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ABSTRACT

DECISIVE NEUTRALITY, RESTRICTED DECISIVE NEUTRALITY, AND SPLIT
DECISIVE NEUTRALITY ON MEDIAN SEMILATTICES AND MEDIAN GRAPHS

Ulf Högnäs

November 16, 2021

Consensus functions on finite median semilattices and finite median graphs are

studied from an axiomatic point of view. We start with a new axiomatic characterization

of majority rule on a large class of median semilattices we call sufficient. A key axiom

in this result is the restricted decisive neutrality condition. This condition is a restricted

version of the more well-known axiom of decisive neutrality given in [4]. Our theorem is

an extension of the main result given in [7].

Another main result is a complete characterization of the class of consensus on a

finite median semilattice that satisfies the axioms of decisive neutrality, bi-idempotence,

and symmetry. This result extends the work of Monjardet [9]. Moreover, by adding

monotonicity as a fourth axiom, we are able to correct a mistake from the Monjardet

paper.

An attempt at extending the results on median semilattices to median graphs is

given, based on a new axiom called split decisive neutrality. We are able to show that

majority rule is the only consensus function defined on a path with three vertices that

satisfies split decisive neutrality and symmetry.
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CHAPTER 1

INTRODUCTION

The results proved in this thesis are a contribution to the growing area of mathe-

matics known as consensus theory. Two early and seminal results in this area are Arrow’s

impossibility theorem [1] and May’s characterization of simple majority rule [6]. These

two results first appeared in print over sixty years ago and, since then, many authors have

extended these results to other areas of mathematics. See Boris Mirkin’s theorem [8],

which deals with consensus functions on a set of equivalence relations, as just one ex-

ample of an extension of Arrow’s theorem. Next, see [12] for a recent example of an

extension of May’s theorem.

Our starting point is an axiomatic characterization of majority rule for consensus

functions defined on the set of hierarchies due to McMorris and Powers [7]. The Mc-

Morris and Powers characterization of majority rule on hierarchies is similar in spirit to

May’s characterization of simple majority rule. It is known that the set of hierarchies,

with set inclusion as a partial order, is an example of an important mathematical object

called a median semilattice. The main result given in the second chapter of this thesis is

an extension of the McMorris and Powers theorem to a large class of median semilattices

which we call sufficient. One of the main axioms of our new result is called restricted

decisive neutrality since it is a restrictive version of the decisive neutrality condition due

to Monjardet [9].

In Chapter 3, we look carefully at the Mondjardet model of consensus given in [9]

and classify the class of consensus functions defined on a finite median semilattice sat-

isfying the following axioms: decisive neutrality, bi-idempotence, and symmetry. More-
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over, by adding mononotonicity as a fourth axiom, the final theorem of Chapter 3 corrects

a mistake from the Mondjardet paper.

Chapter 4 is exploratory in nature. The hope is that the results proved in Chapter 3

in the context of median semilattices can be extended to median graphs. Many questions

have to be answered. For example: What is the definition of majority rule on a median

graph? Also: How does one extend the decisive neutrality condition from median semi-

lattices to median graphs? We formulate a new condition called spilt decisive neutrality

which, in our opinion, is a natural extension of decisive neutrality. At the end of this

chapter, we prove a modest result. Namely, majority rule is the only consensus function

defined on a path with three vertices that satisfies split decisive neutrality and symmetry.

In the next section, some basic notation and terminology from the area of ordered sets is

given.

1.1 Meet Semilattices and Median Semilattices

We begin by introducing some theory of ordered sets. Some of the definitions and

terminology given in this section can be found in Davey and Priestley (2002) [3].

Let X be a nonempty set. An order, or partial order, on X is a binary relation ≤

on X such that, for all x,y,z ∈ X ,

(i) x ≤ x

(ii) x ≤ y and y ≤ x imply x = y

(iii) x ≤ y and y ≤ z imply x ≤ z.

These conditions are called reflexivity, antisymmetry and transitivity, respec-

tively. If ≤ is a partial order on a set X , then the pair (X ,≤) is called a partially ordered

set. If there is an element z belonging to X such that z ≤ x for all x ∈ X , then z is called

the zero element of the partially ordered set (X ,≤).
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Let (X ,≤) be a partially ordered set and let u,v be elements of X . An element w

is the meet (greatest lower bound) of u and v if the following conditions are met

• w ≤ u and w ≤ v

• For any x ∈ X such that x ≤ u, x ≤ v, we have x ≤ w.

The meet is denoted by u∧v. A meet semilattice is a partially ordered set (X ,≤)

in which any two elements u,v have a meet.

An element w is the join (least upper bound) of u and v if the following conditions

are met

• u ≤ w and v ≤ w

• For any x ∈ X such that u ≤ x, v ≤ x, we have w ≤ x.

The join is denoted by u∨v. A join semilattice is a partially ordered set (X ,≤) in which

any two elements u,v have a join.

Let x,y be elements of X . We say that y covers x if x < y and x ≤ z < y implies

x = z. A maximal element x ∈ X is an element such that x ≤ y implies x = y.

We define height of a finite partially ordered set X , denoted by h(X), as follows.

Let A = {A ⊆ X : ∀x,y ∈ A,x ≤ y or y < x}, then

h(X) = max
A∈A

(|A|)−1.

A partially ordered set (X ,≤) is a lattice if it is both a join semilattice and a meet

semilattice. A lattice (X ,≤) is distributive if, for all elements u, v, and w belonging to

X ,

u∨ (v∧w) = (u∨ v)∧ (u∨w) and u∧ (v∨w) = (u∧ v)∨ (u∧w).

For the rest of this chapter, X will be a fininte meet semilattice and we allow for the

possibility that X is a lattice. The semilattices studied in this thesis belong to the class of

semilattices called median semilattices, which we will define shortly.
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A subset I of a partially ordered set (X ,≤) is an (order) ideal if for all x,y ∈ X

x ∈ X , y ∈ I, and x ≤ y implies x ∈ I. It can be shown that the smallest ideal with respect

to set inclusion containing an element a is equal to {x ∈ X : x ≤ a}. This is called the

principal ideal of a.

A meet semilattice (X ,≤) satisfies the Join-Helly Property if for all x,y,z ∈ X

such that x∨ y,x∨ z,y∨ z all exist, then x∨ y∨ z exists.

A meet semilattice (X ,≤) is distributive if , for every x ∈ X ,

{y ∈ X : y ≤ x}

is a distributive lattice. In other words, every principal ideal is a distributive lattice.

The next definition is one of the most important definitions of the chapter. A median

semilattice is a finite meet semilattice (X ,≤) such that

• (X ,≤) is a distributive semilattice

• (X ,≤) satisfies the Join-Helly Property.

Any distributive lattice is a median semilattice. Figure 1.1 is a simple example of a

distributive meet lattice which is not a lattice.

a b

0

Figure 1.1: A median semilattice

Figure 1.2 is an example of a distributive meet semilattice X , which is not a median

semilattice.
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0

x1 x2 x3

x4 x5 x6

Figure 1.2: A semilattice that does not satisfy the Join-Helly Property.

Note that {y ∈ X : y ≤ x} is a distributive lattice for all x ∈ X . However, X does not satisfy

the Join-Helly Property. To see this, notice that each of x1 ∨ x2, x1 ∨ x3, and x2 ∨ x3 exist,

while x1 ∨ x2 ∨ x3 does not.

The following definition will be important for this thesis. Let (X ,≤) be a median

semilattice. A non-zero element j ∈ X is join irreducible if for all x,y ∈ X

j = x∨ y =⇒ j = x or j = y.

We denote by J(X) the set of all join irreducibles of (X ,≤). An atom is a join irreducible

that covers the zero element.

In the next section, we introduce another example of a median semilattice moti-

vated by the area of mathematical classification [8].

1.2 Hierarchies

The main reference for this section is the book authored by Day and McMorris

(2003) [4]. Let S be a finite set with n ≥ 3 elements. A hierarchy on S is a collection H

of nonempty subsets of S such that

(i) S ∈ H

(ii) {x} ∈ H for all x ∈ S

(iii) A∩B ∈ {A,B, /0} for all A,B ∈ H.

5



If S = {x,y,z} then H = {{x,y,z},{x},{y},{z},{x,y}} is a hierarchy on S. Figure 1.3 is

a visual representation of H.

{x,y,z}

{x,y}

{x} {y} {z}

Figure 1.3: A hierarchy on S = {x,y,z}.

Let S be a set with at least three element and let H (S) be the set of all hierarchies

on S. We define ≤ on H (S) as follows: for all H1,H2 ∈ H (S),

H1 ≤ H2 if H1 ⊆ H2.

By the properties of set containment, it is easily shown that (H (S),≤) is a partially

ordered set. Moreover, it is not hard to verify that for any H,H ′ ∈H (S), H∩H ′ ∈H (S).

We now show that

H ∧H ′ = H ∩H ′.

Note that since H ∩H ′ ≤ H and H ∩H ′ ≤ H ′, H ∩H ′ is a lower bound of {H,H ′}. We

claim that it is the greatest lower bound. Suppose that J ≤ H and J ≤ H ′. This implies

that J ⊆ H and J ⊆ H ′, so J ∈ H ∩H ′. It follows that J ≤ H ∩H ′ and therefore, H ∩H ′ is

the greatest lower bound of {H,H ′}. Thus, the partially ordered set (H (S),≤) is a meet

semilattice with set intersection as the meet operation.

We claim that for any H,H ′ ∈ H (S), if H ∪H ′ ∈ H (S) then

H ∨H ′ = H ∪H ′.
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Note that since H ≤ H ∪H ′ and H ′ ≤ H ∪H ′, H ∪H ′ is an upper bound of {H,H ′}. We

claim that it is the least upper bound. Suppose that H ≤ K and H ′ ≤ K. Then H∪H ′ ≤ K.

This proves that H ∪H ′ is the least upper bound of {H,H ′}.

We claim that for any H ∈ H (S),

X = {J ∈ H (S) : J ≤ H} (1.1)

is a distributive lattice. Note that for any J,J′ ∈ X ,

J∨ J′ = J∪ J′ ⊆H

J∧ J′ = J∩ J′ ⊆H.

Since intersections distribute over unions and vice versa, X is a distributive semilattice.

Therefore, since X is an arbitrary principal ideal of the meet semilattice (H (S),≤), we

can conclude that (H (S),≤) is a distributive semilattice.

We now claim that the distributive semilattice (H (S),≤) satisfies the Join Helly

property. To see this, suppose that J ∨K,J ∨L, and K ∨L all exist. for some J,K,L ∈

H (S). We claim that J ∨K ∨L exists. This is equivalent to showing that J ∪K ∪L is a

hierarchy. Hierarchy conditions (i) and (ii) are obviously fulfilled. It remains to verify

(iii). Let A,B ∈ J∪K ∪L and assume without loss of generality that A ∈ J.

1. Suppose that B ∈ J. Then A,B ∈ J and since J is a hierarchy, it follows that A∩B ∈

{A,B, /0}.

2. Suppose that B ̸∈ J and without loss of generality that B ∈ K. Notice that J ∪K ∈

H (S) and hence A∩B ∈ {A,B, /0}.

This proves that X is a median semilattice.

The previous comments lead to the following result.

Theorem 1.2.1. For any finite set S consisting of n ≥ 3 elements, the pair (H (S),≤) is

a median semilattice.

7



If H is a hierarchy on S, with |S| = n, and X ∈ H, then X is called a cluster. If

|X |= n or |X |= 1 , then X is a trivial cluster. If 1< |X |< n, then X is a non-trivial cluster.

We call H/0 = {S,{x} : x ∈ S} the trivial hierarchy and note that H/0 is the zero element of

the median semilattice (H (S),≤). For any nontrivial subset A of S, let HA = H/0 ∪{A}

and note that HA ∈ H (S).

We claim that J(H (S)) = {HA : 1< |A|< |S|}. Let HA ∈ {HA : 1< |A|< |S|}. We

will show that HA is join irreducible. Suppose that HA = J∨J′. This implies that J ≤ HA.

Since HA = H/0 ∪A, where A is a single set, we have that J ∈ {HA,H/0}. We cannot have

that both of J,J′ are the trivial hierarchy since HA ̸= H/0. Hence HA is join irreducible.

Consider H ∈ H (S) such that H contains at least two non-trivial clusters A and

B. We note that H\{A} ∈ H (S), and that HA ∪H\{A} = H. Therefore, H ̸∈ J(H (S)).

We conclude that the hierarchies in {HA : 1 < |A|< |S|} are the only join irreducibles.

1.3 Consensus

The main reference for this section is the book authored by Day and McMorris

(2003) [4], which provides a more complete discussion with many examples of applica-

tions in bioinformatics.

Given a generic set of objects X , a consensus function, or consensus rule, is a

function that maps from a tuple of choices from this set (x1,x2, ...,xk) to X itself, i.e. it is

a function of the form

f : Xk −→ X .

The tuple (x1,x2, ...,xk) is called a profile and can be thought of as the preferences of k

individuals. We will focus on consensus functions defined on finite median semilattices.

Let (X ,≤) be a finite median semilattice and k ≥ 2 an integer. The consensus

function fu : Xk −→ X defined as follows: for any profile P = (x1, ...,xk),

fu(P) =
k∧

i=1

xi

8



is sometimes called unanimity rule or the strict consensus rule. There is an equivalent

way to define unanimity rule. For any profile P = (x1, ...,xk),

fu(P) =
∨
{ j ∈ J(X) : j ≤ xi for i = 1, ...,n}

More examples of consensus functions will be given in subsequent chapters of this thesis.

Let P ∈ Xk and j ∈ J(X). Define

K j(P) = {i : j ≤ xi}. (1.2)

With that, we are ready to define majority rule on median semilattices.

Definition 1.3.1. Let X be a median semilattice and k ≥ 3.We define Maj : Xk −→ X by

Maj(P) =
∨
{ j ∈ J(X) : |K j(P)|> k/2}.

We will use mathematical induction to show that the join
∨
{ j ∈ J(X) : |K j(P)|>

k/2} exists so that Maj is well defined. Let j1, j2 ∈ J(X) such that |K j1(P)| > k
2 and

|K j2(P)| > k
2 . It follows from the pigeon hole principle that there must exist at least one

element xi ∈ P such that j1 ≤ xi and j2 ≤ xi, and hence j1 ∨ j2 exists.

Assume that
∨k

i=1 ji exists for every integer k ∈ {1, ...,n} if every pairwise join

from { j1, j2, ..., jn} ⊆ J(X) exists. This is the inductive hypothesis. Assume that every

pairwise join from { j1, j2, ..., jn+1} ⊆ J(X) exists. Now note that jn+1 ∨
∨n−1

i=1 ji and

jn ∨
∨n−1

i=1 ji both exists by the inductive hypothesis. Since jn+1 ∨ jn exists, it follows

from the join helly property that jn ∨ jn+1 ∨
∨n−1

i=1 ji exists, which proves the claim and

hence Maj is well defined.

We will return to this version of majority rule in the next chapter. I

1.4 Majority Rule on Hierarchies

For this section, recall, by Theorem 1.2.1, that for any set S with |S| ≥ 3, the pair

(H (S),≤) is a median semilattice with subset containment as the partial order. Also

9



recall that {HA : 1 < |H| < n} is the set of join irreducibles of H (S) where HA = H/0 ∪

{A}. Let K = {1, ...,k} with k ≥ k. For any profile P = (H1, ...,Hk) belonging to H (S)k,

where k ≥ 3, and for any nontrivial subset X of S,

KX(P) = {i ∈ K : HX ⊆ Hi}= {i ∈ K : X ∈ Hi}.

By Definition 1.3.1, Maj : H (S)k −→ H (S) is defined by

Maj(P) =
{

X : |KX(P)|>
k
2

}
.

In this context, Maj is called majority rule on hierarchies. Notice that Maj(P) consists

of all the clusters that appear in more than half of the input profile P. Majority rule on

hierarchies is well known and it is a popular method of consensus [4]. Part of its appeal

is based on the fact that Maj satisfies some desirable properties.

In their paper, McMorris and Powers gave two axiomatic characterizations of

majority rule in term of six axioms. To state the McMorris and Powers theorem, we

need to define these six axioms.

Definition 1.4.1. A profile P is called a biprofile if there exist proper subsets X and Y

of S such that Hi ∈ {HX ,HY} for all i ∈ K and |KX(P)| > |KY (P)| > 0. We say that a

consensus function f : H (S)k −→H (S) is biprofile nontrivial (BNT) if f (P) ̸= H/0 for

all biprofiles P.

Notice that a biprofile consists of two different hierarchies, each of which is the

join of the trivial hierarchy and some subset of S, and where one is more frequent than

the other. A consensus function satisfies this axiom if no such profile maps to the trivial

hierarchy.

Definition 1.4.2. We say that a consensus function is bi-idempotent (BI) if for any

profile P = (H1, ...,Hk) with Hi ∈ {HX ,HY} for all i and |KX(P)| ≠ k/2, it follows that

f (P) ∈ {HX ,HY}.

10



Note that the profile P given in Definition (1.4.2) is a biprofile. Therefore, (BI)

implies (BNT).

For the next definition, we let

W = {P ∈ H k : P is not a biprofile}.

Definition 1.4.3. A consensus function f satisfies restricted decisive neutrality (RDN)

if for all X ,Y ⊂ S and for all P,P′ ∈ W ,

KX(P) = KY (P′) =⇒ [X ∈ f (P) ⇐⇒ Y ∈ f (P′)]

If we replace W in Definition (1.4.3) with H (S)k, then the resulting condition

is a well-known axiom called decisive neutrality [4]. We will consider a more general

version of decisive neutrality in the next chapter.

Definition 1.4.4. A consensus function f satisfies monotonicity (M), if for any profiles

P = (H1, ...,Hk) and P′ = (H ′
1, ...,H

′
k),

P ≤ P′ =⇒ f (P)≤ f (P′)

Here P ≤ P′ means that Hi ⊆ H ′
i for all i ∈ K.

The monotonicity axiom implies that if for every slot in P, the hierarchies are

subsets of the hierarchies in the corresponding slots in P′, then all the clusters in the

output of P must also belong to the output of P′.

Definition 1.4.5. A consensus function satisfies monotone neutrality (MN), if for any

profiles P and P′ and clusters X and Y ,

KX(P)⊆ KY (P′) =⇒ [X ∈ f (P) =⇒ Y ∈ f (P′)].

This axiom implies that if the set of slots with a hierarchy that contain X in P is a

subset of the slots in P′ with a hierarchy that contains Y, then if X belongs to the output of

P, then Y must also belong to the output of P′. Notice that if P≤P′, then KX(P)⊆KY (P′),

so (MN) implies (M).
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Definition 1.4.6. A consensus function f satisfies symmetry (S) if for any profile P =

(H1, ...,Hk) and any permutation σ of K, f (P) = f (Hσ(1), ...,Hσ(k)).

Theorem 1.4.7. Let f : H k −→ H be a consensus function on hierarchies. Then the

following are equivalent:

1. f = Maj

2. f satisfies symmetry, (MN), and is bi-idempotent

3. f satisfies (RDN), symmetry, monotonicity, and is biprofile nontrivial.

Our goal for the next chapter is to prove a generalized version of Theorem 1.4.7

for a broader class of semilattices.
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CHAPTER 2

RESTRICTIVE DECISIVE NEUTRALITY AND MAJORITY RULE

In this chapter we introduce a class of median semilattices that we call sufficient,

which will help us to generalize Theorem 1.4.7. As the name suggests, this condition is

not necessary, which we illustrate with some examples in section 2.2.

2.1 Majority Rule on Semilattices

For the following definitions, f : Xk −→ X is a consensus function with X being

an arbitrary finite median semilattice. As stated in the previous chapter, our goal is to

characterize Majority Rule on median semilattices. We repeat the definition here for

convenience.

Definition 2.1.1. We define Maj : Xk −→ X by

Maj(P) =
∨
{ j ∈ J(X) : |K j(P)|> k/2}. (2.1)

The axioms in Theorem 1.4.7 apply to hierarchies, so we need to formulate the

axioms for our more general setting. The axioms that we have chosen are analogues to

Definitions 1.4.1, 1.4.2, 1.4.3, 1.4.4, and 1.4.6.

Definition 2.1.2. Let K = {1, ...,k}. We say that f : Xk −→ X satisfies Symmetry, or

(S), if for any permutation σ of K and any profile P = (x1, ...,xk),

f (P) = f (xσ(1), ...,xσ(k)). (2.2)

Definition 2.1.3. Let P = (x1, ...,xk) such that xi ∈ { j, j′} for all i ∈ K with j, j′ ∈ J(X),
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and such that 0 < |K j(P)| < |K j′(P)|. We call such a profile a biprofile and say that f

satisfies Biprofile Non-Trivial, or (BNT ), if for all such profiles P, f (P) ̸= 0.

Definition 2.1.4. Let P = (x1, ...,xk),P′ = (y1, ...,yk). We write P ≤ P′ when xi ≤ yi for

all i ∈ K. We say that f satisfies Monotonicity, or (M), if

P ≤ P′ =⇒ [ f (P)≤ f (P′)]. (2.3)

Definition 2.1.5. Let W = {P ∈ Xk : P is not a biprofile}. Let P,P′ ∈ W and let j, j′ ∈

J(X). We say that f satisfies Restricted Decisive Neutrality, or (RDN), if

K j(P) = K j′(P
′) =⇒ [ j ≤ f (P) ⇐⇒ j′ ≤ f (P′)]. (2.4)

From now on, let X be a median semilattice that is not a lattice.

The aim of the chapter is to characterize a class of semilattices such that a con-

sensus function f = Maj if and only if f satisfies (M), (S), (BTN), and (RDN).

Lemma 2.1.6. Suppose that f satisfies (RDN). Let P0 = (0,0, ...,0). Then f (P0) = 0.

Proof. Suppose that j ≤ f (P0) for some j ∈ J(X). Since K j(P0) = K j′(P0) for all j′ ∈

J(X), it follows from (RDN) that j′ ≤ f (P0) for all j′ ∈ J(X) i.e. f (P0) is an upper bound

for all j ∈ J(X). Since X is not a lattice, this is a contradiction.

Lemma 2.1.7. Suppose that f satisfies (RDN). If a join irreducible j satisfies j ≤ f (R)

with R ∈ W , then K j(R) ̸= /0.

Proof. Let R ∈W and suppose that j ≤ f (R) for some j ∈ J(X). Assume that K j(R) = /0.

Note that K j(P0) = /0, so by (RDN), it follows that j ≤ f (P0), contradicting Lemma 2.1.6.

Therefore, K j(R) ̸= /0.

Lemma 2.1.8. Suppose that f satisfies (S), (M), and (RDN). Let P ∈ W such that

|Ks(P)| ≤ k/2 for some s ∈ J(X). Then s ̸≤ f (P).
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Proof. Since X is a median semilattice that is not a lattice, there exist j, j′ ∈ J(X) such

that j∨ j′ does not exist. Let P′ = ( j, j, ..., j,0,0, ...,0) such that K j(P′) = {1, ..., l} with

l = |Ks(P)| ≤ k/2. Suppose that j ≤ f (P′).

Let Q = (0,0, ...,0, j′, j′, ..., j′,0,0, ...,0) such that K j′(Q) = {l + 1, ...,2l} and

let R = ( j, j, ..., j, j′, j′, ..., j′,0,0, ...,0) such that K j(R) = {1, ..., l} and K j′(R) = {l +

1, ...,2l}. Lastly, let Q′ = ( j′, j′, ..., j′,0,0, ...,0) with K j′(Q′) = {1, ..., l}. By (S), f (Q) =

f (Q′). Since K j′(Q′) = K j(P′) = {1, ..., l},(RDN) together with our assumption that

j ≤ f (P′) ensure that j′ ≤ f (Q′) = f (Q).

Note that P′ ≤ R and Q ≤ R. By (M) then, it follows that j ≤ f (P′) ≤ f (R) and

j′ ≤ f (Q)≤ f (R) and hence, j∨ j′ ≤ f (R). This is a contradiction since j, j′ were chosen

so that j∨ j′ does not exist. Therefore, j ̸≤ f (P′).

Now let P′′ ∈ W with Ks(P′′) = {1, ..., l} and P′′ a permutation of P. Since f

satisfies (RDN), |Ks(P′′)| = |Ks(P′)| and j ̸≤ f (P′) imply s ̸≤ f (P′′). By (S), f (P) =

f (P′′) and therefore, s ̸≤ f (P).

Lemma 2.1.9. Let X be a median semilattice that is not a lattice. Assume that X is of

height at least two and assume that X has at least two atoms. Assume that f satisfies (S),

(M), (BNT ), and (RDN). If k ≥ 3 and P ∈ Xk such that |K j(P)|> k/2 for some j ∈ J(X),

then j ≤ f (P).

Proof. For the first part of the argument, we will assume that k = 3. Based on our as-

sumptions on X , there exists atoms s ̸= t and x ∈ X such that x > s. Let

Q = (s,s, t) and Q′ = (x,s, t).

By (BNT ) and (M), f (Q′) ̸= 0. Let r ∈ J(X) such that r ≤ f (Q′). Since Q′ ∈ W , it

follows from Lemma 2.1.8 that |Kr(Q′)| ≥ 2. Note that since s and t are atoms, either

r = s and Ks(Q′) = {1,2} or r = t and Ks(Q′) = {1,3}. In either case, |Kr(Q′)| = 2. By

(S), f (Q′)= f (x, t,s) and so we may assume that Kr(Q′)= {1,2}. For any join irreducible
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element j, if

Q′′ = ( j, j,0)

then Q′′ ∈ W and so, by (RDN),r ≤ f (Q′) implies that j ≤ f (Q′′).

Now suppose that P = (x1,x2,x3) is a profile and |K j(P)| ≥ 2 for some j ∈ J(X).

By using (S), if necessary, we may assume that {1,2} ⊆ K j(P). By using the above and

(M) we get

j ≤ f ( j, j,0)≤ f (P).

Hence j ≤ f (P) and the statements is true in the case k = 3.

For the rest of the argument, assume that k ≥ 4. Let s,s′ ∈ X be distinct atoms.

For the first part of the argument, we will assume that s and s′ are the only atoms of X

and that s and s′ both are covered by a common element r. Since X is not a lattice, there

exists at least one join irreducible element such that it is not less than or equal to r. We

now define a bi-profile

U = (s, ...,s,s′, ...,s′)

for which |Ks(U)|=
⌊ k

2 +1
⌋

and since k ≥ 4, |Ks(U)| ≥ 3. Next, we define the profile

W = (s, ...,s,r,s′, ...,s′)

such that Ks(U) = Ks(W ). W is identical to U except in the
⌊ k

2 +1
⌋
th slot, where an s

has been replaced by an r. Note that since r = s∨ s′, r is not a join irreducible, and hence

W ∈ W for all k ≥ 4. Since s ≤ r, we see that U ≤ W. Since by (BNT ), f (U) ̸= 0, and

since it follows from (M) that f (U)≤ f (W ) it is also true that f (W ) ̸= 0. For any t ∈ J(X)

such that t ̸∈ {s,s′}, it follows that |Kt(W )|= 0 and by Lemma 2.1.8 then, t ≰ f (W ).

Let P be an arbitrary profile such that |K j(P)|> k
2 for some j ∈ J(X). If s ≤ f (W ),

then define the profile

W ′ = ( j, ..., j,0, ...,0)

such that K j(W ′) = Ks(W ). If s ≰ f (W ), then s′ ≤ f (W ) and we then define the profile

W ′ = (0, ...,0, j, ..., j)
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such that K j(W ′) = Ks(W ). In either case, it follows from (RDN) that j ≤ f (W ′). Notice

that |K j(P)| ≥ |K j(W ′)|. Let P′ be a permutation of P such that K j(W ′) ⊆ K j(P′). We

see that W ′ ≤ P′ so by (M), f (W ′)≤ f (P′). We conclude that j ≤ f (P′) and by (S) then,

j ≤ f (P).

For the final part of the argument, we will again let s and s′ be two atoms of X .

We will assume that there exists an element w ∈ X , distinct from the two atoms s and s′,

with the property that s ≤ w while s′ ≰ w. We define the profile

Q = (s, ...,s,s′, ...,s′)

such that |Ks(Q)|=
⌊ k

2 +1
⌋
. Next, we define the profile

R = (w,s, ...,s,s′, ...,s′)

which is identical to Q except in the first slot, where an s has been replaced by a w. Since

k ≥ 4, the atom s appears at least two times in R and the atom s′ appears at least once,

in addition to the element w. Therefore, R ∈ W . Since Q ≤ R, it follows by (M) that

f (Q) ≤ f (R). Since it follows from (BNT ) that f (Q) ̸= 0, we conclude that f (R) ̸= 0.

Let u ∈ J(X) such that u ̸= s. Since s and s′ are atoms, |Ku(R)| ≤ k
2 and by Lemma 2.1.8

then, u ≰ f (R). Since f (R) ̸= 0 there must exists some j ∈ J(X) such that j ≤ f (R). The

only remaining possibility is that s ≤ f (R).

We again let P be an arbitrary profile such that |K j(P)| > k
2 for some j ∈ J(X).

We define the profile

R′ = ( j, ..., j,0, ...,0)

such that K j(R′) = Ks(R). By (RDN), j ≤ f (R′). Notice that |K j(P)| ≥ |K j(R′)|. Let P′

be a permutation of P such that K j(R′)⊆ K j(P′). Notice that R′ ≤ P′ so by (M), f (R′)≤

f (P′). We conclude that j ≤ f (P′) and by (S) then, j ≤ f (P).

Lemma 2.1.10. Let X be a median semilattice that is not a lattice. Let X be of height

at least two and have at least two atoms. If f : Xk −→ X with k ≥ 3 satisfies (S), (M),

(BNT ), and (RDN), then
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Maj(P)≤ f (P).

Proof. This follows as a corollary from Lemma 2.1.9.

The following definition will help us to give a characterization of majority rule

for an easily described class of median semilattices.

Definition 2.1.11. We say that a median semilattice X is sufficient if the following is true

(i) X is not a lattice, has at least two atoms, and h(X)≥ 2.

(ii) either none of the maximal elements of X are join irreducible or join irreducible

elements that are not maximal are meet reducible.

Let max(X) denote the set of all maximal elements of X and let M(X) denote

the set of all meet irreducible elements of X . Then the second item in the definition of

sufficient says that

either J(X)∩max(X) = /0 or J(X)\max(X)∩M(X) = /0.

Proposition 2.1.12. Let S be a finite set with at least four elements. Then (H (S),≤),

the median semilattice of all hierarchies on S is sufficient.

Proof. Since |S| ≥ 4, there exists a four element subset a,b,c,d of S. Observet that

H{a,b}∨H{c,d} does not exist and so (H (S),≤) is not a lattice. Since

H{a,b} < H{a,b}∪{{c,d}}

it follows that the height of (H (S),≤) is greater than or equal to two. Recall that the set

of join irreducible elements of (H (S),≤) is given by

J(H (S)) = {HA : 1 < |A|< |S|}.
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Let HA be an arbitrary join irreducible element. We will show that HA is meet reducible.

If |A| ≤ |S|−2, then let {x,y} be a two element subset of S\A and note that

HA = HA ∪{A∪{x}}∨HA ∪{A∪{y}}

If |A|= S−1, then let {x,y} be a two element subset of A and note that

HA = HA ∪{A\{x}}∨HA ∪{A\{y}},

We know that every join irreducible element is meet reducible. Hence the median semi-

lattice (H (S),≤) is sufficient.

If |S| = 3, then the height of (H (S),≤) is one. Therefore, (H (S),≤) is not

sufficient when |S|= 3.

Lemma 2.1.13. Let X be a sufficient median semilattice. Assume that f : Xk −→ X with

k ≥ 3 satisfies (S),(M),(BNT ), and (RDN). If P is a biprofile then

f (P)≤ Maj(P).

Proof. Let P be a biprofile consisting of the elements j and j′, such that |K j(P)|> k
2 . Let

s ∈ J(X) such that s ≤ f (P). We want to show that s ≤ Maj(P).

We claim that s≤ j or s≤ j′. Suppose that s ̸≤ j and s ̸≤ j′ and note that under this

assumption Ks(P) = /0. By Lemma 2.1.9, j ≤ f (P). Now j ≤ f (P) along with s ≤ f (P)

implies that j∨ s ≤ f (P). We construct the profile P′, identical to P with the exception of

one slot, where a j is replaced by the element j∨ s. Since j, j′, and j∨ s are three distinct

elements belonging to the profile P′ it follows that P′ ∈ W . By Lemma 2.1.8, P′ ∈ W

along with |Ks(P′)|= 1 < k
2 implies that s ̸≤ f (P′). Now note that P ≤ P′ and so, by (M),

it follows that f (P) ≤ f (P′). This contradicts our assumption that s ≤ f (P) and hence,

we conclude that s ≤ j or s ≤ j′.

Assume that s ̸≤ j. Then s ≤ j′. Since j∨ s exists and j ̸= j∨ s, it follows that j

is not a maximal element of X . Assume that

J(X)∩max(X) = /0.
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Then there exists a maximal element t such that j′ < t and t ̸∈ J(X). Let Q be a profile

identical to P except in one slot where j′ is replaced by t and note that P ≤ Q. Notice that

t ̸∈ J(X) implies that Q ∈W . It follows from Lemma 2.1.8 that s ̸≤ f (Q), a contradiction

since s ≤ f (P)≤ f (Q). This contraction implies that

J(X)∩max(X) ̸= /0.

Since j is not maximal, j ̸∈ M(X) as demanded by the sufficiency of X . Let u,u′ be

elements distinct from j such that u∧ u′ = j. Note that s ̸≤ u or s ̸≤ u′, since s ̸≤ j.

Assume without loss of generality that s ̸≤ u and let R be a profile identical to P, except in

one slot where a j is replaced by a u. Observe that j, j′, and u are three distinct elements

belonging to R and so R ∈W . Since R ∈W and |Ks(R)|< k
2 it follows from Lemma 2.1.8

that s ̸≤ f (R). By (M), P ≤ R implies that s ≤ f (P) ≤ f (R) contrary to s ̸≤ f (R). This

last contradiction implies that s ≤ j.

Now |K j(P)|> k
2 implies that j ≤ Maj(P) by the definition of Maj . Since s ≤ j if

follows that s ≤ Maj(P) and we are done.

Theorem 2.1.14. Let X be a sufficient semilattice. Furthermore, let f : Xk −→ X, where

k is an integer greater than or equal to three. Then f = Maj if and only if f satisfies

(M),(S),(BNT ), and (RDN).

Proof. ( ⇐= ) Suppose that f satisfies (M), (S), (BNT ), and (RDN). It follows from

Lemma 2.1.10 that for any profile P ∈ Xk, Maj(P) ≤ f (P). Let P ∈ Xk. Assume that

P∈Xk\W . It follows from Lemma 2.1.13 that f (P)≤Maj(P). Now suppose that P∈W .

By Lemma 2.1.8, if j ∈ J(X) and j ≤ f (P), then |K j(P)| > k
2 . Therefore, j ∈ J(X) and

j ≤ f (P) imply that j ≤ Maj(P). It now follows that f (P) ≤ Maj(P). Hence, f (P) ≤

Maj(P) for any profile P.

( =⇒ ) Let f = Maj . Let P = (x1,x2, ...,xk) and Q = (y1,y2, ...,yk).

We claim that Maj satisfies (M). Suppose that P ≤ Q. It follows from the proper-

ties of the join that Maj(P)≤ Maj(Q) whenever P ≤ Q. Indeed, note that since xi ≤ yi for
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all i ∈ K it follows that

{ j ∈ J(X) : |K j(P)|> k/2} ⊆ { j ∈ J(X) : |K j(Q)|> k/2}. (2.5)

Hence, it follows that the join, or least upper bound, of the right hand side of (2.5) is

greater than or equal to that of the left hand side.

We claim that Maj satisfies (S). Let P = (x1,x2, ...,xk) and let σ be a permutation

of K. Then Pσ = (xσ(1),xσ(2), ...,xσ(k)). Note that

{ j ∈ J(X) : |K j(P)|> k/2}= { j ∈ J(X) : |K j(Pσ )|> k/2}

and therefore their respective joins are also identical.

We claim that Maj satisfies (BNT ). Suppose that P ∈ Xk\W . Every biprofile has

the property that |K j(P)|> k/2 for some j ∈ J(X). Thus

j ≤
∨
{s ∈ J(X) : |Ks(P)|> k/2}

and hence we see that Maj(P) ̸= 0.

Last, we claim that Maj satisfies (RDN). Let P,Q ∈ W and j, j′ ∈ J(X) such that

K j(P) = K j′(Q). Suppose that j ≤ Maj(P). Then k/2 < |K j(P)| = |K j′(Q)|. We see that

j′ ≤ f (Q) and similarily, j′ ≤ Maj(Q) implies that j ≤ Maj(P).

0

j′j

Figure 2.1: A median semilattice with two atoms and height one.

21



2.2 Examples and Counterexamples

We start by looking at some median semilattices that are not sufficient and give

examples of non-majority consensus functions on these semilattices that satisfy axioms

given in Theorem 2.1.14.

Example 2.2.1. Let X be the median semilattice shown in Figure 2.1. Notice that X is

a semilattice that is not a lattice, so X satisfies the conditions of Lemmas 2.1.6 through

2.1.8. Also notice that X does not have height two, a condition for Lemmas 2.1.9, 2.1.10,

and 2.1.13. Define f : X3 −→ X by

f (P) =


0 if P ∈ W

Maj(P) otherwise.

It is clear that f satisfies (S),(RDN), and (BNT ). It remains to verify that f satisfies (M).

Since Maj satisfies (M), f satisfies (M) for any pair of biprofiles. Since f (P) = 0 for any

non-biprofile, f satisfies (M) for any pair of non-biprofiles. Let Q be a biprofile and R be

a non-biprofile. Since f (R) = 0, (M) is satisfied whenever R ≤ Q. Finally, observe that

Q ̸≤ R, since every element in a biprofile is maximal.

0

w

j′j

Figure 2.2: A median semilattice with a single atom.

Definition 2.2.2. Let k,q be integers such that k
2 < q < k. We define Mq : Xk −→ X by

Mq(P) =
∨
{ j ∈ J(X) : |K j(P)|> q}.
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Example 2.2.3. Let X be the median semilattice shown in Figure 2.2. Notice that X

satisfies the conditions of Lemmas 2.1.6 through 2.1.8. Since X does not have at least

two atoms, X does not satisfy the conditions of Lemmas 2.1.9, 2.1.10, or 2.1.13. Define

f : X3 −→ X by

f (P) =


M2(P) if P ∈ W

Maj(P) otherwise.

Clearly, f satisfies (S), (BNT ), and (RDN). For any pair of non-biprofiles, (M) is satis-

fied by the properties of the join. The same is true for any pair of biprofiles. Let P ∈ W

and Q ∈ X3\W . Assume that P ≤ Q. Note that

{ j ∈ J(X) : |K j(Q)|> 2} ⊆
{

j ∈ J(X) : |K j(Q)|> 3
2

}
and hence M2(P) ≤ M2(Q) ≤ Maj(Q). Now assume that Q ≤ P. First, suppose that Q

is equal to w in two slots, so that f (Q) = w. Since P is a non-biprofile such that Q ≤

P and every element in P is above w, Kw(P) = {1,2,3} and hence, w ≤ M2(P). Now

suppose that |K j(Q)|= 2. In this case, P = ( j, j, j) and j = Maj(Q) = M2(P). Similarily,

if |K j′(Q)|= 2, then P=( j′, j′, j′) and j′=Maj(Q)=M2(P). We conclude that f satisfies

(M).

0

w j

j′

Figure 2.3: A median semilattice with a two-chain of join-irreducible elements.

Example 2.2.4. Let X be the median semilattice shown in Figure 2.3. Notice that X is

a median semilattice of height at least two that has at least two atoms. Hence X satisfies
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the conditions of Lemmas 2.1.6 through 2.1.10, but since X is not sufficient, X does not

satisfy the conditions of Lemma 2.1.13. Define f : X3 −→ X by

f (P) =


j′ if P is a permutation of ( j, j, j′)

Maj(P) otherwise.

Clearly, (S) is satisfied. Since f (P) = Maj(P) for all P ∈ W , we see that f satisfies

(RDN). Let P be a biprofile. Whether P is a permutation of ( j, j, j′) or not, f (P) ̸= 0,

so f satisfies (BNT ). We claim that f satisfies (M). Let Q be a permutation of ( j, j, j′),

so that f (Q) = j′. Let R be a profile such that Q ≤ R. Either R is identical to Q, or

|K j′(R)| ≥ 2 > k
2 . We see that f (R) = j′ and hence that f (Q) ≤ f (R). Since f (Q) = j′

and j′ is a maximal element, f (R′)≤ f (Q) for any profile R′ ≤ Q. It remains to consider

two profiles neither of which is a permutation of ( j, j, j′). Since f is identical to Maj for

such profiles, f satisfies (M) for such pairs as well.

0

s

j′

j

s′

s∨ j

Figure 2.4: Another non-sufficient median semilattice with two atoms and of height

greater than or equal to two.

Example 2.2.5. Let X be the median semilattice shown in Figure 2.4. Notice that X

satisfies the conditions of Lemma 2.1.6 through 2.1.10, but X is not sufficient. Define

f : X5 −→ X by

f (P) =


s∨ j if P is a permutation of ( j, j, j, j′, j′)

Maj(P) otherwise.
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Clearly, (S) and (BNT ) are satisfied. Since f (P) = Maj(P) for all P ∈ W , (RDN) is

satisfied. Let P be a permutation of ( j, j, j, j′, j′) and assume that P ≤ Q for some Q ̸= P.

We claim that f (P) ≤ f (Q). Note that since |K j(Q)| = 5, j ≤ f (Q). Since P ≤ Q and

j′ is a maximal element, it follows that at least two elements of Q are equal to j′ and

a third element of Q is greater than j and therefore also strictly greater than s. Hence,

|Ks(Q)| ≥ 3. It follows that s ≤ f (Q) and thus, s∨ j ≤ f (Q).

Again, let P ≤ Q, where we now assume that P is not a permutation of

( j, j, j, j′, j′).

If Q is not a permutation of ( j, j, j, j′, j′), then f (Q) = Maj(Q) and as shown in the proof

of Theorem 14, Maj satisfies (M). Now suppose that Q is a permutation of ( j, j, j, j′, j′),

and so f (Q) = s∨ j. Let t ∈ J(X)\{ j} and note that since j is an atom and P ≤ Q, it

follows that |Kt(P)| ≤ 2. If P = Q, then f (P) = s∨ j. If P ̸= Q, then f (P) = Maj(P) and

hence, t ≰ f (P) for all t ∈ J(X)\{ j}, so f (P) = j or f (P) = 0. In either case, f (P) ≤

f (Q), which is what we want to show.

0

s j

j′w

Figure 2.5: Another example of a non-sufficient median semilattice.

Example 2.2.6. Let X be the median semilattice shown in Figure 2.5. Notice that X

satisfies the conditions of Lemma 2.1.6 through 2.1.10, but not Lemma 2.1.13, since X

is not sufficient. Define S = (s, ...,s, j′, ..., j′) for which Ks(P) = ⌈ k
2⌉. Let f : Xk −→ X
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where k is an odd integer be defined by

f (P) =


w if P is a permutation of S.

Maj(P) otherwise.

Clearly (S),(RDN), and (BNT ) are all satisfied. Let P be a profile such that P ≤ S.

Suppose that f (P) ≰ w = f (S). This would mean that f (P) = Maj(P) = j′. However,

|K j′(P)| ≤ k
2 , so j′ ≰ f (P). Now let Q be a profile such that S ≤ Q. We claim that w ≤

f (Q). If S ≤ Q and Q ̸= S, then Q must hold a w in at least one slot in which P holds an s.

Since K j′(Q) = K j′(S) = ⌈ k
2⌉−1, and j ≤ j′, we conclude that K j(Q)≥ ⌈ k

2⌉>
k
2 . Hence,

f (S) = Maj(S) = w and hence f (S)≤ f (Q).

Example 2.2.7. Let X be the median semilattice shown in Figure 2.5. Let f : Xk −→ X

where k ≥ 4 is an even integer. Assume that f satisfies (S), (M), (BNT ), and (RDN).

We claim that f = Ma j.

By Lemma 2.1.10, Maj(P)≤ f (P) for all P ∈ Xk. Let P ∈ W and j ∈ J(X) such

that j ≤ f (P). Suppose that j ̸≤ Maj(P), so that |K j(P)| ≤ k
2 . Since P ∈ W , it follows

from Lemma 2.1.8 that j ̸≤ f (P) and therefore, f (P) ≤ Maj(P) for every P ∈ W . It

remains to show that f (Q) = Maj(Q) for every biprofile Q.

We claim that for every biprofile with majority element t, i.e. the element that

occurs in the majority of the slots of Q, there exists a profile R ∈ W such that Q ≤ R and

for which t is the only element with the property that |Kt(R)|> k
2 .

Suppose that j is the majority element in Q. If the remaining slots hold the element

s, we construct R by replacing one j in Q with the element j′, otherwise making the profile

identical to Q. If the remaining slots of Q hold the element j′, we construct R by letting

exactly k
2 slots in R hold the element j′, while Q ≤ R. This is possible since j′ covers

j and more than k
2 slots of Q contain j. Note that R ∈ W and that |K j(R)| = k, while

|K j′(R)|= k
2 . Suppose that j′ is the majority element in Q. Since j′ is a maximal element,

it follows that f (Q)≤ Maj(Q) = j′. Finally, suppose that s is the majority element of Q.
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If the remaining slots hold j′, we construct R by replacing an s with a w. If the remaining

slots hold the element j, we construct R by replacing one of the j-elements with the

element j′.

Now let Q be a biprofile and let x ∈ J(X) with the property that x ≰ Maj(Q). Since

Q is a biprofile, there exists another element t ̸= x such that |Kt(Q)|> k
2 . We construct R

as described above. Since R ∈ W and t is the only join irreducible with the property that

|Kt(R)| > k
2 , it follows from Lemma 2.1.8 that x ≰ f (R). Recall that Q ≤ R, so that by

(M), f (Q)≤ f (R). We see that x ≰ f (Q)≤ f (R). Hence f (Q)≤ f (R), which is what we

wanted to show.

0

s j

s∨ j

u

Figure 2.6: An example of a non-sufficient median semilattice for which f = Maj when-

ever f satisfies (M),(S),(RDN), and (BNT ).

Example 2.2.8. Let X be the semilattice in Figure 2.6. Note that X is non-sufficient since

J(X)∩max(X) = {u} and J(X)\max(X)∩M(X) = {s, j}.

Let f : Xk −→ X , where k ≥ 3 is an integer and assume that f satisfies (S), (M), (BNT ),

and (RDN). By Lemma 2.1.10, Maj(P)≤ f (P) for all P ∈ Xk.

Let P ∈ W and j ∈ J(X) such that j ≤ f (P). Suppose that j ̸≤ Maj(P), so that

|K j(P)| ≤ k
2 . Since P ∈ W , it follows from Lemma 2.1.8 that j ̸≤ f (P) and therefore,

f (P)≤ Maj(P) for every P ∈ W .

Since no pair of join irreducible elements in X are comparable, there exists exactly

one t ∈ J(X) for every biprofile Q, such that |Kt(Q)|> k
2 . We claim that for every biprofile
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with majority element t, there exists a profile R∈W such that Q≤R and for which t is the

only element with the property that |Kt(R)| > k
2 . Suppose that u is the majority element

in Q. Then we construct R by replacing one of the elements Q that is covered by s∨ j

with the element s∨ j. In all other slots, R is chosen to be identical to Q. Suppose that s is

the majority element in Q. Then we chose R to be identical to Q in all slots, except in one

s-slot, for which we choose the element s∨ j. An analogous construction works when Q

has t in the majority of its slots.

Let Q be a biprofile and let x ∈ J(X) such that x ≰ Maj(Q). There exists a profile

R ∈ W such that Q ≤ R and |Kx(R)| ≤ k
2 . By Lemma 2.1.8, x ≰ f (R) and hence, by

(M), x ≰ f (Q)≤ f (R). We have shown that f (Q)≤ Maj(Q) for every biprofile Q. Hence

Maj = f , which is what we wanted to show.
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CHAPTER 3

DECISIVE NEUTRALITY ON MEDIAN SEMILATTICES

The goal of this chapter to describe the class of consensus functions defined on a

median semilattice that satisfy the axioms (DN), (BI), and (S). The problem originated

with Monjardet’s Arrowian Characterizations of Latticial Federation Consensus Func-

tions (1990) [9].

3.1 Definitions and Examples

Let X be a finite median semilattice such that the cardinality of X is at least three

and let f : Xk −→ X be a consensus function.

Definition 3.1.1. We say that f satisfies bi-idempotency (BI) if for any biprofile P, f (P)∈

{P}, i.e. f (P) is one of the join-irreducible elements belonging to P.

This is a weaker version of the bi-idempotency condition introduced by Monjardet

in 1990 [9] and a stronger condition than the biprofile nontrivial condition given in the

last chapter.

Definition 3.1.2. We say that f satisfies decisive neutrality (DN) if for any profiles P,P′

and for any j, j′ ∈ J(X),

K j(P) = K j′(P
′) =⇒ [ j ≤ f (P) ⇐⇒ j′ ≤ f (P′)].

The decisive neutrality condition given in Definition 3.1.2 is the same as Mon-

jardet’s J-decisive neutrality condition (Monjardet 1990, p. 59) [9]. Unlike Restrictive

Decisive Neutrality from Chapter 2, this axiom is not restricted to non-biprofiles.
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The goal of this chapter is to characterize the class of consensus functions satis-

fying (BI), (S), and (DN). The following three examples illustrate that these axioms do

not characterize majority rule on all median semilattices.

Example 3.1.3. If X is a finite chain, then define f : Xk −→ X as follows: for any profile

P = (x1, ...,xk)

f (P) =
k∧

i=1

xi

Since X is a chain, f (P) is equal to the smallest member of P and hence (BI) is satisfied

for all profiles. Clearly, (S) is satisfied. Let P = (x1,x2, ...,xk) and P′ = (x′1,x
′
2, ...,x

′
k) be

profiles, and j, j′ ∈ J(X) such that K j(P) = K j′(P′). Suppose that j ≤
∧k

i=1 xi = f (P) and

note that this implies K j(P) = K j′(P′) = K. Hence, j′ is a lower bound of {x′1,x
′
2, ...,x

′
k}

and we conclude that j′ ≤
∧k

i=1 x′i = f (P′) and hence f satisfies (DN).

0

j′j

Figure 3.1: A median semilattice that is not a lattice.

Example 3.1.4. Let X be the median semilattice shown in Figure 3.1 and notice that X is

a semilattice that is not a lattice. Let P ∈ X3 and f : X3 −→ X be defined as

f (P) =


0 if Kt(P) = K for some t ∈ J(X).

Maj(P) otherwise.

We claim that f satisfies (S), (BI), and (DN). Clearly (S) and (BI) are satisfied. Note that

the only profiles for which f (P) ̸= Maj(P) are the profiles ( j, j, j) and ( j′, j′, j′). Since

f ( j, j, j) = f ( j′, j′, j′) = 0, we see that (DN) is satisfied as well.
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0

s j

s∨ j

u

Figure 3.2: A median semilattice where every join irreducible is an atom.

Example 3.1.5. Let X be the semilattice shown in Figure 3.2. Let P ∈ X3 and f : X3 −→

X be defined as

f (P) =
∨
{t ∈ J(X) : |Kt(P)|= 2}

Clearly, f satisfies (S). Any biprofile has the property |Kt(P)|= 2 for some t ∈ J(X), so

(BI) is satisfied. Let P,P′ ∈ Xk and suppose that Kt(P) = Kt ′(P′) for some t, t ′ ∈ J(X). If

|Kt(P)| = |Kt ′(P′| = 2, it follows that t ≤ f (P) and t ′ ≤ f (P′). Since every w ∈ J(X) is

an atom, w ≤
∨
{t ∈ J(X) : |Kt(P)| = 2} only if w ∈ {t ∈ J(X) : |Kt(P)| = 2}. Hence, f

satisfies (DN).

3.2 Results

The goal of this chapter to describe the class of functions that satisfy the axioms

(DN), (BI), and (S). The results are summarized in Figure 3.3. The reader should start

at the top and follow either the yes arrow or the no arrow, depending on the class of

semilattice of interest. If the semilattice X is not a lattice, the functions characterized

by our axioms are given by Theorem 3.2.5. If X is a chain, the functions characterized

by our axioms are given by Theorem 3.2.12. If X is lattice that is not a chain and not

atomistic, the characterization is given by Theorem 3.2.16. Finally, if X is a lattice that

is not a chain, but X is atomistic, Proposition 3.2.15 tells us that X is also Boolean. If X

is Boolean with two atoms, the characterization can be found in Theorem 3.2.20. If X is

Boolean with three or more atoms, the characterization is given by Theorem 3.2.19. Note
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Finite Median Semilattice

Lattice? Theorem 3.2.5

Chain?

Theorem 3.2.12

Atomistic? Theorem 3.2.16

Boolean,

Proposition 3.2.15

AtomsTheorem 3.2.20 Theorem 3.2.19

No

Yes

Yes

No No

Yes

2 ≥ 3

Figure 3.3: A summary of the main result of the chapter.

that this covers every finite median semilattice with cardinality at least three.

If a consensus function satisfies the decisive neutrality condition (DN), then, as

shown in the next lemma, there is an associated family of sets D f where I ⊆ K belong to

D f if and only if there exists a profile P and a join irreducible j such that K j(P) = I and

j ≤ f (P). We will call D f a decisive family.

Lemma 3.2.1. Let f : Xk −→ X be a consensus function where X is any finite median

semilattice. If f satisfies (DN), then there exists a subset D f of the power set P(K) such

that for every profile Q ∈ Xk

f (Q) =
∨
{s ∈ J(X) : Ks(Q) ∈ D f }.
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Proof. Given the decisive neutral function f , we define

D f = {I ⊆ K : ∃P ∈ Xk and j ∈ J(X) s.t. K j(P) = I and j ≤ f (P)}.

Let Q ∈ Xk and suppose K j(Q) ∈ D f for some j ∈ J(X). Since K j(Q) ∈ D f it follows

from the definition of D f that there exists P ∈ Xk and s ∈ J(X) such that Ks(P) = K j(Q)

and s ≤ f (P). Since f satisfies (DN), j ≤ f (Q). Therefore,

∨
{s ∈ J(X) : Ks(Q) ∈ D f } ≤ f (Q).

Now suppose that j′ ≤ f (Q) for some j′ ∈ J(X). By the definition of D f , K j′(Q) ∈ D f .

Hence

f (Q) =
∨
{s ∈ J(X) : Ks(Q) ∈ D f }.

It follows from Lemma 3.2.1 that if f : Xk −→ X is any consensus function satis-

fying (DN) and P ∈ Xk is an arbitrary profile, then

j ≤ f (P) ⇐⇒ K j(P) ∈ D f

for all j ∈ J(X). In this case, we will refer to D f as the decisive family determined by the

decisive neutral consensus function f .

Lemma 3.2.2. Let f : Xk −→ X be a consensus function where X is any finite median

semilattice which is not a lattice. If f satisfies (DN) and D f is the corresponding decisive

family of f i.e.

D f = {I ⊆ K : ∃P ∈ Xk and j ∈ J(X) s.t. K j(P) = I and j ≤ f (P)},

then

[A ∈ D f ,B ∈ D f ] =⇒ [A∩B ̸= /0].
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Proof. Assume that there exists A,B ∈ D f such that A∩B = /0. Since X is not a lattice,

there exists join irreducibles j and j′ such that the join j∨ j′ does not exist. Let P ∈ Xk

be a profile such that K j(P) = A and K j′(P) = B. By Lemma 3.2.1,

f (Q) =
∨
{s ∈ J(X) : Ks(P) ∈ D f }.

Therefore, f (P) is an upper bound for { j, j′} contrary to the fact that j ∨ j′ does not

exist.

Lemma 3.2.3. Let f : Xk −→ X be a consensus function where X is any finite median

meet semilattice which is not a lattice. If f satisfies (DN) and (S), then |A|> k/2 for all

A ∈ D f .

Proof. Let A∈D f and suppose that |A| ≤ k/2. Let j ∈ J(X) and P∈Xk such that K j(P)=

A. Let Pσ be a permutation of P such that K j(Pσ )⊆K\A. Note that it follows from Lemma

3.2.2 that

[A ∈ D f ,B ∈ D f ] =⇒ [A∩B ̸= /0].

Since f satisfies (S), K j(Pσ ) ∈ D f , a contradiction since K j(Pσ )∩K j(P) = /0.

The following example illustrates the importance of symmetry.

Example 3.2.4. Let X be a finite meet semilattice and suppose f : Xk −→ X is the dicta-

torship function f (P) = x1 for all P = (x1,x2, ...,xk). Then f satisfies (DN) and (BI).

Proof. Let P ∈ Xk. Since f (P) = x1 ∈ {P}, (BI) is satisfied. Suppose that j ≤ f (P) = x1

so that {1} ⊆ K j(P). Let j′ ∈ J(X),P′ ∈ Xk, and suppose that K j′(P′) = K j(P). It follows

that {1} ⊆ K j′(P′), so j′ ≤ f (P′), and therefore (DN) is satisfied.

We are now ready for the the first theorem of the chapter. When X is not a lattice,

our axioms characterize a class consisting of two functions, one of which is majority rule.
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Theorem 3.2.5. Let X be a median semilattice which is not a lattice. If f : Xk −→ X

satisfies (DN),(BI), and (S), then either

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|< k}

or

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|}.

Proof. We claim that

{I : |I|> k/2}\{K} ⊆ D f ⊆ {I : |I|> k/2}.

Since f satisfies (DN) and (S), D f ⊆ {I : |I|> k/2} follows directly from Lemma 3.2.3.

Let A ∈ {I : |I|> k/2}\{K}. Since X is not a lattice, there exist join irreducibles j and j′

such that j∨ j′ does not exist. Let P be the biprofile with {P} = { j, j′} and K j(P) = A.

Then K j′(P) = K\A. Since |K\A| ≤ k/2 it follows from Lemma 3.2.3 that K\A ̸∈D f . By

the remark right after the proof of Lemma 3.2.1, j′ ̸≤ f (P). Thus, by (BI), f (P) = j and

so A ∈ D f . If

D f = {I : |I|> k/2}\{K}

then

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|< k}

follows from Lemma 3.2.1. If

D f = {I : |I|> k/2}

then

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|}

follows from Lemma 3.2.1.

The next definition, which can be found in [9] is an unanimity condition with

respect to join irreducibles. As we shall see, this condition together with (DN), (S), and

(BI) precisely characterizes majority rule on non-lattice median semilattices.
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Definition 3.2.6. We say that f satisfies J-unanimity (JU) if for any profile P and any

s ∈ J(X), Ks(P) = K implies s ≤ f (P).

The following result is related to Corollary 7.4 and Proposition 7.3 in Monjardet

(1990) [9].

Corollary 3.2.7. Let X be a median semilattice that is not a lattice. Then f : Xk −→ X

satisfies (DN), (BI), (S), and (JU) (J-unanimity) if and only if f is majority rule.

Proof. By the definition of J-unanimity, K ∈ D f and so by Theorem 3.2.5, f is majority

rule.

Definition 3.2.8. A decisive family D f is called a federation if

[A ∈ D f ,A ⊆ B] =⇒ B ∈ D f .

Examples of consensus functions with decisive families that are federations in-

clude the dictatorship function and majority rule.

Lemma 3.2.9. Let X be a finite median semilattice such that there exists x,y ∈ J(X) with

x < y. If f : Xk −→ X satisfies (DN), then the decisive family D f is a federation.

Proof. Let I ⊆ J ⊆K, x,y∈ J(X) with x< y, and suppose that I ∈D f . Let P=(x1,x2, ...,xk)

be a profile such that xi = y for all i ∈ I, xi = x for all i ∈ J\I, and zero everywhere else.

Since f satisfies (DN), I ∈D f and Ky(P) = I implies that y≤ f (P). Since x < y, x < f (P)

and so Kx(P) = J ∈ D f .

The following definition will be used in Theorem 3.2.12 which describes all func-

tions that satisfy (DN),(S), and (BI) when X is a chain.

Definition 3.2.10. When the decisive family of a function f is given by

D f = {I ⊆ K : |I| ≥ ℓ}

where ℓ is an integer, we denote this family by Dℓ.
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Proposition 3.2.11. Let X be chain such that |X |= 3. If f : Xk −→ X with k ≥ 3 satisfies

(DN), (S), and (BI), then there exists an integer ℓ such that 0 ≤ ℓ≤ k and

D f = Dℓ.

Proof. Since f satisfies (S), I ∈ D f implies that

{J ⊆ K : |J|= |I|} ⊆ D f .

Let ℓ be the smallest integer such that |I|= ℓ for some I ∈ D f . By Lemma 3.2.9, D f is a

federation and thus

D f = {I ⊆ K : |I| ≥ ℓ}.

In the case of ℓ= 0, f : Xk −→ X with k ≥ 3 is defined by

f (P) = 1

for all P ∈ Xk. Then f satisfies (DN), (S), and (BI) and

D f = {I ⊆ K : |I| ≥ 0}.

Theorem 3.2.12. Let X be a finite chain such that |X | ≥ 4. If f : Xk −→ X with k ≥ 3

satisfies (DN), (S), and (BI), then there exists an integer ℓ such that 1 ≤ ℓ≤ k and

D f = Dℓ.

If ℓ= 1, then

f (x1, ...,xk) =
k∨

i=1

xi.

If ℓ= k, then

f (x1, ...,xk) =
k∧

i=1

xi.
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Proof. Since f satisfies (S), I ∈ D f implies that

{J ⊆ K : |J|= |I|} ⊆ D f .

Let ℓ be the smallest integer such that |I|= ℓ for some I ∈ D f . By Lemma 3.2.9, D f is a

federation and thus

D f = {I ⊆ K : |I| ≥ ℓ}.

Assume that ℓ= 0 and let Q be an arbitrary profile. For any j ∈ J(X), |K j(Q)| ≥

0 and so j ≤ f (Q). Therefore, f (Q) = 1 for any profile Q. Since X has at least four

elements, there exists a biprofile that does not contain the element 1. Since f satisfies

(BI), f (Q) = 1 for all Q is a contradiction. It now follows that 1 ≤ ℓ≤ k.

Suppose that ℓ= 1. Let P= (x1, ...,xk)∈Xk and let x=
∨k

i=1 xi. Since X is a chain,

x ∈ {P}, |Kx(P)| ≥ 1 and hence x ≤ f (P). For any x′ ∈ J(X) such that x′ > x, |Kx′(P)|= 0

and and therefore, x′ ̸≤ f (P) so that f (P) = x.

Suppose that ℓ= k. Let P = (x1, ...,xk) ∈ Xk and let y =
∧k

i=1 xi. Note that y′ ≥ y

for all y′ ∈ {P}, so |Ky(P)|= k and hence, y ≤ f (P). For any element y′ > y, |Ky′(P)|< k

and thus y′ ̸≤ f (P), i.e. f (P) = y.

Lemma 3.2.13. Let X be a median semilattice such that there exists x,y ∈ J(X) with

x ∥ y. If f : Xk −→ X with k ≥ 3 satisfies (DN) and (BI), then for any I ⊆ K such that

1 ≤ |I|< k and |I| ̸= k/2,

|D f ∩{I,K\I}|= 1.

Proof. Let I ⊆ K such that 1 ≤ |I|< k and |I| ≠ k/2 and let x,y ∈ J(X) with x ∥ y. There

exists a biprofile P with {P}= {x,y}, Kx(P) = I and Ky(P) = K\I. Since f satisfies (BI)

and x ∥ y, it follows that f (P) = x and f (P) ̸= y, or f (P) ̸= x and f (P) = y. Since f

satisfies (DN), either I ∈ D f and K\I ̸∈ D f , or I ̸∈ D f and K\I ∈ D f .

Definition 3.2.14. The elements x,x′ in a distributive lattice X are complements if x∧x′ =

0 and x∨ x′ = 1. A boolean lattice is a distributive lattice with at least two elements in

which every element has a complement.
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Proposition 3.2.15. Every finite, atomistic, distributive lattice with more than two ele-

ments is Boolean.

Proof. Let X be such a lattice. Let x ∈ X such that x ̸= 0 and x ̸= 1. Let x′ =
∨
{a ∈ J(X) :

a ̸≤ x} and note that x =
∨
{a ∈ J(X) : a ≤ x}. We claim that x′ is the complement of x.

Since X is a lattice, the element

x∨ x′ =
∨
{a ∈ J(X) : a ≤ x}∨

∨
{a ∈ J(X) : a ̸≤ x}=

∨
J(X)

exists and is equal to 1. Let

y = x∧ x′ =
∨
{a ∈ J(X) : a ≤ x}∧

∨
{a ∈ J(X) : a ̸≤ x}

and note that y =
∨
{a ∈ J(X) : a ≤ y}. Since y ≤ x∧ x′, y ≤ x and hence y is the join

of a subset of {a ∈ J(X) : a ≤ x}. Similarly, since y ≤ x′, y is the join of a subset of

{a ∈ J(X) : a ̸≤ x}. Since the intersection of these two sets is empty, y = ∨ /0 = 0. We

conclude that x′ is the complement of x.

Since X is a distributive lattice where every element distinct from 0 and 1 has a

complement, it follows from the definition of Boolean lattice that X is Boolean.

We now introduce the ceiling function. For any x ∈ R,

⌈x⌉= inf{n ∈ Z : n ≥ x}.

In particular, if k ≥ 2 is an integer, then

⌈
k
2

⌉
=


k
2 if k is even

k+1
2 if k is odd.

The following theorem characterizes the class of functions that satisfy (D), (BI),

and (S) in the case of X being a lattice, but not a chain, nor atomistic. Just like in Theorem

3.2.5, the characterized class consists of two functions, one of which is majority rule.
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Theorem 3.2.16. Suppose that X is a finite distributive lattice with |X | ≥ 3 such that X

is not a chain nor an atomistic lattice. If f : Xk −→ X satisfies (DN), (BI), and (S), then

D f = Dℓ

where

ℓ=

⌈
k
2

⌉
or ℓ=

⌈
k+1

2

⌉
.

When k is odd or ℓ= ⌈k+1
2 ⌉, f is majority rule.

Proof. Let I ∈ D f and assume that |I| < k/2. Since X is not not atomistic, X has at

least one pair of comparable join irreducible elements. Therefore, since f satisfies (DN),

Lemma 3.2.9 implies that D f is a federation. Consequently, if J ⊆ K satisfies |J|= |K\I|

and I ⊆ J, then J ∈ D f . Since f satisfies (S), J ∈ D f implies that K\I ∈ D f . So both I

and K\I belong to D f . This contradiction shows that if I ∈ D f , then |I| ≥ k/2.

Since f satisfies (S) and, as mentioned above, D f is a federation, it follows that

D f = Dℓ

for some integer ℓ ≥ k/2. Next, let J be any subset K such that |J| = ⌈k+1
2 ⌉. Since |J| ̸=

k/2 and |K\J|< k/2 it follows from Lemma 3.2.9 that J ∈ D f and K\J ̸∈ D f . Hence,

ℓ≤
⌈

k+1
2

⌉
and we are done.

Definition 3.2.17. A subset I of K is bicomplete if

|I ∩{i,k− i}|= 1

for all i ∈ [1,k/2)∩Z. For example, if K = {1,2,3,4,5}, then {1,3} and {1,3,5} are

bicomplete. For any subset I of K, let

DI = {I ⊆ K : |I| ∈ I }.
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Lemma 3.2.18. Let f : Xk −→ X be a consensus function where X is any finite median

semilattice containing two noncomparable join irreducible elements. If f satisfies (S),

(DN), and (BI), then {|I| : I ∈ D f and I ̸= /0} is a bicomplete subset of K.

Proof. Let i ∈ [1,k/2) and choose I ⊆ K such that |I|= i. By Lemma 3.2.13,

|D f ∩{I,K\I}|= 1.

If I ∈ D f and K\I ̸∈ D f , then i ∈ {|I| : I ∈ D f and I ̸= 0} and, since f satisfies (S) and

|K\I| = k− i,k− i ̸∈ {|I| : I ∈ D f and I ̸= 0}. On the other hand, I ̸∈ D f and K\I ∈ D f

implies that k− i ∈ {|I| : I ∈ D f and I ̸= 0} and i ̸∈ {|I| : I ∈ D f and I ̸= 0}. Hence {|I| :

I ∈ D f and I ̸= 0} is a bicomplete subset of K.

Theorems 3.2.19 and 3.2.20 handle the case when X is a boolean lattice.

Theorem 3.2.19. Let X be a Boolean, distributive lattice with at least three atoms. If

f : Xk −→ X satisfies (DN), (BI), and (S), then there exists a bicomplete subset I such

that

D f = DI .

Conversely, if I is a bicomplete subset of K and

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I }

for all P ∈ Xk then f satisfies (DN), (BI), and (S).

Proof. Assume that f satisfies (DN), (BI), and (S). Since f satisfies (DN) it follows

from Lemma 3.2.1 that there exists a subset D f of P(K) such that

f (P) =
∨
{s ∈ J(X) : Ks(P) ∈ D f }

for any P ∈ Xk. Moreover, as noted right after the proof of Lemma 3.2.1,

s ≤ f (P) if and only if Ks(P) ∈ D f
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for any P ∈ Xk.

Assume that /0 ∈ D f . Let P be a biprofile. Since X contains at least three atoms,

there exists j ∈ J(X) such that j ̸∈ {P}. Note that K j(P) ̸= /0 and so /0 ∈ D f implies that

j ≤ f (P). Since X is atomistic it follows that f (P) ̸∈ {P} which contradicts the fact that

f satisfies (BI). Thus /0 ̸∈ D f .

Since f satisfies (DN),(BI), and (S) we can apply Lemma 3.2.18 to conclude that

{|I| : I ∈ D f and I ̸= /0} is a bicomplete subset of K. Since /0 ̸∈ D f it follows that

{|I| : I ∈ D f and I ̸= /0}= {|I| : I ∈ D f }

Let I denote the bicomplete subset {|I| : I ∈ D f }, let A ∈ DI = {I ⊆ K : |I| ∈ I },

and note that there exists I ∈ D f such that |I| = |A|. Since f satisfies (S) and (DN), it

follows that A ∈ D f . Let B ∈ D f and note that since |B| ∈ I ,B ∈ DI . Since D f ⊆ DI

and DI ⊆ D f ,

D f = DI .

Let

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I }

where I is a bicomplete subset of K. Clearly, (S) is satisfied. We claim that (DN) is

satisfied. Let P,Q ∈ Xk and j,s ∈ J(X) such that K j(P) = Ks(Q), with j ≤ f (P). Since

j ∈ J(X), j ≤
∨
{ j ∈ J(X) : |K j(P)| ∈ I } implies that j ∈ { j ∈ J(X) : |K j(P)| ∈ I } and

thus |K j(P)| ∈ I . Since Ks(Q) = K j(P), |Ks(Q)| ∈ I , and hence s ≤ f (P).

Finally, we claim that f satisfies (BI). Let P be a biprofile with {P}= { j,s} and

|K j(P)|< k/2 and observe that |Ks(P)|= k−|K j(P)|. Since I is bicomplete, |K j′(P)| ∈

I implies that k−|K j(P)| ̸∈I . Hence, we either have j ≤ J(P) and s ̸≤ f (P), or j ̸≤ J(P)

and s ≤ f (P). Since j and s are atoms and {P} = { j,s}, we conclude that f (P) ∈ {P},

which is what we wanted.

The next theorem covers the case where X is a lattice with four elements, two of

which are atoms. Note that a chain with three or more elements is non-boolean.
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Theorem 3.2.20. Let X be a Boolean lattice with two atoms. If f : Xk −→ X satisfies

(S),(DN), and (BI), then there exists a bicomplete subset I of K such that

D f = DI or D f = DI∪{0}

Conversely, if I is a bicomplete subset of K and

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I }

for all P ∈ Xk or if

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I ∪{0}}

for all P ∈ Xk, then f satisfies (DN), (BI), and (S).

Proof. Assume that f satisfies (DN), (BI), and (S). Since f satisfies (DN), it follows

from Lemma 3.2.1 that there exists a subset D f of P(K) such that

f (P) =
∨
{s ∈ J(X) : Ks(P) ∈ D f }

for any P ∈ Xk. Since f satisfies (DN),(BI), and (S) we can apply Lemma 3.2.18 to

conclude that {|I| : I ∈ D f and I ̸= /0}, which we denote by I , is a bicomplete subset of

K. Let A ∈ DI = {I ⊆ K : |I| ∈ I }, and note that there exists I ∈ D f such that |I|= |A|.

Since f satisfies (S) and (DN), it follows that A ∈ D f . Let B ∈ D f and note that since

|B| ∈ I ∪{0},B ∈ DI∪{0}. Since D f ⊆ DI∪{0} and DI ⊆ D f ,

D f = DI or D f = DI∪{0}.

Let I be a bicomplete subset of K and define f : Xk −→ X as

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I ∪{0}}.

Let j and j′ be the two atoms belonging to X . Clearly f satisfies (S). We claim that f sat-

isfies (BI). Let P be a biprofile with {P}= { j, j′} and 0 < |K j(P)|< k/2 and observe that
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|K j′(P)|= k−|K j(P)|. Since I is bicomplete, |K j′(P)| ∈I implies that k−|K j(P)| ̸∈I .

Hence, we either have j ≤ J(P) and j′ ̸≤ f (P), or j ̸≤ J(P) and j′ ≤ f (P). Since j and

j′ are atoms and {P} = { j, j′}, we conclude that f (P) ∈ {P}. We claim that f satisfies

(DN). Let P,Q ∈ Xk and j,s ∈ J(X) such that K j(P) = Ks(Q), with j ≤ f (P). Since

j ∈ J(X), j ≤
∨
{ j ∈ J(X) : |K j(P)| ∈ I ∪{0}} implies that j ∈ { j ∈ J(X) : |K j(P)| ∈

I ∪{0}} and thus |K j(P)| ∈ I ∪{0}. Since Ks(Q) = K j(P), |Ks(Q)| ∈ I ∪{0}, and

hence s ≤ f (P).

For the case of f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I } for all P ∈ Xk, we refer to the

proof of Theorem 3.2.19.

How many different functions satisfy the condtions given in Theorem 3.2.20 for

a given profile length k? This question is answered in Proposition 3.2.23.

Lemma 3.2.21. Let k ≥ 3 be an interger. Define

A =

{
1,2, . . . ,

k−1
2

,k
}

when k is odd,

A =

{
1,2, . . . ,

k
2
,k
}

when k is even. The function f : P(A)−→ P(K) defined by

f (I) =
{

i ∈ Z : i ∈ I or
k
2
≤ i ≤ k−1 and k− i ̸∈ I

}
is one-to-one.

Proof. Let I ⊆ A and J ⊆ A such that f (I) = f (J). Let a ∈ I. Since a ∈ I,a ∈ f (I) = f (J).

This mean that either a ∈ J or k/2 ≤ a ≤ k− 1. Since a ∈ I, a ̸∈ [k/2,k− 1] and hence

a ∈ J. By symmetry, a ∈ J implies a ∈ I and therefore I = J.

Let K = {1,2, . . . ,k} with k ≥ 3 and let B(A) be the set of bicomplete subsets of

K. In addition, let

A =

{
1,2, . . . ,

⌈
k−1

2

⌉
,k
}
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and notice that A is proper subset of K.

Lemma 3.2.22. The function f : P(A)−→ B(K) defined by

f (J) = { j ∈ K : j ∈ J or j = k− i for some i ∈ A\J}

for all J ∈ B(K) is a well-defined bijection. In fact, the inverse map g is defined by

g(I) = I ∩A

for all I ∈ B(K).

Proof. To show that f is well-defined, let J ∈ P(A) and show that f (J) is a bicomplete

subset of K. Let i ∈ [1,k/2)∩Z. We claim that |{i,k− i}∩ f (J)|= 1.

If i ∈ J, then i ∈ f (J) since J ⊆ f (J). Notice that i ∈ [1,k/2) implies that k/2 <

k − 1 < k and so k − i ̸∈ A. Since J ⊆ A it follows that k − i ̸∈ J. Next, assume that

k − i = k − i′ for some i′ ∈ A\J. Then i = i′ leading to the contradiction i′ ∈ J. Hence

k− i ̸∈ f (J).

If i ̸∈ J, then i ∈ A\J and so k− i ∈ f (J). Assume i = k− i′ for some i′ ∈ A\J.

Then i+ i′ = k. Since i ∈ [1,k/2)∩Z it follows that i′ > k/2. Since i′ ∈ A, i′ > k/2 implies

that i′ = k. Now i′ = k along with i+ i′ forces i = 0 contrary to i ≥ 1. This contradiction

shows that i ̸= k− i′ for all i′ ∈ A\J. This fact, along with i ̸∈ J, implies that i ̸∈ f (J).

Thus, |{i,k− i}∩ f (J)|= 1 and so f is well-defined.

Let I ∈ B(K) and note that g(I) = I ∩A ⊆ A, so the map g is well defined. Our

next goal is to show that g is the inverse of f .

Let I ∈ B(K) and note that

f (g(I)) = f (I ∩A)⊇ I ∩A.

Now let j ∈ I and j ̸∈ A. Then

k
2
< j < k and 1 < k− j <

k
2
.
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So k− j ∈ A. Moreover, since I is a bicomplete subset of K,

|{ j,k− j}∩ I|= 1.

Thus, j ∈ I implies that k− j ̸∈ I. Since k− j ∈ A\(I ∩A) it follows that

j = k− (k− j) ∈ f (I ∩A).

Thus, I ⊆ f (g(I)).

If x ∈ f (g(I)), then, by the definition of f , either x ∈ g(I) = I ∩A and so x ∈ I or

x = k− i for some i ∈ A\(I∩A). For the latter case, i ∈ I along with I being a bicomplete

subset of K implies that k− i ∈ I and so x ∈ I. We can now conclude that

f (g(I)) = I.

Let I1, I2 ∈ B(K) such that g(I1) = g(I2). We see that f (g(I1)) = f (g(I2)) which implies

that I1 = I2, and hence g is one-to-one. Let J ∈ P(A) and note that the element f (J) ∈

B(A) maps to J. Therefore, g onto and since g is one-to-one and onto, g is a bijection. (I

would like to discuss this part)

Proposition 3.2.23. The number of functions characterized in Theorem 3.2.19 is 2h

where h = ⌈k+1
2 ⌉.

Proof. For a given k, the number of consensus function characterized in Theorem 3.2.19

is equal to the number of bicomplete subsets of K. Let f be defined as in Lemma 3.2.22

and note that since f : P(A)−→ B(K) is a bijection,

|B(K)|= |P(A)|= 2|A|.

Recall that

A =

{
1,2, . . . ,

⌈
k−1

2

⌉
,k
}

and hence |A|= ⌈k+1
2 ⌉.
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Lemma 3.2.24. Let f : Xk −→ X be a consensus function where X is any finite median

semilattice. If f satisfies (M) and there exists a bicomplete subset I such that D f =DI ,

then [1,k/2)∩I = /0.

Proof. Assume c ∈ [1,k/2)∩I . Since I is bicomplete, k− c ̸∈ I . Let P,Q ∈ Xk such

that |K j(P)| = c, |K j(Q)| = k− c, and P ≤ Q. Note that j ≤ f (P) while j ̸≤ f (Q) and

hence f (P) ̸≤ f (Q), a contradiction since f satisfies (M).

Definition 3.2.25. A consensus function f : Xk −→ X is a quota rule if there exists an

integer ℓ in the interval [1,k] such that for any profile P,

f (P) =
∨{

j ∈ J : |K j(P)| ≥ ℓ
}
.

In other words, D f = Dℓ. We refer to ℓ as the threshold of the quota rule f .

Definition 3.2.26. If k is even and X is a lattice, then f : Xk −→ X is weak majority rule

if for any profile P,

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ≥ k/2}.

Corollary 7.4 in [9] contains an error. The claim is that that conditions (2) and (4)

from that corollary are equivalent. However, this equivalence is true only for non-lattice

median semilattices. The next result corrects this error. It is a complete characterization

of consensus functions on a median semilattice that satisfy the four axioms of decisive

neutrality, bi-idempotence, symmetry, and monotonicity.

Theorem 3.2.27. Assume that X is a finite median semilattice such that |X | ≥ 3 and let

f : Xk −→ X be a consensus function on X with k ≥ 3.

1. If X is not a lattice, then f satisfies (DN), (BI), (S), and (M) if and only if f is

majority rule.

2. If X is a lattice and not a chain, then f satisfies (DN), (BI), (S), and (M) if and only

if f is majority rule, or weak majority rule and k is even.
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3. If X is a chain, then f satisfies (DN), (BI), (S), and (M) if and only if either f is the

constant function with output 1 and |X |= 3 or if f is a quota rule with threshold ℓ

for some integer ℓ beloning to the interval [1,k].

Proof. 1. If f is majority rule, then f satisfies (DN), (BI), (S), and (M). The proofs

for each of the axoims are analogous to those in found in the proof of Theorem

2.1.14.

If X is not a lattice, then by Theorem 3.2.5, (DN), (BI), and (S) imply that

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|< k}

or

f (P) =
∨
{t ∈ J(X) : k/2 < |Kt(P)|}.

Suppose that f (P)=
∨
{t ∈ J(X) : k/2< |Kt(P)|< k}. Let j ∈ J(X), P=( j, j, ..., j,0)

and P′ = ( j, j, ..., j). Note that j ≰ f (P′) whereas j ≤ f (P). Since P < P′, mono-

tonicity implies that f (P)≤ f (P′), which is a contradiction. Hence f (P) =
∨
{t ∈

J(X) : k/2 < |Kt(P)|}, i.e. f is majority rule.

2. As mentioned above, if f is majority rule, then f satisfies (DN), (BI), (S), and (M).

This is also true if f is weak majority rule. Recall that no element in a biprofile can

be in exactly half the slots.

If X is a Boolean lattice with two atoms, Theorem 3.2.20 implies that

D f = DI or D f = DI∪{0}.

where I is a bicomplete subset of K. Recall that A subset I of K is bicomplete if

|I ∩{i,k− i}|= 1

for all i ∈ [1,k/2)∩Z.
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Suppose that the empty set is a decisive set. Let P0 = (0,0, ...,0) and note that

f (P0) =
∨

J(X) = 1 since K j(P0) = /0 for all j ∈ J(X). Then, by monotonicity,

f (P)= 1 for all P∈Xk since P0 is below every other profile. Since I is bicomplete,

there exists m∈K such that m ̸∈I . Let Q∈Xk and j ∈ J(X) such that |K j(Q)|=m.

Then j ≰ f (Q), which is a contradiction since f (Q) = 1.

Since the empty set is not a decisive set, both Theorem 3.2.19 and Theorem imply

3.2.20 that

f (P) =
∨
{ j ∈ J(X) : |K j(P)| ∈ I }

where I is a bicomplete subset of K, when X is boolean with at least two atoms.

By Lemma 3.2.24, [1,k/2)∩I = /0. If k is odd, then, k+1
2 is the smallest member of

I and since |I ∩{i,k− i}| = 1, it follows that I = { k+1
2 , k+1

2 + 1, ...,k}, which

makes f majority rule. If k is even, k
2 may or may not belong to I . If k

2 ∈ I ,

I = { k
2 ,

k
2 +1, ...,k}, i.e. f is weak majority rule. If k

2 ̸∈ I , f is majority rule.

If X is a lattice, but not a chain and not Boolean, it follows from directly from

Theorem 3.2.16 that f is either majority rule, or f is weak majority rule and k is

even.

3. Clearly, the quota rule satisfies (DN), (BI), (S), and (M).

The other direction follows from Proposition 3.2.11 and Theorem 3.2.12.

49



CHAPTER 4

SPLIT DECISIVE NEUTRALITY ON MEDIAN GRAHPS

There is a nice connection between median graphs and median semilattices. Na-

mely, the covering graph of a median semilattice is a median graph and any median

graph is the covering graph of some median semilattice (see Bandelt Discrete Ordered

Sets whose covering graphs are median (1984) [2]). The goal of this chapter is to use this

connection to possibly extend the main results of Chapter 3. We are able to make some

progress on this problem.

4.1 Median Graphs

Definitions 4.1.1, 4.1.2, 4.1.3, and part of Definition 4.1.4 come from [5].

Definition 4.1.1. A graph G is a finite nonempty set V of objects called vertices (the

singular is vertex) together with a nonempty set E of two-element subsets of V called

edges. If uv is an edge of G, then u and v are adjacent vertices.

Definition 4.1.2. For two (not necessarily distinct) vertices u and v in a graph G, a u− v

walk W in G is a sequence of vertices in G, beginning with u and ending at v such that the

consecutive vertices in W are adjacent in G. A walk in a graph G with no vertex repeated

is called a path.

Definition 4.1.3. Two vertices u and v are connected in a graph G if G contains a u− v

path. The graph G itself is connected if every two vertices of G are connected.
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Definition 4.1.4. A cycle Cn in a graph G is a walk in which no edge is repeated, and in

which the vertices can be labeled v1,v2, ...,vn, and whose edges are v1,vn and vi,vi+1 for

i = 1,2, ...,n−1. A tree is a connected graph that has no cycles.

Definition 4.1.5. In a connected graph G = (V,E), the distance between two vertices

x and y, denoted d(x,y), is the length of the shortest path from x to y. A shortest path

between x and y is called an x,y-geodesic.

Definition 4.1.6. Let G = (V,E) be a simple, finite, and connected graph. For any u,v ∈

V,

IG(u,v) = {x ∈V : d(u,v) = d(u,x)+d(x,v)}.

IG(u,v), or just I(u,v), is called the interval between u and v.

Definition 4.1.7. A median graph G = (V,E), is a connected graph such that for everv

u,v,w ∈V, I(u,v)∩ I(u,w)∩ I(v,w) contains a unique element. We will use the notation

I(u,v,w) = I(u,v)∩ I(u,w)∩ I(v,w).

Every finite tree is a median graph. Let G be the binary tree in Figure 4.1. Notice

that for γ,δ ,ζ ∈ G,

I(δ ,ε)∩ I(δ ,ζ )∩ I(ε,ζ ) = {β}

i.e. the intersection of the three pairs of intervals is a single element. This is true for any

triplet of vertices and hence G is a median graph.

The graph in Figure 4.2, C5, is not a median graph. Notice that

I(α,β ) ={α,β}

I(α,ω) ={α,δ ,ω}

I(β ,ω) ={β ,γ,ω}

The intersection

I(α,β )∩ I(α,ω)∩ I(β ,ω) = /0

and hence C5 is not a median graph.
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α

β γ

δ ε ηζ

Figure 4.1: A binary tree. The median of {δ ,ε,ζ} is β .

α

γ

ω

δ

β

Figure 4.2: C5.

Definition 4.1.8. Let G = (V,E) be a median graph and choose any vertex z belonging to

V. We define ≤z as follows:

x ≤z y if x ∈ I(z,y)

for all x,y ∈V.

Lemma 4.1.9. The pair (V,≤z) is a partially ordered set with minimal element z.

Proof. For any vertex x ∈ V we know that x ∈ I(z,x). Thus x ≤z x for all x ∈ V and

hence ≤z is reflexive. We claim that ≤z is antisymmetric. Let u,v ∈ V such that u ≤z v

and v ≤z u. Now observe that since u ≤z v and v ≤z u, u ∈ I(v,z) and v ∈ I(u,z), and

thus {u,v} is a subset of both I(v,z) and I(u,z) and hence it also follows that {u,v} ⊆

I(u,v)∩ I(u,z)∩ I(v,z). Since V is a median graph,

|I(u,v)∩ I(u,z)∩ I(v,z)|= 1
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which implies that u and v is the same element. We claim that ≤z is transitive. Let

u,v,w ∈V such that u ≤z v and v ≤z w and hence

d(z,v) =d(z,u)+d(u,v)

d(z,w) =d(z,v)+d(v,w)

We combine these and apply the triangle inequality:

d(z,w) = d(z,u)+d(u,v)+d(v,w)≥ d(z,u)+d(u,w)≥ d(z,w).

Since d(z,w) = d(z,u)+d(u,w), u belongs to the interval I(z,w) and thus u ≤z w, which

is what we wanted to show.

It turns out that the partially ordered set (V,≤z) is a meet semilattice where, for

any x and y ∈ V,x∧z y is the unique element belonging to I(x,y)∩ I(x,z)∩ I(y,z). More-

over, based on the work of Sholander [13], it can be verified that (V,≤z) is a median

semilattice. To emphasize the previous fact we now state it as a theorem.

Theorem 4.1.10. For any median graph G = (V,E) and for any vertex z belonging to V,

the partially ordered set (V,≤z) is a median semilattice.

We omit the proof of Theorem 4.1.10 since it is a well known fact.

Definition 4.1.11. For any median graph G = (V,E) and for any vertex z ∈ V, let Jz(V )

be the set of join irreducible elements belonging to the median semilattice (V,≤z).

Definition 4.1.12. Let k ≥ 3 be an integer and K = {1,2, ...,k}. For any s ∈ Jz(V ) and

any profile P = (x1,x2, ...,xk), let Ks(P) = {i ∈ K : s ≤z xi}.

Definition 4.1.13. For the semilattice (V,≤z) and any profile P of length k, we define

Majz : V k −→V by

Majz(P) =
∨
{ j ∈ Jz(V ) : |Ks(P)|> k/2}.
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x1 x2 x3 x4

Figure 4.3: A 4-path.

Let G = (V,E) be the path in Figure 4.3. Consider the profile P = (x1,x2,x3,x4).

First, consider the semilattice (V,≤x2) and note that Jx2 = {x1,x3,x4} so Majx2
(P) = x2.

Second, consider the semilattice (V,≤x3) and note that Jx3 = {x1,x2,x4}, so Majx3
(P) =

x3. Hence Majx3
(P) ̸= Majx2

(P).

x1 x2 x3 x4 x5

Figure 4.4: A 5-path.

Let G=(V,E) be the path in Figure 4.4. Consider the profile P=(x1,x2,x3,x4,x5).

Note that that Majxi
(P) = x3 regardless of our choice of zero element xi.

We will now introduce the concept of a split, which will be central to this chapter.

Definition 4.1.14. If G = (V,E) is a median graph and xy ∈ E, then the split induced by

the edge xy is the bipartition {Vxy,Vyx} of V.

α

β

γ

δ

ε

ω

Figure 4.5: A split induced by the edge αβ .

Figure 4.5 shows an example of a split. The split induced by the edge αβ par-

titions the semilattice into {α,δ} and {β ,γ,ε,ω}. Note that the choice of the edge δε
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would induce the same split. We will now relate the concept of splits to consensus func-

tions.

Let G = (V,E) be a median graph and f : V k −→V a consensus function on G.

Definition 4.1.15. We say that f satisfies Split Decisive Neutrality (SDN) if for any splits

{A,V\A} and {B,V\B} and for any profiles P = (x1, ...,xk),P′ = (x′1, ...,x
′
k) :

{i : xi ∈ A}= {i : x′i ∈ B} =⇒ [ f (P) ∈ A ⇐⇒ f (P′) ∈ B].

Example 4.1.16. The function f : V k −→ V defined by f (P) = x1 for all profiles P =

(x1, ...,xk) satisfies (SDN).

Proof. Let {A,V\A} and {B,V\B} be splits. Let P= (x1, ...,xk) and P′ = (x′1, ...,x
′
k) such

that

{i : xi ∈ A}= {i : x′i ∈ B}.

Suppose f (P) ∈ A. Then x1 ∈ A and x′1 ∈ B. Thus f (P′) ∈ B and hence f satisfies (SDN).

Example 4.1.17. If f : V k −→V is a constant function, then f does not satisfy (SDN).

Proof. Assume that f (P) = v for all profiles P and let u ∈V be adjacent to v. So uv ∈ E.

Let A =Vvu and B =Vuv and note that {A,B} is the split induced by the edge uv. Consider

the constant profiles P = (x1, ...,xk) and P′ = (x′1, ...,x
′
k) such that xi = v and x′i = u for

i = 1, ...,k. Observe that

{i : xi ∈ A}= K = {i : x′i ∈ B}.

Since f (P) = v ∈ A and f (P′) = v ̸∈ B it follows that f does not satisfy (SDN).

Recall the definition of decisive neutrality. We say that f : Xk −→ X , where X is

a median semilattice, satisfies decisive neutrality (DN) if for any profiles P,P′ and for

any j, j′ ∈ J(X),
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K j(P) = K j′(P
′) =⇒ [ j ≤ f (P) ⇐⇒ j′ ≤ f (P′)].

Definition 4.1.18. For W ⊆V and x ∈V\W, the vertex z ∈W is a gate for x if z ∈ I(x,w)

for all w ∈W.

The next theorem is Theorem C in McMorris, Mulder, Powers (2006) [10].

Theorem 4.1.19. Let G = (V,E) be a median graph and let z be any vertex of G. For any

split G1,G2 of G with z in G1, the gate s of z in G2 is the unique join-irreducible in G2 in

the median semilattice (V,≤z).

4.2 Results and Examples

The following result is the main result of the chapter. It establishes a connection

between (SDN) and the (DN) condition from chapter 2.

Theorem 4.2.1. If V is a median graph, f : V k −→V satisfies (SDN), and z ∈V, then

f : (V,≤z)
k −→ (V,≤z).

satisfies (DN).

Proof. Let P = (x1, ...,xk) and P′ = (x′1, ...,x
′
k) be profiles and j a join irreducible such

that j ≤z f (P). Suppose that

K j(P) = K j′(P
′).

Let s denote the element covered by j and consider the split induced by the edge s j.

Similarly, let s′ denote the element covered by j′ and consider the split induced by the

edge s′ j′.

By letting G1 be Vs j and G2 be Vjs it follows from Theorem 4.1.19 that j is a

gate for Vjs and hence t ∈ Vjs implies j ∈ I(z, t). Moreover, j ∈ I(z, t) implies j ≤z t by

definition, so t ∈Vjs implies j ≤z t.
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If t ∈ V satisfies j ≤z t then s ≤z j ≤z t and hence j ∈ I(s, t) and hence d(t, j) <

d(t,s), which in turn means that t ∈Vjs. Hence

t ∈Vjs ⇐⇒ j ≤z t

for all t ∈V. Similarly,

t ∈Vj′s′ ⇐⇒ j′ ≤z t. (4.1)

This implies that

{i : xi ∈Vjs}= K j(P)

and similarily

{i : x′i ∈Vj′s′}= K j′(P
′).

Since

K j(P) = K j′(P
′)

we see that

{i : xi ∈Vjs}= {i : x′i ∈Vj′s′}.

Since f (P) ∈ Vjs it follows from (SDN) that f (P′) ∈ Vj′s′ and since j′ ∈ Vj′s′, equation

(4.1) implies that j′ ≤ f (P′).

Definition 4.2.2. We say that f : V k −→ V satisfies Symmetry (S) if for any profile P =

(x1, ...,xk) and any permutation σ : K −→ K,

f (Pσ ) = f (xσ(1),xσ(2), ...,xσ(k)) = f (P).

Theorem 4.2.3. Assume that G = (V,E) is a median graph and that f : V k −→ V is a

consensus function on G. If f satisfies (SDN) and (S), then, for any splits {A,V\A} and

{B,V\B} and for any profiles P,P′ :

|{i : xi ∈ A}|= |{i : x′i ∈ B}| and f (P) ∈ A =⇒ f (P′) ∈ B.
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Proof. Let {A,V\A} and {B,V\B} be splits. Let P= (x1, ...,xk) and P′ = (x′1, ...,x
′
k) such

that

|{i : xi ∈ A}|= |{i : x′i ∈ B}|.

Suppose that f (P) ∈ A. Let I = {i : xi ∈ A} and J = {i : x′i ∈ B}. Let σ be a permutation

σ : K −→ K that maps I onto J. Then xi ∈ A if and only if xσ(i) ∈ B.

Note that since f satisfies (SDN), f (P) ∈ A implies f (P′
σ ) ∈ B. Since f satisfies

(S), f (P′) = f (P′
σ ) and hence f (P′) ∈ B, which is what we wanted.

α β γ

Figure 4.6: The path in Example 4.2.4 and Definition 4.2.7

We will now provide some examples to illustrate (SDN).

Example 4.2.4. Let G = (V,E) be a path with vertices α,β ,γ, where β is the middle

vertex. Let f : V 3 −→V be defined by

f (P) =


α P = (α,α,α)

γ P = (γ,γ,γ)

β else

for any profile P. The function f does not satisfy (SDN). To see this, let P = (α,α,γ) =

(x1,x2,x3) and P′ = (γ,β ,α) = (x′1,x
′
2,x

′
3) and observe that

{i : xi ∈ {α}}= {i : x′i ∈ {β ,γ}}= {1,2}.

However, f (P) = β ̸∈ {α} while f (P′) = β ∈ {β ,γ}.

Example 4.2.5. Let G = (V,E) be a path with vertices α,β , as in as in Figure 4.7. Let

f : V k −→V, where k > 1, be defined by

f (P) =


α if |{i : xi = α}|= k

β otherwise
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α β

Figure 4.7: The path in Examples 4.2.5 and 4.2.6

We claim that f does not satisfy (SDN). Let P = (α,α,β ) and P′ = (β ,β ,α), so that

f (P) = f (P′) = β . Note that if A = {α} and B = {β}, then

{i : xi ∈ A}= {i : x′i ∈ B}

and f (P) ∈ B, while f (P) ̸∈ A.

Example 4.2.6. Let G = (V,E) be a path with vertices α,β , as in Figure 4.7. Let f :

V k −→V, where k > 1, be defined by

f (P) =



α xi = α ∀i ∈ K

β xi = β ∀i ∈ K

β x1 = α and ∃i ∈ {2, ...,k} such that xi = β

α x1 = β and ∃i ∈ {2, ...,k} such that xi = α.

We claim that f satisfies (SDN). Let {A,V\A} and {B,V\B} be splits of G and

P = (x1,x2, ...,xk) and P′ = (x′1,x
′
2, ...,x

′
k) profiles such that

{i : xi ∈ A}= {i : x′i ∈ B}.

Assume that f (P) ∈ A. If A = B, then P = P′ and so f (P′) = f (P) ∈ A. If A ̸= B then

{i : xi = α}= {i : x′i = β}.

If {i : xi = α} = {i : x′i = β} = K, then f (P) = α and hence A = {α}. Since A ̸= B,

B = {β} and hence f (P′) ∈ B. If {i : xi = β} = {i : x′i = α} = K, then, by the same

argument, f (P) ∈ A and f (P′) ∈ B.

If {i : xi = α} = {i : x′i = β} = D, where D ̸= K and D ̸= /0, then either x1 = α

and x′1 = β or x1 = β and x′1 = α. In either case, f (P) ∈ A implies that f (P) ∈ B.
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For the reminder of the chapter, G = (V,E) will be a path with three vertices.

Definition 4.2.7. Let G = (V,E) be a path with vertices α,β ,γ, where β is the middle

vertex.

α β γ

Let k ≥ 3 be an odd integer. Define M : V k −→ V as follows: for profiles P =

(x1,x2, ...,xk),

M(P) =


α if |{i : xi = α}|> k/2

γ if |{i : xi = γ}|> k/2

β otherwise

M is our version of majority rule.

Claim 4.2.8. M satisfies (SDN).

Proof. We claim that for any profile P = (x1,x2, ...,xk) and for any split {A,V\A} of G,

M(P) ∈ A ⇐⇒ |{i : xi ∈ A}|> k/2.

Assume that M(P) ∈ A. If M(P) = α, then α ∈ A and so A = {α} or A = {α,β}. By the

definition of M, M(P) = α implies that |{i : xi = α}|> k/2 and so |{i : xi ∈ A}|> k/2. A

similar argument shows that if M(P) = γ, then |{i : xi ∈ A}|> k/2. The final case is when

M(P) = β and so A = {α,β} or A = {β ,γ}. By the definition of M, M(P) = β implies

that α can occur at most (k− 1)/2 times and γ can occur at most (k− 1)/2 times, in P.

Hence |{i : xi ∈V\A}|< k/2 and |{i : xi ∈ A}|> k/2.

Assume that |{i : xi ∈ A}|> k/2. If A = {α}, then M(P) = α by the definition of

M and hence M(P) ∈ A. If A = {α,β}, then |{xi ∈ P : xi = γ}| < k/2 so that M(P) ̸= γ

and hence M(P) ∈ {α,β}. With this established, we are ready to show that M satisfies

(SDN).
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Proof. Let {A,V\A} and {B,V\B} be splits of G and P=(x1,x2, ...,xk) and P′=(x′1,x
′
2, ...,x

′
k)

profiles such that

{i : xi ∈ A}= {i : x′i ∈ B}.

Assume that M(P) ∈ A. As shown above, this implies that |{i : xi ∈ A}| ≥ k/2 and since

{i : xi ∈ A}= {i : x′i ∈ B}, it follows that |{i : x′i ∈ B}| ≥ k/2 and so, M(P) ∈ B.

Theorem 4.2.9. Assume that f : V k −→ V, with k ≥ 3 odd satisfies (SDN) and (S). If

G = (V,E) is the path shown in Figure 4.6 then f = M.

Proof. For any vertex v ∈V and for any profile P = (x1,x2, ...,xk) ∈V k let

Kv(P) = {i : xi = v}

and

f−1(v) = {Q ∈V k : f (Q) = v}.

The Kv(P) notation should not be confused with similar notation used in the lattice con-

text.

By Theorem 4.2.1, f : (V,≤β )
k −→ (V,≤β ) satisfies (DN). By assumption, f :

(V,≤β )
k −→ (V,≤β ) satisfies symmetry (S). Since the median semilattice (V,≤β ) is not

a lattice, it follows from Lemma 3.2.3 that

P ∈ f−1(α) =⇒ |Kα(P)|>
k
2

and

Q ∈ f−1(γ) =⇒ |Kγ(Q)|> k
2
.

We will now prove these implications without Lemma 3.2.3. It is enough to show that

the second implication holds. Assume that there exists a profile Q such that Q ∈ f−1(γ)

and |Kγ(Q)| ≤ k
2 . Let R = (x1, ...,xk) be a profile such that

|Kα(R)|= |Kγ(R)|= |Kγ(Q)|.
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Let {A,V\A} be the split such that A = {α}, and let {B,V\B} be the split of V with

B = {γ}. Using these splits and the profiles Q and R, observe that

|Kγ(Q)|= |Kα(R)| and f (Q) = γ =⇒ f (R) = α

by Theorem 4.2.3. Using the split {A,V\A} and {B,V\B} along with just the profile R,

observe that

|Kα(R)|= |Kγ(R)| and f (R) = α =⇒ f (R) = γ

by a second application of Theorem 4.2.3. Since it is impossible to have f (R) = α and

f (R) = γ we know that for any profile Q,Q ∈ f−1(γ) implies that |Kγ(Q)|> k
2 .

We will now show the reverse implication. It is enough to show that if |Kα(Q)|>
k
2 , then f (Q) = α. Assume that f (Q) ̸= α and let R′ = (x′1, ...,x

′
k) be the profile such that

|Kα(R′)|= |Kα(Q)| and |Kβ (R
′)|= /0.

Using the split {A,V\A} with A = {α} and the profiles Q and R′, observe that

|Kα(R′)|= |Kα(Q)| along with f (Q) ̸∈ A =⇒ f (R′) ̸∈ A

by Theorem 4.2.3. So f (R′) ∈ V\A = {β ,γ}. Using the splits {V\A,A} and {B,V\B}

with B = {γ} and the profile R′ = (x′1, ...,x
′
k) observe that

{i : x′i ∈V\A}= {i : x′i ∈ B}.

Since f satisfies (SDN) and f (R′) ∈ V\A it follows that f (R′) ∈ B. But f (R′) ∈ B with

B = {γ} implies that R′ ∈ f−1(γ). Therefore, by the previous argument, |Kγ(Q)| > k
2 ,

contrary to |Kα(R′)|= |Kα(Q)|> k
2 , then f (Q) = α.

Recall the definition of M,

M(P) =


α if |{i : xi = α}|> k/2

γ if |{i : xi = γ}|> k/2

β otherwise.
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Let P = (x1, ...,xk) and assume that |{i : xi = α}|> k
2 . As shown above, f (P) = α. Sim-

ilarly, |{i : xi = γ}| > k
2 implies f (P) = γ. Assume instead that |{i : xi = α}| ≤ k

2 and

|{i : xi = γ}| ≤ k
2 . As shown above, this implies that P ̸∈ f−1(α) and P ̸∈ f−1(γ), and

hence f (P) ∈ f−1(β ), i.e. f (P) = β . Hence f = M.

While we have made some progress in our effort to characterize majority rule on

median graphs, a lot of work remains to be done. The following conjecture suggests a

possible first extension of the chapter.

Conjecture 4.2.1. Let G = (V,E) be a finite path. Assume that f : V k −→V, with k ≥ 3

odd satisfies (SDN) and (S). Then f = M
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CHAPTER 5

CONCLUSIONS

In the introductory chapter, we describe the work done by McMorris and Powers

on Majority Rule on Hierarchies [7]. In their paper, they show that the four conditions

Restrictive Decisive Neutral (RDN), Symmetry (S), Monotonicity (M), and Biprofile Non-

trivial (BNT) characterize majority rule on hierarchies. The main result of Chapter 2 is an

extension of the McMorris and Powers’ theorem to a large class of median semilattices

which we call sufficient.

In Chapter 3, we examine Monjardet’s work on consensus functions defined on

meet semilattices given in [9]. We characterize all consensus functions that satisfy the

conditions Decisive Neutrality (DN), Bi-idempotency (BI), and Symmetry (S), for median

semilattice of cardinality at least three. For the concluding theorem of the chapter, we

add the fourth condition of Monotonicity (M). This theorem corrects Monjardet’s mistake

in [9].

In Chapter 4, we give a natural extension of the the decisive neutrality condition

from median semilattices to median graphs, called Split Decisive Neutrality. At the end

of the chapter, we prove that majority rule is the only consensus function defined on a

path with three vertices that satisfies split decisive neutrality and symmetry. This is a

modest result and a lot of work remains to be done.

5.1 Future Work

The following definition comes from [11].

64



Definition 5.1.1. Let G = (V,E) be a connected graph and P = (x1,x2, ...,xk) ∈ V k. For

a vertex v of a V we write D(v,P) = ∑
k
i=1 d(v,xi). A vertex x minimizing this distance

sum is called a median of P. The median function Med on a G is the consensus function

given by

Med(P) = {v|v is a median of P}.

Chapter four ends with Conjecture 4.2.1 and as mentioned, this is a possible ex-

tension of the thesis: Let G = (V,E) be a finite path. Assume that f : V k −→V, with k ≥ 3

odd satisfies (SDN) and (S). Then f = Med .

Next, a natural extension would be the following conjecture:

Conjecture 5.1.1. Let G = (V,E) be a finite tree. Assume that f : V k −→ V, with k ≥ 3

odd satisfies (SDN) and (S). Then f = Med .

It has been suggested that intermediate conjectures also could include the covering

graphs of the partially ordered set of all hierarchies with three and four element sets,

respectively. Finally,

Conjecture 5.1.2. Let G = (V,E) be a finite median graph. Assume that f : V k −→ V,

with k ≥ 3 odd satisfies (SDN) and (S). Then f = Med .
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