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ABSTRACT

LUNG NODULES IDENTIFICATION IN CT SCANS USING MULTIPLE INSTANCE

LEARNING

Wiem Safta

November 22, 2021

Computer Aided Diagnosis (CAD) systems for lung nodules diagnosis aim to clas-

sify nodules into benign or malignant based on images obtained from diverse imaging

modalities such as Computer Tomography (CT). Automated CAD systems are important

in medical domain applications as they assist radiologists in the time-consuming and labor-

intensive diagnosis process. However, most available methods require a large collection of

nodules that are segmented and annotated by radiologists. This process is labor-intensive

and hard to scale to very large datasets. More recently, some CAD systems that are based on

deep learning have emerged. These algorithms do not require the nodules to be segmented,

and radiologists need to only provide the center of mass of each nodule. The training image

patches are then extracted from volumes of fixed-sized centered at the provided nodule’s

center. However, since the size of nodules can vary significantly, one fixed size volume

may not represent all nodules effectively.

This thesis proposes a Multiple Instance Learning (MIL) approach to address the

above limitations. In MIL, each nodule is represented by a nested sequence of volumes

centered at the identified center of the nodule. We extract one feature vector from each vol-

ume. The set of features for each nodule are combined and represented by a bag. Next, we

investigate and adapt some existing algorithms and develop new ones for this application.
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We start by applying benchmark MIL algorithms to traditional Gray Level Co-occurrence

Matrix (GLCM) engineered features. Then, we design and train simple Convolutional Neu-

ral Networks (CNNs) to learn and extract features that characterize lung nodules. These ex-

tracted features are then fed to a benchmark MIL algorithm to learn a classification model.

Finally, we develop new algorithms (MIL-CNN) that combine feature learning and mul-

tiple instance classification in a single network. These algorithms generalize the CNN

architecture to multiple instance data.

We design and report the results of three experiments applied on both generative

(GLCM) and learned (CNN) features using two datasets (The Lung Image Database Con-

sortium and Image Database Resource Initiative (LIDC-IDRI) [1] and the National Lung

Screening Trial (NLST) [2]). Two of these experiments perform five-fold cross-validations

on the same dataset (NLST or LIDC). The third experiment trains the algorithms on one

collection (NLST dataset) and tests it on the other (LIDC dataset). We designed our ex-

periments to compare the different features, compare MIL versus Single Instance Learning

(SIL) where a single feature vector represents a nodule, and compare our proposed end-to-

end MIL approaches to existing benchmark MIL methods. We demonstrate that our pro-

posed MIL-CNN frameworks are more accurate for the lung nodules diagnosis task. We

also show that MIL representation achieves better results than SIL applied on the ground

truth region of each nodule.
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CHAPTER I

INTRODUCTION

Lung cancer is the leading cause of death in US with a percentage of 24% for men

and 23% for women of estimated related cancer deaths in 2019 [3]. Low-Dose Computed

Tomography (LDCT) screening was proven to be adequate in diminishing cancer related

deaths by 20% as it assists radiologists to detect lung cancer at an early stage [2]. However

this task is still time consuming and rigorous as lung nodules are sometimes similar in

shape and texture whether they are benign or malignant. These challenges led researchers

toward developing automated Computer Aided Diagnosis (CAD) systems with minimum

user intervention to assist radiologists in the diagnosis and prediction process.

Current CAD systems can be divided into two major categories. The first one is

based on the traditional learning paradigm and consists of two sequential steps. First salient

features such as Gray Level Co-Occurrence Matrix (GLCM), Grey-Level Run Length Ma-

trix (GLRLM), Gray-Level Size-Zone Matrix (GLSZM) [4] are extracted from the speci-

fied regions of interest. Second, a classification algorithm such as Support-Vector Machine

(SVM) [5] or Linear Discriminant Analysis (LDA) [4], is then used to label the region as

benign or malignant. This category of CAD systems has proved to be efficient in lung nod-

ules diagnosis [4, 6–9]. However it relies on a large collection of training samples. These

samples need to be segmented and annotated by radiologists. This process is labor intensive

and hard to scale to very large datasets.

The second category of CAD systems is based on deep learning algorithms. This

approach combines the feature extraction and classification into a single task. Sample deep

learning algorithms that have been applied to this application include 2D Convolutional

Neural Networks (CNN) [10], 3D CNN [11] and multiview 2D CNN [12]. Other hybrid
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CNN versions have been developed in more recent works [5, 13].

CNN based methods have proved to be more successful and useful in the lung nod-

ules classification task for two main reasons. First, instead of relying on hand-crafted fea-

tures, they learn them during the training phase. Second, data labeling is less rigorous as

only the center of the nodule needs to be identified and no nodule segmentation is needed.

One potent drawback of CNN methods is that they process a volume with fixed size for all

nodules. This may not be optimal as the size of nodules can vary significantly. Figures 1

and 2 display sample nodules with sizes that vary significantly from one sample to another.

One way to adapt learning algorithms to objects with varying sizes, without an-

notating the bounding box of each object, is to have multiple instances representing each

object with different sizes and use Multiple Instance Learning (MIL) algorithms.

MIL was proposed by Dietrich et al. in 1997 for drug activity prediction [14]. Since

then, it has been used in many domains such as computer security [15], image retrieval [16],

image categorization [17], face detection [18], text categorization [19] and computer aided

diagnosis. For instance, for medical applications the authors in [20] used MIL for breast

cancer diagnosis and in [21] for classification of diabetic retinopathy images.

In traditional learning, also called Single Instance Learning (SIL), every sample is

represented by a single feature vector. On the other hand, in MIL, each sample is repre-

sented by multiple feature vectors. Each feature is referred to as instance and the collection

of instances representing one object is called a bag. Most MIL algorithms are defined for

two class problems: positive class and negative class. Early MIL algorithms characterize

the positive class by a single target concept. A bag is labeled positive if at least one of its

instances belongs to the target concept and labeled negative if none of its instances are close

to the target concept. In this approach, instances within a bag are assumed to be indepen-

dent and to have identical distribution. Thus, any potential relations among the instances

are ignored. Another category of MIL algorithms, refereed to as generalized MIL [22],

allows for multiple target concepts. Here, a bag is positive only if all target concepts are

2



FIGURE 1: 2D views of six malignant nodules identified by radiologists with significant

variations in size. The rectangles refer to the ground truth regions.

verified (i.e., the bag has instances from each concept). For both categories of MIL algo-

rithms, the general idea is to learn target concepts/criteria from training samples. These

concepts are then used to predict the label of instances within the bag and to predict the

label of a new test bag.

In this thesis, we propose to investigate and analyse the application of MIL to the

lung nodules diagnosis task. We propose representing each nodule by a bag of instances.

3



FIGURE 2: 2D views of six benign nodules identified by radiologists with significant

variations in size. The rectangles refer to the ground truth regions.

Each instance corresponds to a feature vector extracted from a different volume. For in-

stance, instead of representing samples 3 and 4 in Figure 1 (c) and Figure 1 (d) by one fixed

volume, we represent them by a nested sequence of volumes (instances). We postulate that

the MIL algorithm will learn to use one (or a few) of the large volumes to represent sample

3 and to use one (or a few) of the small volumes to represent sample 4. A small cube will

4



be suitable to represent small nodules and the large ones will be more suitable for large

nodules. The collection of cubes of each nodule will form a bag and the feature represen-

tative of each bag, in the training data, will be labeled as benign or malignant according to

the available ground truth, but the labels of individual instances (i.e., the true volume) are

unknown.

We consider various feature representation methods and various characterization

algorithms. We analyze and compare the results and identify the optimal setting for the

considered application. Our first approach is based on traditional features (i.e., GLCM

features) extraction methods followed by traditional MIL classification algorithms. We

propose and evaluate multiple GLCM+MIL frameworks.

Our second approach is based on a nodule identification algorithm called CNN+MIL

that combines CNN features and MIL techniques to take advantages of their strengths.

First, a CNN is trained and then used to extract features for each instance within the bag.

Then, an MIL algorithm is used to represent each object by a bag of instances (CNN fea-

tures) and to learn a classification model. We propose and evaluate few CNN+MIL varia-

tions.

Our third approach is based on methods that combine CNN and MIL into a single

end-to-end network. We refer to this approach as MIL-CNN. We develop and design four

MIL-CNN algorithms.

Our research and experiments are designed to answer the following Research Ques-

tions :

• RQ1: What is the best MIL algorithm for this application ?

• RQ2: What are the main nodule parameters that influence the classification ?

• RQ3: What is the best feature representation ?

• RQ4: Can an MIL algorithm learn to identify the positive instances (among a bag

with large number of candidates) that are close to the ground truth ?

5



• RQ5: What is the best learning approach for this application: Single Instance Learn-

ing (SIL) applied to the ground truth region or Multiple Instance Learning (MIL)

applied to multiple regions around the ground truth ?

The remainder of this thesis is structured as follows: Chapter II reviews previous work con-

ducted in the lung nodules classification task and MIL algorithms. Chapter III describes our

lung nodules classification framework based on engineered features and Multiple Instance

Learning, our lung nodules classification framework based on CNN features and Multi-

ple Instance Learning, and our lung nodules classifications based on end-to-end Multiple

Instances Convolutional Neural Networks (MIL-CNN). We introduce the way we process

our dataset, our used datasets to validate our results and outline our Research Questions in

chapter IV. In chapter V, we present and analyze our experimental results and answer the

outlined research questions. Finally, in chapter VI, we conclude by summarizing our work

and outlining potential future work.
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CHAPTER II

RELATED WORK

In this chapter, we review existing approaches in areas that are highly relevant to

our proposed Computer Aided Diagnosis (CAD) system for lung nodules classification

along with traditional Multiple Instance Learning (MIL) models. We start with outlining

different categories of CAD systems. Then, we outline few MIL algorithms that we adapt

to our application.

Lung nodules diagnosis is typically the last component of the CAD system and one

of the most crucial ones. It is a two-class classification task that classifies lung nodules

into malignant or benign after segmenting them from the lung regions to assist radiolo-

gists in the diagnosis process. Many CAD systems have been developed during the past

few decades and are mainly divided into two categories: one that relies on handcrafted (or

engineered) feature extraction followed by classification; and one that relies on deep learn-

ing algorithms that perform feature extraction and classification simultaneously using one

network architecture.

Many metrics have been utilized to validate both types of CAD systems. These

include: accuracy, specificity, sensitivity, Area Under Curve (AUC) of the ROC curve,

precision, recall and F-score.

A. Classification of Lung Nodules based on engineered features

Most CAD systems from this category have two sequential steps: First, features are

extracted from the lung nodules. Then, traditional classifiers are trained using the extracted

features to discriminate between the different classes. Methods from this category vary de-

7



pending on the type of extracted features (i.e., shape, appearance, and/or texture) and on the

used classifiers (i.e., Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),

RandomForest, etc.). Initially, researchers have mainly focused on shape and appearance

features as they hypothesised that the difference in size between both nodules categories

is enough to discriminate between them (malignant nodules tend to be larger than benign

nodules). Some of these works include those of Farahani et al. [23] who used five gener-

ative morphological features (compactness, eccentricity, circularity, roundness, ellipticity)

provided by the radiologists. Farahani et al. [23] classified the extracted features using an

ensemble based approach that integrates multiple classifiers including Neural Networks,

K-nearest Neighbors (KNN) and SVM.

Another approach that uses the two sequential steps was proposed by Shewaye et

al. [24]. Here, the authors extracted a collection of geometric and histogram features in-

cluding nodule area, approximate nodule perimeter, nodule diameter, nodule aspect ratio

and gray scale histogram. After features extraction, both linear classifiers (SVM and Lo-

gistic Regression) and non-linear discriminant classifiers (Random Forest, KNN and Ad-

aBoost) were used for classification. Adaboost was shown to be the optimal classifier

among all considered classifiers.

In [25], Likhitkar et al. proposed a CAD system that enhanced the images, seg-

mented the lungs contour, extracted features and classified them into benign versus ma-

lignant. The last two steps that focused on lung nodules diagnosis consisted of using the

shape, growth rate, boundary of the nodule and density as input to an SVM classifier to

discriminate between benign and malignant classes.

Firmino et al. [26] proposed an approach based on features provided by radiolo-

gists, including spiculation, margin, calcification, lobulation, sphericity, texture and in-

ternal structure. These features were validated using Gaussian Naive Bayes (NB), Fisher’s

Linear Discriminant (FDA) and SVM. The authors considered learning five different classes

(nodules highly unlikely of being malignant, nodules moderately suspicious of being malig-
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nant, nodules highly unlikely of being malignant, nodules with indeterminate malignancy

and nodules highly suspicious of being malignant). Among all considered classifiers, SVM

gave the best classification results using both cross-validations and leave-one-out strategies.

The method proposed by Jeeva et a1. [27] used as features the perimeter, centroid,

mean, irregularity index, area and eccentricity. These features are then input to a feed

forward network for classification.

Chen et al. [28] used a boosted ensemble algorithm (XGBoost) on clinical and ra-

diographic features such as nodule size, age, solid nodule, speculation, lobulation, etc.

In more recent years, researchers noticed that both density and texture of lung nod-

ules are not uniform, which may create a variation in Hounsfield Units (HU) values associ-

ated with the Computed Tomography (CT) imaging modality. Consequently, they exploited

this variation by focusing on texture features. Some of the methods that are based on tex-

ture features include those of Han et al. [6] who developed a CAD system using Gabor [29],

Haralick [30] and Local Binary Patterns (LBP) [31] texture features. In this approach, the

three different texture features were extracted from 2D slices from the lung nodules ROIs.

Then, an SVM classifier was used to classify each feature. Using a standard CT image

collections, authors reported that the Haralick features achieved the best diagnosis results.

The authors also extended their work to 3D volumes and showed that more accurate results

can be obtained.

Nishio et al. [32] proposed a CAD system that classified lung nodules into benign

or malignant using a variant of the Local Binary Pattern features along with the XGBoost

and SVM classifiers.

In [33], Rodrigues et al. proposed an algorithm based on Structural Co-occurrence

Matrix (SCM). They created multiple configurations of their algorithm by considering dif-

ferent filters to preprocess images before features extraction. Three different classifiers

(KNN, SVM and multi-layer perception) were used to evaluate the considered features and

compare their performance to LBP, statistical moments, Gray Level Co-occurence Matrix
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(GLCM) and central moments.

Huang et al. [34] investigated the use of fractal texture features, from Fractional

Brownian Motion (FBM) model. Here, also the SVM was used for classification.

Wang et al. [35] also investigated lung nodules classification using Haralick tex-

ture features, and considered four different classifiers (Extreme Learning Machine (ELM),

Probabilistic Neural Network (PNN), SVM and Multilayer Perceptron (MLP)). They re-

ported that the ELM classifier gave the best diagnosis results. To make use of uncertain

data (i.e., data with ambiguous labels), the authors developed a semi supervised version of

the ELM classifier. They showed that the semi supervised version outperformed all four

supervised methods.

De et al. [36] proposed a method based on different features for lung nodules di-

agnosis. They utilized phylogenetic diversity with particular indices that include exten-

sive quadratic entropy, pure diversity indexes, average taxonomic distinctness, intensive

quadratic entropy and total taxonomic distinctness. A genetic algorithm was used for clas-

sification.

As outlined above, both appearance and texture features have proved to be useful

in the lung nodules classification task. The success of such features individually made

researchers turn toward combining them in the same framework in an attempt to further

increase the accuracy of the diagnosis. Some of these architectures include those of Huang

et al. [37] and Tu et al. [38], where the authors used a large number of features and applied

p-value and t-test statistical tests, along with a forward search algorithm, to select a small

subset of effective features.

Another CAD system was proposed by Shaffie et al. [8]. This group fused Higher-

Order Markov Gibbs Random Field (MGRF) appearance features to retrieve the spatial

inhomogeneities of the lung nodules, spherical Harmonics to describe the shape of nodules

and volumetric features to describe the nodules size. They fed these features to a deep

autoencoder (AE) classifier.
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More architectures that combine shape and texture features include those of Dhara

et al. [7] who extracted 2D and 3D texture based features as (HoG and GLCM) and 2D and

3D shape features (sphericity, spiculation, lobulation, area, perimeter, etc.) and classified

them using SVM.

Gong et al. [4] proposed a CAD system that combined texture features (Neigh-

borhood Gray Tone Difference Matrix (NGTDM), GLCM, Gray Level Size Zone Matrix

(GLSZM) and GLRLM (Gray Level Run Length Matrix)) and shape features (volume and

surface area) and Histogram features. They analysed these features using naive Bayes

(NB), SVM and LDA classifiers with the Relief-F [39] feature selection algorithm.

Ma et al. [40] utilized radiomics features including heterogeneity, information in

multi-frequencies, shape and intensity and classified them using the Random Forest algo-

rithm.

B. Classification of Lung Nodules based on deep learning

Deep learning of features along with classification have proven to be very successful

in diverse domains and applications. Contrary to traditional approaches that treat features

extraction and classification as two independent and sequential steps, in deep learning fea-

ture learning and classification are performed simultaneously. In particular, Convolutional

Neural Networks (CNN) have proven to be very effective in image recognition tasks.

A typical architecture of CNN usually consists of convolutional layers, pooling lay-

ers and fully-connected layers. A typical CNN architecture is shown in Figure 3.

B.1. Convolutional layer

What distinguish CNN from all other artificial neural networks are the convolutional

layers. The input data is convolved using many kernels to extract features, then the output

is entry to an activation function that produces feature maps. These feature maps are then
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FIGURE 3: Typical CNN architecture.

fed to the next hidden layer, l. The output of each layer, xli, is computed using the output

of the preceding layer xl−1i using:

xli = f(
∑
i

xl−1i ∗ klij + blj) (1)

In (1), xli represents the ith input feature map to layer l, klij the kernel joining the jth feature

map of the output layer to the ith feature map of the input layer and blj is the bias.

Once the process is repeated multiple times across the convolutional layers of the

CNN, progressive levels of features are learned. These extracted features can be classified

into two types: low-level and high-level features. Low-level features are associated with

the early layers of the CNN, and usually describe corners, edges, lines, etc. High-level

features are associated with the deeper layers of the CNN and describe the details and more

salienet features informations associated with each object of the image.

B.2. Activation function

An activation function is applied to the convolved output of each layer. Typical acti-

vation functions used in CNN include ReLu, sigmoid and tanh. These activation functions

are illustrated in Figure 4.
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FIGURE 4: Typical activation functions used in CNN.

B.3. Pooling layer

Pooling layers provide a downsampling operation to reduce the in-plane dimen-

sionality of the feature maps. The most common pooling operations are max pooling and

average pooling.

B.4. Fully Connected Layers

The output feature maps of the final convolution or pooling layer is flattened (trans-

formed into a one-dimensional array), and connected to one or more fully connected layers,

also known as dense layers. In these dense layers, every input is connected to every output

by a learnable weight. When the features extracted by the convolution layers are created,

they are mapped by a subset of fully connected layers to the final outputs of the network

(i.e., the probabilities for each class in classification tasks). The final fully connected layer

typically has the same number of output nodes as the number of classes.

Many researchers have focused on CNN architectures based networks and adapted

them to the lung nodules diagnosis task. Architectures used for this application include 2D

CNN [10], multi-view 2D CNN [41] and 3D CNN [11,42], In addition, several architectures

such as residual blocks [43], transferable multi-model ensemble [44], optimal deep neural

networks [13] and deep neural networks [45] have been investigated.

Shivan et al. [46] compared multiple pre-trained CNNs including Googlenet [47],

13



AlexNet [48], ResNet50 [49] and ResNet18 [50] to classify lung nodules. They reported

that AlexNet model along with transfer learning achieved the best classification results.

In [51], the authors compared three different deep learning algorithms. These

include Stacked Denoising Autoencoder (SDAE) [52], CNN and Deep Belief Networks

(DBNs) [53]. They concluded that DBN achieved the best classification results.

In [54, 55], the authors used a CNN architecture with data augmentation generat-

ing additional images with similar characteristics as pulmonary nodules using Generative

Adversarial Networks (GANs) [56]. They reported that using GAN allowed to enlarge the

dataset and to achieve better classification results than other architectures.

Hua et al. [57] analysed CNN and Deep Belief Network [58] and compared them

to two traditional generative features followed by classification. They showed that deep

learning based methods achieved better classification results.

Liu et al. [12] proposed a multiview convolutional neural networks for lung nodules

classification where features are extracted from multiple views of the same sample. They

showed that their method is more efficient than the single view method.

Another group [10] proposed a hierarchical learning framework based on Multi-

scale Convolutional Neural Networks (MCNN). They extracted discriminative features

from succeeding layers from multi scale nodule patches and concatenated the response

neuron activations obtained at the last layer from each input scale. They showed that their

method is effective in classifying malignant and benign nodules without nodule segmenta-

tion.

Zhang et al. [59] proposed a Multi-Level Convolutional Neural Network (ML-

CNN) for the lung nodules classification task. To optimize the hyperparameter configura-

tion, the authors used a non-stationary kernel-based Gaussian surrogate model. They stated

that their algorithms perform better than several hyperparameter optimization methods and

manual tuning.

Despite the effort of some researchers to develop 2D CNN architectures with multi
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views or multi level features to optimize the accuracy of their diagnosis, single-or multi-

view 2D images are still incapable to exploit the complete 3D information provided by lung

nodules [11]. To overcome these disadvantages, some works developed architectures that

take as input 3D volumes instead of 2D patches. An example of these frameworks is of

Nasrullah et al. [60]. The input of this framework were volumes where nodules are located

in the center. To learn higher level features, the authors used a CNN along with 3D MixNet

blocks and Gradient Boosting Matching (GBM).

Another work proposed by Zhang et al. [61] was based on a 3D CNN architecture.

The main idea behind this work is to build a framework capable of classifying both large

and small nodules. They proved that their framework is efficient in classifying both large

lung nodules with diameter between 10 and 30 mm and small nodules with diameter (≤ 10

mm).

Polat et al. [62] proposed to use both Straight 3D CNN with conventional softmax

and hybrid 3D CNN with Radial Basis Function (RBF)-based SVM for the lung nodules

classification task. They compared their models to 3D-GoogleNet and 3D-AlexNet CNN

architectures. Both methods achieved better classification results than the traditional CNN

architectures and the 3D CNN with Radial Basis Function (RBF)-based SVM achieved the

best diagnosis results.

Deep learning models evolved during the past few years and many new architectures

improved the accuracy in multiple domains. As these models get more efficient, researchers

started adopting them to CAD systems. Some of these works include those of Nishio et al.

[32] who extracted features from 2D patches using pooling operations, image convolutions

and principal component.

Lakshmanaprabu et al. [13] proposed an Optimal Deep Neural Network (ODNN)

for the lung nodules diagnosis task. Another CAD system for the lung nodules diagnosis

have been proposed by Xie et al. [44]. This group utilized the transferable multi-model

ensemble (TMME) to classify nodules into malignant or benign. In their later work [63],
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they proposed a multi-view knowledge-based collaborative (MV-KBC) deep model for the

lung nodules diagnosis task. In another work [64], they proposed to fuse shape (Fourier

shape descriptor to study the heterogeneity of nodules), texture (GLCM features) and deep

model-learned information (deep convolutional neural network) at the decision level to

classify lung nodules.

Ren et al. [65] proposed a Manifold regularized Classification Deep Neural Network

(MRC-DNN). Another group [66] proposed a cascaded architecture for the lung nodules

classification task. In their method, the authors used transfer learning to identify images

that contain nodules, then they classified them.

Veasey et al . [67] proposed a deep Convolutional Neural Network (CNN) with re-

current neural network framework that utilises pre-trained 2-D convolutional feature extrac-

tors on a standard dataset. They stated that their architecture achieved similar performance

to a 3-D CNN that involves half the number of parameters. The same group proposed a

convolutional attention based network that uses pre-trained 2-D convolutional feature ex-

tractors and evaluated it for single- and multitime-point classification. Their results showed

that the proposed method achieved better results than a 3-D network with less than half the

parameters on single-time-point classification and achieved better performance on multi-

time-point classification.

Other methods that are based on deep learning include [68–72] where authors used

DenseNet and adaptive boosting, 3D Dual Path Networks, transfer learning, a malignancy

evaluation network and a joint radiology analysis and an end-to-end dense convolutional

binary-tree network respectively for the lung nodules diagnosis task.

C. Multiple Instance Learning

In Multiple Instance Learning (MIL), each object is represented by a bag of multiple

instances. Labels are provided at the bag level but labels of instances within each bag are

not available. Most MIL algorithms assume that a bag is labeled positive (+1) if at least

16



one of its instances is positive and negative (-1) if all of its instances are negative. Let Y be

the label of a bag X, defined as a set of N instances, X = {x1, x2, ..., xN}. Each instance

xi has an unknown label yi. The label of the bag is given by:

I =


+1 if ∃yi : yi=+1

−1 if ∀yi : yi=-1
(2)

The above standard assumption has been used in most early methods [14, 73, 74], and also

in some recent ones [75, 76]. It is based on the assumption that it is not necessary for each

instance in the bag to be labeled positive for the bag to be labeled positive.

Several MIL algorithms have been proposed, and a review of many of them can be

found in [75,77,78]. In the following, we outline few MIL algorithms that we have adapted

to our application.

C.1. Support Vector Machines for Multiple-Instance Learning (MI-SVM)

MI-SVM [73] extends the SVM algorithm to the MIL paradigm. Initially, we train

a standard SVM classifier with an initial ensemble of positive instances (i.e., initialize

positive instances by taking a random number of instances from each bag) and negative

instances. Using this learned initial model, a confidence value is assigned to each instance

in each bag. Then, few instances from each bag are selected as positive (based on confi-

dence values). In the next iteration, the algorithm is optimized to find a maximal margin

hyperplane separating the newly selected positive instances from the all other instances.

The above steps are repeated until the same positive instances are identified in two consec-

utive iterations or a predefined maximum number of iterations is reached. The final model

is then used to label the test bags.
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C.2. Expectation Maximization - Diverse Density (EM-DD)

The EM-DD [79] defines an initial target point h obtained by trying points from

positive bags, then repeatedly performs the following two steps that combine Expectation

Maximization with Diverse Density to search for the maximum likelihood hypothesis. In

the first step (E-step), the current target h is used to pick one instance from each bag, which

is most likely (given the used generative model) to be the one responsible for the label given

to the bag. In the second step (M-step) a gradient ascend search (using quasi-newton [80])

is used to find a new hi that minimizes the Diverse Density DD(h). Next we let h = hi and

repeat the two steps. These steps are repeated until the algorithm converges.

C.3. Multi-instance learning based on Graphs (mi-Graph)

In mi-Graph [81], each bag is represented by a graph where instances represent the

nodes of the graph. The edges of the graph are based on the distance between instances.

If the distance between two instances is smaller than a threshold, an edge will link these

instances. Otherwise, no direct edges will connect the nodes. After representing each

training bag by a graph, different classifiers could be used. Examples include a K-nearest

neighbor classifier that employs graph edit distance [82], or using a graph kernel [83] to

capture the similarity among graphs and then solve the classification problems by using

kernel machines such as SVM.

C.4. Multi-instance Fisher Vector (miFV)

In miFV [84], the instances of all bags are first clustered into several “groups”, and

then mapped into a new feature vector representation (i.e., Fisher Vector [85]) with the

bag-level label. The mapped vectors are then fed to a standard supervised learner (i.e., an

SVM, ANN, etc.), to learn a classification model. Similar to the training bags, the testing

bags are first mapped into feature vectors using the same mapping function, and a bag-level
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label is predicted using the learned classifier.

C.5. Multi-instance vector of locally aggregated descriptors (miVLAD)

MiVLAD [86] clusters the instances of the training bags into K clusters using the

K-means clustering algorithm. Then, each instance is assigned to the closest cluster [86].

At this stage, a mapping function maps a bag into a feature vector based on the clusters

assigned to its instances. The new mapped feature vectors are then fed to a standard su-

pervised learner (i.e., an SVM, ANN, ect.) to learn a classification model. Similar, to

the training bags. the testing bags are mapped to feature vectors using the same mapping

function and a bag-level prediction is computed using the learned classifier.

C.6. mi-Net: Instance-Space MIL Algorithm

Mi-Net [87] is an MIL algorithm based on neural networks [87]. A bag of instances

is fed sequentially into a succession of L (four) fully connected (FC) layers with ReLU

activation [87]. Each instance feature is denoted by xL−2ij in the (L − 2)th layer and its

instance probability is denoted by pL−1ij where pL−1ij is a scaler between [0,1]. In the last

layer, there is a Multiple Instance Pooling (MIP) layer which takes instance probabilities as

input and outputs a bag probability, denoted as: PL(Xj). In other words, instance scores

from four FC layers are learned then aggregated into bag scores to predict the label of the

bag via MIP layer. The first (L− 2) FC layers can learn some more discriminative instance

features compared to the original features xij . The last connected layer has one neuron

with a sigmoid activation that is used to predict the positiveness of the instances. The MIP

method satisfies the MIL standard assumption and a bag is positive if it contains at least

one instance with large positiveness. Similarly, a bag will be labeled as negative if all of its

instances have low positiveness.

MI-Net [87] is a variation of mi-Net that focus on learning a bag representation,
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rather than predicting instance probability. In MI-Net, the MIP layer aggregates the dis-

criminative features learned from the first three fully connected layers into one feature vec-

tor as a bag representation. The last FC layer with only one neuron and sigmoid activation

takes the bag representation as input and predicts the bag probability.

In [87], the authors proposed a variation of MI-Net that integrates deeply-Supervised

Nets (DSN) structure. In this variation, deep supervisions are added to each middle FC

layer that can learn instance features. During training, the supervision is added to each

level and during testing, the mean score for each level is computed.

The authors in [87] proposed another variation of MI-Net that uses deep residual

learning. While the original residual learning [88] learns representation residuals using

convolution, batch normalization and ReLU, the bag representation in MI-Net learns resid-

uals via fully connected layers, ReLU and MIP.
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CHAPTER III

MULTIPLE INSTANCE LEARNING FOR LUNG NODULES CLASSIFICATION

The objective of this thesis is to research the possibility of using MIL for lung

nodules diagnosis. First, we design a multiple instance representation of the nodules using

a nested sequence of volumes centered at the identified center of the nodule. We extract

one feature vector from each volume. The set of features for each nodule are combined and

represented by a bag. Next, we investigate and adapt some existing algorithms and develop

new ones to this application. We start by applying benchmark MIL algorithms to traditional

engineered features. Then, we design and train simple CNNs to learn and extract features

that characterize lung nodules. These extracted features are then fed to various benchmark

MIL algorithms to learn classification models. Finally, we develop new algorithms that

combine feature learning and multiple instance classification in a single network. These

algorithms generalize the CNN architecture to multiple instance data.

A. Lung nodules classification based on engineered features and Multiple Instance
Learning

Lung nodules classification, like most traditional learning algorithms, requires la-

beled training data to learn the parameters of the prediction model. For this application,

the contour of the nodules needs to be delineated by radiologists so that descriptors, that

capture salient features of the nodules, can be extracted and used to train a classifier that

predicts the final diagnosis. This labeling process is labor intensive for radiologists since

they need to check multiple slices for the same nodule sample and delineate the nodule in

every slice to get the final 3D contour. In addition, when the nodule is hard to delineate

(for example, when the nodule is small or the nodule is sub-solid), different radiologists
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may identify different contours for the same nodule. This will create a certain ambiguity

for researchers as they will have this question in mind: To which extend is the segmenta-

tion accurate and reliable ? Figure 5 illustrates a sample nodule where three radiologists

disagree when delineating the contour of the nodule at different slices. For the first slice,

the contour identified by radiologist 1 (shown in red) is at least three times larger than the

contour identified by radiologist 2 (shown in blue). Similar labeling can also be observed

for slices 2 and 3. For slices 4 and 5, radiologists 2 and 3 did not even detect the nodule.

In addition to the difficulty to robustly segment nodules, some researchers [89, 90]

have concluded that the classification results can be improved when some parenchymal

structures are included along with the nodules texture in comparison to using the nodules

texture only. Consequently, researchers relaxed the requirement to identify the exact con-

tour of the nodules. Instead, only the center of mass is provided and features are extracted

from a 2D or 3D region of fixed size centered at the provided nodule center of mass. This

simplification allowed researchers to annotate much larger datasets and train more com-

plex models. Though, in this case another challenge arise since these methods use one

fixed bounding box for all samples (typically the one that covers the biggest nodule in the

training dataset). This volume size may not be the optimal choice for all nodules in the

dataset. Figure 6 displays sample malignant nodules where the box size was fixed to in-

clude the largest nodule as illustrated in Figure 6 (a). For a medium size nodule (as the one

displayed in Figure 6 (b)), a large area of the box will include background. In this case,

the extracted features may capture more information about the background than the nodule.

Figure 6 (c) displays an even smaller nodule where the extracted features will more likely

capture more background than the nodule in itself.

We propose a solution to adapt learning algorithms to objects with varying sizes,

without annotating the bounding box of each object. We represent each nodule by multiple

instances (extracted using different bounding boxes) and use Multiple Instance Learning

(MIL) algorithms. In MIL, each sample is represented by multiple feature vectors. Each
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feature is referred to as instance and the collection of instances representing one object

is called a bag. In our considered application, a bag represents the nodule sample and

the instances represent features extracted from a nested sequence of volumes around the

nodule. The advantage of using MIL resides in the ability of one or few of these nested

volumes to capture the nodule’s salient features and to be a good representation of the

nodule independently of its size. A bag in this case is labeled positive (malignant nodule)

if at least one of its nested volumes belongs to the target concept associated with malignant

nodules and labeled negative (benign nodule) if none of these nested volumes are close to

the target concept.

FIGURE 5: X-Y views for a sample nodule delineated by three radiologists. The contour

delineated by each radiologist have a distinctive color (red, green, blue). Missing contours

in slice 4 and 5 indicate that two of the three radiologists did not even detect the nodule in

these slices.

Our proposed approach, described in the rest of this chapter, is general and can be

applied to 2D patches as well as 3D volumes. It can incorporate a variety of benchmark

features such as GLCM [7], Fisher vector [85], HoG [91], LBP [6] and others [8,9]. In the

following, we outline the main steps of our approach.

A.1. Patch extraction and feature representation

One of our contributions in this work is to demonstrate the advantages of multiple

instance data representation compared to traditional single instance representation that ex-

tracts a single feature from one fixed region for the lung nodules’ diagnosis task. Thus, in
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FIGURE 6: Three nodules of different sizes captured by a box of fixed size: (a) the box

size was fixed to include this large nodule, (b) for a medium size nodule, a large area of the

box includes background and (c) the small nodule occupies only a fraction of the box area.

our analysis we include a comparison of our MIL approach to traditional single instance

approaches using the same feature descriptors.

Traditional single feature extraction requires the annotation of each training sample

by a bounding volume. Only voxels within this region are used to extract a single feature.

Figure 7(a) illustrates this SIL paradigm. This approach is efficient and can be very ef-

fective when the bounding box captures the nodule with little background. However, as

outlined earlier, accurate bounding boxes require extensive analysis by radiologists.

For our proposed multiple instance setting, we assume that only the center of mass

of each training sample is known and that information about the spatial extent of the nodule

in all three directions is not available. We only assume that the region of interest is larger

than Vmin and smaller than Vmax, where Vmin and Vmax are estimated based on prior knowl-

edge (i.e., the minimum and maximum nodule sizes in benchmark labeled datasets). To

take into account the ambiguity and size variation of each sample, first we fix a set of Nv

nested volumes such that Vmin = V1 < V2 < .... < VNv = Vmax. Then, from each volume

Vi, we extract a feature vector fi using any of the standard feature extraction methods such

as GLCM [7], Fisher vector [85], etc. Each fi will be treated as an instance, and the Nv

instances are combined into a set, or a bag, to represent the nodule sample. Our rationale
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is that out of the Nv extracted features, one or few of them will capture the nodules salient

features effectively [92, 93]. Figure 7(b) illustrates the proposed MIL paradigm.

FIGURE 7: Frameworks for feature extraction and classification of nodules using: (a)

single instance learning where features are extracted from a single region of interest, and (b)

MIL paradigm where features are extracted from multiple instances (i.e., multiple dashed

rectangular regions of interest).

A.2. Bag classification

In our work, we test and evaluate a few MIL benchmark algorithms using our ex-

tracted multiple instance data. These algorithms are divided into three main categories: (1)

instance space MIL algorithms (i.e., EM-DD [79], MI-SVM [73]) that assign confidence

values to instances and aggregates these confidences into a bag probability; (2) bag space

MIL algorithms (i.e., mi-Graph [81]) that focus on computing the bag probability directly;

and (3) embedded space MIL algorithms (i.e., miFV [84], miVLAD [86]) that map each

bag to a single feature vector (a feature vector that summarizes the relevant information

from all instances) and use a traditional classifier to predict the bag label.
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Instance space MIL algorithms have the advantage of being able to identify the

best volume (instance) representative of the nodule sample and provide the user with more

explainable results. Bag and embedded space MIL algorithms have proved to be more

efficient and effective than instance space MIL algorithms for diverse classification tasks

[87]. However, they do not explicitly identify the positive instances within each bag, and

thus, they have limited explainability.

B. Lung nodules classification based on CNN features and Multiple Instance
Learning

Recently, machine learning based on deep Neural Networks have proved to out-

perform traditional learning methods for many tasks [94–96]. In particular, Convolutional

Neural Networks (CNN) are becoming the method of choice to learn classifiers that involve

image or video analysis. The main advantage of CNNs is that they do not extract a predeter-

mined set of features. Instead, they process raw images and learn a network that performs

both feature extraction and classification simultaneously. In fact, CNNs have proved to

be one of the most accurate approaches for lung nodules diagnosis [46, 57, 62]. This has

motivated us to develop our second approach for this task where we start by designing and

training a CNN. Then, using the learned CNN features, we build a classifier using the same

benchmark MIL algorithms that have been tested with engineered features in the previous

section.

We designed a simple CNN architecture to classify lung nodules into two classes:

benign and malignant. The architecture of this CNN is illustrated on Figure 8. This network

has two main components. The first one is for feature extraction and maps an input image

Ii to a feature vector Xi. The second component is for classification and predicts a class

label for Xi. Both components of the network in Figure 8 are trained simultaneously using

benchmark single instance training data to label nodule image patches as either malignant

or benign (here all training image patches have fixed sizes: Mx by My (i.e., 31 ∗ 31)).
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The first component consists of three convolutional layers, two max pooling layers and

Rectified Linear Unit activation (ReLu) layers. Mathematically, a CNN can be represented

as a function which is the composition of a sequence of functions. Each function represents

a layer, which takes the output of the previous layer, to compute the final feature vector

output using connection weights for each layer. A convolutional layer maps an input image

patch with a set of multi-dimensional filters to obtain an intermediate output for the next

layer. The first convolutional layer of a CNN typically extracts low-level features such

as nodule edges and corners. Subsequent convolutional layers act as higher-level features

extractors that combine the low level features from previous layers. The max pooling layer

computes the maximum among each patch of the feature map from the previous layer. For

the activation layer, the Rectified Linear Units ReLU(x) =max(x,0) is employed to address

the issue of saturation [97].

The second component of the CNN in Figure 8 is a set of two fully connected layers

and they are designed to minimize a classification loss function with respect to the network

parameters (i.e., weights of the filters) learned from the training data. To minimize the loss

function, we use the stochastic gradient descent (SGD) method. Even though the standard

gradient descent method is mathematically simple, the computational cost is enormous

especially when we consider a large training set. Therefore, in each step we employ SGD,

which calculates a random subset of training examples (i.e., a mini-batch) to estimate the

mean gradient for all the training examples. The technique of batch normalization [98] is

also used to accelerate the convergence.

After training the network in Figure 8, we are interested only in its feature extraction

component. That is, we feed an image patch Ii of size Mx by My and map it to a feature

vector Xi. We explore this feature extraction component, optimized for nodule image

discrimination, to extract features for our multiple instance classification. Similar to the

architecture we proposed in Figure 7(b), we fix a set ofNv nested volumes such that Vmin =

V1 < V2 < .... < VNv = Vmax. Then, for each volume Vi, we learn a CNN feature vector
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fi. Each fi will be treated as an instance, and the Nv instances are combined into a set, or

a bag, to represent the nodule sample.

FIGURE 8: Feature extraction and classification using CNN.

C. Lung nodules classification based on end-to-end Multiple Instance
Convolutional Neural Networks (MIL-CNN)

Deep learning convolutional networks derive more discriminative features during

training. These networks have improved the classification results of multiple machine

learning tasks over standard classification algorithms. Therefore, we hypothesize that the

integration of deep neural networks with MIL will improve the results over classical MIL

algorithms. While our previous approach, described in the previous section, extracts CNN

features and trains MIL classifiers in two independent steps and still requires the bound-

ing box of each sample (to train the CNN), the new algorithms proposed in this section

combine CNN feature learning and MIL classification into a single network. In particular,

we propose four different algorithms that integrate CNN feature extraction and multiple

instance Neural Networks in an end-to-end manner. These MIL-CNN have one common

architecture, where the same CNN layers are used to extract features from each volume (in-

stance). These feature vectors are input to multiple Instance Neural Networks that compute
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the final prediction associated with each bag.

As illustrated in Figure 8, a typical CNN architecture is composed of two main

blocks. The first block works as a feature extractor and the second block works as a classi-

fier. Our proposed MIL-CNN framework is illustrated in Figure 9. It processesNv volumes

and extracts their CNN features sequentially before proceeding to the classification block.

The Nv extracted feature vectors (instances) are then combined in a bag and passed to the

multiple instance classification block.

Let xij denote the CNN feature vector associated with the ith nested volume i =

{1, ..., Nv} of nodule sample j. Let yj denote the class label of nodule j (yj = 1 for

malignant and yj = 0 for benign). In case of Single Instance Learning (SIL) strategies,

we extract features from a single instance volume and we use tuples (xj, yj) for training.

On the other hand, for MIL, each nodule j is represented by a bag of features {Xj =

x1j, x2j, ..., xNvj}, where Nv is the total number of nested volumes used to represent the

nodule. In this case we use tuples (Xj, yj) for training. We should note here that labels yj

are assigned to the bag label. That is, labels for individual instances xij are not known.

We propose four variations of MIL architectures on the top of the CNN by intro-

ducing a pooling layer, called Multiple Instance Pooling (MIP), and using it to transfer the

CNN learned feature vectors (learned from the first CNN block) associated with each bag

of nested volumes into a likelihood that the input nodule is malignant.

The response of the last convolutional layer in the CNN block is a 2D matrix of

CNN features. Let {Xij, i = 1, ..., Nv, j = 1, ..., Ns} represent these features where

Ns is the total number of samples (nodules) used for training and Nv is the number of

nested volumes extracted from each sample. Let L represent the total number of layers

and H l(.), l = 1, .., L− 1 represent a non linear transformation computed after each layer,

that is, xlij = H l(xl−1ij ), where xl−1ij and xlij refer to the output values of instance xij at

layer (l − 1) and (l) respectively. H l(.) is associated with composite operations of fully

connections and rectified linear units (ReLU).
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FIGURE 9: General architecture of the proposed MIL-CNNs.

C.1. Instance-Space Multiple Instance Learning CNN algorithm (Mi-CNN)

One of our research tasks consists of investigating if MIL algorithms are capable

of identifying the positive instances that capture the ground truth region of each nodule

without requiring detailed annotation by radiologists. This task requires a class of MIL

algorithms (i.e., instance space) that can compute the probability of each instance within

the bag. In this section, we propose our instance space MIL-CNN algorithm.

The fully connected classification framework in the instance space, denoted Mi-

CNN, computes one final score (or probability) for each instance i in bag j. Thus, the

last fully connected layer, denoted L − 1, of this network has one node that outputs the

confidence of xij in the malignant class. Let pL−1ij refer to the confidence value of this

instance. The last layer of the Mi-CNN (denoted L) is a max pooling layer that combines

the instance probabilities pl−1ij to compute the bag probability PL
j using:

PL
j =ML(pL−1ij ) = maxi=1..Nv(p

L−1
ij ) (3)

In other words, the last layer, ML, of the Mi-CNN network is responsible for aggregating

the learned instance probabilities into a final bag probability, PL
j .

The Neural Network classification block associated with the Mi-CNN is illustrated

in Figure 10. Using this architecture, during training, all samples xij ∈ Xj are processed
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through all FC layers (i.e., FC1, FC2, .., FCL−1). The learning of the network weights is

achieved by optimizing the cross entropy loss function:

Loss(Pj, yj) = −{(1− yj)log(1− Pj) + yjlog(Pj)} (4)

The loss of all Ns bags are accumulated and minimized to train the proposed Mi-CNN

by back propagation using Stochastic Gradient Descent (SGD). Thus, the feature of each

instance xij is processed by the network to produce a score pij . Then, in the last layer, all

instances scores are aggregated to output the bag score.

FIGURE 10: The MIL Neural Network Classification block of the proposed Mi-CNN.

C.2. Embedded-Space Multiple Instance Learning CNN algorithm (MI-CNN)

The Mi-CNN algorithm first learns instance probabilities. Then, in a final stage

these instances are combined to compute the bag score. This instance based algorithm have

the advantage of generating more interpretable results. On the other hand, embedded MIL

algorithms learn only the final bag score. For applications where individual instance prob-

abilities are not needed, it has been proven that embedded space MIL algorithms perform

better than instance space MIL algorithms [22]. This is because embedded methods learn

the best feature representation of the whole bag before computing the final bag probability.

In the following, we propose an embedded version of our Mi-CNN.
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The fully connected classification framework in the embedded space, denoted MI-

CNN computes a final score (or probability) of the entire bag j. Layer L−1 of the MI-CNN

is a max pooling layer that outputs the bag feature vector representative of the entire bag

XL−1
j using:

XL−1
j =ML−1(xL−2ij|i=1..Nv

) = maxi=1..Nv(x
L−2
ij ) (5)

The last fully connected layer FCL of the MI-CNN network has one node that is responsi-

ble for computing a final bag probability, PL
j from the learned feature vector XL−1

j .

The Neural Networks classification block associated with the proposed embedded-

space MI-CNN variation is illustrated in Figure 11. This network uses the same loss func-

tion as the Mi-CNN.

FIGURE 11: The MIL Neural Network Classification block of the proposed MI-CNN.

The only difference between Mi-CNN and MI-CNN is that the latter learns the

probability of the bag directly from the learned features without computing the instances

score. First, the network computes features xij for all instances in bag j. Then, the instance

features are aggregated in layer L − 1 to compute one global feature vector Xj in bag j.

Finally, in layer L, a score is assigned to each Xj .

We should emphasize here that the Multiple Instance Pooling layer (MIP) in Mi-

CNN computes the probability of the bag from the instance probabilities learned from the
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previous (L−1) fully connected layers. In contrast, the MIP layer in MI-CNN computes the

embedded instance representative of each bag from all bag instances learned from previous

(L− 2) fully connected layers. This final feature vector is input to a fully connected layer

L to output the final probability of the bag.

C.3. Embedded-Space Multiple Instance Learning CNN algorithm (MI-CNN) with

Deep Supervisions (DS)

Deeply-supervised nets (DSN) [99], enforce direct and early supervision for both

the hidden layers and the output layer. They are a companion objective to the individual

hidden layers, which is used as an additional constraint (or a new regularization) to the

learning process. Diverse studies [87, 99] proved that discriminative classifier trained on

highly discriminative features will result in a better performance than a discriminative clas-

sifier trained on less discriminative features. If we take the example of the hidden layer

feature maps of a deep network, this observation would suggest that the performance of a

discriminative classifier trained using these hidden layer feature maps can serve as a proxy

for the discriminativeness and quality of those hidden layer feature maps, and further to the

quality of the upper layer feature maps.

In this section, we propose a version of our MI-CNN that incorporates Deep Su-

pervisions. We show that this variation can utilize multiple hierarchies to improve the bag

classification accuracy. During training, instance features at early layers can receive better

supervision. During testing, we average multiple bag probabilities to get a more robust

bag label. The architecture of the fully connected classification framework in the embed-

ded space with Deep Supervisions (DS), denoted MI-CNN-DS is illustrated in Figure 12.

MI-CNN-DS computes a final score (or probability) of the entire bag j. A MIP (M l) is

applied to each intermediate FCl layer in the MI-CNN-DS. M l is a max pooling layer that

aggregates the bag’s instance features and outputs a single feature vector to represent bag
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j at each level k (X l,k
j ) using:

X l,k
j =M l(xkij|i=1..Nv

) = maxi=1..Nv(x
k
ij), k = {1, 2, 3, ..L− 1} (6)

Each fully connected layer, FCL, is succeeded by an MIP (M l) and computes the bag

level probability, PL,k
j from the learned feature vector X l,k

j at each level k. The final bag

probability PL
j at the last layer L is computed using:

PL
j = meank(P

L,k
j ), k = {1, 2, 3, .., L− 1} (7)

During training, the loss function of MI-CNN-DS is the sum of all intermediate en-

tropy losses that have been calculated during back-propagation with the stochastic Gradient

Descent (SGD). During testing, the average of the bag scores at the (L−1) level is reported.

Similarly to MI-CNN, MI-CNN-DS computes the bag scores directly and bypasses the in-

stances sores. The difference between the two variations is that MI-CNN-DS computes the

bag score from intermediate fully connected layers and average the final bag score from all

computed intermediate scores instead of computing only one final bag probability.

FIGURE 12: The MIL Neural Network Classification block of the proposed MI-CNN-DS.
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C.4. Embedded-Space Multiple Instance Learning CNN algorithm (MI-CNN) with

Residual Connections (RC)

Deep residual learning [88] showed a significant improvement in image recogni-

tion. Thus, for our fourth variation of MIL-CNN, we consider including residual learning.

The proposed algorithm, called MI-CNN with Residual Connections (MI-CNN-RC) is il-

lustrated in Figure 13. The MI-CNN-RC computes one final score (or probability) for each

bag j. The MIP (M l), applied after each intermediate FCl layer in the MI-CNN-RC, is a

max pooling layer that outputs X l
j . These intermediate bag features are combined into a

final feature vector that globally represents bag j using:
X1

j =M l(x1ij|i=1..Nv
)

X l
j =M l(xlij|i=1..Nv

) +X l−1, l > 1

(8)

where M l(xlij|i=1..Nv
) = maxi=1..Nv(x

l
ij). The last fully connected layer FCL of the MI-

CNN-RC network has one node and is responsible for computing a bag level probability,

PL
j , from the learned feature vector XL

j .

As shown in Figure 13 and Figure 11, MI-CNN-RC follows a similar architecture

to MI-CNN. The difference between them is that MI-CNN-RC learns bag representation

residuals from intermediate fully connected layers, ReLu and the MIPM l. These are added

together to compose a final feature vector responsible for the bag probability PL
j .

An alternative approach to our work would be to train Nv CNNs in parallel. Each

one of these CNNs will be trained on one specific volume. This method though, is not

feasible because we do not have the instances labels and typically, no more than 20% of the

instances within every bag are expected to be positive. Thus, about 80% of the instances

cannot be labeled using their bag label. In this case, a traditional single instance CNN

cannot make reliable predictions as it will be trained with a larger number of incorrectly

labeled data.
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FIGURE 13: The MIL Neural Network Classification block of the proposed MI-CNN-RC.
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CHAPTER IV

EXPERIMENTAL APPROACH AND EVALUATION STRATEGY

All proposed frameworks have been tested on three sets of experiments using two

datasets: The Lung Image Database Consortium and Image Database Resource Initiative

(LIDC-IDRI) [1] and the National Lung Screening Trial (NLST) [2]. We design and re-

port the results of three experiments. Two of these experiments perform five-fold cross-

validations on the same dataset (NLST or LIDC). We will refer to these as EXPNLST

and EXPLIDC . The third experiment consists of training the algorithms on one collection

(NLST dataset) and testing it on the other collection (LIDC dataset). We will refer to this

experiment as ExpNLST−LIDC .

A. Datasets

A.1. LIDC Benchmark data

The LIDC dataset [1] is a benchmark data for the medical imaging research commu-

nity. It has been used in most related work referenced in chapter II. This data contains lung

cancer screening thoracic Computed Tomography (CT) scans with marked up annotation

of each nodule lesion. It is utilized to assess the development of efficient CAD systems for

the detection and diagnosis of lung cancer in its early stages. Eight medical imaging com-

panies and seven academic centers collaborated to create this dataset composed of 1018

CT cases that have thoracic CT scan images as DICOM files and an additional informative

XML file for each patient. In our experiments, we excluded scans with a slice thickness

greater than 2.5 mm, missing slices, and conflicting slice spacing, reducing the data to 888
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CT scans. These scans contain nodules with diameter≥ 3 that have been annotated by four

radiologists where the malignancy score is provided with values varying between 1 (the

highest probability for the nodule to be benign) and 5 (the highest probability for the nod-

ule to be malignant). Ideally for the data to be more accurate, we should pick only samples

where four radiologists agree, however, this condition will reduce the data significantly. As

a compromise and to keep a larger subset of the data, we test our algorithms on samples

that have been recognized as nodules by at least three radiologists. Moreover, we only

use benign nodules that have a median score ≤ 3 and only malignant samples that have a

median score > 3. As a result, our cleaned version of LIDC has 260 malignant nodule and

387 benign nodule.

A.2. NLST

In a National Lung Screening Trial (NLST) [2], over 53000 high-risk participants

were screened annually for three years. Samples from the screening are denoted by time

0 (T0, for year 1), time 1 (T1, for year 2) and (T2, for year 3). The National Cancer

Institute provides data from 15000 of these subjects where most of the CT scans have no

nodules. In our experiments, we only use samples from participants that were biopsied

during the screening process (biopsy results were used for ground truth annotation). This

data is provided with an approximate location of the biopsied nodule. To date, a subset of

this data, named by NLSTx [67] has been analyzed by an in-house radiologist to determine

the exact location of these nodules and identify a bounding box around each nodule. This

annotated data consists of a total of 488 malignant and 1923 benign nodules divided as

follows: 803 nodules for T0 (154 malignant and 649 benign), 847 nodules for T1 (205

malignant and 642 benign), and 761 nodules for T2 (129 malignant and 632 benign). As

noted, the number of samples for each time is different because some patients got recorded

for T0 and T1 only while others were missing from the database.
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A.3. Data preparation

All CT scans have been re-sampled with resolution (0.625, 0.625, 2) to ensure the

homogeneity of resolution for all CT scans and for both used datasets. After extraction,

all considered volumes (instances) have been normalized by clipping the Hounsfield Units

(HUs) of all pixels within the volume to the range of (-1000,400) using:

I =



0 ifHU ≤ −1000

HU+1000
1400

if − 1000 < HU < 400

1 ifHU ≥ 400

(9)

Next all volumes are scaled to the (0,1) range using min-max normalization.

B. Evaluation strategy

The objective of this thesis is to develop a robust CAD system for the lung cancer

diagnosis task. To achieve this goal, we evaluate, analyze and compare multiple bench-

mark MIL algorithms using different type of features. We also develop new deep learning

algorithms for multiple instance data. We guide our research by formulating and answering

five important research questions (RQs). These RQ’s are described below.

RQ1: What is the best MIL algorithm for this application ?

The main objective of this thesis is to investigate MIL for the lung nodules diagnosis

task. MIL is a good approach for this application since the size of lung nodules can vary

significantly. To answer this question, we perform three different experiments by varying

the datasets used for training and validation. We experiment with different benchmark MIL

algorithms and different types of features. We validate the different methods by comparing

their Area Under Curve (AUC) values.

RQ2: What are the main nodule parameters that influence the classification?

The main objective of this question is to study the nodule parameters that can in-
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fluence the classification results. In particular, we investigate parameters related to the size

and contrast of the nodule as these are important ones used by radiologists in their diagno-

sis. To answer this research question, we analyze the distribution of parameters related to

the size and contrast of nodules. In particular, we compare the distributions for nodules that

were classified correctly/incorrectly by the most effective algorithms identified in RQ1.

RQ3: What is the best feature representation ?

The main objective of this question is to determine which feature representation is

more suitable for this task. We consider generative features (GLCM) and features learned

using a CNN. To answer this question, we analyse and compare the results of MIL algo-

rithms that use both of these features.

RQ4: Can an MIL algorithm learn to identify the positive instances (among a

bag with large number of candidates) that are close to the ground truth ?

The main idea behind using MIL for the lung nodules diagnosis task is to overcome

the limitation of lung nodule segmentation or applying algorithms using one fixed volume

size for all nodules. MIL represents each nodule by a large number of instances extracted

from different volumes. The goal of this RQ is to verify if the algorithm can identify a few

positive instances that represent the nodule without relying on accurate ground truth. To

answer this question, we analyze the results of the most reliable MIL algorithm (identified

in previous RQ’s) by correlating the confidence values assigned to each instance to their

spatial proximity to the actual ground truth.

RQ5: What is the best learning approach for this application: Single Instance

Learning (SIL) applied to the ground truth region or Multiple Instance Learning

(MIL) applied to multiple regions around the ground truth ?

The main objective of this question is to compare the performance of MIL algo-

rithms and SIL algorithms. SIL algorithms tend to be simpler, but impose more require-

ments on the ground truth. MIL algorithms, on the other hand, tend to be more complex but

provide more flexibility in representing nodules. To answer this question, we analyse the
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results of SIL and MIL algorithms and correlate the predictions (and identified instances

by MIL) to the ground truth extracted by the radiologists and the consistency among the

different radiologists.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter, we evaluate, analyze, and compare our proposed models introduced

in Chapters II and III. We start by describing our experimental settings. Then, we address

each research question by describing the conducted experiments and analyzing the results.

A. MIL representation and features extraction

A.1. Multiple instance representation

Our proposed Multiple Instance Learning frameworks for lung nodules classifica-

tion are applied on 3D volumes. We assume that only the center of mass of each training

sample is known and that information about the spatial extent of the nodule in all three

directions is not available. In our representation, we only assume that the region of interest

is larger than Vmin and smaller than Vmax, where Vmin and Vmax are estimated based on prior

knowledge (The minimum and maximum size of nodules in each dimension are known).

To take into account the ambiguity and size variation of each sample, first we fix a set of

Nv nested volumes such that Vmin = V1 < V2 < .... < VNv = Vmax. Each volume Vi,

is processed for feature extraction as will be described in the following subsection. In our

experiments, we set the number of volumes (instances) Nv= 60. These volumes expend

from the smallest one, Vmin with dimensions = [7, 7, 7] to the largest one, Vmax, [65, 65, 19]

in the x, y and z directions. Our choice is based on selecting Vmin as the minimum bound-

ing box of the smallest benign nodule and Vmax as the minimum bounding box that covers

90% of all malignant nodules size. In our training data, the remaining 58 sizes are selected
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randomly between Vmin and Vmax such as x ∈ {7,11,19,27,41 or 65}, y ∈ {7,11,19,27,41 or

65} and z ∈{7,11,19,23 or 27}. These dimensions have been selected to allow us to define

reasonable intervals between all dimensions in Vmin and Vmax. As a result, each nodule

will be represented by a bag of 60 instances. Figure 14 illustrates the proposed multiple

instance of each nodule representation.

FIGURE 14: Multiple Instance of a given nodule representation.

A.2. Extraction and representation of generative features

As mentioned earlier, our proposed MIL approach can incorporate many benchmark

generative features such as GLCM [7], Fisher vector [85], Gray-Level Size-Zone Matrix

(GLSZM) [4], etc. In this thesis, we instantiate our approach and validate it using GLCM

features [7]. We select these features since they were shown to outperform most other

features for lung nodules diagnosis [7]. The GLCM functions characterize the texture of
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an image by calculating how often pairs of pixels, with specific values and in a specified

spatial relationship, occur in an image. Then, statistical measures are extracted from the

co-occurence matrices. Each co-occurence matrix is an Ng x Ng square matrix in size.

In our work, we use the 3D GLCM features introduced by Han et al. [6]. The extrac-

tion of these features starts by quantizing the gray values of each input instance (volume

(V)) into Ng bins using:

Vq(m,n, p) = b
V (m,n, p)

max(V )
∗Ngc+ 1 (10)

where m,n and p define the pixel coordinates of volume V . Next, we construct Co-

occurrence matrices (GLCMs) following these definitions:

• Each element i,j of each GLCM define the number of times two pixels of intensities

i and j from Vq separated by distance D occur in a specified spatial relationship

(direction noted by d). The number of computed GLCMs is directed by the number

of considered directions and considered distances. We note P (i, j) = GLCM(i, j).

• Each GLCM is normalized by dividing each element by the sum of all elements using

the following formula:

P (i, j) =
P (i, j)∑Ng

i=1

∑Ng

j=1 P (i, j)
(11)

The following quantities are also defined: µi =
∑Ng

i=1 i
∑Ng

j=1 p(i, j), µj =
∑Ng

j=1 j
∑Ng

i=1 p(i, j),

σi =
∑Ng

i=1(i− µi)
2
∑Ng

j=1 p(i, j) and σj =
∑Ng

j=1(j − µj)
2
∑Ng

i=1 p(i, j).

The elements of the GLCM are considered at this stage as the probabilities of find-

ing the relationship i, j between each pair of pixels separated by distance D in a specific

direction d. Finally, a total of 12 Haralick features [7] are extracted from each GLCM in

each direction d and distance D, and their mean is taken as the final GLCM feature vec-

tor. These features are: energy, entropy, contrast, correlation, homogeneity, variance, sum

mean, cluster shade, inverse variance, cluster prominence, max probability and dissimilar-

ity and are defined as:
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Dissimilarity =

Ng∑
i=1

Ng∑
j=1

P (i, j)|i− j| (12)

entropy = −
Ng∑
i=1

Ng∑
j=1

P (i, j)log(i− j) (13)

cluster prominence =

Ng∑
i=1

Ng∑
j=1

P (i, j)(i+ j − µi − µj)
4 (14)

cluster shade =

Ng∑
i=1

Ng∑
j=1

P (i, j)(i+ j − µi − µj)
3 (15)

sum mean =
1

2

Ng∑
i=1

Ng∑
j=1

P (i, j)(i+ j) (16)

contrast =
Ng∑
i=1

Ng∑
j=1

P (i, j)(i− j)2 (17)

energy =

Ng∑
i=1

Ng∑
j=1

|P (i, j)|2 (18)

homogeneity =

Ng∑
i=1

Ng∑
j=1

P (i, j)

1 + |i− j|
(19)

correlation =

Ng∑
i=1

Ng∑
j=1

P (i, j)(i− µi)(j − µj)

σiσj
(20)

variance =
1

2

Ng∑
i=1

Ng∑
j=1

[(i− µi)
2p(i, j) + (j − µj)

2p(i, j)] (21)

max probability = max (GLCM) (22)

inverse variance =
1

2

Ng∑
i=1

Ng∑
j=1

P (i, j)

(i− j)2
(23)

45



Figure 15 resume the previously described steps for a sample of 4 x 4 image (of

volume V) quantized into 4 gray levels. We set in this example d=1 (as defined in the 3D

GLCM neighborhood system). As illustrated by the 3D GLCM neighborhood system, 13

directions in total can be used to define the number of times two pixels of intensities i and

j separated by D=1 occurs in each direction d (the 13 considered directions are defined

between the center pixel (yellow node) and each of the the numbered nodes). Thirteen

co-occurrences in total can be computed for a 3D volume and thirteen 12-haralick feature

vectors can be derived. The final GLCM feature vector is the mean between the thirteen

12-haralick feature vectors.

FIGURE 15: The GLCM features extraction process for the example of a 4 x 4 image

quantized into 4 gray levels. In this example, D=1 and d=1.

In our experiments, the optimal GLCM feature extraction parameters have been

selected empirically using a Grid search on the training data. We varied Ng from 8 to 64 by

an increment of 8, d from 4 to 13 and D from 1 to 3, we found that Ng = 16, d = 13 and

D = 1 achieved the best classification results.
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A.3. CNN features

Deep learning of features has proven to be very successful in diverse domains and

applications. In particular, CNNs have proven to be very effective for image recognition

and classification tasks, thus our choice to include them in our analysis. For these features,

we use the same number of instances per bag and the same size of volumes as those used

with GLCM features.

In a typical CNN, input images are required to have the same size. Since we con-

sider different volumes (instances) of various sizes, we resize them using spline interpo-

lation [100]. Resizing can affect the resolution of the images, but since the factor that we

are applying is not too large, resizing did not have significant effect on the results. After

resizing, all instances are processed using the same CNN architecture and are represented

by a feature vector with the same dimension.

The layers of our CNN architectures have been designed to minimize the risk of

overfitting and optimize the classification accuracy. Based on these criteria, we fixed the

CNN block that is used to extract features from each volume (instance) to include the

following sequential convolutional and max-pooling layers. Each instance (volume) of

size 31 x 31 x 10 is input to a first convolutional layer composed of 8 filters with dimension

(3*3). The resulting feature map then goes through subsampling using a max-pooling layer.

The second convolutional layer consist of 16 filters with dimension (3*3). The resulting

feature map goes also through subsampling using a max-pooling layer. The third and last

convolutional layer consists of 32 filters. At this stage a flattening layer is responsible of

outputting a final feature vector of length 512. For regularization, dropout layers [101]

with probability 0.25 were implemented after the last covolutional layer. We initialize the

network parameters using random initialization and use Adam optimizer [102] to minimize

the binary cross entropy loss function with a learning rate set to 0.0001. All networks were

trained end-to-end for 200 epochs and updated with a 32-batch size. Figure 16 illustrates

the proposed CNN architecture.
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FIGURE 16: Architecture of the CNN block used for feature extraction.

B. Experimental Settings for benchmark MIL algorithms

We propose three different experiments in this thesis: the first one consists of train-

ing and testing on LIDC benchmark data using five-fold cross-validations. The second one

consists of training and testing on the NLST data also using five-fold cross-validations. The

third experiment consists of training on NLST and testing on LIDC.

Our comparative analysis was designed to include multiple benchmark MIL algo-

rithms that belong to different categories (instance space, bag space and embedded space

paradigms). Our objective is to experiment with diverse algorithms and identify the cat-

egory of MIL algorithms that are more effective for the lung nodules classification task.

From the category of instance-space MIL, we included the EM-DD [79] and MI-SVM [73].

From the category of bag space MIL, we included the mi-Graph [81], and from the cate-

gory of embedded space MIL we included the mi-FV [84] and mi-VLAD [86]. In addition,

we analyse our proposed MIL-CNN algorithms and compare them to the above benchmark

MIL algorithms.
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B.1. Parameters setting for MI-SVM

This MI-SVM was outlined in chapter II.C.1. It extends Support Vector Machines

(SVMs) to multiple instance data. We selected this benchmark algorithm because the SVM

classifier has proven to be more effective than other classifiers for lung nodules classifica-

tion [26,33]. Based on this, we hypothesized that MI-SVM should be a good candidate for

our considered application. Since the inner structure of MI-SVM involves SVM with RBF

kernel, the important parameters for this algorithm are:

• Cost (C): This cost parameter affects the optimization of the fit of the margin that

separates both classes while penalizing the samples inside the margin. A low value

for Cost will result in a low error while a large value for Cost will result in a high

error. However, a low error on the training data does not necessarily lead to low

prediction error on test data and may lead to overfitting. The value of Cost needs to

be chosen carefully. Thus, there are no established rules to choose the optimal Cost

parameter. In general, the optimal choice depends on the used dataset and typically

this parameter is learned by applying a grid search.

• Gamma (γ): This parameter is associated with the RBF kernel and controls the de-

gree of similarity between two points. The choice of Gamma controls the complexity

of the decision boundary. Similar to the Cost variable, a high value of Gamma may

lead to overfitting the training data. Typically, the optimal value of Gamma also

depends on the dataset and should be tuned using a grid search.

• The number of important instances selected from each bag after each iteration to be

used for training in the subsequent iteration.

In our experiments, using the NLST and LIDC datasets and a grid search, we identified the

optimal parameters as: Cost=1, Gamma=10 and number of instances =50. These parame-

ters will be fixed to these values for all experiments reported in this chapter.
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B.2. Parameters setting for EM-DD

The performance of most existing MIL algorithms can degrade when the number

of instances in each bag is large. The EM-DD [79] algorithm outlined in chapter II.C.2,

is relatively robust to the number of relevant attributes in the dataset and scales up well to

bags with large number of instances. Since our application involves bags with large number

of instances (eg. 60), we opted to include the EM-DD in our comparative analysis.

The most important parameters of this algorithm include the termination criteria for

each optimization (M-step), the probability above which a bag is considered as positive,

the number of runs that are used to compute these probabilities and the method that is

used to compute the final probability from all runs. In our experiments, we use the default

parameters recommended by the authors [79]. Specifically, we set the probability threshold

above which a bag/instance is classified as positive to 0.5, the M-step termination criterion

to 0.1 and the number of runs using different starting points to 10. We report the results

averaged over the 10 runs.

B.3. Parameters setting for mi-Graph

MI-SVM and EM-DD (and many other MIL algorithms) treat instances in the bags

as independently and identically distributed (i.e.d). However, in most real applications, the

instances within each bag are rarely independent and the i.e.d assumption may degrade the

performance. In the considered application of lung nodules classification, it is likely that

instances extracted from compact volumes around the nodules to be more informative and

more important than those extracted from the volumes that are much smaller or larger than

the nodule.

The mi-Graph algorithm [81], outlined in chapter II.C.3, does not assume instances

within a bag to be independent and represents them by a graph. Thus, we selected this

algorithm as another candidate for our analysis. Similar to the MI-SVM algorithm, the
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mi-Graph integrates the SVM classifier. Thus, Cost and Gamma are also important param-

eters for this algorithm. As in MI-SVM, we set these parameters, after a grid search, to

Cost=70 and Gamma=2. To build a graph for each bag, the mi-Graph treats each instance

as a node and computes the pair-wise distances between instances. If two instances are

similar (distance below a threshold), then, the two nodes are connected by an edge. In our

experiments, we use the cosine distance and we set the distance threshold to 0.2.

B.4. Parameters setting for miFV and miVLAD

The MiFV [84] and miVLAD [86] algorithms were outlined in chapter II.C.4 and

chapter II.C.5. These algorithms have been developed in order to deal with large scale

problems in MIL since most existing MIL algorithms (eg. MI-SVM, EM-DD, mi-Graph

and many others) can handle only small or moderate-sized data. Our considered datasets

are composed of 2411 nodules from the NLST and 647 sample from the LIDC datasets

where each nodule is represented by a bag of large number of instances (60). Since these

datasets are large (compared to benchmark MIL datasets), we hypothesized that both miFV

and miVLAD should be good candidates for our considered application.

The most important parameters for miFV/miVLAD include the Principal Compo-

nent Analysis (PCA) parameter that uses orthogonal projections to convert a high dimen-

sional vector into a more concise one and the number of centers that represent the number

of Gaussian components/number of centroid in K-means clustering. In our experiments,

we use the tuned parameters that achieved the best classification results in the original

paper [86]. Specifically, we set the PCA value to 1 to keep all initial features without

reduction and the number of centers to 2.

C. Parameters Setting for the proposed MIL-CNN algorithms

All of our proposed MIL-CNN architectures (described in chapter III) are composed
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of 2 main blocks: a CNN block for feature extraction (described in chapter III section B)

and a multiple instance neural network block for classification. The architecture of the

neural network block contains four fully connected layers and use the tuned parameters

that gave the best classification results in the original paper [87]. The number of neurons in

each FC layers of the Mi-CNN, MI-CNN and MI-CNN with Deep Supervisions networks

are set to 256,128, 64, and 1 while the number of neurons for the experiments of MI-CNN

with Residual Connections are equal to 128, 128, 128, and 1 respectively. Each network is

followed by a dropout layer with a 0.5 ratio. For all architectures, the MIL pooling layer is

the max pooling layer. The weights of the fully connected layers are initialized randomly.

We add the loss to each bag score and train the proposed networks by back propagation

using SGD.

D. Experiments designed to investigate research questions RQ1-RQ5

Our objective is to build a lung nodules classification system that can efficiently

and reliably classify lung nodules from CT images. Toward this goal, we formulated five

research questions to guide us in identifying and validating the best classification method.

In this section, we investigate each research question by formulating and conducting ap-

propriate experiments and analyzing the results.

D.1. RQ1: What is the best MIL algorithm for this application ?

To investigate this question, we evaluate and compare all previously selected bench-

mark MIL algorithms and our proposed MIL-CNN algorithms. These algorithms are based

on different approaches and belong to different categories of MIL algorithms. We adapted

these algorithms to the lung nodules classification task, and one of our main goals is to

identify which MIL category is best suited for this application.

We design and report the results of three experiments applied on both generative
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(GLCM) and learned (CNN) features. Two of these experiments perform five-fold cross-

validations on the same dataset (NLST or LIDC). We will refer to these as EXPNLST

and EXPLIDC . The third experiment consists of training the algorithms on one collection

(NLST dataset) and testing it on the other collection (LIDC dataset). We will refer to

this experiment as ExpNLST−LIDC . Figure 17 displays the AUC results for the GLCM

features. As it can be seen, for all algorithms, the highest accuracies are obtained for

EXPLIDC . The LIDC and NLST datasets were collected using different sensors and have

different resolution. Thus, a direct comparison between EXPLIDC and EXPNLST is not

informative. However, we use these three different experiments to join more insights about

the behaviour of the different algorithms.

FIGURE 17: Accuracies of the different MIL algorithms for the three experiments using

GLCM features. SVM-GT is a single instance classifier that relies on the ground truth

bounding box identified for each nodule.
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One factor that may affect the performance of the classifier is the size of nodules. To

investigate this, in Figure 18 we display the distribution of the nodules’ diameter (computed

from the mid-slice of each ground truth volume) of both datasets. This figure shows that

LIDC dataset samples are more distinct (positive samples tend to be larger than negative

samples) when compared to NLST dataset samples. In other words, malignant samples are

more extensive in size than benign nodules for the LIDC dataset, where for the NLST data,

samples from both classes have comparable sizes. The distributions in Figure 18 justify the

main factor of the discrepancy in the AUC in Figure 17.

In general, in machine learning, training on one data and validating on a differ-

ent data is more challenging, but it is a more reliable indicator of the algorithm’s perfor-

mance. In fact, this is how a learning algorithm will be used in real scenarios. In addition

ExpNLST−LIDC is less prone to overfitting. Thus, we use this experiment to rank the dif-

ferent algorithms.

A more detailed comparison between the different algorithms is provided in the

following subsections.

FIGURE 18: Distribution of the samples diameter for: (a) the NLST dataset, and (b) the

LIDC dataset.
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D.1.a. Comparison of the different MIL algorithms using the GLCM features

As shown in Figure 17, MIL algorithms that achieved the best classification results are

based on the SVM classifier (i.e., mi-Graph and MI-SVM). In fact, many researchers used

the SVM in their methods to detect and identify multiple types of cancers [103]. As in

our results, they also confirmed that SVM based algorithms achieved higher accuracies

compared to other classification algorithms.

Among all MIL algorithms used in our experiment and reported in Figure 17, the

mi-Graph is the only one that treats instances as non-identical and dependent. This graph-

based algorithm considers the relationships among instances to make decisions. This may

be the main reason that this method achieved the best classification results with GLCM

features compared to all other considered algorithms.

In Figure 17, we also include the results of a single instance classifier (SVM-GT)

that uses one single feature vector extracted from the ground truth bounding box. As it

can be seen, mi-Graph which doesn’t assume known bounding boxes and uses multiple

representations, achieves higher accuracy than the SVM classifier applied on the ground

truth bounding boxes.

D.1.b. Comparison of the different MIL algorithms that use extracted CNN fea-

tures

This section reports the results using extracted features with CNN (as described in chapter

III, section B). In addition to all benchmark MIL algorithms, we also include the results of

a single instance classifier (CNN) that uses one feature vector extracted from the ground

truth bounding box. This result is noted by CNN-GT in Figure 19. We also include the

results of SVM-GT as described earlier.

For these features, MI-SVM performed better than mi-Graph and achieved the best

classification results among all considered MIL algorithms. Possible reasons for SVM to

outperform mi-Graph in this case may be due to the robustness of SVM in dealing with

high-dimensional data. They may also be due to the sensitivity of the graph construction to
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the high dimensionality.

CNN-GT and SVM-GT achieved lower results than some MIL algorithms (i.e., EM-

DD, MI-SVM). This may be because the inclusion of some parenchymal structures (when

larger volumes are used to extract some of the instance features) has proved to correlate

with better classification results [89, 90, 104].

FIGURE 19: Accuracies of the different MIL algorithms for the three experiments using

CNN features with traditional MIL algorithms. SVM-GT and CNN-GT are single instance

classifiers that use one feature vector extracted from the ground truth bounding box.

D.1.c. Results of the proposed end to end MIL-CNN architectures

In Figure 20, we display the results of the four proposed end-to-end MIL-CNN architec-

tures. For comparison purposes, we also display the CNN-GT and SVM-GT results that

use a single instance extracted from the ground truth bounding box as described in previous

sections. As it can be seen, the proposed MIL-CNN algorithms achieve higher accuracies

56



than the single instance classifier. Moreover, MIL-CNN which belongs to the bag space

paradigm, outperformed algorithms that belong to the instance level paradigm. This is in

agreement to many published comparative studies of benchmark MIL algorithms [22,105].

These studies stated that bag level and embedded level paradigms perform better than in-

stance ones because they provide an appropriate framework for exploiting information from

the whole bag. In addition, the bag space networks (MI-CNN-DS and MI-CNN-RC) have

more accurate results when compared to MI-CNN. Typically, Residual Connections are

used to reduce the effect of Vanishing Gradient problem on deep networks. However, in

our case, they were introduced as a way to learn good instance features since training neu-

ral networks using complex Multiple Instance data is a challenging task. As illustrated in

Figure 20, the inclusion of Residual Connections achieved better classification results.

MI-CNN-RC learns numerous bag features from all different levels of instance

features by MIL pooling. It can combine the various hierarchies using the efficient Residual

Connections to get a final and better bag classification accuracy. Thus, we can conclude

that the MIL-CNN approach with Residual Connections is the best classifier for the lung

nodules classification task.
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FIGURE 20: Accuracies of the different MIL algorithms for the three experiments using

end-to-end MIL-CNN algorithms. SVM-GT and CNN-GT are single instance classifiers

that use one feature vector extracted from the ground truth bounding box.

D.2. RQ2: What are the main nodule parameters that influence the classification ?

For this task, we analyse the effect of various nodule parameters on the classifi-

cation accuracy. In particular, we investigate the effect of the nodule’s volume, middle slice

diameter, and contrast. The contrast represents the difference in intensity between the ob-

ject (i.e., nodule) and its background. We calculate the contrast between the pixels included

in the ground truth bounding box and the pixels included in a larger box that contains more

background excluding the bounding box, using:

Contrast =
|µ1 − µ2|
σ1 + σ2

(24)
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In 24, µ1 and σ1 are, respectively, the mean and standard deviation of the pixels within the

ground truth box, while µ2 and σ2 are respectively the mean and standard deviation of the

pixels within the larger box. These steps are illustrated in Figure 21.

FIGURE 21: Different steps for the contrast computation: (a) the ground truth box that

includes the nodule. µ1 and σ1 are computed using all pixels within this box, (b) larger box

that includes the nodule and more background and (c) pixels used to compute µ2 and σ2.

These pixels belong to the larger box excluding the ground truth box.

For this analysis, we threshold the output of the classifier and classify each test

nodule as benign or malignant. For each algorithm, the threshold is selected to yield the

same fixed true negative rate (=80%). For this experiment, we analyse the output of MI-

CNN-RC and MI-CNN-DS using the LIDC dataset. Let P+ denote the true malignant

(positive) samples in the validation data, and let N− denote the true benign (negative)

samples. Let P̂− denote the malignant nodules that are miss-classified by both algorithms

as benign. In Figure 22 we display the distributions of the diameter, volume and contrast

of all nodules in P+, N− and P̂−.
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FIGURE 22: Nodules parameters that can influence the classification: (a) 2D diameter of

each nodule from the center slice of the 3D volume, (b) volume of each nodule and (c)

contrast of the nodules.

For the parameters related to the size (i.e., diameter and volume), we can see

that miss-classified positive samples have a distribution closer to the true negative samples

than from the distribution of the true positive samples. Thus we can conclude that the size

of the nodule is an important factor that can affect the classification. This is in agreement

with the radiologists process in analysing CT scans. In fact, if the nodule size is small (less

than 4 mm), the radiologist will ask for another scan after six months to check the growth

rate of the nodule. On the other hand, if the nodule size is large (more than 20 mm), then

the radiologist is almost sure it is a malignant nodule.

For the contrast measure, the miss-classified samples can be close to the distri-

bution of P+ and N−. Thus, we may conclude that this measure does not influence the
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classification results.

D.3. RQ3: What is the best feature representation ?

To investigate this question, we summarize the best AUC results for both fea-

tures for the train on NLST and test on LIDC experiment in Table 1. As mentioned earlier,

MI-CNN-RC has obtained the best AUC results for CNN features, while mi-Graph has

the best AUC results for GLCM features. As it can be seen, the CNN features perform

significantly better than the GLCM.

Experiment mi-Graph MI-CNN-RC

Train on NLST and test on LIDC 0.8308 0.9117

TABLE 1: Best AUC results for the train on NLST and test on LIDC experiment for both

GLCM and CNN features.

To compare the two methods, we analyse few miss-classified samples. First,

we analyse the false negatives vs. the size of the nodules since as established earlier, this

parameter can affect the classifier outcome. For this analysis, we threshold the output of

the classifier and classify each test nodule as benign or malignant. For each algorithm, the

threshold is selected to yield the same fixed true negative rate (=80%). Let P̂−GLCM and

P̂−MI−CNN−RC denote the true malignant nodules that are miss-classified by each algorithm

as benign. In Figure 23, we display the frequency of P̂−GLCM and P̂−MI−CNN−RC vs. the 2D

diameter of each nodule from the center slice of the 3D volume and vs. the volume of each

nodule.
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FIGURE 23: False-negative samples for both GLCM and CNN features vs.: (a) the diam-

eter of the nodule of the middle scan, and (b) the volume of the nodule.

First, we note that the CNN-based classifier missed fewer malignant nodules,

and all missed nodules are very small. On the other hand, the classifier based on GLCM

features miss-classified many samples with large sizes.

One possible explanation for the miss-classification of large nodules by GLCM

features may be due to the variation of the spacial distribution of Hounsfield values for few

nodules between different nodule types. These variations are expected to be less smooth

for malignant nodules than benign ones. To illustrate this, in Figure 24 we display 3D

visualization of Hounsfield values for few nodules. In Figure 24 (a) we visualize Hounsfield

values for true malignant samples. As it can be seen, there is a large variation within the

pixels of the nodules. In Figure 24 (b), we visualize the Hounsfield values for benign

nodules where the values are more uniform. In Figure 24 (c), we visualize the Hounsfield

values for few of the miss-classified malignant samples. As it can be seen, they tend to

have a similar distribution that is more similar to the benign nodules shown in Figure 24

(b).
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FIGURE 24: Visualization of the Hounsfield values distribution for few nodules that are

classified using GLCM features: (a) correctly classified malignant nodules, (b) benign nod-

ules and (c) miss-classified malignant samples.

The learned CNN features achieved better results than the generative GLCM

features because the latter ones are more sensitive to image preprocessing and nodules seg-
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mentation. This fact may affect the accuracy of the classification of each sample compared

to deep learned features that do not rely on segmentation or preprocessing. CNN learned

features are extracted automatically to solve a specific task, and filters at multiple layers

can be trained to learn various distinctive features for a particular class. This fact may ex-

plain why deep learning models are becoming the standard approach for tasks that involve

visual image classification. CNN features perform well in the lung nodules classification

task because features can be learned at multiple layers to discriminate between different

classes: low-level learned features are associated with the early layers of the CNN, and

usually extract edges of each nodule. In contrast, high-level learned features are associated

with the late layers of the CNN and identify fine details and more in-depth information

related to each nodule such as texture and size.

D.4. RQ4: Can an MIL algorithm learn to identify the positive instances (among a

bag with large number of candidates) that are close to the ground truth ?

To investigate this question, we analyze the spatial similarity between the nod-

ule’s ground truth volume radiologists and the volumes identified by our instance space

Mi-CNN algorithm as positive instances. For similarity, we use the 3D Intersection over

Union (3D-IoU). Intersection over Union (IoU) is a benchmark evaluation metric for many

tasks, including object detection, segmentation, and tracking. For example, in image seg-

mentation, IoU is used to quantify how much a segmented region agrees with the provided

ground truth region. IoU is computed using:

IoU =
A ∩B
A ∪B

=
Area of overlap
Area of union

=
I

U
(25)

where A is the segmented region and B is the ground truth region.

In our experiment, we use the 3D-IoU to identify the instance in each bag that

was extracted from the volume that has the highest IoU with the ground truth volume. Let

I∗ refer to this instance.
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We evaluate Mi-CNN algorithm by first ranking instances in each positive bag

by decreasing order of confidence values. Next, we check if I∗ is one of the topK instances

with the highest confidence. We repeat this for all test bags and compute the percentage

of time that I∗ is among the top K instances. These results are reported in Table 2 for

K = 1..10.

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

11.19% 21.64% 26.12% 28.32% 30.52% 31.22% 32% 32% 32.73% 40%

TABLE 2: Percentage of time I∗ is among the top K instances of each bag when tested

using Mi-CNN.

Examples of nodules where the closest instance to the ground truth region (i.e., I∗) is among

the top two positive instances are illustrated in Figure 25.

FIGURE 25: Three examples of nodules for which the top two positive instances are the

closest to the ground truth region. The red box represents the ground truth bounding box,

the yellow box represents the first top positive instance, and the green box represents the

second top positive instance.

From Table 2, we notice also that out of 60 instances, only 40% of the time I∗

is among the top 10 instances with the highest confidence. In other words, for most of the

times, the Mi-CNN classifies the nodule correctly using a volume that is different from the
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ground truth volume identified by the radiologist. In the next section, we will justify this

behaviour.

D.5. RQ5: What is the best learning approach for this application: Single Instance

Learning (SIL) applied to the ground truth region or Multiple Instance Learn-

ing (MIL) applied to multiple regions around the ground truth ?

As concluded from RQ1, some MIL algorithms achieved higher classification

accuracies than SIL algorithms applied on the ground truth region. To justify these results

and highlight the usefulness of MIL for the lung nodules classification task, we identify

few samples that have been classified correctly by Mi-CNN and miss-classified by CNN

applied on the ground truth region. We visualize these samples to identify possible reasons

for this behaviour. In Figure 26, we display three such samples. As it can be seen, the

two instances closest to the ground truth volume were not among the top instance that have

the highest confidence values. Instead Mi-CNN identified other instances that have larger

volumes that included parenchymal structures. In fact, multiple studies [89,90,104] proved

that the inclusion of parenchymal tissues can improve the classification results compared

to using the ground truth volume only, as surrounding texture provide relevant informa-

tion about the nature of the nodule. In [89], the authors found that texture features ex-

tracted from the nodules were not significantly different between malignant and benign

cases; however, when the parenchyma was included, texture features were more discrimi-

native. The authors stated that the texture might be quantifying vascularization within the

parenchyma, tumor speculation, and parenchymal tissue compression as the lesion invades

into the parenchyma.
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FIGURE 26: Three sample nodules classified correctly by Mi-CNN and miss-classified by

CNN applied on the ground truth. For each sample, the red box represents the ground truth

bounding box, the yellow and green boxes represent the top two positive instances and the

pink and magenta boxes represent the two instances that are closest to the ground truth box.

Another category of nodules that were classified correctly by Mi-CNN and

miss-classified by CNN include nodules for which radiologists did not agree in their nodule

segmentation and identified different volumes for the same nodule. In this case, the aver-

age volume (used as ground truth) may not be the best region of interest. Three samples of

these nodules are illustrated in Figure 27.
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FIGURE 27: Three sample nodules classified correctly by Mi-CNN and miss-classified by

CNN applied on the ground truth. The red, cyan and brown boxes represent the ground

truth identified by radiologists 1, 2 and 3 respectively, the blue box represents the average

volume between all radiologists (used as ground truth) and the yellow and green boxes

represent the top two positive instances selected by Mi-CNN.

For sample 1, we notice that boxes that have been identified as positive instances by Mi-

CNN (green and yellow) agree with radiologists 1 and 3 (red and brown) and disagree

with radiologist 2 (cyan). For sample 2, we notice that boxes that have been identified as

positive instances by Mi-CNN (green and yellow) are larger than the ground truth volumes

identified by radiologists 1, 2 and 3 (red, cyan and brown) respectively. This confirms that

including background with nodules texture can improve the classification results and that

radiologists contour may not be the best representation of each nodule. For sample 3, we

notice that boxes that have been identified as positive instances by Mi-CNN (green and

yellow) are of average sizes compared to ground truths identified by radiologist 2 and 3

(small cyan and brown boxes) and radiologist 1 (large red box).

The previously reported results (AUC in Figure 20) and the above justification

indicate that MIL algorithms are more effective than SIL for the lung nodules classification

task.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we adapted and investigated the application of Multiple Instance

Learning (MIL) in the lung nodules diagnosis task. We explored multiple benchmark MIL

algorithms (EM-DD, MI-SVM, mi-Graph, miVLAD, miFV). We also proposed an end-to-

end MIL-CNN algorithms (Mi-CNN, MI-CNN, MI-CNN-DS, MI-CNN-RC). We evalu-

ated our models on two different features: learned features (CNN features) and generative

features (GLCM features).

We evaluated our models on two different collections (LIDC and NLST) con-

taining malignant and benign nodules. We asked multiple Research Questions and an-

swered them by elaborating on various experiments. We concluded that learned features

with our proposed embedded space MIL-CNN algorithms are the most efficient for the

studied task. We also concluded that MIL integration could improve the classification re-

sults over using SIL on a fixed size for all samples.

One orientation for our future work would be to increase the size of the input

samples to the CNN framework and to use a more complex architecture for feature extrac-

tion, eventually comparing both frameworks’ results.

Future work will also include investing in other deep learning frameworks for

the extraction of learned features instead of using CNN features.

Another potential future work may include fusing both types of features and

seeing if the fusion between them may improve the results. Some new researches [64,106,

107] in the lung nodules diagnosis task are moving toward the inclusion of both generative

and learned features in the same framework, and this could be a good direction for our work

too.
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Our proposed approach has the advantage of not requiring the nodule to be

segmented and relies only on the center of mass of each nodule. This can still be a limitation

as it requires some annotation by radiologists. One way to overcome this limitation is to

randomly sample the image space and select center candidates. However, this will require a

huge number of instances to increase the chances of selecting the true region of interest. An

alternative approach would be to use a screening method [108] that assists in identifying

specific locations of interest. These locations can then be considered as instances and

grouped in a bag.

Finally, to overcome the potential overfitting issue that arises from using a small

number of samples, additional patients should be recruited to validate the classification

framework on larger datasets.
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