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ABSTRACT 

HYBRID STRUCTURAL HEALTH MONITORING USING DATA-DRIVEN MODAL 

ANALYSIS AND MODEL-BASED BAYESIAN INFERENCE 

Jice Zeng 

November 12, 2021 

 Civil infrastructures that are valuable assets for the public and owners must be 

adequately and periodically maintained to guarantee safety, continuous service, and avoid 

economic losses. Vibration-based structural health monitoring (VBSHM) has been a 

significant tool to assess the structural performance of civil infrastructures over the last 

decades. Challenges in VBSHM exist in two aspects: operational modal analysis (OMA) 

and Finite element model updating (FEMU). The former aims to extract natural frequency, 

damping ratio, and mode shapes using vibrational data under normal operation; the latter 

focuses on minimizing the discrepancies between measurements and model prediction. The 

main impediments to real-world application of VBSHM include 1) uncertainties are 

inevitably involved due to measurement noise and modeling error; 2) computational burden 

in analyzing massive data and high-fidelity model; 3) updating structural coupled 

parameters, e.g., mass and stiffness. Bayesian model updating approach (BMUA) is an 

advanced FEMU technique to update structural parameters using modal data and account 

for underlying uncertainties. However, traditional BMUA generally assumes mass is 

precisely known and only updating stiffness to circumvent the coupling effect of mass and 
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stiffness. Simultaneously updating mass and stiffness is necessary to fully understand the 

structural integrity, especially when the mass has a relatively large variation.  

 To tackle these challenges, this dissertation proposed a hybrid framework using data-

driven and model-based approaches in two sequential phases: automated OMA and a 

BMUA with added mass/stiffness. Automated stochastic subspace identification (SSI) and 

Bayesian modal identification are firstly developed to acquire modal properties. Following 

by a novel  BMUA, new eigen-equations based on two sets of modal data from the original 

and modified system with added mass or stiffness are derived to address the coupling effect 

of structural parameters, e.g., mass and stiffness. To avoid multi-dimensional integrals, an 

asymptotic optimization method and Differential Evolutionary Adaptive Metropolis 

(DREAM) sampling algorithm are employed for Bayesian inference. To alleviate 

computational burden, variance-based global sensitivity analysis to reduce model 

dimensionality and Kriging model to substitute time-consuming FEM are integrated into 

BMUA. The proposed VBSHM are verified and illustrated using numerical, laboratory and 

field test data, achieving following goals: 1) properly treating parameter uncertainties; 2) 

substantially reducing the computational cost; 3) simultaneously updating structural 

parameters with addressing the coupling effect; 4) performing the probabilistic damage 

identification at an accurate level. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

 Civil infrastructures such as buildings, bridges, tunnels, dams, pipelines, and other 

types of structures are aging and structurally deteriorating over time due to various reasons, 

including internal factors like deficient structural design, imperfect construction, and 

material defects (e.g., steel corrosion, concrete delamination), and external factors like 

natural disasters like hurricane, flood, and earthquake, as well as man-made disasters. The 

proper maintenance, management, and repair routine work are necessary to guarantee safe 

and reliable structural operation. Structural health monitoring (SHM) involves the 

periodical evaluation of an investigated structure to early capture any abnormal condition 

of structures. SHM is a powerful tool to provide an accurate assessment in a cost-effective 

manner for the present and future safety of structures and prevent extension of premature 

structural damage to more severe damage resulting in the whole structural collapse (Farrar 

and Worden, 2007, Balageas et al., 2010).  

 In America, a large number of civil infrastructures such as bridges, highways were 

constructed in the past decades to trigger economic growth. In contrast, many of them are 

now subjected to aging problems. American Society of Civil Engineering (ASCE, 2009) 

has reported that around 14% and 32% of rural roads and urban roads, and 20% of national 
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highways had deteriorated. The U.S. Department of Transportation also reported that 42% 

of all bridges, or 7.5% of nation’s bridges were defined as structurally deficient and 

functionally obsolete (ASCE, 2021). Figure 1.1 shows the bridge condition classification 

from 2009 to 2019. It is observed that the number of bridges sliding into a fair category is 

increasing annually, and the number of bridges labeled as good started to decrease in 2016. 

The bridges with fair label are a concern, as they are potentially downgraded to structurally 

deficient bridges. Therefore, SHM is imperative to assess structural condition and in-

service safety, particularly for those structures in fair condition.  

 
Figure 1.1. Bridge condition classification by year 

Note: data was reported from ASCE, 2021 

 The main goal of SHM is to detect structural damage at an early stage so that the prompt 

actions can be taken to ensure the structural integrity and normal services. It has been 

acknowledged that the outlines of an SHM scheme can be summarized as five levels (Chen, 

2018):  

 Level 1: damage detection, providing the indication of damage existence 

 Level 2: damage localization, giving information of damage location 

 Level 3: damage classification, giving information of damage pattern 

 Level 4: damage quantification, giving information of damage severity 
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 Level 5: damage prediction, giving information of remaining service life of structure 

A wide range of non-destructive techniques (NDT) has been developed to detect 

damages in the past decades (Hellier, 2013). Conventional NDTs are generally local 

methods using 1) some special sensors; 2) visual inspection. The former, such as acoustic 

emission (Nair and Cai, 2010), guided waves (Cantero-Chinchilla et al., 2019), 

electromagnet methods (Witoś et al., 2018), and laser doppler vibrometer (Tian et al., 

2019b), require that the damage location is known and sensor installation is accessible, 

which may not be suitable for large-scale structure. The later largely relies on inspectors’ 

judgement and experience, resulting in an unreliable damage detection. In addition, all 

these methods are labor-intensive, time-consuming and costly.  

Driven by these issues, vibration-based structural health monitoring (VBSHM) is 

extensively investigated due to the advancement of the measurement and acquisition of 

vibration signals at a low cost (Fassois and Kopsaftopoulos, 2013). The fundamental 

concept of VBSHM is that any abnormalities that induce physical properties changes (e.g., 

mass and stiffness) will cause changes in modal properties (e.g., natural frequency, 

damping ratio, and mode shape) (Hu et al., 2015, Kong et al., 2017, Sun et al., 2017). 

Therefore, it is intuitive to use model features to reflect structural conditions and facilitate 

further damage detection. Generally, VBSHM can be categorized into two groups: non-

model-based and model-based methods. Non-model-based methods have a critical 

drawback of only detecting damage location and cannot quantify damage severity (Huang 

et al., 2012). Model-based methods use measured data to update the parameterized 

computer-simulated models so that damage can be detected, localized, and quantified by 

the variation in structural parameters (Eltouny and Liang, 2021).  
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The general procedures of model-based VBSHM consist of five steps (Sohn et al., 2003, 

Huang et al., 2012): (1) dynamic vibration measurement, e.g., displacement and 

acceleration; (2) modal identification through analyzing recorded vibration data; (3) 

characterization of an initial Finite element model (FEM) based on design and information 

in field test; (4) implement FE model updating (FEMU) using identified modal parameters; 

and (5) evaluation of structural performance using the updated finite element model.  

This research only focuses on modal identification and FEMU (steps 2 and 4). Modal 

identification is a prerequisite for FEMU, and its accuracy directly affects the quality of 

model updating results. Typically, identification of modal parameters is achieved by 

operational modal analysis (OMA). OMA's primary advantage for civil engineering 

structure is to avoid interruption to the normal operation of observed structure and requiring 

no artificial loading (Ivanovic et al., 2000, Brownjohn et al., 2010). However, for long-

term SHM, it requires a vast amount of recorded data and data analysis in a short amount 

of time. Therefore, it demands extensive labor work to process massive measured data and 

identify modal parameters by manual intervention and engineers’ experience. In fact, much 

user intervention on a large amount of vibration data can be an obstacle in a real application. 

For overcoming this, it is essential to have an automated evaluation of structural conditions 

in almost real-time. Therefore, the development of an automated OMA algorithm has 

become an attentive topic in recent years to efficiently handle continuously recorded data. 

In addition, modal parameters from OMA are subject to various uncertainties such as 

modeling error, measurement noise, and unmeasured excitation; information concerning 

uncertainty on modal parameters is crucial to evaluate the accuracy of modal parameters 

(Yuen, 2010, Au, 2017c).   
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At step four, FEMU is performed by utilizing identified modal parameters in OMA. It 

is commonly known that FEMU is a popular and promising technique in the field of 

VBSHM. However, the discrepancies between FE models and physical structures are 

always existing, and the source of discrepancies mainly results from 1) modeling error from 

the ideal assumption in FE modal construction; 2) statistical uncertainties in material and 

geometric properties; and 3) irregularities in structure (Mottershead et al., 2011, Simoen et 

al., 2015b, Chen, 2018). These issues may impair the quality and accuracy of numerical 

models. Therefore, FE model updating (FEMU) techniques are developed to calibrate and 

identify structural parameters by minimizing the gap between predicted data from FE 

models and measured vibrational data (Soize et al., 2008, Chen and Maung, 2014, Sipple 

and Sanayei, 2014).  

One significant application of FEMU is structural damage detection and quantification; 

successful applications of FEMU in terms of damage detection can be found in work 

(Teughels and De Roeck, 2005, Fang et al., 2008, Grip et al., 2017, Alkayem et al., 2018, 

Das and Debnath, 2018). Beyond a wide array of available FEMUs with uncertainty 

identification (Mares et al., 2006, Govers and Link, 2010, Simoen et al., 2015b), the 

Bayesian model updating approach (BMUA) has been considered as one of the most 

efficient updating approaches (Beck and Katafygiotis, 1998, Sohn and Law, 2000, Vanik 

et al., 2000, Ching and Beck, 2004, Huang et al., 2018). BMUA can not only provide us 

the most optimal values of updated parameters but also give us uncertainty information on 

parameters. Also, BMUA can incorporate all uncertainties, including measurement and 

modeling errors, and all observed incomplete data. However, conventional BMUA 

assumes that the mass is known to only update stiffness (Yan and Katafygiotis, 2015, 
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Mustafa and Matsumoto, 2017, Sedehi et al., 2019). Because simultaneous identification 

of mass and stiffness will yield infinite combinations of mass and stiffness with the same 

frequency arising from the coupling effect of mass and stiffness, this assumption is 

questionable when a structure is experiencing damages in both mass and stiffness. Few 

works have attempted to address this in updating mass and stiffness with uncertainty 

quantification together (Cheung and Bansal, 2017, Mustafa and Matsumoto, 2017, Do and 

Gül, 2019).  

Another challenge is that BMUA is computationally demanding due to a vast amount 

of FE model evaluations is required. As a result, it becomes impractical for complex and 

large-scale engineering structures. It has been recognized that high-fidelity modeling for 

complex and large-scale structures is usually necessary for a better model prediction and 

structural analysis, which involves hundreds of thousands of elements and nodes in 

commercial FEA packages. The computational time would be highly expensive if a large 

amount of iteration is needed. Therefore, the cost-effective model updating method is 

practically valuable. 

1.2 Problem Statement and Motivation 

Based on the above statement, it is concluded that developing an automated OMA and 

effective FEMU is needed to provide a reliable SHM scheme for accomplishing the 

condition assessment and damage detection. Various uncertainties should be considered in 

modal analysis and model updating to understand structural performance. To summarize, 

the following problems are identified from the current practice: 
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1. Existing modal identification methods still require much human effort and 

engineering judgment that impairs the accuracy of the identified modal 

parameter. 

2. For a large amount of data during long-term SHM, existing modal identification 

methods still have difficulty in preforming modal identification in real-time and 

are computationally expensive. 

3. Traditional BMUA can typically update stiffness parameters with the 

assumption of well-known mass. However, it is possible to have a relatively 

large mass variation in a real application. This area is not well understood to 

address the practical issues. 

4. Existing FEMU methods for identifying mass and stiffness can only update 

structural parameters, while different sources of uncertainties are ignored or 

poorly estimated.  

5. For large-scale structures, FEMU is computationally intensive because of 

complex structural model and massive model evaluations, which restricts its 

practical application. An efficient FEMU is highly required to be applicable for 

real-world cases. 

1.3 Research Goals and Significance 

The main goal in this dissertation is to develop a reliable and efficient VBSHM in the 

field of civil engineering. Challenges in practical applications of VBSHM include OMA 

with minimized human involvement, simultaneous identification of mass and stiffness, and 

uncertainty quantification in modal analysis and model updating. Therefore, a two-phase 

framework of VBSHM, namely automated modal identification and Bayesian model 
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updating, is proposed in this research. Figure 1.2 schematically shows the VBSHM 

flowchart proposed in this dissertation.  

 

 
Figure 1.2. Schematic flowchart of the proposed VBSHM 

Note: SSI is stochastic subspace identification; BMI is Bayesian modal identification 

In summary, the research work in this dissertation has the following goals: 

Goal 1:  Develop an automated modal identification method with low human intervention. 

Different sources of uncertainties are considered to quantify the accuracy of 

modal parameters. 

Goal 2:  Address the coupling effect of mass and stiffness in BMUA to simultaneously 

identify mass and stiffness parameters. 
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Goal 3:  Develop an efficient BMUA to overcome issue of demanding computational cost 

in complex and large-scale real-world structures.  

Goal 4: Develop a stochastic model updating method that accounts for uncertainties using 

vibration data to detect and quantify damage. 

This research attempts to deal with problems in two aspects of existing VBSHM, e.g., 

OMA and BMUA. Traditional OMA requires much human involvement so that the 

accuracy and reliability of modal analysis cannot be ensured; traditional BMUA is unable 

to update mass and stiffness because of the coupling effect. Also, BMUA is generally 

computationally expensive because of model complexity in real cases. Furthermore, 

uncertainties are inevitably entailed in modal analysis and model updating. It may cause 

incorrect damage detection results if not appropriately treating uncertainties.  

The research is significant because it aims to overcome these challenges for a reliable 

VBSHM accounting for comprehensive uncertainties and to be computationally efficient. 

In short, all these aspects contribute to a real-time VBSHM and provide instructive 

information for structural condition assessment and damage detection. The outcomes of 

this research can also be integrated with some standalone programs with a user-friendly 

interface, which makes practical VBSHM more convenient and accessible to engineers.  

1.4 Outline of the Dissertation 

The outline of the dissertation is summarized as follows: 

 Chapter 1 introduced the research background, current challenges, and practical 

limitations in the field VBSHM, the research objectives, and significance. 

 Chapter 2 provided a comprehensive literature review related to VBSHM. Systematic 

introduction of output-only operational modal analysis is presented, including time domain, 
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frequency domain, and Bayesian-based methods. Uncertainty quantification of modal 

parameters by different scopes of methods is also discussed. Then an overview of VBSHM 

approaches is described, briefly summarizing two categories in the field of VBSHM, e.g., 

non-model based and model-based methods. In addition, the classification of FEMU 

techniques is presented, in which direct and indirect FEMU methods, deterministic and 

stochastic FEMU methods, are thoroughly introduced. A possible solution for uncertainties 

of structural parameters is also provided. 

 Chapters 3 and 4 aim to achieve goal 1. In Chapter 3,  an automated stochastic subspace 

identification (SSI) method is proposed, involving a two-stage framework to automatically 

interpret stabilization diagram, human involvement and engineers’ judgment are 

significantly minimized. In the pre-processing stage, modal validation criteria and 

uncertainty criterion are included. In clustering stage, a novel self-adaptive clustering 

method and outlier detection are carried out to determine final modal parameters. The 

performance of the proposed automated SSI is demonstrated using two field tests, e.g., the 

Dowling Hall Footbridge and the Z24 bridge. Remark that in Chapter 3, Section 3.1 

presented the literature review of automated SSI. Section 3.2 introduced the theoretical 

background of original SSI by Peeters and De Roeck (1999). The main contribution is 

included elaborately in Section 3.3. Section 3.4 is methodology verification. 

 Chapter 4 proposed an automated Bayesian modal identification (BMI) method. Two 

challenges in BMI are addressed, e.g., the selection of initial frequency and frequency 

bandwidth. Initial frequency in BMI is determined through the automated interpretation of 

the stabilization diagram; effective frequency bandwidths are picked by sifting frequency 

difference between initial frequency and identified frequency. The proposed automated 
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BMI is verified by a numerical example and a field test of the Z24 bridge. Remark in 

Chapter 4, Section 4.1 presented the literature review of automated SSI. Section 4.2 

introduced the theoretical background of original BMI by Au (2012a). The main 

contribution is provided in detail in Section 4.3. Section 4.4 is methodology verification. 

 Chapters 5 and 6 aim to achieve goals 2 and 4. In Chapter 5, a novel Bayesian model 

updating approach with known modification (either added mass or added stiffness) is 

proposed to address the coupling effect of mass and stiffness for simultaneous 

identification of mass and stiffness. In this chapter, the objective functions are reformulated 

by introducing the new characteristic equations. Subsequently, the analytical formulations 

of the optimal parameters (natural frequency, mode shape, mass and stiffness) are derived 

using an asymptotic approximation method; associated uncertainty is also quantified by the 

inverse of Hessian matrix of objective functions. The 2D and 3D numerical examples are 

used to validate the performance of the proposed approach.  Remark that in Chapter 5, 

Section 5.1 presented the literature review of Bayesian model updating. Sections 5.2 and 

5.3 introduced the theoretical background of original Bayesian model updating by Yuen 

(2010). Sections 5.4 and 5.5 showed the main contribution of proposed Bayesian approach.  

 Chapter 6 presented the identification of mass and stiffness using Bayesian model 

updating with added mass/stiffness and Differential Evolutionary Adaptive Metropolis 

(DREAM) sampling algorithm. The modal parameters for the original and modified system 

with added mass and stiffness, e.g., natural frequency and mode shape, are firstly identified 

using automated modal identification. Then, the proposed Bayesian model updating 

framework is implemented in two cases, namely FEMU and probabilistic damage 

identification with different damage scenarios. The posterior distribution function is solved 
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by DREAM sampling method. Furthermore, probabilistic damage estimation is also 

provided for visualization of damage location and damage prediction. The proposed 

approach is validated by a numerical example of a six-story shear building and a 

laboratory-scale three-story shear frame. Remark that in Chapter 6, Section 6.1 presented 

the motivation of the proposed approach in this chapter. Section 6.2 introduced the 

theoretical background of Bayesian model updating using classical characteristic equation. 

The main contribution is provided in Section 6.3. Methodology verification is implemented 

in Section 6.4. 

 Chapter 7 developed an efficient Bayesian model updating framework for complex and 

large-scale structures in real world for achieving goal 4. Two time-saving strategies are 

proposed, e.g., variance-based global sensitivity analysis to reduce model dimensionality 

and Kriging model to substitute time-consuming FE model for further alleviation of 

computational burden. Following these strategies, Bayesian model updating is carried out 

for a cable-stayed pedestrian bridge. The computational cost is remarkably reduced 

compared to FEMU with non-time saving strategies. Remark that in Chapter 7, Section 7.1 

gave possible reasons why Bayesian model updating is computationally burdensome. 

Section 7.2 presented the formulations of traditional Bayesian model updating. The main 

contribution is explicitly introduced in Section 7.3. Methodology verification is provided 

in Section 7.4. 

 Chapter 8 summarized the main conclusions and findings of this research. Suggestions 

and future research work are also discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 In contrast to local or visual inspection methods, global vibration-based methods have 

been aroused considerable interests in the past decades (Salawu, 1997, Fan and Qiao, 2011). 

The fundamental principal of vibration-based SHM (VBSHM) is rather intuitive. Modal 

properties such as natural frequency and mode shape are directly correlated with physical 

properties such as mass and stiffness. Changes in mass and stiffness can be reflected on 

quantifiable changes in modal parameters. Therefore, the use of vibrational characteristics 

allows for 1) convenient measurement interpretation; 2) accessibility to investigate 

structure; 3) effective structural condition assessment using a limited set of sensors and 

equipment. 

 Understandably, the prerequisite of VBSHM is the identification of modal parameters. 

In most cases, the excitation during the vibration is hardly measured with adequate energy 

and in a controlled way, especially in large bridges with the frequency of interest of 0~1Hz 

(Chen and Ni, 2018). Only vibration response induced by ambient excitation such as wind, 

traffic, pedestrian walking, or their combinations can be readily measured. Therefore, the 

output-only (response-only) measurement, also named operational modal analysis (OMA), 

has gained increasing attention and substantial progress in the field of civil engineering. 

OMA aims at accurately identifying modal parameters using output-only response, which 
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is measured under normal working/operational conditions (Peeters and De Roeck, 2001, 

Brincker and Ventura, 2015). Following modal analysis using OMA, VBSHM is conducted 

to evaluate current structural performance. A wealth of research has been investigated in 

VBSHM during the past decades. Extensive techniques and algorithms are developed for 

various structures, basically from structural components such as beams and plates to 

complicated structures such as buildings and bridges. Doebling et al. (1996) and Sohn et 

al. (2003) provide comprehensive review of different VBSHM methods and classification 

of damage detection methods using extracted response features before 1996 and between 

1996 and 2001, respectively. Carden and Fanning (2004) mainly reviewed articles and 

papers related to VBSHM published from 1996 to 2003. More recently, an extensive 

review of vibration-based damage detection methods in the case of bridges between 2011 

and 2017 are presented by An et al. (2019). The development and advancement of VBSHM 

between 2010 and 2019 were thoroughly introduced by Hou and Xia (2021), challenges 

and future trend in VBSHM were also discussed in their work. 

 This chapter starts with an overview of OMA in Section 2.2, including non-Bayesian 

based methods in the time domain and frequency domain and Bayesian-based methods. 

Then, section 2.3 focuses on VBSHM techniques, in which non-model based and model-

based methods are introduced. In the following subsections, a detailed introduction of 

FEMU is presented, direct and indirect FEMU, deterministic and stochastic FEMU are both 

discussed. 

2.2 Operational modal analysis (OMA) 

 OMA uses ambient excitation to measure vibrational response with a limited set of 

sensors installed on locations of interest. Because of lacking information on the input, 
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OMA assumes the input is zero-mean Gaussian white noise. However, this assumption is 

not always strict in real cases. Therefore, a qualitative evaluation of uncertainty and 

accuracy control of modal parameters is necessary. This section presents the literature 

review related to OMA techniques, which are classified as non-Bayesian based methods in 

the time domain and frequency domain, and Bayesian-based methods. Uncertainty 

assessment of modal analysis is also discussed. 

2.2.1 Non-Bayesian based methods 

2.2.1.1 Time domain methods 

 Ibrahim time domain (ITD) method was initially developed to identify modal 

parameters using free decay responses; later impulse response function-based modal 

analysis was proposed on the basis of ITD (Ibrahim and Mikulcik, 1977). ITD starts to 

transform all discrete vibration responses to mathematical matrix form, then the correlation 

function of the response of each degree of freedom (DOF) is obtained. As a result, the 

system matrix which does not rely on measurement locations can be computed using the 

least square method. Finally, the complex eigen solutions of the system matrix are deduced, 

in which natural frequency and mode shape are estimated from eigenvalue and eigenvector, 

respectively (Pappa and Ibrahim, 1985). ITD method is robust for highly damped systems 

and does not require input excitation. However, ITD has limited capability to higher 

frequencies; only modes in the low frequency range can be identified accurately 

(Siringoringo and Fujino, 2008).  

 NExT-ERA is essentially a combination of two techniques, e.g., Natural Excitation 

Technique (NExT) and Eigensystem Realization Algorithm (ERA) to accomplish modal 

identification within two steps. NExT is initially proposed to analyze input-output data and 
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modified for OMA by considering the correlation function of ambient vibration response 

as free-decaying sinusoids; ambient excitation can be treated as white noise (Caicedo et al., 

2004). Random decrement (RD) is often used in NExT to properly treat system response 

proportional to correlation functions as a random decrement function (He et al., 2011). 

Following the step of NExT, ERA is performed to extract modal parameters. ERA was 

originally developed by Juang and Pappa (1985) for modal analysis and system model 

reduction. A linear time-invariant system is represented by a discrete state-space model in 

ERA; the modal properties is extracted from state-space matrices. NExT-ERA exhibits 

desirable performance in modal identification for complex structure. Therefore, it is 

considered as an efficient and robust methodology in civil engineering community. Many 

practical studies have been conducted to evaluate the effectiveness of NExT-ERA in the 

case of challenging task of identifying closely-spaced and weakly excited modes (Hosseini 

Kordkheili et al., 2018, Yang et al., 2019, Pan et al., 2021).  

 Autoregressive moving average model (ARMA) is a commonly used model in linear 

time-invariant systems on the basis of assuming a signal is the output of a system that is 

excited by Gaussian white noise, which can be used for modal analysis (Bertha and 

Golinval, 2017, Huang et al., 2020). In ARMA methods, the environmental effect on the 

frequency can be filtered out by data normalization. A system with a transfer function is 

converted from the original model; the modal parameters are identified by factorization of 

the new system, e.g., the poles of the transfer function. ARMA has the disadvantage of 

high computational cost. Various factors from the operation and environmental effect must 

be considered, resulting in high computational cost and unfeasible in practice. Therefore, 

these challenges restrict ARMA’s application.  
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 Stochastic subspace identification (SSI) is an efficient system identification method by 

adopting a discrete time-invariant state-space model with an input of Gaussian white noise. 

Two types of SSI have been developed, namely covariance-driven SSI (SSI-cov) and data-

driven SSI (SSI-data). SSI-cov deals with stochastic realization problems from output-only 

data, which is dependent on stochastic state-space system. In SSI-cov, response data is 

transformed to covariance Toeplitz matrix, which is then decomposed to singular values 

(Peeters and De Roeck, 1999). In contrast to SSI-cov, SSI-data directly works with 

measured data by projecting future outputs into past outputs in the Hankel matrix without 

the computation of covariance matrix (Van Overschee and De Moor, 1996). Modal 

properties are estimated from system matrices that are obtained by Kalman state sequences. 

A wide range of applications has demonstrated that SSI methods are robust and efficient 

to perform modal analysis (Li et al., 2019, He et al., 2021, Pan et al., 2021). In both SSI 

methods, the stabilization diagram is usually used to distinguish physical modes from 

spurious modes by graphically observing the distributions of poles with different model 

orders. Elimination of spurious modes on the stabilization diagram involves much human 

interaction, resulting in demanding computational cost, especially for a vast amount of data 

during long-term SHM. Additionally, manually removing spurious modes is subjective and 

brings unreliable results. 

 In SSI-types methods, all identified modal parameters inevitably involve uncertainties 

due to various reasons, such as the finite number of data samples, measurement noise, 

unknown excitation, modeling error (e.g., assumption of stationary and linear structure), 

and imperfect digital filter. Therefore, uncertainty quantification is necessary to assess the 

accuracy of modal parameter estimates. Reynders et al. (2008) initially developed the 
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uncertainty computation based on the propagation of first-order perturbation from 

measured data to modal parameters. Also, some validation and application are summarized 

in work (Reynders et al., 2016, Pereira et al., 2020). Later, Döhler and Mevel (2013) 

significantly improved the computational efficiency of uncertainty calculation at multi-

model orders. Döhler et al. (2013) also proposed uncertainty quantification of modal 

parameters from multiple measurement setups. Methods to quantify parameters’ 

uncertainties in the scope of SSI have been successfully applied to different types of 

structures (Nord et al., 2019, Reynders, 2021, Su et al., 2021); however, the uncertainty 

information is rarely used or does not contribute to further automated modal identification 

procedures. 

2.2.1.2 Frequency domain methods 

Peak-picking (PP) method may be the easiest way to identify modal parameters using 

output-only data under ambient excitation. The basic idea of the PP method is the plot of 

power spectral density (PSD) has salient peaks representing natural frequencies 

(resonances) (Naderpour and Fakharian, 2016). Therefore, natural frequencies can be 

simply determined by observing the peaks. The half bandwidth is used to estimate damping 

ratios. Associated mode shapes are calculated by the ratios of peak magnitudes at 

measurement moving channels to those at reference channels (Cárdenas and Medina, 2021). 

Although PP method has a simple implementation, it has several drawbacks. The selection 

of peaks largely depends on the frequency resolution in PSD and is generally visually 

determined, yielding subjective and unreliable results. It is also found that identified 

damping ratios using PP methods are inaccurate. Furthermore, in general, only well-

separated modes are identified; it is difficult to precisely identify closely spaces modes. 
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The PP methods do not give actual mode shapes; the identified mode shapes are often 

called “deflection shapes” (Rainieri and Fabbrocino, 2014).  

The derivatives and modifications of the PP method were developed to overcome the 

PP method’s limitation. Frequency domain decomposition (FDD) method firstly estimates 

the PSD matrix at discrete frequencies which is then decomposed by singular value 

decomposition (SVD). Each singular value represents a single degree of freedom (SDOF) 

spectral density function (SDF). Each SDF identifies natural frequency and mode shape. 

FDD method is in essence a SVD extension of the PP method, as it is based on 

diagonalization of the PSD matrix and the fact that PSD matrices are characterized by a 

few modes (Brincker et al., 2001). Traditionally, manual peak-picking in PP methods is 

required, which is vulnerable to human-induced error and impairs the identification 

accuracy. In recent years, automation on picking peaks has been developed to avoid human 

manipulation and minimize operator bias and error.  Kim and Sim (2019) proposed a 

region-based convolutional neural network with possible object locations to observe peaks; 

the peak detector is trained by deep learning method. Jin et al. (2021) utilized the modified 

automated multiscale-based peak detection algorithm and median absolute derivation 

baseline correction to identify the natural frequency of stay cables. Chen et al. (2021) also 

presented an automated peak-picking method by introducing the peak slope; the threshold 

of peak slope is determined by a support-vector machine to eliminate undesirable peaks. 

However, these methods are only promising and robust to automatically pick well-

separated peaks; it is still cumbersome to achieve an automated selection of closely-spaced 

peaks.  
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In frequency domain methods, the damping ratio is usually identified inaccurately, 

which may be caused by the assumption that only the data around the peak in PSD plot is 

utilized to calculate the SDOF-SDF system. To enhance the damping ratio estimation, 

frequency-spatial domain decomposition (FSDD) was developed by considering additional 

singular vectors at a certain frequency to better estimate the output of PSD (A Hasan et al., 

2018, Hızal, 2020). FSDD substantially improves the output of PSD near the expected 

frequency region and filter the noise (e.g., attenuation) beyond this region by the singular 

vector.   

2.2.2 Bayesian-based methods 

In Bayesian-based methods, modal identification is assumed to be a probability 

problem that measures the plausibility of modal parameters based on given model class 

and measured data (Au, 2017b). With Bayesian context, identification results are 

represented by the posterior probability distribution function (PDF) conditional on given 

data and modeling assumption. Prior information is typically considered to be 

uninformative to ensure measured data to fully govern the posterior PDF. Hence, the 

posterior PDF is proportional to the likelihood function that describes the measured data 

distribution with respect to modal parameters. With sufficient data length, the posterior 

PDF is shaped as a center point, but not any standard distribution (Au et al., 2018).  

Katafygiotis and Yuen are pioneers in establishing the framework of Bayesian modal 

identification and developed fundamental theory (Yuen et al., 2002a, Yuen and 

Katafygiotis, 2003). Bayesian Spectral Density Approach (BSDA) is a frequency domain 

Bayesian-based modal identification method based on the assumption that the spectral 

density function of measured data is a complex Wishart distribution (Katafygiotis and 
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Yuen, 2001). Bayesian Time Domain Approach (BTDA) assumes the measured data 

follows zero-mean Gaussian distribution (Yuen and Katafygiotis, 2001). Another 

Bayesian-based method is Bayesian Fast Fourier Transform Approach (BFFTA) developed 

by Yuen and Katafygiotis (2003). BFFTA uses the statistical properties of FFT of measured 

data and assumes the random vector consisting of the real and imaginary part of FFT 

follows Gaussian distribution with zero-mean. The values of mean and covariance matrices 

(the inverse of Hessian matrix) of posterior PDF represent the most probable values (MPV) 

of modal parameters and associated uncertainty, respectively. In general, Bayesian-based 

methods construct objective function by taking the negative logarithm of posterior PDF, 

then minimizing the objective function with respect to each modal parameter, giving the 

MPVs. However, the main challenge of above Bayesian-based methods is that MPVs rely 

on solving for a multi-dimensional numerical optimization problem, uncertainty 

computation requires finite difference, which is highly computationally expensive and ill-

posed. Therefore, Bayesian-based methods have been restricted seriously in real 

applications (Zhu et al., 2021b).  

To address this issue, Au (2016a) proposed a fast Bayesian FFT to compute the MPVs 

and covariance matrix by a condensed form of the objective function and analyzing a single 

mode in the selected frequency band. In the framework of fast Bayesian FFT, the 

determination of MPVs is only associated with a four-dimensional numerical optimization 

problem. Five modal parameters can be well estimated by fast Bayesian FFT, i.e., natural 

frequency, damping ratio and mode shape, the spectral density of the modal force and that 

of prediction error. The covariance matrix has also been analytically formulated by the 

Hessian matrix of posterior PDF rather than adopting finite difference method, making it 
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possible to directly quantify parameter uncertainty. Consequently, the computational effort 

connected with the number of measured DOFs is significantly reduced, only several 

seconds are needed. The fast Bayesian FFT is also extended to perform modal analysis 

using forced vibration data (Au and Ni, 2014) and free vibration data (Zhang et al., 2016a). 

Later, Li and Au (2019) applied expectation-maximization (EM) algorithm to fast Bayesian 

FFT so that convergency speed is noticeably improved. Zhu et al. (2019) modified the fast 

Bayesian FFT for buried modes identification using ambient vibration data, when the 

spectral contribution of a certain mode is significant around neighbor modes. Zhu et al. 

(2021b) and Zhu and Au (2018) proposed fast Bayesian FFT to deal with well-separated 

and closely spaced modes for multiple setup data and asynchronous data, respectively. Fast 

Bayesian FFT has been applied to a wide range of structural types for modal analysis, such 

as bridges (Brownjohn et al., 2018, Ni et al., 2021b), super-tall buildings (Ni et al., 2017, 

Zhang et al., 2019), offshore lighthouse (Brownjohn et al., 2019), monopole telecoms 

structures (Capilla et al., 2021), and historic twin-tower structure (Liu et al., 2021) 

Generally, the initial frequency in Bayesian fast FFT has to be visually picked from the 

singular value (SV) spectrum. Besides, frequency bandwidth governing levels of 

identification uncertainty is user-defined. This has been found to be obstructed and difficult 

in practice because of the low signal-to-noise ratio and intensity of modes. 

2.3 Vibration-based SHM methods 

Generally, vibration-based damage detection methods can be classified into two groups: 

non-model based and model-based methods. In this section, a comprehensive overview of 

these two methods is provided. Corresponding advantages and disadvantages are discussed 

in terms of practical implementation.  
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2.3.1 Model-free based methods 

Model-free based methods are referred to non-model based methods and generally do 

not require the computer-simulated model to detect damage. It straightforward uses 

measured vibration responses to observe deviances between current measurement and 

reference measurement. Identified discrepancies indicate that abnormality occurs 

compared to the structural normal state. Therefore, model-free based methods are also 

called data-driven pattern recognition methods. One of the attractive features of mode-free 

based methods is that it implements fast, and results are simply interpreted. Furthermore, 

uncertainties resulting from modeling error and the process of modal parameter 

identification are avoided because of model-free feature (Neves et al., 2017, Rabiepour et 

al., 2020). However, model-free based methods generally cannot quantify the damage 

extent; only damage location can be detected. Additionally, the capability of these methods 

largely relies on the amount of data, which is usually limited in a field test. 

Research on model-free based methods has made great progress, and a wealth of 

methods are developed in the last decade. Shi and Qiao (2018) proposed a new surface 

fractal dimension (FD) method for detecting notch damage in plate-type structures. Mode 

shape irregularity is also identified by a modified edge perimeter dimension (EPD) based 

window dimension locus. The FD damage detector was formed to localize and quantify 

possible damage by analyzing the sudden change (the peak of FD curve) of vibration 

frequency and displacement mode shape within a sliding window along the structural 

length. The FD method enables to quickly detect damage due to its simplicity and directly 

working on signal rather than state-space model. The experimental results also showed FD 
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method was robust to measurement noise. However, the FD method limitedly detects 

multiple-damaged structures. 

Frequency response functions (FRFs) are an extensively used model-free damage 

detection method. FRFs are directly derived from vibration responses of an investigated 

structure and enable to provide sufficient information in damage detection, such as 

structural behavior over a frequency range instead of a frequency point. In addition, FRFs 

operate without a numerical process for identifying modal properties so that uncertainties 

are reduced (Bandara et al., 2014). In practice, the measured response at different locations 

under external forces consists of FRFs. Although the type of external forces does not 

dominate the FRFs of a system, the information of external forces is required, which may 

not always be available in real measurement, especially for large-scale and in-service 

structure. Another obstacle is that FRFs need a large amount of data, resulting in a time-

consuming configuration of data network and a computationally inefficient problem  (Chen 

and Ni, 2018, Allemang et al., 2022). 

Wavelet transform (WT) has also attracted researchers’ attention. The WT has 

capability of properly dealing with non-stationary data characterized by scale (frequency) 

and position (time) (Peng et al., 2013). Therefore, the WT method has been demonstrated 

as a popular damage detection method. However, the WT method has a drawback of poor 

frequency resolution in the region of high frequency, which limits its application in damage 

detection, as structural damage usually locally occurs and is probably reflected by higher 

modes (Wang et al., 2018).  

The wavelet packet transform (WPT) can be regarded as an extension of WT. The WPT 

enables to extract damage features from stationary and non-stationary signals by sufficient 
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frequency decomposition at a local level (Pan et al., 2019). Jiang et al. (2012) proposed a 

complex continuous wavelet technique transform of the slope of the mode shape using 

Complex Gaus1 Wavelet, the cracks were localized by the modulus line and the angle line 

of wavelet coefficients. This method was demonstrated by detecting beam cracks in 

different boundary conditions, crack locations and depth. Ibáñez et al. (2015) developed a 

wavelet entropy-based method to detect small variations in non-stationary signals. The 

entropy evolution enables to detect damage in multiwire cables, including breaking a single 

cable and changes in the mechanical contact conditions among the wires. These methods 

were experimentally validated, but they require a reference structural state (healthy 

condition). Furthermore, sensors need to be installed at a damage location, and only 

damage location is identified. Asgarian et al. (2016) used the rate of signal energy of WPT 

as an index to detect damage for a steel jacket type offshore platform. Vibration signals 

measured under impact loads that periodically excite a known location are decomposed 

into component signals by WTP. Component energies are then computed and used as 

inputs in Neural Network (NN) models for different types of damage detection. One 

limitation of this research is excitation needs to be measured repeatedly. In addition, high-

fidelity FE model for training NN model is required.  

Machine-learning (ML) methods have been widely used to advance non-model based 

VBSHM. ML methods traditionally directly extract damage-sensitive features from 

measured signals, which are then incorporated into ML methods to conduct damage 

detection (Farrar and Worden, 2012). Chun et al. (2015) numerically investigated a steel 

bridge with reduced thickness of girder due to corrosion. The maximum and variance of 

acceleration signals are calculated as damage features that are further processed by a multi-
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layer perceptron (MLP) to assess structural conditions. However, future work of validating 

the methodology by a real bridge is needed. Abdeljaber et al. (2017) presented an efficient 

and accurate damage detection method using 1D Convolutional Neutral Networks (CNNs), 

which allows fusing both feature identification and classification blocks into a single and 

compact learning body. This method also has the ability to extract optimal damage features 

from the raw vibrational signals and is validated by a grandstand simulator. However, the 

CNN parameters have to be selected in a trial-and-error manner and detect slight damage. 

Chun et al. (2020) proposed a damage detection method using multi-point acceleration 

measurement that was interpreted by a three-step Random Forest, a supervised ML method. 

Different damage features such as the maximum response, standard deviation, logarithmic 

decay rate, and natural frequency were utilized to enhance the accuracy of damage 

detection. The actual aluminum alloy I-beam with cracks was used to verify the method. 

In contrast, a large number of training data is required, which may not be practical in real 

cases. Paral et al. (2021) proposed a method combining the 2D CNN with Continuous 

Wavelet Transform (CWT) of the response signal to evaluate the health condition of steel 

structural connection. The method only requires global vibration signals and is validated 

through a steel frame with a semi-rigid joint to detect beam-column connection damage. 

The limitation is that only damage on structural connection is considered; new datasets are 

required to train CNN for different types of damage events. Abdeljaber and Avci (2021) 

developed a nonparametric ML-based method that training a set of unsupervised classifiers, 

e.g., Self-organizing Maps (SOMs), for extraction of damage features from vibration 

response. Finally, the damage detection was conducted by training MLP to interpret 
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damage features. However, an experimental verification is needed for the methodology 

generalization.  

2.3.2 Model-based methods 

Model-based methods involve computer-simulated FE models predefined and 

parameterized by critical physical properties, e.g., mass and stiffness. These parameters are 

then calibrated using measured responses to detect damage location and damage severity. 

The advantages of model-based methods are environmental and operational effects can be 

adequately accounted. Modal properties, e.g., natural frequency, damping ratio, and mode 

shape, are correlated with structural mass and stiffness. Therefore, structural identification 

by model-based methods has an unbiased interpretation of results. In addition, the updated 

model by measured data is quite useful for structural repair and maintenance, evaluation of 

structural performance, and prognosis of remaining life (Chen, 2018). Although model-

based methods are promising, some issues exist in these methods, such as how to build a 

reliable and accurate initial model, how to choose critical parameters, the number of 

parameters, and what kind of measured data is needed.  

A wide range of model-based method has been developed to detect damage. Frequency-

based methods directly use natural frequency as damage index and can be conveniently 

implemented, as frequency is easier to measure from limited sensors and robust to 

measurement noise. Moughty and Casas (2017) summarized the advancement of 

frequency-based methods in damage detection and also suggested that it may not be 

sufficient to use frequency only to identify damage. The frequency-based method also has 

a critical limitation of only small frequency changes due to damage is observed and is 

difficult to distinguish from those from environmental variation.  
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Mode shape-based methods refer to the use of changes in mode shape between intact 

and damage structure as damage feature. Modal Assurance Criterion (MAC) (Pastor et al., 

2012) and Coordinate Modal Assurance Criterion (COMAC) (Khatir et al., 2016) are two 

commonly used indices to detect the abnormality. MAC values COMAC values are a 

similarity and a point-wise measure of two mode shapes, respectively. It has been 

demonstrated that changes in mode shapes are more robust and reliable to detect damage 

compared to frequency shifts (Fan and Qiao, 2011). Mode shape-based methods have 

appealing advantages of damage localization and being insensitive to environmental effect, 

e.g., temperature. However, these methods generally require reference structural state 

(healthy condition), which may not be available for in-situ structures. Furthermore, the 

accurate measurement of mode shapes is relatively difficult compared to the natural 

frequency. The mode shapes are generally measured with incomplete DOFs due to a 

limited set of sensors.  

Many research showed that mode shape itself is not sensitive to slight damage; even 

mode shape is measured with an intense sensor network (Limongelli et al., 2021). 

Motivated by this issue, the mode shape curvature (MSC) methods were proposed as an 

indicator for slight damage detection. MSC was firstly defined as the second derivative of 

mode shapes by Pandey et al. (1991) and successfully applied for a cantilever beam and 

simply supported beam. Later, the efficacy of MSC methods has tested by various research 

work, including beam structures (Janeliukstis et al., 2017, Dahak et al., 2019), building 

structure (Tomaszewska, 2010, Paral et al., 2019), and bridge (Nick and Aziminejad, 2021, 

Pooya and Massumi, 2021). Although MSC shows outstanding performance in damage 

detection, it requires the dense measurement across the structure and accurate mode shape 
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identification. Besides, errors in measurement of mode shapes are accumulated due to 

differentiation, therefore yielding large uncertainties.   

Another model-based method is the flexibility method. Flexibility is defined as the 

inverse of stiffness. Variation in stiffness due to possible damage will induce change in 

flexibility. Flexibility describes the relation of modal displacement and static force and can 

be approximated by natural frequencies and mass-normalized mode shapes (Moughty and 

Casas, 2017). Bernagozzi et al. (2018) proposed a two-stage modal flexibility-based 

approach to detect damage using output-only vibration data without or with minimal mass 

information, which was demonstrated by a numerical model of a six-story shear building 

and laboratory-scale four-story shear frame. Le et al. (2020) presented an enhanced method 

to detect damage in beam-type structures by observing the changes in modal flexibility 

(MF) matrices, three damage locating criteria, and explicit relationship between MF-based 

deflection change and damage features. Wickramasinghe et al. (2020) developed and 

applied vertical and lateral damage indices based on modal flexibility with lower order 

modes to detect damage for main cables and hangers of a suspension bridge. Huang et al. 

(2021) introduced a two-stage damage detection method for a steel-concrete composite 

bridge. At the first stage, a superposition of modal flexibility curvature (SMFC) is adopted 

to locate the damage accurately; then damage extent is determined by constructing an 

objective function based on MF and the enhanced whale optimization algorithm. But the 

flexibility-based methods generally require knowing external excitation and modes need 

to be mass-normalized, which limits their application in real structures.   

Model-based (parametric) ML methods are also developed to extract damage features 

from structural systems using input-output or output-only modal analysis. Different ML 
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classifiers are well trained to process the modal parameters for the evaluation of structural 

integrity. Betti et al. (2015) applied ANNs and genetic algorithm to detect damages of 

column cutting in a three-story steel frame. A feed-forward back-propagation (FFBP) 

network structure was used as ANN and trained to perform the classification process. It is 

concluded that a combination of ANN and GA is powerful for damage detection. Meruane 

(2016) used another classifier except for ANN, Online Sequential Extreme Learning 

Machine (OSELM), to classify modal parameters. The approach was experimentally 

validated in a rectangular beam and a mass-spring laboratory structure with various damage 

scenarios. Duan et al. (2019) proposed an automated damage detection method for hanger 

cables in a tied-arch bridge based on CNN. The raw acceleration data for the Fourier 

amplitude spectrum were used without pre-processing to extract modal properties. The 

CNN model’s construction was accomplished hierarchically, the multi-damage location 

and quantification was also achieved. Beheshti Aval et al. (2020) developed a signal-based 

damage detection method for multi-story frame subjected to an earthquake event. Hilbert 

vibration decomposition technique was firstly used to extract acceleration responses of the 

sensors with high resolution. Next, the damage patterns were classified by a two-stage 

artificial neutral network. Sharma and Sen (2020) proposed an output-only method for 

assessing the joint condition in which a 1D CNN was introduced to detect deficient joints 

in semi-rigid frames. The CNN was also modified to automatically extract damage features 

from 1D, 2D, and 3D response signals. The method was numerically and experimentally 

validated on a steel frame structure. Fu and Jiang (2021) proposed a new intelligent data 

fusion system to detect various damage types for a two-span steel tubular arch bridge and 

seven-story steel frame, taking advantage of probabilistic neural network (PNN) and data 
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fusion with correlation fractal dimension (CFD). The eigen-level model and the decision-

level model are included in this intelligent system. Ritto and Rochinha (2021) proposed to 

construct digital twins for damage detection, where a physic-based computational model 

was used to investigate various damage scenarios. Different ML classifiers were trained 

using data from built computational model. Furthermore, different model parameters were 

considered to generate datasets for training purposes. Although model-based ML methods 

have been extensively applied, the performance of these methods largely rely on the 

classifiers. It is also no guarantee that a certain classifier is the best choice for all damage 

detection. Furthermore, feature extraction process is usually computationally expensive, 

which hinders the practical use of ML methods.  

Based on the aforementioned discussion and literature review, the current research 

work mainly focuses on model-based VBSHM. Among numerous approaches in model-

based VBSHM, Finite element model updating (FEMU) attracts more attention because it 

has a simple theory and may be universally applicable for diverse structural types, damage 

patterns, and measured data classes. The updating results can be readily interpreted and 

directly used for structural damage detection, parameter identification, model response 

prediction, and structural failure analysis. In the following sections, a thorough overview 

of FEMU is provided. 

2.4 Finite element model updating  

Finite element model updating (FEMU) constitutes another large group of vibration-

based SHM methods. A finite element model (FEM) has been extensively used in 

addressing various challenges in engineering community: SHM (Balageas et al., 2010, 

Chen, 2018), risk and reliability analysis (Jensen et al., 2013, Gardoni, 2017), and structural 
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dynamics and response control (Xiang and Nishitani, 2015, Kim, 2019). However, the 

errors between analytical responses from FEMs and counterparts from real structures are 

always unavoidable. The sources of errors mainly stem from: (1) measurement error due 

to signal quality, measurement devices, and human operation, (2) modeling error such as 

idealization assumption, improper discretization, and (3) erroneous assumption in material 

properties and dimensions (Mustafa and Matsumoto, 2017, Alkayem et al., 2018). 

Therefore, FEMU has great demand and practical value to enhance the fidelity of FEM. 

FEMU is essentially the process to minimize the discrepancy between analytical prediction 

and test results in such a way that progressively adjusts physical parameters until FEM 

reproduces the measured data to a satisfactory level (Tian et al., 2021).  

 
Figure 2.1. The classification of FEMU 

 
 Current model updating techniques can be generally categorized into two aspects: 1) 

direct and indirect methods, and 2) deterministic and stochastic methods. Figure 2.1 shows 

the classification of FEMU. Direct and indirect methods are two independent categories 

which are defined based on whether the FE model is parameterized and updated in an 

iterative manner; generally, both deterministic and stochastic methods belong to indirect 



33 
 

methods, in which they can be distinguished according to whether uncertainties are 

considered or not in an updating process. In addition, most deterministic methods can be 

regarded as direct methods. The comprehensive introduction of FEMU classification is 

presented in the following sections. 

2.4.1 Direct and indirect methods 

Direct methods refer to update the system mass and stiffness matrices with one step to 

match measured experimental data with counterparts from FEM (Mao and Dai, 2012, Yang 

et al., 2014, Sehgal and Kumar, 2016). Lei et al. (2012) applied a direct method to update 

the reduced FE model of the Canton Tower; incomplete modal data were used for model 

stiffness matrix updating without any model reduction or expansion techniques. Lim et al. 

(2016) proposed a semi-direct FEMU method to improve the reliability of FRFs. The 

stiffness matrix was directly updated using a matrix mixing approach; the modal damping 

ratios were also obtained through minimizing the FRFs error function. Kumar Bagha et al. 

(2020) utilized a direct updating algorithm for cantilever steel/composite beam to match 

measured frequency with a model-derived ones; the mass and stiffness matrix were 

modified by satisfying orthogonal constraints. The main advantage of direct methods is 

computational efficiency as they are implemented in one step. However, updating results 

using these methods are significantly influenced by measurement noise and model 

inaccuracy. In addition, direct methods require complete and accurate measurement data, 

although system matrices can be either condensed to the only measured DOFs or 

incomplete mode shapes can be expanded to the full DOFs. Furthermore, direct methods 

fail to preserve the physical connectivity of updated matrices, leading to loss of matrices’ 

symmetry and positive definition. These methods cannot reasonably reflect variations in 
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structural properties as they solve inverse problems in a mathematical way. Because of 

these drawbacks, direct methods are limitedly used in vibration-based SHM (Yang and 

Chen, 2012, Moravej et al., 2017).  

In contrast to direct methods, indirect/iterative methods are developed to maintain the 

physical meaning of FEM by adjusting preselected parameters in an iterative manner until 

FEM reproduces the measured data with desirable accuracy. The iteration process is 

accomplished when the discrepancy between measured data and prediction from FEM is 

reduced to a tolerable level. Nonlinear functions are generally used as error functions in 

indirect methods based on the model and tested responses, e.g., eigenvalues and 

eigenvectors. The system matrices updated by the indirect methods maintain symmetric 

and positive definite which has a clear physical configuration and can be easily understood. 

But indirect methods are computationally expensive since plenty of iteration is required to 

ensure a good convergence. The bias for solving the problem may occur during the iteration 

(Sehgal and Kumar, 2016). 

A sensitivity-based method is a widely used indirect method. The basic idea of 

sensitivity-based method is measured responses are regarded as derivatives of analytical 

data from FE model of an intact structure, then the optimization problem is formulated by 

selected error/penalty functions (Mottershead et al., 2011, Rezaiee‐Pajand et al., 2020). 

(Petersen and Øiseth, 2017) applied a sensitivity-based method to a long-span floating 

pontoon bridge with considering the fluid-structure interaction; the bridge model was 

parameterized with 27 parameters and updated using 30 natural frequencies and mode 

shapes. Grip et al. (2017) proposed a new sensitivity-based method for updating a concrete 

plate; the total variation-based regularization method was used to more precisely localize 
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and quantify structural damage. However, the performance of regularization depends on 

the choice of regularization parameters which may not always be automatically optimized. 

Machado et al. (2018) presented a sensitivity-based updating framework with FRFs to 

update distributed and homogeneous model parameters that are spatially correlated random 

fields and are expanded in a spectral Karhunen-Loève (KL) decomposition; An 

experimental test with a 3D printing beam was used to verify this method. Cao et al. (2020) 

proposed a dynamic sensitivity-based model updating method to update nonlinear 

parameters in an oscillator, a magnetometer boom, and a cantilever beam using time-

domain response data derived by a direct differentiation method. Zhu et al. (2021a) 

developed a substructure-based response sensitivity method to update large-scale 

structures; the equivalent modes were reformulated to convert higher modes to lower 

modes. The motion equation was also reduced and simplified to efficiently compute 

structural response and response sensitivity, finally speeding up the convergence of model 

updating. Some challenges still remained in this method. The measured responses cannot 

be too deviated from the analytical data, resulting in only minor damage being detected. 

Also, the core of this method is to calculate the derivatives of modal parameters, leading 

to computational inefficiency during the overall updating procedures. Furthermore, the 

updating results are often prone to noticeable errors due to measurement noise (Hou and 

Xia, 2021). 

2.4.2 Deterministic and stochastic methods 

Deterministic FEMU methods can be categorized as direct methods, such as matrix 

updating methods, or as a part of indirect methods, such as sensitivity-based methods.   

Generally, deterministic methods refer to calibrate structural parameters in a point-estimate 
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manner to minimize the difference between measured data and analytical prediction, only 

a single FE model is explored, yielding unique or deterministic updating results. The 

thorough overview of deterministic methods for damage detection can be seen in the work 

of Aghagholizadeh and Catbas (2015). However, uncertainties are inherently inevitably 

involved in FEMU due to various sources. For example, the measured data are always 

exposed to uncertainty or variability originating from structural deterioration, measurement 

noise, disassembly, and assembly with the need of maintenance and renovation; FE model 

is afflicted with modeling error because of idealization and simplification assumption, 

improper discretization, etc. (Simoen et al., 2015a). Deterministic methods cannot 

appropriately account for these uncertainties, which gives unsatisfactory updating results 

for complex and large-scale structures.    

To capture various uncertainties, stochastic methods have developed and attracted a lot 

of interest in recent years. As opposed to deterministic methods, stochastic methods do not 

update structural parameters as fixed values. Instead, stochastic methods aim to update 

parameters as either a range or probability distribution function (PDF); parameter 

uncertainty can be straightforward quantified (Wan and Ren, 2016). Also, it attempts to 

seek all plausible models during updating process with given available measured data and 

provide a confidence interval of updated results, providing engineer researchers the 

information of the model’s accuracy. Because it is rarely possible to confidently specify 

one value for updating parameters, stochastic methods are more reliable in most cases. A 

wide range of stochastic methods have developed to more accurately and reasonably 

identify model parameters accounting for different source of uncertainties, including 

Bayesian methods (Yuen, 2010, Ramancha et al., 2020), Monte Carlo (MC) based methods 
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(Lam et al., 2018, Baisthakur and Chakraborty, 2021), perturbation based methods (Huang 

and Chen, 2019, Chen et al., 2020), filtering methods (Astroza et al., 2019, Song et al., 

2020), interval model updating methods (Chen et al., 2018, Mo et al., 2021), and covariance 

matrix adjustment method (Govers and Link, 2010). A comprehensive overview of 

stochastic methods is available in the literature (Wan and Ren, 2016, Zhao et al., 2020).  

Among all stochastic methods, the Bayesian model updating approach (BMUA) has 

grown in popularity and prominence during the last decades due to simple theorem and 

intuitively appealing practical value. Different real applications using the Bayesian 

approach in civil engineering have demonstrated its efficiency and robustness, e.g., 

buildings (Simoen et al., 2013, Lam et al., 2019), bridges (Mustafa and Matsumoto, 2017, 

Li and Jia, 2020), lab-scaled structures (Sedehi et al., 2019, Wang et al., 2020). Beck et al. 

(Beck and Katafygiotis, 1998) established the fundamental theory of Bayesian model 

updating. Further derivatives and modifications (Yuen et al., 2006, Behmanesh et al., 2015, 

Mustafa and Matsumoto, 2017, Das and Debnath, 2018, Zeng and Kim, 2020) extend the 

Bayesian approach’s capability and efficiency. Bayesian approach characterizes to-be-

updated structural parameters as random variables and formulates parametric model 

updating function within the Bayes’ theorem; the posterior PDF is explicitly built using 

prior knowledge from engineering judgment and likelihood function consisting of 

measured data. The key strengths of the Bayesian approach are as follows: 1) rationally 

and reliably handling incomplete experimental data; 2) using Bayes’ theorem, physical 

model parameters are characterized by the PDF; 3) only repeating straightforward model 

evaluations to avoid the most inverse problem’s challenges of unidentifiability, ill-

posedness, and non-uniqueness (Wan and Ren, 2016).  
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To feasibly treat high-dimensional integrals involved in the posterior PDF for Bayesian 

inference, Beck and Katafygiotis (1998) employed an asymptotic approximation method 

that assumes the posterior PDF is unimodal and Gaussian distribution to estimate the 

posterior PDF of model parameters. However, the assumption does not necessarily 

guarantee a true physical model when a high level of modeling error and measurement 

noise occurs in practice, especially for multi-modal and non-Gaussian posterior (Wan and 

Ren, 2016, Yang and Lam, 2018a, Ni et al., 2021a). Also, given an insufficient amount of 

data and complex model class, model updating problems may become unidentifiable (Lam 

et al., 2015). Markov Chain Monte Carlo (MCMC) is a favorable alternative to infer the 

posterior PDF for multi-modal or unidentifiable problems, because no assumption on the 

model parameters is required to directly generate samples distributed as the posterior PDF. 

There are various MCMC techniques incorporated into Bayesian model updating, such as 

Metropolis Hastings (MH) algorithms (Green, 2015), Gibbs sampling (Huang and Beck, 

2018), Hamiltonian Markov chains (Mao et al., 2020a), and delayed rejection adaptive 

Metropolis (DRAM) (Simoen et al., 2013, Wan and Ren, 2016). 

Although Bayesian model updating with MCMC is powerful, it is computationally 

demanding because a vast amount of FE model evaluations is required. It becomes 

impractical for complex and large-scale engineering structures. In addition, most Bayesian 

approaches assume that mass is well known and invariant; only stiffness is updated with 

believing that mass is less critical. However, this is not always valid when noticeable 

variation and uncertainty in mass occurs. Structural parameters in mass and stiffness are 

coupled concerning the natural frequency and mode shape. Therefore, simultaneous 

identification of mass and stiffness can be defined as an unidentifiable problem because an 
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infinite combination of mass and stiffness exists and gives the same natural frequency 

(herein, the coupling effect of mass and stiffness) (Beck and Au, 2002). To avoid this issue, 

mass is usually well-estimated or exactly known for updating stiffness in traditional 

BMUA due to the availability of the mass information in a deterministic manner (e.g., 

dimensions).  

2.5 Summary and Conclusions 

The literature review of SHM techniques is presented in this chapter. Some difficulties 

in theoretical and practical aspects still remain. In this section, the technical issues based 

on the aforementioned introduction that need to be addressed for the transition of academia 

to practical applications are summarized.  

In operational modal analysis: 

• It has been concluded that SSI, as a popular non-Bayesian based method, is 

efficient and reliable in extracting modal parameters under structural 

operational conditions due to its simple mathematical nature and quick 

implementation. However, spurious modes appear using SSI because of 

measurement noise and assumption in the algorithm itself. It is challenging to 

distinguish physical modes from spurious modes with human involvement. 

Also, uncertainties on modal parameters should be properly treated. 

• On the other hand, Bayesian-based methods exhibit outstanding performance. 

Physical modeling assumptions are strictly obeyed, and measured data is fully 

used. The modal parameter uncertainties are naturally provided based on Bayes’ 

theorem. However, initial frequency in this method needed to be handily picked 

from singular value spectrum. The selection of frequency bandwidth by trial-
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and-error, which dominates uncertainty quantification, should be paid more 

attention. 

In vibration-based SHM: 

• The implementation of non-model based methods is fast, and results are easily 

understood. In addition, uncertainties caused by modeling error and modal 

parameter identification are avoided because of a model-free feature. However, 

only damage location can be detected by these methods. Their capability largely 

relies on the amount of data, which is usually limited in field tests. 

• Model-based methods have pronounced advantages against non-model based 

methods, as structural identification is implemented with clear physical 

meaning. The effect of environmental and operational change is considered. 

The updated model is quite functional for dynamic behavior analysis and 

prognosis of remaining life. But model-based methods have challenges in a 

model establishment.  

In FEMU: 

• FEMU is one of the promising SHM techniques. Different sources of 

uncertainties are inevitably entailed in the FEMU process, including modeling 

error and measurement noise. If these uncertainties are not properly treated, the 

accuracy of structural identification and damage detection will be significantly 

impaired. 

• Stochastic FEMU methods are more reliable compared to deterministic 

methods as information accounted for uncertainty is provided. It is noted that 
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many stochastic methods tend to underestimate uncertainties due to only 

considering measurement noise and ignoring modeling error.  

• Bayesian model updating has a simple theorem and is intuitively appealing. It 

aims to update structural parameters as a distribution and hence naturally 

provide uncertainty information. But traditional Bayesian approach only 

updates stiffness with assuming mass is known to avoid the coupling effect of 

mass and stiffness, which is problematic, especially noticeable mass change is 

observed. The Bayesian approach is also computationally expensive because of 

many model evaluations for large-scale structures. 

Driven by the issues in OMA and FEMU, the research work in this dissertation attempts to 

develop the automated OMA, e.g., automated SSI and automated BMI, to efficiently deal 

with a large amount of data and appropriately consider modal parameter uncertainties. 

Additionally, a novel Bayesian model updating framework was proposed to update the 

coupled structural parameters with high computational efficiency.  
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CHAPTER 3 

AUTOMATED STOCHASTIC SUBSPACE IDENTIFICATION (SSI) 

3.1 Introduction 

Among various non-probabilistic system identification algorithms, stochastic subspace 

identification (SSI) has been widely applied to diverse structures to perform operational 

modal analysis (OMA). It offers accurate identification results and simple implementation, 

which are important attributes accounting for its popularity. In addition, due to SSI’s 

explicit mathematical nature, SSI tends to be more suited for automated modal 

identification. However, the major challenge in SSI is spurious modes appear in outputs. 

Commonly, spurious modes consist of pure mathematical (i.e., non-physical) and noise 

modes (Reynders et al., 2008). The most common strategy to deal with this challenge is to 

construct a stabilization diagram, a plot of model order vs. frequency for an extensive range 

of model order. In the stabilization diagram, physical modes are referred to as those poles 

that cross most of the model orders consistently. Therefore, physical modes should be 

graphically recognized and homogeneously distributed along vertical alignments in the 

stabilization diagram (Cabboi et al., 2017). On the contrary, spurious modes appear in the 

stabilization diagram in a scattered way. Spurious modes are eliminated in a manual 

analysis depending on empirical discovery and engineers’ judgment, which is subjective, 

time-consuming, and leads to incorrect modal identification.  
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For addressing this issue, a variety of methods are proposed in the literature to 

automatically interpret stabilization diagram and remove spurious modes. In general, the 

process can be divided into three steps: 

(1) Step 1: Apply the modal validation criteria to eliminate as many spurious modes as 

possible in the stabilization diagram 

(2) Step 2: Group modes with similar characteristics, i.e., frequencies, damping ratios, 

and mode shapes by clustering strategies  

(3) Step 3: Detect outliers in each cluster to improve the accuracy of modal parameters 

and select representative of each cluster 

Several methods aiming at minimizing human involvement in the interpretation of the 

stabilization diagram have been developed. For example, in step one, many modal 

validation criteria are proposed to detect spurious modes in the stabilization diagram. These 

criteria include hard criteria, which yield a binary answer, and soft criteria, which yield a 

certain range of values. Reynders et al. (2012) thoroughly reviewed and summarized hard 

and soft criteria. However, conventional modal validation criteria limitedly remove a 

certain number of spurious modes; many spurious modes, which still remain in the 

stabilization diagram, affects parameter estimates' accuracy and imposes a computational 

burden to the following step (clustering process).  

In step 2, various clustering strategies are widely employed to group modes with similar 

characteristics. Hierarchical clustering has been extensively applied by many researchers 

and is considered as the most natural approach (Reynders et al., 2012). Hierarchical 

clustering has a significant advantage of allowing a good selection of physical clusters. 

However, the main drawbacks include a user-defined tree cutoff distance and human 
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intervention with demanding computational cost. Furthermore, the hierarchical clustering 

is sensitive to outliers. Another strategy is partitioning methods, often referred to as K-

means clustering (Neu et al., 2017). K-means clustering has the benefit of being fast 

processing. However, the number of clusters has to be predefined, and it is sensitive to 

cluster seeds (initial centroid). By merging the benefits of hierarchical clustering and K-

means clustering to overcome some of their limitations, self-adaptive clustering is recently 

proposed (Cabboi et al., 2017, Fan et al., 2019). The self-adaptive clustering has 

outstanding features: 1) simple implementation; 2) fast computation; 3) No need for the 

number of clusters; 4) Clustering threshold is iteratively trained during the clustering 

process.  

While it still starts with a user-defined clustering threshold, which requires some level 

of human intervention. Some methods are proposed to automatically calculate clustering 

threshold based on statistical properties, i.e., mean and standard derivation or median, of 

the distance between two closed poles in the stabilization diagram (Magalhães et al., 2009, 

Reynders et al., 2012, Yang et al., 2019). However, these methods do not consider 

uncertainty on modal parameters and inaccuracy of mode shapes. In practice, modal 

parameters' uncertainty is inevitable due to modeling error and measurement noise; it can 

be a more reasonable approach to consider uncertainty when calculating the clustering 

threshold. Also, measurement on mode shapes is less accurate than that on frequencies. 

Thus, a weighting factor can reduce the inaccuracy of mode shape difference on threshold 

calculation (Boroschek and Bilbao, 2019).  

In step 3, some outliers are undesirably involved in identified physical clusters; this 

phenomenon is pronounced in a damping ratio with a scattered nature. Most outlier 
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detection techniques need to define limit bounds, such as box-plot outlier detection (Yang 

et al., 2019). A bound-free outlier detection method is needed to improve the accuracy of 

parameter estimations. In summary, challenges to the current automated interpretation of 

the stabilization diagram are listed as follows: 

1. Conventional modal validation criteria are inefficient resulting in high 

computational cost in the clustering process. 

2. The clustering threshold and distance calculation in the clustering process does not 

consider the uncertainty of parameters and the weighting factor. 

3. Uncertainties on identified modal parameters and physical clusters are unavailable.  

4. Outlier detection requires to define limit bounds. 

 
Figure 3.1. A framework of the proposed automated approach 

 
To address the aforementioned challenges, this chapter proposed a two-stage 

framework for automated OMA. Figure 3.1 shows the flowchart of the proposed 

framework: (1) modal analysis using covariance-driven reference-based SSI (SSI-cov/ref); 
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(2) two-stage automated interpretation of stabilization diagram. In the first place, SSI-

cov/ref is adopted to perform modal analysis and construct a stabilization diagram. 

Subsequently, a two-stage automated analysis for the stabilization diagram is carried out.  

At the pre-processing stage, besides applying conventional modal validation 

criteria, such as damping ratio check and modal complexity check, to eliminate spurious 

modes, a new supplementary criterion: uncertainty criterion, which is also applied for 

further removal of spurious modes. At the clustering stage, a novel threshold calculation, 

which incorporates the uncertainty of modal parameters and weighting factor, is proposed. 

An improved self-adaptive clustering with new distance calculation is then employed to 

group modes with similar characteristics and identify physical clusters. Finally, robust 

outlier detection is implemented to exclude outliers. The average of each cluster's elements 

is chosen as representative frequency, damping ratio, and mode shape.  This chapter is 

organized as follows: in Section 3.2, the background of SSI-cov/ref is briefly introduced. 

In Section 3.3, a two-stage approach for proposed automated modal identification is 

presented. In Section 3.4, the capability of the proposed approach is validated by two field 

tests along with the modal tracking results. Finally, the conclusion is presented in Section 

3.5. 

3.2 Theoretical background of SSI 

SSI has been extensively spread over the field of OMA during the past few decades 

accounting for its quick implementation and high accuracy. In this paper, covariance-

driven reference-based SSI (SSI-cov/ref) is employed to reduce the dimensions of the 

output matrix and computational cost. The detailed theoretical fundamentals of SSI-cov/ref 

are fully described in the literature (Peeters and De Roeck, 1999). Briefly, SSI-cov/ref is 
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developed based on assuming a linear and stationary N degree of freedoms (DOFs) system 

with a dynamic motion characterized by the discrete-time state-space equation: 

𝒙'() = 𝑨𝒙' +𝝎' 

𝒚' = 𝑪𝒙' + 𝒗'   (3.1) 

where subscript 𝑘 denotes time step; 𝑨 ∈ ℛ*×* denotes system state matrix with (𝑛 = 2𝑁); 

𝑪 ∈ ℛ,×* is an output matrix, 𝑙 is defined as the number of measured signals; 𝒙' ∈ ℛ*×) 

and 𝒚' ∈ ℛ,×) are discrete-time state vector and measured response vector, respectively; 

𝝎' ∈ ℛ*×) is a process white noise vector. 𝒗' ∈ ℛ,×) is the measurement white noise 

vector.   

 Based on the assumptions above, modal parameters can be identified by analyzing 

output only vibration response. SSI-cov/ref can be implemented as follows: (1) the 

calculation of covariance between outputs and the limited sets of reference outputs; (2) the 

configuration of the block Toeplitz matrix; (3) singular value decomposition (SVD) of 

Toeplitz matrix; (4) the computation of the observability and reference-reversed 

controllability matrix; (5) the identification of modal parameters from extracted matrices. 

The block Hankel matrix is defined as (Peeters and De Roeck, 1999): 

𝑯 =
1
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⎢
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 (3.2) 

A block Toeplitz matrix is formed as: 
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𝑻()|3) =

⎣
⎢
⎢
⎡ 𝑅N3 𝑅N32) ⋯ 𝑅N)
𝑅N3() 𝑅N3 ⋯ 𝑅N&
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⎥
⎥
⎤
 (3.3) 

where 𝑅N3 is an output correlation and computed as:  

𝑅N3 =
1

𝑄 − 𝑖 𝑦():823)𝑦():823)
9 (3.4) 

where 𝑄 is the number of time steps in a single sensor.  

The block Toeplitz matrix is next decomposed by singular value decomposition (SVD):  

𝑻()|3) = 𝑼𝚺𝑽9 (3.5) 

where 𝑼  and 𝑽  are orthogonal matrices; 𝚺  is a diagonal matrix with positive singular 

values.  

From SVD results, the observability matrix 𝑶3 and controllability matrix 𝚪3 are written 

as: 

𝑶3 = 𝑼)𝚺)/& 

𝚪3 = 𝚺)/&𝑽) 
(3.6) 

where 𝑼) and 𝑽) are singular vectors corresponding to non-zero singular values in 𝚺. 

The system matrix 𝐴 and output matrix 𝐶 are obtained by: 

𝑨 = 𝚺2)/&𝑼)9𝑻(&|3)𝑽)𝚺2)/& 

𝑪 = 𝑶3(1: number	of	sensors) 
(3.7) 

where 𝑻(&|3) consists of covariance elements from lag 2 to 2	𝑖, defined as: 

𝑻(&|3()) =

⎣
⎢
⎢
⎡𝑅
N3() 𝑅N3 ⋯ 𝑅N&
𝑅N3(& 𝑅N3() ⋯ 𝑅N;
⋮ ⋮ ⋮ ⋮
𝑅N&3 𝑅N&32) ⋯ 𝑅N3()⎦

⎥
⎥
⎤
 (3.8) 
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Finally, the modal parameters can be obtained from identified matrices 𝐴 and 𝐶. 𝐴 has an 

eigenvalue decomposition as: 

𝑨 = 𝝋𝚲𝝋9, 𝑨𝝋3 = 𝜆3𝝋3 (3.9) 

where 𝜆3  and 𝝋3  are the 𝑖-th eigenvalue and eigenvector of 𝑨, respectively. The modal 

parameters are expressed as: 

𝑓3 =
|𝑓$𝑙𝑛𝜆3|
2𝜋  

𝜁3 =
(𝑙𝑛𝜆3)<

|𝑙𝑛𝜆3|
 

𝝓3 = 𝑪 × 𝝋3 

  (3.10) 

where 𝑓3 , 𝜁3  and 𝝓3  are the 𝑖 -th frequency (Hz), damping ratio and mode shape, 

respectively; 𝑓$ is the sampling frequency; (𝑙𝑛𝜆3)< is the real component of 𝑙𝑛𝜆3.  

 Two main SSI preparation parameters significantly affect the accuracy of identification 

results: (1) model order; (2) time lag, 𝑖. Unfortunately, the value of model order and 𝑖, 

which yield the best identification results are never known (Ubertini et al., 2013, Fan et al., 

2019). In practice, it is necessary to over-specify model order to cover weakly-excited 

modes, but spurious modes increase with model order increasing. These spurious modes 

must be singled out in the subsequent procedure. On the other hand, the value of 𝑖 

determines the size of the response covariance function. The smaller 𝑖 may fail to identify 

the fundamental mode, but the larger value of 𝑖 yields more spurious modes and increases 

computational time. The value of 𝑖 may be chosen at least estimated value as follows (Fan 

et al., 2019): 

𝑖 ≥ 𝑇3/𝑡   (3.11) 
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where 𝑇3  denotes fundamental period, (unit: second); 𝑡 denotes sampling interval, (unit: 

second). 

3.3 A two-stage automated modal identification 

 In this section, a two-stage framework for automated SSI is proposed. The flowchart 

of the entire automated process in detail is presented in Figure 3.2. At the pre-processing 

stage including conventional modal validation criteria and a new additional uncertainty 

criterion are included. Subsequently, the clustering stage is introduced. First, a newly 

proposed threshold calculation for clustering. An improved self-adaptive clustering is then 

employed to determine physical clusters Finally, robust outlier detection is performed to 

improve the accuracy of modal parameter estimates. The pseudocode of the proposed 

automated SSI is provided in Appendix C. 

 
Figure 3.2. A flowchart of the proposed two-stage automated SSI 
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3.3.1 The Pre-processing stage 

3.3.1.1 Modal validation criteria  

  First of all, for civil engineering structures, a negative or high damping ratio hardly 

appears in practice. Therefore, a damping ratio with less than 0 and higher than 10% is 

discarded (Cabboi et al., 2017, Fan et al., 2019).  

 Additionally, two popular modal validation criteria are used to measure the complexity 

of mode shape vectors, namely, modal phase collinearity (MPC) and mean phase deviation 

(MPD). These two indicators have been utilized by various researchers to distinguish 

physical modes from spurious modes (Reynders et al., 2012, Neu et al., 2017). The real 

(Re) and imaginary (Im) part of mode shapes display a linear correlation, which can be 

assessed by the MPC indicator. The value of MPC for the 𝑡th mode shape, 𝝓%, is expressed 

as (Reynders et al., 2012): 

MPC(	𝝓%) =
vRe(	𝝓x %)v

& + 1
𝛼 Rez	𝝓

x %9{Im(	𝝓x %9)(2(𝛼& + 1) sin& 𝛾 − 1)

vRe(	𝝓x %)v
& + vIm(	𝝓x %)v

&    (3.12) 

The 𝑘%=component of 𝝓x % is given: 𝝓x%,' = 𝝓%,' −
?!"#
$ 𝝓%,!
A

, 𝐿 is the number of components 

in 𝜙%. 

𝛼 =
vIm(	𝝓x %)v

& − vRe(	𝝓x %)v
&

2Rez	𝝓x %9{Im(	𝝓x%9)
   (3.13) 

𝛾 = arctan	(|𝛼| + sign(𝛼)C1 + 𝛼&)   (3.14) 

MPC values are dimensionless; they lie within the range of 0 and 1. MPC value closer to 

1 indicates that mode shape, 𝝓% , is more collinear and ‘monophase,’ which is usually 

regarded as a physical mode. 
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 With regard to MPD, it represents the phase degree of each identified mode shape 

vector. The value of MPD/90 lies between 0 and 1. A smaller quantity of MPD implies that 

mode shape vector is more likely to be physical. A detailed discussion can be found in 

Reynders et al. (2012). For the 𝑡th mode shape, 𝝓%, the mean phase (MP) is defined as: 

MP(𝝓%) = argBmin	(
‖Im(	𝝓%) − tan 𝜃 Re(	𝝓%)‖&

1 + tan 𝜃 )   (3.15) 

where 𝜃 is a phase angle in degree, Equation (6) can be solved by the least square as: 

MP(𝝓%) = arctan �
−𝑉)&
𝑉&&

� , 𝑈𝑆𝑉9 = [Re(	𝝓%)	Im(	𝝓%)]   (3.16) 

where 𝑼𝑺𝑽9 is singular value decomposition, 𝑉)& and 𝑉&& denotes elements (1,2) and (2,2) 

of 𝑽 matrix, respectively. Then, MPD can be determined as: 

MPD(𝝓%) =
Σ'C)A 𝜔'arccos	(Rez	𝝓%,'{𝑉&& − Imz	𝝓%,'{𝑉)&)

Σ'C)D 𝜔'
   (3.17) 

where 𝜔' is a weighting factor that equals to the 𝑘%=component of the 𝑡th mode shape, 𝝓%. 

 The selection of threshold values of MPC and MPD depends on measurement 

conditions and dynamic vibration properties. For a structure with clear linear behavior and 

high signal-to-noise ratio, the threshold of MPC and MPD can be conservatively chosen as 

0.7 and 0.3, which implies that modes whose MPC are less than 0.7 and MPD exceed 0.3 

are regarded as spurious modes. Conversely, the threshold of MPC and MPD are chosen 

as 0.3 and 0.7 in the case of structures with complex behavior (Cabboi et al., 2017, Fan et 

al., 2019). Two representative field tests with complex measurement conditions are used 

to validate the methods. Thus, the values of 0.3 and 0.7 are selected as a threshold for MPC 

and MPD, respectively, in this study. 
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3.3.1.2 Uncertainty criterion  

 Although conventional modal validation criteria remove certain spurious modes, many 

spurious modes still remain in the stabilization diagram, slowing down the following 

process (herein clustering process). More effective validation criteria should be adopted to 

delete as many spurious modes as possible. This study employed supplementary 

uncertainty criteria at the pre-processing stage to further eliminate spurious modes. 

 Uncertainty on modal parameters by SSI mainly arise from five sources: (1) finite 

number of data sample; (2) unmeasured excitation and measurement noise modeled as 

white noise; (3) the assumption of linear and stationary behavior ; (4) imperfect filter of 

data; (5) incorrect choice of model order (Reynders et al., 2008). Reynders et al. (2008) 

initially developed the uncertainty computation based on the propagation of first-order 

perturbation from measured data to modal parameters. Also, some validation and 

application are summarized in Reynders et al. (2016). 

 Later, Döhler and Mevel (2013) significantly improved the computational efficiency 

of uncertainty at multiple model orders, which has been applied in various structures 

(Döhler et al., 2013). Uncertainty quantification can provide information to measure the 

accuracy of identified modal parameters. It is the fact that the uncertainty of physical modes 

is smaller than those of spurious modes. Based on this information, coefficient of variation 

(COV) (standard derivation/mean) with respect to frequency may be used to distinguish 

physical modes from spurious modes (Döhler and Mevel, 2013).  

 Some research has introduced uncertainty features in the stabilization diagram, but 

uncertainty criterion is not used or does not contribute to further automated modal 

procedure. General procedures of uncertainty computation are summarized as follows: 
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• Input parameters: the number of block rows in Hankel matrix, 𝑞; the amount 

of data blocks,𝑛E; the range of model order, (𝑛!3*, 𝑛!"#); 

• Compute Hankel matrix,	𝑯, system state matrix, 𝑨 and output matrix, 𝑪, as 

well as observability matrix, 𝑶 , based on SSI-cov/ref, then compute 

transform matrix, 𝑻 

• Compute covariance and sensitivity of subspace matrix from SSI-cov/ref, 

given by 𝚺�F'() and 𝑱G,F, respectively 

• Compute sensitivity and covariance of system state matrix, 𝑨, and output 

matrix, 𝑪 from SSI-cov/ref, given by 𝑱H,G, 𝑱I,G and 𝚺H,I ,  respectively 

• For each mode 𝑖  at successive modal order, compute sensitivity matrix: 

𝑱0*,H , 𝑱J*,H  and 𝑱K*,H . Finally, compute covariance of modal parameters, 

frequency, 	𝑓3 , damping ratio, 𝜁3 ; mode shape, 𝝓3 : cov ��𝑓3𝜁3
� , �
𝑓1
𝜁3
��  and 

cov ��Re(𝝓3)
lm(𝝓3)

� , �
Re(𝝓1)
lm(𝝓1)

�� 

Comprehensive derivation for uncertainty estimation can be found in Döhler and 

Mevel (2013). When the COV in the frequency is chosen as a threshold (herein, 2%), 

modes with the COV of frequency larger than the threshold will be discarded. 

3.3.2 The clustering stage 

The clustering stage is sequentially performed to assemble modes based on similarities 

in modal parameters in this section. A novel method is proposed to calculate the clustering 

threshold; an improved self-adaptive clustering is then used to identify physical clusters. 
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Finally, robust outlier detection is implemented, and each representative of modal 

parameters is determined. 

3.3.2.1 Automated computation of clustering threshold 

 Typically, two kinds of thresholds are usually adopted for clustering: (1) static 

threshold; (2) automatically computed threshold. A static threshold relies on the engineers’ 

judgment. Also, during long-term health monitoring, a well-defined static threshold may 

be suitable for some initial datasets; however, there is no guarantee that the static threshold 

will be keeping appropriate for all datasets. This is more challenging in the case of handling 

massive datasets. In this study, a novel method is proposed to calculate the clustering 

threshold based on possible physical modes at the pre-processing stage. First, the mutual 

distance between the two modes is defined as:  

distance =
�𝐹3 − 𝐹1�

max	(𝐹3 , 𝐹1)
+ 𝜔(1 −

(𝚽3
9𝚽1)&

(𝚽3
9𝚽3)(𝚽19𝚽1)

)  (3.18) 

where 𝐹3 = 𝑓3 + 2𝜎0* , 𝐹1 = 𝑓1 + 2𝜎0+ , 𝑓3  and 𝑓1  are 𝑖%=  and 𝑗%=  identified frequency at a 

pre-processing stage, respectively; 𝜎0*  and 𝜎0+  are corresponding standard derivation, 

respectively; 𝚽3 = 𝝓3 + 2𝜎K*, 𝚽1 = 𝝓1 + 2𝜎K+, 𝜙3 and 𝜙1 are 𝑖%= and 𝑗%= mode shapes at 

the pre-processing stage, respectively; 𝜎K* and 𝜎K+ are corresponding standard derivation, 

respectively. 𝜔 is a weighting factor of mode shape difference, 𝜔 =
(L,*(L,+)

&
. 

Eq. (3.18) does not consider the damping ratio difference because it is difficult to 

accurately measure the damping ratio in practice. In addition, there is a high probability of 

two different modes with a similar damping ratio. A weighting factor, 𝜔 , represents 

different participation for frequency difference and mode shape difference. Generally, 
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mode shape is measured with limited sensors, yielding missing components of mode shape; 

frequency is usually measured with an accurate level. Therefore, the use of 𝜔 can reduce 

the effect of measurement inaccuracy of mode shapes on distance calculation (Boroschek 

and Bilbao, 2019). An uncertainty quantification using standard derivation is used to form 

a weighting matrix for Finite Element Model Updating (Yang and Lam, 2018b). Similarly, 

this work adopted the average of the standard derivation of mode shapes to define 𝜔. 

Furthermore, as uncertainty on modal parameters is inevitable in practice, it is more 

reasonable to incorporate uncertainty in distance calculation. Here, two standard 

derivations are considered in Eq. (3.18). 

At the next model order, the mutual distance between one mode and all other modes is 

computed by Eq. (3.18), then the minimum distance is determined. Assuming 𝑛 modes 

have been identified at the pre-processing stage, each mode has its minimum mutual 

distance with forming a minimum distance vector, 𝑽 = (𝑑!3*) , 𝑑!3*& , 𝑑!3*; ⋯𝑑!3** ), (𝑛 

denotes the number of modes, 𝑑!3* denotes the minimum distance between one mode and 

all other modes). Finally, the sum of mean and two standard derivations of 𝑽 are used to 

compute the clustering threshold, �̅� (Reynders et al., 2012): 

�̅� = �̅� + 2𝜎¤   (3.19) 

Generally, modal features are usually assumed to follow Gaussian normal distribution, 

such as frequency, damping ratio and mode shape (MAC value) (Au, 2011b). In this study, 

Eq. (3.18) defines modal distance which is the sum of frequency difference and mode shape 

difference between two modes. Therefore, modal distance turns out to be Gaussian normal 

distribution. Two standard derivations in Eq. (3.19) guarantee the distance between two 
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modes should be captured within a 95% confidence interval with the assumption of 

Gaussian distribution. 

3.3.2.2 Mode clustering 

 Mode clustering starts with a calculated threshold in former section to group individual 

physical modes with similar modal characteristics. This study adopts self-adaptive 

clustering (Cabboi et al., 2017) to accomplish automated process. But different from 

original work (Cabboi et al., 2017), a weighted distance with an uncertainty of modal 

parameters is proposed. The 𝑖th weighed distance at model order, 𝑛, is defined as: 

𝑑*,3 = �
�𝐹¥M − 𝐹*,3�

𝐹¥M
� + 𝑐z1 −𝑀𝐴𝐶(𝚽x M , 𝚽*,3){   (3.20) 

where 𝐹¥M = 𝑓M + 2𝜎0N- , Φx M = 𝜙¥M + 2𝜎KO- , 𝐹*,3 = 𝑓*,3 + 2𝜎0.,* , 𝚽*,3 = 𝝓*,3 + 2𝜎K.,* . 𝑓M  and 

𝝓xM are mean frequency and mean mode shape at the 𝑧𝑡ℎ cluster, respectively; 𝜎0N- and 𝜎KO- 

are corresponding mean standard derivation at the 𝑧𝑡ℎ cluster. 𝑓*,3  and 𝝓*,3  are the 𝑖𝑡ℎ 

frequency, and mode shape at model order, 𝑛 , respectively; 𝜎0.,*  and 𝜎K.,*  are 

corresponding standard derivation, respectively. 	𝑀𝐴𝐶  represents the modal assurance 

criteria (Pastor et al., 2012). 𝑐 is a weighting factor to reduce the effect of inaccurate mode 

shape on distance calculation (𝑐 =
L,/-(L,.,*

&
). 

 
Figure 3.3. The flowchart of an improved self-adaptive clustering 
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 The major benefits of clustering technique used in this study include: 1) empirically 

assumptions on the number of clusters are not required; 2) clustering starting threshold is 

calculated rather than user-defined; 3) the threshold is iteratively trained with accumulative 

modes; 4) simple implementation and fast computation.  

 Eq. (3.18) and (3.20) are similar; both consider the uncertainty of parameter estimates 

and the importance of mode shape difference. Figure. 3.3 shows the flowchart of an 

improved clustering strategy. A more detailed introduction of self-adaptive clustering is 

referred to Cabboi et al. (2017). 

3.3.2.3 Robust outlier detection 

 The number of physical poles in the stabilization diagram has trends with the increase 

of model order, exhibiting variability of modal estimates (Neu et al., 2017). The 

phenomenon more frequently appears in the damping ratio because the damping ratio has 

a high scattered nature. Outlier detection is applied to penalize undesirable modes in the 

final clusters for reducing identification variance from different measurements. In this 

study, robust outlier detection based on the minimum covariance determinant (MCD) is 

employed to identify outlying values from physical clusters. A robust distance (RD) is 

defined as: 

RD(𝑥) = d(𝑥, �̂�PIQ , ΣNPIQ)   (3.21) 

where observation sample, 𝑥,	is either frequency or damping ratio in a physical cluster in 

our case. �̂�PIQ is the MCD estimates of location;  ΣNPIQ is the MCD covariance estimate. 

Explicit derivation and introduction can be found in Hubert et al. (2017). 
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 A robust MCD estimator based on Eq. (3.21) is very powerful to flag outliers, as RD 

in Equation (12). It is not sensitive to diagnostic tools' masking effect compared to 

statistical distance and Mahalanobis distance (Cerioli, 2010). Also, MCD has a high 

resistance to outliers and are more robust and efficient (Hubert et al., 2017). Furthermore, 

MCD has the advantage of requiring no user-defined threshold, like a box-plot method that 

needs to define limit bounds (Sarlo and Tarazaga, 2019). Robust outlier detection in this 

work can be done by the function‘robustcov’ in MATLAB.  

 After outlier removal, the average frequency, damping ratio, and mode shape in each 

physical cluster are taken as a representative. For evaluating the quality of each identified 

cluster, uncertainty on the 𝑧𝑡ℎ  physical clusters are quantified by Euclidean norm of 

uncertainty on modal parameters: 

𝜎M = ®(�̄�0,M& + �̄�K,M& + �̄�R,M& )   (3.22) 

where 𝜎M is the standard derivation of the 𝑧𝑡ℎ clusters; �̄�0,M, �̄�K,M, and �̄�R,M are the average 

values of standard derivations of all frequencies, damping ratios, and mode shapes in the 

𝑧𝑡ℎ clusters.  

3.4 Illustrative examples 

 In this section, the performance of the proposed automated SSI is validated by two field 

tests on the bridge, namely, the Dowling Hall Footbridge located at Turfs University in the 

U.S. and the Z24 bridge benchmark located in Switzerland. The data are open sources, and 

many researchers used these data to test the algorithms in the research community.  
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3.4.1 Application 1: Dowling Hall Footbridge 

 Dowling Hall Footbridge is located at Tufts University, as shown in Figure 3.4 (a). The 

bridge is a two-span steel frame bridge, 144 ft (44 m) long and 12 ft (2.7 m) wide with a 

reinforced concrete deck. A continuous health monitoring was designed and performed on 

Dowling Hall Footbridge from January 2010 to May 2010. The layout of eight 

accelerometers is shown in Figure 3.4 (b). More details of Dowling Hall Footbridge's 

information can be found in Moser and Moaveni (2011). In this study, the first six modal 

characteristics are used as baseline results that are obtained from the literature (Moser and 

Moaveni, 2011) to evaluate the performance of the proposed approach. 

 The acceleration data used in this study are obtained from vertical measurement under 

ambient excitation collected in the first week at 1:00 P.M. on January 7th, 2010. The 

frequency range of interest is 0-30Hz. The sampling frequency is 128Hz. Preparation 

parameters for SSI-cov/ref in this application are: 𝑖 = 60 , model order 𝑛 = 40~150 , 

reference sensor = (1,2,3,4,5,6,7,8).  

 

 

 (a)   (b) 
Figure 3.4. Description of Application 1: (a) Dowling Hall Footbridge; (b) Sensor layout 
(Moser and Moaveni, 2011) 
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3.4.1.1 Identification results 

The proposed approach described in Section 3.3 is utilized to analyze measured data. 

Figure 3.5 (a)-(c) show modal identification results at the pre-processing stage. The 

singular value spectrum (appeared in the curves in Figure 3.5) is plotted below the 

stabilization diagram. The standard derivation (±𝜎) uncertainty bounds of the frequency 

are shown as horizontal bars.  

  
(a)   (b) 

 
(c) 

        Figure 3.5. Identification results: (a) after conventional validation criteria; (b) after   
uncertainty criterion (c) after improved self-adaptive clustering  

Figure 3.5 (a) displays all possible physical modes remaining in the stabilization 

diagram after applying conventional validation criteria, e.g., damping ratio check and 

modal complexity check. Figure 3.5 (b) shows the stabilization diagram filtered by a 
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supplementary uncertainty criterion. It is observed only using conventional validation 

criteria, the stabilization diagram still looks busy, including lots of scattered poles, which 

are spurious modes. However, uncertainty criterion can eliminate as many spurious modes 

as possible compared to conventional validation criteria, which will speed up later 

automated processes. The pre-processing stage's identification results demonstrate that the 

uncertainty criterion is more effective than conventional validation criteria. 

The clustering stage then starts with a calculated clustering threshold using Eqs. (3.18) 

and (3.19) based on the remaining modes in Figure 3.5 (b). The proposed method's 

calculated threshold in this example is 0.022, while without the weighting factor, 𝜔,it is 

0.0488. It implies the stricter threshold by Eqs. (3.18) and (3.19) that allows removing more 

spurious modes with keeping physical modes. Furthermore, the updated threshold by 

improved clustering with Eq. (3.20) is 0. 0086. Still, the original work (distance calculation 

without weighting factor) gives the updated threshold as 0.0304, indicating that the 

weighted distance tends to give a smaller value of the updated threshold.  

The identified modes are more consistent and stable. It may be attributed to the use of 

𝜔 can improve the accuracy of measured mode shapes by distance calculation. Figure 3.5 

(c) shows the modal identification results after performing the improved self-adaptive 

clustering. It is observed that clustering procedures remove spurious modes, the 

stabilization diagram is clarified with only remaining stable modes (vertical alignments). 

The first six modes in the reported work (Moaveni and Behmanesh, 2012) are used as a 

baseline for comparison, marked as M) to MS (A total of six clusters) in Figure 3.5 (c). It 

is noted that MT and MS are closely spaced modes, which are a common challenge in the 
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OMA. The robust outlier detection is to remove outlying frequencies and damping ratios. 

As seen in Figure 3.6 (b), damping ratios are tighter and more consistent.  

    
    (a)                                   (b) 

   Figure 3.6. Damping ratio vs frequency: (a) before outlier detection; (b) after outlier 
detection 

 
Table 3.1 presents identified frequencies and damping ratios along with the baseline 

data. Identified frequencies in this work agree well with those in the literature; the 

maximum relative difference (2.05%) is observed in the third mode. While larger variation 

is found in terms of damping ratio. It is because two tests were performed at a different 

time. Moaveni and Behmanesh (2012) reported baseline data, measured on April 4, 2009. 

In this study, measured data was collected on January 7, 2010. When considered the effect 

of environmental variables such as temperature, it is not surprising to have these 

differences. The frequency is less sensitive to environmental effects than the damping ratio.  

Table 3.1. Identification results 

Modes 
Frequency (Hz) Damping ratio (%) 

Baseline* The proposed approach Baseline* The proposed approach 
1st (M)) 4.63 4.63 1.0 0.8 
2nd (M&) 6.07 6.04 0.6 0.1 
3rd (M;) 7.07 7.21 0.7 0.6 
4th (MU) 8.90 8.95 0.3 0.1 
5th (MT) 13.13 13.24 0.8 0.1 
6th (MS) 13.56 13.46 1.1 1.1 

Note: *: Moaveni and Behmanesh (2012) 
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   (a)     (b) 

Figure 3.7. Error bar of frequency (left, ±	2𝜎) and damping ratio (right, ±	𝜎) 
   
Table 3.2. Uncertainty of physical clusters 
No. cluster 1 2 3 4 5 6 
S.D. (%) 0.184 0.001 0.430 0.010 0.119 2.712 

  Note: S.D. denotes standard derivation 

The uncertainty on modal parameters and physical clusters are also investigated in this 

example. The frequency and damping ratio in each mode are plotted as an open circle 

overlapping the standard derivation (𝜎) error bar in Figure 3.7. And the uncertainty of 

modal frequencies is much smaller than those of damping ratios. It is often more difficult 

to accurately measure the damping ratio in practice. The uncertainty of identified physical 

clusters is also quantified by Eq. (3.22) and shown in Table 3.2. And the uncertainty of the 

sixth cluster is much larger than those of others, suggesting it is more challenging to 

identify the sixth cluster because this cluster contains weakly-excited and closely spaced 

modes. 
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Mode1: Frequency=4.632Hz, 𝜉=0.808% Mode2: Frequency=6.042Hz, 𝜉=0.069% 

  
Mode3: Frequency=7.215Hz, 𝜉=0.631% Mode4: Frequency=8.948Hz, 𝜉=0.056% 

  
Mode5: Frequency=13.244Hz, 𝜉=0.117% Mode6: Frequency=13.464Hz, 𝜉=1.113% 

  
       Figure 3.8. Identified mode shapes by the proposed approach and ±2𝜎  uncertainty 

bounds (blue dashed lines) 

Overall, the proposed approach successfully identifies six modes under ambient 

vibration, as shown in Figure 3.8. The first six global mode shapes with corresponding 

uncertainties are presented; ±2𝜎  uncertainty bounds are plotted as blue dashed lines. 

Identified mode shapes have good agreement with those identified in the reported work 

(Moaveni and Behmanesh, 2012). Modes 3 and 4 are bending-torsional mode with evident 

rotational motion, while only vertical deformation is found on other modes. In addition, 

uncertainty bounds for all modes are narrow, which concludes that the identification of 

mode shapes is accurate. 
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Mode1 Mode2 

  
Mode3 Mode4 

  
Mode5 Mode6 

  
Figure 3.9. Identified frequency of with two-month data. Black solid lines: 

frequency estimates; grey shaded areas: ±two standard derivations 
 
 For continuous SHM, it is crucial to track the change of modal parameters over time. 

In this example, the proposed approach is applied to modal tracking with measured data 

collected at every 1:00 P.M. from January 5th to February 28th, in 2010 (total 55 datasets). 

The same procedures as the former data analysis are applied for modal tracking.  

 As shown in Figure 3.9, solid black lines indicate frequency estimates, and grey areas 

cover ±2 standard derivations. All six modes are identified and tracked for all datasets by 

the proposed approach. It is not surprising that frequencies varied over time, mainly 
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because of environmental change and ambient excitation's randomness. The frequency at 

mode 6 has a relatively larger variation for two months, as this mode is not excited well 

and unstable to environmental change. The results illustrate the proposed approach can 

analyze massive datasets with minimum human intervention. 

3.4.1.2 Sensitivity analysis  

  
(a) (b) 

Figure 3.10. Frequencies at different parameters: (a) model order range sensitivity (fixed 
𝑖 = 60); (b) time lag range sensitivity (fixed 𝑛!"# = 100) 

 Two preparation parameters in SSI, e.g., maximum model order, 𝑛!"#, and time lag, 𝑖, 

significantly affect identification results. The influence of 𝑛!"#  and 𝑖 is investigated to 

demonstrate the proposed approach is robust to their choice. 𝑛!"# and 𝑖 are varied from 

70 to 160 and 30 to 120 in intervals of 10, respectively. As shown in Figure 3.10, identified 

frequencies are almost invariant to a different choice of 𝑛!"#  and 𝑖 , suggesting the 

proposed approach is robust and not sensitive to these two preparation parameters. It is 

very difficult to identify the best 𝑛!"# and 𝑖 in practice (Ubertini et al., 2013, Neu et al., 

2017). Thus, insensitivity to them allows to more conveniently perform automated OMA 

and continuous health monitoring. 
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Figure 3.11. Frequencies at different COV threshold: (𝑖 = 60; 𝑛!"# = 100) 

 On the other hand, a different choice of uncertainty threshold (COV of frequency) is 

utilized to evaluate its effect on identification results. The uncertainty threshold is varied 

from 1% to 5% in the interval of 1%. As shown in Figure 3.11, the proposed approach 

yields almost the same frequencies regardless of COV thresholds, indicating a COV 

threshold can be safely chosen in the range of 1% ≤ COV ≤ 5%. 

3.4.2 Application 2: Z24 bridge 

 The proposed approach is also applied to the Z24 bridge benchmark to validate its 

performance. The Z24 bridge was built in 1963 and located in Switzerland, serving to 

connect Koppigen with Utzenstorf and crossing over the A1 highway (See Figure 3.12 (a)). 

It is a post-tensioned concrete box-girder bridge with a main span of 100 ft (30 m) and two 

sides span of 46 ft (14 m). Detailed Introduction of the Z24 bridge can be found in Maeck 

and De Roeck (2003). The Z24 bridge was demolished at the end of 1998. Before the 

complete demolition, a short-term progressive damage test was implemented on the bridge 

to investigate the effect of simulated damage on the safety of the bridge.  
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                         (a)                                                                            (b) 
  Figure 3.12. Description of the Z24 bridge: (a) Front and Top view; (b)  sensor layout 

(Maeck and De Roeck, 2003) 

 A total of 17 different damage scenarios were designed under full forced and ambient 

excitation (Reynders and Roeck, 2009). In this work, acceleration response data from the 

scenario of No.8 for the new reference condition under ambient excitation is used to assess 

the proposed approach. A total of 291 DOFs were measured (See Figure 3.12 (b)). Due to 

the limited number of sensors, only at most 33 DOFs were measured for each set-up. 

Therefore, nine measurement set-ups were recorded with most 33 sensors to have full 

location coverage of the whole bridge, containing five reference sensors that are common 

to each set-up and 28 moving sensors whose location changes with different set-ups. For 

the No.5 set-up, only 22 moving sensors were used. Samples of 65536 data were recorded 

at each set-up at a 100 Hz sampling rate. 

 For each dataset, preparation parameters in SSI-cov/ref are defined as: time lag is 𝑖 =

50, model order ranges from 2 to 120, to create stabilization diagrams. Reference sensors 

are selected as No. 29-33 (for set-up No.5, as No. 23-27). After the stabilization diagram 

is created, the proposed approach is applied to automatically interpret the stabilization 

diagram.  
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3.4.2.1 Identification results 

 Nine stabilization diagrams corresponding to each set-up are created; results of the fifth 

set-up are only presented in Figure 3.13 due to space limitation in this paper. The singular 

value spectrum (appeared in curves in Figure 3.13) is also plotted below the stabilization 

diagram. ±𝜎  (Standard derivation) uncertainty bounds of frequency are plotted as 

horizontal bars. Figure 3.13 (a) displays modal identification results using conventional 

validation criteria, many scattered poles which are definitely spurious modes, still retain in 

the stabilization diagram. However, the uncertainty criterion can remove most spurious 

modes, demonstrating that the uncertainty criterion is more effective than conventional 

validation criteria (See Figure 3.13 (b)). 

  
  (a)     (b) 

 Figure 3.13. Pre-processing stage for No. 5 set-up: (a) after validation criteria; (b) 
after uncertainty criterion 

 
 Based on the remaining poles in the stabilization diagram after the pre-processing stage, 

the clustering threshold for each measurement set-up is calculated using Eqs. (3.18) and 

(3.19). As shown in Figure 3.14 (a), all threshold values are significantly reduced compared 

to those calculated without weighting factor, as weighting factor can offset the effect of 

mode shape difference. Manual clustering thresholds in commercial OMA software are 
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usually below 0.06 (Neu et al., 2017). The threshold derived from the newly proposed 

method is closer to the one from manual analysis, indicating proposed method’s rationality 

and feasibility in practice. Mode clustering is then implemented to group physical modes. 

The number of scattered poles is greatly removed by the proposed approach, only 

remaining obvious vertical alignments in the stabilization diagram in Figure 3.14 (b). 

  
(a) (b) 

Note: 𝜔 is weighting factor in Eq.(3.18)        
   Figure 3.14. The clustering stage for No. 5 set-up: (a) calculated clustering threshold; 

(b) after improved self-adaptive clustering  
 

 
                 Note: c is the weighting factor in Eq. (3.20) 

Figure 3.15. Updated threshold 
 

In addition, an improved self-adaptive clustering that considers the weighting factor of 

𝑐  in Eq. (3.20) tends to give a smaller updated threshold, implying identified modal 

parameters are more stable and consistent with each other (See Figure 3.15). The use of 
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the weighting factor can improve the performance of clustering. Because only the first six 

modes are present in baseline work (Reynders et al., 2012), the first six clusters are 

presented in Figure 3.14 (b), marked as P) to PS. Robust outlier detection is used to identify 

outlying modes (See Figure 3.16). Finally, the average of modal parameters in each cluster 

is selected as representative.  

   
(a) (b) 

      Figure 3.16. Damping ratio vs frequency: (a) before outlier detection; (b) after outlier     
detection 

Table 3.3 shows the sample mean and sample standard derivation of frequency and 

damping ratio over nine measurement set-ups obtained from the proposed approach. The 

standard deviation in Table 3.3 represents the setup-to-setup sample statistics among all 

set-ups. The calculation of sample standard derivation (S.D.) in Table 3.3 only considers 

the environmental change among different set-ups rather than uncertainty sources. It is seen 

from Table 3.3 that the damping ratio has more significant variability than frequency, 

implying it is more challenging to identify damping ratio in practice, as the damping ratio 

is sensitive to environmental change. Overall, the proposed approach's identified 

frequencies and damping ratios are almost identical to those from baseline work, 

demonstrating low demand for human intervention. 
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Table 3.3. Identification results 

Modes 
Frequency (Hz) Damping ratio (%) 

Baseline* S.D. Proposed 
approach S.D. Baseline* S.D. Proposed 

approach S.D. 

1st (P)) 3.86 0.01 3.86 0.01 0.8 0.1 0.74 0.11 
2nd (P&) 4.90 0.01 4.91 0.02 1.4 0.2 1.38 0.15 
3rd (P;) 9.76 0.02 9.77 0.04 1.4 0.2 1.34 0.21 
4th (PU) 10.3 0.09 10.28 0.03 1.3 0.2 1.30 0.19 
5th (PT) 12.41 0.19 12.44 0.19 2.8 0.4 2.91 0.53 
6th (PS) 13.22 0.15 13.25 0.14 3.4 1.1 3.54 0.66 

Note: *: Reynders et al. (2012).     

Uncertainties of modal parameters airing from assumptions made in SSI, such as linear, 

stationary structural behavior, white noise, etc., are also studied. Figure 3.17 shows the 

variability of frequency and damping ratio from modes 1 to mode 6 across nine 

measurement set-ups, respectively, with open circles representing the parameter estimates 

and error bars covering ±	2𝜎 standard derivations. Both frequencies and damping ratios 

change over time, while the damping ratios have larger uncertainties. The negative 

damping ratio is immaterial in Figure 3.17 (b), such as mode 5 at No. 4 set-up and mode 6 

at No. 1 set-up, merely because of the Gaussian distribution approximation and the larger 

standard derivation. Mode 6 has relatively larger uncertainty since the mode is not excited 

well.  

Table 3.4 presents the average of standard derivation for each cluster over nine 

measurement set-ups using Eq. (22). As expected, the sixth cluster has the highest 

uncertainty, implying it is relatively harder to identify this cluster, which is also reflected 

in Figure 3.14 (b) that the sixth vertical alignments from the left form at a very ambiguous 

peak. Generally speaking, quantities of identified frequency and damping ratio are 
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consistent from one to another set-up numbers., suggesting robust and fair performance on 

modal analysis.  

 

 
(a) 

 
(b) 

  Figure 3.17. ±	2𝜎 standard derivation error bar ratio across nine setups: (a) frequency; 
(b) damping ratio 

Table 3.4. Average of standard derivation for physical clusters among nine setups 
No. cluster 1 2 3 4 5 6 
S.D. (%) 0.56 1.37 3.06 5.25 10.19 17.61 

The global mode shapes are directly assembled from a local one in a single dataset by 

multiplying by a scaling factor so that their common DOFs, at the location of reference 
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sensor, agree well with each other through data fitting, namely, the method of the least 

squares. For the sake of article spaces, detailed procedures for calculating scaling factors 

are referred to work (Au, 2011a).  

 
Mode1: Frequency=3.86Hz, 𝜉=0.737% 

 
Mode2: Frequency=4.91, 𝜉=1.376% 

  
Mode3: Frequency=9.77Hz, 𝜉=1.338% Mode4:Frequency=10.28Hz, 𝜉=1.305% 

  
  

Mode5: Frequency=12.44Hz, 𝜉=2.908% Mode6: Frequency=13.25Hz, 𝜉=3.540% 

  
 

Figure 3.18. Mode shapes of the Z24 bridge 
 

As seen in Figure 3.18, the entire six modes are successfully identified from vibration 

response in all the nine measurement set-ups, which are in good accordance with those in 

Reynders et al. (2012). Mode 1 is a typical bending mode with a symmetric shape that has 
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the maximum deflection at midspan. Mode 2 is the first torsional mode with a slight 

rotational dynamic behavior along y-axis (transverse direction). Similar to mode 2, but 

more significant rotation is observed on modes 3 and 4; they are another two torsional 

modes. Modes 5 and 6 are vertical modes with asymmetric shapes.  

Furthermore, five mode shapes at the only vertical direction (corresponding z-axis in 

Figure 3.18) and one mode shape at the only transverse direction (corresponding y-axis in 

Figure 3.18) are also presented in Figures. 3.19 and 20, ±2𝜎 uncertainty bounds are plotted 

as blue dashed lines. Figure 3.19 shows only mode 6 has relatively wider uncertainty 

intervals since it is weakly-excited, while others have narrow bounds, implying mode 

shapes are identified with an accurate level. 

 
Mode1 

 
Mode3 

  
 

Mode4 
 

Mode5 

  
Mode6 

 
Figure 3.19. Mode shapes at X-Z plane with  ±2𝜎 uncertainty bounds 

 
Mode2 

 
Figure 3.20. Mode shape at X-Y plane with ±2𝜎 uncertainty bounds (not visible) 
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To further investigate the performance of the proposed approach for continuous health 

monitoring. As seen in Table 3.5, the proposed approach is applied to eight different 

damage scenarios during the short-term progressive damage test.   

Table 3.5. Damage scenarios during the progressive damage test in 1998  
Measurement No Date Scenario 

1 04, August First reference measurement 
2 09, August Second reference measurement 
3 10, August 20mm settlement of pier 
4 12, August 40mm settlement of pier 
5 17, August 80mm settlement of pier 
6 18, August 95mm settlement of pier 
7 19, August Tilt of foundation 
8 20, August Third reference measurement 

 

  

  

  
Figure 3.21. Identified frequencies for different damage scenarios 
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A total of 72 datasets consists of nine individual measurement setups for each damage 

scenario. The tracked frequencies, damping ratios, and associated uncertainty are plotted 

in Figures 3.21 and 3.23, with sample mean (solid black lines) and two averages of standard 

derivation (grey shaded areas) among all measurement set-ups. It is observed that the 

maximum frequency happened at scenario No. 1 corresponding to undamaged condition; 

the minimum frequency happened at modes 1, 3 ,4, and 5 in scenario No. 6 and modes 2 

and 6 in scenario No. 7 for corresponding to 95 mm settlement of pier and tilt foundation.   

As seen in Figure 3.22, damage scenarios in Table 3.5 have significant effect on 

frequency, especially when the pier is settled, and foundation is tilted. For example, 

frequency reduction at modes 1, 3, 4 and 5 reaches the maximum magnitude when the pier 

has the maximum settlement, 95 mm, ranging from 5.93% to 8.08%. On the other hand, 

modes 2 and 6 have the maximum frequency reduction of 9.06% and 3.66%, respectively, 

due to foundation’s tilt, respectively. In contrast, 95-mm pier settlement still impairs on 

frequency, suggesting pier and foundation may be paid more attention during SHM. 

 
Figure 3.22. Frequency change due to damage 
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Figure 3.23. Identified damping ratio for different damage scenarios 

 
Figure 3.23 shows the variability of damping ratio is smaller than of frequency, 

implying damping ratio is not sensitive to global damage scenarios in Table 3.5, but the 

damping ratio has much larger uncertainty. The results demonstrate potential benefits to 

handle a large amount of data with an acceptable level of performance while reducing 

human involvement. Therefore, the proposed approach is suitable for continuous health 

monitoring and modal tracking. 

 
3.4.2.2 Sensitivity analysis 

 To examine the performance of the proposed approach in case of a different 

combination of preparation parameters in SSI-cov/ref, e.g., the maximum mode order, 



80 
 

𝑛!"#, and time lag, 𝑖, the sensitivity analysis is conducted for No. 5 measurement setup in 

this example. 𝑛!"# and 𝑖 range from 70 to 160 and from 30 to 120, respectively.  

 As seen in Figure 3.24, the proposed approach has consistent behavior for identifying 

six modes using different SSI-cov/ref preparation parameters. Similar to Application 1, 

Figure 3.25 shows that any threshold between 1	and	5% yields the same outcomes. The 

sensitivity analysis demonstrates that the proposed approach is insensitive to two crucial 

parameters in SSI-cov/ref: model order and time lag. Generally, model order is over-

estimated to identify weakly excited modes, yielding more spurious modes; a small value 

of time lag may fail to generate enough stable poles in the stabilization diagram. It is very 

difficult to determine the best model order and time lag in real test. The proposed approach 

provides more flexibility for the selection of the two parameters, significantly facilitating 

automated modal identification in practice. 

  
  (a)    (b) 

Figure 3.24. Frequencies at different parameters: (a) model order range sensitivity (fixed 
𝑖 = 50); (b) time lag range sensitivity (fixed 𝑛!"# = 90) 
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Figure 3.25. Frequencies at different COV threshold: (𝑖 = 50, 𝑛!"# = 120) 

3.4.3 Practical aspects  

 The proposed approach accurately identifies the modes of interest and concurrently 

eliminates spurious modes. The weakly excited and closely spaced modes are identified on 

two bridges under ambient vibration. The procedures only require a few initial parameters 

setting, e.g., model order range, time lag, the threshold of MPC/MPD, and uncertainty 

criterion. In short, the proposed approach is insensitive to these parameters, especially, two 

crucial parameters: model order and time lag.  

Table 3.6. Recommendations on initial parameters under complex test condition 
Initial parameters 𝑛!"# 𝑖 MPC MPD COV 

Recommendation 100-160 2-3 times  
of Equation (2) 0.3 0.7 1%-5% 

Note: 𝑛!"# is the maximum model order; 𝑖 is time lag; MPC is modal phase collinearity; MPD is 
mean phase deviation; COV is coefficient of variation of frequency. 
 

Some recommendations are summarized in Table 3.6. Both 𝑛!"#  and 𝑖  are over-

defined, yielding spurious modes, but the proposed approach will remove them. MPC and 

MPD can be regarded as standard values, with no need for adjustment. Uncertainty 

threshold, COV, can also be safely chosen in the range of 1-5%. In addition, two-month 

period data (55 datasets: Application 1) and short-term progressive damage test (72 

datasets: Application 2) demonstrates the feasibility of automated OMA and modal 

tracking of massive data for continuous health monitoring.  
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3.5 Conclusions 

 This chapter presented a novel two-stage framework for automated OMA based on SSI-

cov/ref. Firstly, a stabilization diagram is created by SSI-cov/ref. Two-stage framework, 

e.g., pre-processing stage and clustering stage, is then implemented to interpret the 

stabilization diagram with low demand of user intervention. Two field tests on the bridge 

are employed to validate the capability of the proposed approach. The proposed framework 

has a minimal user’s involvement to achieve sufficient accuracy. Therefore, the proposed 

work is suitable for long-term health monitoring, e.g., modal tracking. The conclusion is 

summarized as follows: 

• The uncertainty criterion is efficient in eliminating many undesired modes at the 

processing stage, which speeds up the later automation process.   

• A novel distance calculation with the uncertainty of modal parameters and 

weighting factor yields a reasonable threshold for clustering.  

• An improved self-adaptive clustering is proposed based on weighted distance 

calculation with the uncertainty of modal parameters.  

• The improved clustering strategy has following features: 1) empirically 

assumptions on the number of clusters are not required; 2) clustering starting 

threshold is calculated rather than user-defined; 3) the threshold is iteratively 

trained with accumulative modes; 4) simple implementation and fast computation. 

• The uncertainty on modal parameters and identified physical clusters are also 

quantified and providing additional information about quality of identified results.  

• A robust outlier detection requiring no setting of threshold improves modal 

parameters' accuracy.  
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 CHAPTER 4 

AUTOMATED BAYESIAN MODAL IDENTIFICATION (BMI) 

4.1 Introduction 

 Bayesian modal identification (BMI) method has been developed progressively in 

recent years. BMI method has remarkable advantages, for example: (1) Psychical 

modelling assumptions are strictly obeyed; (2) Formulation allows to make full use of data. 

(3) Measured data is directly analyzed by FFT without any approximately system matrices. 

(4) It can identify additional two modal parameters, namely, spectral density of the modal 

excitation and that of prediction error, but also offers quantitative assessment of the 

accuracy (Au, 2011b, Au, 2012a). BMI method assumes modal identification is a 

probability problem which is used to measure the plausibility of identified modal 

parameters given model class and measured data (Cox, 1963, Beck and Katafygiotis, 1998, 

Jaynes, 2003). For ambient vibration, Katafygiotis and Yuen are pioneers to establish the 

framework of BMI and developed fundamental theory (Katafygiotis and Yuen, 2001, Yuen 

and Katafygiotis, 2001, Yuen et al., 2002a, Yuen et al., 2002b, Yuen and Katafygiotis, 

2003). The values of mean and covariance matrix of posterior PDF represent the most 

probable values (MPV) of modal parameters and associated uncertainty, respectively. To 

more efficiently perform Bayesian OMA, Au (Au, 2011b, Au, 2012a, Au, 2012b) proposed 

a fast Bayesian Fast Fourier Transform (FFT) to deal with different types of modes (i.e., 
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well-separated and closely spaced modes (Au, 2011b, Au, 2012b) and different types of 

data (i.e., single setup and multiple-setup data (Zhu et al., 2021c), synchronized and 

asynchronized data (Zhu et al., 2018). In fast Bayesian FFT, the MPVs and covariance 

matrix are computed by a condensed form of objective function and analyzing a single 

mode in the selected frequency band. In the framework of fast Bayesian FFT, five modal 

parameters can be well estimated, i.e., natural frequency, damping ratio and mode shape, 

power spectral density (PSD) of the modal force and that of prediction error. MPVs of 

modal parameters could be quickly calculated, covariance matrix has also been analytically 

formulated by Hessian matrix of posterior PDF rather than adopting finite difference 

method. Consequently, the computational effort connected with the number of measured 

degrees of freedom (DOFs) is significantly reduced. Later, Li and Au (2019) applied 

expectation-maximization (EM) algorithm to fast Bayesian FFT so that convergency speed 

is noticeably improved.   

 Although fast Bayesian FFT has been successfully applied to various civil 

infrastructure, such as buildings (Au et al., 2012, Zhang et al., 2016d, Zhu et al., 2018), 

bridges (Au and Zhang, 2011, Ni et al., 2015, Zhang et al., 2016b), TV towers (Zhang et 

al., 2016c), the major challenge of fast Bayesian FFT is choice of two important factors, 

namely, initial frequency and frequency bandwidth. The appropriate initial frequency and 

frequency bandwidth are the prerequisite to perform fast Bayesian FFT, poorly estimated 

these two factors may lead to incorrect modal identification. Traditionally, initial frequency 

is visually picked from singular value (SV) spectrum, relying on empirical observation and 

qualitative judgement. Furthermore, multiple peaks are usually displayed on SV spectrum 

and peaks that representing spurious modes are always inevitable. It is highly difficult to 
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manually select initial frequency and distinguish physical peaks from spurious peaks on 

SV spectrum with human effort under complex environmental condition, since at most 

situations, peaks on SV spectrum usually are not clearly visible and distributed intensively, 

even impossible to be handpicked. This situation is frequently happened to higher modes 

that is weakly excited and closely spaced modes.  

On the other hand, different choice of frequency bandwidth may lead to different 

identification uncertainty and determine what data information to be used in making 

inference of the modal parameters (Au, 2014). When selected frequency bandwidth is 

narrow, identification uncertainty may be intolerably large. But when bandwidth is wide, 

bias of identified modal parameters could become greatly remarkable (Au, 2017a). Au (Au, 

2017c) investigated the choice of frequency bandwidth and suggested that 𝜅 could range 

from 5 to 10 so that identification uncertainty will be acceptable. However, this rule of 

thumb may fail for modes with low signal-to-noise ratio or closely spaced modes. Band 

selection has been investigated in (Au, 2016b), where evidence ratios were applied to 

evaluate frequency bandwidth by considering maximum entropy principle to determine a 

representative competitive model class. It still has challenge on how to properly choose a 

frequency bandwidth before modal identification. 

 Driven by the essential demand, this chapter proposed a method to achieve the 

automation in Bayesian FFT modal identification as well as to automatically provide 

parameter uncertainty information. A stabilization diagram is firstly built and 

automatically interpreted, resulting in frequency clusters. The frequency representative of 

each cluster is then recognized as the initial frequency. Spurious modes are also cleared in 

this step. Next, the frequency band is picked through sifting frequency difference between 
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initial frequency and identified frequency, and a statistical index (e.g., mean and median) 

of modal parameters and associated uncertainty is chosen as representative. The proposed 

method is verified using a numerical example and then applied to the Z24 benchmark 

bridge for long-term data analysis. 

This chapter is outlined as follows:  a brief review of the fast Bayesian FFT is firstly 

presented in Section 4.2. The automated selection of initial frequency and frequency 

bandwidth are then presented in Section 4.3, and automated interpretation of stabilization 

diagram and selection of effective bandwidth factors are provided in Section 4.4. In section 

4.5, a numerical study and a field test of Z24 benchmark bridge are used to illustrate the 

performance of the proposed method. Finally, conclusion and discussion are given in 

Section 4.6. 

4.2 Theoretical background of fast Bayesian FFT 

 This section briefly reviews the Bayesian FFT formulation for modal identification. 

For thorough overview of original formulations, one is referred to work (Au, 2011b, Au, 

2012a). In the context of Bayesian inference, unknown excitation and dynamic response 

are modeled as stationary stochastic process. Also, unknown modal excitation is assumed 

to have complex Gaussian distribution. The measured acceleration �̈�N1  is comprised of 

theoretical response and prediction error: 

�̈�N1 = �̈�1(𝜽) + 𝑒1   (4.1) 

where �̈�1(𝜽) ∈ 𝑅*(𝑗 = 1,2⋯𝑁)  denotes theoretical response expressed with modal 

parameters 𝜽, including frequency 𝑓 , damping ratios 𝜁, mode shapes 𝚽, spectral density 

𝑺 of modal excitation and that of the prediction error 𝑆/, which is expected to be identified. 

𝑒1 ∈ 𝑅*	(𝑗 = 1,2⋯𝑁) denotes the difference between model response and measured data 
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which may result from modelling error and measurement noise, 𝑒1  is assumed to have 

complex Gaussian distribution with zero-mean. 𝑛 and 𝑁 are number of DOFs and number 

of sampling points, respectively. The FFT of �̈�N1 could be defined as: 

𝐹' = ½2∆𝑡
𝑁 ¾�̈�N1

D

1C)

exp	 À−2π𝐢
(𝑘 − 1)(𝑗 − 1)

𝑁 Ã   (4.2) 

where 𝐢𝟐 = −1. ∆𝑡 is sampling interval. 𝑘 = 1,2⋯𝑁W with 𝑁W = int(𝑁/2) + 1, 𝑁W is the 

Nyquist frequency, int(∙)is the integral part.  

 Let 𝒁' = (Re𝐹'; Im𝐹')  be a vector of the real and imaginary part of 𝐹'. In Bayesian 

modal identification, only FFT data in a selected frequency band containing modes of 

interest are used for modal identification. Denoting such FFT data as 𝒁'. Based on Bayes’ 

theorem, with sufficient data, the prior PDF is non-informative, the posterior PDF is 

dominated by likelihood function (Au, 2012a). Therefore, within the selected frequency 

band, the posterior PDF of modal parameters 𝜽 given measured data 𝒁'  is proportional to 

likelihood function and can be expressed as: 

𝑃(𝜽|{𝒁'}) ∝ 𝑃({𝒁'}|𝜽) =Ê𝜋2*|𝑪'(𝛉)|2) exp[−𝒁'9𝑪'(𝛉)2)𝒁']
'

   (4.3) 

where |∙| denotes the determinant of the term 𝑪', 𝑪' is the covariance matrix of 𝒁' and 

given as: 

𝑪' =
1
2 Ì
𝚽

𝚽
Í �Re	𝐇' −Im	𝐇' 	
Im	𝐇' Re	𝐇'

� �𝚽
𝑻 𝟎
𝟎 𝚽𝑻� +

𝑆/
2 𝐈&*   (4.4) 

where 𝚽 is mode shapes matrix. 𝑆/ is spectral density of the prediction error. 𝐈&* denotes 

2𝑛 × 2𝑛  identity matrix. 𝐇'  is the theoretical spectral density matrix of the modal 

acceleration response and the (𝑖, 𝑗) element of this matrix is given by: 
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𝐇(3,1) = 𝑆3,1[(𝛽3'& − 1) + 2𝐢𝜁3𝛽3']2)[(𝛽3'& − 1) − 2𝐢𝜁3𝛽3']2)   (4.5) 

where 𝛽3' = 𝑓3/𝑓' is frequency ratio. 𝑓3 and 𝑓' are the 𝑖th modal frequency and the FFT 

frequency abscissa, respectively. 𝜁3 denotes the 𝑖th damping ratio; 𝑆3,1 is the cross spectral 

density between the 𝑖th and 𝑗th modal excitations. 

Thus, the most probable values (MPVs) could be obtained by maximizing 𝑃({𝒁'}|𝜽), or 

equivalently minimizing ‘negative log-likelihood function’ (NLLF) 𝐿(𝜽): 

𝐿(𝜽) = − ln 𝑝({𝒁'}|𝜽) = 𝑛𝑁0 ln 𝜋 +¾ln|𝑪'(𝜽)|
'

+¾𝒁'9𝐄'(𝜽)2)𝒁'
'

   (4.6) 

where 𝑁0  is the number of FFT points in the selected frequency band. The posterior 

uncertainty can be calculated from the inverse of the Hessian of the 𝐿(𝜽). Note that mode 

shape is assumed to have a unit norm, i.e., ‖𝚽‖& = 𝚽9𝚽 = 1 to avoid unidentifiable 

problem. General steps for modal identification by traditional fast Bayesian FFT could be 

summarized as follows: 

 Step 1: Initial frequency hand-picked from SV spectrum 

 Step 2: Determination of frequency bandwidth in a trial-and-error manner 

 Step 3: Modal identification for 𝚽, 𝑓,  𝜁,  𝑺 and 𝑆/ by the work (Au, 2011b, Au, 2012a) 

 Step 4: Uncertainty quantification by the work (Au, 2012b, Au, 2017b) 

 In Bayesian FFT modal identification, initial frequency and frequency band have to be 

set primarily for computing the MPVs. For well-separated mode, a frequency band is 

considered to include only one mode. Figure 4.1 shows an idealized SV spectrum for a 

single mode, which plots the eigenvalues of the PSD of the data with the frequency. 

Supposing the data from a selected band 𝑓-(1 ± 𝜅𝜁-) is used for modal identification, 

where 𝑓- is the initial frequency, 𝜁- is the initial damping ratio (always set to be 1%),  𝜅 is 
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the bandwidth factor and 𝑇Y is data duration. The initial frequency is used as the initial 

value in computing the MPVs. Conventionally, it is manually picked as the peak, and its 

value is governed by the resolution of the spectrum. The frequency band is controlled by 

the bandwidth factor 𝜅. The selection of the frequency band affects the FFT data used in 

making inference about modal parameters. It is a trade-off between the among of available 

information and risk of modeling error. A larger band provides more data in the likelihood 

function and so that more informative for modal identification. While wide band also 

increases the modelling error risk since the theory assumes a constant PSD within the 

frequency band though this may not be true especially for a wider band. 

 
Figure 4.1. Idealized SV spectrum of data PSD for a well-separated mode 

 
4.3 A two-step automation approach for fast Bayesian FFT 

 In this section, a two-step automation approach for Bayesian FFT modal identification 

is presented, as shown in Figure 4.2. Step 1 (Section 4.3.1) aims at selecting the initial 

frequency based on automated interpretation of stabilization diagram which involves 

modal criteria and clustering. Step 2 (Section 4.3.2) targets on the selection of frequency 
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band, where a series of effective bandwidth factors within a predefined range are obtained. 

The following presents the detail of these two automation steps. 

 
Figure 4.2. The flowchart of the two-step automation approach 

 
4.3.1 The selection of initial frequency 

 The selection of the initial frequency employs clustering-based automated 

interpretation of stabilization diagram, which has been introduced in detail in Chapter 3 

(Section 3.3). The output of the stabilization diagram is frequency representative of each 

cluster, who serves as the initial frequency for the fast Bayesian FFT modal identification. 

Stabilization diagram, a plot of a range of model orders with frequency, is a popular tool 

to identify modal parameters in the class of the SSI technique. One challenge is that 

undesirable spurious modes may appear in the stabilization diagram, due to measurement 

noise and over-specified model order etc. (Zeng and Kim, 2020). In general, physical 

modes can be graphically distinguished since they are consistently displayed as vertical 

alignments in the stabilization diagram. Conversely, spurious modes form in a scattered 
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way in the diagram. Figure 4.3 illustrates the procedure of automated clarification of the 

stabilization diagram and the selection of initial frequency. 

 
Figure 4.3. Flowchart of the selection of initial frequency 

 
 In pre-processing, as described in Chapter 3 (Section 3.3.1), a covariance-driven 

reference-based SSI (SSI-cov/ref) is performed to construct a stabilization diagram. 

Criteria are then applied on this diagram for initial removal of spurious modes and speed 

up clustering process. For instance, the damping ratios of civil structures are commonly 

recognized in the range of 0 to 10%, otherwise it should be discarded. Modal phase 

collinearity (MPC) and mean phase deviation (MPD) are two indicators to measure mode 

shape complexity. The MPC value closer to 1 indicates that modes tend to be physical. In 

contrast, a smaller value of the MPD implies that the mode shape vector is more likely to 

be physical. A coefficient of variation (COV	=	standard derivation/mean, calculated by the 

SSI) with respect to the identified frequency is treated as another indicator to further 

eliminate spurious modes. A frequency with 2% COV is chosen as the threshold, 

representing those modes with COV exceeded 2% should be removed.  
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 In clustering, as described in Chapter 3 (Section 3.3.2), a self-adaptive clustering 

technique is carried out to automatically assemble modes with similar characteristics. The 

clustering process starts with the threshold calculation based on mutual distance between 

two possible modes. Next, the modes are iteratively grouped when their modal distances 

are less than the calculated threshold during the clustering process. Finally, clusters with 

modes exceeding one third of the total model order are kept, otherwise it should be 

discarded.  

 When the interpretation of stabilization diagram is complete, the output, which is the 

average frequency of each identified cluster, will be used as the initial frequency for 

Bayesian modal identification.  

4.3.2 The selection of frequency band 

 In fast Bayesian FFT, only the FFT data within a selected frequency band (containing 

modes of interest) are used for computation of modal parameters. The selection of the 

frequency band affects the data information involved for computation; thus, it influences 

the identification accuracy. The selection of the bandwidth is a trade-off between available 

data for modal identification and the modeling error involved. In this section, a method for 

the automated selection of frequency band is presented, and its flowchart is shown in Figure 

4.4.  

 A range of bandwidth factor [𝜅), 𝜅&] is firstly defined with an interval of ∆𝜅. The upper 

bond 𝜅& is chosen from 5 to 10 to include fairly sufficient data information for making 

inference (Au, 2017b). The lower bond 𝜅) is chosen to be not less than 1, where 𝜅 = 1 

represents the half-power band.  Each bandwidth factor gives a certain frequency band for 

modal identification. The frequency difference (a vector) is calculated between the initial 
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frequency and the identified frequency corresponding to each bandwidth factor. The 

frequency difference vector for each mode is defined as: 

𝐟 = �𝑓)̅, 𝑓&̅, 𝑓;̅⋯𝑓Z̅02Z#
∆Z

�   (4.7) 

where 𝑓3̅  is the 𝑖-th frequency difference, expressed as 𝑓3̅ =	 |𝑓3 − 𝑓3*3%3",|/𝑓3*3%3", , (𝑖 =

1, 2,⋯ (𝜅& − 𝜅))/∆𝜅); 𝑓3*3%3", is the initial frequency obtained from Section 4.3.1; 𝑓3 is the 

𝑖-th identified frequency corresponding to the bandwidth factor 𝜅3. 

 
Figure 4.4. Flowchart of the selection of frequency band 

A series of effective bandwidth factors are next selected by sifting frequency difference. 

If frequency difference 𝑓3̅ is less than 1% and damping ratio is positive, the corresponding 

bandwidth factor can be deemed as a valid one, otherwise should be discarded. Note that 

1% is a common frequency tolerance for acceptance to eliminate frequency outliers (Mao 

et al., 2019, Tran and Ozer, 2020). Identified modal parameters corresponding to each 

effective bandwidth factor are stored. The average frequency and mode shape are chosen 

as representatives for the mode. Regarding the damping ratio, due to its dispersed nature, 

the median of the damping ratio is used as a representative to minimize the effect of outliers. 

Repeat above procedures until accomplishing identification for each mode of interest. 

Remark that a series of frequency bands corresponding to the bandwidth factors are 

automatically selected by the proposed method, which significantly reduces human-
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induced uncertainty on bandwidth; while conventional way chooses the bandwidth factor 

in a trial-and-error manner, which is subjective and time-consuming. Improper choice of 

bandwidth can even yield much divergence on identification results. Integrating with 

automation on frequency bandwidth, fast Bayesian FFT can achieve a fully automated 

modal analysis.   

4.4 Illustrative examples 

In this section, the performance of the proposed automated fast Bayesian FFT modal 

identification is evaluated. A numerical example is firstly presented in Section 4.4.1 to 

validate the proposed method, where extremely cases such as modes with low modal 

signal-to-noise ratio (SNR) and closely spaced are additionally considered. A field data 

example of the Z24 benchmark bridge is then presented in Section 4.4.2 to demonstrate the 

feasibility of the proposed method under operational (complex) condition with long-term 

monitoring data. Section 4.4.3 provides the practical aspect of the proposed method. 

4.4.1 Numerical example: mass spring-damper structure 

A numerical example of three DOFs mass spring-damper structure is considered to 

generate synthetic data with well-separated mode and closely spaced modes, as shown in 

Figure 4.5. The three masses 𝑚3 (𝑖 = 1, 2, 3) are assumed to be 2 kg of each. The four 

spring stiffnesses 𝑘1 (𝑗 = 1, 2, 3, 4) are equal to 600, 50, 50, 600 N/m, respectively. The 

damping ratios of all modes are set to be 1%. The theoretical natural frequencies and mode 

shapes can then be calculated by the characteristic eigen equation, i.e., 𝑓) = 1.074 Hz, 

𝑓& = 2.869 Hz, 𝑓; = 2.888 Hz. The 2nd and 3rd frequencies are closely spaced modes. 

Note that the frequency space index representing the relative percentage of frequency 
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difference is 0.68%, which can be regarded as a pair of extremely closely spaced modes 

with challenging identification in practice (Wu et al., 2018). The modal excitation and 

prediction error are modeled as i.i.d. Gaussian white noise with PSDs of 𝑆 = 1	(µg)&/Hz 

and 𝑆/ = 72	(µg)&/Hz, respectively. This yields a SNR (= 𝑆/4𝑆/𝜁&) to be around 35 for 

all modes, which is relatively low in real test (Zhu et al., 2018) and indicates the quality of 

data to be poor due to high measurement noise. Data duration of 6000 seconds were 

generated at a sampling frequency of 100 Hz. 

 

 
Figure 4.5. Mass spring-damper structure 

4.4.1.1 Automated selection of initial frequency and frequency bandwidth 

An SV spectrum is plotted in Figure 4.6 (a), where peaks are highlighted by red circles. 

Note that the 2nd and 3rd modes are closely spaced, and it is hardly to be handpicked. In 

the proposed method, a stabilization diagram is adopted and automatically interpreted to 

determine the initial frequency. To draw this diagram, the model order ranges from 20 to 

100 and time lag is set to be 100. It is noticed that the model order is usually over-specified 

to cover weak-excited modes, but this also leads the apparent of spurious modes. The 

proposed method is applied to clear and interpret the stabilization diagram. As seen in 

Figure 4.6 (b), scattered poles (spurious modes) are shown in the full stabilization diagram, 

which will be removed using the proposed method. Figure 4.6 (c) shows the cleared 

stabilization diagram with three vertical red-circle alignments in the plot, representing three 
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clusters containing physical frequencies. Note that the last two alignments, corresponding 

to the closely spaced modes, cannot be visually distinguished. Finally, the average of the 

clusters is chosen as an initial frequency (black circles in Figure 4.6 (c)). 

 
    (a) 

  
       (b)        (c) 

Figure 4.6. (a) An SV spectrum; (b) full stabilization diagram; (c) cleared stabilization 
diagram; bracket: frequency band; black circle: selected initial frequency 
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Figure 4.7. Effective bandwidth factor and corresponding frequency 

The bandwidth factors are initially chosen in the range of (4, 6) with a step of 0.1. If 

the frequency difference between the initial and identified ones is less than 1% and the 

damping ratio is positive, the applied bandwidth factor can then be regarded as an effective 

one. Figure 4.7 shows effective bandwidth factors and corresponding identified frequencies 

for all modes. All identified frequencies are close to each other, indicating the effectiveness 

of that bandwidth. Compared to the conventional way of choosing the bandwidth, the 

proposed method is fully automated, and it gives more flexibility on the band selection. 

This significantly facilitates the Bayesian modal identification in practice. The selected 

initial frequencies and bands of the modes 1-3 are listed in Table 4.1 as below. 

Table 4.1. Initial frequency and frequency band 
Mode No.1 No. 2 No.3 
Initial frequency (Hz) 1.073 2.868 2.889 

Bandwidth 
Lower bond (Hz) 1.020 2.725 2.745 
Upper bond (Hz) 1.127 3.012 3.035 

4.4.1.2 Identification results 

The Bayesian FFT modal identification is conducted for each effective frequency 

bandwidth. The average of frequencies, mode shapes, and the median of damping ratios 

are used as representatives. Identification results are summarized in Table 4.2. The 

identified modal parameters are well-matched with their exact values. The coefficient of 

variation (c.o.v.) of the identified frequencies is less than 0.1%; while a larger c.o.v. can 

be observed in damping ratios, which have the same order of magnitude as modal force 

PSD. Mode shapes are evaluated by modal assurance criterion (MAC), which is almost 

equal to 1 for all modes, indicating that the identified mode shapes are close to its exact 
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counterpart. The mode shape c.o.v. calculated by the sum of diagonals of the posterior 

covariance matrix, has also the same order of magnitude. It can be demonstrated that the 

proposed method is capable to automatically identify modal parameters with adequate 

accuracy. The example also shows that the method works well in low SNR situation and 

for closely spaced modes. 

Table 4.2. Modal identification results. 
Parameter  Mode 1    Mode 2    Mode 3 
Frequency, 𝑓 (Hz) Identified 1.074 (0.067)    2.869 (0.041)    2.890 (0.042) 

 
Exact 1.074    2.869    2.889 

Damping ratio, 𝜁 (%) Identified 1.023 (7.8)    0.981 (4.8)    1.020 (4.9) 

 
Exact 1.000    1.000    1.000 

Mode shape, MAC Identified 1.000 (1.3)    0.998 (6.1)    0.998 (6.7) 

 
Exact 1.000    1.000    1.000 

Modal force PSD, 𝑆  Identified 1.034 (7.4) 0.978 (4.9) 0.965 (5.6) 

 
Exact 1.000    1.000    1.000 

Prediction error, 𝑆/  Identified 70.69 (2.8)    73.88 (2.3)    73.88 (2.3) 

 Exact 72.00    72.00    72.00 
Note: the values in parenthesis are c.o.v. (units: %); The MAC is calculated between the 

identified and exact mode shapes; 𝑆 and 𝑆/ unit: (µg)&/Hz 
 
4.4.2 Field test: Z24 bridge 

 The proposed automated fast Bayesian FFT is validated by a field test of Z24 bridge 

which was used in Section 3.4.2. The detailed description is referred to Section 3.4.2. In 

this section, the initial frequency and frequency bandwidth are automatically selected in 

modal identification for each data set. The modal tracking by the proposed method was 

implemented for data recorded during a long-term monitoring. Furthermore, a short-term 

progressive damage detection was also carried out. The probability of frequency change 

due to damage was discussed.  
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4.4.2.1 Automated selection of initial frequency and frequency bandwidth 

 The plot of the SV spectrum with the first three eigenvalues of the PSD matrix for setup 

No. 5 is viewed in Figure 4.8 (a). The first three modes (indicated by red circles) can be 

clearly observed, while higher modes (highlighted in the red square area) are relatively 

complex to distinguish. In this example, to draw stabilization diagram, the time lag is 

chosen to be 50, a model order ranges from 2 to 120. Once the stabilization diagram is 

constructed, an automated interpretation of the stabilization diagram is applied to eliminate 

spurious modes on the SV spectrum. Figure 4.8 (b) shows the full stabilization diagram of 

setup No. 5, including numerous spurious modes. After applying the automation strategy, 

the stabilization diagram is re-constructed as Figure 4.8 (c), which is much apparent 

compared to the previous one. The first six clusters are displayed as red vertical alignments 

shown on Figure 4.8 (c), marked as P) to PS. The average frequency of each cluster is 

utilized as the initial frequency for Bayesian modal identification, presented as a black 

circle on Figure 4.8 (c). P; and PU are regarded as closely spaced modes that are identified 

as a group.  
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(a) 

  
(b) (c) 

      Figure 4.8.  (a) SV spectrum for setup No. 5; (b) full; (c) cleared (black circle: initial 
frequency; bracket: frequency bandwidth) 

Turning attention to frequency band, shown as brackets [– ] on Figure 4.8 (c), a range 

of bandwidth factor [3, 7] for each mode is chosen with a step of 0.1. Effective bandwidth 

factors are selected by the proposed method. Figure 4.9 shows effective factors and 

corresponding frequency for each mode in setup No. 5. Modes 1-5 have a relatively greater 

number of effective factors within the range, while mode 6 has fewer effective bandwidth 

factors. As reflected in Figure 4.8 (a), mode 6 is ambiguous to identify. Table 4.3 

summarizes the initial frequencies and frequency bandwidth factors for setup No. 5. After 

automated identification, modal parameters corresponding to each effective bandwidth 
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factor for each mode are stored; the average of frequencies and mode shapes, the median 

of damping ratios are used as representative.  

 
Figure 4.9. Effective bandwidth factor and corresponding frequency for Setup No.5 

 
Table 4.3. Initial frequency and frequency bandwidth for setup No.5. 

Mode No.1 No.2 No.3 No.4 No.5 No.6 

Setup 
No.5 

Initial frequency (Hz)  3.856 4.896 9.769 10.241 12.467 13.452 

Bandwidth  

Lower 
(Hz) 3.663 4.651 9.281 9.888 11.844 12.934 

Upper 
(Hz) 4.049 5.141 10.257 10.594 13.090 13.970 

4.4.2.2 Identification results 

Tables 4.4 and 4.5 present all the identified modal parameters, including frequencies, 

damping ratios, PSDs of modal force and prediction error. Note that values in Tables 4.4 

and 4.5 denote setup-to-setup statistical properties, i.e., the sample mean and sample c.o.v. 

(sample standard derivation/sample mean) among all setups, reflecting the change of 

environmental condition. To be specific, the modal parameters in Tables 4.4 and 4.5 are 

obtained by taking the average of parameters identified in each measurement setup. The 

benchmark results by automated SSI (Chapter 3) are also used for comparison purpose. 
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The results are used to verify the performance of the proposed method. Here only 

frequencies, damping ratios, and mode shapes are available in the benchmark results.  

Table 4.4. The sample mean of identified frequency and damping ratio of nine setups 

Mode 
number 

SSI Proposed  SSI Proposed 

𝑓(Hz) 𝑓(Hz) sample 
c.o.v. (%) 

 𝜁(%) 𝜁(%) sample 
c.o.v. (%) 

No.1 3.86 3.86 0.33  0.74 0.79 12.38 
No.2 4.91 4.90 0.39  1.38 1.39 12.90 
No.3 9.77 9.77 0.40  1.34 1.50 14.19 
No.4 10.28 10.28 0.58  1.30 1.76 20.03 
No.5 12.44 12.49 1.40  2.91 3.44 22.95 
No.6 13.25 13.22 0.61  3.54 3.83 23.30 

 
Table 4.5. The sample mean of PSD of modal force and prediction error of nine setups  

Mode  
number 

modal force PSD prediction error PSD 

√𝑆 
sample 

c.o.v. (%) C𝑆/ sample 
c.o.v. (%) 

No.1 16.73 84.06 2.22 54.48 
No.2 3.46 61.59 5.84 95.30 
No.3 3.02 84.90 2.32 38.73 
No.4 2.09 79.61 2.32 38.73 
No.5 4.88 36.15 5.47 45.77 
No.6 6.53 81.08 5.85 39.17 

Unit: (µg)/√Hz. 

As shown in Table 4.4, frequencies obtained from the proposed method are well-

matched with the results from the SSI. Identified frequencies exhibit small variability 

(sample c.o.v.< 2%) for all modes, indicating a good precision. The damping ratios exhibit 

a larger difference between the reference and proposed method, indicating the difficulty of 

obtaining damping ratio in practice. The damping ratio also has a relatively larger sample 

c.o.v. when compared to the frequency. Table 4.5 summarizes sample mean and sample 

c.o.v. of the identified PSD (square root) of modal force and prediction error. It is not 

surprising to find pronounced variability on these two parameters, as 𝑆 and 𝑆/ are referred 
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to as the intensity of environmental excitation and measurement noise, respectively. From 

the identification results, it can be seen that environmental change has a great influence on 

the identified modal parameters. Figure 4.10 shows the variation of modal SNR with 

respect to setups for all six modes. The modal SNR of mode 1 is overall higher than other 

modes. This is also reflected by the SV spectrum in Figure 4.8(a).  

 
Figure 4.10. The variation of modal SNR with respect to setups for all six modes 

Local mode shapes are identified from individual setups. Based on reference sensor 

locations, the global mode shapes are assembled from local ones using a least square 

method. The obtained global mode shapes are listed in Figure 4.11, which match with those 

in Section 3.4.2.1. Frequencies and damping ratios obtained through averaging among all 

setups are shown above each mode shape. The average of posterior c.o.v. in all setups is 

present in parenthesis. Mode 1 is the first bending mode with a symmetric mode shape 

along the vertical direction and the maximum deformation appears at the midspan. Mode 

2 is a combination of a dominated translational mode in Y direction and a torsional mode. 

Modes 3 and 4 show vertical-torsional motion. Rotational behavior is observed with respect 

to Z direction due to the skewness of the bridge. Modes 5 and 6 are also bending modes 
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appearing as asymmetric shapes along the bridge deck with a maximum deformation at 

side span. Overall, all the global mode shapes are identified soundly by the proposed 

method, suggesting the automation method has satisfactory performance in modal analysis. 

Mode1: 3.86Hz (0.08%) 
0.79% (11.61%) 

Mode2: 4.90Hz (0.11%) 
1.39% (9.61%) 

  
Mode3: 9.77Hz (0.07%) 

1.50% (5.12%) 
Mode4: 10.28Hz (0.08%) 

1.76% (4.99%) 

  
 

Mode5: 12.49Hz (0.23%) 
3.44% (14.34%) 

 
Mode6: 13.22Hz (0.50%) 

3.83% (32.73%) 

  
Figure 4.11. The global mode shapes of the first six modes 
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Posterior uncertainties associated with modal parameters are also investigated. Tables 

4.6-4.8 show the posterior c.o.v.s of identified frequencies, damping ratios and mode 

shapes among the nine setups, respectively. The mean values of posterior c.o.v.s of 

frequencies are all near 1%; while the posterior c.o.v.s of damping ratios are much larger. 

The posterior c.o.v.s of mode shapes in Table 4.8 are less than 2%. Generally, the posterior 

c.o.v. of modal parameters in a single setup are significantly smaller than the sample c.o.v. 

among all setups in Tables 4.4 and 4.5. The sample c.o.v. merely reflects setup-to-setup 

sample statistical variability arising from the environmental condition, e.g., wind, 

temperature (See Tables 4.4 and 4.5). While the posterior c.o.v. represents the uncertainty 

of modal parameters due to measurement noise and modeling error, reflecting modal 

identification accuracy. 

Table 4.6. Posterior c.o.v.s of frequency (%) 
Mode 
No. 

Setup No. 
Mean 

1 2 3 4 5 6 7 8 9 
1 0.08 0.08 0.08 0.07 0.08 0.09 0.07 0.09 0.08 0.08 
2 0.11 0.11 0.10 0.10 0.10 0.09 0.13 0.11 0.11 0.11 
3 0.08 0.07 0.07 0.06 0.08 0.06 0.07 0.09 0.07 0.07 
4 0.07 0.08 0.07 0.07 0.08 0.06 0.08 0.13 0.08 0.08 
5 0.15 0.57 0.17 0.15 0.11 0.32 0.15 0.28 0.14 0.23 
6 1.03 0.23 0.17 0.12 0.33 0.34 0.62 0.46 1.18 0.50 

 
Table 4.7. Posterior c.o.v.s of damping ratio (%) 

Mode 
No. 

Setup No. 
Mean 

1 2 3 4 5 6 7 8 9 

1 11.83 11.34 11.52 12.49 11.43 11.17 11.93 11.34 11.44 11.61 
2 9.58 9.55 9.55 9.68 9.69 9.79 9.60 9.53 9.53 9.61 
3 4.67 5.28 5.77 5.74 5.36 4.93 4.48 5.44 4.38 5.12 
4 5.09 5.14 5.31 5.21 5.11 4.71 4.38 5.71 4.24 4.99 
5 7.73 52.16 10.65 8.00 7.09 17.54 8.64 11.33 5.91 14.34 
6 68.39 9.69 8.42 7.27 17.86 17.32 48.87 34.09 82.69 32.73 
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Table 4.8. Posterior c.o.v.s of mode shape (%) 

Mode 
No. 

Setup No. 
Mean 

1 2 3 4 5 6 7 8 9 

1 0.11 0.13 0.14 0.07 0.08 0.11 0.12 0.20 0.29 0.14 
2 1.44 1.12 1.09 2.15 2.07 1.45 1.19 1.12 1.57 1.46 
3 1.84 1.69 0.69 0.87 0.98 1.23 1.31 2.18 2.15 1.44 
4 3.28 1.97 3.87 2.10 2.72 1.80 2.08 2.15 4.07 2.67 
5 2.26 1.42 2.58 1.48 1.36 1.29 0.87 0.36 1.03 1.41 
6 2.96 0.56 1.85 1.04 1.92 1.10 1.92 0.77 2.40 1.61 

 

 
Figure 4.12. The variation of frequency in different setups for all modes 

Figures 4.12 and 4.13 show variation of modal parameters across different setups. The 

values of modal parameters are represented by red dots with error bars spanning ±	2 

posterior standard derivations. It is found that the frequency slightly varies with setups, 

while the damping ratio has a larger variation. On the other hand, frequency has a much 

lower posterior c.o.v. compared to the damping ratio. In short, both identified frequency 

and damping ratio are consistent with each other among all the setups, demonstrating the 

robustness of the proposed method. 
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Figure 4.13. The variation of damping ratio in different setups for all modes 

4.4.2.3 Modal tracking 

 The proposed method is applied to a one-year monitoring project from 11 November 

1997 to 11 September 1998, including evaluating the environmental effect on dynamic 

properties and short-term progressive damage detection. A total of 49 sensors were 

deployed to capture environmental factors that affects structural behavior such as air/soil 

temperature, humidity, and wind speed. Besides, eight accelerometers were used to 

measure structural response every hour. One can found a thorough overview of the project 

in Peeters and Roeck’s work (Peeters, 2001). The same procedures as the former data 

analysis are applied for modal tracking.  
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          Mode1       Mode2 

  
          Mode3       Mode4 

  
Figure 4.14. Time history of frequency (from November 11, 1997 to April 24, 1998) 

 As shown in Figures 4.14 and 4.15, the first four frequencies and damping ratios are 

identified using the data from 11/Nov 1997 to 24/Apr 1998, before the damage was 

artificially introduced. Solid black lines indicate frequency estimates, and grey areas cover 

±2 standard derivations. It is noted that there are some gaps during the measurement, 

mainly because the monitoring system was not operating, or ambient excitation is 

insufficient to identify modes (especially when there is not much traffic at night). A close 

observation on Figure 4.14 reveals that frequencies have significant variation due to 

temperature change, especially at day 75-95 (see a range of red dashed lines), reaching the 

largest peak. This large variation is highly associated with the period of very cold 

temperature around −2℃~− 8℃  on the asphalt layer of the bridge deck, yielding 

increasement in stiffness and nonlinear relation between frequency and temperature, and 

change in boundary condition (Peeters, 2001, Worden and Cross, 2018). Figure 4.15 shows 

the time history of the damping ratio at the same period. It is observed that damping ratios 
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also vary with time, while fluctuations seem to be more stable; no remarkable peaks appear, 

implying in the Z24 bridge case, damping ratios are less sensitive to temperature change 

compared to frequencies.  

         Mode1        Mode2 

  
        Mode3       Mode4 

  
Figure 4.15. Time history of damping ratio (from November 11, 1997 to April 24, 1998) 

 Regarding uncertainties in natural frequencies and damping ratios, which here are 

represented by shaded areas in Figures 4.14 and 4.15. It clearly shows that identified 

damping ratios have larger uncertainties, indicating relatively low reliability and accuracy 

in damping ratios. The general consensus is that the damping ratio is more difficult to 

measure and correlate its variability with external influence parameter, e.g., temperature. 

These attributes restrict damage detection purpose by damping ratio analysis (Cigada et al., 

2008). In contrast, frequencies are identified more accurately with smaller uncertainties, 

they are often strongly correlated with temperature. Frequency abnormality and stiffness 

or boundary condition changes due to temperature are successfully detected (red dashed 

lines in Figure 4.14).  Finally, the proposed method enables to deal with a vast of data to 
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perform reliability analysis of parameter identification and detect modal parameters’ 

abnormality due to environmental change. 

 To perform the reliability analysis, the proposed method is applied to different damage 

scenarios (See Table 3.5). The short-term progressive damage test contains nine individual 

measurement setups for each damage scenario (a totally 72 datasets). The probabilistic 

damage detection is carried out using tracking frequencies. The MPVs of identified 

frequencies and associated uncertainties are used together to quantify the probability given 

a specific percentage of frequency shift, 𝑑  (as decimals), compared with its healthy 

condition (measurement No. 1). Based on asymptotic Gaussian approximation, the 

probability of occurrence by measuring the shift of  the 𝑙th modal frequency can be given 

by (Beck and Katafygiotis, 1998): 

𝑃,Y"!(𝑑) = 𝑃z𝜃,
\Y < (1 − 𝑑)𝜃,]Y{	

= Ý 𝑃z𝜃,
\Y < (1 − 𝑑)𝜃,]Y�𝜃,]Y{𝑝(𝜃,]Y

^

2^
)𝑑𝜃,]Y 	

≈ Φ

⎣
⎢
⎢
⎡ (1 − 𝑑)𝜃,∗]Y − 𝜃,

∗\Y

®(1 − 𝑑)&(𝜎,]Y)& + (𝜎,
\Y)&⎦

⎥
⎥
⎤
 

(4.7) 

 
where Φ(∙) represents the standard Gaussian cumulative distribution function for random 

variables; 𝜃, and 𝜎, represents the 𝑙%= modal frequency estimate and its standard derivation, 

respectively. Superscripts, 𝑢𝑑  and 𝑝𝑑 , represents undamaged and possibly damaged 

structural state, respectively. 𝑑 in Eq. (7) is defines as (𝜃,]Y − 𝜃,
\Y)/𝜃,]Y.   

 The proposed method is then applied to automatically identify modal parameters. The 

tracked frequencies, damping ratios, and associated posterior uncertainties are plotted in 

Figure 4.16 (i series), with dots representing sample means and error bars covering two 
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averages of posterior standard derivations among all measurement setups. It is observed 

that the maximum frequency happened at scenario No. 1 (undamaged condition); the 

minimum frequency happened at damage scenario No. 6 for mode 1, 3, 4, and 5, damage 

scenario No. 7 for mode 2 and 6, indicating 95 mm settlement of pier and tilted foundation 

have significant effect on structural dynamic behavior of the Z24 bridge. Figure 4.16 (ii 

series) shows the probability of occurrence with respect to the frequency reduction due to 

damage; 𝑥 and 𝑦 axis is the percentage of frequency reduction (denoted as 𝑑 in Eq. (4.7)) 

and its occurrence probability, respectively. It is understandable based on Eq. (4.7) that the 

probability of occurrence is 1 indicates that the x-value of the frequency reduction is always 

reached with 100% probability; the x-value now is the minimum percentage of frequency 

change (lower bound) due to the certain damage types (herein, settlement or tilt of 

foundation). On the other hand, the probability of occurrence is 0 indicates that the x-value 

of the frequency reduction not feasible in a probabilistic estimation; the x-value now is the 

maximum percentage of frequency change (upper bound) due to damage. The visually 

separated curve from other groups of curves indicates that certain types of damage can be 

detectable by measuring the shift of frequencies. The bounds are meaningful to discuss the 

probability of damage detection given certain damage types.           
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Mode 1 

 

 
(a-i) (a-ii) 

Mode2 

 

 
(b-i) (b-ii) 

Mode3 

 

 
(c-i) (c-ii) 

Figure 4.16. Identified frequencies: frequency evolution (i sereis); the probability of 
frequency reduction (ii sereis) 
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Mode4 

 

 
(d-i) (d-ii) 

Mode5 

 

 
(e-i) (e-ii)  

Mode6 

 

 
(f-i) (f-ii) 

Figure 4.16. (Continued) Identified frequencies: frequency evolution (i sereis); the 
probability of frequency reduction (ii sereis) 

 It is not surprising that 80-mm and 95-mm pier settlement, and tilted foundation have 

noticeable impair on frequency. For example, in the mode No. 1 (a-ii), the probability of 

occurrence with respect to the frequency reduction at 80-mm and 95-mm pier settlement 
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exhibit high probabilities (55% and 80%, respectively) when measuring a possible 

frequency reduction of 4% and 6% (herein 𝑑  in Eq. (4.7)). In the mode No. 2 (b-ii), 

frequencies due to 95-mm pier settlement and tilted foundation have a possible frequency 

reduction of 4% and 9% with a high probability of 60% and 71%, respectively. Similar 

analysis for mode No. 3-No. 6 is performed.       

 Some interesting observations are also found in Figure 4.16 (ii series). In mode No. 1, 

percentage of frequency reduction within the range of (2.6%, 5%) and (5.8%, 8%) may be 

attributed to 80-mm and 95-mm settlement of pier, respectively (see dashed box in Figure 

4.16 (a-ii)). It is expected that bounds of frequency shift due to 95 mm settlement are 

located at the right of that due to 80-mm settlement, since more severe pier settlement is 

detected. For mode No. 2, only the curve due to tilted foundation is clearly separated from 

others; frequency changes from 6.8% to 12.4% may result from the tilt of foundation (see 

dashed box in Figure 4.16 (b-ii)). While the curves due to 80-mm and 95-mm settlement 

are apparently different from other curves for mode No, 3, they have a certain overlapped 

range of frequency reduction (see dashed box in Figure 4.16 (c-ii)). Hence it may be 

concluded that frequency shift within the bounds of (5.6%, 10%) can be explained by either 

80-mm or 95-mm pier settlement. In contrast to the first three modes, the curves are 

relatively not distinguishable for the rest of modes. Therefore, it is not easy to decide the 

bounds of frequency shift due to individual damage scenario, probably because higher 

modes have higher uncertainties. In short, the proposed method enables to identify the 

bounds of frequency shift due to damage. Therefore, possible causes of damage can be 

determined by observing whether the actual frequency change lies in the bounds or not.  
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Figure 4.17 shows the variability of damping ratio is smaller than that of frequency, 

implying that damping ratio is not sensitive to global damage scenarios in Table 4.9. The 

practical application for analyzing a large amount of data indicates that the proposed 

method represents a useful tool to offer robust and feasible health monitoring and modal 

tracking with the minimum human intervention. In addition, modal information (parameter 

estimates and uncertainties) using the proposed automated Bayesian method are used for 

the reliability analysis to detect certain type of damages. 

      Mode1       Mode2 

  
     Mode3      Mode4 

  
   Mode5    Mode6 

  
Figure 4.17. Damping ratio evolution at different damage scenarios 

 
4.4.3 Practical aspects 

 The proposed method provides an automation technique incorporating the fast 

Bayesian FFT modal identification. This is the first attempt to automatically perform modal 
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identification using a Bayesian approach. The method addresses two challenges on the 

operating of conventional Bayesian modal identification: the selection of initial frequency 

and bandwidth. In addition to common situation (well-separated modes with a moderate 

modal SNR), the weakly excited modes and closely spaced modes are also successfully 

identified on both numerical and field test examples. It should be mentioned that selecting 

initial frequency involves SSI based automated interpretation of the stabilization diagram. 

Frequency representatives of each cluster can then be considered as final modal estimates. 

In other words, the initial frequency used in Bayesian approach can also be seen as 

representative frequency estimates for observed structure.  

 Another remark is that the proposed method requires to perform the Bayesian modal 

identification several times to select effective bandwidth factors, which in turn increase 

computational cost. However, the time consumption is still acceptable in practice, since 

performing the fast Bayesian FFT is highly efficient (Au, 2012b). For example, in the 

application of Z24 bridge, it takes around 30 seconds for one mode identification, 

illustrating that the proposed method is still promising for automated modal analysis even 

for field data. Additionally, the proposed method has been applied to the one-year health 

monitoring project on the Z24 bridge, including evaluation of environmental effect on 

dynamic properties and short-term progressive damage test, results demonstrate that the 

proposed method has potential and feasibility for automated Bayesian modal identification 

and modal tracking in long-term health monitoring. 

4.5 Conclusions 

 In this chapter, a two-step automation technique has been developed to incorporate 

Bayesian modal identification. A numerical example has been used for validating the 
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proposed method and field test on Z24 benchmark bridge with closely spaced and weakly 

excited modes has demonstrated the capability of the method, especially for the application 

in long-term data analysis. The feasible application of reliability analysis is demonstrated 

to detect the certain types of damage by tracking the frequencies using the proposed method. 

Another originality of this study is to demonstrate the reliability of automated Bayesian 

modal identification using long-term data to detect the certain types of damage in 

probabilistic manner. 

Overall, the main conclusions and contributions of this study are summarized as follows: 

• Compared to traditional Bayesian modal identification, initial frequency and 

frequency bandwidth are automatically determined, requiring minimal human 

interference to achieve sufficient accuracy. 

• With the proposed method, a large number of measurements can be automatically 

treated without any loss of physical modes of interest. The evolution of modal 

parameters and abnormality due to environmental change can be detected. 

• Modal parameters and uncertainties are automatically calculated, more 

conveniently serving reliability analysis and probabilistic damage detection, such 

as measuring the accuracy of parameter identification, providing possible early 

warning of certain damage type given identified bounds of frequency shift. To the 

best of authors’ knowledge, it is the first attempt to directly investigate the 

capability of Bayesian modal identification in reliability and damage detection. 

• Based on the current study, the modal parameters, particularly natural frequencies 

are the most appropriate index to track abnormality in long-term SHM and perform 

the reliability analysis for identifying the certain types of damage. 
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• Compared to automated SSI in Chapter 3, automated Bayesian modal identification 

makes full use of data information and strictly obeys physical modeling assumption 

in modal identification, e.g., measured data is directly analyzed by FFT rather than 

transforming to mathematical matrices in SSI. Furthermore, Bayesian method 

identifies additional two parameters, e.g., modal force and prediction error, the 

former is a measure of excitation level, their combination gives SRN, which 

enhances the reliability and provides more valuable information in OMA. 
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CHAPTER 5 

BAYESIAN MODEL UPDATING WITH ASYMPTOTIC OPTIMIZATION METHOD 

5.1 Introduction 

 Traditional Bayesian model updating approach (BMUA) has been considered as a 

promising and reliable model updating tool, also has many satisfactory practical 

experiences. Traditional BMUA adopts the classical characteristic equation: 

(𝐊 − 𝜆𝐌)𝝓 = 𝟎   (5.1)  

where 𝐌 and 𝐊 are system mass matrix and system stiffness matrix, respectively. 𝜆 and 𝝓 

are eigenvalues and eigenvectors, respectively. Eq. 5.1 shows that 𝐌 and 𝐊 are naturally 

coupled, updating both mass and stiffness causes an unidentifiable problem that yields 

infinite combinations of mass and stiffness with the same frequency (Zeng and Kim, 2020). 

To avoid such the coupling effect of mass and stiffness, traditional BMUA take a common 

assumption that the mass is known/well estimated or invariant due to possible damage to 

only update stiffness, believing mass is less critical. However, this assumption is 

questionable, especially relatively a large mass change occurs. Results in stiffness updating 

may be erroneous if keeping using invariable mass value. 

Very few works have attempted to update both mass and stiffness. Das and Debnath 

(2018) proposed a BMUA combining normal and lognormal probability distribution to 

update both mass and stiffness. However, the coupling effect still remains. Cheung and 

Bansal (2017) applied the Gibbs sampling method using complex data to identify mass and 
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stiffness, but mass properties are well estimated with small variance. Mustafa and 

Matsumoto (2017) proposed the formulations for updating mass and stiffness 

simultaneously using the Bayesian approach, but the mass is still known well in the 

application to a truss bridge. Previous research still pertains to the challenges in updating 

both mass and stiffness simultaneously without the coupling effect of mass and stiffness. 

 Although the coupling effect of mass and stiffness is addressed by some researchers, 

uncertainties are ignored or poorly considered. Xu et al. (2018) proposed a time-domain 

nonlinear restoring force to identify mass and stiffness; however, an external force is 

required. Zhang and Li (2017) presented a loop substructure identification method for mass 

and stiffness, while mass at sensor location should be known. Do and Gül (2020) 

established a time series based model to identify mass and stiffness features. Lei et al. 

(2020) employed an extended Kalman filter (EKF) to determine the mass-stiffness coupled 

coefficient using incomplete measured data. Nevertheless, these model updating 

approaches cannot quantify the uncertainties of model parameters. Ding et al. (2019) 

proposed an evolutionary-based model updating approach to simultaneously update mass 

and stiffness parameters, while only partial uncertainty due to measurement noise was 

available. More efforts to manipulate mass and stiffness’s coupling effect and identify both 

mass and stiffness along with their uncertainties are greatly demanding from the practical 

point of view. 

 In this chapter, the proposed BMUA considers mass and stiffness as equivalently 

important and attempts to inherently address the coupling effect of mass and stiffness. The 

uncertainties of structural parameters arising from modeling error and measurement error 

are also quantified. The proposed BMUA updates mass and stiffness using output-only 
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vibration data. The new eigen-equations are reformulated by two measured data acquired 

from the original system and modified system with mass addition or stiffness addition to 

address the coupling effect of mass and stiffness, also giving the new prior probability 

density function (PDF). The objective functions are obtained by taking the negative 

logarithm of the posterior PDF to circumvent complex integrals. An asymptotic 

approximation method is then adopted to derive analytical formulations of optimal model 

parameters, associated uncertainty is also quantified by inverse Hessian matrix of objective 

function. Finally, modal parameters, e.g., frequency and mode shape, and structural 

parameters, e.g., mass and stiffness, are updated iteratively. 

The modified system can be created by either adding mass (∆𝒎) or adding stiffness 

(∆𝒌). In the case of modified system with ∆𝒎, in a real-world setting, this can be achieved 

by a practical addition such as a moving truck loads or artificial dead loads on the bridge 

structure (Tian et al., 2019a) or adding stationary weights on buildings, which often 

considered in the seismic design practice (Paz and Kim, 2019). In the case of modified 

system with ∆𝒌, the modified system with attaching additional components was widely 

used for stiffness enhancement. For example, springs were attached to cantilever beam to 

achieve stiffness change for identification of scaling factors (Khatibi et al., 2012, López-

Aenlle et al., 2012). Curved dampers (CDs) and fluids viscous dampers (FVDs) were 

installed in building structure to improve initial stiffness. In addition, some specially made 

braces allow structural system to have better seismic bearing ability, as stiffness is greatly 

improved.  

This chapter is organized as follows: the theoretical background of BMUA and 

parameterization of mass and stiffness matrices are first described in Section 5.2. 
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Subsequently, Section 5.3 gives the way to calculate the probability of damage occurrence 

in Bayesian updating framework. BMUA with mass addition and stiffness addition are 

presented in Section 5.4 and Section 5.5, respectively, including new-eigen equations, 

analytical formulation of optimal parameters, and associated uncertainties. The 

performance of proposed BMUA for structural identification and damage detection is 

evaluated through two numerical examples: a six-story shear building and a three-

dimensional three-story braced frame. Finally, conclusions and summaries are presented 

in Section 5.6. 

5.2 Theoretical background of BMUA 

Applying the classic Bayes' theorem, prior distribution function, and likelihood 

function are integrated to form the posterior PDF, given measured data. Thus, the posterior 

PDF is written as (Yuen, 2010): 

𝑝(𝜴|𝐷, 𝐶) =
𝑝(𝐷|𝜴, 𝐶) ∙ 𝑝(𝜴|𝐶)

𝑝(𝐷|𝐶)  
 

  (5.2) 
 

where	𝐶 is a model class which represents patterns of a structural model, 𝜴 is the vector of 

parameters considered in Bayesian updating process, and 𝐷 is measured data. 	𝑝(𝜴|𝐶) is 

the prior PDF of 𝜴 depending on engineering judgment,  𝑝(𝐷|𝜴, 𝐶) is called a likelihood 

function, reflecting the likelihood of observing measured data 𝐷 , when the model is 

characterized by parameters 𝜴. The denominator in Eq. (5.2), 𝑝(𝐷|𝐶), is a normalizing 

constant to ensure the posterior PDF is integrated into unity over parameter space. To 

simplify Eq. (5.2), the constant is denoted as 𝑐-  in the rest of this paper. 	𝑝(𝜴|𝐷, 𝐶) 

represents the posterior PDF given the measurement and defined model class in advance. 

In this study, measured data is taken as measured eigenvalue (square of frequency) and 
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mode shapes for model updating. 𝜴 is structural physical parameters, including mass and 

stiffness parameters in this study. Therefore, Eq. (5.2) is reformulated: 

 
𝑝z𝝀,𝝓,𝜴�𝝀N, 𝝍� , 𝐶{ = 𝑐-𝑝z𝝀N,𝝍��𝝀,𝝓,𝜴, 𝐶{	𝑝(𝝀,𝝓|𝜴, 𝐶)𝑝(𝜴|𝐶) 

                                           = 𝑐-𝑝z𝝀N,𝝍��𝝀,𝝓{𝑝(𝝀,𝝓|𝜴, 𝐶)𝑝(𝜴|𝐶) 

 
(5.3) 

 

where 𝝀	 are updated eigenvalues; 𝝓  are updated mode shapes; 𝜴  are certain critical 

parameters to be updated. 𝝀N are measured eigenvalues; 𝝍�  are measured mode shapes. The 

MPVs of updated parameters can be explored by means of maximizing posterior PDF. 

Procedures and Formulations in detail are presented as follows. 

 A linear structural model can be parameterized by model parameters based on Degree-

of-freedoms (DOFs), 𝑁Y, and defined model class, 𝐶. A commonly used parameterization 

of stiffness matrix, 𝐊(𝜽), and mass matrix, 𝐌(𝜷), could be described as (Mustafa and 

Matsumoto, 2017): 

             𝐊(𝜽) = 𝐊- + ∑ 𝜃,𝐊,
D1
,C)           𝐌(𝜷) = 𝐌- +∑ 𝛽!𝐌!

D2
!C)     (5.4) 

where 𝜽 = [𝜃), 𝜃&, ⋯ , 	𝜃D1]9 are stiffness parameters vector; 𝜷 = è𝛽), 𝛽&, ⋯ , 	𝛽D2é
9 are 

mass parameters vector. The 𝑙 th stiffness parameter forms the 𝑙 th elemental stiffness 

matrix, 𝐊, = 𝜕𝑲/𝜕𝜃,; similarly, the 𝑚th mass parameter forms the 𝑚th elemental mass 

matrix, 𝐌! = 𝜕𝑴/𝜕𝛽!. In the proposed updating framework, 𝜃, and 𝛽! will be updated 

to match the FEM model with the real structural model using measured data. Note that 𝐊- 

and 𝐌-  in Eq. (5.4) are defined as constant matrices that are not dependent on model 

parameters. In this study, 𝐊- and 𝐌- are set as zero for the sake of convenient.  
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5.3 Probabilistic damage detection 

 The application of FE model updating directly allows a damage assessment: damage 

detection and quantification. To evaluate damage in stiffness and mass, the probability of 

damage is considered in terms of reduction of mass/stiffness parameters by a fractional 

level, 𝑑, compared to its intact state. This probability can be computed using updated 

parameters and corresponding standard deviations based on asymptotic Gaussian 

Approximation as (Mustafa and Matsumoto, 2017, Das and Debnath, 2020): 

                   𝑃,Y"!(𝑑) = 𝑃z𝜴,
\Y < (1 − 𝑑)𝜴,]Y�𝐶{ (5.5)    

                                   = ∫ 𝑃z𝜴,
\Y < (1 − 𝑑)𝜴,]Y�𝜴,]Y , 𝐶{𝑝(𝜴,]Y

^
2^ |𝐶)𝑑𝜴,]Y  

                               ≈ Φî
()2Y)𝜴3

∗562𝜴3
∗76

a()2Y)0(L3
56)0((L3

76)0
ï 

 

where Φ(∙)  represents the cumulative distribution function of the standard Gaussian 

random variable, 𝜴,∗]Y and 𝜴,
∗\Y denote the most probable values of the 𝑙%= mass/stiffness 

parameters for the intact and (possibly) damaged structures, respectively. Further, 𝜎,]Y and 

𝜎,
\Y are corresponding standard deviations. 

5.4 Bayesian model updating with added mass ∆𝒎 

 In this section, the Bayesian model updating framework with added mass ∆𝒎  is 

proposed to simultaneously update mass and stiffness. The new eigen-equations are 

derived to address the coupling effect of mass and stiffness. The posterior PDF is 

reformulated incorporating ∆𝒎. The optimal parameters are determined by asymptotic 

optimization method. It should be noted that the subheading with ∆𝒎 or ‘new’ indicates 
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the presented equations and formulations in this section are originally derived by authors, 

otherwise, references are cited accordingly. 

5.4.1 Formulation of new eigen-equations with added mass ∆𝒎 

 Traditional Bayesian updating approach uses Eq. (5.1) as an eigen-equation to control 

modeling error. In the proposed Bayesian updating framework, the modified system is 

firstly created by adding known mass (∆𝒎), then a new eigen-equation is introduced using 

two sets of measured data from unmodified system and modified system. Finally, the 

coupling effect of stiffness and mass is eliminated; the detailed formulation is presented as 

follows.  

 Considering an original system and modified system which is added mass, ∆𝒎, to the 

system, based on fundamental dynamic equations, we obtain: 

𝑲𝝓 = 𝑴𝝓𝝀     (5.6) 

𝑲𝝓b = (𝑴+ ∆𝒎)𝝓b𝝀′     (5.7) 

where 𝝀 is an eigenvalue (square of frequency), and 𝝓 is an eigenvector (mode shape) 

before adding mass to structure; 𝛌′, is an eigenvalue and 𝝓b is an eigenvector after adding 

mass to a structure. 

Premultiplying Eq. (5.7) by 𝝓9, we have: 

𝝓9𝑲𝝓b = 𝝓9(𝑴 + ∆𝒎)𝝓b𝝀′     (5.8) 

Taking the transposed matrix of Eq. (5.6) and postmultiplying the resulting matrix equation 

by 𝝓b, 

𝝓9𝑲𝝓b = 𝝀𝝓9𝑴𝝓b     (5.9) 

Subtracting Eq. (5.9) from Eq. (5.8), the following equation can be expressed as: 

𝛌𝝓9𝑴𝝓b − 𝛌b𝝓9𝑴𝝓b = 𝛌b𝝓9∆𝒎𝝓b     (5.10) 
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Let 𝐏 = 𝝓9𝑴𝝓b and 𝐐 = 𝛌b𝝓9∆𝐦𝝓b, then Eq. (5.10) may be simplified into: 

𝛌𝐏 − 𝝀b𝐏 = 𝐐     (5.11) 

From Eq. (5.11), 𝐏 can be solved as a new term, 𝐏b 

𝐏b = (𝝀 − 𝝀b)2)𝐐     (5.12) 

Then a new eigen-equation error for mass updating, 𝑴𝑬!, can be expressed as: 

𝑴𝑬! = 𝐏b − 𝐏 = (𝝀 − 𝝀b)2)𝛌b𝝓9∆𝒎𝝓b −𝝓9𝑴𝝓b=0    (5.13) 

Similar procedures when updating stiffness can be performed.  

Premultiplying Eq. (5.6) by 𝝀2), we have: 

𝝀2)𝝓9𝑲𝝓b = 𝝓9𝑴𝝓b     (5.14) 

Postmultiplying Eq. (5.8) by 𝝀b2), we obtain: 

𝝓9𝑲𝝓b𝝀b2) = 𝝓9(𝑴 + ∆𝒎)𝝓b	     (5.15) 

Subtracting Eq. (5.14) from Eq. (5.15), we obtain: 

𝝓9𝑲𝝓b𝝀b2) − 𝝀2)𝝓9𝑲𝝓b = 𝝓9∆𝒎𝝓b     (5.16) 

Let 𝐒 = 𝝓9∆𝒎𝝓b and 𝐔 = 𝝓9𝑲𝝓b, then Eq. (5.16) can be simplified as: 

𝐔𝛌b2) − 𝝀2)𝐔 = 𝐒	     (5.17) 

Therefore, 𝐔 is expressed as a new term, 𝐔b: 

𝐔b = (𝛌b2) − 𝝀2))2)𝐒     (5.18) 

Then a new eigen-equation error for stiffness updating, 𝑴𝑬𝒌, can be obtained: 

𝑴𝑬𝒌 = 𝐔b − 𝐔 = (𝛌b2) − 𝝀2))2)𝝓9∆𝒎𝝓b −𝝓9𝑲𝝓b     (5.19) 

The elimination of the coupling effect of stiffness and mass has been completed using Eqs. 

(5.13) and (5.19), because no stiffness information is required when using Eq. (5.13) to 

update mass; similarly, when using Eq. (5.19) to update stiffness. It may be mentioned that 

the location and quantity of added mass can be acceptable when meeting two basic 
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requirements in measured data:1) there is obvious frequency shift after modification; 2) 

there is no significant mode shape change after modification (Brincker et al., 2004, Parloo 

et al., 2005, Fernández Fernández et al., 2007, López-Aenlle et al., 2010). Comprehensive 

instruction of constructing a modified structure, such as the magnitude of added mass, 

number of added mass and location of added mass, could be found in López-Aenlle et al. 

(2010). Further research to optimize the mass-change strategy and its uncertainty in the 

FEMU should be investigated in the lab and field environments.  

5.4.2 Formulation of the new prior PDF with ∆𝒎 

 Assuming that 𝑁!(≤ 𝑁Y) modes are measured. When updating mass, the prior PDF of 

all the unknown parameters is given by: 

𝑝!(𝝀, 𝝓, 𝜷|𝐶) = 𝑝!(𝝀, 𝝓|𝜷, 𝐶) ∙ 𝑝!(𝜷|𝐶)   (5.20) 
 

where 	𝝀 = [𝜆()), 𝜆(&), ⋯ , 𝜆(D8)]9 , 𝝓 = [	𝝓()), 	𝝓(&), ⋯ , 	𝝓(D8)]9 , and 𝑝!(𝝀, 𝝓|𝜷, 𝐶) is 

constructed by choosing Gaussian PDF as a probability model for the eigen-equation error. 

𝑝!(𝝀, 𝝓|𝜷, 𝐶) = 𝑐-𝑒𝑥𝑝 �−
‖(𝝀 − 𝝀b)2)𝝀b𝝓9∆𝒎𝝓b −𝝓9𝑴(𝜷)𝝓b‖𝟐

2𝜎/W&
� 

 

   (5.21) 
 

where 𝑐- is normalizing constant, 𝜎/W&  is preselected an eigen-equation error variance, ‖	. ‖ 

denotes the Euclidean norm of a vector. Also Eq. (5.21) can be simplified as: 

𝑝!(𝝀, 𝝓|𝜷, 𝐶) = 𝑐-𝑒𝑥𝑝 �−
1
2 𝐽d_!(𝝀, 𝝓; 𝜷)� 

  (5.22) 

where 
𝐽d_8(𝝀, 𝝓; 𝜷) = 	𝑻!

9𝚺/W2)𝑻!    (5.23) 
 

where 𝑻! = ù𝜆(!) − 𝜆b(!)ú
2)
𝜆b(!)𝝓(!)9∆𝐦𝝓b(𝒎) −𝝓(!)9𝐌(𝜷)𝝓b(!) , and 𝚺/W =

𝜎/W& 𝑰, is a prior covariance matrix, and 𝑰 is the identity matrix. The term of 𝚺/W provides 
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treatment for modeling error, since eigen-equation is never exact in practice. The	𝑝!(𝜷|𝐶)  

can be taken as a Gaussian distribution with 𝜷g  representing the nominal values of mass 

parameters and with covariance matrix, 𝚺h. Defining 𝚺h = 𝜎h&𝑰, 𝜎h are chosen to be large 

variances. 

Therefore,	𝑝(𝜷|𝐶)  has the expression as: 

𝑝!(𝜷|𝐶) = exp �−
‖𝜷 − 𝜷g‖&

2𝜎h&
�  (5.24) 

 

Finally, plugging Eq. (5.22) and (5.24) into Eq. (5.20), the prior PDF for mass updating is 

obtained: 

𝑝!(𝝀, 𝝓, 𝜷|𝐶) = 𝑐-exp �−
1
2 𝐽d!(𝝀, 𝝓; 𝜷)� ∙ exp �−

‖𝜷 − 𝜷g‖&

2𝜎h&
�    (5.25) 

 
 
5.4.3 Formulation of likelihood function 

 To construct a likelihood function, we firstly introduce a measurement error, 𝜺:  

�𝝀
N
𝝍�� = � 𝝀

𝑳-𝝓
� + 𝜺 

 

   (5.26) 
 

where 𝜺 is chosen as a Gaussian distribution with zero mean and covariance matrix, 𝚺i.	𝝍�  

gives measured mode shapes and 𝝀N gives corresponding measured eigenvalues from tested 

data. 𝑳- is a selection matrix of ‘1s’ or ‘0s’ used for mapping predicted mode shapes with 

their observed counterparts. Accordingly, the likelihood function of mass updating can be 

expressed as in Eq. (5.27): 

𝑝!z𝝀N, 𝝍��𝝀,𝝓, 𝜷, 𝐶{ = 𝑝!z𝝀N, 𝝍��𝝀,𝝓{ = exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
⎦
⎥
⎥
⎥
⎤
 

 
   (5.27) 
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It is easy to find from Eq. (5.27) that the likelihood function finally becomes the form of a 

Gaussian distribution with mean [𝝀9 , (𝑳-𝝓)9 	]9  and covariance matrix, 𝚺i. 

5.4.4 Formulation of the new posterior PDF with ∆𝒎 

 The posterior PDF consists of a prior PDF and a likelihood function, as shown in Eq. 

(5.3). Plugging Eq. (5.25) and (5.27) to Eq. (5.3), the posterior PDF of mass updating may 

be rewritten as: 

𝑝!z𝝀,𝝓, 𝜷�𝝀N, 𝝍�, 𝐶{ = 𝑐-exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
−
1
2 𝐽d!(𝝀, 𝝓; 𝜷) −

‖𝜷 − 𝜷g‖&

2𝜎h&

⎦
⎥
⎥
⎥
⎤
 

 
(5.28) 

 

The most probable values of the unknown parameters can be found by maximizing this 

PDF. The objective function is defined by taking a negative logarithm of a posterior PDF 

without including the constant that does not depend on the uncertain parameters. Then the 

objective function is minimized instead of maximizing posterior PDF. The objective 

function, including known added mass, is given by Eq. (5.29): 

𝐽!(𝝀, 𝝓, 𝜷) =
1
2
(𝜷 − 𝜷g)9𝚺h2)(𝜷 − 𝜷g)  (5.29) 

                    + )
&L:;0

∑ þù𝜆(!) − 𝜆b(!)ú
2)
𝜆b(!)𝝓(!)9∆𝒎𝝓b(!) −𝝓(!)9𝐌(𝜷)𝝓b(!)þ

&
D8
!C) 		 

																										+
1
2 �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�
9

𝚺j2) �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�  

Similarly, when using the same procedures, the prior PDF for the stiffness updating is 
obtained: 

𝑝'(𝝀, 𝝓, 𝜽|𝐶) = 𝑐-𝑒𝑥𝑝 �−
1
2 𝐽d_'(𝝀, 𝝓; 𝜽)� ∙ 𝑒𝑥𝑝 �−

(𝜽 − 𝜽g)&

2𝜎B&
�    (5.30) 

 

where 𝝀  and 𝝓  are updated eigenvalues and eigenvector, respectively. 𝜽  is updated 

stiffness parameters, 𝐶 is defined earlier, and 𝐽d_!(𝝀, 𝝓; 𝜽) is defined as: 
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𝐽d_!(𝝀, 𝝓; 𝜽) = 𝑐-𝑻'
9𝚺/W2)𝑻'   (5.31) 

 

where 𝑻' = ù𝜆b(!)
2)
− 𝜆(!)

2)
ú
2)
𝝓9(!)∆𝒎𝝓b(!) −𝝓9(!)𝐊(𝜽)𝝓b(!). 

The likelihood function is shown as: 

𝑝'z𝝀N, 𝝍��𝝀,𝝓, 𝜽, 𝐶{ = 𝑝z𝝀N,𝝍��𝝀,𝝓{ = exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
⎦
⎥
⎥
⎥
⎤
  (5.32) 

The objective function of stiffness updating with added mass is represented as in Eq. 

(5.33): 

	𝐽'(𝝀, 𝝓, 𝜽) =
1
2
(𝜽 − 𝜽g)9𝚺B2)(𝜽 − 𝜽g)    (5.33) 

               + )
&L:;0

∑ ÿ(𝜆b(!)
2)
− 𝜆(!)

2)
)2)𝝓(!)9∆𝒎𝝓b(!) −𝝓(!)9𝐊(𝜽)𝝓b(!)ÿ

&
D8
!C) 		 

																										+
1
2 �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�
9

𝚺j2) �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�  
 
5.4.5 Optimization framework with ∆𝒎 

 The modal parameters and structural parameters are updated by minimizing objective 

functions in Eq. (5.29) and (5.33). It may be mentioned that these objective functions are 

quadratic with respect to 𝝀,𝝓, 𝜷, or 𝜽 if the other two parameters are fixed. Then, the 

partial derivatives of the objective function with respect to updated parameters (𝝀,𝝓, 𝜷, 𝜽) 

are considered to be zero. The sign of ∗ in the following sections represents updated values. 

By minimizing the objective function, 𝐽!(𝝀, 𝝓, 𝜷) in Eq. (5.29) with respect to 𝝓 , the 

optimal vector of 𝝓!
∗ can be obtained: 

𝝓!
∗ = è𝜎/W2&𝑮K_!9𝑮K_! + 𝑳-9(𝚺j2))&&𝑳-é

2)
𝑳-9è(𝚺j2))&)z𝝀N − 𝝀∗{ + (𝚺j2))&&𝝍�é (5.34) 

 

where (𝚺j2))&) and (𝚺j2))&& are referred to left bottom and right bottom sub-matrices of 

𝚺j2), respectively. Symmetric matrix, 𝑮K_8, is given by: 
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𝑮K_8 = 𝑑𝑖𝑎𝑔(�𝝓b(D8)∗
9
�ù𝜆(D8)

∗
− 𝜆b(D8)

∗
ú
2)
𝜆b(D8)

∗
∆𝒎−𝐌∗��)D8×D6D8 (5.35) 

where 𝐌∗ = 	𝐌(𝜷) is a mass-parameterized system matrix. The symbol ‘𝑑𝑖𝑎𝑔’ represents 

a diagonal matrix.  

Similarly, by minimizing the objective function 𝐽!(𝝀, 𝝓, 𝜷) in Eq. (5.29) with respect to 𝛌, 

the optimal vector of 𝝀∗ can be obtained: 

	𝝀!
∗ = è𝜎/W2&𝑮k_! + (𝚺j2))))é

2) Ì𝜎/W2& ù𝝓b(D8)∗
9
(𝐌∗ + ∆𝒎)𝝓(D8)∗𝝀b(D8)

∗ú  

               +(𝚺j2))))𝝀N + 	(𝚺j2)))&z𝝍� − 𝑳-𝝓∗{é (5.36) 

where (𝚺j2)))) and (𝚺j2)))& are the left top and right top of sub-matrice of 𝚺j2). Symmetric 

matrix, 𝑮k_! is obtained as: 

𝑮k_8C𝜎/W
2&𝑑𝑖𝑎𝑔(�𝝓b(D8)∗

9
𝐌∗𝝓(D8)∗�)D8×D8    (5.37) 

By minimizing the objective function 𝐽!(𝝀, 𝝓, 𝜷) in Eq. (5.29) with respect to 𝜷 , the 

optimal vector 𝜷∗ can be obtained: 

𝜷∗ = z𝜎/W2&𝑮h9𝑮h + 𝚺h2){
2)(𝜎/W2&𝑮h9𝒃! + 𝚺h2)𝜷g)     (5.38) 

where the matrix 𝑮h and vector 𝒃! are represented as in Eq. (5.39) and Eq. (5.40), 

𝑮h = Ì𝝓b(D8)∗
9
𝐌)𝝓(D8)∗ ⋯ 𝝓b(D8)∗

9
𝐌Dh𝝓(D8)∗Í

D8×D2
    (5.39) 

 

Where  

 𝒃! =  (5.40) 
									Ìù𝜆(D8)

∗
− 𝜆b(D8)

∗
ú
2)
𝜆b(D8)

∗
𝝓b(D8)∗

9
∆𝒎𝝓(D8)∗ −𝝓b(D8)∗

9
𝐌-𝝓(D8)∗Í

D6D8×)
 

When it comes to stiffness updating, by minimizing the objective function 𝐽'(𝝀, 𝝓, 𝜽) in 

Eq. (5.33) with respect to 𝝀,𝝓, 𝜽, the optimal vector of 𝝓'
∗ is given by: 

𝝓'
∗ = è𝜎/W2&𝑮K_'9𝑮K_' + 𝑳-9(𝚺j2))&&𝑳-é

2)
𝑳-9è(𝚺j2))&)z𝝀N − 𝝀∗{ + (𝚺j2))&&𝝍�é  (5.41) 

where 
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𝑮K_! = 𝑑𝑖𝑎𝑔(�𝝓b(D8)∗
9
��𝜆b(D8)

∗2)
− 𝜆(D8)

∗2)
�
2)
∆𝒎− 𝐊∗��)D8×D6D8  (5.42) 

where 𝐊∗ = 	𝐊(𝜽) is the stiffness- parameterized system matrix. 

The optimal vector of 𝝀'
∗ is given by: 

where 

The optimal vector of 𝜽∗ is given by: 

𝜽∗ = z𝜎/W2&𝑮B9𝑮B + 𝚺B2){
2)(𝜎/W2&𝑮B9𝒃+ 𝚺B2)𝜽g) (5.45) 

 where 

𝑮B = Ì𝝓b(D8)∗
9
𝐊)𝝓(D8)∗ 𝝓b(D8)∗

9
𝐊&𝝓(D8)∗ ⋯ 𝝓b(D8)∗

9
𝐊D1𝝓

(D8)∗Í
D8×D1

(5.46) 

𝒃' = ��𝜆b(D8)
∗2)

− 𝜆(D8)
∗2)

�
2)
𝝓b(D8)∗

9
∆𝒎𝝓(D8)∗ −𝝓b(D8)∗

9
𝐊-𝝓(D8)∗�

D8×)
  (5.47) 

 
From the literature review, the way to obtain the optimal values of parameters is using  

𝝓∗,	𝝀∗, 	𝜷∗ and 𝜽∗ in an iterative manner (Yuen, 2010, Mustafa and Matsumoto, 2017, Das 

and Debnath, 2020). It is commonly known that mode shapes are usually measured with 

incomplete DOFs due to the limited accessibility of sensors and frequencies may be 

measured with relatively high accuracy. Therefore, the optimization is implemented here 

in the sequence of (𝝓∗,	𝝀∗,	𝜷∗) or (𝝓∗,	𝝀∗,	𝜽∗ ). Figure 5.1 shows the iterative procedure 

for updating mass and stiffness parameters. First set initial values of 𝜷∗ , 𝜽∗  and 𝝀∗  as 

nominal values of 𝜷g, 𝜽g, and measured 𝝀N, respectively, the iterative procedure consists 

following steps: 

𝝀'
∗ 	= è𝜎/W2&𝑮k_' + (𝚺j2))))é

2) Ì𝜎/W2& ù𝝀b(D1)
∗
𝝓b(D1)∗

9
𝑲∗𝝓(D1)∗ú (5.43) 

                          +(𝚺j2))))𝝀N + (𝚺j2)))&z𝝍� − 𝑳-𝝓∗{é  

𝑮k_' = 𝜎/W2&𝑑𝑖𝑎𝑔(�𝝓b(D8)∗
9
𝐊∗ − 𝝀b(D8)

∗
𝝓b(D8)∗

9
∆𝒎𝝓(D8)∗�)D8×D8 (5.44) 
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• Update the system mode shapes, 𝝓!
(!)∗  using Eq. (5.34) (mass updating),  

𝝓'
(!)∗ using Eq. (5.41) (stiffness updating), 𝑚 = 1, 2, 3… , 𝑁!. 

• Update the system eigenvalues, 𝝀!
(!)∗  using Eq. (5.36) (mass updating), 

𝝀'
(!)∗ using Eq. (5.43) (stiffness updating), 𝑚 = 1, 2, 3… , 𝑁!. 

• Update the model parameter, mass parameter, 𝜷∗and 𝜽∗, using Eq. (5.38) and 

(5.45), respectively. 

• Iterate the steps 1, 2 and 3 until the model parameters, 𝜷∗and 𝜽∗, satisfy some 

convergence criterion. Herein, when the updated parameters start to remain 

closed to 0.0001 difference, the iteration stops. 

 
Figure 5.1. Flowchart of iterative procedure in the proposed BMUA with ∆𝒎 

     Note: the initial parameters are assumed to be 1~2 times exact value (mass and stiffness). 
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5.4.6 Uncertainty quantification with ∆𝒎 

 The posterior PDF can be well approximated by a Gaussian distribution with a mean at 

optimal parameters and a covariance matrix, Γ, that equals the inverse of the Hessian matrix 

of the objective function. The expression of the covariance matrix of the objective function 

of 𝐽!(𝝀, 𝝓, 𝜷) in Eq. (5.29) for mass updating is expressed as: 

Γ(𝝀, 𝝓, 𝜷) =  (5.48) 

                    (
𝜎/W2&𝑮k + (𝚺j2)))) 𝜎/W2&𝑳) + (𝚺j2)))&𝑳- 𝜎/W2&𝑳&

𝜎/W2&𝑮K9𝑮K + 𝑳-9(𝚺j2))&&𝑳- −2𝜎/W2&𝑳;
𝑠𝑦𝑚 z𝜎/W2&𝑮h9𝑮h + 𝚺h2){

*

2)

 

where 𝑳) is given by: 

𝑳) = 𝑑𝑖𝑎𝑔(�𝜆(D8)
∗
𝝓b(D8)∗

9
𝐌∗ − 𝝀b(D8)

∗
𝝓b(D8)∗

9
(𝐌∗ + ∆𝒎)�)D8×D6D8       (5.49) 

The lth column of 𝑳& is given by: 

𝑳& = Ì(𝜆(D8)∗ − 𝜆b(D8)
∗
)𝝓b(D8)∗

9
𝐌,
𝝓!

∗Í
D8×)

       (5.50) 

The lth column of 𝑳; is given by: 

     	𝑳; = (5.51) 

              �𝝓b(D8)∗
9
�𝝓b(D8)∗ �ù𝜆(D8)

∗
− 𝜆b(D8)

∗
ú
2)
𝜆b(D8)

∗
∆𝒎−𝑴∗��

9

𝐌,𝝓!
∗�
D6D8×)

 

The covariance matrix of the objective function of 𝐽'(𝝀, 𝝓, 𝜽) in Eq. (5.33) is expressed as: 

Γ(𝝀, 𝝓, 𝜽) =      (5.53) 

                    (
𝜎/W2&𝑮k + (𝚺j2)))) 𝜎/W2&𝑳) + (𝚺j2)))&𝑳- 𝜎/W2&𝑳&

𝜎/W2&𝑮K9𝑮K + 𝑳-9(𝚺j2))&&𝑳- −2𝜎/W2&𝑳;
𝑠𝑦𝑚 z𝜎/W2&𝑮h9𝑮h + 𝚺h2){

*

2)

 

where 𝑳U is given by: 

		𝑳U = 𝑑𝑖𝑎𝑔(�𝜆(D8)
∗
𝝓b(D8)∗

9
𝐊∗ − 𝜆b(D8)

∗
𝝓b(D8)∗

9
(𝐊∗ + 𝜆(D8)

∗
∆𝒎)�)D8×D6D8  (5.54) 

The lth column of 𝑳T is given by: 
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𝑳T = Ì(𝜆(D8)∗ − 𝜆b(D8)
∗
)𝝓b(D8)∗

9
𝐊,𝝓'

∗Í
D8×)

 (5.55) 

The lth column of 𝑳S is given by: 

       𝑳S =  (5.56) 

               +𝝓b(D8)∗
9
,𝝓b(D8)∗ ��𝜆b(D8)

∗2)
− 𝜆(D8)

∗2)
�
2)
∆𝒎− 𝐊∗�-

9

𝐊,𝝓'
∗.
D6D8×)

 

Once the posterior covariance matrix is obtained using the above equations, the standard 

variance of each unknown parameter can be computed from the corresponding diagonal 

elements of 𝚪. 

5.4.7 Illustrative examples 

 In this section, the performance of the proposed BMUA is validated by two simulated-

data examples: a) Six-story shear building; b) Three-dimensional three-story braced frame. 

In the presented approach, both mass and stiffness parameters are considered as model 

parameters to be updated. Defining parameters to be updated as a ratio between updated 

mass/stiffness parameters and exact mass/stiffness parameters: 𝜃 = 𝐾]/𝐾/, 𝛽 = 𝑀]/𝑀/, 

where 𝐾]  and 𝑀]  are updated stiffness and mass, respectively. 𝐾/ 	 and 𝑀/  are FEM 

stiffness and mass, respectively. For undamaged cases, 𝜃 and 𝛽 should be unity. Moreover, 

a comparative study is carried out for different damage scenarios to compare the proposed 

Bayesian updating approach against the conventional Bayesian updating approach. It may 

be mentioned that all the information of DOFs is assumed to be obtainable in these two 

examples. 

5.4.7.1 Example 1: six-story shear building 

 The system chosen for this example is a six DOFs structure, as shown in Figure. 5.2. 
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and has following properties: The mass per floor is taken to be M3 = 2 kg (𝑖 = 1, 2,⋯6), 

while the inter-story stiffness is chosen to be	K3 = 100	KN/m (𝑖 = 1, 2,⋯6). The total 

height of this building is 10 m. Therefore, there are a total of 6 mass and stiffness 

parameters to be updated. The modified system is created by adding 0.035 kg to each floor 

in this example, two sets of simulated measured data of unmodified and modified system 

are obtained. Also, measurement noise is considered by adding zero-mean Gaussian noise 

with 1% coefficient of variation (COV) to extracted frequencies and mode shape to 

simulate more realistic measurements. Based on the literature review (Yuen, 2010, Au, 

2011b), identified COV of frequencies by Fast FFT Bayesian modal identification in field 

tests are much smaller than 1%, many of them even are less than 0.1%. Therefore, 1% COV 

of frequencies is reasonable. 

 
Figure 5.2. Six-story shear building 

 
FE model updating using incomplete modes 

 To evaluate the capability of handling uncertainty induced by incomplete data of the 

proposed approach, the shear building is updated by the proposed Bayesian approach with 

incomplete modes under an intact condition. The initial values of mass and stiffness 

parameters for each floor are taken as 2, which is significantly overestimated by 100% 

comparing with exact values 1. The performance of updated frequencies using the proposed 
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approach is shown in Table 5.1. It has been observed that updated frequencies are very 

closed to actual values using the proposed approach. Even if only the first four modes are 

used to update the model, the error is less than 1%. 

Table 5.1. Actual and updated frequencies using incomplete modes (Hz) 
  4 modes 5 modes 6 modes 

   Mode Actual Updated Updated Updated 
1 0.2938 0.2934 0.2939 0.2938 
2 0.8613 0.8614 0.8616 0.8612 
3 1.3702 1.3689 1.3706 1.3699 
4 1.7857 1.7839 1.7867 1.7844 
5 2.0795 2.0796 2.0802 2.0798 
6 2.2315 2.2320 2.2327 2.2314 

 

 
Figure 5.3. Updated mode shapes using different modes 

 
Figure 5.3 shows the comparison between updated mode shapes and actual mode 

shapes. The updated mode shapes obtained from incomplete modes have good agreement 

with the actual mode shape. On the other hand, identified mass parameters, stiffness 

parameters, and corresponding standard derivation (S.D.) are presented in Table 5.2. The 

updated mass and stiffness parameters calculated from the proposed Bayesian approach are 

consistent with actual values of mass and stiffness. Moreover, by using covariance matrices 

in Eqs. (5.48) and (53), the standard derivation which evaluates uncertainty is estimated. 
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The uncertainty reduces as the number of measured modes increases. 

 Table 5.2. Actual and updated mass and stiffness parameters with incomplete modes 
  6modes 5modes 4modes 

Parameter Actual Updated S.D. Updated S.D. Updated S.D. 
𝛽) 

1.0000 

1.0071 0.0413 1.011 0.0422 1.0198 0.0556 
𝛽& 0.9939 0.0347 0.991 0.0327 0.9862 0.0395 
𝛽; 1.0033 0.0266 1.0206 0.0507 1.0182 0.0739 
𝛽U 0.9976 0.0194 0.9904 0.0296 0.9866 0.0668 
𝛽T 0.9996 0.0145 1.0215 0.0476 1.0178 0.055 
𝛽S 1.0014 0.0065 0.981 0.038 0.9876 0.0489 
𝜃) 0.9912 0.0459 1.0068 0.0583 1.0071 0.0556 
𝜃& 1.0061 0.0226 0.9946 0.024 0.9919 0.0579 
𝜃; 1.0026 0.0289 0.9986 0.0342 1.0005 0.0559 
𝜃U 1.0024 0.0279 0.9988 0.0342 1.0009 0.0562 
𝜃T 1.0063 0.0202 0.9946 0.0241 0.9925 0.0576 
𝜃S 0.9912 0.0485 1.0066 0.0571 1.0066 0.0543 

         
Probabilistic damage detection 

 Damage is created artificially by changing critical structural parameters such as flexural 

stiffness of EI (E is young’s modulus, I is the moment of inertial), unit mass. Different 

damage scenarios are considered to assess the performance of the proposed approach. 

Details of various damage scenarios are presented in Table 5.3. The negative sign 

represents mass/stiffness loss with respect to undamaged values in this table. Also, these 

damage scenarios are selected based on the increasing severity of the damage. Regarding 

the selection of initial values for damaged cases, since no prior information of damaged 

structure is available, initial values of both mass and stiffness parameters are taken as 1, 

which assumes that the observed structure has no damage. 

Table 5.3. Damage scenarios 
Case No.                  Mass change                Stiffness change 
      1 -10% (1st floor), -20% (3rd floor) -10% (2nd floor), -20% (4th floor) 
      2 -30% (2nd floor), -40% (5th floor) -30% (3rd floor), -40% (6th floor) 
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 In this example, six modes (including frequencies and mode shapes) are used as 

measured data for damage detection. When updating stiffness parameters, mass parameters 

are known and considered as undamaged in the conventional BMUA. Similarly, when 

updating mass parameters, stiffness parameters are known and undamaged in conventional 

BMUA. However, no prior information of mass and stiffness is required when using the 

proposed Bayesian approach.    

Table 5.4. Actual and updated frequencies (Hz)  

 
Damage No.1  Damage No.2 

 Proposed 
approach 

Conventional 
approach 

  Proposed 
approach 

Conventional 
approach 

Mode Actual Updated Updated  Actual updated updated 
1 0.2886 0.2882 0.3167  0.3003 0.3013 0.3293 
2 0.8570 0.8564 0.9117  0.8828 0.8838 0.9536 
3 1.3920 1.3925 1.4628  1.2923 1.2943 1.3531 
4 1.7340 1.7335 1.7764  1.6914 1.6934 1.8313 
5 2.1038 2.1033 2.1753  2.0849 2.0899 2.1923 
6 2.2130 2.2124 2.7229  2.2668 2.2628 2.6369 

       

  
(a)                                     (b) 

          Figure 5.4. Comparison of actual and updated frequency: (a) Damage No.1;(b)   
Damage No.2 
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                                     (a)                                         (b) 
           Figure 5.5. Comparison of actual and updated mode shape: (a) Damage No.1;(b) 

Damage No.2 
 
       Table 5.4 and Figure. 5.4 show identified frequencies using the proposed Bayesian 

approach match well with their actual values in two damage cases. However, the 

conventional Bayesian gives us obvious bias in terms of updated frequencies, particularly 

23.0% error and 16.3% error in the 6th frequency for damage case No.1 and No.2, 

respectively. Figure 5.5 illustrates that identified mode shapes using the proposed approach 

are almost identical to actual mode shapes, while mode shapes obtained from conventional 

Bayesian have deviated much from actual mode shapes. On the other hand, the identified 

mass, stiffness parameters, and corresponding standard derivation obtained from the 

proposed and conventional approach for all damage scenarios are presented in Tables 5.5 

and 5.6.            
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Table 5.5. Actual and updated structural parameters for damage No.1 
  Proposed approach Conventional approach 

Parameter Actual Updated S.D. Updated S.D. 
𝛽) 0.9000 0.9006 0.0169 0.9504 0.0210 
𝛽& 1.0000 0.9999 0.0091 1.1208 0.0186 
𝛽; 0.8000 0.8005 0.0142 0.7715 0.0168 
𝛽U 1.0000 0.9993 0.0295 1.2182 0.0144 
𝛽T 1.0000 1.0012 0.0476 1.1500 0.0105 
𝛽S 1.0000 0.9993 0.0290 1.0700 0.0064 
𝜃) 1.0000 1.0000 0.0286 1.0479 0.0506 
𝜃& 0.9000 0.9001 0.0109 0.9859 0.0317 
𝜃; 1.0000 0.9996 0.0286 1.1295 0.0311 
𝜃U 0.8000 0.8000 0.0159 0.8818 0.0289 
𝜃T 1.0000 0.9997 0.0106 0.9599 0.0270 
𝜃S 1.0000 1.0005 0.0331 1.1023 0.0244 

 
Table 5.6. Actual and updated structural parameters for damage No.2 

  Proposed approach Conventional approach 
Parameter Actual Updated S.D. Updated S.D. 

𝛽) 1.0000 1.0000 0.0096 0.7757 0.0213 
𝛽& 0.7000 0.7000 0.0095 0.9244 0.0198 
𝛽; 1.0000 1.0001 0.0108 1.0425 0.0180 
𝛽U 1.0000 0.9999 0.0038 1.2775 0.0147 
𝛽T 0.6000 0.6001 0.0029 0.3225 0.0132 
𝛽S 1.0000 1.0000 0.0032 1.6667 0.0106 
𝜃) 1.0000 1.0000 0.0023 1.1549 0.0530 
𝜃& 1.0000 0.9999 0.0005 1.1889 0.0388 
𝜃; 0.7000 0.7000 0.0045 0.7254 0.0248 
𝜃U 1.0000 1.0004 0.0089 1.0892 0.0314 
𝜃T 1.0000 0.9997 0.0067 1.2951 0.0328 
𝜃S 0.6000 0.5999 0.0044 0.6519 0.0206 

Figure 5.6 shows the severity of damage of structural parameters nearly matches the 

assumed values for all damaged scenarios using the proposed Bayesian approach. Also, as 

the extent of damage increases (from damage No.1 to damage No.2), the error difference 

between the actual and estimate values increases (from the error of 21.8% to 66.6%). In 
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other words, the conventional Bayesian approach seems to fail to detect damage in this 

example, which results from the assumption that mass/stiffness is invariable due to damage 

when updating stiffness/mass. Change of mass/stiffness due to damage may not be ignored. 

Otherwise, it will have a significant bias on results. In the proposed Bayesian updating 

framework, no assumption is made, the issue of the coupling effect of mass and stiffness 

is tackled by using data from unmodified and modified systems, then both mass and 

stiffness can be successfully updated. This example demonstrates that the performance of 

the proposed Bayesian approach is quite superior to the conventional Bayesian approach 

in terms of updating both mass and stiffness. 

  
(a) (b) 

  
(c) (d) 

      Figure 5.6. Comparison of updated parameters. Damage No.1: a) mass; (b) stiffness;       
Damage No.2: (c) mass; (d) stiffness  
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 Once the extent of the damage for mass and stiffness and their standard derivation are 

identified, Eq. (5.5) is used to estimate the probabilities of damage of all structural 

parameters. As shown in Figure 5.7, for example, the first mass parameter and the second 

stiffness parameter in damage No.1 have possible damage both 10% with a probability of 

56.3% and 59.8%, respectively.  

  
(a) (b) 

  
(c) (d) 

    Figure 5.7. Probability of damage: damage No.1: (a) mass (b) stiffness; damage No.2: 
(c) mass (d) stiffness  

 Also, the fifth mass parameter and the third stiffness parameter in damage No.2 have 

possible damage 40% and 30% with a probability of 62.3% and 62.9%, respectively. Fig. 

8 suggests that the proposed Bayesian updating approach is very sensitive because it not 

only localizes damage but also quantifies damage. Therefore, the proposed Bayesian 

approach has much potential for damage detection.  
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5.4.7.2 Example 2: three-dimensional three-story braced shear frame 

 For the second example, a three-story braced frame is investigated to validate the 

proposed Bayesian approach. The diagram and plan view are presented in Figure 5.8. The 

floor mass is taken to be M=10U kg for each floor, giving three mass parameters to be 

updated. Four stiffness parameters are considered in x and y direction for each floor to give 

a total of twelve stiffness parameters. 𝜃U(32))() = 𝐾3,(# , 𝜃U(32))(& = 𝐾3,(l , 𝜃U(32))(; =

𝐾3,2# , 𝜃U(32))(U = 𝐾3,2l , 𝑖 = 1,2,3, where 𝑖 denotes story number and +𝑥, +𝑦, −𝑥, and 

−𝑦 denote the direction of the outer face. The actual values of lateral stiffness are  𝐾3,(# =

𝐾3,2# = 50000	KN/M, 𝐾3,(l = 𝐾3,2l = 40000	KN/M. The modified system is created by 

adding 3.5% ×M = 350 kg on each floor. Missing modes are always existing in the real 

structure. Therefore, the first six modes of the unmodified and modified system are 

considered as measured data. Additionally, similar to previous example, zero-mean 

Gaussian noise with 1% COV of modal parameters is added to measured frequencies and 

mode shapes. The same noise level is applied to both the conventional and proposed 

methods. 

 
Figure 5.8. Diagram and plan view of investigated model 
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Probabilistic damage detection 

 Two damage scenarios are considered with different severity: higher designated 

number indicates more severity. Table 5.7 shows the different levels of damage. Similar 

with previous example, initial values of both mass and stiffness parameters for damage 

detection are taken as 1 for each damage case.  

Table 5.7. Damage scenarios 
Case No.                   Mass change               Stiffness change 

      1 -15% (1st floor) -15% (2nd floor, +𝑥 face) 
-20% (3rd floor, +𝑦 face) 

      2 
-20% (1st floor) 
-30% (2nd floor) 
-30% (3rd floor) 

-20% (1st floor, −𝑥 face) 
-30% (2nd floor,−y face) 
-40% (3rd floor,+𝑥 face) 

 
A comparative study is implemented to compare the proposed Bayesian approach 

against the conventional Bayesian approach. The mass is assumed to be known (even for 

the damaged mass) when updating stiffness using a conventional Bayesian approach; 

similarly, stiffness is assumed to be known (even for damaged stiffness) when updating 

mass using the conventional Bayesian approach. However, no mass or stiffness information 

is needed when using the proposed Bayesian approach. 

Table 5.8. Actual and updated frequencies (Hz) for damage scenarios 

 
Damage No.1  Damage No.2 

 Proposed 
approach 

Conventional 
approach 

  Proposed 
approach 

Conventional 
approach 

Mode Actual Updated Updated  Actual updated updated 
1 6.2344 6.3443 6.7436  7.2770 7.3267 6.9197 
2 6.9097 7.1314 7.4463  8.0189 8.0482 7.6733 
3 11.4015 11.5524 12.3077  13.2544 13.3536 12.6559 
4 17.5213 17.6475 18.3255  20.1385 20.2384 21.5418 
5 20.2405 20.3915 21.4802  20.9827 20.8821 22.1063 
6 25.6451 25.829 27.7781  28.8006 29.1327 30.1786 
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(a)                                     (b) 

Figure 5.9. Comparison of actual and updated frequency: (a) Damage No.1; (b) Damage    
No.2 

 
The performance of updated frequencies using the proposed approach and the 

conventional approach is shown in Table 5.8 and Figure 5.9 for all damage scenarios. It is 

clearly observed that updated frequencies obtained from the proposed approach show 

considerable matching with actual values for all cases, but updated frequencies by 

conventional approach are far from actual values. Also, diagonal modal criteria (MAC) 

values between actual and updated mode shapes using two approaches are evaluated, as 

shown in Table 5.9 for all damage scenarios.  

Table 5.9. MAC values for damage scenarios  
Damage No.1  Damage No.2 

Mode 
number 

Proposed 
approach 

Conventional 
approach 

 Proposed 
approach 

Conventional 
approach 

1 0.9998 0.9987  0.9997 0.9905 
2 0.9999 0.9989  0.9998 0.9911 
3 0.9998 0.9988  0.9999 0.9934 
4 0.9999 0.9992  0.9996 0.9782 
5 0.9997 0.9989  0.9998 0.9560 
6 0.9997 0.9972  0.9997 0.9914 

 Obviously, the proposed Bayesian approach gives more accurate MAC values than the 

conventional Bayesian approach. Particularly, the conventional Bayesian approach gives 
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0.9560 of MAC value of the fifth mode in damage No. 2. Updated mass, stiffness 

parameters, and their corresponding standard derivation using two approaches are 

presented in Table 5.10 and Table 5.11. It was found in Table 5.10 (Damage No. 1) and 

that the parameters in mass and stiffness, 𝛽) and 𝜃),2l are 1.30 and 1.27, in Table 5.11 

(Damage No. 2), the parameters in stiffness, 𝜃;,(l  and 𝜃;,2l  are 1.45 and 1.44 by the 

conventional Bayesian approach compared to the target value of 1.     

Table 5.10. Actual and updated structural parameters for damage No.1 

  Proposed approach Conventional approach 
Parameter Actual Updated S.D. Updated S.D. 

𝛽) 0.8500 0.8456 0.0015 1.2968 0.0005 
𝛽& 1.0000 0.9874 0.0019 0.8389 0.0013 
𝛽; 1.0000 1.0131 0.0014 1.1146 0.0009 
𝜃),(# 1.0000 1.0183 0.0098 1.2000 0.0037 
𝜃),(l 1.0000 1.0032 0.0100 1.2634 0.0007 
𝜃),2# 1.0000 1.0026 0.0099 1.1862 0.0033 
𝜃),2l 1.0000 0.9967 0.0100 1.2681 0.0017 
𝜃&,(# 0.8500 0.8443 0.0187 0.9008 0.0025 
𝜃&,(l 1.0000 0.9992 0.0120 1.0644 0.0019 
𝜃&,2# 1.0000 1.0122 0.0199 1.0887 0.0035 
𝜃&,2l 1.0000 0.9935 0.0139 1.0608 0.0021 
𝜃;,(# 1.0000 0.9963 0.0150 0.9956 0.0018 
𝜃;,(l 0.8000 0.7842 0.0182 0.7838 0.0004 
𝜃;,2# 1.0000 0.9922 0.0101 1.0092 0.0013 
𝜃;,2l 1.0000 0.9796 0.0168 0.9778 0.0009 

 
 
 
 
 
 
 
 
 
 



148 
 

Table 5.11. Actual and updated structural parameters for damage No.2 
  Proposed approach Conventional approach 

Parameter Actual Updated S.D. Updated S.D. 
𝛽) 0.8000 0.7898 0.0032 1.3530 0.0030 
𝛽& 0.7000 0.6895 0.0090 1.1520 0.0011 
𝛽; 0.7000 0.6929 0.0020 0.9250 0.0011 
𝜃),(# 1.0000 0.9879 0.0135 1.2269 0.0021 
𝜃),(l 1.0000 0.9723 0.0241 1.1897 0.0012 
𝜃),2# 0.8000 0.7955 0.0154 0.9714 0.0020 
𝜃),2l 1.0000 1.0286 0.0123 1.2010 0.0054 
𝜃&,(# 1.0000 1.0194 0.0167 1.3722 0.0034 
𝜃&,(l 1.0000 0.9768 0.0145 1.3419 0.0012 
𝜃&,2# 1.0000 1.0145 0.0179 1.3538 0.0058 
𝜃&,2l 0.7000 0.7062 0.0181 0.9442 0.0053 
𝜃;,(# 0.6000 0.6155 0.0215 0.8708 0.0095 
𝜃;,(l 1.0000 0.9976 0.0158 1.4477 0.0013 
𝜃;,2# 1.0000 0.9845 0.0332 1.4095 0.0056 
𝜃;,2l 1.0000 0.9890 0.0194 1.4429 0.0013 

Figure 5.10 shows that updated mass/stiffness parameters agree well with actual values 

by the proposed approach for all damage scenarios. The updated error is less than 3%.  

However, updated mass/stiffness is obtained from conventional Bayesian have remarkable 

error (mass: up to 30%, stiffness: up to 44%).  In other words, the conventional Bayesian 

approach gives false damage alarm, which may attribute to the assumption that 

mass/stiffness change due to damage is ignored. The assumption in conventional BMUA 

is questionable to update stiffness when the mass has significantly changed. This example 

demonstrates that the proposed Bayesian approach has a quite better level of performance 

when compared with the conventional Bayesian approach. 



149 
 

  
(a)   (b) 

  
(c)   (d) 

      Figure 5.10. Comparison of updated parameters. Damage No.1 (a) mass; (b) stiffness    
Damage No.2 (c) mass; (d) stiffness  

 
 Based on identified mass/stiffness parameters and their standard derivation, the 

probability of damage for all parameters are evaluated using Eq. (5.5). Figure 5.11 shows 

that the first mass parameter and stiffness parameter of +𝑦 face on the third floor in damage 

No.1 have possible damage 15% and 20% with a probability of 72.32% and 76.19%, 

respectively. Furthermore, the second mass parameter and stiffness parameter +𝑥 face of 

the third floor in damage No.2 have possible damage 30% and 40% with a probability of 

84.81% and 78.61%, respectively. 
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   (a)      (b) 

  
                                  (c)                                     (d) 

    Figure 5.11. Probability of damage. Damage No.1: (a) mass (b) stiffness; damage 
No.2:   (c) mass (d) stiffness  

 
5.5 Bayesian model updating with added stiffness ∆𝒌 

 In this section, the Bayesian model updating framework with added stiffness ∆𝑘 is 

proposed. Adding known stiffness is used as a surrogate way of adding mass to construct 

the modified system. Similar to the BMUA with mass addition, another new eigen-

equations embedding ∆𝑘 is derived to solve the coupled parameters. The posterior PDF is 

the reformulated based on new prior PDF and likelihood function. The optimal parameters 

are finally obtained by asymptotic optimization method. . It should be noted that the 

subheading with ∆𝒌 or ‘new’ indicates the presented equations and formulations in this 

section are originally derived by authors, otherwise, references are cited accordingly. 
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5.5.1 Formulation of new eigen-equations with added stiffness ∆𝒌 

 Two systems, namely, original, and modified systems with stiffness addition, ∆𝒌, are 

considered together for fundamental structural dynamics, we have: 

𝑲𝝓 = 𝑴𝝓𝝀    (5.57) 

(𝑲 + ∆𝒌)𝝓b = 𝑴𝝓b𝝀′    (5.58) 

where 𝝀 and 𝝓 are eigenvalue and mode shape before modification, respectively. 𝛌′ and 

𝝓b are eigenvalue and mode shape after modification. 

𝝓b9is premultiplied in Eq. (5.57) by 

𝝓b9𝑲𝝓 = 𝝓b9𝑴𝝓𝝀 (5.59) 

The transposed matrix of Eq. (5.58) is calculated, then 𝝓 is postmultiplied in the resulting 

equation, 

𝝓b9(𝑲 + ∆𝒌)𝝓 = 𝝓b9𝑴𝝓𝝀′ (5.60) 

Subtracting Eq. (5.59) from Eq. (5.60), it gives: 

𝝓b9𝑴𝝓𝛌b −𝝓b9𝑴𝝓𝝀 = 𝝓b9∆𝒌𝝓 (5.61) 

Defining 𝐇 = 𝝓b9𝑴𝝓 and Z = 𝝓b9∆𝒌𝝓, Eq. (5.61) is rewritten as: 

𝐇𝝀b −𝐇𝝀 = 𝐙 (5.62) 

Therefore, 𝐇 is solved as another expression, 𝐇b: 

𝐇b = (𝝀b − 𝝀)2)𝝓b9∆𝒌𝝓 (5.63) 

Finally, eigen-equation error, 𝑴𝑬!, is reformulated when updating mass:  

	𝑴𝑬! = 𝐇− 𝐇b = 𝝓b9𝑴𝝓− (𝝀b − 𝝀)2)𝝓b9∆𝒌𝝓 (5.64) 

Similar derivation procedures for stiffness updating are employed: 

𝝓b9is premultiplied in Eq. (5.57) 
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𝝓b9𝑲𝝓 = 𝝀𝝓b9𝑴𝝓 (5.65) 

The transposed matrix of Eq. (5.58) is firstly calculated, then postmultiplying resulting 

equation by 𝝓, 

𝝓b9(𝑲 + ∆𝒌)𝝓 = 𝝀′𝝓b9𝑴𝝓 (5.66) 

Premultiplying Eqs. (5.65) and (5.66) by 𝝀2) and 𝝀b2), respectively: 

𝝀2)𝝓b9𝑲𝝓 = 𝝓b9𝑴𝝓    (5.67) 

𝝀b2)𝝓b9(𝑲 + ∆𝒌)𝝓 = 𝝓b9𝑴𝝓 
 

   (5.68) 

Subtracting Eq. (5.67) from Eq. (5.68), it gives: 

𝝀2)𝝓b9𝑲𝝓− 𝝀b2)𝝓b9𝑲𝝓 = 𝝀b2)𝝓b9∆𝒌𝝓 (5.69) 

Defining 𝐘 = 𝝀b2)𝝓b9∆𝒌𝝓 and 𝐖 = 𝝓b9𝑲𝝓, hence Eq. (5.69) is simplified as: 

𝝀2)𝐖− 𝝀b2)𝐖 = 𝐘 (5.70) 

Thus, 𝐖 has a new expression, 𝐖b: 

𝐖b = (𝝀2) − 𝝀b2))2)𝝀b2)𝝓b9∆𝒌𝝓  (5.71) 

Then, eigen-equation error, 𝑴𝑬', is reformulated when updating stiffness:  

𝑴𝑬' =𝐖−𝐖b = 𝝓b9𝑲𝝓− (𝝀2) − 𝝀b2))2)𝝀b2)𝝓b9∆𝒌𝝓 (5.72) 

Finally, the coupling effect could be addressed using the new eigen-equations, e.g., Eqs. 

(5.64) and (5.72), because mass updating by Eq. (5.64) does not require any stiffness 

information. Similarly, when updating stiffness by Eq. (5.72). It should be noticed that two 

fundamental rules for creating a modified system using added known stiffness: (1) 

noticeable frequency change is observed between the original system and modified system; 

(2) mode shapes after modification change slightly (Coppotelli, 2009, Khatibi et al., 2012, 

López-Aenlle et al., 2012). Some recommendations for creating a modified structure with 

added stiffness could be found in the work (Khatibi et al., 2012). Further research for 
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stiffness-change optimization strategy may be studied under lab or field test conditions, 

which is beyond the scope of this work.   

5.5.2 Formulation of the new prior PDF with ∆𝒌 

Assume 𝑁! modes are measured. The prior PDF in the proposed BMUA is chosen as 

when updating parameters, 𝜷: 

𝑝!(𝝀, 𝝓, 𝜷|𝐶) = 𝑝!(𝝀, 𝝓|𝜷, 𝐶) ∙ 𝑝!(𝜷|𝐶)	   (5.73) 
	

where 		𝝀 = [𝜆()), 𝜆(&), ⋯ , 𝜆(D8)]9  and 𝝓 = [	𝝓()), 	𝝓(&), ⋯ , 	𝝓(D8)]9  are eigenvalues, 

eigenvector to be updated, respectively. 𝑝!(𝝀, 𝝓|𝜷, 𝐶) is formulated using Gaussian PDF 

with new eigen-equation error in Eq. (5.64): 

𝑝!(𝝀, 𝝓|𝜷, 𝐶) = 𝑐-𝑒𝑥𝑝 +−
v𝝓b9𝑴𝝓− (𝝀b − 𝝀)2)𝝓b9∆𝒌𝝓v

𝟐

2𝜎/W&
. 

 

   (5.74) 
 

where 𝑐-  denotes a constant; sign of ‖	. ‖  denotes mathematical Euclidean norm. 𝜎/W&  

denotes a defined variance of eigen-equation error; Eq. (5.74) is simplified as: 

𝑝!(𝝀, 𝝓|𝜷, 𝐶) = 𝑐-𝑒𝑥𝑝 �−
1
2 𝐽d_!(𝝀, 𝝓; 𝜷)� 

  (5.75) 

where 

𝐽d_8(𝝀, 𝝓; 𝜷) = 	𝑻!
9𝚺/W2)𝑻!  (5.76) 

where 𝑻! = 𝝓b(𝒎)9𝑴𝝓(!) − ù𝜆b(!) − 𝜆(!)ú
2)
𝝓b(𝒎)9∆𝒌𝝓(!). 𝚺/W = 𝜎/W& 𝑰, denotes the 

covariance matrix in prior PDF;  𝑰 denotes an identity matrix. 𝚺/W arises from modeling 

error between theoretical and target FE models. Another term of 	𝑝!(𝜷|𝐶) in Eq. (5.73) is 

approximated by a Gaussian distribution, which has a mean value of 𝜷g (nominal value) 
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and covariance matrix, 𝚺h = 𝜎h&𝑰, 𝜎h is selected as a large variance to let 𝑝!(𝜷|𝐶) be a 

non-informative prior (Yuen, 2010). Hence, 𝑝!(𝜷|𝐶) may be expressed as: 

𝑝!(𝜷|𝐶) = exp �−
‖𝜷 − 𝜷g‖&

2𝜎h&
�  (5.77) 

Combining Eqs. (5.75) and (5.77), then the prior PDF in Eq. (5.73) is rewritten as:  

𝑝!(𝝀, 𝝓, 𝜷|𝐶) = 𝑐-exp �−
1
2 𝐽d!(𝝀, 𝝓; 𝜷)� ∙ exp �−

‖𝜷 − 𝜷g‖&

2𝜎h&
�    (5.78) 

 
5.5.3 Formulation of likelihood function 

 How good the FE model’s response agrees well with measurement can be reflected 

by the likelihood function. Assuming a measurement error, 𝜺:  

�𝝀
N
𝝍�� = � 𝝀

𝑳-𝝓
� + 𝜺	    (5.79)	

where Gaussian distribution is assigned to 𝜺. 𝝀N  denotes measured eigenvalues;	𝝍�   denotes 

measured mode shapes. 𝑳- consists of ‘1s’ or ‘0s’ to match measured partial mode shapes 

with theoretical counterparts. Therefore, the likelihood function is expressed as: 

𝑝!z𝝀N, 𝝍��𝝀,𝝓, 𝜷, 𝐶{ = 𝑝!z𝝀N, 𝝍��𝝀,𝝓{ = exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
⎦
⎥
⎥
⎥
⎤
 

 
   (5.80) 

 

𝚺i in Eq. (5.80) is a measured covariance matrix that can be obtained by Bayesian modal 

analysis (Au, 2017a), reflecting the effect of measurement noise on identified frequencies 

and mode shapes.  
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5.5.4 Formulation of the new posterior PDF with ∆𝒌 

 Based on the formulation of prior PDF in Eq. (5.78) and likelihood function Eq. 

(5.80), the posterior PDF for mass updating can be written according to Eq. (5.2): 

𝑝!z𝝀,𝝓, 𝜷�𝝀N, 𝝍�, 𝐶{ = 𝑐-exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
−
1
2 𝐽d!(𝝀, 𝝓; 𝜷) −

‖𝜷 − 𝜷g‖&

2𝜎h&

⎦
⎥
⎥
⎥
⎤
 

 
 

(5.81) 
 

Generally, it requires multidimensional integrals to obtain the MPVs of structural 

parameters in Eq. (5.81). However, due to structural complexity in real-world, it is 

impractical to directly perform multidimensional integrals (Beck and Katafygiotis, 1998). 

The asymptotic approximation method is an efficient alternative to avoid this issue (Beck 

and Katafygiotis, 1998). Specifically, the posterior PDF’s negative logarithm is used as an 

objective function. Therefore, MPVs can be found by minimizing the objective functions, 

analytical formulations of model parameters and uncertainty can be conveniently derived. 

The objective function with added stiffness when updating mass parameters is expressed 

as: 

		𝐽!(𝝀, 𝝓, 𝜷) =
1
2
(𝜷 − 𝜷g)9𝚺h2)(𝜷 − 𝜷g) (5.82) 

                         +	 )
&L:;0

∑ þ𝝓b(𝒎)9𝑴𝝓(!) − ù𝜆b(!) − 𝜆(!)ú
2)
𝝓b(𝒎)9∆𝒌𝝓(!)þ

&
D8
!C) 		 

																												+
1
2 �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�
9

𝚺j2) �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

� 

In terms of updating stiffness, 𝜽, the same derivation procedures are employed; the prior 

PDF has an expression as Eq (5.83):  

𝑝'(𝝀, 𝝓, 𝜽|𝐶) = 𝑐-𝑒𝑥𝑝 �−
1
2 𝐽d_'(𝝀, 𝝓; 𝜽)� ∙ 𝑒𝑥𝑝 �−

(𝜽 − 𝜽g)&

2𝜎B&
�    (5.83) 
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where 𝝀 are updated eigenvalues;  𝝓 are updated eigenvector. 𝐽d_!(𝝀, 𝝓; 𝜽) is given by: 

𝐽d_!(𝝀, 𝝓; 𝜽) = 𝑐-𝑻'
9𝚺/W2)𝑻' 	   (5.84) 

	

where 𝑻' = 𝝓b(!)9𝑲𝝓(!) − (𝜆(!)
2)
− 𝜆b(!)

2)
)2)𝜆b(!)

2)
𝝓b(!)9∆𝒌𝝓(!). 

The likelihood function is given by: 

𝑝'z𝝀N, 𝝍��𝝀,𝝓, 𝜽, 𝐶{ = 𝑝z𝝀N,𝝍��𝝀,𝝓{ = exp

⎣
⎢
⎢
⎢
⎡
−
þ𝝀
N
𝝍� −

𝝀
𝑳-𝝓

þ
&

2𝚺i
⎦
⎥
⎥
⎥
⎤
  (5.85) 

The objective function with added stiffness is expressed as: 

𝐽'(𝝀, 𝝓, 𝜽) =
1
2
(𝜽 − 𝜽g)9𝚺B2)(𝜽 − 𝜽g) (5.86) 

                     + )
&L:;0

∑ ÿ𝝓b(!)9𝑲𝝓(!) − (𝜆(!)
2)
− 𝜆b(!)

2)
)2)𝜆b(!)

2)
𝝓b(!)9∆𝒌𝝓(!)ÿ

&
D8
!C)    

																								+
1
2 �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

�
9

𝚺j2) �
𝝀N
𝝍� −

𝝀
𝑳-𝝓

� 

 
5.5.5 Optimization framework with ∆𝒌 

The MPVs of updated parameters are obtained using the asymptotic approximation 

method for objective functions in Eqs. (5.82) and (5.86). The symbol ∗ below denotes 

updated value. The optimal 𝝓!
∗ are obtained via optimizing 𝐽!(𝝀, 𝝓, 𝜷) with respect to 

𝝓:  

𝝓!
∗ = è𝜎/W2&𝑮K_!9𝑮K_! + 𝑳-9(𝚺j2))&&𝑳-é

2)
𝑳-9è(𝚺j2))&)z𝝀N − 𝝀∗{ + (𝚺j2))&&𝝍�é	  (5.87) 

	

where (𝚺j2))&) is left bottom sub-matrix of 𝚺j2); (𝚺j2))&& is right bottom sub-matrix of 𝚺j2); 

𝑮K_8 is defined as: 

𝑮K_8 = 𝑑𝑖𝑎𝑔(�𝝓b(D8)∗
9
�𝑴∗ − ù𝜆b(D8)

∗
− 𝜆(D8)

∗
ú
2)
∆𝒌��)D8×D6D8 

   (5.88) 

where the sign of ‘𝑑𝑖𝑎𝑔’ indicates diagonal matrix, 𝑴∗ = 𝑴(𝜷).  
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The same procedures with respect to 𝛌, the optimal 𝝀∗ is obtained as: 

  	𝝀!
∗ = (5.89) 

											è𝜎/W2&𝑮k_! + (Σj2))))é
2) Ì𝜎/W2& ù𝝓b(D8)∗

9
𝑴∗𝝓(D8)∗𝝀b(D8)

∗
−𝝓b(D8)∗

9
∆𝒌𝝓(D8)∗ú 

															+(Σj2))))𝝀N + 	(Σj2)))&z𝝍� − 𝑳-𝝓∗{é                                                                                
          
Where (𝚺j2)))&  is right top sub-matrix of 𝚺j2) ; (𝚺j2))))  is left top sub-matrix of 𝚺j2) ; 

Define 𝑮k_! as: 

𝑮k_8C𝜎/W
2&𝑑𝑖𝑎𝑔(�𝝓b(D8)∗

9
𝑴∗𝝓(D8)∗�)D8×D8 (5.90) 

The same procedures with respect to 𝜷 , the optimal 𝜷∗ are obtained as: 

𝜷∗ = z𝜎/W2&𝑮h9𝑮h + 𝚺h2){
2)(𝜎/W2&𝑮h9𝒃! + 𝚺h2)𝜷g) (5.91) 

where 𝑮h and 𝒃! are defined as: 

  𝑮h = Ì𝝓b(D8)∗
9
𝑴)𝝓(D8)∗ ⋯ 𝝓b(D8)∗

9
𝐌Dh𝜙(D8)

∗Í
D8×D2

 
 

  (5.92) 
 

 

 𝒃! = �ù𝜆b(D8)
∗
− 𝜆(D8)

∗
ú
2)
𝝓b(D8)∗

9
∆𝒌𝝓(D8)∗ −𝝓b(D8)∗

9
𝐌-𝝓(D8)∗�

D6D8×)
	(5.93) 

When updating stiffness, the optimal 𝝓'
∗  is obtained via optimizing  𝐽'(𝝀, 𝝓, 𝜽)  with 

respect to 𝝓 as: 

𝝓'
∗ = è𝜎/W2&𝑮K_'9𝑮K_' + 𝑳-9(𝚺j2))&&𝑳-é

2)
𝑳-9è(𝚺j2))&)z𝝀N − 𝝀∗{ + (𝚺j2))&&𝝍�é   (5.94) 

where 

𝑮K_!C𝑑𝑖𝑎𝑔(�𝝓
b(D8)∗

9
�𝑲∗ − �𝜆(D8)

∗2)
− 𝜆b(D8)

∗2)
�
2)
𝜆b(D8)

∗
∆𝒌��)D8×D6D8 

(5.95) 

 where 𝑲∗ = 	𝑲(𝜽). 

The optimal 𝝀'
∗ is expressed as: 

𝝀'
∗ 	= è𝜎/W2&𝑮k_' + (𝚺j2))))é

2) Ì𝜎/W2& ù𝝀b(D1)
∗
𝝓b(D1)∗

9
𝑲∗𝝓(D1)∗ú  (5.96) 

                         +(𝚺j2))))𝝀N + (𝚺j2)))&z𝝍� − 𝑳-𝝓∗{é   
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where 

The optimal 𝜽∗ is obtained as: 

𝜽∗ = z𝜎/W2&𝑮B9𝑮B + 𝚺B2){
2)(𝜎/W2&𝑮B9𝒃+ 𝚺B2)𝜽g) (5.98) 

where 

														𝑮B =   (5.99) 
																Ì𝝓b(D8)∗

9
𝑲)𝝓(D8)∗ 𝝓b(D8)∗

9
𝑲&𝜙(D8)

∗
⋯ 𝝓b(D8)∗
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𝑲D1𝜙

(D8)∗Í
D8×D1

 

														𝒃' =  (5.100) 

																								��𝜆b(D8)
∗2)

− 𝜆(D8)
∗2)

�
2)
𝜆(D8)

∗
𝝓b(D8)∗

9
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9
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The optimization work is performed in order of (𝝓∗,	𝝀∗,	𝜷∗) or (𝝓∗,	𝝀∗,	𝜽∗ ). Figure 5.12 

presents the iterative procedures for parameters identification. Initial 𝜷∗ , 𝜽∗  and 𝝀∗  are 

defined as nominal values, respectively: 𝜷g, 𝜽g, and measured 𝝀N. Note that the magnitude 

of initial mass and stiffness are typically chosen as one to two times of exact values. In this 

study, iterative work starts with updating mode shape without initial values. The iterative 

procedures are shown as follows: 

• Find updated mode shapes, 𝝓!
(!)∗ by Eq. (5.87) (updating mass);  𝝓'

(!)∗ by Eq. 

(5.94) (updating stiffness), 𝑚 = 1, 2, 3… , 𝑁!. 

• Find updated eigenvalues, 𝝀!
(!)∗ by Eq. (5.89) (updating mass); 𝝀'

(!)∗ by Eq. 

(5.96) (updating stiffness), 𝑚 = 1, 2, 3… , 𝑁!. 

• Find updated mass and stiffness parameters, 𝜷∗and 𝜽∗, by Eqs. (5.91) and (5.98), 

respectively. 

𝑮k_' = 𝜎/W2&𝑑𝑖𝑎𝑔(�𝝓b(D8)∗
9
(𝑲∗ + ∆𝒌)𝝓(D8)∗�)D8×D8  (5.97) 
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• Repeat the above steps until structural parameters, 𝜷∗and 𝜽∗ , to meet defined 

convergence criterion: the iteration work stops when the difference of updated 

parameters remains about 0.0001. 

 
Figure 5.12. Schematic diagram of the proposed BMUA with ∆𝒌 

 
5.5.6 Uncertainty quantification with ∆𝒌 

When sufficient measured data is available, a Gaussian distribution can reasonably 

approximate the posterior PDF. The mean and covariance matrix of the Gaussian 

distribution can be represented by the MPVs of updated parameters and the Hessian 

matrix’s inverse of the objective function, respectively. The covariance matrix could 

quantify the uncertainty of model parameters. The covariance matrix of 𝐽!(𝝀, 𝝓, 𝜷) when 

updating mass is described as: 

     Γ(𝝀, 𝝓, 𝜷) =    (5.103) 
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where 𝑳) is given by: 
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𝑳& and 𝑳;	are defined as: 
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 (5.106) 

The covariance matrix of 𝐽'(𝝀, 𝝓, 𝜽) when updating stiffness is described as: 

 

			Γ(𝝀, 𝝓, 𝜽) =  (5.107) 
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where 𝑳U is given by: 
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When the covariance matrix, Γ, is calculated, standard derivations of updated parameters 

are equivalent to the root of the diagonal values of Γ. 

5.5.7 Illustrative examples 

To evaluate the proposed BMUA with added stiffness, FE models are constructed in a 

MATLAB environment for two numerical examples with different degrees of complexity. 

In the present work, it is convenient to use a ratio between real and theoretical parameters 

as an updating index: 𝜃 = 𝐾./𝐾%, 𝛽 = 𝑀./𝑀%, where 𝐾. and 𝐾% are target and theoretical 

stiffness; 𝑀. and 𝑀% are target and theoretical mass. In the case of a healthy condition, 𝜃 

and 𝛽  are unity. Additionally, a comparative investigation is implemented for various 

damage cases to demonstrate the proposed BMUA outperforms the traditional one. Note 

that before system updating, measured mode shapes have to be normalized or scaled by 

mass-normalized FE model method (Rezaiee‐Pajand et al., 2020) or scaling methods 

(Khatibi et al., 2012, López-Aenlle et al., 2012) to ensure tested and analytical mode shapes 

are comparative. Also, due to limited sensors installed in practice, measured mode shapes 

are usually incomplete and only available with a few DOFs related to the sensor location. 

Therefore, it is desirable to expand reduced measured mode shapes onto complete mode 

shapes with full DOFs in these two examples by mode shape expansion techniques (Chen, 

2010, Chen et al., 2012). 
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5.5.7.1 Example 1: six-story shear building 

  
(a) (b) 

   Figure 5.13. Six-story shear building: (a) original system; (b) modified system with 
curved damper  

The shear building sketch is shown in Figure 5.13, modeled as a six-DOFs structure 

with a total height of 30 m. The mass per floor and inter-story stiffness are designed as 

M1 = 20  Kg (𝑗 = 1, 2,⋯6)  and 	K1 = 12000	KN/m  (𝑗 = 1, 2,⋯6) , respectively. This 

example gives six mass/stiffness parameters to be updated. Suppose the shear building 

under laboratory condition requires retrofits to increase inter-story stiffness and reduce 

lateral displacement due to long-term use, original structure (Figure 5.13 (a)) also needs to 

be updated to detect structural abnormality. The curved damper has superior performance 

to enhance stiffness and reduce inter-story drift. Also, the curved damper is practically 

convenient, it can be easily inspected and repaired on structural maintenance (Fathizadeh 

et al., 2021). Thus, two curved dampers at each floor are installed, create a modified system, 

as shown in Figure 5.13 (b). In this example, assuming that each floor is provided the 

equivalent stiffness addition of ∆𝑘1 = 420  KN/m ( 𝑗 = 1, 2,⋯6)  by curved dampers, 

weight of each curved damper is ignored. Hence, the FE model will be updated by two 

groups of simulated measured data acquired from original and modified systems. Gaussian 

white noise with zero-mean and 1% coefficient of variation (COV) is considered on 



163 
 

measured data.  

FE model updating using incomplete modes 

Only incomplete modes are available in practice due to the difficulty of the 

identification of higher modes and limited number of sensors. For mimicking the field 

conditions using incomplete modes, the proposed BMUA is used to update the six-story 

shear building model with a different number of modes in case of a healthy condition. The 

initial value for each mass and stiffness parameter is identically taken twice as the exact 

value of the unity. Table 5.12 shows updated frequencies by the proposed approach with a 

different number of modes. It is seen that updated frequencies match well with actual 

counterparts. The first four modes are graphically compared in Figure 5.14 between actual 

mode shapes and updated counterparts. The updated mode shapes obtained from a different 

mode number coincide with the actual ones, indicating the proposed approach's robustness 

with incomplete measured data. Table 5.13 lists the results of updating mass and stiffness 

and their standard derivations (S.D.). The proposed BMUA can accurately identify mass 

and stiffness parameters (only error of less than 2% is found). Additionally, the S.D. 

representing the uncertainties tends to be reduced as the number of modes used to update 

the model increases. 

Table 5.12. Results of updated frequencies (Hz) 
  Four modes Five modes Six modes 

      Mode Actual Updated Updated Updated 
         1 1.0177 1.0018 1.0015 1.0184 
         2 2.9838 2.9680 2.9645 2.9821 
         3 4.7465 4.7199 4.7147 4.7467 
         4 6.1858 6.1731 6.1628 6.1849 
         5 7.2035 7.1720 7.1791 7.2045 
         6 7.7303 7.7198 7.7258 7.7303 
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Figure 5.14. Updated mode shapes using incomplete modes 

 
Table 5.13. Results of updated structural parameters  

  Four modes Five modes Six modes 
Parameter Actual Updated S.D. Updated S.D. Updated S.D. 

𝛽) 

1.0000 

0.9855 0.0101 0.9895 0.0067 0.9897 0.0037 
𝛽& 1.0128 0.0090 1.011 0.0059 1.0071 0.0034 
𝛽; 0.9875 0.0100 0.9905 0.0066 0.9922 0.0027 
𝛽U 1.0182 0.0088 1.0108 0.0058 1.0071 0.0039 
𝛽T 0.9925 0.0102 0.9915 0.0033 0.9962 0.0027 
𝛽S 1.0198 0.0089 1.0138 0.0058 1.0044 0.0054 
𝜃) 0.9988 0.0181 0.9992 0.0030 0.9967 0.0001 
𝜃& 0.9872 0.0167 0.9989 0.0147 0.9977 0.0039 
𝜃; 1.0143 0.0204 1.0019 0.0176 1.0047 0.0034 
𝜃U 1.0125 0.0174 1.0019 0.0176 1.0038 0.0030 
𝜃T 0.9894 0.0177 0.9989 0.0146 1.0032 0.0032 
𝜃S 0.9998 0.0191 0.9992 0.0031 0.9984 0.0012 

Probabilistic damage detection 

Change in flexural stiffness, EI (Elastic modulus multiples by the second moment of 

inertia), and unit mass are used to simulate damage cases. Table 5.14 shows the different 

damage cases considered in this example. The negative sign denotes the reduction of 

mass/stiffness. Damage detection is usually conducted without any prior information on 

structural parameters. Thus, unity is defined as the initial value for each mass and stiffness 
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parameter, representing an assumption of an initially healthy structural state. When 

detecting damage, measured data here includes six eigenvalues (square of frequency) and 

mode shapes. It should be mentioned that mass property is precisely known and deemed as 

invariable when updating stiffness in traditional BMUA. A similar assumption is made 

when updating mass parameters in traditional BUMA. Nevertheless, mass or stiffness's 

assumption is not required when applying the proposed BMUA. 

Table 5.14. Damage cases 

Case No. Mass change Stiffness change 

1 -20% (5th floor) -10% (1st floor), -20% (3rd floor) 

2 -30% (2nd floor), -20% (5th floor) -20% (2nd floor), -30% (4th floor),  
-40% (6th floor) 

 
Table 5.15. Frequencies (Hz) comparison by the proposed and traditional approach  

  
Damage No.1 Damage No.2 

  Proposed 
approach 

Traditional 
approach   Proposed 

approach 
Traditional 
approach 

Mode Actual Updated Updated Actual updated updated 
1 1.0036 1.0182 0.9288 0.9944 1.0006 0.9672 
2 2.9411 2.9379 2.6810 2.8743 2.8803 2.7870 
3 4.5735 4.5821 4.273 4.6106 4.6115 3.8994 
4 6.2419 6.2414 5.7089 5.5866 5.6004 6.3832 
5 6.9934 6.9941 6.5862 6.8969 6.8956 7.4558 
6 7.9430 7.9511 7.0902 7.4084 7.4125 7.7363 

 

  
(a)                      (b) 

Figure 5.15. Updated frequencies:(a) Damage case No.1; (b) Damage case No.2 
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The updated frequencies by the proposed BMUA have a highly acceptable agreement, 

less than 0.02, with actual values for two damage cases, as shown in Table 5.15 and Figure 

5.15. In contrast, significant discrepancies between identified frequencies by the traditional 

BMUA and actual ones are observed: for damage case of No. 1, 10.74% bias at the 6th 

frequency; for damage case of No. 2, 14.26% bias at the 4th frequency.  

  
(a)                             (b) 

            Figure 5.16. Updated mode shapes:(a) Damage case No.1; (b) Damage case No.2 

An excellent coincidence between actual mode shapes and the proposed approach's 

identified mode shapes is exhibited in Figure 5.16; nevertheless, mode shapes acquired by 

traditional Bayesian greatly differ from actual mode shapes. Tables 5.16 and 5.17 present 

structural parameters, e.g., mass and stiffness, and corresponding uncertainties obtained 

from the proposed and the traditional BMUA in two damage cases. It is seen from Tables 

5.16 and 5.17 and Figure 5.17 that identified the reduction in mass and stiffness parameters 

is almost identical to the actual values in terms of all damaged cases by the proposed 

BMUA, indicating the proposed BMUA has outstanding performance on damage detection. 

However, actual and identified values using the traditional BMUA have a large difference, 

e.g., the maximum error is 20% and 66% for both damage cases, respectively, (see bold 

values in Tables 5.16 and 5.17). It can be concluded that the traditional BMUA cannot 
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detect damage induced by both reductions in mass and stiffness. It attributes to the required 

assumption that at least one of mass and stiffness is assumed to be known and unchanged 

due to damage to avoid the coupling effect.  

  
(a)                             (b) 

  
(c) (d) 

Figure 5.17. Damage case No.1: (a) mass (b) stiffness; Damage case No.2: (c) mass (d) 
stiffness  
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Table 5.16. Results of updated structural parameters for damage case No.1 
  Proposed approach Traditional approach 

Parameter Actual Updated S.D. Updated S.D. 
𝛽) 1.0000 1.0002 0.0032 1.0883 0.0018 
𝛽& 1.0000 0.9999 0.0019 0.8700 0.0016 
𝛽; 1.0000 1.0001 0.0017 1.1900 0.0014 
𝛽U 1.0000 0.9999 0.0019 0.7992 0.0012 
𝛽T 0.8000 0.7984 0.0018 1.1057 0.0089 
𝛽S 1.0000 0.9999 0.0009 0.9786 0.0043 
𝜃) 0.9000 0.8962 0.0019 0.8300 0.0015 
𝜃& 1.0000 1.0014 0.0013 0.8654 0.0006 
𝜃; 0.8000 0.8014 0.0002 0.8165 0.0015 
𝜃U 1.0000 1.0013 0.0009 0.8191 0.0026 
𝜃T 1.0000 1.0014 0.0022 0.8209 0.0016 
𝜃S 1.0000 1.0014 0.0022 0.8063 0.0015 

 
Table 5.17. Results of updated structural parameters for damage case No.2 

  Proposed approach Traditional approach 
Parameter Actual Updated S.D. Updated S.D. 

𝛽) 1.0000 0.9965 0.0061 0.7477 0.0030 
𝛽& 0.7000 0.6991 0.0105 1.1584 0.0028 
𝛽; 1.0000 0.9969 0.0085 0.7520 0.0026 
𝛽U 1.0000 1.0010 0.0055 1.5364 0.0024 
𝛽T 0.8000 0.7955 0.0024 0.6007 0.0019 
𝛽S 1.0000 0.9998 0.0006 1.6619 0.0019 
𝜃) 1.0000 1.0028 0.0025 1.1674 0.0049 
𝜃& 0.8000 0.7958 0.0012 0.9595 0.0024 
𝜃; 1.0000 1.0009 0.0012 1.0721 0.0028 
𝜃U 0.7000 0.7012 0.0011 0.7179 0.0032 
𝜃T 1.0000 1.0022 0.0008 1.1287 0.0013 
𝜃S 0.6000 0.5979 0.0007 0.6230 0.0002 
 

This example illustrates that variation in mass or stiffness reflecting the damage extent 

cannot be ignored; if not, significant bias on updating results can mislead engineers' 
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judgment. In the proposed BMUA, mass and stiffness's coupling effect is addressed by 

employing two groups of data acquired from two systems: original and modified systems 

with stiffness addition. As a result, a successful updating in mass and stiffness is achieved. 

In summary, the example of a six-story shear building demonstrates the proposed BMUA 

is superior to traditional BMUA in identifying mass and stiffness.  

The probability of damage is calculated based on the MPVs of mass and stiffness and 

corresponding the value of S.D. using Eq. (5.5). As seen in Figure 5.18, for damage case 

of No. 1, probabilistic curves of the mass parameter at the fifth floor (𝛽T) and stiffness 

parameter (𝜃; ) at the third-floor exhibit high probabilities (77.88% and 80.66%, 

respectively) of having a possible reduction of both 20%. Regarding damage case of No. 

2, mass on the second floor (𝛽&) and stiffness on the fourth floor (𝜃U) have a possible 

reduction of 30% with a high probability of 70.72% and 73.1%, respectively. The proposed 

BMUA exhibits excellent performance for damage detection; both localization and 

quantification of damage are successfully identified, showing real potential applications. 
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                                  (a)                                   (b) 

  
                                  (c)                                   (d) 

Figure 5.18. Probabilistic curves: damage case No.1: (a) mass (b) stiffness; damage case 
No.2: (c) mass (d) stiffness  

 
5.5.7.2 Example 2: three-dimensional three-story braced shear frame 

 A three-dimensional three-story shear building is utilized to evaluate the proposed 

BMUA under more complex condition, where includes damage detection and comparative 

investigation between the traditional and the proposed BMUA  
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(a) (b) 
Figure 5.19. Diagram of steel frame model: (a) original system and plan view; (b) 

modified system with BRBs (marked as red color) 
 

The diagram of the structural model is shown in Figure 5.19. The mass at each floor is 

designed as M=10U Kg, giving three to-be-updated mass parameters. Four stiffness at each 

floor are assumed, giving twelve to-be-updated stiffness parameters as 𝜃U(12))() = 𝐾1,(#, 

𝜃U(12))(& = 𝐾1,(l , 𝜃U(12))(; = 𝐾1,2# , 𝜃U(12))(U = 𝐾1,2l , 𝑗 = 1,2,3, 𝑗  denotes number of 

story; +𝑥, −𝑥, +𝑦	and −𝑦 are directions of structural outer face. Nominal magnitudes of 

inter-story stiffness are assumed to be 𝐾1,(l = 𝐾1,2l = 40000	KN/m and 𝐾1,(# = 𝐾1,2# =

50000	KN/m.  

The damaged structure after earthquake is repaired using a typical retrofitting technique. 

Suppose the frame model is subject to unknown seismic activities, yielding serious 

structural damage, such as cracks and bearing deterioration, further impairing stiffness and 

ductility. Therefore, it is essential to repair the structure and strengthen its resistance 

capability to avoid any collapse. Herein, Buckling-restrained brace (BRB) is a useful 

seismic retrofit equipment and can provide additional stiffness and energy dissipation 

capacity (Saingam et al., 2020). In this work, twelve BRBs marked as red color are welded 

on the structure at four directions, shown in Figure 5.19 (b). Assuming each BRB installed 
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at 𝑥 or 𝑦 direction has the same sectional and material properties, to provide the same 

stiffness addition, ∆𝑘1,(# = ∆𝑘1,2# = 1750	KN/m , ∆𝑘1,(l = ∆𝑘1,2l = 1400	KN/m  on 

each floor, the weight of each BRB is ignored here. In this example, measured data contains 

the first six eigenvalues and mode shapes in the original and modified system with stiffness 

addition. Gaussian white noise with zero-mean and 1% COV of modal parameters is 

considered on measured data for both the proposed BMUA and traditional BMUA. 

Probabilistic damage detection 

Alterations in mass and stiffness parameters are used to mimic damage cases (see Table 

5.18). The unity is defined as the initial value for each mass and stiffness parameter when 

detecting damage. 

Table 5.18. Damage cases 
Case No. Mass change Stiffness change 

1 -20% (1st floor) 
-15% (2nd floor, +𝑥 face)  
-25% (3rd floor, +𝑦 face) 

2 
-20% (2nd floor) 
-30% (3rd floor) 

-20% (1st floor, +𝑥 face)  
 -30% (2nd floor, −𝑥 face) 

                   -40% (3rd floor, +y face) 
 
 A comparative investigation is also carried out to compare the proposed BMUA 

against the traditional counterpart. The traditional BMUA is performed by assuming that 

mass is known and undamaged when only updating stiffness. Similarly, stiffness is known 

and undamaged when only updating mass by the traditional BMUA. However, neither 

mass nor stiffness information is needed when applying the proposed BMUA. 
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Table 5.19. Frequencies (Hz) comparison by the proposed and traditional approach  

  
Damage No.1 Damage No.2 

  Proposed 
approach 

Traditional 
approach   Proposed 

approach 
Traditional 
approach 

Mode Actual Updated Updated Actual Updated Updated 
1 6.3474 6.3474 5.8556 7.1355 7.1546 6.3653 
2 7.0487 7.0487 6.4986 7.5861 7.507 6.6389 
3 11.6205 11.6205 13.4559 12.7083 12.7832 13.2181 
4 17.8686 17.8686 18.8641 17.8885 17.8452 20.0733 
5 20.9130 20.9130 22.6068 20.4540 20.4990 23.3488 
6 26.4592 26.4592 28.2637 26.5736 26.5364 29.6830 

 
 

  
(a)                             (b) 

       Figure 5.20. Updated frequencies: (a) Damage case No.1; (b) Damage case No.2 
 

Table 5.20. MAC values by two approaches 
 Damage No.1  Damage No.2 

Mode 
number 

Proposed 
approach 

Traditional 
approach  Proposed 

approach 
Traditional 
approach 

1 0.9999 0.9974  1.0000 0.9989 
2 1.0000 0.9994  1.0000 0.9968 
3 0.9999 0.9988  1.0000 0.9984 
4 1.0000 0.9987  1.0000 0.9891 
5 0.9992 0.9994  1.0000 0.9962 
6 0.9981 0.9945  0.9999 0.9955 

Table 5.19 and Figure 5.20 present updated frequencies by the proposed and traditional 
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BMUA in terms of two damage cases. Frequencies are updated with a considerably 

accurate level using the proposed approach for all damage cases. However, frequencies are 

updated by the traditional approach with significant error. Table 5.20 lists diagonal values 

of modal assurance criterion (MAC) for mode shapes by the proposed and traditional 

BMUA in terms of different damage cases. It is observed that the proposed approach's 

mode shapes are consistent with actual ones, while the traditional Bayesian approach 

provides biased MAC values. For example, the traditional approach yields a MAC value 

of 0.9891 at the fourth mode for the damage case of No. 2; a MAC value of 1.0000 is 

obtained by the proposed approach. 

Table 5.21. Results of updated structural parameters for damage case No.1 

  Proposed approach Traditional approach 
Parameter Actual Updated S.D. Updated S.D. 

𝛽) 0.8000 0.8003 0.0014 0.0109 0.0005 
𝛽& 1.0000 1.0008 0.0029 0.0865 0.0010 
𝛽; 1.0000 0.9997 0.0015 0.0115 0.0008 
𝜃),(# 1.0000 0.9861 0.0020 1.2308 0.0065 
𝜃),(l 1.0000 0.9943 0.0035 1.3491 0.0024 
𝜃),2# 1.0000 0.9833 0.0019 1.2325 0.0055 
𝜃),2l 1.0000 1.0052 0.0036 1.3921 0.0033 
𝜃&,(# 0.8500 0.8485 0.0022 0.9335 0.0058 
𝜃&,(l 1.0000 1.0046 0.0035 1.0801 0.0040 
𝜃&,2# 1.0000 1.0014 0.0027 1.1209 0.0063 
𝜃&,2l 1.0000 0.9952 0.0039 1.0720 0.0050 
𝜃;,(# 1.0000 1.0054 0.0041 1.0005 0.0037 
𝜃;,(l 0.7500 0.7481 0.0011 0.7280 0.0005 
𝜃;,2# 1.0000 1.0102 0.0039 0.9943 0.0028 
𝜃;,2l 1.0000 0.9994 0.0014 0.9804 0.0021 

 
The MPVs and associated standard derivation (S.D.) by two Bayesian approaches are 

shown in Tables 5.21 and 5.22. The proposed approach achieves satisfactory updating in 
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mass and stiffness parameters. In contrast, the traditional Bayesian approach poorly 

updates mass and stiffness parameters. For example, it was found that for damage case of 

No. 1 in Table 5.21, the mass parameter, 𝛽), and stiffness parameter, 𝜃),2l, are updated as 

0.0109 and 1.3921 (target: 0.8000 and 1.0000), respectively; for damage case of No. 2 in 

Table 5.22, mass, and stiffness parameter, 𝛽;  and 𝜃;,2l , are updated as 0.0078 and 1.3603 

(target: 0.7000 and 1.0000). As seen in Figure 5.21, the mass/stiffness parameters identified 

by the proposed approach highly agree well with target values for considered damage cases. 

It only observes an error of less than 3%. However, mass/stiffness parameters are updated 

with much discrepancy by the traditional Bayesian; even some updated results provide 

unacceptable values, such as too small values in the updated mass parameters. Like the 

first example, the traditional Bayesian approach fails to update mass and stiffness 

parameters, indicating poor or false damage detection. It can be attributed to an assumption 

of ignoring variation in mass or stiffness induced by damage, suggesting mass and 

stiffness’s coupling effect existing in traditional Bayesian governs the accuracy of updated 

results when simultaneously updating mass and stiffness. 

Table 5.22. Results of updated structural parameters for damage case No.2 
  Proposed approach Traditional approach 

Parameter Actual Updated S.D. Updated S.D. 
𝛽) 1.0000 0.9997 0.0025 0.0121 0.0141 
𝛽& 0.8000 0.8001 0.0009 0.0419 0.0033 
𝛽; 0.7000 0.6974 0.0051 0.0078 0.0007 
𝜃),(# 0.8000 0.7961 0.0036 0.6661 0.0014 
𝜃),(l 1.0000 1.0017 0.0035 0.9716 0.0034 
𝜃),2# 1.0000 0.9986 0.0041 0.8908 0.0031 
𝜃),2l 1.0000 0.9978 0.0039 0.9340 0.0044 
𝜃&,(# 1.0000 0.9938 0.0048 1.2327 0.0038 
𝜃&,(l 1.0000 1.0265 0.0041 1.0861 0.0028 
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𝜃&,2# 0.7000 0.6956 0.0048 0.8386 0.0062 
𝜃&,2l 1.0000 0.9727 0.0042 1.0948 0.0029 
𝜃;,(# 1.0000 1.0194 0.0039 1.3141 0.0032 
𝜃;,(l 0.6000 0.5986 0.0030 0.8374 0.0019 
𝜃;,2# 1.0000 0.9771 0.0046 1.3245 0.0016 
𝜃;,2l 1.0000 0.9987 0.0048 1.3603 0.0018 

  

  
                                   (a)                                      (b) 

  
                                   (c)                                      (d) 

Figure 5.21. Damage case No.1: (a) mass (b) stiffness; Damage case No.2: (c) mass (d) 
stiffness  

 
The MPVs of mass and stiffness under the damaged condition and corresponding 

uncertainties are utilized to compute the probability given a certain damage level. Figure 

5.22 illustrates that for damage case of No.1, mass parameter,	𝛽), and stiffness parameter, 
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𝜃;, +𝑦  have high probability (61.22% and 85.62%, respectively) of having possible 

damage 20% and 25%. For damage case of No. 2, mass parameter, 𝛽& , and stiffness 

parameter, 𝜃;, +𝑦 have possible reduction of 20% and 40% with high probability of 83.62% 

and 76.38%, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 5.22. Probabilistic curves: damage case No.1: (a) mass (b) stiffness; damage case 
No.2: (c) mass (d) stiffness  

 
5.6 Conclusions 

This chapter presented a new Bayesian updating framework using only output-only 

vibration data of two structural systems: the original system and the modified system by 

adding known mass (∆𝑚) (Section 5.4) and adding known stiffness (Section 5.5). Two 

numerical examples illustrate that the proposed BMUA with added either mass or stiffness 
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has an advantage against the traditional BMUA in identifying mass and stiffness. In the 

traditional BMUA, at least one of mass and stiffness is accurately known, but this 

assumption is quite questionable; Traditional Bayesian also ignores variation in mass or 

stiffness induced by possible damage. In contrast, the new BMUA with added mass or 

stiffness does not involve any assumption on mass and stiffness properties before model 

updating. In short, the proposed BMUA enables us to deal with the coupling effect of mass 

and stiffness so that successfully identifying mass and stiffness.  

The main conclusions are presented as follows: 

• The proposed updating approach can update both mass and stiffness with quite 

an acceptable level of performance. This indicates that the proposed approach 

can solve the issue of the coupling effect in mass and stiffness updating. 

• A comparative study was performed between the proposed approach and the 

conventional approach. The proposed updating framework provides highly 

accurate and reliable updating results as compared with the conventional 

approach.   

• By measuring only output-only vibration data in the original and modified 

systems, the damage detection capability was examined in various damage 

scenarios. It was found that the proposed Bayesian approach can give us a 

reasonable probability estimation of damage for diverse structural parameters.  
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CHAPTER 6 

BAYESIAN MODEL UPDATING WITH DIFFERENTIAL EVOLUTION ADAPTIVE 
METROPOLIS (DREAM) 

6.1 Introduction 

In Chapter 5, a new Bayesian model updating framework was proposed to update mass 

and stiffness with addressing the coupling effect of mass and stiffness for 2D and 3D 

numerical shear structure (Chapter 5). It also demonstrated that classical Bayesian updating 

work cannot update both mass and mass stiffness, simultaneously, when the coupling effect 

exists. The coupling effect was successfully addressed using two sets of vibration data 

acquired from two systems: original and modified with added known mass/stiffness. The 

asymptotic approximation method was employed to circumvent high-dimensional integrals 

involved in the posterior PDF for Bayesian inference. The analytical formulations of 

optimal model parameters are derived by the linear optimization method; associated 

uncertainties are quantified by an inverse Hessian matrix of the objective function. 

However, the asymptotic approximation method assumes that parameters have unimodal 

and Gaussian distribution that does not necessarily guarantee an actual physical model 

when a high level of modeling error and measurement noise occur in practice, especially 

for multi-modal and non-Gaussian posterior (Wan and Ren, 2016, Yang and Lam, 2018a). 

Also, an insufficient amount of data and complex model class may lead to an unidentifiable 

problem.  
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One promising way to solve multi-modal and unidentifiable problems is using Markov 

Chain Monte Carlo (MCMC) to generate samples to approximate the posterior PDF. The 

high-dimensional integrals in the Bayesian approach can be reasonably calculated. Another 

attractive feature in MCMC does not require the assumption on the physical model and 

accurately represents the posterior PDF. Various MCMC techniques have been developed 

for posterior distribution sampling (Simoen et al., 2013, Green, 2015, Wan and Ren, 2016, 

Huang and Beck, 2018, Mao et al., 2020b). These methods adopt a single Markov chain to 

draw samples, it has demonstrated a limited capability to treat high-dimensional, multi-

modal, and flat manifold PDFs. Therefore, they have a relatively low convergence rate and 

cannot guarantee adequate exploration in parameter space for a target PDF (Vrugt, 2016). 

This chapter proposed using the Differential Evolution Adaptive Metropolis (DREAM) 

(Vrugt, 2016) algorithm to proceed with the distribution estimate. DREAM is essentially a 

multi-chain (multiple Markov chains) MCMC that runs different paths in parallel to target 

the posterior PDF. It combines different powerful strategies, including a genetic algorithm 

for population evolution (Price et al., 2006), self-adaptive randomized subspace sampling, 

and outlier chain detection (Vrugt et al., 2009a), to quickly achieve convergence and seek 

the best solution by running multiple Markov chains. A wide range of applications has 

shown that DREAM exhibits excellent performance for complex problems with high-

dimensionality, nonlinearity, numerous peaks, and large uncertainties in different research 

fields, including hydrology (Vrugt et al., 2009b, Shafii et al., 2014), chemistry (DeCaluwe 

et al., 2014, Gentsch et al., 2014), geophysics (Lochbühler et al., 2015, Zhai et al., 2021) 

and renewable energy technique (Zhang et al., 2021), etc. However, to the authors’ best 

knowledge, DREAM has not been investigated in SHM for civil infrastructures. The 
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current study attempts to explore the efficacy of DREAM in Bayesian model updating 

approach (BMUA). 

The new characteristic equations are constructed by two sets of vibration data measured 

from the original and modified system with added known mass/stiffness. The posterior 

PDF is reformulated by measured modal data and predicted counterparts from the new 

characteristic equations. The DREAM algorithm is then employed to generate samples for 

approximation of the posterior PDF. The proposed BMUA simultaneously identifies the 

mass and stiffness; their uncertainties are also straightforward provided by the estimated 

PDF. A numerical study on a ten-story shear building and an experimental study on a three-

story aluminum frame small-scale model are used at intact and damaged structural states 

to verify the accuracy and feasibility of the proposed method.  

The outline of this chapter is listed as follows. The background of classical BMUA is 

first described in Section 6.2. Section 6.3 presents the methodology of the proposed BMUA, 

in which the new characteristic equations, strategies of mass addition, and DREAM 

algorithm are introduced explicitly. Section 6.4 shows one illustrative example to validate 

the methodology using a numerical example, followed by the validation of laboratory-scale 

testing. Probabilistic damage detection is also performed. The comparison of BMUA with 

mass addition and stiffness addition is discussed in Section 6.5. Finally, conclusions and 

summaries are provided in Section 6.6. 

6.2 The classical vibration-based Bayesian model updating 

The strength of the BMUA lies in that it uses both the prior information (existing 

structural knowledge) and measured data (new structural knowledge) to estimate the 
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posterior PDF. In other words, the Bayesian approach updates the prior PDF by measured 

data, yielding the posterior PDF.  

In Chapter 5, the posterior PDF of uncertainty parameter 𝜴 , including mass and 

stiffness parameters is given by Eq. (5.2). In many cases, the selection of prior PDF 

depends on engineers’ judgment and physical meaning. The uniform distribution is widely 

used as the uninformative prior PDF to ensure the measured data entirely dominates 

Bayesian inference and minimizes the effect of prior information. The term of 𝑃(𝐷|𝐶) in 

Eq. (5.2) is a normalizing constant so that the posterior PDF can be integrated to unity over 

the parameter space, which is given by, 

𝑃(𝐷|𝐶) = Ý𝑃(𝜴|𝐶)𝑃(𝐷|𝜴, 𝐶)	𝑑𝜴 (6.1) 

The likelihood function, 𝑃(𝐷|𝜴, 𝐶) , describes how likely the measurements are 

reproduced from a model parameterized by a set of 𝜴. Considering an uninformative prior 

PDF, the posterior PDF is proportional to the likelihood function: 

𝑃(𝜴|𝐷, 𝐶) = 𝑐-𝑃(𝐷|𝜴, 𝐶) (6.2) 

where 𝑐- represents a constant value to reflect both 𝑃(𝐷|𝐶) and 𝑃(𝜴|𝐶).  

Generally, for vibration-based system identification, the common measured data in the 

likelihood function consists of measured natural frequencies and mode shapes. Then, two 

error functions (EF) of a given one mode, 𝑚, are adopted to formulate the likelihood 

function, namely frequency EF and mode shape EF (Yuen et al., 2006). Frequency EF, 

𝜀0,!, is defined as:  

𝜀0,! = 𝑓! − 𝑓!(𝜴) (6.3) 

where 𝑓!  is the 𝑚 th measured frequency, 𝑓!(𝜴) is the 𝑚 th calculated frequency in a 

model given a set of 𝜴.  
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Mode shape EF, 𝜀!$,!, is defined as: 

𝜀!$,! = 𝝓x! − 𝑳-𝝓!(𝜴) (6.4) 

where 𝝓x!  and 𝝓!(𝜴) are measured mode shape and calculated one of the 𝑚th mode, 

respectively. 𝑳-  consists of '1s' or '0s' to match measured partial mode shapes with 

theoretical counterparts. Note all mode shapes are normalized to unity norm to map them 

in the same context.  

With the assumption that 𝜀0,!		and 𝜀!$,! follow zero-mean Gaussian distribution, then the 

posterior PDF in Eq. (5.2) is rewritten as follows: 

𝑃(𝜴|𝐷, 𝐶) = 𝑐-exp	 �−
1
2𝜅& 𝐽

(𝜴)�        (6.5) 

The objective function, Eq. (6.6), can evaluate the accuracy of predicted natural frequency 

and mode shape obtained from new characteristic equations against the measured data. 

𝐽(𝜴) = 	 ¾ �z𝑓! − 𝑓!(𝜴){
& + �ù𝝓x! − 𝑳-𝝓!(𝜴)ú

9
ù𝝓x! − 𝑳-𝝓!(𝜴)ú��

*

!C)

	 (6.6) 

where 𝜅 is an uncertainty parameter of prediction error. In the current study, the variances 

of the measured frequency and mode shape are used as 𝜅& . 𝜅  consists of 𝜎0,!  and 

𝜎!$,! ;	𝜎0,!  and 𝜎!$,!  are the standard derivation of the 𝑚th measured frequency and 

mode shape, respectively. These two weighting factors can be identified by either Bayesian 

modal analysis (Au, 2011b) or stochastic subspace identification (SSI) with uncertainty 

analysis (Zeng and Kim, 2021), rather than manually tunning. 

For avoiding intractable high-dimensional integrals, MCMC is employed to 

approximate the posterior PDF in Eq. (6.5) without any assumption on a model by 

iteratively drawing samples from the target distribution. Classical BMUA calculates 
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theoretical frequency, 𝑓!(𝜴), and mode shape, 𝝓!(𝜴) in Eq. (6.6), given a set of 𝜴 using 

the classical characteristic equation (𝐊 − 𝜆𝐌)𝝓 = 𝟎 . Understandably, simultaneous 

updating stiffness and mass yield an unidentifiable problem due to the coupling effect of 

mass and stiffness. The infinite sets of mass and stiffness derive the same frequency so that 

correct model updating cannot be achievable. The new characteristic equations with added 

mass will substitute classical ones and address the coupling effect in the next section.  

6.3 The formulations of a new vibration-based Bayesian model updating 

New characteristic equations with added known mass are first presented in Section 

6.3.1 to address the coupling effect of mass and stiffness. The mass-adding strategies are 

discussed in Section 6.3.2, including the number, location, and magnitude of added mass. 

The DREAM algorithm, a multi-chain MCMC to approximate the posterior PDF, is 

presented in section 6.3.3. 

6.3.1 New characteristic equations with added mass  

The original and modified systems with added mass, ∆𝒎, are merged into one equation 

based on the fundamentals of structural dynamics. The core idea of addressing the coupling 

effect of mass and stiffness is to eliminate either mass or stiffness when updating each of 

them. For example, first, characteristic equations for the original and modified systems are 

expressed as: 

𝑲𝝓 = 𝑴𝝓𝝀 (6.7) 

𝑲𝝓b = (𝑴+ ∆𝒎)𝝓b𝝀′ (6.8) 

where 𝝀 and 𝝓 are eigenvalues (square of natural frequencies) and mode shapes before 

modification; 𝛌′ and 𝝓b are eigenvalues and mode shapes after modification. 
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Second, the new eigen-equation error with added mass when updating mass is derived as: 

(𝝀 − 𝝀b)2)𝛌b𝝓b9∆𝒎𝝓−𝝓b9𝑴𝝓 = 𝟎 (6.9) 

For the sake of simplicity, more details can be found in Section 5.4.1. Eq. (6.9) can be 

rewritten as: 

z𝛌b𝝓b9∆𝒎− 𝝀𝝓b9𝑴+ 𝛌b𝝓b9𝑴{𝝓 = 𝟎 (6.10) 

Define 𝐀 = 𝛌b𝝓b9∆𝒎+ 𝛌b𝝓b9𝑴 , 𝐁 = 𝝓b9𝑴, then Eq. (6.10) is expressed as: 

(𝐀− 𝝀𝐁)𝝓 = 𝟎 (6.11) 

Similarly, when updating stiffness, the new eigen-equation error is shown as (details are in 

Section 5.5.1): 

(𝝀b2𝟏 − 𝝀2𝟏)2𝟏𝝓b9∆𝒎𝝓−𝝓b9𝑲𝝓 (6.12) 

Eq. (6.12) can be rewritten as: 

z𝝀b2𝟏𝝓b9𝑲− 𝝀2𝟏𝝓b9𝑲−𝝓b9∆𝒎{𝝓 = 𝟎 (6.13) 

Define 𝐄 = 𝝀b2𝟏𝝓b9𝑲−𝝓b9∆𝒎 , 𝐅 = 𝝓b9𝑲, then Eq. (6.13) is expressed as: 

(𝐅− 𝝀𝐄)𝝓=0 (6.14) 

Eqs. (6.11) and (6.14) are defined as the new characteristic equations to replace the 

classical one (𝐊 − 𝜆𝐌)𝝓 = 𝟎. It is noted that the two new characteristic equations have 

the same formats as the generalized eigenvalue problem, 𝝀 and 𝝓 can be easily solved in 

mathematics or solver in the computer program, such as ‘eig’ function in MATLAB. 

Two new characteristic equations eliminate the coupling effect of mass and stiffness. 

For example, mass updating by using Eq. (6.11) does not require any stiffness information. 

Likewise, updating stiffness does not require any mass information by using Eq. (6.14).  

For output-only modal analysis, the mode shapes are not mass-normalized, and only 

unscaled mode shapes are identified because of unknown excitation forces. Before the 
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model updating, the measured mode shapes have to be normalized by either the mass-

change scaling method (López-Aenlle et al., 2010) or stiffness-change scaling method 

(Khatibi et al., 2012) to ensure measured and predicted mode shapes are comparative. In 

this chapter, the mass-change scaling method is adopted to calculate scaled mode shapes. 

In addition, because only a few DOFs are available related to the sensor location, limited 

sensors in practice usually lead to incomplete measured mode shapes. Therefore, mode 

shape expansion techniques (Chen et al., 2012) can expand measured mode shapes to 

complete mode shapes of full DOFs.  

6.3.2 Strategy of mass addition 

The optimized mass-change strategy has been comprehensively discussed in (López-

Aenlle et al., 2010), including mass magnitude, number of added mass, and locations of 

added mass. Generally, two criteria for creating a modified system with added known mass 

are required: Step 1) noticeable frequency change is observed between the original system 

and modified system; Step 2) mode shapes after modification change slightly.  

The frequency change and mass addition are correlated by natural frequencies in the 

original and modified systems. Considering a structure with multiple DOFs, the relation 

between added mass and frequency shift can be expressed as (López-Aenlle et al., 2010): 

∆𝑓
𝑓 = 1 − ½

1

1 + ∆𝑀𝑀∗

 (6.15) 

where ∆𝑓 = 	𝑓b − 𝑓 is the frequency change after adding mass; 𝑓 and 𝑓′ are the natural 

frequencies in the original and modified systems, respectively; ∆𝑀 = 𝝍9∆𝒎𝝍; 𝑀∗ =

𝝍9𝑴𝝍, where 𝝍 is unscaled mode shape in the original system; ∆𝒎 is a diagonal matrix 

with main diagonal are added mass; 𝑴 is a mass matrix in the original system. Eq. (6.15) 
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allows us to determine expected added mass when the terms of ∆𝑓, 𝑓, and 𝑀∗ are known; 

𝑓 and 𝝍 are identified by modal analysis, the analytical mass is used as 𝑀∗. Based on 

(López-Aenlle et al., 2010), we select a frequency ratio, 𝑓/𝑓′ to determine ∆𝑀  in Eq. 

(6.15). Note that the selection of ratio depends on the expected accuracy in modal analysis 

and mode shape normalization. Finally, the magnitude of added mass can be estimated 

using Eq. (6.15). 

The number of added masses depends on the number of modes to identify in modal 

analysis. Ideally, the added or attached mass should be as many as possible. López-Aenlle 

et al. (2010) recommended that the number of added masses should be at least the number 

of peaks and valleys of each mode shape. To optimize the location of added mass, the most 

significant frequency shift can occur when the mass is attached to the peaks and valleys of 

mode shape, while the frequency shift is minimal when mass is attached to the nodal 

positions.  

6.3.3 DREAM algorithm  

The posterior PDF needs high-dimensional integrals that is impractical for complex 

structures. In the present work, the DREAM algorithm proposed by Vrugt et al. (2009a) is 

used to approximate the posterior PDF by generating samples based on a differential 

evolutionary algorithm. Compared to other single-chain MCMC methods, the DREAM has 

the appealing feature of running multiple chains simultaneously to explore global solutions. 

The DREAM algorithm uses randomized subspace sampling to automatically tune the 

mean and variance of the proposal distribution. Therefore, it is highly robust to the 

selection of the prior distribution.  
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Figure 6.1. Flowchart of DREAM algorithm 

The removal of outlier chain and crossover schemes are also used to expedite 

convergence to a target distribution. Practical applications exhibited high efficiency and 

accuracy in the sampling for the problems having high-dimensionality, nonlinearity, 

numerous peaks, and local optima. Theoretical background and detailed MATLAB 

procedures in DREAM can be found in (Vrugt et al., 2009a, Vrugt, 2016). The flowchart 

of the DREAM algorithm is also shown in Figure 6.1. The main implementation steps of 

the DREAM algorithm are summarized as follows: 

Step 1: Initialize the problem dimension 𝑁 , the number of Markov chains 𝑃 , 

unknown parameter vector, 𝜴3
1  ( 𝑖 = 1, 2, 3⋯ ,𝑁; 	𝑗 = 1, 2, 3⋯ , 𝑃 ), and the 

maximum iteration, 𝐼!"# . 𝛾  individual samples for each chain are randomly 
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generated from the selected prior distribution as initial values, such as 𝜴3), 𝜴3&, ⋯, 

𝜴3n. 

Step 2: A mutation operation is performed to generate candidate samples at each 

parameter sample of each iteration for the 𝑘th Markov chain. Crossover operation 

is then used to iteratively update current candidate samples from the mutation 

process based on crossover probability 𝐶𝑅 within the range of [0,1]. 

Step 3: Calculate the posterior probability and acceptance rate of updated candidate 

samples at the 𝑠th iteration: 

𝛼z𝜴3,$
1 ,𝑤3,$()

1 { =

⎩
⎨

⎧min,
𝑝z𝑤3,$()

1 �𝐷{

𝑝z𝜴3,$
1 �𝐷{

, 1- 	 ; 		𝑝z𝜴3,$
1 �𝐷{ > 0

1																																						; 		𝑝z𝜴3,$
1 �𝐷{ < 0

 (6.16) 

where 𝜴3,$
1  and 𝑤3,$()

1  are the samples at the 𝑠th iteration and (𝑠 + 1)th iteration, 

respectively; 𝛼z𝜴3,$
1 ,𝑤3,$()

1 { is the acceptance rate; 𝑝z𝑤3,$()
1 �𝐷{ and 𝑝z𝜴3,$

1 �𝐷{ are 

the posterior probability of 𝑤3,$()
1  and 𝜴3,$

1 , respectively. 𝐷 is the measured data. 

Step 4: Determine whether accepting or rejecting the samples of  𝑤3,$()
1 . If 

𝛼z𝜴3,$
1 ,𝑤3,$()

1 { > 𝑢, 𝑢 is randomly generated from a uniform distribution 𝑈(0, 1). 

Then, accept a new sample of 𝑤3,$()
1 , otherwise reject and keep the iteration. 

Step 5: Remove the outlier chain using the Inter-Quartile-Range (IQR) statistical 

method (Vrugt et al., 2009a). Specifically, ℋ is firstly defined as the mean of the 

logarithm of the posterior distribution of the last half samples in each chain. ℋ =

𝑄; − 𝑄) is calculated, where 𝑄) and 𝑄; are the lower and upper quartile of the 𝑃 

chains. Chains with ℋ < 𝑄) − 2 ∙ IQR are detected as aberrant ones. Note removal 



190 
 

of outlier chain is necessary, as outlier chains will impair the distribution estimate 

and slow down the evolution so that reaching a good convergence is impossible. In 

addition, outlier chains frequently present in high-dimensional problems and tend 

to be stuck in local optima, resulting in a biased distribution (Vrugt et al., 2009a). 

Step 6: The iteration process stops when Markov chains converge to the target 

posterior distribution. Otherwise, repeat steps 2-5. DREAM algorithm uses 

Gelman-Rubin statistics, scale reduction factor 𝑅$%"% (Gelman and Rubin, 1992), 

as a convergence criterion to determine whether the calculation terminates or not. 

DREAM algorithm stipulates that if 𝑅$%"% < 1.2 for all unknown parameters, a 

stable posterior PDF is achieved. Note the value of 1.2 has been demonstrated as a 

robust indication to officially declare stationary and reliable convergence (Vrugt et 

al., 2009a).	𝑅$%"% has an expression as follows:  

𝑅$%"% =	½
𝛾 − 1
𝛾 +

𝑃 + 1
𝑃 ∙ 𝑍

𝐵
𝛾  (6.17) 

where 𝛾  is the number of iteration samples of each chain; 𝑃  is the number of 

Markov chains used for sampling; 𝑍 is the mean of the variance of total 𝑃 Markov 

chains; the ratio of 𝐵/𝛾 is the variance of the mean of 𝑃 parallel Markov chains.  

 In summary, the proposed BMUA addresses the coupling effect of mass and stiffness 

by using two sets of measurements from the original and modified system with added mass. 

Two new characteristic equations (herein, Eqs. (6.11) and (6.14)) substitute the classical 

one. Figure 6.2 shows the flowchart of the proposed method. First, the natural frequencies 

and mode shapes of the original and modified system are identified using the output-only 

modal analysis method. Note that mode shapes need to be normalized by the mass-change 



191 
 

scaling method before updating mass and stiffness. Second, the objective functions in Eq. 

(6.6) with measurements in the original system are used to measure the accuracy of 

analytical frequencies and mode shapes satisfying with new characteristic equations, e.g., 

Eqs. (6.11) and (6.14). Third, the DREAM is used to approximate the posterior PDF and 

estimate the quantity of interests (PDF, mean, and variance. The procedures of updating 

mass and stiffness are independent and individually implemented. Therefore, the coupling 

effect has been removed in the entire updating process.  

 
Figure 6.2. The flowchart of the proposed Bayesian model updating 

 
6.4 Illustrative examples 

 The efficacy of the proposed BMUA is evaluated by a numerical example in Section 

6.4.1, followed by an experimental test with a laboratory-scale three-story shear frame in 

Section 6.4.2.  
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6.4.1 Numerical example: a ten-story shear building 

 The ten-story shear building sketch is shown in Figure 6.3, modeled as a ten-DOFs 

structure. Assume the connection between column and floor is rigid; mass and stiffness at 

each floor are uniformly distributed. Also, suppose one sensor is installed on each floor to 

measure all modal displacements in each mode shape. Lumped mass is used and taken as 

M3 = 25	kg, 𝑖 = 1,2,⋯ ,10. While the inter-story stiffness at each floor is taken as K3 =

1.5 × 10S	N/m, 𝑖 = 1,2,⋯ ,10. We define stiffness coefficient (SC) as 𝜃3 = K3"/K3, and 

mass coefficient (MC) 𝛽3 = M3
"/M3 , where K3"  and K are the 𝑖th actual and theoretical 

stiffness, respectively; M3
" and M  are the 𝑖 th actual and theoretical mass, respectively, 

resulting in a total of 20 coefficients to be updated.  

  
(a) (b) 

      Figure 6.3. Ten-story shear building: (a) original structure; (b) modified structure 
with mass addition (concrete block) 

 The FE model of this shear building is constructed based on fundamental structural 

dynamics using MATLAB. The natural frequencies and mode shapes for the original 

structure can be obtained by the eigenvalue problem so that the first six natural frequencies 

are 5.827, 17.350, 28.486, 38.985, 48.613, and 57.156 Hz. To create a modified structure, 

we first select a frequency ratio, 𝑓/𝑓′, of 1.02. Using Eq. (6.15), the magnitude of added 
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mass can be estimated as 1 kg. For the sake of simplicity, each floor has the equivalent 

mass addition by concrete blocks with the weight of 1 kg, as shown in Figure 6.3 (b). 

Gaussian white noise with zero-mean and 1% coefficient of variation (COV) is considered 

and added to the exact frequency and mode shape for all the modes of interest. Mass and 

stiffness are updated by two sets of simulated measured data acquired from original and 

modified systems. 

FE model updating  

 In the first case, no modeling error is assumed between the actual structure and the FE 

model. Also, the structure is healthy by setting all 𝜃 and 𝛽 as unity. The first six modes are 

assumed as available measured data. The DREAM algorithm is used to generate samples 

for estimating of the posterior PDF. Every sample will yield the analytical frequencies and 

mode shapes using new characteristic equations. Initial settings in DREAM are defined as: 

ten Markov chains are run parallelly with 6,000 samples per chain; initial values for 10 

mass coefficients and 10 stiffness coefficients are set as a range of [0.5	1.5].  

 Figure 6.4 shows the results of updated coefficients. Figure 6.4 a-i and a-ii are trace 

plots of one Markov chain that show how each mass and stiffness coefficient are updated 

with samples, respectively. All the parameters achieved a stable state. Figure 6.4 b-i and b-

ii display the variation of the convergence diagnosis for mass and stiffness updating, 

respectively. The scale reduction factor, 𝑅$%"% , assesses whether the Markov chain 

converges or not. The 𝑅$%"%  of each parameter quickly decays below 1.2, satisfying 

DREAM's convergence criterion and attains the stationary posterior distribution. The last 

30,000 samples herein of ten Markov chains are used to calculate the quantity of interests 

of all parameters, such as mean and standard derivations. 
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(a-i) (a-ii) 

  
(b-i) (b-ii) 

Figure 6.4. Trace plots and 𝑅$%"% in healthy scenario: (a-i): Trace plots of ten MCs; (a-
ii) Trace plots of ten MCs SCs; (b-i): 𝑅$%"% of MCs (b-ii): 𝑅$%"% of SCs 

 
 The results of updated coefficients are listed in Table 6.1, including mean and standard 

derivation (S.D.). The identified mean values exhibit an excellent agreement with actual 

counterparts. The errors and standard derivations for all coefficients are small; the 

maximum error of 2.08% is observed. The histograms of the marginal distribution of ten 

SCs and MCs are shown in Figure 6.5; red curves represent a fitted distribution based on 

mean and standard derivation. Each histogram has a clear peak and is well-approximated 

by Gaussian distribution. Overall, each parameter is reasonably identified as the correct 

values and has a fairly good convergence. 
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     (a) 

 
       (b) 

Figure 6.5. Histograms of updated coefficients: (a) MCs; (b) SCs 
 
Table 6.1. Results of updated coefficients 

Coefficients Actual 
                   Updated  

Mean S.D. (%) Error (%) 
𝛽) 

1.0000 

0.9831 1.31 1.69 
𝛽& 0.9922 1.27 0.78 
𝛽; 0.9997 1.81 0.03 
𝛽U 1.0013 1.71 0.13 
𝛽T 1.0132 2.01 1.32 
𝛽S 1.0102 1.49 1.02 
𝛽o 1.0023 1.68 0.23 
𝛽p 0.9795 2.02 2.05 
𝛽q 1.0051 1.56 0.51 
𝛽)- 1.0016 1.29 0.16 
𝜃) 0.9842 1.01 1.58 
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Table 6.1. Results of updated coefficients (continued) 
𝜃& 

 

0.9911 1.66 0.89 
𝜃; 0.9956 1.63 0.44 
𝜃U 0.9899 1.48 1.01 
𝜃T 0.9972 1.87 0.28 
𝜃S 0.9963 2.19 0.37 
𝜃o 0.9830 1.49 1.70 
𝜃p 0.9914 2.79 0.86 
𝜃q 1.0132 1.90 1.32 
𝜃)- 0.9792 1.69 2.08 

The updated frequencies and MAC values are summarized in Table 6.2. It is observed 

that updated frequencies are almost the same as actual ones; the relative error is less than 

1%. The values of the Modal assurance criterion (MAC) (Pastor et al., 2012) that reflect 

the similarity of updated and actual mode shapes are also close to unity. It is worth 

mentioning that the higher modal parameters from the 7th to 10th order are not used in the 

updating process, but they are still successfully identified.   

 
Table 6.2. Results of updated frequencies and MAC values  

Mode No. Actual 
Frequency (Hz) 

MAC 
Updated Error (%) 

1 5.827 5.803 0.41 1.0000 
2 17.350 17.275 0.43 1.0000 
3 28.486 28.490 0.02 0.9999 
4 38.985 38.920 0.17 0.9998 
5 48.613 48.580 0.07 0.9996 
6 57.156 56.854 0.53 0.9985 
7 64.422 64.171 0.39 0.9973 
8 70.248 70.225 0.03 0.9979 
9 74.506 74.521 0.02 0.9987 
10 77.099 76.936 0.21 0.9988 
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Probabilistic damage detection 

 In the second case, the probabilistic damage detection is performed to detect simulated 

damage location and extent by the proposed VBMU. Damage extent is defined as the 

change in mass/stiffness coefficients at a specific floor. The damage scenario considered 

in this example is shown in Table 6.3. The negative sign denotes the reduction of 

mass/stiffness. The model at healthy condition is assumed known. The unity of MCs and 

SCs represents a healthy state. 

Table 6.3. Damage scenarios 
Parameters Mass Stiffness 

Reduction in 
percent (location) 

-10% (2nd floor) 
 -20% (6th floor) 
-30% (9th floor) 

-10% (3rd floor) 
 -20% (6th floor) 
-30% (9th floor) 

 

  
(a-i) (a-ii) 

   
(b-i) (b-ii) 

Figure 6.6. Trace plots and 𝑅$%"% in damages scenario: (a-i): Trace plots of ten MCs; 
(a-ii) Trace plots of ten MCs SCs; (b-i): 𝑅$%"% of MCs (b-ii): 𝑅$%"% of SCs  
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The same modified system is created by adding mass as described in previous case, and 

the same measurement points and vibration data are selected to identify the damage, e.g., 

the first six frequencies and mode shapes. In addition, the initial settings in DREAM are 

the same as the healthy example. Figure. 6.6 shows the results of damage detection. Figure 

6.6 a-i and a-ii are trace plots of one of ten Markov chains for mass and stiffness 

coefficients, respectively, visualizing that all the coefficients stably converge. In Figure 6.6 

b-i and b-ii, the convergence criterion, 𝑅$%"%  is less than 1.2, indicating the stationary 

Markov chains are achieved. The last 30,000 samples are used to calculate the mean and 

standard derivation of all coefficients. 

Table 6.4 lists identified coefficients and their standard (S.D.) derivations in damage 

scenarios. It is observed that all updated mass and stiffness coefficients are almost identical 

to actual values. The maximum errors for all coefficients are less than 2% except 𝜃)- with 

the error of 2.48%, revealing an outstanding performance in damage localization and 

quantification on both mass and stiffness. Figure 6.7 shows the histograms of mass and 

stiffness coefficients; the red curves are fitted Gaussian distribution based on samples. The 

Gaussian distribution can desirably approximate the posterior PDF. It is also found that the 

fitted curves in stiffness coefficients are relatively wider spreading than those in mass 

coefficients, demonstrating that identified stiffness has larger uncertainty than mass. 

Table 6.4. Results of updated coefficients for damage scenario 

Coefficients Actual 
                   Updated  

Mean S.D. (%) Error (%) 
𝛽) 1.0000 1.0140 1.31 1.40 
𝛽& 0.9000 0.8885 1.11 1.28 
𝛽; 1.0000 1.0133 1.26 1.33 
𝛽U 1.0000 1.0026 1.30 0.26 
𝛽T 1.0000 1.0130 1.15 1.30 
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Table 6.4. Results of updated coefficients for damage scenario (continued) 
𝛽S 0.8000 0.7932 0.98 0.85 
𝛽o 1.0000 0.9876 1.28 1.24 
𝛽p 1.0000 1.0126 1.34 1.26 
𝛽q 0.7000 0.6887 0.87 1.61 
𝛽)- 1.0000 0.9847 1.33 1.53 
𝜃) 1.0000 1.0171 1.45 1.71 
𝜃& 1.0000 1.0196 1.48 1.96 
𝜃; 0.9000 0.8891 1.30 1.21 
𝜃U 1.0000 1.013 1.52 1.30 
𝜃T 1.0000 1.0147 1.35 1.47 
𝜃S 0.8000 0.7865 1.16 1.69 
𝜃o 1.0000 1.0175 1.45 1.75 
𝜃p 1.0000 1.0177 1.40 1.77 
𝜃q 0.7000 0.6943 0.99 0.81 
𝜃)- 1.0000 1.0245 1.42 2.45 

 

 
     (a) 

 
       (b) 

Figure 6.7. Histograms of coefficients for damage scenario: (a) MCs; (b) SCs 
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Table 6.5. Results of updated frequencies and MAC values for damage scenario 

Mode No. Actual 
Frequency (Hz) 

MAC 
Updated Error (%) 

1 5.937 5.976 0.65 1.0000 
2 17.149 17.223 0.44 1.0000 
3 27.968 28.083 0.41 0.9999 
4 37.528 37.646 0.31 0.9998 
5 48.866 48.992 0.26 0.9998 
6 56.971 57.204 0.41 0.9993 
7 66.449 66.822 0.56 0.9992 
8 71.327 71.519 0.27 0.9987 
9 74.604 74.831 0.30 0.9984 
10 77.088 77.434 0.45 0.9985 

 
The updated frequencies and MAC values in the damage scenario are derived using 

updated mass and stiffness coefficients, as shown in Table 6.5. All errors are less than 1% 

indicating the efficacy of damage detection.  Although incomplete modal information, e.g., 

only the first six modes were used, all the frequencies and MAC values are identified.  

 

  
(a) (b) 

Figure 6.8. Probabilistic damage curves: (a) MCs; (b) SCs 
 

The probabilistic damage curves are also plotted using identified coefficients and 

uncertainty information by Eq. (5.5), as displayed in Figure 6.8. It is found that curves at 

the damaged location are distinguishable from those at a healthy location by observing the 
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curve’s distance from healthy cases. Furthermore, some quantities can be interpreted from 

curves. For example, mass on the sixth floor (𝛽S) and stiffness on the ninth floor (𝜃q) have 

a possible reduction of 20% and 30% with a high probability of 83.2% and 81.6%, 

respectively. Thus, the proposed VBMU exhibits excellent performance on damage 

detection on mass and stiffness; both damage location and severity are successfully 

identified. 

6.4.2 Experimental test: a three-story shear frame 

The experimental test was performed to verify the accuracy and efficacy of the 

proposed BMUA for both mass and stiffness identification. A shear building, made of 

aluminum, has a height and width of 914 and 305 mm., respectively. All the plates and 

columns have the same geometric properties. The length and width of a plate are both 305 

mm with a 25 mm thickness. The column has the length, width, and thickness of 254, 25, 

and 6 mm, respectively. The initial Young’s modulus and mass density of the aluminum 

are estimated as 69 GPa and 2,700 kg/m3, respectively. The shear building is modeled as a 

three-DOF structure using the MATLAB program shown in Appendix D based on the 

dimensions and material properties.  

Free vibration test was performed by inducing the excitation using a rubric hammer. 

The hammer impacted the structure on the top floor. Horizontal responses were measured 

by the three IMI 603C01 accelerometers fixed with magnets in the middle of the left side 

of each floor plate; the associated LabVIEW data acquisition software was used to process 

the measured signal. In the measurement, ten-second data were recorded with a sampling 

frequency of 2,000 Hz. The acceleration at each floor is also preprocessed by a low-pass 



202 
 

filter with a cut-off frequency of 50.2 Hz, and down sampled to 200 Hz to identify the 

frequencies of interest and remove noise from high frequencies.  

  
(a) (b) 

Figure 6.9. Test setup of the shear building: (a) original system; (b) modified system 
with concrete block 

 
The automated stochastic subspace identification (SSI) and Bayesian modal 

identification developed in Chapters 3 and 4 are used to identify modal parameters, e.g., 

natural frequencies and mode shapes, and associated uncertainties. Uncertainties on modal 

parameters measure modal parameters’ accuracy and can be used as weighting factors, such 

as 𝜅  in Eq. (6.5). The identified frequencies by automated SSI and Bayesian modal 

identification are shown in Table 6.7, in which are consistent with each other. Figure 6.9 

(a) shows the experimental setup in the laboratory for the original system at the Civil and 

Environmental Engineering at the University of Louisville. To create the modified system, 

the ratio of frequency in the original system to that in the modified system is assumed to 

be 1.04; the magnitude of mass addition is then estimated as 0.545 kg using Eq. (6.15). 

Therefore, the concrete block with a weight of 0.545 kg is added to each floor, as shown 

in Figure 6.9 (b). The same measurement and modal identification are carried out for the 
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modified system. Before model updating and damage detection, mode shapes in two 

systems are normalized by the mass-change scaling method. Similar to the numerical 

example, it is convenient to use mass and stiffness coefficients as updating indices. Each 

floor has a representative value of mass and stiffness coefficients, giving a total of six 

coefficients to be updated, e.g., 𝛽), 𝛽& , and 𝛽;  (mass coefficients) and 𝜃), 𝜃&,	and 𝜃; 

(stiffness coefficients) with labeling a subscript number from the bottom floor (1) to the 

top floor (3). 

FE model updating  

In the first case, the natural frequencies and mode shapes in the original and modified 

system under the healthy state are used to update the model. The initial settings in DREAM 

are as follows: ten Markov chains are simultaneously run to generate a total of 20,000 

samples (2,000 samples per chain); all mass and stiffness coefficients have initial values 

ranging from 0.5 to 1.5. The number of samples designed for the experimental test is less 

than that in the numerical example, because we have fewer coefficients to update in this 

test. 

Figures 6.10 (a) and 6.11 (a) are the trace plots of the variation of mass and stiffness 

coefficients, respectively, as samples increases in one Markov chain. The stable 

convergence of each coefficient is visually observed. The rest of the figures in Figures 6.10 

and 6.11 give the updating results over ten Markov chains and convergence diagnosis. The 

sample mean of mass and stiffness coefficients in each Markov chain and  ±2 ∙ S. D.		are 

shown in Figures 6.10 (b) and 6.11 (b), respectively. The mean value of each coefficient is 

almost identical to one another among ten chains, indicating that the updating results are 

reliable and accurate. The convergence diagnosis, 𝑅$%"%, shown in Figure 6.10 (c) and 6.11 
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(c), are a useful graphical tool to evaluate convergence state. The resulting plots of 𝑅$%"% 

that quickly decrease below 1.2, indicating that the sampling process is performed to 

achieve the stationary Markov chain. Herein, the last 10,000 samples are used to calculate 

the quantities of interest, mean and standard derivation. 

 
(a) 

  
(b) (c) 

  Figure 6.10. Results of updated mass: (a) trace plot; (b) square: the sample mean of each 
chain, error bar: ±2 ∙ S. D.; ; (c) convergence diagnosis, 𝑅$%"% 
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(a) 

  
(b) (c) 

Figure 6.11. Results of updated stiffness: (a) trace plot; (b) square: the sample mean of 
each chain, error bar: ±2 ∙ S. D.; (c) convergence diagnosis, 𝑅$%"% 

 
 

 

 
Figure 6.12. Density distribution of updated coefficients 
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The density distribution of each coefficient estimated by the Gaussian kernel estimator 

(GKE) is also presented in Figure 6.12. It can be seen that the density distributions of 𝛽), 

𝛽;, 𝜃), and 𝜃; are non-Gaussian and multi-modal, indicating in practice, stiffness and mass 

do not necessarily follow the Gaussian distributions. The estimated distributions illustrate 

that DREAM is appropriate to approximate the distribution with non-normal shape and 

multi-peaks. Furthermore, except 𝛽& and 𝜃& which are distributed over a narrow region, 

the coefficients have a wide-ranging distribution, suggesting they have larger uncertainties 

(see S.D. in Table 6.6). 

Table 6.6. Results of updated coefficients under healthy condition 

Coefficients Initial  
                   Updated  

Mean S.D. (%) Change (%) 
𝛽) 

1.000 

1.234 10.36 23.41 
𝛽& 1.186 8.91 18.64 
𝛽; 1.124 11.52 12.37 
𝜃) 0.800 16.44 -20.05 
𝜃& 1.245 10.20 24.52 
𝜃; 1.068 17.81 6.80 

 
Table 6.7. Results of updated frequencies and MAC values under healthy condition 

Mode No. 

Frequency (Hz)     MAC   
Actual FE model 

Initial Updated 
SSI Bayesian Initial Error  

(%) Updated Error  
(%) 

1 7.66 7.75 8.667 13.20 7.78 1.63 0.9882 0.9979 
2 22.47 22.50 24.213 7.76 22.23 1.08 0.9938 0.9972 
3 33.77 33.86 34.856 3.22 34.00 0.68 0.9954 0.9965 

Table 6.6 shows updated mass and stiffness coefficients and their S.D. The updated 

frequencies and MAC values are tabulated in Table 6.7. All the MCs increase but 𝜃) 

decreases. The model updating aims to match measured responses with analytical 

counterparts. In this case, measured frequencies are overall smaller than those in the FE 



207 
 

model (see Table 6.7). From fundamental structural dynamics, frequency is proportional 

to stiffness but inversely proportional to mass. Therefore, stiffness and mass have to 

decrease and increase, respectively, to match measured frequencies with those in the FE 

model. The frequency errors of all modes are significantly reduced, and MAC values are 

updated to be close to 1.0. These values demonstrate satisfactory updating model results.  

Probabilistic damage detection 

Two damage scenarios are intentionally introduced with increasing severity in the shear 

building by reducing the thickness of column and increasing the weight of the floor, as 

shown in Table 6.8, the positive/negative sign denotes the increasing/reduction. The 

thickness of one column at the second and third floor is reduced by 50%, resulting in a 

21.8% stiffness reduction in the corresponding floor; A concrete block with the weight of 

1.54 kg is added to the second and third floor to mimic mass change due to damage, which 

produces 21.5 % mass increase in the corresponding floor. 

Table 6.8. Damage scenarios 
Notation Mass change Stiffness change 

D1 +21.5% (3rd floor) -21.8% (3rd floor) 

D2 +21.5% (2nd floor) 
 +21.5% (3rd floor)  

 -21.8% (2nd floor) 
 -21.8% (3rd floor) 

The concrete block with a weight of 0.545 kg (the same as healthy condition) is added 

to each floor to construct the modified structure for both damage scenarios. The same 

measurement procedures were performed for two damage scenarios. Figure 6.13 shows the 

experimental setup of two damage scenarios. Modal analysis is also implemented by 

automated SSI and Bayesian modal identification to extract natural frequencies and mode 

shapes of the original and modified system in two damage scenarios. The proposed method 

is then performed to identify mass and stiffness coefficients based on the updated FE model 
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(healthy condition). In the updating process, the DREAM algorithm generates samples to 

target the posterior PDF by the same initial settings as before.       

   
(a)  (b) 

  
(c) (d) 

     Figure 6.13. Test setup: (a) D1; (b) D1 with added mass; (c) D2; (d) D2 with added  
mass. 

 
Figures 6.14-17 show the updated results of mass and stiffness in two damage scenarios. 

Figures. (a)s in Figure 6.14-17 are trace plots that show the iteration of each coefficient 

with samples increasing; stable convergence is achieved in trace plots. The updating results 

of mass and stiffness coefficients over ten Markov chains are presented in Figures (b)s in 

Figure 6.14-17. It is seen that all coefficients in both damage scenarios are identified as 

consistent with each other among ten Markov chains, indicating reliable and accurate 

identification. In addition, the convergence diagnosis, 𝑅$%"% quickly decays below 1.2 for 

all coefficients, demonstrating that the stationary convergence is reached. In damage 
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detection, the last 10,000 samples are used to calculate the mean values and standard 

derivations. Note the mean values under the healthy condition are used as baselines, so the 

undamaged floor has the mass and stiffness coefficients with unity value.      

 
(a) 

  
(b) (c) 

Figure 6.14. Results of updated mass in D1: (a) trace plot; (b) square: the sample mean 
of each chain, error bar: ±2 ∙ S. D.; (c) convergence diagnosis, 𝑅$%"% 
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(a) 

  
(b) (c) 

Figure 6.15. Results of updated stiffness in D1: (a) trace plot; (b) square: the sample 
mean of each chain, error bar: ±2 ∙ S. D.; (c) convergence diagnosis, 𝑅$%"% 

 

 
(a) 

  
(b) (c) 

Figure 6.16. Results of updated mass in D2: (a) trace plot; (b) square: the sample mean 
of each chain, error bar: ±2 ∙ S. D; (c) convergence diagnosis, 𝑅$%"% 

 



211 
 

 
(a) 

  
(b) 

Figure 6.17. Results of updated stiffness in D2: (a) trace plot; (b) square: the sample 
mean of each chain, error bar: ±2 ∙ S. D; (c) convergence diagnosis, 𝑅$%"% 

 
Figure 6.18 shows the density distribution estimated by Gaussian kernel estimator. It 

is observed that some coefficients exhibit multi-modal features and are non-Gaussian 

shaped. Especially, 𝜃) and 𝜃; in damage scenario No. 1 (D1) and 𝛽), 𝛽& and 𝜃; in damage 

scenario No. 2 (D2). It indicates that structural parameters do not always follow Gaussian 

distribution, the asymptotic optimization method may not be suitable to estimate the 

posterior PDF with a non-Gaussian shape. However, the proposed method is able to 

approximate non-Gaussian distribution with an accurate level. It is also found that the 

larger uncertainties are revealed in some coefficients, such as 𝛽& and 𝜃) in both damage 

scenarios (S.D. ranges from 7.9% to 16.2%). Their distributions are flatter and spread 

across a relatively wider region. While the distributions of other coefficients are 

concentrated in a narrow region and have pronounced peaks, meaning these coefficients 

are more certain (S.D. ranges from 1% to 10.1%). 
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(a) 

 

 
(b) 

Figure 6.18. Density distribution of updated coefficients: (a) D1; (b) D2 
The identified damage severities of two damage scenarios are shown in Figure 6.19. 

The identified damage severities of 𝛽; and 𝜃; in damage scenario No. 1 (D1) are 23.35% 

and 24.72%, respectively, which is close to actual values of 21.5% for 𝛽 and 21.8% for 𝜃; 

The identified damage severities of 𝛽&, 𝛽;, and 𝜃&, 𝜃; in damage scenario No. 2 (D2) are 

24.55%, 23.14%, 19.18% and 20.18% respectively, which also agree well with actual 

values of 21.5% for 𝛽 and 21.8% for 𝜃. The false damage detection is only observed with 
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less than 4%. These results demonstrate the efficacy of the proposed method in both mass 

and stiffness updating and achieves damage localization and quantification. 

  
                                                                   (a) 

  
                                                                    (b) 

Figure 6.19. Identified damage severity: (a) D1; (b): D2 
 
 
Table 6.9. Results of updated frequencies and MAC values in two damage scenarios  

Damage scenario Mode No. Measured 
Frequency (Hz) 

MAC 
Updated Error (%) 

D1 
1 7.140 7.234 1.31 0.9942 
2 19.800 19.420 1.92 0.9936 
3 32.311 32.680 1.14 0.9976 

D2 
1 6.905 6.922 0.25 0.9941 
2 19.641 20.244 2.98 0.9957 
3 29.043 29.512 1.59 0.9999 
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(a) 

  
(b) 

Figure 6.20. Probabilistic damage curves: (a): D1; (b): D2 

The updated frequencies and MAC values are calculated using identified mass and 

stiffness coefficients, as shown in Table 6.9. It is observed that all modal parameters in 

both damage scenarios are in accordance with measured counterparts, indicating the FE 

model is successfully updated by the proposed method. Based on idetified mean values of 

mass and stiffness coefficients and their uncertainties under healthy and damaged state, the 

probabilitisc damage curves can be plotted, as shown in Figure 6.20. It is worth mentioning 

that the negative, 𝑑 represents mass/stiffness increase, and vice versa. For damage scenario 

No.1 (D1), 	𝛽;  and 𝜃;  have a probability (63.3% and 67.5%, respectively) of having 

possible damage 23.35% and 24.72%. For damage scenario No. 2 (D2), 𝛽& and 𝜃& have a 

possible change of 24.55% and 19.18% with a probability of 62.1% and 67.7%, 
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respectively. In practice, damage can be detected by probabilistic curves, because the 

curves related to damage location are generally easily distinguished from the ones related 

to healthy location. For example, the curves of 𝛽; and 𝜃; in D1 are clearly separated from 

others, indicating the location corresponding to 𝛽; and 𝜃; (herein is the third floor) may 

have certain damage. Similar observation is found in D2. The proposed method can detect 

damage in mass and stiffness along with location and severity in a probabilistic manner. 

The engineers can be informed that some repairing work may be necessary at certain 

location.  

6.5 Comparison of Bayesian model updating with added mass and added stiffness  

In this subsection, Bayesian model updating with added known stiffness is proposed to 

update both mass and stiffness parameters. In section 6.5.1, the characteristic equations 

with stiffness addition are derived. Subsequently, the proposed BMUA with added stiffness 

are applied for laboratory-scale three-story shear building in Section 6.5.2. In addition, the 

comparative study is investigated between BMUA with added mass and added stiffness. 

6.5.1 Characteristic equations of BMUA with added stiffness 

Similar to Section 6.3.1, the new characteristic equations with stiffness addition rather 

than mass addition are derived to address the coupling effect.  

When updating mass, from Eq. (5.64), we obtain: 

(𝑪 − 𝝀𝑫)𝝓 = 𝟎 (6.18) 

where 𝑪 = 𝛌b𝝓b9𝑴−𝝓b9∆𝒌, 𝑫 = 𝝓b9𝑴. Derivation in detail can be found in Eqs. (5.59) 

~ (5.64) in Section 5.5.1. 

When updating stiffness, from Eq. (5.72), we have: 
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(𝑮− 𝝀𝑳)𝝓 = 𝟎 (6.19) 

where 𝑮 = 𝛌b𝝓b9𝑲, 𝑳 = 𝝓b9𝑲+𝝓b9∆𝒌. Derivation in detail can be found in Eqs. (5.65) 

~ (5.72) in Section 5.5.1. 

 Eqs. (6.18) and (6.19) are new characteristic equations incorporating added known 

stiffness ∆𝒌, which can be solved by ‘eig’ function in MATLAB. The coupling effect is 

inherently addressed, as updating either mass or stiffness, another parameter information 

is not required.  

 Remark adding stiffness is practically feasible, such as installation of additional 

structural components (e.g., braces, dampers or springs) (Khatibi et al., 2012, Saingam et 

al., 2020, Kazemi et al., 2021), shear tab connectors at bolted joints (FEMA, 2006). The 

magnitude of added stiffness could be conveniently determined, when the sectional and 

geometric properties of added components at design stage are available, like Young’s 

modulus and moment of inertial or using the equivalent stiffness. In addition, Before the 

model updating, the measured mode shapes have to be normalized stiffness-change scaling 

method (Khatibi et al., 2012) to map measured and predicted mode shapes. 

 In BMUA framework with added stiffness, the model outputs are predicted by the two 

new characteristic equations instead of classical one ((𝐊 − 𝜆𝐌)𝝓 = 𝟎). It is analogous to 

BMUA with added mass, the posterior PDF in Eq. (6.5) is reformulated by the 

measurements and model predictions. Finally, the DREAM algorithm is applied to 

approximate the posterior PDF, giving the quantity of interests, e.g., mean and variance.  

6.5.2 Experimental test 

 The same laboratory-scale shear structure as descripted in Section 6.4 was used to 

validate the performance of the proposed BMUA with added stiffness. The same 
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measurement was conducted to acquire accelerations under free vibration after the structure 

was excited by a rubric hammer, as shown in Figure 6.21. The modified system was created 

by installing an additional column at each floor (see red circle in Figure 6.21 (a)). Each 

added column has the same material properties and half thickness of the column in original 

system, which yielding the 3.12% stiffness addition at each floor. The recorded data for 

two systems was processed to extract the natural frequencies and mode shapes by the 

automated SSI.   

  
(a) (b) 

Figure 6.21. Test setup of the shear building: (a) original system; (b) modified system 
with added columns 

 
 The identified natural frequencies and mode shapes for original and modified system 

are used to update the structure under healthy condition. The initial settings in DREAM 

are ten Markov chains are considered to generate a total of 20,000 samples (2,000 samples 

per chain); all mass and stiffness coefficients have initial values ranging from 0.5 to 1.5. 

Figure 6.22 shows the trace plots of updating mass and stiffness. It is visually observed 

that Each coefficient finally reaches a stable convergence. It is also found that the stiffness 

coefficients exhibit more fluctuation than mass coefficients. Density distributions are 
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estimated by Gaussian kernel estimator and shown in Figure 6.23. Each mass coefficient 

has a sharp peak and are well estimated by Gaussian distribution. However, the distribution 

of all SCs spread in a wide region, 𝜃) and 𝜃; also have multi-modal shape, indicating the 

SCs are more uncertain and more difficult to identify compared with MCs.   

 
(a) 

 
(b) 

Figure 6.22. Updated results: (a) trace plot of mass; (b) trace plot of stiffness 
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Table 6.10. Results of updated coefficients under healthy condition 

Coefficients 
                   BMUA with ∆𝒎 (Table 6.6) BMUA with ∆𝒌 

Mean S.D. (%) Mean S.D. (%) 
𝛽) 1.234 10.36 1.086 18.57 
𝛽& 1.186 8.91 0.728 3.42 
𝛽; 1.124 11.52 1.255 15.44 
𝜃) 0.800 16.44 1.190 0.35 
𝜃& 1.245 10.20 0.894 0.31 
𝜃; 1.068 17.81 1.212 1.63 

 Table 6.10 listed the updated mass and stiffness coefficients by the BMUA with added 

stiffness and added mass. Apparently, discrepancy is observed in updated coefficients. It 

may be explained by the fact that in the proposed two BMUA, ∆𝒎 and ∆𝒌 need to be 

known prior to model updating, to some extent, their information directly affects the 

implementation of addressing the coupling effect and controls the quality of updating mass 

and stiffness. The magnitude of ∆𝒎 can be conveniently and accurately estimated by some 

devices, e.g., scale. But it is not the case for ∆𝒌 estimation. In this work, ∆𝒌 is provided by 

added columns. Theoretically, stiffness of each column can be calculated by 12𝐸𝐼 𝐿;⁄  

under the assumption of fixed boundary condition, where 𝐸, 𝐼, and 𝐿 are young’s modulus, 

moment of inertial, and length of added column, respectively. However, two issues may 

not be ignored. In real structure, it is hard to guarantee the connection is completely fixed; 

Additionally, 𝐸 , 𝐼 , and 𝐿  inevitably have uncertainties due to manufacture, inaccurate 

material information, etc. Therefore, ∆𝒌  cannot be well estimated and have larger 

uncertainties compared to ∆𝒎 . When using the erroneous ∆𝒌  estimation, it is not 

surprising to have biased updating results. BMUA with added mass gives more reliable 

identification of mass and stiffness.  
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6.6 Conclusions 

This chapter proposed a novel vibration-based Bayesian model updating approach to 

simultaneously identify structural mass and stiffness. In this work, the coupling effect of 

mass and stiffness is successfully addressed using two sets of vibration data from original 

and modified system with added known mass/stiffness. The posterior PDF is approximated 

by DREAM sampling method instead of asymptotic optimization method. Following 

conclusions from numerical examples and experimental tests are summarized as follows: 

• The results in numerical example and experimental test illustrate that the 

proposed approach can simultaneously identify structural mass and stiffness 

with an accurate level and their uncertainties by addressing the coupling effect 

of mass and stiffness.  

• In experimental test, some mass coefficients exhibit larger uncertainties, 

indicating the effect of mass on structural integrity cannot be ignored, and the 

assumption of mass is known and invariant in classical Bayesian approach may 

be questionable when noticeable change in mass is observed, such as 21.5% 

mass increase in damage scenarios in this test for mimicking the mass change 

due to unknown damages. 

• The results in experimental test reveal the structural parameters, e.g., mass and 

stiffness, do not always follow Gaussian distribution. Thus, the asymptotic 

approximation method may not be suitable for this situation. The DREAM 

algorithm runs multiple Markov chains in parallel and sufficiently seek all 

possible solutions, resulting in high capability to treat the posterior PDF with 

high-dimensionality, multi-modality, and numerous peaks.  
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• The probabilistic damage detection is also implemented by the proposed 

Bayesian approach. The results in experimental test demonstrate that the 

proposed approach enables to reliably and accurately identify damage location 

and severity. In addition, the probabilistic damage curves allow engineers to 

quickly localize damage, indicating the proposed approach is practically 

valuable. 

• The comparison of updated results by BMUA with added mass and added 

stiffness are discussed. Some discrepancies are observed. Because it is difficult 

to accurately estimate ∆𝒌 in practice due to larger uncertainties in ∆𝒌,	resulting 

in biased updating results. But BMUA with added mass gives more reliable 

identification of mass and stiffness because of well-estimated ∆𝒎. 
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CHAPTER 7 

BAYESIAN MODEL UPDATING FOR COMPLEX STRUCTURES USING 
SURROGATE MODEL 

7.1 Introduction 

In Chapters 5 and 6, Bayesian model updating has been demonstrated its efficacy and 

robustness. Although Bayesian model updating with MCMC is promising, it is 

computationally demanding due to a vast amount of FE model evaluations are required. As 

a result, it becomes impractical for complex and large-scale engineering structures. 

Therefore, surrogate models are potential alternatives to relieve the computational burden. 

The comprehensive introduction of surrogate models is referred to Xia et al. (2021). 

However, research on Bayesian model updating with surrogate models is still not 

sufficiently explored to overcome challenges. For example, Wan and Ren (2016) applied 

the Bayesian approach to a real-world cable-stayed bridge with the Gaussian process model. 

However, only measured frequency is used as input, which may result in inaccurate 

parameter identification. Jensen et al. (2017) used the Bayesian approach and Kriging 

model to update a numerical example of a two-story reinforced concrete structure. Mao et 

al. (2020a) updated a long-span suspension bridge using the Bayesian approach with 

Hybrid Monte Carlo (HMC) and Kriging model. Pepi et al. (2019) employed the 

Metropolis Hastings (MH) sampler in the Bayesian approach with the Kriging model to 

update only two structural parameters in a cable-stayed footbridge. In contrast, either HMC 
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or MH is a single-chain method, as aforementioned, which has a slow or even incorrect 

convergence and is easily stuck in a local optimum. More efforts to extend and apply the 

Bayesian model updating with a surrogate model in civil engineering are needed for 

practical application in complex structures. 

An additional time-saving strategy is sensitivity analysis investigating how input 

parameters affect model outputs and excluding insensitive parameters (Saltelli et al., 2004). 

As a consequence, model dimensionality can be substantially reduced. Global sensitivity 

analysis (GSA) has been widely used in large structures as it enables quantifying the 

percentage of the uncertainty of model outputs arising from the uncertainty of input 

parameters. The GSA has various methods including variance-based GSA (Saltelli et al., 

2004), moment-dependent method (Borgonovo et al., 2012), Fourier amplitude sensitivity 

test (FAST) method (Tarantola and Mara, 2017), Morris method (King and Perera, 2013), 

etc. The present work uses variance-based GSA to drop non-influential parameters. The 

variance-based GSA can evaluate the effect of the entire parameter space on model outputs 

and assess the effect of parameters’ interaction. For the review of variance-based GSA, 

readers can refer to Chen et al. (2005). However, traditional variance-based GSA using 

Monte Carlo simulation (MCS) and FEM has a critical drawback of low efficiency. 

Typically, it requires no less than 10,000 model evaluations for accurate results (Burnaev 

et al., 2017), resulting in high computational cost and seriously limiting its practical 

application with high fidelity models. 

Driven by these issues, this chapter proposed an efficient vibration-based Bayesian 

model updating approach (BMUA). Dynamic modal data, namely frequencies and mode 

shapes, are used together to update the model. DREAM is adopted to estimate the posterior 
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PDF in Bayesian model updating; A fast-running Kriging model is used as a surrogate 

model of the traditional one to enhance computational efficiency. In addition, a variance-

based GSA combining with the Kriging model is applied to reduce computational cost in 

parameter selection. 

This chapter is organized as follows. Section 7.2 provides the brief review of the 

Bayesian model updating formulations. Section 7.3 introduces two time-saving strategies 

of alleviating computational burden, including the variance-based GSA and Kriging model. 

Section 7.4 presents a field test of a cable-stayed pedestrian bridge for the real application. 

Finally, conclusions and contributions are discussed in Section 7.5. 

7.2 Formulations of Bayesian model updating 

In Chapters 5 and 6, detailed formulations of BMUA have been introduced. Different 

from previous chapters, this chapter employs two fractional error functions (FEF) of a 

given one mode, 𝑚, to formulate the likelihood function, namely frequency FEF and mode 

shape FEF (Lam et al., 2015). Frequency FEF is defined as:  

𝜀0,! =
𝑓! − 𝑓!(𝜴)

𝑓!
 (7.1) 

where 𝑓!  is the 𝑚 th measured frequency, 𝑓!(𝜴) is the 𝑚 th calculated frequency in a 

model given 𝜴.  

Mode shape FEF is defined as: 

𝜀!$,! = ®ù1 − �𝝓x!9 𝝓!(𝜴)�
&ú (7.2) 

where 𝝓x!  and 𝝓!(𝜴) are the 𝑚th measured and calculated mode shape, respectively. 

Note all mode shapes are normalized to unity norm to map them in the same context.  
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Assuming that frequency and mode shape FEF in Eqs. (7.1) and (7.2) follow zero-mean 

Gaussian distribution, then the posterior PDF is rewritten as follows: 

𝑃(𝜴|𝐷, 𝐶) = 𝑐-exp	 �−
1
2𝜅& 𝐽

(𝜴)� (7.3) 

𝐽(𝜴) = 	 ¾ +�
𝑓! − 𝑓!(𝜴)

𝑓!
�
&

+ ù1 − �𝝓x!9 𝝓!(𝜴)�
&ú.

*

!C)

	 (7.4) 

where 𝜅 is an uncertainty parameter of prediction error. In current study, the variances of 

measured frequency and mode shape are used as 𝜅&. 𝜅 consists of 𝜎0,! and 𝜎!$,!; 𝜎0,! 

and 𝜎!$,!  are standard derivation of the 𝑚 th measured frequency and mode shape, 

respectively. In this study, the DREAM algorithm combining parallel multi-chain and 

evolutionary concepts are adopted to sample the posterior PDF in Eq. (7.3). 

7.3 Time-saving strategies 

 Thousands of model analyses are required in DREAM to ensure a stable convergence 

for Bayesian model updating, leading to high computational costs. Two strategies are 

adopted to overcome the difficulty in computational demands. Firstly, the Kriging model 

is introduced to substitute the time-consuming FE model in Section 7.3.1. The variance-

based GSA has then presented to select the most influential model parameters in Section 

7.3.2. 

7.3.1 Kriging model 

 In the past decades, the Kriging model (also called the Gaussian process model) has 

been extensively used in engineering communities (Wang et al., 2017, Bhosekar and 

Ierapetritou, 2018, Alizadeh et al., 2020), because it accurately provides not only a model 

prediction at design points but also a prediction uncertainty to measure the model reliability. 
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Another advantage of the Kriging model is various correlation functions are embedded to 

represent complex structures; thus, it is suitable for nonlinear problems. Essentially, the 

Kriging model is an interpolation emulator that combines a polynomial regression and 

Gaussian random process as follows (Simpson et al., 2001): 

𝒀(𝐱) = 𝑭r(𝐱)𝜷 + 𝑍(𝐱) (7.5) 

where 𝒙 = [x)⋯x,] is a structural parameter vector, 𝑙 is the number of parameters; 𝒀 =

èy)⋯ y\é is a model response vector, such as frequency and mode shape, 𝑝 is the number 

of responses of interest. 𝑭(𝐱) = 	 è𝑓)(𝐱)⋯𝑓W(𝐱)é
r consists of 𝑞  polynomial regression 

functions, showing the global trends of the predicted model. In this study, the quadratic 

polynomial is used as a regression function; 𝜷 = è𝛽)⋯𝛽Wé
r is a regression coefficient 

vector; the term of 𝑍(𝒙) is a stationary Gaussian process error with zero mean and variance, 

𝜎&, reflecting the local deviation of the Kriging predictor. The non-zero covariance matrix 

of 𝑍(𝒙) is given by: 

covè𝑧(x3), 𝑧zx1{é = 𝜎&𝑹 (7.6) 

where 𝑹 is a correlation matrix with symmetric elements, 𝑅31(x3 , x1); x3  and x1  are two 

random training points.  

When constructing a Kriging model, correlation function, 𝑅31(x3 , x1) needs to be user-

defined. Some literature discussed the effect of different correlation functions on the 

prediction accuracy of a Kriging model (Mao et al., 2020a). 𝑅31(x3 , x1)  is typically 

expressed as: 

𝑅31zx3 , x1{ = 	Ê𝑅'

,

'C)

z𝛼' , x3' − x1'{ (7.7) 
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where 𝑙  is the number of variables; 𝛼'  is a correlation coefficient that quantifies the 

contribution of each input x3 ; x3'  and x1'  are the 𝑘 th coordinates of points, x3  and x1 , 

respectively. It has been demonstrated that the Gaussian correlation function has a fairly 

good smooth and differentiable surface (Mao et al., 2020a). In this study, the Gaussian 

correlation function is used to construct a Kriging model. Therefore, Eq. (7.7) is rewritten 

as: 

𝑅31zx3 , x1{ = 	Êexp
,

'C)

ù−𝛼'exp�x3' − x1'�
&ú (7.8) 

For a set of training samples, a correlation coefficient, 𝛼 , and variance, 𝜎& , can be 

estimated by maximum likelihood estimation (MLE) (Martin and Simpson, 2005): 

max	𝜂(𝛼) =−
1
2
(𝑚$ln(𝜎&) + ln|𝑹|) (7.9) 

where 𝑚$ is the number of training samples; Both 𝜎& and 𝑅 are the function of 𝛼; sign |•| 

denotes the determinant of a matrix. Explicit procedures for solving Eq. (7.9) are referred 

to Simpson et al. (2001). 

When the correlation function is decided and its coefficient is estimated, the interpolation 

of the Kriging model can start for untried sample points with unbiased approximation. The 

predicted response, 𝑦P(𝐱), is given by: 

𝑦P(𝐱) = 𝑓r(𝐱)𝜷� + 𝑯r(𝐱)𝑹2𝟏(𝒀− 𝑭r𝜷�) (7.10) 

where 𝜷� = (𝑭r𝑹2𝟏𝑭)2)𝑭r𝑹2𝟏𝒀 is obtained by applying the least square method to 𝑭𝜷� ≅

𝒀 ; 𝑯(𝐱) = 	 è𝑅(x, x)), 𝑅(x, x&),⋯ , 𝑅zx, x!C{é
r is a vector representing the correlation 

between the number of 𝑚$  training samples and prediction points. Meanwhile, the 
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prediction error of 𝑦P(𝐱)  can be estimated as 𝜎Pl(𝐱) = 𝜎&(1 +	𝒖r(𝑭r𝑹2𝟏𝑭)2)𝒖−

𝑯r𝑹2𝟏𝑯), where 𝒖 = 𝑭r𝑹2𝟏𝑯− 𝑓. 

 Overall, the Kriging model is constructed when the correlation coefficient is estimated. 

The model prediction at all tried samples equal to exact values because of the interpolation 

characteristic in the Kriging model. Remark that training data to construct the Kriging 

model should be collected, including training inputs and corresponding model outputs. The 

training inputs are generated by a popular space-filling design method, Latin hypercube 

sampling (LHS), originally proposed by McKay (1992) in statistics. LHS enables us to 

randomly produce points with low discrepancy and uniformly falling in hypercube through 

sampling from multi-dimensional distribution. Assume 𝑋 design variables, the probability 

distribution of each variable is stratified to 𝑃 equal and non-overlapped subintervals within 

the defined bounds. The samples are randomly partitioned into each subinterval in LHS. 

One appealing feature in LHS is that the sample points are well-spread and un-grouped in 

the parameter space. The general formulation of sample point  𝑋 using LHS is given by 

(McKay, 1992): 

𝑋 =
𝜋 + 𝑈
𝑃  (7.11) 

where 𝑃 is the number of sample point; 𝜋 is a stratification of sequence (0, 1,⋯ , 𝑃 − 1); 

𝑈 is a random value from a uniform distribution (0, 1) The model outputs corresponding 

to each sample point are then derived by a commercial FEA package, such as ANSYS. The 

Kriging model used in this study is constructed by the Design and Analysis of Computer 

Experiments (DACE) MATALB toolbox (Lophaven et al., 2002). 

Before using the Kriging model in model updating, it is necessary to evaluate the 

accuracy of the Kriging model. The performance of model prediction by the Kriging model 
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at untried data points is assessed using two criteria, namely mean square error (MSE) and 

a coefficient of determination, 𝑅& (Jensen et al., 2017).  MSE illustrates the discrepancy 

between a Kriging model and a FE model. Thus, the value of MSE is closer to 0; the 

Kriging model is more reliable. In contrast, 𝑅&, which ranges typically from 0 to 1, is close 

to 1, suggesting that Kriging's prediction matches the actual counterpart. 

7.3.2 Variance-based global sensitivity analysis (GSA) 

 Variance-based GSA is employed in this study to identify essential structural 

parameters and eliminate non-influential ones before FEMU. Assume that a structural 

model has the input-output relation of 𝑌(𝒙).𝑌 is output response; 𝒙 = (𝑥), 𝑥&, ⋯ , 𝑥Y) is a 

𝑑-dimensional input vector. Suppose all the input parameters are mutually independent 

based on the decomposition of the total variance in model outputs, the variance 𝑉 of 𝑌(𝒙)	 

can be written as (Saltelli et al., 2004): 

𝑉(𝑌) = 	¾𝑉3

Y

3C)

+¾𝑉31

Y

3s1

+⋯+ 𝑉)&⋯Y (7.12) 

where 𝑉(•) and 𝐸(•) are the variance and expectation operators, respectively. For example, 

the first-order partial variance, 𝑉3 = 𝑉z𝐸(𝑌|𝑥3){	 and second-order partial variances,𝑉31 =

𝑉 ù𝐸z𝑌|𝑥3 , 𝑥1{ú − 𝑉3 − 𝑉1 , and higher-order ones can be summed. Eq. (7.12) illustrates 

how each input parameter and interaction effect of inputs contribute to the total variance 

of model output. 𝑉3 and 𝑉31 in the first-order and the second-order partial variance are main 

variance contribution of 𝑥3  and interaction variance contribution between 𝑥3  and 𝑥1 , 

respectively.  
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The right side of Eq. (7.12) is divided by 	𝑉 , resulting in the variance-based global 

sensitivity indices: 

1 = 	¾𝑆3

Y

3C)

+¾𝑆31

Y

3s1

+⋯+ 𝑆)&⋯Y (7.13) 

where 𝑆3 = 𝑉3/𝑉 , defined as he main or first-order sensitivity index, quantifying the main 

contribution by a single input, 𝑥3 , and 𝑆)&⋯Y = 𝑉)&⋯Y/𝑉  , defined as the interaction 

sensitivity index, quantifying the percentage of total output variance contributed by the 

combination of all the inputs. For accounting for the overall contribution of 𝑥3, including 

individual contribution of 𝑥3 and its joint effect with other inputs, the total sensitivity index, 

𝑆93, is defined as: 

𝑆93 = 1 −	
𝑉__3
𝑉  (7.14) 

where 𝑉__3 = 𝑉 ù𝐸z𝑌|𝑥__3{ú	  is the total contribution to 𝑉(𝑌)  attributed to all input 

variables excluding 𝑥3. The use of 𝑆3 and 𝑆93 can effectively measure the importance of the 

𝑖 th input to a model response. The higher value of 𝑆3  and 𝑆93  is, the more important 

corresponding input is. It is worth mentioning that 𝑆93  contains both main effect and 

interaction effect with other inputs with respect to 𝑥3. If 𝑆93 equals to 𝑆3, illustrating there 

is no interaction effect between 𝑥3 and other inputs, and vice versa. 

The variance terms of in Eq. (7.14) can be calculated from MCS (Saltelli et al., 2004). 

However, it requires a large amount of FE model evaluations, generally in the order of 104, 

to guarantee a satisfactory convergence. The Kriging model is used as a surrogate of the 

FE model to efficiently perform variance-based GSA. Figure 7.1 shows how to select 

significant parameters by the proposed variance-based GSA using the Kriging model. 



231 
 

Firstly, sample points (input) for all the possible parameter candidates are prepared by the 

LHS method; the corresponding model outputs at sample points are then generated by FE 

model analysis. Next, the Kriging model is constructed using collected training data (inputs 

and outputs), as described in Section 7.3.1. Finally, the task of variance-based GSA is 

implemented based on MCS using the Kriging model. Consequently, nonsignificant 

parameters are selected and discarded for following model updating. 

 
Figure 7.1. Flowchart of the proposed variance-based GSA 

 
 In summary, the proposed Bayesian model updating consists of two main stages. The 

stage one involves two cost-effective strategies: variance-based GSA in Section 7.3.2 and 

Kriging modeling in Section 7.3.1. The stage two is the process of Bayesian model 

updating using the DREAM sampling algorithm. At first, all possible parameter candidates, 

𝑋%u%",, are initially selected; non-influential parameters are eliminated by variance-based 

GSA, resulting in selected significant parameters, 𝑋$/,/v%/Y. Then, the Kriging model is 

built with respect to 𝑋$/,/v%/Y. Next, the posterior PDF in Eq. (7.3) is formulated using 

measured data and prediction from the Kriging model. DREAM algorithm is next adopted 
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to generate samples to approximate the posterior PDF. Finally, the stationary Markov 

chains give us the quantity of interest, such as PDF, mean, and coefficient of variation. The 

flowchart of the proposed updating framework is shown in Figure 7.2. 

 
Figure 7.2. Flowchart of the proposed model updating framework 

 
 It should be noted that the Kriging model is constructed twice in the proposed 

framework. First, one Kriging model is constructed with all the possible parameter 

candidates to enhance computational efficiency in GSA. Second, another is constructed 

with selected significant parameters, which is used in Bayesian model updating.   

7.4 Application example: a cable-stayed pedestrian bridge 

7.4.1 Bridge description 

 The cable-stayed pedestrian bridge (Figure 7.3) studied in this work, located in Wuhan 

in China, has three spans and a single pylon with a steel box girder. Figure 7.4 shows the 

configuration of the bridge. The bridge has a total length of 86.3 m and a width of 7 m, 

with a center span of 45 m. The center span of the bridge is composed of U-shaped and 
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straight segments, and the right span is skewed. The vertical steel pylon with a 16.1-m 

height is situated inside the center span; one T-shaped pier is below the pylon. The four 

parallel stay cables at each side of the pylon are anchored to connect the pylon with the 

bridge deck; each cable has a diameter of 115 mm.  

  
(a) (b) 

   Figure 7.3. General overview of the cable-stayed pedestrian bridge: (a) top view; (b)  
front view (photo by a collaborator, Prof. Qing) 

 

 
(a) 

 
(b) 

 Figure 7.4. Configuration of the pedestrian bridge (unit: m; N denotes cable): (a) 
elevation; (b) plan 
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Figure 7.5. The Finite-element model of the cable-stayed pedestrian bridge 

The FEM of the bridge is established using the FEA package ANSYS. Shell elements 

(SHELL181) are used to model the main beam and pylon; Link elements (LINK180) are 

adopted to simulate stay cables. For non-structural components, e.g., the railing system, its 

stiffness contribution can be ignored due to slender and small properties, but mass 

contribution should be included. Therefore, the railing system is modeled by shell elements 

and added to the bridge deck. In summary, this bridge model consists of 39,388 nodes and 

39,390 elements. The resulting FEM is shown in Figure 7.5. The Ansys Parametric Design 

Language (APDL) program is shown in Appendix E. 

7.4.2 Operational modal analysis 

 Operational modal analysis (OMA) is carried out to extract dynamic modal parameters 

of the cable-stayed pedestrian bridge, i.e., natural frequency, damping ratio, and mode 

shape. OMA has been received considerable attention, because it avoids any interruption 

of normal operation and does not require artificial excitation. Instead, natural excitation, 

such as human walking, wind, traffic, etc., is used during the vibration test. The five 

wireless accelerometers are available and installed on two sides of the bridge deck in a 

vertical direction. Due to a limited number of sensors, seventeen measurement setups were 
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deployed to cover all locations of interest, containing three reference sensors and two 

roving sensors at each setup. As a result, a total of 53 locations were recorded at a sampling 

frequency of 200 Hz; the time duration for each setup is 15 minutes. The equipment during 

the field test is shown in Figure 7.6 (a) and (b). Figure 7.6 (c) displays the measurement 

sensor layout. 

 

  
(a) (b) 

 
(c) 

 Figure 7.6. Field test: (a) data acquisition; (b) wireless accelerometer; (c)  sensor layout 
(units: m; △ and ○denote roving and reference sensor, respectively) 

 The automated SSI is employed to identify modal parameters. The spurious modes are 

automatically eliminated, which is computationally effective and more reliable, especially 

when there are many data and multiple measurement setups. Details on automated SSI are 

referred to Chapter 3. Before applying the automated SSI, the collected data were pre-

processed by a lowpass filter and cut-off frequency of 14.2 Hz, then down sampled to 50 

Hz to only consider the frequency of interest and remove noise from high frequencies. The 
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input parameters for SSI are chosen as follows: the model order ranges from 20 to 90; the 

time lag is set as 50. For the sake of space, only a stabilization diagram for setup No.5 is 

presented. Figure 7.7 shows the full and cleared stabilization diagram. All spurious modes 

(scattered circles) are automatically removed; physical modes appeared as vertical 

alignments are remained in Figure 7.7(b). Finally, eight modes are successfully identified, 

including five bending modes and three torsional modes. 

  
Figure 7.7. The stabilization diagram for setup No.5: (a) full; (b) cleared 

 
Table 7.1. Comparison of modal parameters between FEM and OMA 

Mode 
Frequency (Hz) 

MAC 𝜎!$ (%) 
FEM SSI 𝜎0	(%) Error (%) 

B1 1.987 2.096 0.66 5.19 0.9684 0.45 
B2 4.829 3.865 1.26 24.95 0.8494 1.00 
T1 5.789 4.518 1.17 28.12 0.9290 1.35 
B3 7.135 5.104 1.52 39.80 0.8168 2.81 
B4 7.734 5.902 1.57 31.04 0.8576 4.57 
T2 8.098 6.518 1.99 24.24 0.9479 2.02 
B5 10.004 9.262 3.26 8.01 0.8130 2.47 
T3 13.714 12.869 5.05 6.57 0.8183 6.16 

Note: B denotes bending mode; T denotes torsional mode; 𝜎0  and 𝜎!$  are standard 
derivations of measured frequency and mode shape, respectively. 
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Mode1 Mode2 

  
Mode3 Mode4 

  
Mode5 Mode6 

  
Mode7 Mode8 

  
Figure 7.8. Comparison of measured and FEM derived mode shapes 

Table 7.1 compares measured frequencies from SSI with those from the FEM. MAC 

values between analytical and measured mode shapes are also presented. Figure 7.8 
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compared mode shapes from measurement and the FEM. A significant difference in 

frequencies is observed; frequency error of B2, T1, B3, B4, and T2 ranges from 24.24% to 

39.8%. Measured frequency overall smaller than those from FEM, indicating the real 

structural is softer than the FEM. In addition, although similar mode patterns between 

measured and analytical mode shapes are observed, some MAC values are only around 0.8, 

such as B3, B5, and T3. Therefore, it is essential to update the model of the cable-stayed 

pedestrian bridge. 

 
7.4.3 Bayesian model updating 

 Prior to model updating, variance-based GSA is applied to measure the importance of 

parameters to be updated based on the individual contribution to the total variance of model 

response. For the pedestrian bridge, material properties (elastic modulus 𝐸, mass density 

𝑃) of different structural components, and the initial tension strain of stay cables, 𝑆𝑡𝑟𝑎, are 

considered as updating parameters. Table 7.2 summarizes a total of 14 parameter 

candidates in GSA, including 12 parameters about material properties and 2 initial tension 

strains of cables N3 and N6 at two sides of the pylon.   

Table 7.2. Parameter candidates in a global sensitivity analysis 
Structural 
component Parameter Symbol Nominal 

value Unit Decision 

Pylon Elastic modulus 𝐸) 202 GPa ü 
Mass density 𝑃) 7900 kg/m3 

ü 
T-shaped pier Elastic modulus 𝐸& 202 GPa × 

Mass density 𝑃& 7900 kg/m3 × 
Straight segment Elastic modulus 𝐸; 202 GPa ü 

Mass density 𝑃; 7900 kg/m3 ü 
Skewed span Elastic modulus 𝐸U 202 GPa × 
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Table 7.2. Parameter candidates in a global sensitivity analysis (continued)  
Mass density 𝑃U 7900 kg/m3 × 

U-shaped segment Elastic modulus 𝐸T 202 GPa ü 
Mass density 𝑃T 7900 kg/m3 ü 

Stay cables Elastic modulus 𝐸S 195 GPa ü 
Mass density 𝑃S 7900 kg/m3 × 
 Initial strain of 
cable N3 𝑆𝑡) 8.30×10-4 − × 

Initial strain of 
cable N6 𝑆𝑡& 9.60 ×10-4 − × 

Note: ü denotes the parameter kept; × denotes the parameter removed. 
 

  

  
Figure 7.9. Sensitivity index of each modal frequency 
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Figure 7.9. (Continued) Sensitivity index of each modal frequency 

 
 
 To improve computational efficiency in GSA, a Kriging model is constructed with 

respect to the 14 parameter candidates in Table 7.2. LHS generates three hundred sample 

points, and corresponding modal frequencies are derived from a FEM, yielding 300 

training data sets to construct a Kriging model. Once the Kriging modeling is complete, 

additional 2 × 10U samples and responses from the Kriging model are used based on MCS 

for GSA. The significant parameters are chosen by the first order, 𝑆3  and total 𝑆93 

sensitivity indices for the subsequent Bayesian model updating. The sensitivity results of 

each frequency by the proposed variance-based GSA are shown in Figure 7.9. Additional 

findings from Figure 7.9 are summarized as follows: 
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• Interaction effects among 14 parameters are not salient, since 𝑆3  and 𝑆93  are almost 

identical. The subtraction of (𝑆93 − 𝑆3) reflects the total interaction effects of the 𝑖th 

parameter with others. 

• For the structural components of the pylon, straight, and U-shaped segment, material 

properties, e.g., elastic modulus and mass density, have a significant effect on the 

frequency responses. This can be explained by that these components play an important 

role in the bridge's operational vibration. 

• For the stay cables, the initial strain and mass density have little effect on all the 

frequency responses, but elastic modulus has significant effect on only fourth natural 

frequency. 

• Parameters 𝐸) and 𝑃) about the pylon have negligible effect on most frequencies, but 

considerably contribute to the eighth natural frequency. 

 Based on findings from Figure 7.9, parameters with lower sensitivity indices are 

removed (the threshold of sensitivity index is defined as 0.2 here). However, elastic 

modulus and mass density of the pylon, the straight span, and the skewed span are retained 

because of their pronounced contribution to frequency responses. Also, the elastic modulus 

of stay cable apparently affects the fourth frequency, hence it is considered as an updating 

parameter. Therefore, 7 parameters, namely, 𝐸), 𝐸;, 𝐸T, 𝐸S, 𝑃), 𝑃;, and 𝑃T as shown in last 

column in Table 7.2, are selected in Bayesian model updating.  
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(a) (b) 

Figure 7.10. Response surfaces: (a) the 2nd frequency; (b) the 2nd MAC 
 

 Following the selected parameters by the GSA, Bayesian model updating is carried out. 

Similar to the numerical example, we defined stiffness coefficient (SC), 𝜃3 = 𝐸¥3/𝐸3, 𝑖 =

1, 3, 5, 6, 𝐸¥3 and 𝐸3 are actual and nominal elastic modulus, respectively; mass coefficient 

(MC), 𝛽1 = 𝑃¥1/𝑃1, 𝑗 = 1, 3, 5, 𝑃¥1 and 𝑃1 are actual and nominal mass density, respectively. 

The range of SCs and MCs are set as 0.7 ≤ 𝜃3 ≤ 1.3 and 0.7 ≤ 𝛽1 ≤ 1.3 to ensure the 

physical meaning. The Kriging model is then firstly constructed with respect to seven 

coefficients to substitute complex FE model in ANSYS. A total of 350 samples (300 for 

training and 50 for accuracy validation) are generated by LHS, corresponding frequency 

and mode shape responses are derived from the FEM. Finally, 16 Kriging models (8 for 

frequencies and 8 for MAC values) are constructed. Figure 7.10 shows the response 

surfaces of the second frequency and MAC values with respect to 𝜃) and 𝜃;. As expected, 

the surface of MAC value is more complex than that of frequency, since it is relatively 

more difficult to measure mode shape compared with frequency. 

 A total of 50 sets of training data are used to verify the accuracy of the built Kriging 

models. The MSE and 𝑅& values of all frequencies (f) − fp) and MAC values (MAC) −

MACp) in Figure 7.11 are closed to zero and unity, respectively, indicating the Kriging 

models exhibit high accuracy. 



243 
 

  
Figure 7.11. The MSE and 𝑅& of the Kriging model(s) 

 
The measured frequencies and mode shapes as well as their uncertainties are used in 

the objective function in Eq. (7.3). The model responses are predicted from the Kriging 

model instead of FEM. Then DREAM algorithm is applied to generate samples to 

approximate a posterior PDF. The input parameters in DREAM are defined as: initial 

values of all the coefficients range from 0.7 to 1.3; ten Markov chains are simultaneously 

ran with 6000 samples per chain. The results are shown in Figure 7.12. Figure 7.12 (a) is a 

trace plot of one chain for all SCs and MCs, giving the visual sense that all the coefficients 

stably converge. In Figure 7.12 (b), the convergence criterion 𝑅$%"% of all coefficients is 

less than 1.2 and close to zero around 10,000 and 20,000, respectively, indicating the 

stationary Markov chains are achieved. Compared to the numerical example, more iteration 

samples are needed to reach a stable posterior PDF due to the real-world application is 

more complicated than the numerical one. The observation that five out of ten Markov 

chains achieve convergence and have similar iteration performance in Figure 7.12 (c) 

demonstrates the updated results are reliable. 
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(a) (b) 

 
(c) 

Figure 7.12. Results of updated SCs and MCs: (a) trace plot of coefficients; (b) variation 
of convergence diagnosis 𝑅$%"%; (c) trace plots of five out of ten Markov chains 

 
 The coefficients are multiplied by analytical elastic modulus and mass density, yielding 

the actual values of material parameters. The histograms of actual elastic modulus and mass 

density and corresponding fitted distributions (red curves) are displayed in Figure 7.13. 

Interestingly, some parameters can be well fitted by normal distribution, but the 

distribution of parameters 𝐸;, 𝐸S and 𝑃) exhibit non-Gaussian feature with a long tail. It is 

also observed that distributions of parameters 𝐸S and 𝑃) are concentrated in a very narrow 

region, but others are relatively wide spreading, indicating 𝐸S  and 𝑃)  have smaller 

uncertainties (C.O.V of 0.25% and 0.22%, respectively) compared with other parameters 

(see Table 7.3). 
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Figure 7.13. Histograms of updated elastic modulus and mass density 

 
Table 7.3. Results of updated material parameters  

Parameter Unit Initial values 
Updated values 

Change (%) 
Mean C.O.V (%) 

𝐸) GPa 202 191.59 2.58 -5.15 
𝐸; GPa 202 146.42 3.38 -27.51 
𝐸T GPa 202 151.57 2.63 -24.96 
𝐸S GPa 195 136.90 0.25 -29.79 
𝑃) kg/m3 7900 10246.80 0.22 29.71 
𝑃; kg/m3 7900 6092.19 3.44 -22.88 
𝑃T kg/m3 7900 9878.79 2.22 25.05 

Note: C.O.V is the coefficient of variation (standard derivation/mean) 
 
 The updated parameters are tabulated in Table 7.3. The negative and positive sign in 

the last column denotes decrease and increase, respectively. It is observed that all elastic 

modulus decreased, and mass density increased (except for 𝑃;). The model updating aims 

to match measured responses with analytical counterparts, measured frequencies in the 

pedestrian bridge are overall smaller than those in FEM (see Table 7.1). It is understandable 

that frequency is proportional to elastic modulus but inversely proportional to mass density 

based on fundamental structural dynamics. Therefore, elastic modulus and mass density 

has to decrease and increase, respectively, in order to have an agreement between measured 

frequencies and those in FEM in this case. The absolute change in most parameters is over 

20%, similar updating results can be found in Brownjohn and Xia (2000) and Jaishi and 
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Ren (2005). It is also worth mentioning in this study that changes in material parameters 

does not represent their actual variations in bridge due to any types of damage. These 

changes only reflect the modeling error between the FE model and the real structure, 

possibly attributing to the idealization and assumption in FE model, such as inaccurate 

boundary condition and geometry, and limited discretization. Hence, the updated 

parameters can be seen as the “equivalent” elastic modulus and “equivalent” mass density.  

 The mean values in Table 7.3 are used to calculate updated frequencies and MAC 

values. The frequency errors and MAC values between updated and initial model for eight 

modes are shown in Figure 7.14, from which the frequency errors remarkably decreased 

after updating. For instance, the errors decreased substantially from 24.9% to 4.7% for B2, 

from 28.1% to 3.8% for T1, from 39.8% to 5.8 for B3, from 31% to 3% for B4, and from 

24.2% to 2.7% for T2, respectively. Regarding MAC values, they are closer to unity after 

updating, suggesting mode shapes derived from FEM match better with measured ones. 

Especially, MAC value increases from 0.8168 to 0.9087 for B3, from 0.8130 to 0.9143 for 

B5, and from 0.8183 to 0.8948 for T3. In short, the proposed Bayesian model updating 

framework enhances the accuracy of FEM and gives an excellent agreement with 

measurement. 

  
(a) (b) 

        Figure 7.14. Comparison of modal parameters between initial and updated model: 
(a) frequency error; (b) MAC values 



247 
 

 
 Turning attention to the required computational effort for this complex and large-scale 

cable-stayed pedestrian bridge, we used a desktop with Intel(R) Core(TM) i5-4460 CPU@ 

3.2GHz and RAM memory of 8GB to proceed the proposed updating framework under the 

Windows 10 operational environment. The computational cost is compared in two aspects: 

1) variance-based GSA with Kriging model; 2) Bayesian model updating with Kriging 

model and DREAM. The use of Kriging model in these two aspects aims to improve 

efficiency for GSA and model updating, respectively. It should be noted that the time cost 

of proposed framework is unbearable by direct FEM analysis using the personal computer, 

so we estimated the whole time via multiplying iteration number by the spent time in a 

single FEM run. The time of one FEM evaluation in ANSYS for this pedestrian bridge is 

about 1.5 minutes. In GSA, the total time for parameter selection using Kriging model is 

about 6 hrs (including time for training data) for 20,000 iterations; without a Kriging model, 

it requires around 21 days; in Bayesian model updating, the total consumed time of 60,000 

iterations with a Kriging model is about 9 hrs (including time for training data), while the 

required time directly using FEM is about 125 days. Table 7.4 lists the whole-time cost in 

terms of GSA and updating work. It shows that the computational cost directly using FEM-

based Bayesian model updating is unaffordable and impractical. It has been recognized 

that a high-fidelity modeling for complex and large-scale structures is usually necessary 

for a better model prediction and structural analysis, which involves hundreds of thousands 

of elements and nodes in commercial FEA packages. The computational time would be 

highly expensive if a large amount of iteration is needed. In this context, a fast-running 

Kriging model is a promising alternative of time-consuming FEM for dealing with 

computational issue.  
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Table 7.4. Time cost of in the cable-stayed pedestrian bridge (Unite: hours) 
Model type GSA Bayesian updating Total 

FEM 504 3000 3504 
Kriging model 6 9 15 

 
7.5 Conclusions 

 In this chapter, a new Bayesian model updating framework is proposed and consists of 

two stages. Stage one aims to prepare for Bayesian model updating and provides two time-

saving strategies, involving variance-based GSA for dropping insignificant parameters to 

reduce model dimensionality, and Kriging modeling to substitute FE model and further 

improve computational efficiency. Stage two is the implementation of Bayesian model 

updating with a multi-chain DREAM algorithm. A real-world application of a cable-stayed 

pedestrian bridge demonstrated that the proposed updating framework gives satisfactory 

results with much-reduced time cost. The main conclusions and contributions are 

summarized as follows: 

• Variance-based GSA is used for parameter selection in FEMU, uncertainties and 

interaction effects among parameters are both considered. Traditional GSA based 

on MCS using FE model is computationally intensive. The use of Kriging model 

rather than FE model in GSA greatly reduced computational cost and makes GSA 

feasible in practice. 

• The time-consuming high-fidelity FE model cannot achieve efficient model 

updating with the context of many model evaluations. The Kriging model is an 

effective alternative to relief computational burden while maintaining accuracy.  

• In DREAM algorithm, multiple Markov chains are run in parallel to sufficiently 

seek the best solution in parameter space, leading to a fast convergence rate and 
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accurate parameter identification. In addition, a solid convergence diagnosis is 

provided in DREAM to determine whether Markov chains are stationary or not. 

• A real-world complex and large-scale cable-stayed pedestrian bridge demonstrated 

the proposed updating framework has desirable performance in parameter 

identification and uncertainty quantification, indicating the proposed method is 

suitable for the real applications. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 The research work in this dissertation aims to develop an efficient and robust vibration-

based structural health monitoring (SHM) framework for civil engineering structures. The 

presented work mainly contributes to two areas: (1) operational modal analysis (OMA) 

using output-only system identification methods based on vibrational measurements; (2) 

Bayesian model updating and probabilistic damage detection using modal data. This 

chapter reviews the summary and discussions of this dissertation. Potential future work 

associated with current research is also provided. 

8.1 Conclusions  

 Challenges in practical vibration-based SHM are 1) time-consuming modal parameter 

identification with much human interaction during continuous monitoring; 2) uncertainties 

on modal parameters; 3) simultaneous identification of mass and stiffness, coupling effect; 

4) a considerable amount of uncertainties in Bayesian model updating; 4) computational 

demand of Bayesian model updating for complex and large-scale structures. In this 

dissertation, a two-phase vibration-based SHM framework are proposed to address these 

challenges. Phase one focuses on developing an automated operational modal 

identification method using stochastic subspace identification (SSI) and Bayesian modal 

identification (BMI). modal parameters’ uncertainties are also accounted. This phase 

mainly provides modal data that will be used in the model updating process in phase two. 
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In phase two, a new Bayesian model updating approach (BMUA) is proposed to identify 

simultaneously mass and stiffness by addressing the coupling effect based on extracted 

modal properties in phase one. Uncertainties of structural parameters are reasonably 

provided. Besides, some strategies are proposed to expedite BMUA for high-fidelity 

structures. The major contributions and findings are summarized as follows: 

Phase one: modal parameter identification (prepare for model updating in phase two) 

 In SSI, it is labor-intensive to distinguish physical modes from spurious modes with 

human intervention in a stabilization diagram. Additionally, the elimination of spurious 

modes by visual observation tends to yield incorrect and unreliable identification results. 

During continuous monitoring with a vast of measured data, this way is also less 

impractical. Chapter 3 presented an automated SSI to interpret the stabilization diagram 

with minimum human effort. Modal validation criteria and an additional uncertainty 

criterion are employed to initially remove as many spurious modes as possible. A novel 

threshold calculation for clustering is proposed with incorporating the uncertainty of modal 

parameters and the weighting factor. An improved self-adaptive clustering with new 

distance calculation is used to group physical modes, followed by the final step of robust 

outlier detection to select outlying modes. Two benchmark field tests of Dowling Hall 

Footbridge and a post-tensioned concrete bridge (Z24 bridge) are used to verify the 

proposed approach. A modal tracking was used for continuously measured data for 

demonstrating the applicability of the approach. The proposed framework has minimal 

user’s involvement in achieving sufficient accuracy. Therefore, the proposed work can be 

suitable for long-term health monitoring, e.g., modal tracking.  
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 In BMI, the manual operation includes the selection of initial frequency, which is often 

visually picked from a singular value spectrum, and frequency bandwidth which is chosen 

with the consideration of a trade-off between the data used for making inference and 

modeling error involved. The above procedures have limited the application of BMI in 

processing long-term data. Chapter 4 proposed an automated BMI to address these issues. 

A stabilization diagram is firstly built and automatically interpreted by modal validation 

criteria and clustering strategy to obtain the initial frequency. A series of effective 

bandwidth factors within a predefined factor range is then determined for the selection of 

frequency bandwidth. The proposed automation method is verified by a numerical example 

and then applied to the Z24 benchmark bridge for long-term data analysis. Results show 

that the automation method can accurately identify modal parameters with minimum 

human intervention, even for closely spaced and weakly excited modes. Overall, both 

initial frequency and frequency bandwidth in BMI are automatically determined, requiring 

minimal human interference to achieve sufficient accuracy. With the proposed method, a 

large number of measurements can be automatically treated without any loss of physical 

modes of interest. This makes the method suitable and promising for real applications, e.g., 

long-term health monitoring.  

 The basic principles of SSI and BMI are different. SSI uses state-space models to 

extract system state and output realized mathematical matrices from measured vibration 

data; modal parameters are identified by interpreting the matrices. While, BMI constructs 

a model representing the difference between analytical and measured response, directly 

converts measurements to FFT data; the physical meaning is strictly obeyed. The modal 

parameters are then identified as the most probable values based on Bayes’ theorem. As 
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for uncertainty quantification, SSI employs the propagation of first-order perturbation from 

measured data to modal parameters, the covariance matrix is determined. But BMI 

naturally provides uncertainties of modal parameters, as the posterior distribution is 

obtained. It is also worth mentioning that SSI gives a larger uncertainty estimation than 

BMI because more sources of uncertainty are considered (see Section 3.3.1.2); BMI 

estimates the uncertainty induced by only modeling error and measurement noise. 

Phase two: Bayesian model updating using modal parameters acquired from phase one 

 The conventional Bayesian model updating approach (BMUA) is mainly used to update 

stiffness with the assumption that structural mass is well known and invariable due to 

damage. Because simultaneously updating stiffness and mass lead to unidentifiable case or 

coupling effect of stiffness and mass, this assumption in conventional BMUA is 

questionable to update stiffness when the mass has significantly changed. Chapter 5 

proposes a new updating framework based on two structural systems: original and modified 

systems. A modified system is created by adding known mass or stiffness to the original 

system. Different from the conventional BMUA, two sets of measured vibration data are 

used to address the coupling effect. The new eigen-equations are derived by incorporating 

added mass or stiffness, yielding a new prior PDF. The objective functions are formulated 

by taking the posterior PDF’s negative logarithm. Finally, the analytical formulations of 

modal parameters (frequency and mode shape) and structural parameters (mass and 

stiffness) are derived using an asymptotic approximation method, and they were updated 

iteratively. In addition, the inverse of the Hessian matrix of the objective function 

determines the covariance matrix of uncertain parameters. Two numerical simulations (2D 

and 3D shear structures) are utilized to demonstrate the performance of the proposed 
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approach. The newly proposed BMUA successfully identifies mass and stiffness and 

address the coupling effect, which is considered as the main contribution of this research 

work.  

 The work in Chapter 6 is considered as an extension of the work in Chapter 5. Chapter 

5 adopted an asymptotic optimization method to circumvent high-dimensional integrals 

involved in the posterior PDF for Bayesian inference. The analytical formulations of 

optimal model parameters are derived by the linear optimization method. However, the 

asymptotic approximation method assumes that parameters have unimodal and Gaussian 

distribution, which does not necessarily guarantee an actual physical model, especially for 

multi-modal and non-Gaussian posterior. Also, an insufficient amount of data and complex 

model class may lead to an unidentifiable problem. To this end, Chapter 6 proposed a new 

BMUA, which intrinsically addressed the coupling effect of mass and stiffness by two sets 

of data from the original and modified system with added mass/stiffness. The new 

characteristic equations are constructed. The posterior PDF is also reformulated. 

Differential Evolution Adaptive Metropolis (DREAM) is then employed to generate 

samples for approximation of the posterior PDF. The proposed BMUA simultaneously 

identifies the mass and stiffness; their uncertainties are also straightforward provided by 

the estimated PDF. A numerical study on a ten-story shear building and an experimental 

study on a three-story aluminum frame small-scale model is used at intact and damaged 

structural states to verify the accuracy and feasibility of the proposed method. It is also 

found that BMUA with added mass showed more reliable updating results than BMUA 

with added stiffness. Mainly because it is more convenient and accurate to measure the 

magnitude of added mass compared to that of added stiffness. In other words, the 
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calculation of added stiffness involves more uncertainties, which impairs the accuracy of 

the BMUA framework with added stiffness. 

 Although Bayesian model updating with DREAM is promising, it is computationally 

demanding because many FE model evaluations are required. As a result, it becomes 

impractical for complex and large-scale engineering structures. Chapter 7 proposed two 

time-saving strategies, including variance-based GSA for dropping insignificant 

parameters to reduce model dimensionality, and Kriging modeling to substitute FE model 

and further improve computational efficiency. Finally, Bayesian model updating with 

DREAM algorithm is implemented to update structural parameters using vibrational data. 

A real-world application of a cable-stayed pedestrian bridge demonstrated that the 

proposed updating framework gives satisfactory results with the much-reduced time cost.  

8.2 Recommendations of future work 

 Although the proposed research work in this dissertation has been demonstrated to have 

a satisfactory performance in numerical study, laboratory tests, and real-world application, 

there are some aspects for potential future work to enhance the current work. 

Recommendations for future work are mentioned as follows: 

• In the proposed automated SSI and BMI, the validation examples, e.g., steel 

frame pedestrian bridge and highway concrete bridge, have a relatively wider 

frequency range (e.g., 0-15Hz), including few weakly-excited modes and 

closed spaced modes. In contrast, long-span or suspension bridges exhibit low 

frequency range (e.g., 0-1Hz) and multiple extremely closed-spaced modes. 

Further verification of the proposed automated modal identification methods 

for structures with low-frequency range is needed. 
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• Optimized sensor location should be further developed to acquire sufficient and 

important measurement information about structural dynamics with a small 

network of sensors that is practically available.  

• In the proposed automated SSI, a clustering technique with an adaptive 

threshold is used to group modes with similar features, which can be defined as 

hard clustering. It would be worth developing a soft clustering method to assign 

each mode with a probability to be part of a specific class, which may be more 

reasonable and accurate to identify modal parameters. 

• The proposed Bayesian model updating framework identifies mass and stiffness 

using global information, e.g., natural frequency and mode shape. However, 

global information may not be able to reflect local damage, such as holes and 

cracks. Modal damping is sensitive to local damage. Hence, the development 

of Bayesian model updating incorporating damping information as well as 

frequency and mode shape would be helpful to advance vibration-based damage 

detection. 

• In the current BMUA with added mass, the modified system is created by 

adding stationary masses to the original structure, which may not always be 

practical in real-world settings. Therefore, moving mass, e.g., vehicles on 

bridges or elevators in buildings, can be considered to create modified systems.  

• It is found that in the proposed BMUA with added stiffness, the accuracy of the 

estimation of stiffness addition dominates the updating performance. However, 

it is challenging to precisely calculate the magnitude of stiffness addition. 
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Therefore, it is necessary to propose a method to update stiffness addition and 

structural parameters together. 

• Although the proposed Bayesian model updating with variance-based global 

sensitivity analysis and Kriging model is efficient, it still requires thousands of 

model evaluations to achieve an accurate approximation of the posterior PDF. 

In the future study, a more efficient Bayesian model updating framework will 

be investigated, such as the Gaussian mixture model and Bayesian variational 

inference, which need fewer iterations to estimate posterior distribution with 

multi-modality and non-Gaussian.  

• The proposed vibration-based SHM in this dissertation only works on the basis 

of linear and time-invariant model assumption; another vibration-based SHM 

might be developed to detect damages in the case of non-linear and time-

varying structural behaviors.  
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APPENDIX A 

NOMENCLATURE 

Chapter 3 
 
𝑨,  𝑩     System state and output matrices 

𝒙'      Discrete-time state vector 

𝒚'      Measured response vector 

𝝎'      Process white noise vector 

𝒗'      Measurement white noise vector 

𝑯      Block Hankel matrix 

𝑻      Block Toeplitz matrix 

𝑅N      Output correlation 

𝑶3      Observability matrix 

𝚪3      Controllability matrix 

𝜆3       The 𝑖-th eigenvalue 

𝝋3       The 𝑖-th eigenvector 

𝑓3      The 𝑖-th frequency (Hz) 

𝜁3      The 𝑖-th damping ratio 

𝝓3      The 𝑖-th mode shape 

𝑓$      The sampling frequency 

𝑖       Time lag 

𝑇3      Fundamental period, (unit: second) 

𝑡      Sampling interval 

Re(∙), Im(∙)   Real and imaginary part  

𝜃      Phase angle in degree 
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𝚺�F'()     Covariance of Hankel matrix 

𝑱G,F     Sensitivity of 𝑶 with respect to Hankel matrix 

𝑱H,G, 𝑱I,G    Sensitivity of 𝑨 and 𝑪 with respect to 𝑶 

𝚺H,I      Covariance of 𝑨 and 𝑪 

𝑱0*,H, 𝑱R*,H, 𝑱K*,H  Sensitivity of 𝑓3, 𝜁3, and 𝝓3 with respect to 𝑨 

𝐹3      The 𝑖-th frequency with two standard derivations 

𝚽3      The 𝑖-th mode shape with two standard derivations 

𝜔      Weighting factor in clustering threshold 

𝑐      Weighting factor in clustering distance 

𝜎0*, 𝜎K*    Standard derivation of the 𝑖-th frequency and mode shape 

𝑽      Minimum distance vector 

�̅�, 𝜎¤     Mean and standard derivation of 𝑽 

�̂�PIQ, ΣNPIQ   Mean and covariance of MCD 

𝜎M      Standard derivation of the 𝑧-th clusters 

 
Chapter 4 
 
𝑪'       Covariance matrix of FFT data 

c.o.v     Coefficient of variation 

𝑒	      Difference between model response and measured data 

𝜽      Modal parameters 

E(∙)     The expectation of the item in parenthesis 

𝐄'       Theoretical PSD matrix 

𝜁-      Initial damping ratio 

𝑇Y      Data duration 

𝑓        Natural frequency 

𝑓-      Initial frequency 

𝑓3̅      The 𝑖-th difference between initial and identified frequency 

𝐟        Frequency difference vector 

𝑭'       The FFT of measured data, 𝑘 = 1,⋯𝑁W, 𝑁W is the Nyquist    

      frequency 
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𝐇𝒌       Theoretical spectral density matrix of the modal acceleration 

𝐈&*      2𝑛 × 2𝑛 identity matrix 

𝑘         Stiffness 

m        Mass 

𝑛         The number of DOFs  

𝑁       The number of sampling points per channel 

𝑁0      The number of FFT points in the selected frequency band 

𝑺        Spectral density of modal excitation 

𝑆/        Spectral density of the prediction error 

∆𝑡       Sampling interval 

�̈�      Theoretical acceleration 

�̈�N      Measured acceleration 

𝒁'        Vector of the real and imaginary part of 𝐹', 𝒁' = (𝑅𝑒𝐹'; 𝐼𝑚𝐹') 

𝛽3'       Frequency ratio, 𝛽3' = 𝑓3/𝑓'; 𝑓3 and 𝑓' are the 𝑖th modal frequency 

      and the FFT frequency abscissa 

𝑃({𝒁'}|𝜽)    Likelihood function of observed data 𝒁' 

𝑃(𝜽|{𝒁'})    The posterior probability density function of 𝜽 

𝐿(𝜽)     Negative log-likelihood function 

𝜅         Bandwidth factor 

𝜁        Damping ratios 

𝚽       Mode shapes  

Φ(∙)     Standard Gaussian cumulative distribution function 

𝑃,Y"!(𝑑)    Probability of damage occurrence with damage extent 𝑑 

 𝜃,, 𝜎,      The 𝑙-th modal frequency estimate and its standard derivation 
 

Chapter 5 

𝐌       System mass matrix  

𝐊       System stiffness matrix 

𝜆       Eigenvalues   

𝝓       Eigenvectors 
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∆𝒎     Added mass 

∆𝒌      Added stiffness 

𝜴      Vector of uncertainty parameters 

𝐶      Structural model class 

𝐷      Measured data 

𝑝(𝜴|𝐶)    Prior probability density function 

𝑝(𝐷|𝜴, 𝐶)    Likelihood function of observed data 𝐷 

𝑝(𝜴|𝐷, 𝐶)    Posterior probability density function of parameters 𝜴 

𝑝(𝐷|𝐶)    Normalizing constant (also denoted as 𝑐-) 

𝝀N         Measured eigenvalues 

𝝍�        Measured mode shapes 

𝑁Y      The number of degree of freedom 

𝜽      Stiffness parameters vector 

𝜷      Mass parameters vector 

𝐊,      The 𝑙th elemental stiffness matrix 

𝐌,      The 𝑙th elemental mass matrix 

𝐊-       Constant stiffness matrix (set as zero) 

𝐌-      Constant mass matrix (set as zero) 

𝑑      Fractional damage level 

𝑃,Y"!(𝑑)    Probability of damage at damage extent 𝑑 

Φ(∙)     The cumulative distribution function 

𝜎,      The standard derivation 

𝛌′      Eigenvalues in modified system 

𝝓b      Eigenvectors in modified system 

𝑴𝑬!     Eigen-equation error when updating mass 

𝑴𝑬𝒌     Eigen-equation error when updating stiffness 

𝑁!      The number of measured modes 

𝜎/W&       Eigen-equation error variance 

𝚺/W      Prior covariance matrix,  

𝑰       Identity matrix 
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𝑒𝑥𝑝     Exponential function 

𝜷g       Nominal mass parameters 

𝚺h      Covariance matrix of 𝜷g   

𝜎h      Standard derivation of 𝜷g 

𝜽g       Nominal stiffness parameters 

𝚺𝜽      Covariance matrix of 𝜽g   

𝜎B      Standard derivation of 𝜽g 

𝜺      Measurement error 

𝚺i      Covariance matrix 

𝑳-       Selection matrix of ‘1s’ or ‘0s’ 

𝐽!      Objective function of updating mass 

𝐽'      Objective function of updating stiffness 

(∙)∗      Updated parameters of (∙) 

Γ      Covariance matrix of objective function 

𝐾/      Analytical stiffness  

𝑀/      Analytical mass 

E       Young’s modulus 

I       The moment of inertial 

 

Chapter 6 

𝜴      Uncertainty parameter 

𝑃(𝐷|𝜴, 𝐶)    Likelihood function of measured data 𝐷 in model class 𝐶 

𝑃(𝜴|𝐷)    Noninformative prior probability density function 

𝑃(𝐷|𝐶)     Normalizing constant 

𝑃(𝜴|𝐷, 𝐶)    Posterior probability density function 

𝑐-       Constant value reflecting 𝑃(𝐷|𝐶) and 𝑃(𝜴|𝐷) 

𝑓!       The 𝑚th measured frequency 

𝑓!(𝜴)      The 𝑚th calculated frequency given a set of 𝜴.  

𝜀0,!     The 𝑚th frequency error between 𝑓! and 𝑓!(𝜴) 

𝝓x!      The 𝑚th measured mode shape 
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𝝓!(𝜴)    The 𝑚th calculated mode shape given a set of 𝜴.  

𝜀!$,!     The 𝑚th mode shape error between 𝝓x! and 𝝓!(𝜴) 

𝐽(𝜴)     Objective function with respect to 𝜴 

𝜅      Variance of measured data 

𝜎0,!       Standard derivation of the 𝑚th measured frequency  

𝜎!$,!      Standard derivation of the 𝑚th measured mode shape 

∆𝒎     Added mass 

𝐌       System mass matrix  

𝐊       System stiffness matrix 

𝝀       Eigenvalue before modification 

𝝓       Mode shape before modification 

𝛌′       Eigenvalue after modification 

𝝓b       Mode shape after modification 

∆𝑓      Frequency change after adding mass 

𝝍       Unscaled mode shape in the original system 

𝑀∗      Analytical mass 

𝑁       Problem dimension  

𝑃       The number of Markov chains  

𝐼!"#     The maximum iteration 

𝛾      Individual samples at each Markov chain 

𝜴3,$
1      Samples at the 𝑠th iteration 

𝛼       The acceptance rate 

𝑢       Samples from a uniform distribution 𝑈(0, 1) 

𝑄)       Lower quartile 

𝑄;      Upper quartile 

𝑅$%"%     Scale reduction factor  

𝑍       Mean of the variance of total 𝑃 Markov chains 

𝐵 𝛾⁄      Variance of the mean of 𝑃 parallel Markov chains 

𝜃      Stiffness coefficient 

𝛽      Mass coefficient  
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∆𝒌      Added stiffness  

Chapter 7 

𝑓!       The 𝑚th measured frequency 

𝑓!(𝜴)      The 𝑚th calculated frequency given a set of 𝜴.  

𝜀0,!     The 𝑚th frequency fractional error between 𝑓! and 𝑓!(𝜴) 

𝝓x!      The 𝑚th measured mode shape 

𝝓!(𝜴)    The 𝑚th calculated mode shape given a set of 𝜴.  

𝜀!$,!     The 𝑚th mode shape fractional error between 𝝓x! and 𝝓!(𝜴) 

𝑃(𝜴|𝐷, 𝐶)    Posterior probability density function of parameters 𝜴 

𝐽(𝜴)     Objective function with respect to 𝜴 

𝜅      Variance of measured data 

𝜎0,!      Standard derivation of the 𝑚th measured frequency  

𝜎!$,!      Standard derivation of the 𝑚th measured mode shape 

𝒙       Structural parameter vector 

𝒀      Model response vector 

𝑭(𝐱)     Polynomial regression function 

𝜷       Regression coefficient vector 

𝑍(𝒙)      stationary Gaussian process error with zero mean and variance 

𝑹       Correlation matrix 

𝛼'       The 𝑘-th correlation coefficient 

𝑚$       The number of training samples 

𝑦P(𝐱)     Predicted response 

𝑯(𝐱)     Correlation vector between training samples and prediction points 

𝜎Pl(𝐱)     Prediction error of 𝑦P(𝐱) 

𝑋      Sample point 

𝑃       The number of sample point 

 𝜋       Stratification of sequence (0, 1,⋯ , 𝑃 − 1) 

 𝑈        Random value from a uniform distribution (0, 1) 

MSE      Mean square error 
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𝑅&      Coefficient of determination 

𝑉(•)     Variance operator 

𝐸(•)     Expectation operator 

𝑆3      First-order sensitivity index 

𝑆93      Total sensitivity index 

𝑋$/,/v%/Y    Selected significant parameters 

𝑋%u%",      All possible parameter candidates  
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APPENDIX B 

COMPARATIVE STUDY BETWEEN CONTACT AND NON-CONTACT SENSOR 

This appendix presents the comparative study between contact (accelerometer) and 

non-contact (high-speed camera) sensor to acquire vibration measurement for a laboratory-

scale three-story shear frame in Section 6.4.2. The automated SSI in Chapter 3 and 

automated BMI in Chapter 4 are utilized to identify modal parameters using accelerations 

and displacements measured by accelerometers and camera, respectively. The test setup 

with three accelerometers is the same as in Section 6.4.2; the test setup with a high-speed 

camera is shown in Figure B.1.  

  
(a) (b) 

Figure B.1. Test setup of shear frame: (a) displacement measurement; (b) high-speed 
camera  

 

 The measurement using high-speed camera was conducted with the help of Dr. Jeffrey 

Hay, a CEO of RDI Technologies. The principles and  technical introduction of high-speed 

camera can be found in Dr. Jeffrey’ dissertation (Hay, 2011). The measurement system 
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was also patented in 2014 (Kielkopf and Hay, 2014), which allows to measure dynamic 

characteristics for civil infrastructures. The specification of non-contact high-speed camera 

and associated data processing software packages in this test are listed as below: 

• FLIR Grasshopper 3 GS3-U3-23S6M-C with a Sony IMX174 mono sensor: 

Resolution: 1920 × 1200 

• USB3 cable 

• RDI BridgeView software 

• Microsoft Surface Book 

After hitting the top floor by a rubber hammer, the displacements and accelerations at 

from top to bottom were recorded using a high-speed camera and accelerometers at a 

sampling frequency of 120.2 Hz and 2000 Hz, respectively. The data duration was 10 

seconds. For a fair comparison, acceleration data was down sampled to 125 Hz. It is worth 

mentioning that the high-speed camera was used to capture vibration displacements 

without any artificial target marks. Instead, the camera automatically traces the motion of 

edge points of shear frame.   

A total three different tests were considered, including a healthy case and two damage 

cases, which are the same as in Section 6.4.2. In three cases, the modal parameter 

identification for original and modified system with added mass was performed by the 

automated SSI and BMI. The results are shown in figures and tables in Sections B.1-B.3 

in which natural frequencies and mode shapes are included. The stabilization diagrams 

with singular value spectrum for each case are also presented. In each table, the Acc and 

Cam denote accelerometer and camera, respectively; S/N denotes signal-to-noise ratio 
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identified by BMI. The higher S/N values is, the lower noise level is during the 

measurement. 

B.1 Healthy case 

  
(a) (b) 

           Figure B.2. The stabilization diagram of original system in healthy case: (a) 
accerleration measurement; (b) displacement measurement 

 
Table B.1. Measured frequency for original system in healthy case (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 7.95 8.32 4.60 7.93 27993 8.30 39077 4.86 
2 23.6 24.27 2.85 23.76 1710 24.36 1329 2.49 
3 35.18 36.22 2.95 35.30 4568 36.29 509 2.82 

 

  
(a) (b) 

          Figure B.3. The stabilization diagram of modified system in healthy case: (a) 
accerleration measurement; (b) displacement measurement 
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Table B.2. Measured frequency for modified system in healthy case (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 7.82 8.03 2.69 7.91 70068 8.09 143117 2.15 
2 22.81 23.38 2.47 22.90 70981 23.45 4121 2.42 
3 34.02 34.86 2.48 34.09 3373 34.92 132 2.44 

 

  
(a) (b) 

Figure B.4. Measured mode shapes in healthy case: (a) original system; (b) modified 
system  

                     

B.2 Damage case 1 

  
(a) (b) 

           Figure B.5. The stabilization diagram of original system in damage case 1: (a)  
accerleration measurement; (b) displacement measurement 
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Table B.3. Measured frequency for original system in damage case 1 (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 7.55 7.75 2.71 7.65 14193 7.85 25394 2.68 
2 21.24 21.76 2.46 21.31 89062 21.83 2662 2.45 
3 34.01 34.85 2.46 34.09 16823 34.92 285 2.46 

 

  
(a) (b) 

           Figure B.6. The stabilization diagram of modified system in damage case 1: (a) 
accerleration measurement; (b) displacement measurement 

 
Table B.4. Measured frequency for modified system in damage case 1 (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 7.28 7.49 2.88 7.30 260769 7.57 318370 3.78 
2 20.41 20.96 2.66 20.51 41955 21.03 161 2.54 
3 32.71 33.58 2.65 32.78 2024 33.73 10 2.89 

 

  
(a) (b) 

Figure B.7. Measured mode shapes in damage case 1: (a) original system; (b) modified 
system 
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B.3 Damage case 2 

  
(a) (b) 

           Figure B.8. The stabilization diagram of original system in damage case 2: (a) 
accerleration measurement; (b) displacement measurement 

 
Table B.5. Measured frequency for original system in damage case 2 (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 6.93 7.10 2.47 7.03 197400 7.17 31405 2.01 
2 20.77 21.21 2.15 20.85 57865 21.36 170 2.44 
3 29.89 30.62 2.44 29.97 1196 30.75 28 2.61 

 

  
(a) (b) 

           Figure B.9. The stabilization diagram of modified system in damage case 2: (a) 
accerleration measurement; (b) displacement measurement 
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Table B.6. Measured frequency for modified system in damage case 2 (Hz) 

Mode 
No. 

SSI BMI 

Acc Cam Error 
(%) Acc S/N Cam S/N Error 

(%) 
1 6.69 6.89 2.96 6.74 166881 6.95 27930 3.15 
2 20.11 20.70 2.93 20.20 13228 20.69 92 2.43 
3 28.85 29.58 2.55 28.93 1192 29.61 79 2.36 

 

  
(a) (b) 

Figure B.10. Measured mode shapes in damage case 2: (a) original system; (b) modified 
system  

                             
It is found in Tables B.1-B.6 that the identified natural frequencies from accelerometers 

are coincident well with those from high-speed camera. The maximum error is less than 

5%. The identified mode shapes for each case also have a good agreement using both 

sensors, as shown in Figures B.4, B.7 and B.10. However, more undesirable modes 

appeared in the stabilization diagrams obtained from displacement measurements, which 

may be attributed to harmonic excitation or represent tortional modes that cannot been 

visualized in planar view. Therefore, more efforts have to be made to distinguish spurious 

modes from physical modes when processing camera-recorded vibration data, such as 

checking mode shapes for each potential mode. 

In addition, we found the singular value spectrum from accelerations is smoother than 

that from displacements, indicating the accelerations were well collected and have higher 
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quality than displacements. This is also reflected on S/N values identified by BMI. The 

first mode identified by both sensors has similar S/N with the same order of magnitude, 

but the second and third modes identified by high-speed camera have much smaller S/N 

compared to those by accelerometers, even S/N values in some cases are extremely small, 

such as the S/N values of 10 and 28 in Tables B.4 and B.5, illustrating the camera-based 

measurement has high levels of noise, the displacements acquired by high-speed camera 

are heavily noise-contaminated. The noise is even more noticeable when the field of view 

is zoomed out (Tomac and Slavič, 2022). This may be explained by that high-speed camera 

has lower dynamic range than accelerometers, the amplitude of displacement is typically 

very small (in the range of micrometer) and significantly below the camera’s pixel size 

(Beberniss and Ehrhardt, 2017, Javh et al., 2018, Bregar et al., 2021). Therefore, the 

displacements measured by high-speed camera need a careful and wise processing strategy 

in modal identification, otherwise it may make modal parameters unidentifiable.  

Based on the comparative study in this appendix, it is concluded that although high-

speed camera has advantages 1) producing dense, spatial, and full-field measurements; 2) 

avoiding sensor mounting and sensor mass attached to structures; 3) making non-contact 

and distant monitoring possible where traditional sensors have difficulties in accessing, 

currently it is still challenging to completely replace the traditional sensors because of 

relatively low measurement accuracy and high levels of noise.   
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APPENDIX C 

PSEUDOCODE OF AUTOMATED SSI 

The pseudocode of automated SSI in Chapter 3 

 
The vibration data for Dowling Hall Footbridge and Z24 bridge can be downloaded from 

https://bwk.kuleuven.be/bwm/z24 and https://engineering.tufts.edu/cee/shm/research.asp. 
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APPENDIX D 

MATLAB PROGRAM OF SHEAR FRAME IN LAB TEST 

The three-story shear frame in lab test in Chapter 6 was modeled as a planar structure with 

3 DOFs, as shown in Figure D.1.  

 
Figure D.1. Modeling of shear frame 

Note: 𝑚, 𝑘, and 𝑦 are mass, stiffness, and response, respectively. 

With the context of structural dynamics, the system stiffness matrix K in this example can 

be expressed as: 

K = +
𝑘) + 𝑘& −𝑘& 0
−𝑘& 𝑘& + 𝑘; −𝑘;
0 −𝑘; 𝑘;

. (D.1) 

where 𝑘3 is the 𝑖th elemental stiffness, 𝑖 = 1,2,3, which herein is the sum of stiffness of 

four columns at each floor. The stiffness of each column is calculated as )&xy
AD

, 𝐸, 𝐼, and 𝐿 

are the young’s modulus, the cross-sectional moment of inertial with respect to vibration 

direction, and the length of column, respectively. 

The lumped mass matrix is used for dynamic analysis in this example. For the uniform 

material, the mass matrix is simply a diagonal matrix in which the diagonal element is 
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equal to sum of half mass of two consecutive floors. The system mass matrix M can be 

expressed as： 

M =

⎣
⎢
⎢
⎢
⎢
⎡
𝑚) +𝑚&

2 0 0

0
𝑚& +𝑚;

2 0

0 0
𝑚;

2 ⎦
⎥
⎥
⎥
⎥
⎤

 (D.2) 

where 𝑚3 is the 𝑖th elemental mass, 𝑖 = 1,2,3, which is equal to mass of the 𝑖th floor, 𝜌𝑉, 

𝜌 and 𝑉 are the mass density of material and the volume of each plate.  

 Therefore, the natural frequency and mode shape are calculated using the characteristic 

equation: 

(K− 𝜆M)𝜙 = 0 (D.2) 

where 𝜆  and 𝜙  are the eigenvalue (square of natural frequency) and mode shape, 

respectively. The following screenshots show the MATLAB program for dynamic analysis  

The elemental mass and stiffness 

 

The system mass and stiffness (assemble local matrix) 
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The model of shear frame 
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APPENDIX E 

ANSYS PROGRAM 

This Appendix presents the Ansys Parametric Design Language (APDL) program for the 

cable-stayed pedestrian bridge in Chapter 7.  
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