand and quantify driver distraction under automated 

driving. For example, these studies measured the distraction based on driving a 

conventional vehicle rather than an automated vehicle, which requires drivers to do tasks 
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that are unrelated to driving. Hence, the experimental design is not realistic, naturalistic, 

and suitable for directly applying to the driver distraction research under automated driving. 

Therefore, there is a research need to set up an experimental environment specifically 

designed for automated driving and address the distraction issues during the AV 

disengagement.  

From the engineering's point of view, an ultimate solution to address the driver 

distraction issues is to develop a system that can detect the existence of driver distraction 

and minimize the impact of driver distraction. Therefore, researchers contribute to filling 

this gap by employing Artificial Intelligence (AI) techniques to detect driver distraction. 

These methods are either machine learning-based (Aksjonov et al., 2019; McDonald et al., 

2020; Swathi et al., 2021; Z. Zhang et al., 2020) or deep learning-based methods (G. Li et 

al., 2021; Mase et al., 2020; Y. Zhang et al., 2021b; Zhao et al., 2020). Distraction under 

automated driving has been using these modeling techniques to model as well. The major 

advantage of these methods in modeling driver distraction is that drivers do not need to 

perform a certain non-driving related task (i.e., press the button on the steering wheel when 

a stimulus at present), which can be easily applied to simulation or real-world driving 

environment. Along with Controller Area Network-Bus (CAN-Bus) information data (i.e., 

speed, steering wheel angle, gas pedal position, brake pedal force), these studies have 

utilized one or more types of the following sensors to monitor the driver states in real-time 

such as visual sensors (i.e., eye tracking system, in-vehicle cameras), audio sensors (i.e., 

microphone), wearable sensors (i.e., electroencephalogram, heart rate monitor, galvanic 

skin response). Moreover, these studies predefine the circumstances that are considered as 

driver distraction as the ground truth data. With treating the driver distraction as a 
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categorical variable, these studies have employed the collected data from the 

aforementioned types of sensors as model inputs and developed prediction models using 

the predefined driver distraction as the model output. As a result, these studies have 

achieved high prediction accuracy in terms of detecting driver distraction. Although these 

studies contribute to the literature by developing models to predict driver distraction 

accurately and potential safety applications can be further developed based on these studies, 

these studies have used the Boolean binary classification of driver distraction, which is 

either distracted or not distracted. Furthermore, despite the fact that the driver distraction 

duration can be measured through eye-tracking or camera sensors, there lacks a discussion 

regarding the magnitude of driver distraction.  

 Figure 1.1 conceptually illustrates the differences between measure-based and 

estimation-based methods. As illustrated in Figure 1.1, measure-based research in 

modeling driver distraction primarily focuses on measuring the driver distraction using 

surrogate measures such as reaction time. Therefore, driver distraction is expected to be 

measured at certain timestamps depending upon the experiment design. In this case, the 

magnitude of driver distraction is measured as a discrete value without considering the 

impact from the time horizon. Figure 1.1(b) illustrates the estimation-based studies in 

detecting driver distraction, which primarily focuses on the occurrences of driver 

distraction rather than the magnitude. Moreover, there lacks an exploration of driver 

distraction duration, although it can be measured through visual sensors such as eye-

tracking systems and in-vehicle cameras.    
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(a) (b) 

Figure 1. 1 Conceptual Summary of Existing Research in Modeling Driver Distraction with 

(a) Measure-based and (b) Estimation-based Techniques.  

Existing research in quantifying driver distraction has mainly employed data from 

wearable sensors, including eye-tracking devices (He et al., 2021; Y. Liang & Lee, 2014), 

heart rate monitors (Brands et al., 2019; Makhtar & Sulaiman, 2020), and 

Electromyography (EEG) device (Y. Zhang et al., 2021a). In reality, human drivers are 

unlikely to wear these wearable sensors whenever they drive. Therefore, this research is 

also motivated to develop a surrogate method to replace the wearable device-based data to 

predict AV distraction. 

Once the distraction under automated driving can be quantified and predicted, it is 

time to investigate how driver distraction under automated driving impacts driving safety. 

Existing research also discussed the safety impacts brought by driver distraction. The 

collision hazards or safety effects caused by driver distractions are measured by the number 

of crashes, number of near-crashes, minimum time-to-collision (TTC), and braking 

reaction time. For example, Gao & Davis (2017) investigated the impact of driver 

distraction on the driver’s brake reaction time in freeway rear-end events in a car-following 

situation. It was concluded that driver distraction was associated with reaction time. 

Distraction duration (the distracted status when a leader braked) and secondary tasks were 
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related to reaction time. Yannis et al. (2016) investigated the impact of texting on young 

drivers’ behavior and safety when driving on a simulator. Texting leads to increased crash 

probability and shorter TTC.  

By comparing to visual distraction, the changes in driving performance associated 

with cognitive distractions have been shown to be qualitatively different (Angell et al., 

2006; Engström et al., 2005). One of the major differences is the lane-keeping performance. 

Strayer et al. (2015) indicated that visual distraction had been shown to increase lane 

position variability, whereas cognitive distraction has been shown to decrease the 

variability of lane position. Another major difference is stems from eye movement. Many 

studies have also found that the driver’s visual scanning behavior is more likely to narrow 

towards the center of the road if he or she is cognitively distracted (Engström et al., 2017; 

Kountouriotis et al., 2016; Kountouriotis & Merat, 2016; Y. Liang & Lee, 2010). 

While existing studies have evaluated collision hazards caused by distracted driving 

in either macroscopic or microscopic manner, the function of collision hazards caused by 

distracted driving with the aforementioned contributing factors is not well-established. In 

other words, the dynamic nature of how and why driver distraction results in collision 

hazards have not been theoretically modeled. Understanding the driver distraction 

mechanism will be facilitated if the collision hazards caused by distracted driving can be 

mathematically described. Vehicle manufacturers can benefit from it the protocol in 

designing their own distracted driving warning system.  

 Moreover, driving safety expects to be more enhanced with vehicle-to-

infrastructure (V2I) wireless communication enabled by CAV technologies. The CAV 

technology allows data exchange between vehicles and infrastructures so that drivers are 
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notified with safety warnings via in-vehicle heads-up or heads-down displays. Although 

the CAV technology expects to enhance driving safety, human drivers are still responsible 

for responding to the issued safety warnings. For example, when CAV alerts drivers with 

a driving safety-related warning, the driver expects to receive the safety benefits provided 

by the CAV if he or she acts in response to the warning. If the warning is displayed for an 

extended period that exceeds the time driver's need for processing the meaning of the 

warning message, the driver’s attention will voluntarily be diverted away from the road 

from time to time. Hence, there is a tradeoff in the display duration that drivers can receive 

maximum safety benefits provided by CAV technology and minimum collision hazards 

caused by diverted attention away from the road. In addition, similar tradeoffs in terms of 

display location (i.e., in-vehicle heads up display, in-vehicle heads-down display, center 

stack, infotainment), transparency percentage of the displayed safety warning (limited to 

in-vehicle heads-up display), etc. Existing studies have not identified the optimized 

thresholds regarding the aforementioned parameters in designing the HVI under the CAV 

environment.    

On the other hand, many of the driving tasks currently performed by human drivers 

are becoming automated. For example, Level 2 and Level 3 driving automation enables 

technology readiness to provide human drivers with hands-free and feet-free driving under 

certain circumstances. However, these levels of driving automation require human drivers 

to take over driving due to a technology issue caused by the perception, planning, and 

control of automated vehicles (S. Wang & Li, 2019a). Human drivers expect to take over 

driving immediately to avoid any potential crashes or near-crashes in these cases. The 

aforementioned tradeoff issues still exist in vehicles operating under automated driving, 
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especially under Level 2 or Level 3 automation. Any design flaws regarding the take-over 

request such as display location, display duration, and transparency of the displayed safety 

warning (limited to in-vehicle heads-up display) will result in a longer perception-reaction 

time in response to the take-over request. Suppose the human driver is in a low Situation 

Awareness (SA) level or distracted by any non-driving related tasks. In that case, it might 

take an extended time to take over the driving and cause potential collision hazards. 

Existing studies have not identified the optimized thresholds regarding variables of take-

over request in automated driving systems, either. 

In order to further improve the design of HVI under AV technology by bringing 

more safety benefits and less distraction to the driver, it is necessary to understand how 

Advanced Driver-Assistance System (ADAS) or Automated Driving System (ADS) work, 

especially to mathematically describe the safety benefits and hazards of ADAS and 

automated driving systems from the mechanisms’ perspective. For example, a key 

parameter in designing ADAS is the duration of issuing safety warnings. The traditional 

approach of identifying the duration of issuing a safety warning in achieving the maximum 

safety benefits is to test multiple sets of durations of issuing safety warnings through a 

driving test, which is time-consuming and inaccurate. Once the mechanisms of both safety 

benefits and distraction of ADAS are mathematically formulated, the optimum values of 

the parameters in designing ADAS (i.e., duration of issuing safety warnings) in maximizing 

safety benefits can be obtained without conducting driving experiments, which is more 

accurate and convenient.  

Although the emerging AV technology acts as a game-changer in improving 

driving safety performance by eliminating collision hazards caused by human errors, driver 
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distraction is still a primary concern of driving safety (Cunningham & Regan, 2018; He & 

Donmez, 2019; S. C. Lee et al., 2021; Q. Li et al., 2021). A major reason is that human 

drivers are more or less responsible for performing certain driving tasks depending upon 

the level of automation unless the vehicle is operating under full automation (SAE 

International, 2018), which might take a few decades. Therefore, driver distraction will still 

exist under the CAV environment for a long period of time. Existing research has been 

investigating driver distraction under automated driving. Evidence from current practice 

has been focusing on non-driving related tasks on either takeover performance or driving 

safety under automated driving (Choi et al., 2020; Du et al., 2019; S. C. Lee et al., 2020; 

Wörle et al., 2020; Y. Wu et al., 2020). Although these studies extensively explored the 

potential hazards under specific non-driving related tasks through both qualitative and 

quantitative analysis, there lacks an investigation on how to anticipate the collision hazards 

due to driver distraction and take actions in advance to improve driving safety. 

On the other hand, existing studies have been proposing and developing takeover 

warning systems under specific automated driving systems that can increase drivers’ 

situation awareness so that the takeover action can be performed in a timely manner (He et 

al., 2021; S. Ma et al., 2021; W. Zhang et al., 2021). Despite the fact that these systems 

effectively alert drivers in response to an upcoming takeover, the decision to take over the 

driving is still up to the driver. Any miscommunication between the driver and the system 

has the potential to result in collision hazards. 

The motivations for exploring the driver distraction under automated driving and 

proposing takeover warning systems come from the terms and definitions of automated 

driving levels guidelines proposed by the Society of Automotive Engineers (SAE). Per 
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SAE (SAE International, 2018), the Level 3 Automated Driving System (ADS) requires 

human drivers to drive when the system requests. However, when the automated driving 

features are engaged, SAE suggests that human drivers are just seated in the driver's seat 

and not responsible for monitoring the driving environment. The definition from the SAE 

leads to a two-part unsafe driving situation:  

(1) Human drivers might not be ready to take over the driving as quickly as possible 

due to potential driver distraction caused by non-driving related tasks. Existing research 

has suggested that non-driving related tasks significantly impact takeover time (Dogan et 

al., 2019; Q.-F. Lin et al., 2021; Q. Lin et al., 2020; Naujoks et al., 2019; Wandtner et al., 

2018). Unlike manual driving, drivers are less likely to be fully engaged when automated 

driving is in session. For example, their hands might not be on the steering wheel, and their 

foot might not be on top of the pedal, attempting to take over the driving under automated 

driving.  

(2) Even if taken over, it is still possible to result in crashes or collision hazards if 

the driver spends an excessive period of time on taking over or the deceleration rate is not 

large enough. Existing research has confirmed that longer takeover time significantly 

impacts the takeover quality in the format of either lateral control or longitudinal control 

(Du et al., 2020; S. C. Lee et al., 2021). 

Moreover, it has been proven that the aforementioned unsafe situations can happen 

in the real world. In March 2018, a jaywalker was hit by a self-driving Uber in Tempe, 

Arizona (Wakabayashi, 2018). The National Transportation Safety Board (NTSB) 

investigated the fatal crash onsite. It published the final report, revealing that the "safety 

driver" in the self-driving Uber did not take over the driving as requested, who was visually 
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distracted with non-driving related tasks while colliding with the jaywalker (National 

Transportation Safety Board, 2018). To summarize, the human driver still plays an 

important role in determining the safety of automated driving, especially when the 

automation level has not achieved Level 5 (full) automation. In particular, as the base level 

of ADS, Level 3 (conditional) automation has the potential to maintain the impact of driver 

distraction at a high level on takeover quality and, in turn, driving safety under automated 

driving. As collision avoidance systems (i.e., forward collision avoidance system) have 

already entered the vehicle market, these systems are conflict-actuated, in which the 

collision avoidance system works only there are collision hazards about to happen. 

Therefore, to address the aforementioned issues, what if a collision avoidance system can 

be added on Level 3 ADS, with predicting the occurrence of a crash in advance so that the 

current collision avoidance system can be better improved? 

Under this context, developing an AI-driven, Ultra-advanced Collision Avoidance 

System (AUCAS-L3) under Level 3 ADS is highly needed, in which this research attempts 

to fill this gap. The AUCAS-L3 attempts to prevent collision hazards from happening by 

addressing the aforementioned issues regarding the absence of taking over when Level 3 

ADS requests and the occurrences of traffic conflicts due to excessive long period of 

takeover time or low deceleration rate. By employing deep learning techniques, the 

AUCAS-L3 has the capability of automatically applying the brake pedal if (1) predicted 

the absence of takeover actions due to driver distraction before running into any complex 

or sudden driving situations where a takeover action is needed; and (2) predicted the 

probability of having a crash or traffic conflict prior to the occurrence of the crash or the 

conflict severity that could be measured. Therefore, this research contributes to the 
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literature by developing an “add-on” automated braking system under Level 3 ADS that 

can anticipate the safety hazards due to driver distraction and take actions in advance to 

prevent them from happening. Moreover, the “add-on” automated braking system requires 

non-human drivers’ involvement to address the controversy regarding AUCAS-L3 

regarding human drivers’ responsibility.  

1.2 Research gap identification 

In summary, the problems that lie in the current practice of driver distraction-related 

research can be identified as follow: 

• Existing research in measuring driver distraction has mainly conducted in human-

operating vehicles with requiring human drivers to perform additional tasks, which 

is unnaturalistic and not suitable for applying the experimental design and results 

directly to the modeling of driver distraction under automated driving.  

• Existing research in measuring driver distraction under AV environment has mainly 

pre-defined driver distraction as a binary variable (distracted vs. not distracted), 

which is not quantified accurately and there lacks a comprehensive understanding 

of driver distraction under automated driving from other dimensions. 

• There lacks a surrogate method that predicts driver distraction under automated 

driving without using data collected by wearable devices (i.e., eye-tracker, heart 

rate monitor, EEG device). 

• There lacks a further investigation on how driver distraction, including visual and 

cognitive distraction, influences collision hazards through a quantitative manner. 
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• There is a research need in conceptualizing, proposing, and developing a prototype 

as an ultimate solution in offsetting distraction’s impact on safety by predicting the 

occurrences of collision hazards due to driver distraction under automated driving.  

1.3 Research objectives 

In order to address the aforementioned research gaps in Section 1.2, the following 

objectives are established for this research: 

Objective 1: Improve the existing methods in quantifying Human-Vehicle Interaction-

induced (HVI-induced) driver distraction under automated driving. 

• Objective 1.1: Improve the existing methods in quantifying HVI-induced visual 

distraction under automated driving by adding direction and duration dimensions, 

with focusing on eye movement data and including temporal and spatial measures. 

• Objective 1.2: Improve the existing methods in quantifying HVI-induced cognitive 

distraction under automated driving by incorporating pupil dilation performance. 

Objective 2: Develop a surrogate driver distraction prediction model without wearable 

sensors’ data. 

Objective 3: Quantitatively reveal the dynamic nature of safety benefits and collision 

hazards of HVI-induced visual and cognitive distractions under automated driving by 

mathematically formulating the interrelationships among contributing factors.  

Objective 4: Propose a conceptual prototype of an AI-driven, Ultra-advanced collision 

avoidance system targeting HVI-induced driver distraction under automated driving with 

eye-tracking free and video-recording free. 

1.4 Outline of research methodology 

Figure 1.2 illustrates the heuristic framework of the research methodology. 
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 Firstly, an eye-tracker is applied as the major device to collect driver’s fixation and 

pupil dilation information, which is used to model visual and cognitive distraction, 

respectively. By conducting a driving simulator study in a vehicle operating under Level 3 

automation, the aforementioned gaze behavior data can be collected if study subjects 

(human drivers) wear the eye-tracker while performing the driving simulator study.  

 Second, the fixation and pupil dilation data reductions are then performed by 

identifying the fixation information (fixation location, duration) and pupil dilation 

information (baseline pupil diameter, changes of pupil diameter in percentage) during the 

process of HVI. Both the fixation and pupil dilation data reduction are completed until the 

driver engages in the driving. Per definition, driver distraction is a shift in attention away 

from safe driving towards a competing task. Specifically, visual distraction is defined as 

drivers’ eyes off the road, while cognitive distraction is defined as drivers’ minds off the 

road. Existing research has proved that the driver’s eye movement features can be a good 

indication of both visual and cognitive distraction (Hurtado & Chiasson, 2016; Kret & 

Sjak-Shie, 2019; Sullivan et al., 2017; Topolšek et al., 2016). Therefore, the fixation data 

is used to model the driver’s visual distraction, while the pupil dilation data is used to 

model the driver’s cognitive distraction. Specifically, the fixation data provides the 

readiness for modeling visual distraction from three perspectives: magnitude, direction, 

and time. Visual distraction magnitude is reflected by the fixation distance to the zero point 

of the visual distraction magnitude when driving. The visual distraction direction 

information can be obtained by converting the fixation location data from the Cartesian 

coordinate system to the polar coordinate system. The fixation’s duration reflects visual 

distraction time. 
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On the other hand, cognitive distraction is one-dimensional data and is reflected by 

the driver’s pupil dilation. As every individual’s pupil diameter is different, the pupil 

dilation is in a percentage format that measures the increase of pupil diameter as the 

indicator of cognitive distraction. A higher increase of pupil diameter in percentage 

suggests a higher cognitive distraction magnitude. The visual and cognitive distraction 

intensity is computed by integrating visual and cognitive distraction magnitude on time. 

Meanwhile, the changes of driver distraction in real-time are modeled through various 

statistical modeling and deep learning approaches. 

Third, the dynamic nature of how driver distraction influences driving safety is 

revealed quantitatively. Structural Equation Modeling (SEM) analyses are performed with 

focusing on both visual and cognitive distraction intensity. The potential factors that are 

investigated include takeover time, takeover warning types, age, and gender. The identified 

significant factors are regarded as mediating factors that explain why driver distraction 

impacts the probability of having a crash or near-crash. 

 Fourth, the optimized takeover time and driver’s age are obtained through a 

classification tree model. Through the modeling results, specific groups of drivers with age, 

gender identification are summarized in recommending the use of HVI types in terms of 

warning modalities.  

 Finally, a conceptual prototype of the “add-on” application is proposed in this 

research with addressing the collision hazards due to driver distraction under automated 

driving. The prototype has two “built-in” prediction functions that can predict whether the 

driver will take over the driving if requests and whether a traffic conflict will happen if 

taken over with employing the Artificial Neural Network (ANN) techniques. Once 
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predicted, the prototype can apply the brake pedal for drivers to avoid any traffic conflicts. 

The proposed prototype can be the ultimate solution to the collision hazards brought by 

driver distraction under the CAV environment. 

 

Figure 1. 2 Outline of Research Methodology 

 

1.5 Organization of the dissertation 

The dissertation is organized in the following sequence: 

 Chapter 2 presents an extensive literature review on the current practice of driver 

distraction research, including both measure-based and estimation-based driver distraction 

studies. Chapters 3 and 4 discuss the visual and cognitive distraction modeling results and 

their impact on driving safety, respectively. Chapter 5 presents the framework for 

developing the optimization function to achieve the maximal safety benefits and discusses 

the focus groups that recommend or do not recommend for specific modality of HVI. 
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Chapter 6 proposes the conceptual prototype of AI-driven, Ultra-advanced collision 

avoidance system with targeting HVI-induced driver distraction under automated driving 

and discusses its readiness in practice. Chapter 7 wraps the dissertation by drawing 

conclusions of this research, reinstating research limitations, and proposing future research 

directions.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Driver distraction definitions 

Driver distraction has become an important issue of road safety throughout the entire world. 

The definition of driver distraction has been discussed from multiple perspectives to 

understand it comprehensively. Driver distraction is defined as activities diverting a 

driver’s attention, according to the National Highway Traffic Safety Administration 

(NHTSA), which includes anything that takes the driver’s attention away from safe driving 

(i.e., talking over phone or texting, talking to people inside the vehicle, eating and driving). 

Treat (1980) summarized driver distraction as whenever “a driver is delayed in recognizing 

the information needed to safely accomplish the driving task due to the compelling of some 

event, activity, object, or person within or outside the vehicle that shifting driver’s attention 

away from the driving task”. Tijerina (2000) classifies driver distraction into two categories, 

namely “selective withdrawal of attention and biomechanical interference”. The former 

one is based on eyelid closure or eyes away from the road scene. The latter refers to the 

body shifting out of the “neutral seated position”. T A Ranney et al. (2001) have included 

cognitive distraction in the discussion of driver distraction, in which drivers are “lost in 

thought” and their attention is diverted away from the driving task to their thoughts without 

being distracted by external sources. Beirness et al. (2002) discovered that it is necessary 

to distinguish driver inattention from distraction. Green (2004) indicates that the driver’s 

attention is pulled away instead of being redirected voluntarily when distracted driving.   
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J. D. Lee et al. (2008) discussed various issues regarding the precision in terms of 

defining “driver distraction”. They suggested a definition of driver distraction from four 

perspectives: 

1) Driver distraction is delayed by the driver in the process of recognizing necessary 

information to maintain the vehicle safely from both the lateral and longitudinal 

controls. 

2) Driver distraction is caused due to any activity, event, object, or person inside or 

outside the vehicle.  

3) Driver distraction compels or tends to induce the driver’s attention away from 

driving tasks. 

4) Driver distraction compromises the driver’s auditory, biomechanical, cognitive, or 

visual facilities or combinations.    

Hedlund et al. (2006) defined driver distraction as a “diversion of attention from 

driving”, reducing the driver’s situation awareness, decision-making ability, and vehicle 

performance, as well as increasing the probability of having near-crashes, or crashes. J. D. 

Lee et al. (2008) revealed the definition of driver distraction as “the diversion of attention 

away from activities critical for safe driving toward a competing activity”.  

In summary, researchers have been refining the definition of driver distraction over 

the last 40 years. It can be concluded that when driving is distracted, a diversion of the 

driver’s attention will occur to a more competing activity or object located either inside or 

outside the vehicle, which extends the driver’s Perception-Intellection-Emotion-Volition 

(PIEV) process in safely maintaining the vehicle control from the perspectives of the lateral 
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and longitudinal control. Driver distraction can be classified as a visual distraction and 

cognitive distraction.   

2.2 Driver distraction studies  

2.2.1 Quantification of driver distraction 

Existing research measuring driver distraction has mainly adopted the following three 

methods to measure driver distraction: (a) Detection Response Task (DRT), a method for 

assessing the “attentional effects of cognitive load in a driving environment”, which 

requires a driver to respond to a stimulus showing up with a certain frequency (Kashevnik 

et al., 2021); (b) box task method, a method is designed to quantify the cognitive load under 

various non-driving-related tasks (Trommler et al., 2021b); and (c) occlusion technique, a 

method in estimating the visual workload of a driver with wearing a special helmet (Kujala 

et al., 2021). Table 2.1 summarizes the current practice in modeling driver distraction using 

measure-based techniques. 

Table 2. 1 Summary of Existing Research in Modeling Driver Distraction with Measure-

based Techniques 

Authors Measure-

based 

techniques 

Experimental setup Findings 

Trommler et al. 

(2021) 

DRT + box 

task method 
• Asked participants to react to the 

presented signal by pressing a 

button at the steering wheel. 

• Used the box task to simulate a 

car-following scenario and asked 

participants to adjust the size of 

the box by moving the steering 

wheel.  

• DRT + box task method 

is an easy-to-use method 

for measuring visual and 

cognitive distraction of 

drivers.  

Morgenstern et al. 

(2020) 

Box task 

method 
• Drivers were asked to perform 

one of the following tasks: box 

task + DRT, the lane-change test, 

driving through a simple course 

on the simulator. 

• The box task method 

reveals comparable 

results to the lane-

change test. 

• Reaction time was 

significantly higher if 

the driver was texting 

and entering the 
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destination than the 

benchmark driving 

N. Li & Boyle 

(2020) 

DRT • Participants were asked to 

perform driving tasks with two 

difficulty levels in three 

modalities (audio-only, visual-

only, hybrid). 

• Visual-only mode 

significantly increases 

participants’ cognitive 

load with a longer 

response time compared 

to audio-only. 

Biondi et al. 

(2020) 

DRT • Participants were asked to 

complete one of the four 

experimental tasks with 

increasing levels of cognitive 

demand. 

• A larger pupil diameter 

was observed when the 

n-back task was 

performed with the DRT 

in session. 

• The significant increase 

in cognitive load that 

accompanies DRT 

performance was also 

reflected in “higher self-

reported workload”. 

Guo et al. (2020) DRT • Instructed participants to respond 

to the vibrated tracker by clicking 

the button against the steering 

wheel when a tactile stimulus 

was presented. 

• Response rate is 

considered a solid 

indicator for the 

cognitive workload. 

• Response time does not 

appear to effectively 

detect cognitive 

workload. 

Innes et al. (2019) DRT • Participants performed multiple 

object tracking tasks while 

performing a DRT 

simultaneously.  

• The DRT is sensitive to 

workload changes. 

Stojmenova & 

Sodnik (2018b) 

DRT • Participants performed driving 

sessions with driving, responding 

to DRT stimuli, and conducting a 

cognitive task. 

• Auditory DRT version 

is more sensitive to the 

cognitive load’s effect. 

Conti-Kufner 

(2017) 

DRT • The sensitivity of head-mounted, 

remote, and tactile DRT was 

evaluated. 

• Head-mounted DRT has 

the minimal “obtrusive 

and affected concurrent 

task performance of 

other tasks the least”. 

Bruyas & Dumont 

(2013) 

DRT • Participants tried three DRT 

versions with head-mounted, 

tactile, and remote DRT.  

• Two driving scenarios were 

applied: driving on the motorway 

following the speed limit and 

driving through a series of 

curves.  

• DRT response time 

increases if the driving 

demand or the difficulty 

of the cognitive auditory 

task increases. 

Foley (2008) Occlusion 

technique 
• Drivers were required to wear the 

occlusion goggles when 

performing driving tasks.  

• The occlusion technique 

is an effective method in 

determining the demand 

of the driving situation.  
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2.2.2 Patterns contributing to driver distraction 

Technology readiness has offered the potential of collecting data from multiple sources so 

that driver distraction can be accurately estimated. The estimation-based driver distraction 

studies collected data from the perspectives of driving performance, eye movements, and 

physiological data. Specifically, the driving performance was collected by focusing on the 

lateral control, such as steering wheel turning angle (Z. Li et al., 2018; Y. Liang & Lee, 

2014; Yekhshatyan & Lee, 2013; Y. Zhang et al., 2021a), and longitudinal control, 

including deceleration rate (Haque & Washington, 2015; Z. Li et al., 2018; Przybyla et al., 

2015), vehicle speed (Aksjonov et al., 2019; Choudhary & Velaga, 2020; Iio et al., 2021; 

Iranmanesh et al., 2018; Z. Li et al., 2018; Y. Zhang et al., 2021a). Eye movement data has 

been proved as a good indication of both visual and cognitive distraction. Drivers’ 

distraction level can be estimated with their gaze behaviors in terms of fixations (Christian 

& Krause, 2017; Q. Li et al., 2021; Y. Liang & Lee, 2014; Yekhshatyan & Lee, 2013) and 

pupil dilation (Pfleging et al., 2016; F. Zhou et al., 2021). Recently, physiological data has 

been favored by researchers to detect driver distraction, including information on heart rate 

(Kuo et al., 2015), skin conductance (Y. Zhang et al., 2021a), and the 

electroencephalogram (EEG) (G. Li et al., 2021; Wali et al., 2021).   

 With the availability of multi-modal data sources, existing research has been 

employing machine learning or deep learning techniques to train, test, and validate the 

estimated results of driver distraction. Y. Liang & Lee (2014) developed a “layered 

algorithm” integrating the “Dynamic Bayesian Network” and supervised clustering to 

detect cognitive distraction by using eye movement data and vehicle performance measures. 

Y. Zhang et al. (2021a) introduced a deep “unsupervised multi-modal fusion network” to 
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detect driver distraction due to non-driving-related tasks (i.e., texting, eating, phone 

conversation). Z. Li et al. (2018) improved the driver distraction detection accuracy with a 

nonlinear autoregressive exogenous driving model focusing on naturalist driving data.  

Furthermore, these studies predefine the circumstances that are considered as driver 

distraction as the ground truth data. For example, Zhang et al. (2021) have created a 

decision rule to determine whether testing data should be classified as "distraction" or 

"normal driving" by calculating reconstruction error as a score. Li et al. (2018) have 

inspected the in-vehicle video data to determine whether the driver is attentive or distracted 

(i.e., texting, dialing). Liang and Lee (2014) have defined distraction as the driver 

performed a non-driving related task or not. Masood et al. (2020) have identified nine types 

of distracted driving situations (i.e., texting, calling, operating the radio) through in-vehicle 

camera sensors.  

2.3 Measurements of driver distraction 

2.3.1 Longitudinal control of the vehicle 

The indicators of driver distraction in terms of longitudinal control of the vehicle are speed-

related variables, steering wheel turning angles, and brake reaction time.  

Burns et al. (2002) demonstrated that driving performance would be impaired with 

phone conversations. The study recruited twenty drivers to drive through multiple test 

routes on a driving simulator. As a result, drivers tend to slow down if they talk via phones.  

According to speed-related performance measures such as standard deviation of speed, 

drivers had a significantly poorer control in terms of speed if using the hand-held phone. 

Jenness et al. (2002) measured driving performance with twenty-six participants driving 

on a simulator while eating, operating a CD player, reading directions, or placing calls by 
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using a voice-activated dialing system. The results suggest that reading while operating the 

CD player has the largest safety impact. Engström et al. (2005) investigated the effects of 

visual and cognitive load with the in-vehicle information system. They concluded that 

visual demand led to speed reduction and increased lane-keeping variation, while cognitive 

load increased gaze concentration toward the center of the road. Lansdown et al. (2004) 

investigated the impact of various in-vehicle information systems on the driver via a 

driving simulator study. Results reveal that interacting with secondary tasks resulted in 

significant speed reductions. Distractions from two separate tasks that happen 

simultaneously lead to a significantly greater mental workload on the driver compared to 

the distraction from one secondary task.  

Kountouriotis & Merat (2016) validated the finding that under “non-visual 

distractions” (i.e., talking on the phone, engaging verbal tasks that do not require a visual 

input), reduced lateral variability in steering and gaze patterns are fewer variables where 

participants concentrate their gaze towards the center of the road and their control in terms 

of the steering wheel. They concluded that driver distraction affects gaze, speed, and 

steering control.  

Gao & Davis (2017) investigated the impact of driver distraction on the driver’s 

reaction time in freeway rear-end events under a car-following situation. Driver distraction 

was associated with reaction time. Distraction duration and the type of secondary tasks 

were related to reaction time. Strayer et al. (2014) measured cognitive distraction while 

driving via three experiments. The experiment involved participants performing different 

mental tasks (i.e., listening to the radio, conversing with a passenger) while seated at a 

computer monitor to establish the cognitive workload of each task. Then, they were asked 
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to drive on a simulator with a lead vehicle. Performance measures such as brake reaction 

time and following distance were measured. In the last experiment, participants were 

required to drive an instrumented vehicle in a residential area while performing the tasks 

in the first experiment. Eye movement data were recorded this time. They concluded that 

the introduction of a voice-based system might increase driver distraction. 

In summary, driver distraction indicators from the vehicle's longitudinal control are 

mainly discussed through vehicle speed. However, simply measuring driver distraction 

through speed is incomprehensive because the impact of driver distraction on vehicle 

control is expected to be longitudinal and lateral. 

2.3.2 Lateral control of the vehicle  

Reed & Green (1999) compared the driving performance of six male and female drivers in 

driving on a freeway while occasionally dialing simulated phone calls. They found that the 

addition of the phone task increased the mean lateral speed in the vehicle by approximately 

43%, while in the simulator, the mean lateral speed increased by 158% with adding the 

phone task. Burns et al. (2002) assessed driving performance by twenty-one drivers 

through the Lane Change Test (LCT), a simple and low-cost standardized test scenario 

designed to measure driver distraction. The results suggest that participants showed greater 

lane deviation when changing path and performing a secondary task, compared to the 

circumstance without performing a secondary task. Besides, differences were also reflected 

in participants' duration in completing the secondary tasks. Cooper et al. (2009) 

investigated driver distraction when the tipping point of traffic flow stability is reached. It 

was concluded that driver distraction was found to affect lane change frequency 

significantly and average speed. 
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Harrison & Fillmore (2011) examined the effects of alcohol and driver distraction 

via a driving simulator study. Forty young adult drivers were recruited using a “divided 

attention task” as a distracter activity. Performance measures such as standard deviation of 

the lateral position (SDLP) was used as an indicator of driving impairment. In contrast, 

divided attention increases the impairing effects of alcohol on driving precision. Young et 

al. (2011) evaluated lateral control ability via a Lane Change Test (LCT) and event 

detection parameters to distinguish between visual-manual and cognitive surrogate IVIS 

tasks with different demand levels. Twenty-seven participants completed the LCT while 

performing visual search and math problem-solving tasks. Different patterns were 

observed in terms of the mean deviation and lane excursion between the visual and 

cognitive tasks. Cades et al. (2017) investigated the effects of Lane Departure Warning 

(LDW) on driving performance by recruiting participants to perform a non-driving related 

task designed to simulate cognitive effort while driving. They concluded that cognitive 

engagement impacts driver control of the vehicle, and the presence of LDW did not reduce 

the effects of cognitive engagement in a secondary task. 

2.3.3 Glance behavior 

The eye-tracking system can capture the glance behavior of drivers mounted remotely on 

the screen of vehicles or a device worn by drivers. Past studies have found that the eye-

tracking device is a valid and reliable research tool for measuring the visual workload 

(Strayer et al., 2014).  

Farber et al. (2000) employed the eye glance technique to measure the driver’s 

visual glance behavior by collecting the frequency and duration of eye glances at specific 

objects. It was concluded that drivers complete the tasks through a series of glances when 
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the driver performs a secondary task. Curry et al. (2002) used total eyes-off-road-time to 

measure the visual demand associated with the performance of a secondary task. It was 

concluded that the visual demand is highly correlated with the number of lane departures 

when performing secondary tasks. Kircher et al. (2014) conducted a driving simulator 

study exploring driver glance behavior with intermittent and continuous eco-driving advice. 

The findings revealed different glance patterns between continuous and intermittent 

displays. The study also indicated that drivers decrease their glance length to in-vehicle 

devices when the traffic situation is demanding. As mentioned above, the study conducted 

by Kountouriotis & Merat (2016) suggests that driver distraction affects gaze behaviors. 

Pipkorn & Piccinini (2020) analyzed the impact of off-path glances on rear-end conflicts 

through the naturalistic driving data. They concluded that the combination of short 

headway with glances transitioning from the road toward the mirror originates “visual 

mismatches” associated with a rapid change in the kinematic situation, causing the rear-

end near-crashes. Starkey et al. (2020) examined the effects of an advisory speed-related 

smartphone application on driving performance via a driving simulator study. The 

statistical results indicate no negative impacts on driver behavior by measuring the standard 

deviation of lane position, glance frequency, and total gaze duration for the application. 

Besides, the application does not distract drivers if properly configured. Hammond et al. 

(2019) investigated driver distraction prior to different “safety-critical events”. It was 

observed that drivers are more likely to be engaged in a safety-critical event if their glances 

away from forward were more than 2 seconds. 
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2.4 Measurement of collision hazards caused by driver distraction 

2.4.1 Reaction time 

Janssen et al. (1999) conducted a study to measure drivers' reaction times under the 

circumstances of using different real-time traffic information systems. They concluded that 

it is not necessarily to be considered safer by using this type of in-vehicle device than 

driving with a convenient way of receiving information. Olsson & Burns (2000) measured 

drivers’ visual distraction with a Peripheral Detection Task (PDT), measuring the amount 

of driver mental workload and visual distraction when driving. Thirteen participants were 

recruited by driving different road types while performing tasks. The significant 

differences between different tasks were observed in terms of PDT reaction time and hit 

rate. A significant difference was observed in reaction time when performing different 

secondary tasks instead of driving on different road types. The significant difference is also 

reflected in hit rates among different tasks. They also concluded that the PDT is an effective 

tool for measuring visual distraction and mental workload in an actual vehicle. Harms & 

Patten (2003) also employed peripheral detection as a measurement of driver distraction. 

The study found that PDT impacts the navigation conditions from drivers’ reaction times 

and hit rates. Jahn et al. (2005) investigated workload measures in driving by using 

peripheral detection. They concluded that the demands of traffic situations have a higher 

effects of the workload effects than the route guidance systems.  

In summary, reaction time has been used as the indicator of collision hazards caused 

by driver distraction. In order to understand the mechanism of increased collision hazards 

caused by driver distraction, performance measures from the microscopic perspective 

should be included in the discussion. 
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2.4.2 Take-over time (under automated driving) 

According to NHTSA, automated driving is expected to increase safety enhancement by 

eliminating human error, which accounts for 94% of all crashes. As long as the automated 

vehicle technology has not achieved full automation (Level 5), human drivers are still 

expected to take over the driving when the automated driving system requests. When 

driving under Level 1 to Level 4, human drivers’ responsibility is shifted from actively 

operating the vehicle to monitoring the driving environment under both hands-free and 

feet-free conditions.  

A safe and immediate transition from automated to manual driving is highly needed. 

Therefore, the design of the take-over request is the key to bringing human drivers’ 

attention to the take-over request and, in turn, switching to manual driving. Cabrall et al. 

(2020) investigated a design of the driver monitoring system that designed in adaptively 

backing up distracted drivers under automated driving. They conducted a driving simulator 

study by recruiting ninety-one participants driving with different forms of a driver 

monitoring system. They have demonstrated preliminary feasibility of the driver 

monitoring system the incorporate driving context information for distraction assessment. 

Bieg et al. (2020) examined differences in driver behavior concerning Level 2 and Level 3 

automation in a driving simulator experiment with thirty-one professional truck drivers. 

They concluded that drivers had difficulty adapting their behavior to different demands of 

Level 2 and Level 3 driving. The driver reactions show potentially critical lapses in 

attention when driving under Level 2 driving automation. Choi et al. (2020) tested the 

effects of cognitive and visual workloads after take-over request, respectively. It was 
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concluded that both cognitive and visual loads affected driving performance after the take-

over request, with the effects appearing in different time courses. 

In summary, take-over time in automated driving has been used as the measurement 

for collision hazards caused by distraction. However, with the relationship between take-

over time and minimum time-to-collision (TTC) remaining unexplored, the discussion of 

collision hazards caused by driver distraction in the context of automated driving is 

incomprehensive. 

 

2.5 Driver distraction under automated driving 

Per the definition of driving automation levels, drivers tend to be engaged in non-driving-

related tasks while automated driving is in session. Therefore, these non-driving related 

tasks might cause driver distraction and have an impact on takeover performance as well 

as driving safety. Choi et al. (2020) investigated the effects of cognitive and visual 

workloads on driving performance after taking over under automated driving. Participants 

were asked to complete automated driving on a simulator with and without non-driving 

related tasks, respectively. The results show that the non-driving related tasks affect driving 

performance after issuing the takeover request. Du et al. (2019) examined the impact of 

drivers’ emotions on takeover readiness and performance under Level 3 automation. They 

found that drivers have a better performance in negotiating the driving situations when they 

were calm. On the contrary, anger results in the “lowest takeover readiness” and the most 

“aggressive driving style” among all tested emotions. Lee et al. (2020) investigated the 

takeover quality affected by non-driving related tasks under automated driving. 

Longitudinal and lateral driving measures were evaluated under three categories of non-
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driving related tasks. As a result, the cognitive load of non-driving related tasks had a 

significant and negative correlation with both longitudinal and lateral measures. 

Furthermore, they also found that the influence of cognitive distraction on takeover quality 

is severer compared to other non-driving related tasks (i.e., physical, visual). Wörle et al. 

(2020) conducted a simulator study to investigate driving’s ability to take over the vehicle 

after engaging in non-driving-related sleeping tasks. The results indicate that the reaction 

time was extended by approximately 3-second after sleep compared to the wake condition. 

Wu et al. (2020) explored the effects of non-driving related tasks on driver’s drowsiness 

under Level 3 automation. The eyeblink duration was applied to evaluate drowsiness under 

automated driving. The results suggest that non-driving-related task engagements extended 

older drivers’ reaction time. Wandtner et al. (2018) evaluated the impact of different non-

driving related tasks on takeover performance under automated driving. The research 

reveals that non-driving related tasks modalities are essential in determining the takeover 

performance.  Yang et al. (2020) investigated glance behaviors in different levels of 

distraction under automated driving. They measured the “off-road glance duration” under 

different levels of distraction, suggesting that being eyes-off-the road before a takeover 

could cause more delay in the urgent takeover reaction than being hands-off-wheel. 

Klingegård et al. (2020) investigated how well drivers are able to engage in a non-driving-

related task while automated driving is in session. They found that drivers’ attention shifts 

from the road ahead towards the non-driving related tasks to a great extent. Lin et al. (2021) 

investigated the effects of various non-driving related tasks on drivers’ readiness in take-

over scenarios under Level 3 automation. The hands-on time was evaluated from the 

perspective of task, time budget, and gender. Liang et al. (2021) used an eye tracking device 
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to explore how visual engagement in non-driving related tasks affects changes in situation 

awareness of the driving environment after a takeover request. As a result, they found that 

time spent on viewing the driving scene is positively correlated to the dispersion of visual 

attention allocation. 

2.6 Current practice in proposing takeover warning systems 

As introduced in the previous section, drivers are prone to be engaged in non-driving 

related tasks under automated driving, which results in driver distraction and might cause 

safety hazards while driving. Therefore, existing research has proposed in-vehicle systems 

that can raise driver’s situation awareness and bring drivers back in the loop under 

automated driving. He et al. (2021) tested in-vehicle displays in supporting drivers’ 

readiness in automated vehicles. They evaluated the system with takeover requests and 

information on automation capability between adding and not-adding surrounding traffic 

information. As a result, adding the surrounding traffic information leads to more expected 

driving behaviors. Ma et al. (2021) proposed a two-stage warning system to address 

situation awareness, driving stress, and takeover performance from the single-stage 

warning system. They found that the two-stage warning systems increase drivers’ situation 

awareness, reduce physiological stress, and provide better takeover performance. In 

addition to Ma et al. (2021), Zhang et al. (2021) further explored the optimal time intervals 

of two-stage warning systems by incorporating the drivers’ “neuroticism personality”. The 

results show that drivers in the 5-second time interval had the best takeover preparation. 

Petermeijer et al. (2017) explored the effects of takeover warning modalities on the 

takeover process. They found that warnings under the combination of auditory and tactile 

modalities leads to drivers’ quicker reaction in response to a takeover warning compared 
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to the visual modality. Lu et al. (2019) proposed a monitoring request system before a 

potential takeover request. They found that drivers spent less time in taking over and a less 

severe conflict severity when adding the monitoring system. Niu & Ma (2021) established 

a warning intervention system targeting driver fatigue to investigate whether the driver is 

ready for taking over the vehicle safely. As a result, issuing the fatigue warning 5-second 

before the takeover request has greater potential to increase the safety of automated driving 

than issuing the fatigue warning 10-second before the takeover request. Epple et al. (2018) 

examined driver behaviors with a two-step takeover request procedure in different 

modalities, which provides drivers a choice to resume vehicle controls between a warning 

(first step) and an alarm (second step). The findings suggest that the two-step takeover 

request can increase drivers’ situation awareness. 
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CHAPTER 3: MODELING VISUAL DISTRACTION UNDER THE AV 

ENVIRONMENT 

3.1 Measure visual distraction under automated driving 

3.1.1 Visual distraction: magnitude 

In order to measure the magnitude of visual distraction, the first and foremost task is to 

define the zero point of visual distraction magnitude, which represents no driver distraction 

if the driver has the fixation point located in this zero point. The road segment type is an 

important factor that impacts the location of zero point of visual distraction magnitude. For 

example, when traveling on a tangent segment, drivers are supposed to look ahead for any 

unexpected driving situations in order to keep a clear vision without being visually 

distracted. In this case, the zero point of visual distraction magnitude is expected to be 

higher than the center point of the driver’s eye vision. On the other hand, when traveling 

on a curvy segment, the zero point of visual distraction is dynamic and keeps changing 

because of the segments. In this research, the main objective is to model HVI-induced 

visual distraction under automated driving. Moreover, when automated driving (Level 3 or 

above) is in session, drivers are likely to look around because they are not responsible for 

performing any driving tasks. Therefore, the center of the driver’s vision is used as the 

driver’s visual distraction zero point. 
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There are two key performance measures regarding eyes off the road: temporal and 

spatial measures. The temporal measure indicates the duration of the driver's eyes off the 

road, which is to be discussed in Section 3.1.3. The spatial measure indicates the magnitude 

(how far away) of the driver's eyes off the road. Therefore, eye tracking data is applicable 

to collect eye movement data in terms of fixation, including each fixation’s location and 

duration. Figure 3.1 conceptually illustrates the trajectory of eye fixations. 

  
(a) (b) 

 
 

(c) (d) 

Figure 3. 1 Example of Eye Fixation Movement in (a) Trajectories and Relationship between 

Distance to Center and Time in (b) Pattern I, (c) Pattern II, and (d) Pattern III. 

 

 As illustrated in Figure 3.1(a), green dashed lines represent the eye fixation 

movement from “F1” to “F10”. Given the two-dimension coordinate system, the distance 

of each fixation (𝐹𝑖) to the center (represented as a blue dot) can be computed as follows: 

𝑑𝐹𝑖 = √(𝑥𝐹𝑖 − 𝑥0)
2 + (𝑦𝐹𝑖 − 𝑦0)

2 (3.1) 

Where,  

𝑑𝐹𝑖 = Distance of 𝐹𝑖 to center (𝑖 = 1,2… , 𝑛); 
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𝑥𝐹𝑖  = Coordinate of 𝐹𝑖 on x-axis; 

𝑥0 = Coordinate of screen center on the x-axis; 

𝑦𝐹𝑖  = Coordinate of 𝐹𝑖 on y-axis; 

𝑦0 = Coordinate of screen center on the y-axis; 

 Based on the calculation of 𝑑𝐹𝑖, each fixation’s distance to the center of the screen 

can be calculated. With the eye-tracking system’s ability to collect each fixation's duration, 

a time-discrete relationship can be visualized to describe the relationship between temporal 

and spatial measurements. In total, there are three potential patterns in representing the 

relationship. 

(1) Pattern I: Oculate-related events 0% covered between fixations. According to eye-

tracking fixation data, there is a small amount of time being elapsed between fixations 

(i.e., from “F1” to “F2” as illustrated in Figure 3.1(a)). Moreover, we observed that the 

driver did not involve in oculate-related events such as blinking or saccades. Therefore, 

the reason contributing to the time gap between two nearby fixations is the simulation 

error or eye-tracking running error. However, we do not know the pattern of the 

distance to center change from the first to the next fixation during the time between 

two fixations. Therefore, a linear regression was assumed in this case. Figure 3.1(b) 

illustrates Pattern I based on the fixation movements that illustrated in Figure 3.1(a). 

The slope is calculated as follows: 

𝑘𝐹𝑖,𝑖+1 =

{
 
 

 
 

𝑑𝐹𝑖 − 𝑑𝐹𝑖+1
𝑡𝐹𝑖+1,𝑆𝑡𝑎𝑟𝑡 − 𝑡𝐹𝑖,𝐸𝑛𝑑

, ∀𝑑𝐹𝑖 > 𝑑𝐹𝑖+1

0,                                 ∀𝑑𝐹𝑖 = 𝑑𝐹𝑖+1  

𝑑𝐹𝑖+1 − 𝑑𝐹𝑖
𝑡𝐹𝑖+1,𝑆𝑡𝑎𝑟𝑡 − 𝑡𝐹𝑖,𝐸𝑛𝑑

, ∀𝑑𝐹𝑖 < 𝑑𝐹𝑖+1

 (3.2) 

Where, 

𝑘𝐹𝑖,𝑖+1 = Slope of the distance to center and time between two nearby fixation 

points (𝑖 = 1,2… , 𝑛); 
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𝑑𝐹𝑖 , 𝑑𝐹𝑖+1 = Distance to center of the two nearby fixation points; 

𝑡𝐹𝑖+1,𝑆𝑡𝑎𝑟𝑡 = Timestamp of the fixation 𝐹𝑖+1 starts;  

𝑡𝐹𝑖,𝐸𝑛𝑑  = Timestamp of the fixation 𝐹𝑖 ends. 

 

(2) Pattern II: Oculate-related events 100% covered between fixations. In this case, 

we observed drivers involved in oculate-related events such as blinking that prevents a 

fixation point on the simulator screen while driving. Therefore, it is unknown regarding 

the distance to center between fixations, which is considered missing values. Figure 

3.1(c) illustrates the relationship between distance to center and time under Pattern 2. 

Pattern 2 is more like a square-wave pattern. 

(3) Pattern III: Oculate-related events 0%~100% covered between fixations. Pattern 

III can be considered as the combination of Pattern I and Pattern II. An example in 

illustrating Pattern III can be visualized in Figure 3.1(d). As illustrated in Figure 3.1(d), 

Pattern I is involved between F1 and F2, F2 and F3, F3 and F4, F6 and F7, F7 and F8, 

as well as F9 and F10. Pattern II covers from F4 to F6, and F8 to F9.  

Since the higher distance to the center suggests the higher magnitude of the driver’s 

visual attention away from the center, the distance to the center can be surrogated as the 

magnitude of driver visual distraction given a certain timestamp (𝑡𝑖). 

 Regardless of the distance to the center vs. time pattern, the magnitude of visual 

distraction can be surrogated as the fixation’s distance to the center. Further distance 

indicates a higher magnitude of visual distraction. Considering a human-machine-

interaction has been applied in the driving, meaning the driver received safety messages 

under the CAV driving environment, Figure 3.2 illustrates the relationship between the 

magnitude of visual distraction and time with applying HVI session.  
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(a) 

 
(b) 

 
(c) 

Figure 3. 2 Magnitude of Visual Distraction and Time under (a) Pattern I; (b) Pattern II; and 

(c) Pattern III (“𝒕𝒊” indicates the timestamp for either a starting or ending point of fixation.) 

 

 As illustrated in Figure 3.2, when HVI applies to the driving, the driver’s fixation 

position is further away from the center when the HVI session starts (i.e., a takeover 
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message is just being displayed). However, with the HVI continuing, the driver’s visual 

distraction was reduced, reflected by the fixation gradually getting back to the center.  

Moreover, assuming we have collected a number of 𝑛 fixations during the driving. 

The intensity of driver distraction is the cumulation of the magnitude of driver distraction 

during the time period when HVI is in session. Specifically, if the visual distraction follows 

Pattern I, the intensity of visual distraction can be computed as follows: 

𝐼𝑉𝐷,𝐻𝑉𝐼 =∑∫ 𝑑𝑖(𝑡)𝑑𝑡
𝑡𝐸

𝑡𝑆

𝑛

𝑖=1

 (3.3) 

𝑑(𝑡)𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐼 = {

𝑎1, 𝑡𝑆  ≤ 𝑡 <  𝑡𝑖
𝑘𝐹𝑖,𝑖+1 ∗ 𝑡 + 𝑏1, 𝑡𝑖  ≤ 𝑡 <  𝑡𝑖+1

…
𝑎𝑛, 𝑡𝑛−1  ≤ 𝑡 <  𝑡𝑛 

 (3.4) 

Where,  

𝐼𝑉𝐷,𝐻𝑀𝐼 = Intensity of visual distraction under HVI (inch*sec); 

𝑑𝑖(𝑡) = Distance to center as a function of time given the time period of 𝑖, 
(𝑖 = 1,2, … , 𝑛); 

𝑡𝑆 = Timestamp of HVI session starts; 

𝑡𝐸 = Timestamp of HVI session ends; 

 

 Equation (3.5) summarizes the distance to the center as a function of time if the 

magnitude of visual distraction follows Pattern II: 

𝑑(𝑡)𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐼𝐼 =

{
 
 

 
 

𝑎1, 𝑡𝑆  ≤ 𝑡 <  𝑡𝑖
𝑘𝐹𝑖,𝑖+1 ∗ 𝑡 + 𝑏1, 𝑡𝑖  ≤ 𝑡 <  𝑡𝑖+1

0, 𝑡𝑗  ≤ 𝑡 <  𝑡𝑘 
…

𝑎𝑛, 𝑡𝑛−1  ≤ 𝑡 <  𝑡𝑛 

 (3.5) 

 If the visual distraction follows the Pattern III, the 𝑑𝑖(𝑡) is expressed as the follows: 
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𝑑(𝑡)𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝐼𝐼𝐼 = {

𝑎1, 𝑡𝑆  ≤ 𝑡 <  𝑡𝑖
0, 𝑡𝑖  ≤ 𝑡 <  𝑡𝑖+1

…
𝑎𝑛, 𝑡𝑛−1  ≤ 𝑡 <  𝑡𝑛 

 (3.6) 

  

3.1.2 Visual distraction: direction 

In this research, another perspective of modeling visual distraction is proposed to further 

capture the dynamics of visual distraction, which is the direction of the direction. As 

mentioned in the previous section, the driver’s fixation points can be projected to the 

Cartesian coordinate system with an x-axis and a y-axis. The driver’s fixation points can 

be described using a different form by converting the Cartesian coordinate system to a 

polar coordinate system. Figure 3.3 illustrates how to measure a fixation point under a polar 

coordinate system.   

 

Figure 3. 3 Conceptual Example of Eye Fixation Movement under Polar Coordinate System 
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 As depicted in Figure 3.3, “r” represents the visual distraction magnitude and “𝜑” 

represents the angle between “F1” and the polar axis L. The following equations can 

describe the relation between Cartesian and polar coordinates. Note that “𝑎𝑡𝑎𝑛2” is an 

arctangent function. Its common variation is based on values of 𝑥 and 𝑦. 

𝑥 = 𝑟 cos(𝜑 − 180°)  (3.7) 

𝑦 = 𝑟 sin(𝜑 − 180°) (3.8) 

𝑟 = √𝑥2 + 𝑦2 (3.9) 

𝜑 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) (3.10) 

Where, 

𝑥 = 𝑥 coordinates of “F1” under the Cartesian coordinates; 

𝑦 = 𝑦 coordinates of “F1” under the Cartesian coordinates; 

𝑟 = Visual distraction magnitude; 

𝜑 = Visual distraction direction. 
  

Under this context, visual distraction direction has been added by converting the 

fixations under Cartesian coordinates to polar coordinates. Moreover, by using a polar 

coordinate system, the visual distraction magnitude and direction can be discussed as a 

group in identifying specific locations of the hotspots of visual distraction magnitude. 

3.1.3 Visual distraction: time 

Another important indicator for a driver’s visual distraction is time. Existing research has 

not been extensively discussing how visual distraction changes over time. By proposing 

the visual distraction from the time perspective, this research expects to fill this research 

gap. Figure 3.4 illustrates the conceptual example of eye fixation in terms of time. 
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Figure 3. 4 Conceptual Example of Eye Fixation Duration 

 As illustrated in Figure 3.4, the time spent on each fixation was visualized by a 

circle, and the radius represented the fixation duration. Larger the radius, the longer time 

the driver spends on looking at this fixation.  

 

3.1.4 Detailed steps for measuring visual distraction magnitude, direction, and time 

In order to achieve the goal for measuring visual distraction in formats of magnitude, 

direction, and time, a head-mounted eye-tracking device from the Pupil Lab is used to 

increase the data readiness of measuring visual distraction. The Pupil Lab’s eye-tracking 

device equips a fixed “world camera” that acquires drivers’ fixation data points. Figure 
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3.5(a) illustrates an example of a driver wearing an eye-tracking device while driving on a 

simulator. The fixation data collected from the eye tracker provides the following variables: 

• Fixation ID 

• Norm_pos_x: x position in the eye image frame in normalized coordinates. 

• Norm_pos_y: y position in the eye image frame in normalized coordinates. 

• Duration: the time spent on a fixation point with a unit of milliseconds. 

Therefore, for each driver, the steps for measuring visual distraction are 

summarized as follows: 

Step 1: Identify the fixations under the HVI session (i.e., CV safety message display 

duration, takeover request display duration under automated driving) in the “fixations” 

dataset. 

Step 2: Check the confidence of the fixation data. It is recommended to use the fixation 

records with a confidence level above 0.6 (Pupil Labs, 2021). 

Step 3: Calculate the magnitude of visual distraction by measuring the normalized distance 

between fixation and screen center. The front camera collects information about where the 

subject was looking within the world camera’s field of view. Since each subject calibrates 

the eye tracker before starting the experiment, the coordinates representing the center of 

the screen are different individually. For each participant, it is necessary to manually obtain 

the fixation that represents the screen center (i.e., Figure 3.5(b)). Note that data will be used 

only when there is no relative movement between the headset and the screen. In this case, 

the coordinates of fixation ID 120 are used to represent the screen center coordinates.  
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(a) (b) 

Figure 3. 5 Eye-tracking Device in (a) Use of Drivers and (b) Collecting Fixation Data Points 

Step 4: Categorize the visual distraction pattern by incorporating the pupil dataset. As 

introduced above, the relationship between the magnitude of visual distraction and time 

can be in Pattern I, II, or III based on whether there were oculate-related events such as 

blinking or saccades involved. Therefore, this step requires checking the pupil's behaviors 

to decide.  

Step 4.1: Retrieve the pupil dataset that matches the timestamps with the fixation 

dataset. 

Step 4.2: Remove records of pupil dataset that the confidence is not above 0.6. 

Step 4.3: If pupil diameter with 0 is identified, it should be added into the final 

dataset for visualizing the magnitude of visual distraction. 

Step 5: Compute and visualize the magnitude of visual distraction. After calculating each 

fixation’s distance to the center screen, the next step is to create the database with 

timestamps. Figure 3.6(a) illustrates a driver’s magnitude of visual distraction under an 

HVI session. 
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(a) (b) 

Figure 3. 6 Visual Distraction in (a) Measuring Magnitude and (b) Measuring Intensity 

Step 6: Compute and visualize the direction of visual distraction. By employing Equations 

(3.7) and (3.8), the direction of each fixation point can be calculated based on a fixed 

direction under an HVI session. 

Step 7: Compute and visualize the time of visual distraction.  

Step 8: Calculate the intensity of visual distraction in terms of the area from step 5. Figure 

3.6(b) illustrates the process of calculating the intensity of visual distraction. Specifically, 

dashed lines were drawn, and the intensity of visual distraction is the polygon area. The 

intensity is calculated using Equation (3.3). The calculated intensity of visual distraction 

will be used as the model input for developing prediction models in sub-module II and 

modeling with safety performance. 

3.2 Models development for predicting driver distraction 

In previous modules, the ground truth data for visual and cognitive distraction has been 

measured. To validate the intensity of driver distraction, Artificial Neural Networks (ANN) 

are employed in predicting the intensity of visual and cognitive distraction since ANNs 

have been emerging as an essential tool in the field of transportation (Alwosheel et al., 

2021; Servizi et al., 2020; van Cranenburgh & Alwosheel, 2019).  
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3.2.1 Artificial Neural Networks 

ANNs are a research tool inspired by the structure and functional aspects of biological 

neural systems. The main reasons for ANNs’ being employed are that they have strong 

learning ability with different structures of neurons and a great capacity to predict models 

(Abiodun et al., 2018; Maind & Wankar, 2014).  

ANNs consist of interconnected nodes, also known as neurons, which communicate 

with each other to perform a classification or regression task. Specifically, an ANN model 

consists of three layers: input, hidden, and output layers. The input layers include nodes 

containing the explanatory variables. As illustrated in Figure 2, the explanatory variables 

in this study are driver information, CAN-BUS information, and HVI characteristics. The 

output layer contains the ground truth data of the measured driver distraction intensity. The 

hidden layer consists of many artificial neurons that can transmit a signal to other neurons 

based on certain activation functions. Each neuron receives model inputs that are multiplied 

by estimated parameters (weights). The input and output layers are connected by adding to 

a constant and forming a single input for a pre-defined activation function. In summary, 

the output can be described as follows: 

𝑦 = 𝑔(𝑢) = 𝑔(∑𝑤𝑖 ∗ 𝑣𝑖 + 𝑤𝑏

𝐼

𝑖=1

) (3.11) 

Where, 

𝑦 = Model output; 

𝑔(𝑢) = Activation function;  

𝑤𝑖  = Estimated parameter (weight) for model input variable 𝑖; 
𝑣𝑖 = Model input variable 𝑖; 
𝑤𝑏  = Constant of the associated weight 

 As introduced, there are no direct connections between the input nodes and output 

nodes. An activation function is used in bridging the input and output layers. The activation 
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functions are in formats of linear, logistic (sigmoid), and hyperbolic tangent (sigmoid). The 

equations are summarized as follows: 

Table 3. 1 Summary of Activation Functions in ANN 
Activation function Equations 

Linear 𝑔(𝑢)= 𝑢 (3.12) 

Logistic (sigmoid) 𝑔(𝑢) = 1 (1 + 𝑒𝑥𝑝(−𝑢))⁄  (3.13) 

hyperbolic tangent (sigmoid) 𝑔(𝑢) = 𝑒𝑥𝑝(2𝑢) − 1 𝑒𝑥𝑝(2𝑢) + 1⁄  (3.14) 

 

3.2.2 Proposed ANN models for predicting driver distraction 

Since the objective of this study is to predict visual and cognitive distraction, two ANN 

models are developed with targeting visual and cognitive distraction, respectively. Figure 

3.7 illustrates a conceptual Artificial Neural Network that captures the relationships 

between model input variables and visual distraction intensity using visual distraction as 

an example. In order to complete the ANN modeling process, three components need to be 

defined. First, the number of hidden layers. Existing research has suggested that multiple 

hidden layers have a stronger ability to predict the model outputs (Chu et al., 2019; Jahromi 

et al., 2020). Second, the number of neurons by each hidden layer. The Universal 

Approximation Theorem (UAT) suggests that ANN can learn more complex functions if 

more hidden neurons are inserted in the model (Cohen et al., 2018). Third, the activation 

function. As mentioned in Section 3.2.1, each neuron processes its input through a defined 

activation function. Potential activation functions include linear, logistic, and hyperbolic 

tangent.   
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Figure 3. 7 Conceptual Model for Predicting Visual Distraction Intensity 

 

As illustrated in Figure 3.7, the input variables to the Artificial Neural Network 

(ANN) model are drivers’ demographical information (age and gender), HVI 

characteristics, and takeover time, and the output variable is the visual distraction intensity. 

Then, the next step is to decide the structure and the number of neurons in the hidden layer. 

The prediction accuracy of neural network-based models depends upon the number of 

hidden layers and the number of neurons in each hidden layer (Kumar et al., 2014). 

Therefore, to obtain the ANN model's optimum structure, several ANN model architectures 

have been trained and tested by altering the number of hidden layers and numbers of 

neurons in each layer.  

 Existing research has suggested that any continuous multivariate function can be 

implemented by a certain type three-layer neural network (Ismailov, 2020). Therefore, the 
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number of hidden layers in this research is set to 3. For the number of neurons, the 

following equation is employed to find the range of numbers of neurons: 

𝑁𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ∈ [√𝑁𝐼𝑉 + 𝑁𝑂𝑉 + 1,√𝑁𝐼𝑉 + 𝑁𝑂𝑉 + 10] (3.15) 

Where, 

𝑁𝑁𝑒𝑢𝑟𝑜𝑛𝑠 = Number of neurons; 

𝑁𝐼𝑉 = Number of input variables; 

𝑁𝑂𝑉 = Number of output variables. 

 In this case, the number of neurons for developing ANN modes in predicting visual 

or cognitive distraction intensity ranges from 3 to 13. Since the dependent variable (visual 

or cognitive distraction intensity) is a continuous variable, it is recommended to set the 

number of neurons on the third hidden layer (closest layer to the output layer) to 1. With 

the first and the second hidden layer varying the numbers of neurons from 3 to 13, a total 

of 121 combinations in terms of ANN structures has been performed. The ANN structure 

with minimum Mean Square Error (MSE) is chosen as the best-fitting model in predicting 

visual and cognitive distraction intensity, respectively.  

 On the other hand, if the model is too simple, both the training and testing datasets 

are likely to be underfitting. Therefore, this type of model has a high bias but low variance 

(Amiri et al., 2020). To summarize, the best structure is the one that makes the tradeoff and 

produces the model that is neither too simple nor too complex. Equation (3.14) expresses 

the best model characteristics: 

𝐼𝑑𝑒𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 
𝑑𝑒𝑓
⇒ min

𝑖=1,2,…,121
(𝑀𝑆𝐸𝑇𝑒𝑠𝑡,𝑖 −𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛,𝑖) (3.16) 

Where,  

𝑀𝑆𝐸𝑇𝑒𝑠𝑡,𝑖 = Mean Square Error for the testing dataset for model ID = 𝑖 
𝑀𝑆𝐸𝑇𝑒𝑠𝑡,𝑖 = Mean Square Error for the training dataset for model ID = 𝑖 
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3.3 Data collection 

3.3.1 Driving Simulator 

A data collection was conducted to validate the proposed methods for measuring and 

predicting driver distraction by recruiting drivers to try out automated driving under Level 

3 (conditional) automation on a driving simulator.  

The “miniSim” driving simulator was employed to implement Level 3 automation. 

Figure 3.8(a) illustrates a participant driving under Level 3 automation on the “miniSim” 

simulator. The “miniSim” is currently approved and used in Department of Transportation 

labs, including NHTSA’s miniSim lab located at US DOT’s Turner-Fairbank Highway 

Research Center (TFHRC) in McLean, VA. MiniSim records high fidelity data with more 

than 100 variables at 60 Hz. Once driving on the “miniSim”, it will simultaneously collect 

the driving-related raw data (i.e., speed, lane deviation). Then the raw data can be reduced 

for further analysis. MiniSim uses high-resolution tiles to create road networks, resulting 

in very realistic, immersive environments that the user can quickly assemble. 

3.3.2 Experimental design and procedure 

The ethics application for the study was reviewed and approved by the Institutional Review 

Board (IRB) at the University of Louisville. Before beginning the study, recruited 

participants were briefed about the study, which they were required to drive under Level 3 

automation. Before starting driving tasks, each participant was asked to complete a 

questionnaire that collected basic information such as age and gender, representing driver 

information as one of the model inputs for future analysis.  

Then, each participant was introduced to the capabilities and limitations of Level 3 

automation based on the definition of driving automation levels (SAE International, 2018), 
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in which drivers who are sitting behind the steering wheel are not responsible for 

monitoring the driving environment but responsible for taking over the driving if Level 3 

Automated Driving System (ADS) requests.  

After participants understood the basic functions of Level 3 automation, they were 

asked to wear a head-mounted eye tracker from the Pupil Labs to start the driving task. The 

eye tracker records gaze behaviors at 30 Hz, collecting both the fixation and pupil dilation 

data to model the visual and cognitive distraction, respectively. Figure 3.8(b) illustrates the 

eye-tracking device.  

  
(a) (b) 

Figure 3. 8 The “MiniSim” Driving Simulator in (a) Automated Driving Mode and (b) Adding 

Eye-tracker. 

 

For the first driving task, each participant was required to drive through a jaywalker 

scenario under manual driving. The driving performance when participants handling the 

jaywalker situation was recorded as a benchmark.  

For the second driving task, two jaywalker scenarios were popped out when 

participants were driving under Level 3 automation on the miniSim simulator, and the 

Level 3 ADS requested participants to take over the driving tasks. The jaywalker scenario 

was not mentioned in the briefing part to ensure the reliability of the data collection. Two 

jaywalking scenarios were included because we tested two HVI types: the “visual only” 
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and “visual + audible”. Note that participants did not drive through these two jaywalking 

scenarios continuously. In order to avoid any expected behaviors from participants, there 

are other driving scenarios inserted between the two jaywalking scenarios. For one 

jaywalker scenario, participants were only notified about the takeover request through the 

in-vehicle heads-up display. For the other jaywalker scenario, participants were able to 

hear a chime when the takeover request was displaying simultaneously. Figure 3.9(a) 

illustrates the concept of jaywalking scenario, and Figure 3.9(b) illustrates the scenario 

presented in the “miniSim” simulator.  

Since drivers are likely to look around because they are not responsible for 

performing any driving tasks if the automated driving under Level 3 is in session, and the 

experiment was designed by using a tangent section, this research uses the center of the 

screen as the visual distraction magnitude zero point.  

 

 

 
(a) (b) 

Figure 3. 9 Jaywalking Scenario in (a) Conceptual Format and (b) MiniSim Driving 

Simulator  

 

 In order to complete the prediction models in sub-module III, the model inputs also 

need the Controller Area Network-Bus (CAN-Bus) information data. In this data collection, 
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takeover time was selected as the model input representing the CAN-Bus information data, 

which measures the time elapsed between issuing the takeover request and the driver taking 

action to control the vehicle. Table 3.2 summarizes all the model inputs needed in 

completing sub-module III. 

Table 3. 2 Model Inputs for Predicting Driver Distraction 
Category Variable name Variable type Definition 

Driver information 
Male Binary \ 

Age Continuous \ 

Controller Area 

Network-Bus (CAN-

Bus) information data 

Takeover time Continuous 
Time spent on taking over the 

driving. 

HVI Characteristics Visual + Audible Binary \ 

 

3.3.3 Participants 

Seventy-five participants were recruited voluntarily among the nearby counties of the 

University of Louisville based on the following criteria: possession of a valid U.S. driver’s 

license and low susceptibility to motion sickness when driving on the simulator. All 

participants have signed a consent form prior to the start of their experiment session. As a 

result, under each HVI type, twenty-five participants completed the driving task by wearing 

the eye-tracker and completed the questionnaire.  

3.3.4 Performance measures 

In addition to measuring visual distraction, two other performance measures are to be 

collected when participating in the driving simulator experiment. 

3.3.4.1 Takeover time 

For takeover time, an ADS requests the human driver to take over the driving when an 

Automated Vehicle (AV) disengagement (i.e., jaywalking). The human driver performs the 

takeover actions by driving (i.e., applying to the steering wheel, gas pedal, or brake pedal). 
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Therefore, the takeover time is defined by the duration between the ADS issuing a takeover 

request and the driver taking over the driving. Figure 3.10 illustrates the definition of 

takeover time. 

 

Figure 3. 10 Definition of Takeover Time. 

3.3.4.2 Traffic conflict 

While driving through the scenario involving a jaywalker, driving performance such as 

speed and distance was collected to measure the traffic conflicts and conflict severity, 

which have been considered the valid safety assessment measurements by the Federal 

Highway Administration (FHWA) (Gettman et al., 2008). Using traffic conflicts and 

conflict severity is because it is rare to observe AV crashes in the simulation environment. 

Therefore, in this study, traffic conflicts and conflict severity are analogous to crash 

frequency and crash severity, respectively. 

 Furthermore, a traffic conflict can be considered as a more generalized but 

quantified near miss. According to Surrogate Safety Assessment Model (SSAM), a conflict 

is defined as an observable situation in which two or more road users approach each other 

in time and space to such an extent that there is a risk of collision if their movements remain 

unchanged (Gettman et al., 2008). A conflict is concluded after the time-to-collision value 

rises back above the critical threshold value. Regarding conflict severity, it is defined as 
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the minimum time-to-collision (TTC) value observed during the conflict. The lower TTC, 

the more severe a traffic conflict. TTC is calculated based on two vehicles' current location, 

speed, and future trajectory at a given constant. Figure 3.11 illustrates how to calculate 

TTC and introduces the specific thresholds under different collision types. Equation (3.15)  

 

Figure 3. 11 Traffic Conflict Calculation between Vehicle and Jaywalker 

 

𝑇𝑇𝐶 =
√(𝑋𝑣,𝑡 − 𝑋𝑝,𝑡)2 + (𝑌𝑣,𝑡 − 𝑌𝑝,𝑡)2

𝑉𝑣,𝑡 cos(𝜃1,𝑡) +𝑉𝑝,𝑡 cos(𝜃2,𝑡)
 (3.17) 

Where,  

𝑋𝑣,𝑡   = Position of vehicle on x-axis at time 𝑡; 
𝑋𝑝,𝑡   = Position of jaywalker on x-axis at time 𝑡; 

𝑌𝑣,𝑡   = Position of vehicle on y-axis at time 𝑡; 
𝑌𝑝,𝑡     = Position of jaywalker on y-axis at time 𝑡; 

𝑉𝑣,𝑡 = Vehicle speed at time 𝑡; 
𝑉𝑝,𝑡 = Jaywalking speed at time 𝑡; 

𝜃𝑣,𝑡 = Relative angle of vehicle to pedestrian at time 𝑡; 

𝜃𝑝,𝑡 = Relative angle of pedestrian to vehicle at time 𝑡 

 

The collision type between the vehicle and pedestrian is defined as an angled 

conflict. Per Hirst & Graham (1997), M. Ma & Li (2019), and Tachet et al. (2016), the 
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threshold of 4-second is used as the minimum TTC to define an angled conflict. In other 

words, any minimum TTC below 4-second is considered a traffic conflict in this research.  

3.4 Results and discussions 

3.4.1 Visual distraction magnitude 

This section mainly contributes to the literature by discussing how the visual distraction 

magnitude changes from the temporal perspective. As mentioned in the previous section, 

drivers experienced two HVI types: “visual only” and “visual + audible”. The real-time 

visual distraction induced by HVI will be discussed in this section.  

 Existing studies mainly focus on measuring or detecting visual distraction under 

specific distracted driving tasks (Aksjonov et al., 2017; Brodeur et al., 2021; Trommler et 

al., 2021b; Y. Zhang et al., 2021c). This study further discusses the relationship between 

visual distraction and time horizon.  

By employing Equation (3.1), the distance to the center screen can be calculated 

with given normalized coordinates of a fixation on the x- and y-axis, which is defined as 

the distance to the center with surrogating the magnitude of visual distraction.  As a result, 

a total of 221 records were collected in capturing driver’s fixation results in both “visual 

only” and “visual + audible” HVI with facing a jaywalker scenario that requires a takeover 

action. There were outliers regarding either norm_pos_x or norm_pos_y. The data analysis 

only includes fixation records with both norm_pos_x and norm_pos_y not being outliers 

to ensure the data reliability. Therefore, the final sample size for discussing visual 

distraction magnitude in real-time is set to be 188. 

 As introduced earlier, the center of the driver’s vision is used as the driver’s visual 

distraction zero-point under automated driving. Prior to the start of the experiment, each 
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driver was required to calibrate the eye tracker. The purpose of the calibration is to ensure 

every driver’s glance behavior data were collected in the same coordinate system. 

Therefore, the collected fixation data by each driver is normalized can be used to perform 

further analysis. The center of the driver’s vision is used to represent the zero point of 

visual distraction magnitude because drivers are likely to look around if automated driving 

is in session. Therefore, it is possible that when starting the HVI process by displaying the 

takeover request on the screen, drivers’ fixation locations are randomly distributed. In order 

to validate this, the initial fixation location by each driver is visualized and illustrated in 

Figure 3.12.  

 

Figure 3. 12 Initial Location of Fixation by Each Driver 
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 As illustrated in Figure 3.12, the x-axis and the y-axis represent the first fixation 

location by each driver when starting to receive the takeover message. Two dash lines 

represent the normalized position of the center of the driver’s vision. Each point’s radius 

suggests how long the driver looks at this point. Through the two dash lines, Figure 3.12 

was divided into four quadrants. The distribution of these initial fixation points under the 

four-quadrant system is 17%, 26%, 28%, and 30%. Two-tail t-tests were conducted, 

suggesting no significant differences in the probability of locating the first fixation to any 

quadrants. In other words, it is safe to validate the hypothesis of using the driver’s vision 

center as the zero point of visual distraction because the initial fixation for each driver is 

randomly distributed.  

Since multiple fixations can be recorded for each driver when under HVI, changes 

in visual distraction can occur until the driver takes action to take over the vehicle. In this 

case, a new variable named “trend” is added to the original dataset to capture the changes 

in visual distraction magnitude during the HVI process. Specifically, for each driver, there 

are four categories in recording the “trend” variable: 

1. “\”: Initial fixation record for the driver. This symbol indicates that the driver has 

more than one fixation record being collected. 

2. “+”: Visual distraction magnitude was increased based on the previous fixation 

record for the driver. 

3. “-”: Visual distraction magnitude was reduced based on the previous fixation record 

for the driver. 

4. “*” Only one fixation record for the driver 
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Therefore, Table 3.3 summarizes the general statistics of fixation records with the 

aforementioned variables included. Figure 3.13 illustrates the distribution of fixation points 

with duration information included under “visual only” and “visual + audible” HVI, 

respectively.  

Table 3. 3 Sample Characteristics of Fixations under HVI (Sample size=188) 

Note that “Mean ± Std.Deviation” and “Range” are summarized if the variable type is continuous. Otherwise, 

the number of samples and percentage are summarized if it is a categorical variable.  

  

(a) (b) 

Figure 3. 13 Fixations Distribution under (a) Visual Only and (b) Visual + Audible HVI Types. 

Variable 
Variable 

Description 
Type Category 

N/ 

Mean ± 

Std.Deviation 

%/ 

Range 
Variable 

Category 

Variable 

name 

Fixation 

spatial 

performance 

Norm_pos_x 

x position in the 

eye image frame 

in normalized 

coordinates 

Continuous \ -0.004±0.108 
-0.310-

0.292 

Norm_pos_y 

y position in the 

eye image frame 

in normalized 

coordinates 

Continuous \ -0.018±0.106 
-0.305-

0.252 

 Visual 

distraction 

magnitude 

Surrogated by 

distance to the 

center 

Continuous \ 0.129±0.081 0-0.373 

Trend 

Changes in visual 

distraction 

magnitude 

Categorical 

\ 41 21.8 

+ 70 37.2 

- 71 37.8 

* 6 3.2 

Fixation 

temporal 

performance 

Duration 

time spent on a 

fixation point 

with a unit of 

milliseconds 

Continuous \ 
470.998±471.8

82 
84-2688 
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 As summarized in Table 3.3, there are a limited number of the sample (3.2%) 

indicating no changes regarding the visual distraction magnitude under either “visual only” 

or “visual + audible” HVI. Hence, it is necessary to investigate how the magnitude of visual 

distraction changes during the HVI process. In addition, similar records suggest the 

increase (N=70) and reduction (N=71) in visual distraction magnitude. The discussion will 

follow the two major research questions: 

• RQ1: When starting the HVI process, are drivers tending to reduce driver 

distraction by looking towards the center screen? If so, does the reduction is 

maintained until the driver takes action in responding to the HVI? If not, how long 

does it keep in a reduction in both HVI types? To what point do the drivers start to 

look away again? 

• RQ2: When starting the HVI process, are drivers increasing their visual distraction 

by looking away from the center screen? Is it more possible to happen when the 

HVI is “visual only”? To what point does the driver start to reduce the visual 

distraction by looking towards the center screen? After reduction, are drivers 

starting to look away again? 

3.4.1.1 Reduction of visual distraction magnitude  

In addressing RQ1, the fixation dataset suggests that when starting the “visual only” HVI, 

45.5% of drivers start their visual distraction magnitude changes by reducing it. On the 

other hand, when starting the “visual and audible” HVI, the proportion of drivers starting 

to reduce their magnitude of visual distraction increases to 52.6%. A two-tail t-test was 

conducted with the null hypothesis that there are no significant differences in the starting 
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the change of visual distraction magnitude by reduction under two HVI types. As a result, 

the null hypothesis is accepted.  

 For those who started the change of visual distraction magnitude by reduction, 30% 

of them maintained the reduction of visual distraction magnitude until the driver responded 

to the “visual only” HVI. When it comes to the “visual and audible” HVI, 40% of drivers 

did not increase their visual distraction magnitude if their first change of visual distraction 

magnitude is a reduction. Table 3.4 summarizes the distribution of changes in visual 

distraction magnitude if drivers’ first change of visual distraction magnitude is a reduction. 

Existing research has mentioned that takeover request modality significantly impacts the 

takeover readiness and, in turn, takeover time (S. Petermeijer et al., 2017; Politis et al., 

2017; Yun & Yang, 2020). In order to theorize this finding, a one-tail t-test was conducted 

in comparing the number of occurrences in increasing the magnitude of visual distraction 

between “visual only” and “visual and audible” HVI. The null hypothesis is that there are 

no significant differences in the number of occurrences regarding increasing visual 

distraction magnitude. As a result, the t-test results reject the null hypothesis. The 

occurrences in increasing visual distraction magnitude are 1.9 times per driver under 

“visual only” HVI, while the occurrences are 0.8 times per driver under “visual and audible” 

HVI (t=1.777, p-value<0.05). Therefore, this study contributes to the literature by revealing 

why multi-modal takeover warnings are more effective in improving the takeover quality 

(less takeover time, less traffic conflict). It is safe to conclude that, under “visual and 

audible” HVI, the takeover readiness is significantly improved because drivers are less 

likely to pick up their visual distraction magnitude compared to “visual only” HVI.  
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 Regarding the duration in keeping reduction until the driver’s next change in visual 

distraction magnitude, the fixation dataset suggests that drivers spent up to 370 

milliseconds in the initial reduction of visual distraction magnitude under “visual only” 

HVI type while it took drivers up to 580 milliseconds in the initial reduction of visual 

distraction magnitude under “visual and audible” HVI type. In order to explore whether a 

significant difference exists in the duration of initial reduction, a two-tail t-test was 

conducted. The null hypothesis is that it takes a similar amount of time in deceleration until 

the driver makes another fixation movement. However, the t-test results reject the null 

hypothesis, suggesting that significantly different patterns of initial reduction regarding 

visual distraction magnitude were observed between “visual only” and “visual and audible” 

HVI type (t=-2.0453, p<0.1).  

 Moreover, this research also explored the relationship between visual distraction 

reduction rate and time. To compute the reduction rate of visual distraction magnitude, 

Equation (3.18) was employed and expressed as follows: 

𝑅𝑅𝐻𝑉𝐼=𝑗 =
𝑑𝐹𝑖+1 − 𝑑𝐹𝑖

𝑡
; ∀𝑑𝐹𝑖+1 < 𝑑𝐹𝑖 (3.18) 

Where,  

𝑅𝑅𝐻𝑀𝐼=𝑗 = The reduction rate of initial visual distraction reduction when HVI type 

is 𝑗  ( 𝑗  = “visual only” or “visual and audible”) (normalized 

distance/milliseconds) 

𝑑𝐹𝑖 = Distance of 𝐹𝑖 to center (𝑖 = 1,2… , 𝑛); 

𝑡 = Time under initial visual distraction reduction (milliseconds). 
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Table 3. 4 Distribution of Changes in Visual Distraction Magnitude under (a) “Visual-Only” 

and (b) “Visual + Audible” HVI 

(a) 

Driver ID 

Initial change of 

visual distraction 

magnitude 

Total occurrences of 

reductions in visual 

distraction magnitude 

Total occurrences of 

increases in reducing 

visual distraction 

magnitude 

13 - 5 5 

26 - 3 4 

29 - 3 2 

33 - 1 0 

41 - 2 2 

42 - 1 0 

45 - 4 3 

50 - 4 2 

62 - 5 1 

64 - 1 0 
 

(b) 

Driver ID 

Initial change of 

visual distraction 

magnitude 

Total occurrences of 

reductions in visual 

distraction magnitude 

Total occurrences of 

increases in reducing 

visual distraction 

magnitude 

15 - 2 1 

27 - 1 1 

28 - 1 1 

37 - 4 0 

42 - 1 0 

44 - 1 0 

45 - 1 1 

50 - 1 1 

65 - 1 3 

67 - 1 0 
 

 

A model fit test is performed to determine the best-fit model in describing the 

reduction rate of visual distraction magnitude under “visual only” and “visual and audible” 

HVI, respectively. Table 3.5 summarizes the result of the test. 

As summarized in Table 3.4, each candidate regression model has an 𝐑𝟐 and p-

value that obtained from the F test. A higher 𝐑𝟐 suggests that the regression model better 

explains the reduction rate as a function of time. A lower p-value suggests a more 

significant effect on the reduction rate of visual distraction magnitude. For the reduction 
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rate under the “visual only” warning, the inverse regression model has the relatively highest 

𝐑𝟐 of 0.706 with indicating the time is significant at the 99.9% confidence level. These 

values reveal that the inverse model is the best-fit model that describes the relationship 

between the reduction rate of visual distraction magnitude and time. Therefore, based on 

the results of the inverse model summarized in Table 3.5, the reduction rate of initial visual 

distraction induced by “visual only” HVI can be modeled by a function of time, which is 

presented by the following equation: 

𝑅𝑅𝑣𝑖𝑠𝑢𝑎𝑙 𝑜𝑛𝑙𝑦 = 3.063 ∗ 10
−5 −

0.088

𝑡
; ∀ 𝑡 ∈ [0, 370 𝑚𝑠] (3.19) 

For the reduction rate under “visual and audible” warning, the inverse regression 

model also has the relatively highest 𝐑𝟐 of 0.434 with the p-value lower than 0.01. These 

values imply that the inverse model is the best fit for capturing the relationship between 

reduction rate under “visual and audible” warning and time. Similar to Equation (3.18), the 

reduction rate of initial visual distraction induced by “visual and audible” HVI can be 

expressed as a function of time in the following equation” 

𝑅𝑅𝑣𝑖𝑠𝑢𝑎𝑙+𝑎𝑢𝑑𝑖𝑏𝑙𝑒 = −2.394 ∗ 10
−7 −

0.038

𝑡
; ∀ 𝑡 ∈ [0, 580 𝑚𝑠] (3.20) 
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Table 3. 5 Best Model Fit Analyses for Initial Visual Distraction Reduction Rate under (a) 

“Visual-Only” and (b) “Visual + Audible” HVI 

(a) 
Equation Model Summary Parameter Estimates 

R-

square 

F df1 df2 Sig. Constant b1 b2 b3 

Linear .288 79.726 1 197 .000 -.003 1.559E-

5 

  

Logarithmic .562 253.090 1 197 .000 -.011 .002   

Inverse .706 473.144 1 197 .000 3.063E-5 -.088   

Quadratic .456 82.079 2 196 .000 -.005 5.012E-

5 

-1.135E-

7 

 

Cubic .566 84.824 3 195 .000 -.007 .000 -6.248E-

7 

1.000E-

9 

Compounda . . . . . .000 .000   

Powera . . . . . .000 .000   

Sa . . . . . .000 .000   

Growtha . . . . . .000 .000   

Exponentiala . . . . . .000 .000   

Logistica . . . . . .000 .000   
 

Note that the dependent variable (reduction rate) contains non-positive values. Therefore, Log transform 

cannot be applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be 

calculated for this variable. 

(b) 
Equation Model Summary Parameter Estimates 

R-

square 

F df1 df2 Sig. Constant b1 b2 b3 

Linear .146 51.742 1 303 .000 -.001 3.199E-

6 

  

Logarithmic .319 142.102 1 303 .000 -.004 .001   

Inverse .434 232.606 1 303 .000 -2.394E-

7 

-.038   

Quadratic .240 47.693 2 302 .000 -.002 1.115E-

5 

-1.661E-

8 

 

Cubic .305 44.060 3 301 .000 -.002 2.587E-

5 

-8.826E-

8 

9.073E-

11 

Compounda . . . . . .000 .000   

Powera . . . . . .000 .000   

Sa . . . . . .000 .000   

Growtha . . . . . .000 .000   

Exponentiala . . . . . .000 .000   

Logistica . . . . . .000 .000   
 

Note that the dependent variable (reduction rate) contains non-positive values. Therefore, Log transform 

cannot be applied. The Compound, Power, S, Growth, Exponential, and Logistic models cannot be 

calculated for this variable. 

 In summary, Figure 3.11 illustrates the reduction rate of HVI-induced initial visual 

distraction and time. The red circle dots represent ground truth data of the reduction rate 

due to “visual only” HVI at each timestamp, while the cyan triangle dots represent ground 
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truth data of the reduction rate due to “visual and audible” HVI at each timestamp. The 

best-fit models in capturing the relationship between reduction rate and time are also 

included in Figure 3.14.   

 

Figure 3. 14 Comparison of Visual Distraction Magnitude Reduction Rate and Time under 

Different HVI Types 

As illustrated in Figure 3.14, during the early stages of reducing visual distraction 

magnitude, drivers under the “visual only” HVI type show a higher reduction rate in 

absolute value compared to the “visual and audible” HVI type. Conducting a one-tail t-test, 

when drivers start to reduce the visual distraction magnitude by looking towards the center 

screen under the “visual only” warning, drivers show significantly higher visual distraction 

magnitude reduction rate compared to “visual and audible” (t=2.589, p<0.01). This finding 

suggests that HVI types significantly impact how visual distraction changes with time. 

Drivers are more prepared to reduce visual distraction magnitude under the “visual and 

audible” HVI type by showing a lower reduction in visual distraction magnitude. 
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3.4.1.2 Increase of visual distraction magnitude 

In addressing RQ2, the fixation dataset suggests that 54.5% of drivers started their changes 

of visual distraction magnitude by increasing under the “visual only” HVI. On the other 

hand, 47.4% of drivers first changed visual distraction magnitude towards the positive 

direction. Therefore, even if the HVI type is “visual and audible”, it is possible that drivers 

tend to increase their visual distraction magnitude by looking away from the center screen. 

Table 3.6 summarizes the distribution of occurrences in reducing and increasing visual 

distraction under “visual only” and “visual and audible” warnings if their initial reaction to 

HVI is increasing the visual distraction magnitude.  
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Table 3. 6 Distribution of Changes in Visual Distraction Magnitude under (a) “Visual-Only” 

and (b) “Visual + Audible” HVI (Initial change of visual distraction magnitude is an increase) 

(a) 

Driver ID 

Initial change of 

visual distraction 

magnitude 

Total occurrences of 

reductions in visual 

distraction magnitude 

Total occurrences of 

increases in reducing 

visual distraction 

magnitude 

11 + 0 1 

12 + 2 4 

27 + 3 2 

28 + 3 3 

35 + 2 3 

37 + 1 1 

43 + 3 3 

46 + 0 1 

48 + 3 4 

63 + 2 3 

65 + 1 3 

67 + 0 1 
 

(b) 

Driver ID 

Initial change of 

visual distraction 

magnitude 

Total occurrences of 

reductions in visual 

distraction magnitude 

Total occurrences of 

increases in reducing 

visual distraction 

magnitude 

11 + 0 2 

26 + 1 2 

33 + 1 2 

41 + 0 1 

43 + 1 1 

48 + 3 2 

62 + 0 1 

63 + 1 2 

64 + 1 1 
 

 

 As summarized in Table 3.6, after drivers initiated their first change of visual 

distraction in increasing, the patterns of visual distraction changes are significantly 

different between “visual only” and “visual and audible” HVI. Specifically, there is an 

average of 1.67 occurrences per driver in reducing visual distraction magnitude under 

“visual only” HVI, which is significantly higher compared to 0.89 occurrences of reduction 

under “visual and audible” HVI (t=1.651, p-value<0.1). A potential reason to support this 

finding is that drivers tend to compensate by checking towards the center screen in case 

missing any additional information during the HVI process. Choudhary & Velaga (2017b) 
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and R. Zhou et al. (2016, 2020) also proposed the compensatory beliefs in reducing driver 

distraction. Hence, this research contributes to the literature by validating compensatory 

beliefs in the driver distraction field.  

 On the other hand, for these drivers who initiated their change of visual distraction 

as an increase, there is an average of 2.41 occurrences per driver in increasing visual 

distraction magnitude under “visual only” HVI, which is also significantly higher 

compared to 1.56 occurrences per driver under “visual and audible” HVI. Combining with 

the previous finding, we can observe that drivers tend to check the center screen back and 

forth if they are in the “visual only” HVI process as these drivers have significantly more 

increases and reductions in visual distraction magnitude compared to drivers in “visual and 

audible” HVI process.  

To further validate this observation, Figure 3.15 illustrates the visual distraction 

magnitude trajectory map due to “visual only” HVI for those who initiate their first change 

of visual distraction magnitude as an increase. In Figure 3.13, each dot represents the 

location of each fixation, and the radius of the dot represents the duration of staying in the 

fixation. The fixation of the two dash lines represents the center screen. As a result, except 

for drivers with an ID of 11, 46, or 67, most drivers showed multiple occurrences of 

increasing and reducing visual distraction magnitude. Therefore, this finding further 

reveals that drivers are more likely to adjust their fixations at multiple attempts for the 

compensatory reason if the HVI is “visual only”. Meanwhile, drivers are more concentrated 

and prepared if the HVI is “visual and audible” because they showed significantly fewer 

attempts to look towards or away from the center screen.  
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(a) (b) (c) (d) 

 
   

(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

 

Figure 3. 15 Visual Distraction Magnitude Trajectory Map due to “Visual Only” HVI for (a) 

Driver ID=11; (b) Driver ID=12; (c) Driver ID=27; (d) Driver ID=28; (e) Driver ID=35; (f) 

Driver ID=37; (g) Driver ID=43; (h) Driver ID=46; (i) Driver ID=48; (j) Driver ID=63; (k) 

Driver ID=65; (l) Driver ID=67 
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Similar to Section 3.4.1.1, this research also explored the relationship between 

visual distraction increase rate and time. To compute the increase rate of visual distraction 

magnitude, Equation (3.21) was employed and expressed as follows: 

 

𝐼𝑅𝐻𝑉𝐼=𝑗 =
𝑑𝐹𝑖+1 − 𝑑𝐹𝑖

𝑡
; ∀𝑑𝐹𝑖+1 > 𝑑𝐹𝑖 (3.21) 

Where,  

𝐼𝑅𝐻𝑀𝐼=𝑗 = The increase rate of initial visual distraction reduction when HVI type is 𝑗 (𝑗 = “visual 

only” or “visual and audible”) (normalized distance/milliseconds) 

𝑑𝐹𝑖 = Distance of 𝐹𝑖 to center (𝑖 = 1,2… , 𝑛); 

𝑡 = Time under initial visual distraction reduction (milliseconds). 

 

A model fit test is also performed in order to determine the best-fit model in 

describing the increase rate of visual distraction magnitude under “visual only” and “visual 

and audible” HVI, respectively. Table 3.7 summarizes the result of the test. 
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Table 3. 7 Best Model Fit Analyses for Initial Visual Distraction Increase Rate under (a) 

“Visual-Only” and (b) “Visual + Audible” HVI 

(a) 
Equation Model Summary Parameter Estimates 

R-

square 

F df1 df2 Sig. Constant b1 b2 b3 

Linear .143 62.661 1 377 .000 .001 -2.515E-

6 

  

Logarithmic .407 258.749 1 377 .000 .005 .000   

Inverse .609 587.522 1 377 .000 1.756E-5 .052   

Quadratic .280 73.050 2 376 .000 .002 -9.803E-

6 

1.052E-

8 

 

Cubic .379 76.362 3 375 .000 .003 -2.328E-

5 

5.899E-

8 

-4.321E-

11 

Compounda .321 178.183 1 377 .000 .001 .997   

Powera .543 447.797 1 377 .000 .021 -.845   

Sa .424 277.592 1 377 .000 -8.610 39.983   

Growtha .321 178.183 1 377 .000 -7.334 -.003   

Exponentiala .321 178.183 1 377 .000 .001 -.003   

Logistica .321 178.183 1 377 .000 1.531E3 1.003   
 

(b) 
Equation Model Summary Parameter Estimates 

R-

square 

F df1 df2 Sig. Constant b1 b2 b3 

Linear .129 46.540 1 314 .000 .001 -1.666E-

6 

  

Logarithmic .361 177.242 1 314 .000 .004 .000   

Inverse .583 439.411 1 314 .000 -6.883E-

5 

.056   

Quadratic .243 50.127 2 313 .000 .002 -7.315E-

6 

6.279E-

9 

 

Cubic .346 54.933 3 312 .000 .003 -1.878E-

5 

3.717E-

8 

-2.130E-

11 

Compounda .538 365.529 1 314 .000 .001 .996   

Powera .774 1.077E3 1 314 .000 .050 -1.084   

Sa .515 333.798 1 314 .000 -9.359 55.992   

Growtha .538 365.529 1 314 .000 -7.542 -.004   

Exponentiala .538 365.529 1 314 .000 .001 -.004   

Logistica .538 365.529 1 314 .000 1.885E3 1.004   
 

The independent variable is time. 

As summarized in Table 3.7, each candidate regression model has an 𝐑𝟐 and p-

value that obtained from the F test. A higher 𝐑𝟐 suggests that the regression model better 

explains the increase rate as a function of time. A lower p-value suggests a more significant 

effect on the increase rate of visual distraction magnitude. For the increase rate under the 

“visual only” warning, the inverse regression model has the relatively highest 𝐑𝟐 of 0.609 
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with indicating the time is significant at the 99.9% confidence level. These values reveal 

that the inverse model is the best-fit model that describes the relationship between increase 

rate of visual distraction magnitude and time. Therefore, on the basis of the results of the 

inverse model summarized in Table 3.7, the increase rate of initial visual distraction due to 

“visual only” HVI can be modeled by a function of time, which is presented by the 

following equation: 

𝐼𝑅𝑣𝑖𝑠𝑢𝑎𝑙 𝑜𝑛𝑙𝑦 = −1.756 ∗ 10
−5 +

0.052

𝑡
; ∀ 𝑡 ∈ [0, 840 𝑚𝑠] (3.22) 

For the increase rate under “visual and audible” warning, the power regression 

model also has the relatively highest 𝐑𝟐 of 0.774 with the p-value lower than 0.01. These 

values imply that the power model is the best fit model in capturing the relationship 

between increase rate under “visual and audible” warning and time. Similar to Equation 

(3.22), the increase rate of initial visual distraction due to “visual and audible” HVI can be 

expressed as a function of time in the following equation” 

𝐼𝑅𝑣𝑖𝑠𝑢𝑎𝑙+𝑎𝑢𝑑𝑖𝑏𝑙𝑒 = 0.05 ∗ 𝑡
−1.084; ∀ 𝑡 ∈ [0, 1050 𝑚𝑠] (3.23) 

 

 In summary, Figure 3.13 illustrates the increase rate of initial visual distraction 

induced by both HVI types and time. The red circle dots represent ground truth data of the 

increase rate due to “visual only” HVI at each timestamp while the cyan triangle dots 

represent ground truth data of the increase rate due to “visual and audible” HVI at each 

timestamp. The best-fit models in capturing the relationship between reduction rate and 

time are also included in Figure 3.16. 
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Figure 3. 16 Comparison of Visual Distraction Magnitude Increase Rate and Time under 

Different HVI Types 

 

  As illustrated in Figure 3.16, drivers are starting to increase visual distraction 

magnitude, regardless of the HVI types, when starting the HVI. Different models were 

developed in capturing the relationship between time and visual distraction magnitude 

acceleration rate. On average, drivers under “visual only” spend 315.8 milliseconds on 

increasing their visual distraction by looking away from the center screen until the next 

fixation movement, while drivers under “visual and audible” spend 351.1 milliseconds on 

increasing their visual distraction until the next fixation movement. No significant 

differences were observed. 
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3.4.2 Visual distraction direction 

By converting the fixation records from Cartesian coordinate system to polar coordinate 

system, the visual distraction direction was computed and added to the final fixation dataset 

with 188 sample size. In order to better discuss the visual distraction from the direction 

perspective, the polar coordinate system was divided into four quadrants based on the angle 

between the fixed direction axis and the vector of visual distraction. Figure 3.17 illustrates 

how the polar coordinate system was divided.  

 

Figure 3. 17 Polar Coordinate System Quadrants 

 As illustrated in Figure 3.17, the polar coordinate system was divided into four 

quadrants based on the angle between the visual distraction vectors. An example of 

fixations “𝐹1”  was given in Figure 16, and 𝝋 represents the angle between the y-axis and 

𝐹1. In this case, the “𝐹1”  has a visual distraction magnitude of “r” with a visual distraction 

direction at the third quadrant.  

 Therefore, all participants’ fixation records were used to compute the visual 

distraction direction. Figure 3.18 illustrates the distribution of visual distraction directions 

under “visual only” and “visual and audible” HVI types.  
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Figure 3. 18 Distribution of Visual Distraction Direction under “Visual Only” and “Visual 

and Audible” HVI Types 

 According to Figure 3.18, the same tendency of visual distraction direction for both 

“visual only” and “visual and audible” HVI types is that drivers have the largest proportion 

of visual distraction direction located in the lower-right quadrant under both HVI types. 

However, when drivers in the “visual only” HVI process, the remaining quadrants are close 

to an evenly distributed situation in terms of fixation location, as the percentage of fixations 

located in the first, second, and third quadrant is 22.4%, 20.7%, and 20.7%, respectively. 

On the other hand, drivers have more fixations located in the first quadrant (upper-right 

quadrant) when receiving messages visually, compared to both receiving messages visually 

and being alerted audibly (22.4% vs. 9.1%).  

 To summarize, the distribution of visual distraction direction is different between 

these two HVI types. To validate this inference, a Wilcoxon test was conducted to 

determine if the visual distraction directions under two HVI types are different from one 

another in a statistically significant manner (Happ et al., 2019). As a result, the Wilcoxon 

test results confirmed that the distributions of visual distraction direction are significantly 

22.40%
20.70% 20.70%

36.20%

9.10%

28.80%
27.30%

34.80%

First quadrant Second quadrant Third quadrant Fourth quadrant

Visual only Visual and audible
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different from each other between “visual only” and “visual and audible” HVI types at the 

95% confidence interval.  

 Furthermore, the visual distraction direction was also evaluated from the degree’s 

perspective. The analysis of degree provides another point of view in understanding visual 

distraction direction from a continuous perspective rather than a categorical perspective. 

Table 3.8 summarizes the visual distraction direction in degree under two HVI types.  

Table 3. 8 Summary of Visual Distraction Direction (in degree) under “Visual Only” and 

“Visual and Audible” HVI Types 

Variable Sample size Visual distraction direction (in 

degree) 

T-test 

results 

Min. Mean. Max. 

“Visual only”  116 1.883 170.442 345.846 t=-2.54, 

P<0.05* “Visual and audible” 66 0.199 207.352 352.982 

 According to Table 3.8, the average degree of visual distraction direction under 

visual only is 170.44 degree, which is in the second (lower-right) quadrant, while the 

average degree of visual distraction direction under visual and audible is 207 degree, which 

is in the third (lower left) quadrant. A one-tail t-test has been employed to evaluate the 

significant difference in terms of direction of visual distraction under different HVI types. 

The result suggests a significant difference, suggesting the visual distraction degree is 

significantly higher under “visual and audible” HVI type compared to “visual only” HVI 

type (t=-2.5398, p<0.05). Therefore, the analysis of visual distraction direction in degree 

also confirmed the findings from the analysis of visual distraction direction in quadrants.  

3.4.3 Visual distraction’s impact on safety 

As introduced in the previous section, the visual distraction was extensively modelled from 

the magnitude and direction perspective. This section mainly discusses the impact of visual 

distraction on driving safety based on visual distraction magnitude and direction, 

respectively.   
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3.4.3.1 Visual distraction intensity and safety 

As introduced, drivers have significant difference in terms of visual distraction magnitude 

and direction between “visual only” and “visual and audible” HVI types. With existing 

research suggesting that HVI modalities influence driver’s takeover time (McDonald et al., 

2019; Yoon et al., 2019) and, in turn, affect takeover quality in avoiding collision hazards 

(W. Zhang et al., 2021), this research reveals the mechanism of how visual distraction 

magnitude impacts driving safety.  

 To begin with, a hypothesized model was developed in capturing the relationships 

among visual distraction magnitude, HVI types, takeover time, and traffic conflicts, which 

is illustrated in Figure 3.19.  

 

Major hypotheses: 

𝐻0, 𝐼 No significant differences in terms of visual distraction intensity under two HVI types. 

𝐻0, 𝐼𝐼 HVI types does not significantly impact takeover time. 

𝐻0, 𝐼𝐼𝐼 Takeover time does not significantly impact on the probability of having a traffic conflict. 
 

Figure 3. 19 Hypothetical Model in Capturing the Relationship among Visual Distraction 

Intensity, HVI Types, Takeover Time, and Traffic Conflict. 

 

 Table 3.9 summarizes the sample characteristics that prepared for validating the 

hypothetical model. In order to validate the proposed hypothetical model, a Structural 

Equation Modeling (SEM) method was employed. This unique discrete choice modeling 

technique has been widely used in explaining social science problems. SEM is a more 

advanced statistical model that is capable of estimating interrelationships between 

“endogenous variables” (direct effects) and “exogenous variables” (indirect effects) in a 
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simultaneous equation system (Muthén & Muthén, 2011). Furthermore, multi-layers of 

endogenous variables can be inserted in SEM to reveal how and whether visual distraction 

magnitude significantly impacts takeover time and the probability of having a traffic 

conflict under different HVI types. Therefore, SEM is considered a suitable modeling 

technique in validating the major hypotheses and quantifying the interrelationships among 

factors introduced in the hypothetical model. The successful applications of SEM in social 

science have drawn the attention of transportation researchers. For example, researchers 

have employed SEM to validate the “Technology Acceptance Model,” which indicates 

factors that contribute to Automated Vehicle (AV) acceptance from a psychological 

perspective (Kapser et al., 2021; T. Zhang et al., 2019). 
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Table 3. 9 Sample Characteristics for Modeling Visual Distraction Intensity and its Impact 

on Safety (N=50) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Driver 

distraction 

intensity 

Visual 

distraction 

intensity 

The total 

intensity of 

visual 

distraction 

that measured 

in facing a 

jaywalker 

under Level 

3-ADS 

Continuous \ 0.45±0.60 0.0419~3.6263 

HVI 

Characteristics 

Warning 

Type 

Methods to 

notify drivers 

regarding a 

takeover 

action 

Binary 

Categorical 

Visual 

only 
25 50% 

Visual 

and 

audible 

25 50% 

Controller 

Area 

Network-Bus 

(CAN-Bus) 

information 

Takeover 

time 

Time 

duration from 

the start of 

HVI to the 

moment the 

driver takes 

over the 

driving by 

applied 

pedals 

Continuous \ 2.29±0.67 1.167~4.667 

Safety 

performance 

Traffic 

conflict 

Whether a 

driver has a 

traffic 

conflict after 

being 

requested to 

takeover  

Binary 

Categorical 

No 

conflict 
27 54% 

Conflict 23 46% 

 Figure 3.20 illustrates the final SEM model in capturing the relationships among 

visual distraction intensity, HVI types, takeover time, and traffic conflicts. The model fits 

the observed data adequately by the following indices of goodness-of-fits: CFI=1.000, 

RMSEA=0.000. As this model is estimated using the WLSMV estimator, it produces probit 

regression coefficients when the endogenous variables are dichotomous, or linear 

regression coefficients when the endogenous variables are continuous or categorical 

(Muthén & Muthén, 2011). Table 3.10 summarizes both direct and indirect effects on the 

probability of having a traffic conflict. 



81 

 

  

Figure 3. 20 Mechanism of Visual Distraction Intensity Impacting Traffic Conflict 

 

Table 3. 10 Estimated Effects of Direct and Indirect Effects on the Probability of Having a 

Traffic Conflict 
 Direct effects Indirect effects Total effects 

 β 
Odds 

ratio 
β 

Odds 

ratio 
β 

Odds 

ratio 

Visual distraction intensity   0.203 1.225 0.203 1.225 

HVI type (visual and audible)   -0.336 0.715 -0.336 0.715 

Takeover time 0.867 2.380   0.867 2.380 

 

 According to Figure 3.20 and Table 3.10, the mechanism of how visual distraction 

intensity impacts the probability of having a traffic conflict was revealed and quantified by 

employing an SEM method. The hypotheses proposed in Figure 3.16 were all rejected. 

Hence, the visual distraction intensity significantly impacts the takeover time and the 

probability of having a traffic conflict under different types of HVI.  

 Specifically, the final SEM model suggests that visual distraction intensity was 

significantly lower under “visual and audible” HVI type compared to “visual only” HVI 

type (probit coefficient = -0.604). The analysis of its odds ratio suggests that the visual 

distraction intensity under “visual and audible” HVI was 39.6% lower than the one under 

“visual only” HVI, which is consistent with the findings in terms of visual distraction 

magnitude under these two HVI types. Moreover, the HVI type has a negative impact on 
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the takeover time (linear coefficient=-0.387), suggesting that drivers spend significantly 

less time on taking over the vehicle if the HVI type is “visual and audible”, comparing to 

the circumstance if the HVI type is “visual only”. Combining the aforementioned two 

observations, it is safe to conclude that the increase in visual distraction intensity positively 

influences takeover time. The final stage of the SEM model suggests that longer takeover 

time significantly increase the probability of having a traffic conflict (probit coefficient = 

0.867). To summarizes, the final SEM model reveals how visual distraction intensity 

impacts driving safety in the form of having a traffic conflict.   

3.4.3.2 Visual distraction direction and safety 

This section mainly discusses how visual distraction direction and safety were connected. 

The discussion follows the order with analyzing the impact of visual distraction direction 

on safety from the quadrants’ perspective and then analyzing its impact on safety from the 

degree perspective.  

 By linking each driver’s distribution of fixation location with safety performance, 

it was observed that when having a traffic conflict, drivers have a significant number of 

fixations staying at the first (upper-right) quadrant, comparing to the number of fixations 

where there is no traffic conflict (t=-1.816, p<0.1). Moreover, the number of fixations 

staying at the second (bottom-right) quadrant also significantly contributes to the 

probability of having a traffic conflict. The analysis suggests that when having a traffic 

conflict, drivers have a significant number of fixations staying at the bottom-right corner, 

comparing to the number of fixations where there is no traffic conflict (t=-1.59, p<0.1). 

 Moreover, in order to understand the mechanism of how visual distraction direction 

impacts the safety performance, a decision tree model was performed. Using a decision 
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tree to classify a nominal dependent variable is called a classification tree (Ghasemzadeh 

et al., 2018). The classification can be defined as a procedure for understanding the 

mechanism for predicting a value in the dependent variable (Han et al., 2011). If the 

dependent variable is categorical, CART produces a classification tree. If the dependent 

variable is numerical, CART produces a regression tree. In this study, since the dependent 

variable is whether having a traffic conflict or not after being requested to takeover. 

Therefore, a classification tree model was performed with incorporating each driver’s age, 

gender, HVI types, and proportion of fixations staying in each quadrant. Figure 3.21 

illustrates the final classification tree model.  

 

 Figure 3. 21 Mechanism of Visual Distraction Direction in Impacting Safety Performance 

 

 

Figure 3.21 illustrates the final classification tree model in revealing the mechanism 

of how visual distraction direction impacts the safety performance. The classification tree 

model has a classification rate of 100%, with driver’s age, HVI types, takeover time, and 

distribution of fixations staying at first as well as second quadrants being identified as 

contributing factors.  
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 Throughout the classification tree model, there are multiple combinations 

suggesting the occurrences of traffic conflict. For example, if a driver does not have 26% 

of the fixations located in the second (upper left) quadrant under the “visual only” HVI 

type, the probability of having a traffic conflict is 100%. Moreover, drivers who are under 

60 with 36% of fixations located in the second quadrant can also result in a traffic conflict 

under “visual only” HVI. On the other hand, it is still possible that the traffic conflict will 

not happen under “visual only” HVI, such as (a) having 26%~36% of the fixations located 

in the second quadrant; and (b) having 36% or above and 20% or lower of fixations located 

in the second and first quadrant, respectively, with driver’s age above 60 and takeover time 

shorter than 2.8-second.  

3.4.4 Predicting visual distraction 

The next objective of this research is to develop prediction models that can estimate visual 

distraction intensity based on drivers’ demographical information and Controller Area 

Network-Bus (CAN-Bus) information data. Previous sub-sections in the “Results” section 

mainly discuss how driver distraction magnitude changes from the time perspective. In this 

section, the visual distraction intensity is chosen as the dependent variables, calculated 

using Equation (3.3), focusing on the entire process of interacting with the jaywalker under 

Level 3-ADS. Table 3.11 summarizes the sample characteristics for variables included in 

developing prediction models.  
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Table 3. 11 Sample Characteristics of Driver Distraction Intensity under HVI (Sample 

size=50) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Demographics 

Age 
Age of 

participants  
Continuous \ 50.04±14.03 25~73 

Gender 
Gender of 

respondents 

Binary 

Categorical 

Male 13 52% 

Female 12 48% 

HVI 

Characteristics 

Warning 

Type 

Methods to 

notify drivers 

regarding a 

takeover 

action 

Binary 

Categorical 

Visual 

only 
25 50% 

Visual 

and 

audible 

25 50% 

Controller 

Area 

Network-Bus 

(CAN-Bus) 

information 

Takeover 

time 

Time 

duration from 

the start of 

HVI to the 

moment the 

driver takes 

over the 

driving by 

applied 

pedals 

Continuous \ 2.29±0.67 1.167~4.667 

Driver 

distraction 

intensity 

Visual 

distraction 

intensity 

The total 

intensity of 

visual 

distraction 

that measured 

in facing a 

jaywalker 

under Level 

3-ADS 

Continuous \ 0.45±0.60 0.0419~3.6263 

 

Total 50 data sets (samples) that were introduced in Table 3.11 are randomly 

distributed for training and testing the ANN model at a 70/30 split. The neural network is 

trained through a number of epochs, and a new set of data is fed into the network during 

each epoch. Although more complexity of the model can produce better generalization 

performance, complicated networks can also easily overfit the training data (Amiri et al., 

2020). In this case, the testing dataset estimates become worse as the structure learned from 

the training dataset is top specific, resulting in the overfitting of the model. It has a low 

bias but high variance. 
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 As a result, when developing the prediction model for estimating visual distraction 

intensity, it has been observed that the three hidden layer structure with 7 neurons in the 

first hidden layer, 5 neurons in the second hidden layer, and 1 neuron in the third hidden 

layer achieves the minimum MSE difference between the testing and training datasets at 

0.0831 (MSE in training dataset: 0.0022; MSE in testing dataset: 0.0853). Figure 3.22 

illustrates the best-fit models for predicting visual and cognitive distraction.  

 

 

Figure 3. 22 Best-fit ANN Model in Predicting Visual Distraction Intensity  
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CHAPTER 4: MODELING COGNITIVE DISTRACTION UNDER THE 

AV ENVIRONMENT 

4.1 Modeling cognitive distraction 

4.1.1 Cognitive distraction magnitude 

Per definition, cognitive distraction is the time that drivers take their minds off. Existing 

research has been using pupil dilation as a reliable and quantifiable indicator of cognitive 

load (Beaty & Lucero-Wagnoer, 2000; Gollan et al., 2016; Granholm et al., 1996; Iqbal et 

al., 2004). Specifically, Pomplun & Sunkara (2003) compared the effects of cognitive 

workload on pupil dilation. They also confirmed the reliability of using pupil dilation as an 

indicator for a person’s cognitive workload. Pfleging et al. (2016) conducted proof-of-

concept research in estimating mental workload by measuring individuals’ pupil diameter 

under different lighting conditions.  

 Under CAV driving environment, drivers will receive messages from the in-vehicle 

heads-up or heads-down display, also known as Human-Vehicle Interaction (HVI). 

Researchers defined this circumstance as a “task-evoked pupil response” (TEPR) (Bradley 

et al., 2008; Gabay et al., 2011; Jepma & Nieuwenhuis, 2011). This paper will be modeling 

the HVI-induced cognitive driver distraction under CAV driving environment from pupil 

dilation. 
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While the eye-tracking system collects eye movement in temporal and spatial 

measurements, it also collects gaze behaviors, with pupil dilation being one of the key 

components. According to Figure 1.2, the pupil dilation data needs to be pre-processed due 

to possible reasons such as blinking. Moreover, the Pupil Core Eye-tracker sometimes has 

difficulty detecting the driver’s pupil who already wears glasses. These records are to be 

removed before moving any further.  

 After records of blinking and pupil not being detected are removed, the next step is 

to find the baseline pupil diameter since every individual’s pupil diameter is different at 

the baseline level. The baseline pupil diameter is measured at the beginning of the driving 

without adding any distractions.  

 In this dissertation, the magnitude of cognitive distraction is measured by the 

change of pupil diameter compared to the baseline pupil diameter in the format of 

percentage, which is computed as follows: 

𝑀𝐶𝐷𝑡=𝑖 =
(𝑑𝑡=𝑖 − 𝑑0)

𝑑0
∗ 100% (4.1) 

Where, 

𝑀𝐶𝐷𝑡=𝑖  = Intensity of cognitive distraction at the timestamp of 𝑖; 

𝑑𝑡=𝑖 = Pupil diameter at the timestamp of 𝑖; 
𝑑0 = Baseline pupil diameter. 

Figure 4.1 illustrates the change of pupil diameter change. Moreover, we consider 

changing pupil diameters based on each eye as the surrogate measurement for cognitive
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distraction to reduce human errors. As illustrated in Figure 4.1, unlike visual distraction, 

cognitive distraction does not show a pattern of time discrete. Therefore, the magnitude of 

cognitive distraction changes pupil diameter compared to the driver’s baseline. According 

to the driving simulator data, the HVI session can be flagged out. 

 

Figure 4. 1 Cognitive Distraction in Measuring Magnitude 

  

 Therefore, the intensity of HVI-induced cognitive distraction can be measured 

using the following equation:  

𝐼𝐶𝐷,𝐻𝑉𝐼 = ∫ ∆𝑝𝑑(𝑡)𝑑𝑡
𝑡𝐸

𝑡𝑆

 (4.2) 

Where,  

𝐼𝐶𝐷  = Intensity of cognitive distraction (%*t); 

∆𝑝𝑑(𝑡) = Pupil diameters change of the left eye as a function of time.  
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In summary, the magnitude of cognitive distraction can be modeled with following 

steps: 

Step 1: Obtain each driver’s baseline pupil diameter in a normal driving session that is not 

affected by HVI. 

Step 2: Retrieve pupil data under the timestamps of the HVI session in the “pupil position” 

dataset. The retrieved dataset should have the timestamps matched with the ones in the 

“fixation” dataset. 

Step 3: Remove blinking records where suggests the pupil diameter equals 0.  

Step 4: Remove pupil data records with a confidence level under 0.6. 

Step 5: Select either left or right pupil to continue the measurement of cognitive distraction. 

Step 6: Calculate the magnitude of cognitive distraction by using Equation (4.1) under 

each timestamp.  

Step 7: Calculate the intensity of cognitive distraction in terms of the area created in step 

6 by referring to the x-axis. Note that unlike the relationship between the magnitude of 

visual distraction and time illustrated in Figure 4.1, a specific function cannot express the 

relationship between the cognitive distraction magnitude and time. Therefore, the 

trapezoidal integration is used to compute the area via MATLAB, which current practice 

has extensively used (Paraforos & Griepentrog, 2019; Thornton et al., 2015; Y.-D. Wang 

& Bo, 2013). 

4.1.2 Cognitive distraction magnitude and its acceleration rate 

In this research, the real-time cognitive distraction is measured by pupil diameter change 

compared to each driver’s baseline pupil diameter in the format of percentage. Unlike 

visual distraction, the relationship between cognitive distraction and time is time-discrete, 
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given that every timestamp has a cognitive distraction value matched. Figure 4.2(a) 

illustrates an example of the relationship between cognitive distraction (in the measurement 

of pupil diameter change with the format of percentage) and time. 

  
(a) (b) 

Figure 4. 2 Relationships between (a) Cognitive Distraction and (b) Cognitive Distraction 

Acceleration Rate with Time (an Example) 

 

 As illustrated in Figure 4.2(a), cognitive distraction changes as time increases. By 

taking the derivative of cognitive distraction with respect to time, the relationship between 

cognitive distraction acceleration rate (CDAR) and time can be observed, which is 

illustrated in Figure 4.2(b). Therefore, it can be observed that the CDAR tends to increase, 

reduce, and then bounce back with a periodic pattern. However, the period in reflecting 

this tendency is varied. To better observe the frequency of how the cognitive distraction 

changes over time, a Discrete Fourier Transform (DFT) is used to transform subsequences 

of the observed time-series data. 

The CDAR data reveals a time-series pattern, 𝑡 = {𝑡0, 𝑡1, … , 𝑡𝑛} , that can be 

expressed as a combination of unique circular patterns of varying frequencies, amplitudes, 

and phases by using a Fourier Transformation (Kluger et al., 2016; X. Wu & Nie, 2011). 



92 

 

Specifically, the cognitive distraction acceleration data was collected in the case of discrete 

data sampled at a specific frequency. In this case, the Discrete Fourier Transform (DFT) is 

applied to estimate the frequencies in changing the cognitive distraction.  

 Assuming a vector set of cognitive distraction acceleration rate, 𝑐𝑑𝑎𝑟 =

{𝑐𝑑𝑎𝑟0, 𝑐𝑑𝑎𝑟1, … , 𝑐𝑑𝑎𝑟𝑛} , samples at discrete time locations of 𝑡 = {𝑡0, 𝑡1, … , 𝑡𝑛} . By 

turning the data vector of CDAR into its sine and cosine through DFT, a frequency domain 

perspective can be added in exploring the frequency of cognitive distraction accelerates.   

 The purpose of DFT is to compute a vector set of Fourier coefficients (i.e., 

𝑐𝑑𝑎𝑟0̂, 𝑐𝑑𝑎𝑟1̂, … , 𝑐𝑑𝑎𝑟�̂�). With the DFT, the frequency domain will be used to describe the 

relationship between CDAR and time. For a 𝑐𝑑𝑎𝑟�̂�, 

𝑐𝑑𝑎𝑟�̂� = ∑𝑐𝑑𝑎𝑟𝑗𝑒
−𝑖2𝜋𝑗𝑘/𝑛

𝑛−1

𝑗=0

 (4.3) 

 By employing Equation (4.3),  

{𝑐𝑑𝑎𝑟0, 𝑐𝑑𝑎𝑟1, … , 𝑐𝑑𝑎𝑟𝑛}
𝐷𝐹𝑇
⇒  {𝑐𝑑𝑎𝑟0̂, 𝑐𝑑𝑎𝑟1̂, … , 𝑐𝑑𝑎𝑟�̂�} (4.4) 

 With defining 𝜔𝑛, the fundamental frequency that is related to the types of sines 

and cosines can be used to approximate with discrete CDAR in the time domain. The 𝜔𝑛 

can be expressed in the following form: 

𝜔𝑛 = 𝑒
−2𝜋𝑖/𝑛;  ∀ 𝑖 = √−1 (4.5) 

 In this case, the Fourier coefficients (i.e., 𝑐𝑑𝑎𝑟0̂, 𝑐𝑑𝑎𝑟1̂, … , 𝑐𝑑𝑎𝑟�̂�) can be computed 

using the following equation: 
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 (4.6) 

 MATLAB is used to perform DFT, with an objective of obtaining the maximum 

frequency of each driver’s cognitive distraction along with the CDAR. Figure 4.3 illustrates 

the flow of DFT analysis. 

 

Figure 4. 3 Flow Chart of Performing DFT Analysis with Cognitive Distraction and its 

Acceleration Rate 

 

4.2 Quantification of cognitive distraction 

4.2.1 Factors impacting cognitive distraction and its acceleration rate 

As introduced in Section 3.3, participants’ pupil dilation was collected by using an eye-

tracking device. Pupil dilation was used in modeling a driver’s cognitive distraction. In this 
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research, there were two DFTs performed focusing on cognitive distraction and CDAR, 

respectively. The frequencies that each driver achieved the maximum cognitive distraction, 

and its acceleration rate were computed for each driver. By evaluating the drivers with 

different ages and gender under different HVI types in terms of the computed frequency of 

achieving maximum cognitive distraction, this research found a significant difference for 

drivers who are above 60 years old between “visual only” and “visual and audible” HVI 

types. Table 8 summarizes the differences. 

Table 4. 1 Evaluation Results of Frequency in Reflecting Maximum Cognitive Distraction for 

Drivers above 60 under Two HVI Types 

Variable Sample size Frequency reflecting maximum 

cognitive distraction 

T-test 

results 

Min. Mean. Max. 

“Visual only” & “Above 60” 8 0.0000 1.597e-05 5.380e-05 T=-1.72, 

P<0.1* “Visual and audible” & “Above 60” 8 0.0000 1.063e-04 4.200e-04 

 

As summarized in Table 4.1, drivers above 60 years old have a significantly lower 

frequency in achieving the maximum cognitive load under the “visual only” HVI type than 

the “visual and audible” HVI type. Hence, for drivers who are 60 years old or above, it 

takes a significantly longer time to reach the maximal cognitive load under the “visual only” 

HVI type, compared to the “visual and audible” HVI type. A major assumption here is that 

the quicker the maximal cognitive load, the lower cognitive distraction intensity the driver 

will obtain during the HVI process. In this case, it can be inferred that drivers who are 60 

years old or above have a lower intensity of cognitive distraction if the HVI type is “visual 

and audible” because maximal cognitive distraction is reached in a significantly shorter 

period of time compared to “visual only”.  

To validate this inference, the intensity of cognitive distraction was evaluated for 

drivers who are 60 years old or above between these two types of HVI. As a result, the 
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average cognitive distraction intensity is significantly lower under the “visual and audible” 

HVI, compared to the one under “visual only” HVI (t=1.404, p<0.1). Table 4.2 summarizes 

the detailed evaluation results. 

Table 4. 2 Evaluation Results of Cognitive Distraction Intensity for Drivers above 60 under 

Two HVI Types 

Variable Sample size Intensity of cognitive distraction T-test 

results Min. Mean. Max. 

“Visual only” & “Above 60” 8 0.0096 0.0762 0.2430 T=1.404, 

P<0.1* “Visual and audible” & “Above 60” 8 0.0013 0.0343 0.0747 

 

Therefore, it can be concluded that drivers who are 60 years old or above are 

significantly reduced in cognitive distraction if the HVI type is “visual and audible”, 

compared to the “visual only” HVI type. The reason is revealed after computing the 

frequency of reaching maximum cognitive distraction under these two HVI types.  

After exploring the cognitive distraction, this research furthers the analysis by 

evaluating the frequency of achieving maximum CDAR transformed by discrete Fournier. 

Consequently, it can be concluded that the frequency that corresponds to the maximal of 

CDAR is significantly larger if the HVI type is “visual only”, compared to “visual and 

audible” (t=1.9851, p<0.05). Table 4.3 summarizes the evaluation results.  

Table 4. 3 Evaluation Results of Cognitive Distraction Acceleration Rate between “Visual 

Only” and “Visual and Audible” HVI  

Variable Sample size Frequency reflecting maximum cognitive 

distraction acceleration rate 

T-test results 

Min. Mean. Max. 

“Visual only” 25 0.0013 0.0034 0.0042 T=1.9851, 

P<0.05** “Visual and audible” 25 0.00005 0.0029 0.0042 

 Based on the results from Table 4.3, it can be concluded that the time needed for 

reaching the maximal CDAR under “visual and audible” is significantly higher than “visual 

only” HVI. A potential reason is that the situation awareness is relatively higher if the HVI 

type is a multi-modal (including more than one cue) compared to the uni-modal HVI type 
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(i.e., visual only), in which the existing studies have supported this inference (Roche et al., 

2019; Wright et al., 2017). As a result, drivers are more likely to be well-prepared in 

handling emergency situations (i.e., takeover) and less likely to heavily increase the 

cognitive distraction during the “visual and audible” HVI process. 

 On the other hand, if the HVI is “visual only”, drivers’ situation awareness is 

relatively low compared to “visual and audible” HVI. When drivers find out they need to 

take over the vehicle in response to certain emergencies (i.e., jaywalker) under “visual 

only”, they need an extended time to percept the fact that a takeover is needed and complete 

the takeover process. The collected data also supports this interpolation, that the takeover 

time is significantly lower under the “visual and audible” HVI, compared to “visual only” 

HVI (t=3.571, p<0.01). Therefore, when the driver realizes that a takeover action is needed, 

there is a compensation belief reflected in the driver to make up for the potential hazards 

due to driver distraction. Hence, the action is reflected in the CDAR by increasing the pupil 

dilation change rate.    

4.2.2 Cognitive distraction change after visual distraction reaching the maximum 

Gaze behavior data is applied to measure visual and cognitive distraction, respectively. It 

is worthwhile to investigate the connection between these two types of driver distraction. 

However, the visual distraction magnitude changes over time. For example, drivers reach 

their maximum visual distraction at different timestamps. It is a challenge to compare 

drivers’ cognitive distraction if their visual distraction is not generalized. Therefore, this 

sub-section discusses cognitive distraction and its acceleration rate after the driver’s visual 

distraction reaches maximum.  
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 Figure 4.4 illustrates the cognitive distraction magnitudes' distribution after drivers 

reach their maximal visual distraction under both “visual only” and “visual and audible” 

HVI types.  

 

Figure 4. 4 Distribution of Cognitive Distraction Magnitudes after Visual Distraction 

Magnitude Reaching the Maximum 

 As illustrated in Figure 4.4, only cognitive distraction magnitudes after drivers 

reach the maximal visual distraction magnitude are included. The average cognitive 

distraction magnitudes under these two HVI types are highlighted in Figure 4.4. When 

visual distraction reaches the maximum, the cognitive distraction is observed with 

significantly different patterns under different HVI types, according to the Kolmogorov–

Smirnov (K-S) test (D=0.117, p<0.01). Furthermore, after the visual distraction reaches the 

maximum, the average cognitive distraction under the “visual and audible” HVI type is 

significantly higher than the one under the “visual only” HVI type (t=-3.43, p<0.01). A 



98 

 

potential reason is that audio may extend the cognitive workload by maintaining the pupil 

dilation at a higher level.  

Figure 4.5 illustrates the relationship between cognitive distraction magnitude and 

time under “visual only” and “visual and audible” HVI types to validate this inference. In 

order to visually assess the relationships of cognitive distraction with respect to time after 

drivers reach the maximal visual distraction, a Locally Weighted Scatterplot Smoothing 

(LOESS) smoother is also added in Figure 4.5. Since the nonparametric LOESS technique 

does not require a priori speciation of data distribution, it is chosen to assist with focusing 

on foreseeing the trends of how cognitive distraction magnitude changes over time. In each 

local span defined in LOESS, the neighboring data is processed by a quadratic polynomial 

to determine the smoothed value (Jacoby, 2000).  

 

Figure 4. 5 Cognitive Distraction Magnitude vs. Time under “Visual Only” and “Visual and 

Audible” HVI Types with LOESS Curves at 95% Confidence Interval (Note that “time=0.0s” 

suggests driver reached the maximum visual distraction). 
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As illustrated in Figure 4.5, circle dots represent the cognitive distraction under 

“visual only” after visual distraction reaches the maximum value by each driver, and 

triangles represent the cognitive distraction under “visual and audible”. During the first 0.5 

seconds, the cognitive distraction between “visual only” and “visual and audible” are close 

to evenly distributed. The smoothed curves are highly overlapped between 0-second and 

0.5-second. Additionally, a two-tail t-test was conducted with the null hypothesis 

suggesting that there is no significant difference in terms of the cognitive distraction 

magnitude between “visual only” and “visual and audible” HVI types at the onset of 0.5-

second after drivers reaching their maximal visual distraction. As a result, the null 

hypothesis is accepted (t=-0.28, p=0.78), suggesting that although the average cognitive 

distraction magnitude under “visual and audible” is significantly higher than the one under 

“visual only” (according to Figure 4.5), it does not reflect on the early stage (0~0.5 seconds) 

after reaching the maximum visual distraction magnitude.  

At the second stage (0.5~1 second), after reaching the maximal visual distraction 

magnitude, there are fewer records regarding the cognitive distraction magnitude under 

“visual only” HVI compared to “visual and audible” HVI. Accordingly, the smoothed 

curves representing these two HVI types also reveal the different relationships between 

cognitive distraction magnitude and time. A one-tail t-test was conducted, suggesting that 

cognitive distraction magnitude is significantly higher if the HVI type is “visual and 

audible” compared to “visual only” (t=-6.17, p<0.01) during the second stage after 

reaching the maximal visual distraction magnitude. Therefore, to summarize, the addition 

of audio significantly extends the cognitive workload after drivers reach the maximal visual 

distraction magnitude at a later stage. The final stage (1~1.5 seconds) is not discussed here 



100 

 

due to insufficient records of cognitive distraction magnitude under “visual and audible” 

HVI. 

 In summary, compared to “visual only” HVI, drivers’ cognitive distraction 

magnitude is significantly higher under the “visual and audible” HVI. To specify this 

finding, the analysis is broken down with respect to the driver’s gender and age. Figure 4.6 

illustrates the relationship between cognitive distraction magnitude and time among gender 

and age groups under these two HVI types.  

 As illustrated in Figure 4.6(a), colors were added to the existing circle dots and 

triangles with suggesting different age groups, namely “under 40 years old” and “40 years 

old or above”. There are patterns can be observed between age groups in terms of the 

cognitive distraction magnitude after drivers reaching the maximal visual distraction 

magnitude. During the early stages after reaching the maximal visual distraction magnitude 

(i.e., 0~0.5-second), drivers who are 40 years old or above are more likely to still maintain 

a high level of cognitive distraction magnitude, as the circle dots and triangles in orange 

colors dominate the higher level of cognitive distraction magnitude (0.1 and above) in 

Figure 4.6(a). During the second stage after reaching the maximal visual distraction 

magnitude (i.e., 0.5~1-second), although younger drivers (under 40 years old) were 

observed with an uptick in terms of cognitive distraction magnitude, the overall trend 

suggests that there are older drivers (40 years old or above) maintained the same high level 

of cognitive distraction magnitude (0.1 and above). Therefore, it is safe to conclude that 

younger drivers have a lower cognitive workload compared to older drivers after all of 

them reaching the maximal visual distraction magnitude.  
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 As depicted in Figure 4.6(b), another set of colors were added to the existing circle 

dots and triangles with indicating female and male drivers. Unlike Figure 4.6(a), the 

relationship between cognitive distraction magnitude and time suggests different patterns 

under genders. At the early stages after reaching the maximal visual distraction magnitude 

(i.e., 0~0.5-second), female drivers have a tendency of maintaining a higher level of 

cognitive distraction magnitude, as they dominated the higher level of cognitive distraction 

magnitude (0.1 and above) in Figure 4.6(b), regardless of the HVI types. On the other hand, 

at the second stage after reaching the maximal visual distraction (i.e., 0.5~1-second), male 

drivers took the lead in having a higher cognitive distraction compared to female drivers. 

This finding suggests that female drivers’ cognitive workload maintained a higher level 

than male drivers’ after they all reaches the maximum of visual distraction. However, this 

trend is reversed when they achieve the maximal visual distraction magnitude for a later 

time frame.   

 



102 

 

(a) 

 
(b) 

Figure 4. 6 Cognitive Distraction Magnitude vs. Time under “Visual Only” and “Visual and 

Audible” HVI Types in Comparison of (a) Age, and (b) Gender 

 

Moreover, Figure 4.7 illustrates the relationship between cognitive distraction 

magnitude and time between female and male drivers under these two HVI types. 

  
(a) (b) 

Figure 4. 7 Cognitive Distraction Magnitude vs. Time under “Visual Only” and “Visual and 

Audible” HVI Types with LOESS Curves at 95% Confidence Interval in terms of (a) Female 

Drivers and (b) Male Drivers. (Note that “time=0.0s” suggests driver reached the maximum 

visual distraction). 
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 As illustrated in Figure 4.7, it can be observed that both female and male drivers 

show higher cognitive distraction under the “visual and audible” HVI in the second stage 

(female: 0.5~1 second; male: 0.3~0.6 seconds) after reaching maximal visual distraction 

magnitude, compared to “visual only” HVI.  

4.3 Cognitive distraction’s impact on safety 

As introduced in the previous section, the cognitive distraction was extensively modelled 

from the magnitude and its acceleration rate, with incorporating human factors. This 

section mainly discusses the impact of cognitive distraction on driving safety in format of 

traffic conflicts.   

Previous sections suggest that drivers have significant differences in terms of 

cognitive distraction magnitude between “visual only” and “visual and audible” HVI types. 

This section uses a similar modeling approach that employed in the previous chapter of 

revealing why and how visual distraction influences driving safety.  

 To begin with, a hypothesized model was developed in capturing the relationships 

among cognitive distraction magnitude, HVI types, takeover time, and traffic conflicts, 

which is illustrated in Figure 4.8.  

 

Major hypotheses: 

𝐻0, 𝐼 No significant differences in terms of cognitive distraction intensity under two HVI types. 

𝐻0, 𝐼𝐼 HVI types does not significantly impact takeover time. 

𝐻0, 𝐼𝐼𝐼 Takeover time does not significantly impact on the probability of having a traffic conflict. 
 

Figure 4. 8 Hypothetical Model in Capturing the Relationship among Cognitive Distraction 

Intensity, HVI Types, Takeover Time, and Traffic Conflict. 
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 Table 4.4 summarizes the sample characteristics that prepared for validating the 

hypothetical model. In order to validate the proposed hypothetical model, a Structural 

Equation Modeling (SEM) method was employed. A detailed introduction of SEM 

methodology has been provided in previous sections. Note that the cognitive distraction 

intensity was calculated by using Equation (4.2), which integrates the cognitive distraction 

over the HVI processing time. 

Table 4. 4 Sample Characteristics for Modeling Visual Distraction Intensity and its Impact 

on Safety (N=50) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Driver 

distraction 

intensity 

Cognitive 

distraction 

intensity 

The total 

intensity of 

cognitive 

distraction 

that measured 

in facing a 

jaywalker 

under Level 

3-ADS 

Continuous \ 0.17±0.18 0.0012~0.7578 

HVI 

Characteristics 

Warning 

Type 

Methods to 

notify drivers 

regarding a 

takeover 

action 

Binary 

Categorical 

Visual 

only 
25 50% 

Visual 

and 

audible 

25 50% 

Controller 

Area 

Network-Bus 

(CAN-Bus) 

information 

Takeover 

time 

Time 

duration from 

the start of 

HVI to the 

moment the 

driver takes 

over the 

driving by 

applied 

pedals 

Continuous \ 2.29±0.67 1.167~4.667 

Safety 

performance 

Traffic 

conflict 

Whether a 

driver has a 

traffic 

conflict after 

being 

requested to 

takeover  

Binary 

Categorical 

No 

conflict 
27 54% 

Conflict 23 46% 
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 Figure 4.9 illustrates the final SEM model in capturing the relationships among 

cognitive distraction intensity, HVI types, takeover time, and traffic conflicts. The model 

fits the observed data adequately by the following indices of goodness-of-fits: CFI=1.000, 

RMSEA=0.000. As this model is estimated using the WLSMV estimator, it produces probit 

regression coefficients when the endogenous variables are dichotomous, or linear 

regression coefficients when the endogenous variables are continuous or categorical 

(Muthén & Muthén, 2011). Table 4.5 summarizes both direct and indirect effects on the 

probability of having a traffic conflict. 

  

Figure 4. 9 Mechanism of Cognitive Distraction Intensity Impacting Traffic Conflict 

 

Table 4. 5 Estimated Effects of Direct and Indirect Effects on the Probability of Having a 

Traffic Conflict 
 Direct effects Indirect effects Total effects 

 β 
Odds 

ratio 
β 

Odds 

ratio 
β 

Odds 

ratio 

Cognitive distraction intensity   0.663 1.941 0.663 1.941 

HVI type (visual and audible)   -0.339 0.712 -0.339 0.712 

Takeover time 0.876 2.401   0.876 2.401 

 

 According to Figure 4.9 and Table 4.5, the mechanism of how cognitive distraction 

intensity impacts the probability of having a traffic conflict was revealed and quantified 

with incorporating HVI types and takeover performance by employing an SEM method. 
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The hypotheses proposed in Figure 4.8 were all rejected. Therefore, the cognitive 

distraction intensity significantly impacts the takeover time and the probability of having 

a traffic conflict under different types of HVI.  

 Specifically, the final SEM model suggests that cognitive distraction intensity was 

significantly lower under “visual and audible” HVI type compared to “visual only” HVI 

type (probit coefficient = -1.957). The analysis of its odds ratio suggests that the cognitive 

distraction intensity under “visual and audible” HVI was 85.9% lower than the one under 

“visual only” HVI, which is consistent with the findings in terms of cognitive distraction 

magnitude under these two HVI types according to the one-tail t-test results (t=1.39, p<0.1). 

Moreover, the HVI type has a negative impact on the takeover time (linear coefficient=-

0.387), suggesting that drivers spend significantly less time on taking over the vehicle if 

the HVI type is “visual and audible”, comparing to the circumstance if the HVI type is 

“visual only”. Combining the aforementioned two observations, it is safe to conclude that 

the increase in cognitive distraction intensity positively influences takeover time. The final 

stage of the SEM model suggests that longer takeover time significantly increase the 

probability of having a traffic conflict (probit coefficient = 0.867). To summarizes, the final 

SEM model reveals how cognitive distraction intensity impacts driving safety in the form 

of having a traffic conflict.   

4.4 Predicting cognitive distraction  

Similar to Section 3.4.4, this research also develops the prediction model that can estimate 

cognitive distraction intensity based on drivers’ demographical information and Controller 

Area Network-Bus (CAN-Bus) information data. In this section, the cognitive distraction 

intensities are chosen as the dependent variables, calculated using Equation (4.2), focusing 
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on the entire process of interacting with the jaywalker under Level 3-ADS. Table 4.6 

summarizes the sample characteristics for variables included in developing prediction 

models.  

Table 4. 6 Sample Characteristics of Driver Distraction Intensity under HVI (Sample size=50) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Demographics 

Age 
Age of 

participants  
Continuous \ 50.04±14.03 25~73 

Gender 
Gender of 

respondents 

Binary 

Categorical 

Male 13 52% 

Female 12 48% 

HVI 

Characteristics 

Warning 

Type 

Methods to 

notify drivers 

regarding a 

takeover 

action 

Binary 

Categorical 

Visual 

only 
25 50% 

Visual 

and 

audible 

25 50% 

Controller 

Area 

Network-Bus 

(CAN-Bus) 

information 

Takeover 

time 

Time 

duration from 

the start of 

HVI to the 

moment the 

driver takes 

over the 

driving by 

applied 

pedals 

Continuous \ 2.29±0.67 1.167~4.667 

Driver 

distraction 

intensity 

Cognitive 

distraction 

intensity 

The total 

intensity of 

cognitive 

distraction 

that measured 

in facing a 

jaywalker 

under Level 

3-ADS 

Continuous \ 0.05±0.05 0.0003~0.2430 

 

Total 50 data sets (samples) that were introduced in Table 4.6 are randomly 

distributed for training and testing the ANN model at a 70/30 split. The neural network is 

trained through a number of epochs, and a new set of data is fed into the network during 

each epoch. Although more complexity of the model can produce better generalization 

performance, complicated networks can also easily overfit the training data (Amiri et al., 



108 

 

2020). In this case, the testing dataset estimates become worse as the structure learned from 

the training dataset is top specific, resulting in the overfitting of the model. It has a low 

bias but high variance. 

 As a result, the cognitive distraction intensity prediction model has come up with 

the three hidden layer structure with 8 neurons in the first hidden layer, 13 neurons in the 

second hidden layer, and 1 neuron in the third hidden layer, which has achieved the 

minimum MSE difference between training and testing datasets at -0.0302 (MSE in 

training dataset: 0.0676; MSE in testing dataset: 0.0364). Figure 4.10 illustrates the best-

fit models for predicting visual and cognitive distraction.  

 

 

Figure 4. 10 Best-fit ANN Model in Predicting (a) Visual Distraction Intensity and (b) 

Cognitive Distraction Intensity
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CHAPTER 5: OPTIMIZATION FUNCTION DEVELOPMENT IN 

MAXIMIZING SAFETY BENEFITS UNDER CAV ENVIRONMENT 

As introduced the previous chapters, driver distraction exists under automated driving 

environment. When displaying messages under AV environment, the driver’s attention is 

likely to be diverted depending upon the message location. Therefore, visual distraction 

exists as there is “a diversion of attention from driving, because the driver is temporarily 

focusing on an object, person, task or event not related to driving” (Hedlund et al., 2006). 

In the meantime, cognitive load started to increase in the form of increasing pupil dilation 

as the driver processes the meaning of the message. However, the displayed messages 

contain safety-related information that can help drivers with avoiding collision hazards, 

even though visual and cognitive distraction were generated during the HVI. Therefore, 

there are trade-offs in designing the HVI in terms of a wide range of parameters (i.e., 

display location, display modalities, display duration, display transparency) that can 

maximize the safety benefits and minimize the collision hazards from HVI-induced driver 

distraction under automated driving. Hence, this section mainly discusses the theoretical 

modelling of objective functions in maximizing safety benefits under automated driving.  
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5.1 Objective function and constraint of the optimization   

The objective of the optimization is to maximize the safety benefits under CAV 

environment. For a single vehicle, the safety performance is assessed by the probability of 

having a traffic conflict. A smaller probability indicates a better safety performance.  

 Figure 5.1 illustrates a series of situations where in-vehicle heads up display can 

also cause collision hazards. As illustrated in Figure 5.1(a), the driver is approaching a 

horizontal curve. There is a message regarding the curve direction and the curve advisory 

speed being popped up. However, if the message is displayed for a longer period of time 

(i.e., above 3-second), the driver shifts attentions from the driving environment to the 

message. Finally, this driver ends up driving into the opposing lane, as illustrated in Figure 

5.1(b).  Another example is when driving under Level 2 automation on the freeway, which 

is illustrated in Figure 5.1(c). The AV system requests the driver to take over the driving 

due to a cut-in vehicle upfront. However, the “take-over” request is displayed in a heads-

down position. The driver did not pay attention to the cut-in vehicle but the take-over 

request. After the driver perceives the meaning of the message, he did not have sufficient 

time to take over and decelerate. Finally, a near crash or crash is likely to happen on the 

freeway, which is illustrated in Figure 5.1(c). 
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(a) (b) 

  

(c) (d) 

Figure 5. 1 Collision hazards caused by in-vehicle heads-up display in (a) excessive display 

duration of the information regarding the upcoming curve; (b) run into the opposing lane; (c) 

“take-over” request displayed in a heads-down position; and (d) collision with the cut-in 

vehicle    

Figure 5.1 introduces two parameters that result in driver distraction under CV and 

AV driving environment, respectively. Specifically, a longer display duration is meant to 

be designed in making sure that the driver can completely understand the upcoming 

horizontal curve. The display location being at a heads-down location is meant to be 

designed to make sure the popped-up message does not block the driver’s view. These 

decision variables are expected to be optimized in order to achieve maximal safety benefits 

with popped-up messages in the CV or AV driving environment. Potential parameters that 

impact driving safety under CAV are summarized in Figure 5.2. 

“Take-over now” is displaying 

“Right curve ahead. Advisory 

speed: 45 mph.” is displaying. 
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Variable 
Symbol  Range Unit Definition 

Category Name 

Display 

duration  

Display 

duration 
𝛿𝐷𝐷 (0, +∞) Second 

Time interval of the safety 

message displayed. 

Display 

location  

Distance of 

display 

location to 

visual 

distraction 

zero point 

𝛿𝐷𝐿 (0, +∞) \ 

Location of the safety message 

displayed (i.e., heads-up display, 

dashboard). 

Display 

frequency  

Display 

frequency 
𝛿𝐷𝐹 (0, +∞) Hz 

Frequency of the safety message 

displayed. 

Display 

modality  

Font size 𝛿𝐹𝑍 (0, 𝛼]1 Inches 

When visual warning is applied, 

the font size of the displaying 

message. 

Font 

transparency 
𝛿𝐹𝑇 (0%, 100%] \ 

When visual warning is applied, 

the transparency of the safety 

message displayed. 

Sound level 𝛿𝑆𝐿 (0%, 100%] \ 
When audible warning is applied, 

the sound level of the audio. 

Haptic 

magnitude 
𝛿𝐻𝑀 (0%, 100%] \ 

When haptic warning is applied, 

the amplitude level of the haptic. 

Note: 1. 𝜶 stands for the maximal height of the view, such as the vehicle front view. 

Figure 5. 2 Parameters of HVI Design in Developing the Optimization Function  
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Assuming driver characteristics (i.e., age, gender, driving experience, and 

psychological variable) are significant in contributing to the collision hazards following a 

linear regression model, an expected outcome of the modeling results are described in 

equation (5.1) and (5.2):  

𝑆𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑇𝑇𝐶𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑
= 𝛼𝐷𝐷𝛿𝐷𝐷 + 𝛼𝐷𝐿𝛿𝐷𝐿 + 𝛼𝐷𝐹𝛿𝐷𝐹 + 𝛼𝐹𝑍𝛿𝐹𝑍 + 𝛼𝐹𝑇𝛿𝐹𝑇 + 𝛼𝑆𝐿𝛿𝑆𝐿 + 𝛼𝐻𝑀𝛿𝐻𝑀

+ 𝛼𝑎𝛿𝑎 + 𝛼𝑔𝛿𝑔 +∑𝛼𝑖𝛿𝑎 ∗ 𝛿𝐷𝑀

𝑖

𝑖=1

+∈ 

(5.1) 

𝐻𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑇𝑇𝐶𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑
= 𝛽𝐶𝐴𝑉,𝑉𝐷𝑉𝐷𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑡) + 𝛽𝐶𝐴𝑉,𝐶𝐷𝐶𝐷𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑡) + 𝛽𝑎𝛿𝑎 + 𝛽𝑔𝛿𝑔

+∑𝛽𝑖𝛿𝑎 ∗ 𝛿𝐷𝑀

𝑖

𝑖=1

+∈ 

(5.2) 

Where,  

𝑆𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = Safety benefits when driving under CAV; 

𝐻𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒  = Collision hazards when driving under CAV; 

𝛿𝐷𝐷 = Display duration (s); 

𝛿𝐷𝐿 = Display location; 

𝛿𝐷𝐹 = Display frequency (Hz); 

𝛿𝐹𝑍 = Display message font size; 

𝛿𝐹𝑇 = Display message transparency (%); 

𝛿𝑆𝐿 = Display sound level; 

𝛿𝐻𝑀 = Haptic amplitude;  

𝛿𝑎 = Driver’s age; 

𝛿𝑔 = Driver’s gender; 

𝑉𝐷𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑡) = Driver visual distraction intensity under CAV; 

𝐶𝐷𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒(𝑡) = Driver cognitive distraction intensity under CAV; 

𝑡 = Time spent in interacting with the message under CAV (s). 

 

Since the goal of CAV technology is to bring as many safety benefits as possible to 

the driver, therefore, the optimization is needed with achieving minimum hazard when 

driving under CAV. As the driver distraction discussed in this project mainly refers to the 

issued safety messages, the optimization function can be formulated as: 

𝑀𝑎𝑥(𝑆𝐶𝐴𝑉) = 𝑀𝑎𝑥(𝑆𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 𝐻𝐶𝐴𝑉−𝑚𝑒𝑠𝑠𝑎𝑔𝑒) (5.3) 
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Subject to:  

𝛿𝐷𝐷 ∈ [𝑡𝑖 ,  𝑡𝑗];  (5.4) 

𝛿𝐷𝐿 ∈ [𝑑𝑖 , 𝑑𝑗]; (5.5) 

𝛿𝐷𝐹 ∈ [𝜇 𝐻𝑧,  𝜏 𝐻𝑧] (5.6) 

𝛿𝐹𝑍 ∈ [ℎ𝑖 , ℎ𝑗]; (5.7) 

𝛿𝐹𝑇 ∈ [𝛼%,  𝛽%]; (5.8) 

𝛿𝑆𝐿 ∈ [𝛿%,  𝜇%]; (5.9) 

𝛿𝐻𝑀 ∈ [𝜌%,  𝜎%] (5.10) 

Where,  

𝑡𝑖 ,  𝑡𝑗 = Time constrains for display duration; 

𝑑𝑖 , 𝑑𝑗 = Distance range of the message display location given the driver’s visual cone; 

𝜇 𝐻𝑧,  𝜏 𝐻𝑧 = Frequency constrains for display frequency; 

ℎ𝑖 , ℎ𝑗 = Display message font size range; 

𝛼%,  𝛽% = Transparency constrains for displaying messages; 

𝛿%,  𝜇% = Message alert sound level range; 

𝜌%,  𝜎% = Message haptic alert amplitude range. 

Potentially, through the optimization, the optimum duration and location of issuing 

safety warnings can be obtained to achieve the maximum safety benefits when driving 

under CAV. Therefore, the thresholds of the key parameters in the design of ADAS can be 

obtained without conducting driving experiments. 

5.2 Targeted audience in using specific HVI-warning type to avoid collisions 

In this research, the only parameter that included in Figure 5.2 is the takeover warning 

modality, namely “visual only” and “visual and audible” HVI types. Therefore, the 

objective of this section is to identify who are suitable for driving under each takeover 

warning modality, respectively. 

 In order to tackle this objective, a classification tree model was developed with 

using the outcome of whether a traffic conflict happened as the model output. It is a binary 

variable with either “no conflict” or “conflict”. For model inputs, the classification tree 

model includes takeover warning modality, takeover time, and driver’s socio-
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demographical variables (age and gender). Table 5.1 summarizes the sample characteristics 

of the model inputs and output for developing the classification tree model.    

Table 5. 1 Sample Characteristics for Developing the Classification Tree Model (N=50) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Demographics 

Age 
Age of 

participants  
Continuous \ 50.04±14.03 25~73 

Gender 
Gender of 

respondents 

Binary 

Categorical 

Male 26 52% 

Female 24 48% 

HVI 

Characteristics 

Warning 

Type 

Methods to 

notify drivers 

regarding a 

takeover action 

Binary 

Categorical 

Visual 

only 
25 50% 

Visual 

and 

audible 

25 50% 

Controller 

Area 

Network-Bus 

(CAN-Bus) 

information 

Takeover 

time 

Time duration 

from the start of 

HVI to the 

moment the 

driver takes over 

the driving by 

applied pedals 

Continuous \ 2.29±0.67 1.167~4.667 

Safety 

performance 

Traffic 

conflict 

Whether a driver 

has a traffic 

conflict after 

being requested 

to takeover  

Binary 

Categorical 

No 

conflict 
27 54% 

Conflict 23 46% 

 

 
Figure 5. 3 Classification Tree Results for Safety Benefits under Different Takeover 

Modalities 
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 The classification tree model that depicted in Figure 5.3 has a classification 

accuracy of 100%. The model classifies every driver into groups of “no traffic conflict” 

and “traffic conflict” based on drivers’ age, gender, takeover time, and under what type of 

HVI. As a result, when the HVI type is “visual and audible”, all drivers can take over the 

driving as requested and avoid a traffic conflict with the jaywalker. On the other hand, 

when the HVI type is “visual only”, only 2 out of 25 drivers did not run into a traffic 

conflict with the jaywalker. For unsafe driving situations, it can be observed that drivers 

under 52 years old 100% have a traffic conflict if the HVI type is “visual only”. For drivers 

who are 53 years old or above, the probability of having a traffic conflict is 1 if the driver 

spent more than 2.5-second on taking over the vehicle. Therefore, an optimized takeover 

time threshold of 2.5-second was discovered by the developed classification tree model for 

drivers who are 53 years old or above. Moreover, there are two exceptional cases that 

takeover time under 2.5-second can result in a traffic conflict, in which two male drivers 

who are 53 years old or above. In other words, as long as a female driver who is 53 years 

old or above, a traffic conflict does not happen if took over time is under 2.5-second.  
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CHAPTER 6: AI-DRIVEN, ULTRA-ADVANCED COLLISION 

AVOIDANCE SYSTEM WITH TARGETING HVI-INDUCED DRIVER 

DISTRACTION 

6.1 Conceptual prototype of AI-driven, Ultra-advanced collision avoidance system 

under Level 3 automation (AUCAS-L3) 

This research aims to design a conceptual prototype of an “add-on” collision avoidance 

system that can be incorporated with Level 3 automation (AUCAS-L3). The AUCAS-L3 

expertise in handling emergency situations. To better explain the functions of AUCAS-L3, 

a jaywalker situation is chosen since existing research has identified it as one of the most 

risky driving situations, regardless of manual or automated driving (Lu et al., 2019; S. 

Wang & Li, 2019a). Figure 6.1 illustrates the conceptual idea of the jaywalking scenario. 
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Figure 6. 1 Vehicle Operating under Level 3 ADS Facing a Jaywalker 

The AUCAS-L3 works with assuming an obstacle ahead when a vehicle operating 

under Level 3 is approaching. After detecting the upcoming obstacle (in this research: a 

jaywalker) by sensors that installed on the vehicle operating under Level 3, the AUCAS-

L3 starts to measure and compare the “activate distance”, which is defined by the minimum 

stopping distance (given the vehicle speed and maximum deceleration rate) and the 

distance to the obstacle. Equation (6.1) explains how the “activate distance” is calculated. 

𝑑𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = 𝑆𝐷𝑚𝑖𝑛 − 𝑑𝑉−𝑃 (6.1) 

Where, 

𝑑𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = Activate distance (feet); 

𝑆𝐷𝑚𝑖𝑛 = Minimum stopping distance (feet); 

𝑑𝑉−𝑃 = Distance between the vehicle and the jaywalker (feet). 
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By expanding the minimum stopping distance with incorporating vehicle dynamics 

(i.e., vehicle speed, braking factor, braking force efficiency, rolling resistance coefficient) 

and factors from pavement condition (i.e., grade, pavement friction), Equation (1) can also 

be expressed as follows: 

𝑑𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = 𝑆𝐷𝑚𝑖𝑛 − 𝑑𝑉−𝑂 =
𝛾𝑏(𝑢𝑖

2 − 𝑢𝑗
2)

2𝑔(ŋ𝑏𝜇 + 𝑓𝑟𝑙 ± sin 𝜃𝑔)
− 𝑑𝑉−𝑃 (6.2) 

Where: 

𝛾𝑏 = Braking factor; 

ŋ𝑏 = Efficiency of braking force; 

𝑓𝑟𝑙 = Rolling resistance coefficient; 

𝜃𝑔 = Grade, degree 

𝜇 = Pavement friction 

𝑢𝑖 = Current speed of the approaching vehicle (mi/h); 

𝑢𝑗 = Advisory speed of the approaching horizontal curve (mi/h); 

𝑎𝑚𝑎𝑥  = Maximum deceleration rate of the approaching vehicle (feet/sec2); 

𝑔 = Acceleration of gravity (feet/sec2); 

𝐺 = Grade, percent. 

 

If the “activate distance” is within a threshold, the AUCAS-L3 will apply the brake 

pedal by itself without requesting the human driver to do so, given that the crash is about 

to happen soon. In this research, the threshold is set to 10 feet. Therefore, the AUCAS-L3 

will apply the brake pedal when met one of the following two criteria: (1) the driver will 

not take over when requested, and (2) the driver will have a crash/traffic conflict even if 

taken over.  

Another parameter in developing the AUCAS-L3 is the minimum duration when 

driver have a traffic conflict after taking over. As mentioned, the AUCAS-L3 has a “built-

in” function that can predict whether the driver will have a traffic conflict or not after taking 

over. Therefore, this prediction model only discusses drivers who do not have a traffic 

conflict at the timestamp of taking over but have one later on. In other words, those who 
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have a traffic conflict at the timestamp of taking over or before are not in the discussion of 

this prediction model. Figure 6.2 illustrates the distribution of time from taking over to the 

moment before occurring a conflict. 

 
 

(a) (b) 

 

Category Range (s) 
Average 

(s) 

Overall [0.334, 2.171] 1.156 

By 

gender 

Female [0.835,1.67] 1.106 

Male [0.334,2.171] 1.205 

By age 

groups 

Under 30 [0.334, 1.336] 1.113 

30-39 [1.002, 2.004] 1.262 

40-49 [0.668, 2.171] 1.479 

50-59 [0.835, 1.169] 1.023 

Above 60 [0.334, 1.503] 1.035 
 

(c) (d) 

Figure 6. 2 Distribution of Duration from Taking Over to the Moment Before Occurring a 

Conflict in (a) Overall, (b) By Gender, (c) By Age Groups, and (d) Summary of Distribution 

 

As illustrated in Figure 6.2, the minimum duration when the driver has a traffic 

conflict after taking over is 0.334-second, suggesting that a traffic conflict occurs at the 

fastest moment after taking over for 0.334-second. To ensure the sample size is sufficient 

enough in developing the model for predicting whether a traffic conflict happens or not 
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after taking over, a threshold of 0.3-second is set. Figure 6.3 illustrates the system design 

for AUCAS-L3. 

 

Figure 6. 3 System Design of AUCAS-L3 

 

 As illustrated in Figure 6.3, two built-in prediction models are the essential 

components to design the AUCAS-L3, namely predicting whether the driver will take over 

and predicting whether there will be a traffic conflict. The reason why predicting drivers’ 

takeover action is necessary is that drivers might not be well-prepared for taking over the 

driving when ADS requests. In this case, actions are needed by applying the brake pedal 

before the driver is found to be distraction and will not take over the driving when requested 

to avoid traffic conflicts. Because there is no driver’s input in operating the vehicle (i.e., 

steering wheel turning angle, brake pedal force, gas pedal position) if automated driving is 

in session, the built-in model in predicting whether a driver will take over or not focuses 
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on incorporating driver’s age, gender, and takeover warning types as the model inputs. The 

beauty of this built-in prediction model is that it can predict a takeover action before 

running into any complex or sudden driving situations (i.e., jaywalking) where a takeover 

action might be needed.  

 The second built-in prediction model is to predict whether a traffic conflict will 

happen if took over. This built-in prediction model does not take those who did not take 

over into account since they are considered as driver distracted and AUCAS-L3 applies the 

brake pedal automatically. For those who took over, a traffic conflict can still occur if the 

driver’s takeover time is too long, or the deceleration rate is not large enough. The beauty 

of the second built-in prediction model is that rather waiting for a traffic conflict to happen 

and the measuring the conflict severity, it can predict the probability of having a traffic 

conflict before it actually happens. In this case, the AUCAS-L3 can directly apply the brake 

pedal in advance if it predicts a traffic conflict will happen. To develop the built-in model 

in predicting whether a traffic conflict will happen if took over, the model inputs require 

information regarding driver’s input in operating the vehicle since this stage is manual 

driving. In this case, speed, gas pedal position, brake pedal force, and takeover time are 

included in the model inputs.  

6.2 Findings and discussions for the conceptual prototype of AUCAS-L3  

6.2.1 Model 1: Predicting takeover actions 

This section presents the modeling results for predicting takeover actions. The detailed 

methodologies including data collection, performance measures, and modeling approaches 

are introduced in Chapter 3. As introduced in previous sections, the modeling inputs for 

predicting takeover actions are driver characteristics including age and gender, as well as 
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the takeover warning types. The modeling output is whether a driver took over the driving 

when L3 ADS requests. Table 1 summarizes the general statistics for Model 1. Note that 

the original sample size for developing the takeover prediction model is 120 given that 

sixty drivers went through the jaywalker scenario for twice (under “visual only” and “visual 

and audible”, respectively). However, two records are removed in the modeling process 

due to one participant did not fill out the gender information. In this case, the sample size 

for predicting takeover actions is 118. 

Table 6. 1 Sample Characteristics for Developing Takeover Prediction Model (N=118) 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent 

(%)/ 

Range Category Name 

Demographics 

Age 
Age of 

participants  
Continuous \ 49.93±14.30 21~77 

Gender 
Gender of 

respondents 

Binary 

Categorical 

Male 25 42.4% 

Female 34 57.6% 

HVI 

Characteristics 

Warning 

Type 

Modality to notify 

drivers regarding 

a takeover action 

Binary 

Categorical 

Visual 

only 
59 50% 

Visual 

and 

audible 

59 50% 

Takeover 

actions 

Takeover 

or not 

Whether the 

driver takes over 

the driving when 

L3 ADS requests 

Binary 

Categorical 

Not 

takeover 
9 7.5% 

Takeover 109 92.5% 

 

 To begin with, in developing the ANN model for predicting takeover actions, the 

total sample size (118 records) was divided into a training and a testing dataset by a 70/30 

split. Therefore, 83 records are included in the training dataset while 35 records are 

included in the testing dataset. Then, the model inputs were normalized between 0 and 1, 

and the model out was classified into two groups (takeover vs. not takeover).  

 In order to obtain the most accurate model structure, multiple types of neural 

network topologies and hyperparameters were examined. Figure 6.5 illustrates the best-fit 

ANN model in predicting takeover actions, along with the model accuracy table. 
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(a) 

Accuracy for  

training dataset: 

98.8% (82/83) 

Ground truth values 

No 

takeover 
Takeover 

Predicted 

values 

No 

takeover 

80% 

(4/5) 

0%  

(0/78) 

Takeover 
20% 

(1/5) 

100% 

(78/78) 
 

Accuracy for  

testing dataset: 

82.9% (29/35) 

Ground truth values 

No 

takeover 
Takeover 

Predicted 

values 

No 

takeover 

50% 

(2/4) 

12.9% 

(4/31) 

Takeover 
50% 

(2/4) 

87.1% 

(27/31) 
 

(b) (c) 

Figure 6. 4 Takeover Action Prediction Model in (a) Visualization; (b) Model Accuracy for 

Training Dataset; and (c) Model Accuracy for Testing Dataset 

 

 As illustrated in Figure 6.4, an ANN structure with a single hidden layer of 8 

neurons was developed to predict the takeover actions. The prediction model runs a number 

of 13,490 epochs for the training purpose. The training dataset has an accuracy 

performance of 98.8% with only one takeover action being misidentified as a non-takeover 

action. Although the testing dataset does not have an accuracy performance as good as the 
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training dataset, it also has a model accuracy above 80%. Additionally, the non-takeover 

action has been successfully predicted in the testing dataset. To summarize, based on basic 

driver information and the takeover warning type, the AUCAS-L3 has a robust 

performance in predicting takeover actions before the driver facing takeover action.  

6.2.2 Model 2: Predicting traffic conflicts if took over 

After developing the prediction model with targeting takeover actions, this section mainly 

presents the modeling results for predicting whether a traffic conflict would occur if the 

human driver took over. As mentioned in previous sections, the model inputs for the second 

built-in prediction model under AUCAS-L3 have drivers’ input in terms of speed, gas pedal 

position, brake pedal force at the 0.3rd seconds of the time frame after taking over. After 

removing records for drivers who did not take over and drivers who already had a traffic 

conflict in the moment of taking over, the final sample size for the second prediction model 

is 104. Table 6.2 summarizes the sample characteristics for Model 2.  
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Table 6. 2 Sample Characteristics for Developing Conflict Prediction Model 

Variable 
Description Type Category 

N/ 

Mean ± 

Std.Deviation 

Percent (%)/ 

Range Category Name 

Driver input 

Speed 

Vehicle travel 

speed after the 

driver took over  

Continuous \ 31.29±3.14 20.25~35.00 

Gas 

pedal 

position 

Gas pedal 

position on a 

normalized scale 

from 0~1  

Continuous \ 0.02±0.11 0~0.81 

Brake 

pedal 

force 

Pressure that puts 

on the brake pedal 

in (kN)  

Continuous \ 24.15±29.29 0~180.00 

HVI 

characteristics 

Warning 

type 

Modality to notify 

drivers regarding 

a takeover action 

Binary 

Categorical 

Visual 

only 
47 45.2% 

Visual 

and 

audible 

57 54.8% 

Traffic 

conflict 

Lead to 

a 

conflict 

Whether the 

driver leads to a 

traffic conflict 

even if took over 

Binary 

Categorical 

No 

conflict 
64 61.5% 

Conflict 40 38.5% 

 

 Similarly, in developing the ANN model for predicting whether there is a traffic 

conflict occurring after took over, the total sample size (104 records) was divided into a 

training and a testing dataset by a 70/30 split. Therefore, 73 records are included in the 

training dataset while 31 records are included in the testing dataset. To achieve the best-fit 

model in predicting the occurrence of a traffic conflict, different ANN structures have been 

performed with evaluating the model accuracy under both training and testing datasets. 

Figure 6.5 illustrates the ANN model in predicting whether the driver’s input leads to a 

traffic conflict, along with model accuracy tables.  
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(a) 

Accuracy for  

training dataset:  

100% (73/73) 

Ground truth values 

No 

conflict 
Conflict 

Predicted 

values 

No 

conflict 

100% 

(44/44) 

0% 

(0/29) 

Conflict 
0% 

(0/44) 

100% 

(29/29) 
 

Accuracy for  

testing dataset:  

93.5% (29/31) 

Ground truth values 

No 

conflict 
Conflict 

Predicted 

values 

No 

conflict 

100% 

(20/20) 

18.2% 

(2/11) 

Conflict 
0% 

(0/20) 

81.8% 

(9/11) 
 

(b) (c) 

Figure 6. 5 Conflict Prediction Model in (a) Visualization; (b) Model Accuracy for Training 

Dataset; and (c) Model Accuracy for Testing Dataset 

 

 As illustrated in Figure 6.5, an ANN structure with 2 hidden layers, five neurons 

on the first hidden layer and two neurons on the second hidden layer, was developed to 
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predict whether drivers lead to a traffic conflict or not after took over. The prediction model 

runs a number of 14,899 training epochs. According to Figure 6.5(b) and 6.5(c), both 

training and testing datasets have a model accuracy above 90%. Therefore, it is safe to 

conclude that the AUCAS-L3 has been proved in effectively predicting the occurrences of 

a traffic conflict.  

 Moreover, this research also calculated how much time can be saved in predicting 

the occurrences of a traffic conflict in advance based on the ANN modeling results. Figure 

6.6 illustrates the distribution of advanced time in predicting a traffic conflict. According 

to Figure 6.6, the proposed prototype of AUCAS-L3 can predict the occurrence of a traffic 

conflict in advance of 1.10 seconds on average based on driver actions in terms of speed, 

gas pedal position, brake pedal force. 

 

Figure 6. 6 Distribution of Saved Time in Predicting a Traffic Conflict under AUCAS-L3 
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CHAPTER 7: CONCLUSIONS 

7.1 Conclusions of improving the existing methods in quantifying HVI-induced driver 

distraction under automated driving 

This research contributes to the literature by improving the existing methods in quantifying 

Human-Vehicle Interaction-induced (HVI-induced) visual and cognitive distraction. 

Moreover, this research fills the research gap of lacking discussion of how visual and 

cognitive distraction magnitude changes continuously over time due to different HVI types 

(“visual only”, “visual and audible”). In addition to the visual distraction, this research also 

improves the existing methods in quantifying HVI-induced cognitive distraction by 

incorporating the driver’s pupil dilation performance. More importantly, this research 

quantitatively described the magnitude of HVI-induced distraction under automated 

driving from the binary perspective to the non-binary perspective. Specific methods were 

developed to target visual and cognitive distraction, respectively. Also, this research adds 

the measurement of visual distraction from one-dimension (magnitude-only) to two-

dimension (magnitude and direction) by utilizing polar coordinates. The highlight of the 

conclusions in AV distraction modeling is summarized as follows: 

• Only a limited sample (3.2%) suggests no visual distraction magnitude changes under 

the HVI. The majority of drivers vary their visual distraction magnitude while
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interacting with Level 3 ADS. Moreover, the changes of visual distraction are non-

linear and dispersed with respect to both duration and magnitude.  

• At the beginning of interacting with the safety message displaying, most drivers initiate 

a change to visual distraction by looking away or looking towards the zero point of the 

visual distraction magnitude. Different patterns are observed between “visual only” and 

“visual and audible” HVI types in increasing or reducing visual distraction at the initial 

stage. 

• If drivers started the change of visual distraction by a reduction, the occurrences of 

picking up the visual distraction magnitude are significantly fewer under the “visual 

and audible” HVI type, compared to the “visual only” HVI type. This finding suggests 

that drivers are more concentrated and maintain a higher level of takeover readiness 

when the HVI warning is multi-modal (visual and audible), compared to a single modal 

(visual only). 

• If drivers made the initial move of changing visual distraction by a reduction, a 

significant difference is observed in the duration of the initial reduction between “visual 

only” and “visual and audible” HVI types. Moreover, the initial reduction rate of the 

visual distraction magnitude was modeled as a function of time. Two inverse models 

are chosen as the best fit models in capturing the relationship between visual distraction 

reduction rate and time under “visual only” and “visual and audible” HVI types, 

respectively.  

• If drivers’ initial change of visual distraction is a reduction, it is observed that drivers 

reflected a higher visual distraction reduction rate under “visual only” HVI compared 

to “visual and audible” HVI. This finding suggests that drivers are less likely to heavily 
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reduce their visual distraction magnitude if the HVI type is “visual and audible”, 

compared to the circumstance that the HVI type is “visual only”, which also confirms 

the previous finding that drivers are more concentrated under “visual and audible” HVI 

type.  

• If drivers began their change of visual distraction by an increase, significantly higher 

occurrences of reducing visual distraction magnitude are observed when the HVI type 

is “visual only”, compared to “visual and audible”. This finding is interesting because 

it validates the compensatory beliefs in reducing driver distraction proposed by past 

studies. Under this context, drivers who interact with the machine (L3-ADS) with 

“visual only” present a compensatory belief by frequently looking towards the zero 

point of visual distraction. 

• If drivers are observed with an increase of visual distraction to start their interaction 

process with the machine, they also show a significantly higher occurrence in 

increasing visual distraction magnitude under “visual only” HVI than “visual and 

audible” HVI. This finding delivers similar messages from the previous conclusions 

suggesting drivers are more concentrated when the HVI type is “visual and audible” 

than the “visual only” HVI type. Moreover, drivers under the “visual only” HVI type 

have a compensatory belief as mentioned above and show a pattern of frequently 

changing visual distraction magnitude, which can be considered as a sign of low 

takeover readiness and less concentration.  

• Furthermore, the initial increase rates under two HVI types are also modeled with 

respect to time. The initial increase rate under “visual only” and “visual and audible” 
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HVI is captured as a function of time with an inverse model a power model, 

respectively. 

• This research also contributes to the literature by exploring a new visual distraction 

indicator, namely the visual distraction direction. By splitting the driver’s view into 

four quadrants with every 90-degree turn, it can be concluded that distributions of 

visual distraction direction are significantly different between “visual only” and “visual 

and audible” HVI types. By using a fixed axis as the visual distraction degree zero point, 

this research also suggests a significant difference in terms of visual distraction 

direction between these two HVI types.  

• From the human factor’s perspective, older drivers (i.e., 60 years old or above) show 

significant differences in terms of the frequency of achieving maximal cognitive 

distraction between “visual only” and “visual and audible” HVI types. This research 

suggests that older drivers tend to have a lower cognitive distraction intensity if the 

HVI type is “visual and audible” than “visual only” HVI. The underlying reason is that 

older drivers spend significantly less time reaching the maximal cognitive distraction 

magnitude under “visual and audible” HVI compared to “visual only” HVI. Once 

reaching the maximum of cognitive distraction magnitude, the cognitive distraction 

intensity maintains. Therefore, this research strongly recommends that drivers who are 

60 years old or above use “visual and audible” HVI type under CAV driving 

environment for less cognitive distraction.  

• From the perspective of how cognitive distraction changes over time, it is observed that 

the frequency corresponding to the maximal Cognitive Distraction Acceleration Rate 

(CDAR) is significantly larger if the HVI type is “visual only” than the HVI type being 



133 

 

“visual and audible”. This finding suggests that drivers under “visual and audible” HVI 

are less likely to increase their cognitive distraction heavily and frequently than “visual 

only” HVI. In other words, drivers are more well-prepared in interacting with the 

machine (L3-ADS) during the “visual and audible” HVI process compared to the 

“visual only” HVI process. Previous conclusions have confirmed that drivers’ situation 

awareness is relatively low under “visual only” HVI than “visual and audible” HVI. 

When drivers find out they need to take over the vehicle in response to certain 

emergencies (i.e., jaywalker), they need an extended period of time to percept the fact 

that a takeover is needed, and in turn, complete the takeover process. Therefore, when 

a driver realizes that a takeover action is needed under “visual only” HVI, there is a 

compensation belief reflected in the driver in order to make up for the potential hazards 

due to driver distraction. Hence, the action is reflected in the CDAR by increasing the 

pupil dilation change rate. 

• When visual distraction reaches the maximum, the cognitive distraction is observed 

with significantly different patterns under different HVI types. Furthermore, after the 

visual distraction reaches the maximum, the average cognitive distraction under the 

“visual and audible” HVI type is significantly higher than the “visual only” HVI type. 

A potential reason is that the addition of audio may extend the cognitive workload by 

maintaining the pupil dilation at a higher level. The extension of the cognitive workload 

does not happen immediately, right after the visual distraction achieves maximum. This 

research suggests that cognitive distraction magnitude is significantly higher if the HVI 

type is “visual and audible” than “visual only” after reaching the maximal visual 

distraction magnitude from 0.5-second to 1-second. Specifically, both female and male 
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drivers show significantly higher cognitive distraction under the “visual and audible” 

HVI in the second stage (female: 0.5~1 second; male: 0.3~0.6 seconds) after reaching 

maximal visual distraction magnitude, compared to “visual only” HVI. 

7.2 Conclusions of AV distraction prediction model 

This research has shown how Artificial Neural Networks (ANN) can be employed to 

investigate the heterogeneity of visual and cognitive distraction among drivers. Particularly, 

the best-fit ANNs model in predicting visual and cognitive distraction intensity is obtained 

by proposing a novel ANN topology seeking the minimal values of the Mean Square Error 

(MSE) between training and testing datasets. Based on the results, it is expected that ANNs 

provide a valuable addition to the toolbox to predict driver distraction intensity. Therefore, 

this research contributes to the literature by developing an AI-driven, non-intrusive, video-

recording free driver distraction monitoring system that includes both visual and cognitive 

distraction and focuses on driver’s demographical characteristics, HVI characteristics, and 

driving performance. 

7.3 Conclusions of revealing the dynamic nature of collision hazards of HVI-induced 

driver distraction under automated driving 

This research theoretically explained why HVI-induced distraction under automated 

driving influences driving safety by mathematically describing the relationships among 

distraction intensity, warning types, takeover time, and traffic conflict. The highlight of the 

conclusions can be summarized as follow: 

• From the perspective of how visual distraction influences driving safety under 

automated driving, this research reveals how and why visual distraction significantly 

impacts the probability of having a traffic conflict in a quantitative manner. As a result, 
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the visual distraction intensity significantly impacts the takeover time and the 

probability of having a traffic conflict under different types of HVI. Moreover, the 

mechanism of how visual distraction direction impacts safety performance was 

revealed in a hierarchy structure. An interesting finding of this research is that it is still 

possible that the traffic conflict will not happen, even if the HVI type is “visual only”. 

These circumstances are (a) having 26%~36% of the fixations located in the upper-left 

(second) quadrant; and (b) having 36% or above and 20% or lower of fixations located 

in the upper-left (second) and upper-right (first) quadrant, respectively, with driver’s 

age above 60 and takeover time shorter than 2.8-second. The results can be beneficial 

to AV manufacturers for developing a non-intrusive eye-tracking system that can be 

installed on the car front window. The system can monitor the driver’s fixation 

direction and takeover time to provide safety enhancements if any hazard collision 

happens. 

• Similar to visual distraction, this research also revealed how cognitive distraction 

impacts driving safety, suggesting the underlying reasons through a quantitative 

manner. As a result, the cognitive distraction intensity significantly increases the 

probability of having a traffic conflict because it impacts the takeover time and different 

types of HVI.  

7.4 Conclusions of the targeted audiences in achieving safety benefits under specific 

HVI warning types 

This research established an optimization function of achieving the maximum safety 

benefits induced by driver distraction under HVI of automated driving. Constrains are 

proposed in related to the parameters in designing HVI. Moreover, this research identified 
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the targeted audience for using specific HVI warning modality in order to avoid traffic 

conflicts. As a result, this research recommends using “visual and audible” in any case to 

avoid traffic conflicts. More importantly, this research does not recommend drivers under 

52 years old to have the HVI type as “visual only”. In addition, this research also obtains 

an optimized takeover time threshold in avoiding traffic conflicts. Drivers above 53 years 

old are not recommended for “visual only”, if the takeover time is above 2.5-second. 

However, there are exceptions that takeover time under 2.5-second can lead to a traffic 

conflict if the driver is male and above 53 years old. This research does not recommend 

male drivers above 53 years old use “visual only” HVI type with caution due to a sample 

size issue.  

7.5 Conclusions of the ultimate solution (AUCAS-L3) in offsetting the collision 

hazards due to driver distraction under automated driving 

In order to address the collision hazards due to driver distraction, this research contributes 

to the literature by designing a conceptual prototype of an AL-driven, Ultra-advanced 

collision avoidance system that can be incorporated with Level 3 automation (AUCAS-

L3). Unlike the collision-actuated avoidance systems (i.e., forward collision 

warning/avoidance system) in the current vehicle market, the AUCAS-L3 specializes in 

handling emergencies that can apply brake pedal for drivers under certain situations, 

including the absence of taking over due to driver distraction and the occurrences of 

collision hazards even if taking over the driving. Two prediction models were developed 

to predict whether a driver will take over the driving as requested and whether a traffic 

conflict will happen even if taken over, employing deep learning-based ANN modeling 

techniques. As a result, the developed model for predicting whether the driver takeover or 
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not has yielded a prediction accuracy of 98.8% and 82.9% in training and testing datasets, 

respectively. Moreover, the developed model for predicting whether a traffic conflict will 

happen even if it took over has yielded a prediction accuracy for 100% in the training 

dataset and 93.5% in the testing dataset. More importantly, the proposed prototype of 

AUCAS-L3 can predict the occurrence of a traffic conflict in advance of 1.10 seconds on 

average based on driver actions in terms of speed, gas pedal position, brake pedal force. 

To summarize, the AUCAS-L3 has been proved as a conceptual prototype that can be 

added to the Level 3 automation system in addressing collision hazards due to driver 

distraction, which can benefit AV manufacturers in developing the driver distraction 

protection system. 

7.6 Limitations and future research recommendations 

Although this research contributes to the literature by offering a path to model visual and 

cognitive distraction incorporating from temporal and spatial perspectives, this study has 

limitations. 

 First, in this research, the investigation of HVI design is limited to one parameter, 

namely the HVI modality (“visual only” vs. “visual and audible”). Although this research 

has identified a targeted audience for either recommending or not recommending the use 

of each HVI modality, it is expected to include more parameters into field testing or testing 

in a simulation environment for future research, such as multiple groups of message 

transparency, different durations of the displayed messages, and different locations of the 

displayed messages. 

 Second, this research has defined the center screen as the zero point of the visual 

distraction magnitude when modeling visual distraction. The underlying reasons are (a) 
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drivers tend to randomly look around when automated driving is in session, and (b) the 

driving simulator experiment was conducted on a tangent segment as the popped-out 

message is also located in the center of the screen. Under this context, the absolute visual 

distraction has the same value as the relative visual distraction. It is recommended for 

future research to focus on defining the visual distraction magnitude zero-point since it 

depends upon the road segment type (whether it is a tangent segment or a curvy segment) 

and driving mode (manual driving or automated driving).
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