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ABSTRACT

ESTIMATING TREATMENT EFFECT ON MEDICAL COST AND
EXAMINING MEDICAL COST TRAJECTORY USING SPLINES

AND CHANGE POINT TECHNIQUES

Indranil Ghosh

November 22, 2021

In the world of growing medical needs, other than the clinical out-

comes, the cost of healthcare is one of the important aspects to evaluate.

The cost of treatment could act as a decisive factor on which one to choose

from two equally likely effective treatment options. In literature, the most

used quantity for cost of a treatment is cumulative lifetime cost since the

diagnosis of a disease. While it provides a bird’s eye view of the treat-

ment cost, it fails to capture the underlying pattern of the treatment cost

trajectory. We developed a marginal structural functional model (MSFM)

using an I-spline basis to examine the accumulative cost trajectory over

time. Further, to obtain a valid average treatment effect (ATE) estimator,

we used the inverse probability of treatment weighting (IPTW) to control the

confounding between the cost and the treatment groups. Penalized spline

regressions were used to estimate the cost trajectory and ATE. We carried

out extensive simulation studies to examine the performance of the pro-

posed method. We also applied our proposed method to gastric cancers

patients based SEER-Medicare 2005 − 2014 database, and illustrated the
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cost pattern over time under different treatments.

Another important aspect of healthcare cost is to identify the under-

lying pattern of the cost due to a disease. The estimation of healthcare cost

and locating the change points across the cost trajectory is important to

policy makers and clinicians, given the increasing costs of healthcare deliv-

ery, budgetary constraints, and the aging population. While in the litera-

ture the lifetime cost was often studied, the estimation of cost patterns and

change points for cost patterns are important to policy makers and insur-

ance companies. We develop a piece-wise linear mixed effect change point

model as well as a I-spline based non-parametric model to estimate the cost

trajectory over time and evaluate the change points for cost. We model the

patient-level cost trajectory as well as population-level cost trajectory by us-

ing the patient-level regression parameters, which depend on patient-level

characteristics and treatment choices. We applied our proposed methods

on pancreatic cancer patients in SEER-Medicare 2005− 2014 database and

concluded that both models capture the cost trajectory as well the change

points.
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CHAPTER 1

INTRODUCTION

1.1 Estimating Treatment Effect on Medical Cost Trajectory

using Propensity Scores and I-Splines

Medical cost due to different treatments is one of the important aspects to

evaluate in addition to the clinical outcomes. In the literature, the most

commonly used quantity for cost is the average lifetime cost since the di-

agnosis of a disease, which usually fails to capture the changing pattern of

the cost trajectory over time. The pattern of the cost trajectory over time

could be due to treatment received and it could also be due to the pa-

tients’ own characteristics. In Chapter 2, we develop a marginal structural

functional model (MSFM) to examine the average cost trajectory over time.

We apply the MSFM to evaluate the cost difference over time due to treat-

ment based on observational data, such as SEER-Medicare data. It is well

known that the cost trajectory is not only related to the treatment but also

patients’ characteristics. In addition, the treatment selection is also related

to patients’ own health conditions and preferences. Thus, the relationship

between treatment received and the outcome variable is confounded. To

obtain the cost difference due to treatment, confounding variables must

be controlled. We apply generalized propensity score based approaches,

in particular, the inverse probability of treatment weighting (IPTW) method

to estimate the cost trajectory and compare the treatment effect. In the
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MSFM, we propose using I-splines to model the cost trajectory. I-splines is

quite flexible to capture different cost patterns meanwhile I-splines basis

functions are monotonic and suitable to model the accumulative cost tra-

jectories. We carried out extensive simulation studies to examine the per-

formance of the proposed method. We applied the method to investigate the

cost patterns and cost difference due to treatment for patients with stage 2

and 3 gastric cancers based on SEER-Medicare 2005− 2014 database.

1.2 Estimating Healthcare Cost using Parametric Change Point

Models

Estimation of healthcare cost due to a certain disease over a period of time,

say from diagnosis of the disease to the end of life, is very important to pol-

icy makers and clinicians, given the increasing costs of healthcare delivery,

budgetary constraints, and the aging population. It will be informative to

understand cost pattern and trajectory over the course of disease progres-

sion and the recovery from the disease. Based on the recent works, the

lifetime cost of a patient can be divided into four phases. The first phase is

the time period before diagnosis of the disease (i.e., staging phase), where

the cost increases possibly due to frequent health care visits and labora-

tory tests for diagnoses. The second phase is post diagnosis phase, with

a high cost after diagnosis due to different treatments but decreasing over

time and stabilizing into a third phase (i.e., a stable phase). The final phase

is the pre-death phase where the cost increases from the third phase (i.e.,

stable phase). In chapter 3, we propose a five phase model by adding a pre-

disease phase prior to the staging phase, and we develop a piece-wise linear

mixed effect change point model to capture cost trajectory and detect the

2



time points at which changes of phases occur. We use three population-

level parameters to model change points that capture the transition of dif-

ferent phases, and use patient-level characteristics such as patient demo-

graphics, comorbidity, and treatments to capture the cost amount and time

elapsed in each phase. A grid-search approach is applied to estimate the

change point parameters in the model by minimizing the residual sum of

squares. We applied the proposed method to estimate the cost trajectory

for pancreatic cancer patients in SEER-Medicare 2005− 2014 database and

the detailed analysis and results are provided in Chapter 3.

1.3 Non-parametric Models for Estimating Medical Cost and

Change Points

In Chapter 4, we use the concepts of cost phases and change points de-

veloped in Chapter 3 and develop a flexible non-parametric spline model

to capture subject-level as well as population-level cost trajectory and de-

tect the change points. In the non-parametric approach, we propose using

I-splines to model the cost-trajectory, where the I-splines coefficients are

modeled depending on patient characteristics and treatment received. Note

that the first derivative of I-splines is M-splines, and it is straight forward to

get the first derivative of the cost-trajectory using the relationship between

I-splines and M-splines. Hence the change points are easily identified by

the cost trajectory function and their derivatives. We applied the proposed

method to estimate the cost trajectory for pancreatic cancer patients in

SEER-Medicare 2005 − 2014 database and provide a detailed analysis and

result in Chapter 4.
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CHAPTER 2

ESTIMATING TREATMENT EFFECT ON MEDICAL COST

TRAJECTORY USING PROPENSITY SCORES AND I-SPLINES

2.1 Introduction

Estimation of medical cost is crucial in the field of health economics and

policy-making (Lin et al. 1997). Medical expenses are any costs incurred in

the prevention or treatment of injury or disease. Healthcare providers and

policy makers are often interested in the average costs for certain treat-

ment and procedure, and compare the costs for new treatment or device

versus standard treatment (Bang and Tsiatis 2002; Basu et al. 2011). The

average cost for a treatment is understood as the average cost if the entire

underlying population received this treatment (Li et al. 2016). The aver-

age treatment effect (ATE) on cost is defined as the cost difference if the

entire population had been treated with a treatment A versus treatment

B, or the average cost difference if certain policies are implemented in the

population. It is well known that medical costs for individual patients are

often impacted by treatment choice and the patients’ own characteristics

and comorbidity (Austin 2011). The patients’ characteristics and comor-

bidities also impact the treatment choices. Thus, the relationship between

medical cost and treatment is susceptible to confounding. To evaluate the

ATEs due to a treatment or a policy for a certain population, confounding

must be appropriately controlled (Li et al. 2016).
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In literature, the lifetime cost since certain event (e.g., cancer diag-

nosis) is often used as a metric to measure the cost. Many approaches

have been developed to estimate the lifetime cost (Lin et al. 1997; Bang and

Tsiatis 2002; Basu et al. 2011; Li et al. 2016). However, lifetime cost only

provides the overall cost of the population and often fails to capture the

underlying cost pattern. In this project, we target to examine the cost pro-

file over time, and compare their difference under different treatments. We

propose a marginal structural functional model (MSFM) to model the aver-

age cost profile under standard care (say, control group), and also model

the average cost difference between treatment and control. The MSFM is

a function of time and treatment, which captures the cost trajectory and

patterns under different treatments. We used the I-spline basis functions

to construct the MSFM, which is quite flexible to capture different patterns

of costs as well as capture cost difference due to treatments. To control the

confounding, we propose using the inverse probability of treatment weight-

ing (IPTW) method to estimate the ATE. In the following Section 2.2, we

present our proposed method in details. In Section 2.3, we carried out

simulation studies to examine the performance of the proposed method.

In section 2.4, we applied the proposed method to study the cost difference

due to different treatments for patients with stage 2 and 3 gastric cancers

based on SEER-Medicare 2005 − 2014 database. Section 2.5 is devoted to

conclusions and discussions.

2.2 Marginal structural functional model for cost trajectory

Let us denote (X,A, T , Y ) as the random variable to be observed for each

patient, where X denotes a vector of all p confounding variables, A denotes

the treatment assignment with G levels, (say A ∈ {0, 1, · · · , G−1}), T denotes

5



a vector of times elapsed since a certain event (e.g., diagnosis of gastric can-

cer) on which cost accumulates, and Y denotes the accumulated health-

care cost over the time course T . In particular, for a patient (say, ith pa-

tient for i = 1, 2, · · · , N ), the costs accumulated at time Ti = (ti1, ti2, · · · , tini)>

are denoted as Yi = (Yi1, Yi2, · · · , Yini)>. We assume that the covariate X

and treatment assignment A are time invariant variables, and the accu-

mulated cost is monotonically increasing as time increases. Let us denote

the observation for ith patient as (Xi, Ai, Ti, Yi) with Ti = (ti1, ti2, · · · , tini)> and

Yi = (Yi1, Yi2, · · · , Yini)>, where Xi are the observed covariates at baseline

(say at diagnosis) and Ai is the treatment received after diagnosis for the

ith patient (i = 1, 2, · · · , N ). The accumulative cost for the ith patient at time

tij is Yij, where ti1 < ti2 < · · · < tini and Yi1 ≤ Yi2 ≤ · · · ≤ Yini. We intend to

compare the cost difference due to different treatments. That is, we target

to answer the research question on whether the cost differs if all patients

received treatment option a1 versus if all patients received treatment option

a0? Here we assume a0 6= a1, a0, a1 ∈ {0, 1, · · · , G−1}. Let us denote the poten-

tial cost trajectory under treatment a as a function of t, denoted by Y (a)(t).

The potential cost trajectory for patient i under treatment a1 at time Ti =

(ti1, ti2, · · · , tini)> would be Y (a1)
i = (Y

(a1)
i1 , Y

(a1)
i2 , · · · , Y (a1)

ini
)>, and the cost trajec-

tory under treatment a0 at time Ti would be Y
(a0)
i = (Y

(a0)
i1 , Y

(a0)
i2 , · · · , Y (a0)

ini
)>.

The observed outcome Yi = (Yi1, Yi2, · · · , Yini) = Y
(a0)
i if Ai = a0, and Yi = Y

(a1)
i

if Ai = a1. Although there are G potential outcomes for ith patient, say

Y
(0)
i , Y

(1)
i , · · · , Y (G−1)

i , only one of them is observed which corresponds to

treatment Ai that the ith patient receives. That is, Yi = Y
(Ai)
i , which is also

referred as consistency assumption in the literature (Li et al. 2016).

We first develop a MSFM using flexible I-splines to model the average

6



cost trajectory under different treatments:

µa(t) = µ0(t) + 1{A=a}∆a(t). (2.1)

Here µa(t) = E(Y (a)(t)), 1{A=a} = 1 if A = a and 1{A=a} = 0 if A 6= a, and ∆a(t)

denotes the cost difference between treatment a and control:

∆a(t) = E
(
Y (a)(t)

)
− E

(
Y (0)(t)

)
. (2.2)

It is worth to mention that the expected value of the potential outcome is

taken over the entire population. Note that, for each patient, we can only

observe the cost over time under the treatment assigned. In an observa-

tional study, treatment received is often impacted by patient health condi-

tions, which also impact the outcome variable in terms of cost or survival.

Rosenbaum and Rubin (1983) proposed using propensity score to balance

confounding variables between treatment group and control group. Imbens

(2000) extended it to generalized propensity scores for multiple treatment

groups. The generalized propensity score is defined as Pr(A = a|X) for

a = 0, 1, · · · , G − 1, which is often estimated by parametric method (e.g.,

multiple logistic regression) or non-parametric method (e.g., generalized

boosting method). Once the generalized propensity score is estimated, the

IPTW can be applied to the observed data. The weight for the ith patient is

obtained by wi =
G−1∑
a=0

1{Ai=a}
Pr(Ai=a|Xi) for i = 1, 2, · · · , N . Thus, we form a pseudo-

sample where ith subject in the original sample is considered as wi subjects

in the pseudo-sample. The sample size from each treatment group in the

pseudo-sample is approximately same as the original sample size N , and

the distributions of each covariate across different treatment groups in the

pseudo-sample are similar (Yan et al. 2021). Thus, there is no confounding

7



between treatment assignment and outcome in the pseudo-sample. The

inference for average cost difference due to certain treatment is based on

the pseudo-sample.

Note that the propensity score based methods are valid for causal

inference on average treatment effect under the assumptions of exchange-

ability and positivity. The exchangeability assumes that the potential out-

come is independent of the treatment assignment, given the confounding

variables, i.e.,
(
Y (0)(t), Y (1)(t)

)
⊥A|X. The positivity assumes that each pa-

tient has a chance to receive any one of the treatments considered, that

is, 0 < Pr(A = a|X) < 1 for a = 0, 1, · · · , G − 1. In this project, we make the

same assumptions for the exchangeability and positivity. The consistency

of the estimated causal parameters in the proposed models holds under

these assumptions (Robins et al. 2000; Hernan and Robins 2019).

2.2.1 Model for accumulative cost and its estimate

Note that the accumulative cost over time is a monotonic function of t. We

propose using I-spline basis function to capture the monotonic nature of

the accumulative cost over time. Let us take K knots in the range of time

points, say, 0 = τ1 < τ2 < · · · < τK = max
i=1,··· ,N
j=1,··· ,ni

(tij) with the interior knots based

on the equally-spaced quantiles of tij (i = 1, 2, · · · , N ; j = 1, 2, · · · , ni). Let us

denote I3
κ(t) (κ = 1, · · · , K−2) as the cubic I-spline basis functions based on

the K knots, where I3
κ(t) is a smooth monotonic function ranged between

[0, 1] with support interval on [τκ, τκ+3] (Wan et al. 2017). The I-spline basis

functions can be constructed using the iSpline function from the R-package

splines2.

We use the linear combination of the I-spline basis functions to model

8



the potential cost trajectory for control group.

µ0(t) = E
(
Y (0)(t)

)
= β0 +

K−2∑
κ=1

βκI
3
κ(t) = B>(t)β, (2.3)

where β = (β0, β1, · · · , βK−2)> with βκ ≥ 0 for κ = 1, · · · , K − 2 and B(t) =

(1, I3
1 (t), · · · , I3

K−2(t))>. The constraint on βκ is a sufficient condition for µ0(t)

to be monotonic. The difference of potential cost trajectory between treat-

ment a and control is modeled by ∆a(t):

∆a(t) = E
(
Y (a)(t)

)
− E

(
Y (0)(t)

)
= γ

(a)
0 +

K−2∑
κ=1

γ(a)
κ I3

κ(t) = B>(t)γ(a) (2.4)

with γ(a) = (γ
(a)
0 , γ

(a)
1 , · · · , γ(a)

K−2)>.

We propose the following MSFM to model the potential average cost

trajectory if all patients had received treatment a (a = 0, 1, · · · , G− 1):

µa(t) = µ0(t) +
G−1∑
g=1

1{a=g}∆g(t) = B>(t)β +
G−1∑
g=1

1{a=g}B
>(t)γ(g). (2.5)

Here 1{a=g} is an indicator variable, and 1{a=g} = 1 if a = g, and 0 otherwise.

The MSFM could be considered as an extension of the marginal structural

model (MSM) developed by Hernan and Robins (Hernan and Robins 2019).

It is clear that equation (2.5) reduces to the potential cost trajectory µ0(t)

when a = 0, and equation (2.5) becomes µa(t) = µ0(t) + ∆a(t) for treatment

a. That is, µa(t) models the average potential cost trajectory over time for

treatment group a for a = 0, 1, · · · G− 1. A sufficient condition for µa(t) to be

monotonic is that βκ and γ
(a)
κ satisfy βκ + γ

(a)
κ ≥ 0 for κ = 1, · · · , K − 2 and

a = 1, 2, · · ·G− 1.

To estimate β and γ(a) in equation (2.5), the penalized splines are

used. That is, β and γ(a) are estimated by minimizing the following penalized
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residual sum of squares (PRSS):

PRSS(λ) =
N∑
i=1

wi

[(
Yi − µ0(Ti)−

G−1∑
g=1

1{Ai=g}∆g(Ti)
)> (

Yi − µ0(Ti)−
G−1∑
g=1

1{Ai=g}∆g(Ti)
)]

+ λ
(
‖β‖2 +

G−1∑
g=1

‖γ(g)‖2
)

=
N∑
i=1

wi

∣∣∣∣∣∣∣∣(Yi −B>(Ti)β −
G−1∑
g=1

1{Ai=g}B
>(Ti)γ(g)

∣∣∣∣∣∣∣∣2 + λ
(
‖β‖2 +

G−1∑
g=1

‖γ(g)‖2
)

=
(
Y −Xθ

)>
W
(
Y −Xθ

)
+ λ‖θ‖2. (2.6)

Here

Y =



Y1

Y2

...

YN


∈ RNtot , θ =



β

γ(1)

...

γ(G−1)


∈ RG(K−1),

X =



B>(T1) 1{A1=1}B
>(T1) · · · 1{A1=G−1}B

>(T1)

B>(T2) 1{A1=2}B
>(T2) · · · 1{A2=G−1}B

>(T2)

... ... . . . ...

B>(TN) 1{AN=1}B
>(TN) · · · 1{AN=G−1}B

>(TN)


,

and W = BlockDiag
(
In1×n1 w1, In2×n2 w2, · · · , InN×nNwN

)
. Here Ntot =

∑N
i=1 ni,

β = (β0, β1, · · · , βK−2)>, γ(g) = (γ
(g)
0 , γ

(g)
1 , · · · , γ(g)

K−2)> for g = 1, · · · , G − 1. To

make sure µa(t) (a = 0, 1, · · · , G − 1) being monotonic, the minimization of

the PRSS(λ) is subject to βκ ≥ 0 and βκ + γ
(g)
κ ≥ 0 for κ = 1, · · · , K − 2 and

g = 1, 2, · · · , G−1. The constrained optimization can be implemented by the

function gam in R-package mgcv.

The tuning parameter λ in equation (2.6) controls the trade-off be-

tween the goodness-of-fit in the first term and the smoothness in the sec-
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ond term. For a fixed λ, the fitted value Ŷ = SλY, where

Sλ = X
(
X>WX + λI

)−1

X>W.

To obtain Sλ, we solve the following equation for θ̂:

∂PSS(λ)

∂θ
= −2X>W

(
Y −Xθ

)
+ 2λθ = 0

=⇒
(
X>WX + λI

)
θ = X>WY

=⇒θ̂ =
(
X>WX + λI

)−1

X>WY.

Thus, Ŷ = Xθ̂ = X
(
X>WX + λI

)−1

X>WY , SλY. λ is chosen as the one

which minimizes the generalized cross validation (GCV) criteria (Golub et

al. 1979):

GCV (λ) =
Ntot||Y − Ŷ||2

(Ntot − tr(Sλ))2
.

Here tr(Sλ) is the trace of the matrix Sλ.

The treatment effect for treatment a versus control can be estimated

as ∆̂a(t) = γ̂
(a)
0 +

K−2∑
k=1

γ̂
(a)
k I3

k(t), and the inference on ∆a(t) can be made based

on its estimate ∆̂a(t) and its bootstrap variance.

In case that there are two treatment groups, say treatment (a = 1)

and control (a = 0), the proposed method can be easily simplified. The cost

under control is equation (2.3) is µ0(t) = B>(t)β, and the cost difference due

to treatment is:

∆(t) = E
(
Y (1)(t)

)
− E

(
Y (0)(t)

)
= γ0 +

K−2∑
κ=1

γκI
3
κ(t) = B>(t)γ. (2.7)
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Thus, the MSFM in equation (2.5) is simplified as:

µa(t) = µ0(t) + a∆(t) = β0 +
K−2∑
κ=1

βκI
3
κ(t) + a

(
γ0 +

K−2∑
κ=1

γκI
3
κ(t)

)
= B>(t)β + aB>(t)γ.

(2.8)

Thus equation (2.8) reduces to the potential cost trajectory µ0(t) when a = 0,

and µa(t) = µ0(t) + ∆(t) when a = 1. The estimation procedure is carried out

similarly by minimizing the penalized residual sum of squares and λ is

selected by minimizing the GCV criteria.

2.2.2 Model for monthly cost and its estimate

Note that the first derivative of I-spline is a M-spline, that is I3
κ
′
(t) = M3

κ(t)

(Ramsay 1988; Wan et al. 2017). Once we obtain the accumulative cost for

µa(t) = µ0(t) + ∆(a)(t), we can take the first derivative for µa(t) to obtain the

average monthly cost under each treatment condition:

µa
′(t) = µ0

′(t) +
G−1∑
g=1

1{a=g}∆g
′(t) =

K−1∑
κ=1

βκM
3
κ(t) +

G−1∑
g=1

1{a=g}

K−2∑
κ=1

γ(g)
κ M3

κ(t). (2.9)

We can also obtain the average monthly cost difference between treatment

a and control: ∆′a(t) =
K−2∑
κ=1

γ
(a)
κ M3

κ(t). The monthly cost difference between

treatment a and a′ can be obtained as ∆′a(t)−∆′a′(t). The inference for ∆′a(t)

and ∆′a(t)−∆′a′(t) can be obtained using their estimates and their bootstrap

variance estimates.

2.3 Simulation studies

To examine the performance of the proposed method, we carried out simu-

lation studies under six different cost-profile generating models. For each

cost-profile generating model, we generated 3 groups (say, one control group
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(A = 0) and two different treatment groups (A = 1 or 2)) based on multi-

nomial distribution which was specified in step 2 under the simulation

outlined later in this section. The cost generating model was taken as

Y (t) = b0 + b1 f(t) + I{A=1}∆1(t) + I{A=2}∆2(t) + ε, where b0 + b1f(t) mimics

the cost profile for patient with covariate X at time t for control group, and

∆a(t) captured the treatment effect due to treatment a (a = 1, 2). We used

two simulation settings for the cost-profile function in the control group:

F1. Linear increment rate per month: f(t) = t.

F2. Nonlinear increment rate per month: f(t) = t+ sin(t).

Under each increment setting, the cost differences due to treatment ∆a(t)

(a = 1, 2) were simulated under each one of the following three settings:

S1. ∆1(t) = 0 and ∆2(t) = 0 for no treatment effect.

S2. ∆1(t) = γ0 + γ1t and ∆2(t) = γ0 + 10γ1t for cost difference being linear

in time, where γ0 = 300 and γ1 = −10.

S3. ∆1(t) = γ0 + γ1sin(π
4
t) and ∆2(t) = γ0 + 10γ1sin(π

4
t) for cost difference

being non-linear, where γ0 = 50 and γ1 = −50.

For each one of the six combinations, we also changed the magnitude of

noise component ε ∼ N(0, σ2) by taking σ = 10 and σ = 100 respectively.

Thus we had 12 simulation settings in total. We generated data under each

simulation setting, we then used the proposed IPTW method to estimate

the average treatment effect on the cost profile, and we also estimated the

cost profile without IPTW. In the simulation study, we examined whether

the proposed method could estimate the true cost profile appropriately and

whether the estimates improved as the noise component was decreased. We

followed the setting from Bang and Tsiatis (2002) and Li et al. (2016) with
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some modifications. The simulation studies were carried out by generat-

ing 1000 samples under each simulation setting, and each sample included

1000 patients (N = 1000). The simulation studies were carried out by the

following steps:

Step 1. We generated a set of 4 covariates, Xi = (Xi1, Xi2, Xi3, Xi4) for

ith patient (i = 1, 2, · · · , N), Xi1, Xi2 ∼ Bernoulli(0.5) − 0.5 and

Xi3, Xi4 ∼ Normal(0 , 1). Here, we assume that (Xi1, Xi2, Xi3, Xi4)

were time invariant covariates for the ith patient.

Step 2. The treatment selection for the ith patient (say Ai) was gener-

ated from the following multinomial distribution with parameter

(pi0, pi1, pi2), where pia = Pr(Ai = a|Xi) = eX
>
i δa

1+eX
>
i
δ1+eX

>
i
δ2

for a = (1, 2),

pi0 = 1− pi1 − pi2, δ1 = (1,−1, 1,−1)> and δ2 = (−1, 1,−1, 1)>.

Step 3. The survival time si (in months) for ith patient was generated

from an exponential distribution: si ∼ Exponential(20 + X>i δe),

where δe = (0, 1,−1, 0)>.

Step 4. We intended to examine the cost profile up to 24 months from

diagnosis. We generated the accumulative cost response for ith

patient (i = 1, 2, · · · , N) according to the cost-profile:

Yij = bi0 + bi1 f(tij) + I{Ai=1}∆1(tij) + I{Ai=2}∆2(tij) + εij.

Here the parameters bi0 = 500 + X>i δb0 and bi1 = 100 + X>i δb1 with

δb0 = (100,−100, 10,−10)> and δb1 = (100, 10, 100, 10)>, and the time

sequence tij = 0, 1, 2, · · · ,min(si, 24). For patients who died before

24 months from diagnosis (say, si < 24), the accumulative cost,

Yij, would not change from the month of si to 24. That is, Yij = Yisi
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for si < tij ≤ 24.

Step 5. Using the data (Xi, Ai) generated from Steps 1 and 2, we esti-

mated the generalized propensity score Pr(A = Ai|Xi) using the

multinomial regression model. We then calculated the weight

for the ith subject as the inverse probability of treatment re-

ceived, that is, wi = 1
Pr(A=Ai|Xi) .

Step 6. We then applied the IPTW method to estimate cost profile (say,

µ̂0(t)) and treatment effects on cost (say, ∆̂a(t) for a = 1, 2). We

also estimated the cost profile and treatment effect without us-

ing IPTW, which were used to examine the performance of the

proposed method using IPTW versus without using IPTW.

Step 7. To examine the performance of each method we calculated the

potential true cost for ith patient under each treatment a (a =

0, 1, 2) as

Y (a)(tij) = bi0 + bi1 f(tij) + I{a=1}∆1(tij) + I{a=2}∆2(tij) + εij,

for i = 1, · · · , N and j = 1, · · · ,min(si, 24). If the survival time for

ith patient is less than 24, then Y
(a)
ij = Y

(a)
ini

for si < tij ≤ 24. The

true treatment effects for cost were calculated as:

∆true
1 (t) =

N∑
i=1

Y
(1)
it −

N∑
i=1

Y
(0)
it and ∆true

2 (t) =
N∑
i=1

Y
(2)
it −

N∑
i=1

Y
(0)
it

for t = 1, 2, · · · , 24.

Step 8. We repeated the simulation M = 1000 times under each sim-

ulation setting. The resulting estimated cost profile for cohort
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group in mth simulation was denoted as µ̂
(m)
0 (t) and the result-

ing estimated treatment effect in mth simulation was denoted as

∆̂
(m)
a (t) (a = 1, 2;m = 1, · · · ,M).

Step 9. We calculated the true average treatment effect as the mean

of ∆true
1 (t) and ∆true

2 (t) over the 1000 simulated data, denoted

as ∆̄true
1 (t) and ∆̄true

2 (t). The performance of proposed methods

with/without using IPTW were indicated by how close the ATE

estimates to the true treatment effects ∆̄true
1 and ∆̄true

2 were. The

following performance metrics were used for treatment a versus

control (a = 1, 2):

Mean absolute error (MAE),

MAEa =
1

M

M∑
m=1

(
sup

1≤t≤T

(
|∆̂(m)

a (t)− ∆̄true
a (t)|

))
;

Mean bias error (MBE),

MBEa =

∣∣∣∣∣ 1

M

M∑
m=1

(
1

T

T∑
t=1

(
∆̂(m)
a (t)− ∆̄true

a (t)
))∣∣∣∣∣;

and Root mean square error (RMSE)

RMSEa =
1

M

M∑
m=1

(√√√√ 1

T

T∑
t=1

(
∆̂

(m)
a (t)− ∆̄T

a (t)
)2
)

where T = 24 and M = 1000.

Simulation results: The estimated cost trajectory for control group

and the average treatment effect on cost between treatment a and cohort

over time were presented in Figure 2.1 for linear increment rate function

and in Figure 2.2 for non-linear increment rate function. The performance

16



metrics under 12 different simulation settings, which included two types of

increment rate for control group (F1 and F2), three types of cost difference

functions (S1, S2, and S3), and two noise settings (σ = 10 and 100), were

summarized in Table 2.1.

Table 2.1: Summarized performance metrics for estimating the average
treatment effect on cost with IPTW (checked) and without IPTW under 12
different settings.

f(tij) ∆(t) σ IPTW ∆1(t) ∆2(t)
MAE MBE RMSE MAE MBE RMSE

F1

S1
10

X 336.76 55.46 202.94 405.40 46.90 239.74
× 1213.08 646.89 738.23 1218.85 646.66 739.75

100
X 437.83 128.12 274.85 421.34 124.77 244.97
× 1275.49 713.23 796.05 1282.23 713.25 797.74

S2
10

X 368.27 72.33 220.88 363.24 49.06 217.11
× 1221.67 651.57 743.48 1216.11 644.80 737.76

100
X 412.16 120.43 257.41 387.74 117.51 240.46
× 1288.21 719.26 803.15 1277.49 710.25 794.42

S3
10

X 398.50 49.52 239.12 387.54 50.71 225.91
× 1215.12 649.03 740.45 1205.89 639.21 731.22

100
X 423.50 103.34 263.99 411.15 110.53 247.74
× 1281.08 716.61 799.87 1270.19 705.88 789.60

F2

S1
10

X 346.78 66.68 216.50 384.42 27.10 234.87
× 1179.28 650.98 740.57 1157.44 635.34 724.42

100
X 381.24 139.60 244.82 408.56 109.38 257.11
× 1245.29 718.67 800.18 1230.28 707.25 788.66

S2
10

X 341.79 48.83 212.06 379.41 48.81 234.36
× 1177.11 650.36 739.51 1153.24 632.80 721.71

100
X 391.15 108.76 249.74 381.75 139.65 245.26
× 1247.10 719.20 800.82 1242.32 715.60 797.26

S3
10

X 357.94 48.02 221.42 383.13 47.19 232.75
× 1165.86 643.91 732.40 1176.01 646.14 736.56

100
X 397.63 110.25 254.64 428.49 142.62 269.90
× 1258.02 725.28 807.92 1238.21 714.98 796.04

Figure 2.1 showed the simulation results for the estimated cost tra-

jectory for control group under the linear increment rate function F1: f(tij) =

tij (Panel A1) and the cost difference over time under three different settings

for ∆a(t): no treatment effect (Panel A2), linear treatment effect (Panel A3),
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Figure 2.1: Simulation results for the estimated cost trajectory for control
group under the linear increment rate function F1: f(tij) = tij (Panel A1)
and the cost difference over time under three different settings for ∆a(t):
no treatment effect (Panel A2), linear treatment effect (Panel A3), and non-
linear treatment effect (Panel A4).
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Figure 2.2: Simulation results for the estimated cost trajectory for control
group under the non-linear increment rate function F2: f(tij) = tij + sin(tij)
(Panel A1) and the cost difference over time under three different settings
for ∆a(t): no treatment effect (Panel A2), linear treatment effect (Panel A3),
and non-linear treatment effect (Panel A4).
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and non-linear treatment effect (Panel A4), where σ was set as 10. In Fig-

ure 2.1 Panel A1, the true cost trajectory under control was shown as solid

line, the estimated cost trajectory using IPTW for control group was shown

as a dashed line which overlaid with the true cost trajectory (solid line), in-

dicating an unbiased estimation to the true cost trajectory. The estimated

cost trajectory without using IPTW for control was shown as a dotted line

in panel A1, which was far from the solid line, indicating a biased estimate

for the true cost trajectory. Panel A2-A4 showed the true treatment effect

on cost between treatment 1 and control (i.e. ∆1(t)) as a solid line, between

treatment 2 and control (i.e. ∆2(t)) as a dashed line. The estimated cost

difference using IPTW for ∆̂1(t) was shown as a short dashed line, and for

∆̂2(t) as a long dashed line. The estimated treatment effects without IPTW

were shown as a dotted line for ∆̂1(t) and a dash-dotted line for ∆̂2(t). Panel

A2 showed the results for no treatment effect, Panel A3 showed for linear

treatment effect, and Panel A4 showed for non-linear treatment effect. In

Panel A2, ∆̄1(t) = ∆̄2(t) = 0, the true treatment cost for treatment 1 and

treatment 2 overlaid as the solid line. The estimated average treatment ef-

fect using IPTW ∆̂1(t) (dashed line) and ∆̂2(t) (long dashed line) Where close

to the true ∆̄1(t) and ∆̄2(t), while the estimated ATE without using IPTW

(dotted line for ∆̂1(t) and dash-dotted line for ∆̂2(t)) were far away from the

truth ∆̄1(t) and ∆̄1(t). Similar results were shown for panel A3 and A4.

Figure 2.2 showed the simulation results under non-linear increment rate

F2: f(tij) = tij + sin(tij) under different treatment effects. From Figure 2.1

and 2.2, it is clear that our estimated cost profile for control group and

treatment effect with IPTW were close to the true values while the estimate

without using IPTW were far away from the true values indicating that the

proposed IPTW provided unbiased estimates, but not the method without
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IPTW.

Table 2.1 summarizes the performance measures for each of the 12

simulation scenarios. From Table 2.1, it is clear that the performance met-

rics under each setting with the proposed IPTW method were better to es-

timate the average treatment effect than those without using IPTW. It was

also clear that the estimation improved as the noise, σ, decreased from 100

to 10. Hence, the inference on ATE should be made based on the proposed

method with IPTW.

2.4 Case study

Gastric cancer is a major health burden worldwide, and it is the second

cause of cancer deaths after lung cancer (Correa 2013). The treatment op-

tions for the patients with stage II or III gastric cancer include chemother-

apy and surgical procedures. It is interesting to examine whether the ad-

dition of chemotherapy to surgical procedure would benefit the patients’

outcomes in terms of survival and overall medical costs. We consider three

treatment groups: chemotherapy was given before surgery but not after

(say, A1: Chemo < Surgery); chemotherapy was given both before and af-

ter surgery (say, A2: Chemo < Surgery < Chemo); and chemotherapy was

given after surgery but not before (say, A3: Surgery < Chemo). Thus, we

restricted our study cohort to patients with stage II or III gastric cancer who

had surgical procedures and chemotherapy for gastric cancer using SEER

Medicare 2005 − 2014 gastric cancer data. It is well known that the cost is

not only determined by the treatment received but also by patients’ own co-

morbid conditions. We use the national cancer institute (NCI) comorbidity

index to measure the patient’s comorbidity (Klabunde et al. 2000), which

were obtained from Medicare claims data one year prior diagnosis. We also
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examined the cost within two years after diagnosis. Thus, the study cohort

was formed using the SEER-Medicare enrollment file (Pedsf) with the fol-

lowing inclusion criteria: (1) patients with gastric cancer specific primary

site, histology, and behavioural code in the SEER database within year

2006− 2012; (2) patients in stage II and III, since patients in stage II and III

are more likely to go through both chemotherapy and surgical procedure.

The NCI comorbidity index were calculated using the 2014 NCI SAS

Macro from the NCI website (NCI 2014) using the SEER-Medicare enroll-

ment file (Pedsf) and the diagnostic codes in the inpatient file (Medpar),

the outpatient file (Outpat) and the carrier claims file (NCH). The other

covariates obtained from Pedsf included demographic variables (i.e. race,

age, sex), geographical variable (such as urban/rural and state) and can-

cer variables (such as specific primary site, histology, behavioural code and

indicator for first diagnosis).

The three different treatment groups (say A1, A2, and A3) were formed

by following algorithms from literature (Yeh et al. 2017; Wu et al. 2019).

Group A1 for “Chemo < Surgery” included patients who had chemotherapy

between diagnosis and surgery but not after surgery. More specifically, a

patient was counted in group A1 if all of the following inclusion/exclusion

criteria were met: (i) first chemotherapy was after diagnosis but within

six months of diagnosis, (ii) surgery was after the first chemotherapy but

within one year of the first chemotherapy, and (iii) No chemotherapy seen

between surgery and the following six months. Group A2 for “Chemo <

Surgery < Chemo” included patients who had the same criteria as (i) and

(ii) from group A1, however the patient had chemotherapy after surgery

within six months period. Group A3 for “Surgery < Chemo” included pa-

tients who had (i) surgery after diagnosis within one year, (ii) the first chemo
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therapy was after surgery within six months period. We had 6447 Patients

with stage II and III Gastric cancer. By applying the inclusion/exclusion

criteria (flow chart in Appendix, Figure A0.1), we had N = 959 patients for

this study. Among them, 156 patients were under treatment A1, 92 patients

were under treatment A2, and 711 patients were under treatment A3.

All medical cost from Medpar, Outpat and NCH files from the day of

diagnosis up to two years of follow-up were obtained as the primary out-

come in the analysis. The costs were standardized to 2014 cost rates using

the Consumer Price Index (CPI-U) data (U.S. Department of Labor Bureau

of Labor Statistic 2021). For each patient, monthly costs were calculated

as the sum of all costs occurring during that month. Once we have the

monthly costs, we calculated the accumulative monthly costs for two years

since diagnosis. Figure 2.3 showed the monthly cost (Panel A) and cumu-

lative cost (Panel B) for four randomly selected patients. Figure 2.3 Panel

C portrayed the observed average accumulative cost trajectory under the

three treatment groups (solid line for A1, dashed line A2, and dotted line

A3), and Panel D showed the Kaplan–Meier survival curves for the three

treatment groups.

Descriptive statistics and significance tests for the covariates associ-

ated with treatment and cost were provided in Table 2.2 under the column

“Original sample”. It was clear that age, NCI index, race, and geographic

variables (say, different states) were significantly associated with treatment

groups. The survival time were not significantly associated with treatment

groups, and the accumulative two-year costs were significantly associated

with treatment groups. However, there were possible confounding between

treatment and outcome. We applied the proposed IPTW method to estimate

the cost trajectory over time. To do that, we first estimated the generalized
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Figure 2.3: Illustration of monthly cost (Panel A) and accumulative cost
(Panel B) for four randomly selected patients, and the average cost trajec-
tory (Panel C) and the Kaplan–Meier survival curves (Panel D) for the three
different treatment groups.
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propensity score using the multinomial regression model and obtained the

inverse probability of treatment received as a weight for each subject to

form a weighted sample. The summarized statistics in the weighted sam-

ple were reported in Table 2.2 under the column “Weighted sample”. It

was clear that in the original sample some of the covariates were signifi-

cantly different among the three treatment groups, while covariates were

not significantly different any more among the three treatment groups in

the weighted sample. Thus, the confounding due to the variables in Table

2.2 was more likely removed, and the estimates for the accumulative costs

based on the weighted sample were less biased. We estimated the accumu-

lative cost trajectory under each treatment group using the sample mean

(solid line), the method without IPTW (dotted line) and the methods with

IPTW (dashed line) (see Figure 2.4 Panels A1-A3). We also estimated the
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accumulative cost difference due to treatments using the sample mean dif-

ference (solid line), the method without IPTW (dotted line) and the methods

with IPTW (dashed line) (see Figure 2.4 Panels B1-B3).

The monthly cost profiles were obtained by the average of the monthly

cost in the original sample. We obtained the estimated monthly cost by

taking the derivative of the accumulative costs for each associated MSFM

with IPTW and without IPTW, which were presented in Figure 2.4 Panels

C1-C3. We also estimated the monthly cost difference due to treatments

using the sample mean difference (solid line), the method without IPTW

(dotted line) and the methods with IPTW (dashed line) (see Figure 2.4 Panels

D1-D3).

In all panels, the thin dashed line running on two sides of the esti-

mated curves provided a 95% point-wise confidence band for the estimated

quantities based on the proposed method with IPTW.

From Table 2.2, it was clear that some confounding variables were

significantly different in the original sample. However, they were not signif-

icantly different anymore in the weighted sample. Thus, we drew the con-

clusion based on the MSFM with IPTW. From Figure 2.4 (Panels A1-A3 and

B1-B3), we conclude that the accumulative cost over time were not signifi-

cantly different between A1 (Chemo < Surgery) and A2 (Chemo < Surgery

< Chemo), however the accumulative cost for A3 (Surgery < Chemo) was

significantly higher for the first five months than A1 and A2 groups, but

the accumulative cost at A3 was significantly lower after seven months from

diagnosis. From 2.4 (Panels C1-C3 and D1-D3), we saw the pattern and

difference in monthly cost. While the average monthly cost differed around

six months between A1 and A2, the overall monthly cost pattern between

A1 and A2 remained similar. However, A3 differed significantly from A1
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and A2 during the first eight months. While, initially for the first three

months, the cost for A3 was significantly higher than A1 and A2, the cost

for A3 dropped rapidly from second month to sixth month and the cost for

A3 was significantly lower than A1 and A2 during third to eighth month.

The monthly cost after eight month was similar among the three groups.

The current approach not only helped analyse the cost pattern over time

but also helped us detect the cost spikes in cost trajectory over time. It was

evident from Figure 2.4 (Panels C1-C3) that the average monthly costs over

time were substantial in the initial phase after diagnosis but reduced after

a year of treatment.
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Figure 2.4: The estimated accumulative cost trajectory under three differ-
ent treatment combinations (Panels A1-A3) and the comparisons between
different treatments (Panels B1-B3) and the estimated average monthly
cost trajectory under three different treatment combinations (Panels C1-
C3) and the comparisons between different treatments (Panels D1-D3) for
stomach cancer patients.
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B2: Accumulative cost difference for A3 vs A2
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B3: Accumulative cost difference for A3 vs A1
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D1: Monthly cost difference for A2 vs A1
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D2: Monthly cost difference for A3 vs A2
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D3: Monthly cost difference for A3 vs A1
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2.5 Discussion

In this study, we developed a MSFM model to evaluate the population-

level cost trajectory under certain treatment and to estimate cost differ-

ence over time using penalized splines and IPTW. The proposed method

provides consistent estimates for population-level cost trajectory and the

average treatment effect on cost. We applied the proposed method to study

the cost trajectory and treatment effects for patients with gastric cancer

based on SEER Medicare database. We illustrated how the accumulative

cost and monthly cost over time provided more information than a single

time-point cost evaluation. Based on the proposed model, we can easily

obtain monthly cost estimates by using the first derivative of the cumu-

lative function modeled by I-splines, which are M-spline and provide valid

inference on monthly cost.

The proposed method does not incorporate with censoring. However,

in case of censoring, the probability of censoring can be modelled, and the

inverse probability of non-censoring weighting along with IPTW could be

applied to obtain unbiased population-level cost and evaluate treatment

effect on cost. (Li et al. 2016).
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CHAPTER 3

ESTIMATING HEALTHCARE COST USING PARAMETRIC

CHANGE POINT MODELS

3.1 Introduction

Estimation of healthcare costs is crucial in the medical field. Healthcare

cost associated with a certain disease could vary according to the received

treatments and patients’ characteristics and comorbidities. The healthcare

cost could also change dramatically due to certain events such as diagno-

sis of cancer, intensive treatment, and death. With the increasing costs of

healthcare delivery, budgetary constraints, and the aging population, it is

important for policymakers and clinicians to know the cost trajectory in re-

gards to patients diagnosed with certain diseases that have high incidences

and are expensive to treat, e.g., cancer (Mihaylova et al. 2011; Wijeysundera

et al. 2012). In the literature, lifetime cost due to certain disease is often

studied (Lin et al. 1997; Bang and Tsiatis 2002; Basu et al. 2011; Li et al.

2016). However, it will be more informative to understand cost patterns

and trajectories throughout disease progression and recovery.

Recent literature has suggested that there are multiple phases for the

cost of a patient diagnosed with cancer (see, e.g., Brown et al. 2002; Wijey-

sundera et al. 2012; Tramontano et al. 2019). In particular, Wijeysundera

et al. (2012) and Tramontano et al. (2019) suggested that the healthcare

cost related to cancer can be divided into 4 phases. Understanding the
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different cost phases and identifying the points at which cost phases oc-

cur is thus crucial for policymakers and health insurance companies (Tra-

montano et al. 2019). However, while cost phases are considered critical

parameters for cost analysis in most literature, the rigorous methods to

estimate these parameters are lacking. For example, both Wijeysundera

et al. (2012) and Tramontano et al. (2019) defined the cost phases and

estimated the cost using the sample means of different sub-cohorts. This

approach lacks the robustness to provide a statistical model for estimat-

ing the change points with varying patient cohort and different patients’

characteristics and treatment choices. In this project, we provide a statis-

tical framework for estimating the change points along with cost trajectory.

Although change point detection techniques are widely used in economics

and meteorology (Reeves et al. 2007; Paulus et al. 2015), the use of change

points in medical cost is novel.

In evaluating the cost related to cancer, Wijeysundera et al. (2012)

and Tramontano et al. (2019) proposed that the cancer attributable cost

can be categorized into 4 different phases due to the required medical cares

which include the diagnosis phase, initial treatment phase, stable phase

and a terminal phase. It is also very important to capture the baseline cost

prior to the diagnosis phase as it helps us identify the time point when the

cost starts to increase and thus help in estimating the first change point

before diagnosis. In this project, we propose a model with 5 healthcare cost

phases, as illustrated in Figure 3.1. The 5 different cost phases are defined

as: (P0) Pre-disease phase, a phase where patients may not be aware of

any such disease or do not have any health conditions until a certain time

(t0 + τ−1) before diagnosis time at t0, and the baseline cost parameter in

this phase is denoted by β0; (P1) Diagnosis phase, which is defined from
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Figure 3.1: Illustration of cost phases and change points
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the change point before diagnosis (t0 + τ−1) to the time of diagnosis of the

disease at t0. During this time, extensive diagnostic tests and procedures

could be performed, which drives the medical cost higher. The cost pa-

rameter associated with this phase is denoted by β1; (P2) Initial treatment

phase, which starts from the diagnosis time t0 and lasts till the end of in-

tensive treatment at time (t0 + τ1). The cost during this phase continues

to decrease with time until it reaches a comparatively stable phase, and

the cost parameter associated with this phase is denoted by β2; (P3) Stable

phase, which lies between the change point after diagnosis (t0 + τ1) and be-

coming severely ill again right before the end of life at time (D−τ2) which is τ2

months before the time of death at time D. The cost parameter associated

with this phase is denoted by β3; and (P4) Terminal phase, which spans

from becoming severely ill after the stable phase, at the terminal change

point (D − τ2) to the end of life at time D. The cost parameter associated

with this phase is denoted as β4.

It is well-known that medical costs are often impacted by treatment
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received and patient comorbidities (Austin 2011). To incorporate the pa-

tient level characteristics and treatment, we propose a piece-wise linear

mixed model with change points at τ−1, t0, τ1, and τ2 and cost parameters

(β0, β1, β2, β3, β4)> to estimate the cost pattern over time, where cost param-

eters are based on the patients’ covariates and are modeled and estimated

as patient specific.

The rest of the paper is organized as follows. In section 3.2, we pro-

vide detailed information for the proposed method. In section 3.3, we apply

the proposed method to estimate the cost trajectory for pancreatic cancer

patients in SEER-Medicare 2005 − 2014 database. The final section 3.4 is

reserved for discussion.

3.2 The proposed model for change point detection and cost

trajectory estimation

3.2.1 A simple change point model

Without loss of generality, t0 is fixed as time 0, since we can always align

the patients cost and standardize them from the time of diagnosis. Let C(t)

denote the cost during month t and D denote the time of death. Under

the five phase assumption as illustrated in Figure 3.1, with the established

change points models in literature (Reeves et al. 2007; Paulus et al. 2015),

the cost trajectory during pre-disease phase and diagnosis phase can be

captured by a 3-parameter model C(t) = β0 + β1

(
t − τ−1

)+ for t ≤ 0, where

A+ = A if A > 0 and 0 otherwise, for a generic quantity A. The cost profile

from diagnosis to death can be captured by a 5-parameter model, C(t) =

β3 +β2

(
τ1− t

)+
+β4

(
t− (D− τ2)

)+ for t > 0, where D is the time of death. That
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is, the proposed piece-wise change model can be written as:

C(t) =
[
β0 + β1

(
t− τ−1

)+
]
I(t<0)

+
[
β3 + β2

(
τ1 − t

)+
+ β4

(
t− (D − τ2)

)+
]
I(t≥0) + ε(t)

(3.1)

where I(·) is the indicator function such that I(A) = 1 if a generic event A

is true and 0 otherwise, and ε(t) ∼ N(0, σ2R) where R is an auto-regressive

correlation matrix. It is clear that E
[
C(t)

]
is a continuous function of time t

with a possible discontinuity at 0, where the 3-parameter model for the first

two phases and 5-parameter model for the last three phases meet. Since

the cost function in practice is often continuous, we further impose the

constraint β0 +β1(0− τ−1) = β3 +β2(τ1−0) to ensure the continuity of E
[
C(t)

]
at t = 0. Thus, by replacing β3 = β0 − β1τ−1 − β2τ1 in C(t) the expectation of

the cost function in equation (3.1) can be written as :

E
[
C(t)

]
=
[
β0 + β1

(
t− τ−1

)+
]
I(t<0)

+
[
β0 + β1

(
0− τ−1

)
− β2

(
τ1 − 0

)
+ β2

(
τ1 − t

)+
+ β4

(
t− (D − τ2)

)+
]
I(t≥0)

= β0 + β1

[(
t− τ−1

)+
I(t<0) −

(
τ−1

)
I(t≥0)

]
+ β2

[{
− τ1 +

(
τ1 − t

)+
}
I(t≥0)

]
+ β4

[(
t− (D − τ2)

)+
I(t≥0)

]
= Z>β

(3.2)

where Z =

(
1, (t − τ−1)+I(t<0) − (τ−1)I(t≥0),

(
− τ1 + (τ1 − t)+

)
I(t≥0),

(
t − (D −

τ2)
)+
I(t≥0)

)>
, β =

(
β0, β1, β2, β4

)> are the regression parameters related to

cost, and τ = (τ−1, τ1, τ2)> denote the three change points. Both β and τ are

required to be estimated.

It is expected that the cost profile also depends on patients’ character-

istics such as age and comorbid conditions (Austin 2011). We further pro-
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pose a model where the regression parameters are dependent on patients’

variables and are patient specific, while the change points are population

specific.

3.2.2 The proposed patient-level change point cost models

Let (X, T , C, δ) denote the random variable observed for a patient. X de-

notes a vector of p time invariant covariates of the patient, including pa-

tients’ characteristics, medical history, and treatment information. T =

(t−a, · · · , t0, t1, · · · , tb)> denotes the vector of time points where medical costs

C = (C−a, · · · , C0, C1, · · · , Cb)> occurs. δ is an indicator variable on whether

the patient died at the last observed time tb.

For patients who died during the study period, we use the observed

survival time in the change point model. For patients who are censored,

we use the predicted survival time in the change point model. That is, if

δ = 1, then the survival time D is same as the last observed time point

tb. If δ = 0, then the survival time D is the predicted survival time from a

working model, like accelerated failure time (AFT) model. Based on equa-

tion (3.2), we have a terminal cost phase for a patient if the time for the last

observation tb satisfies the condition tb > D − τ2.

Let {(Xi, Ti, Ci, δi)}Ni=1 denote the observed data for N patients in the

study. The expected cost trajectory for each patient is assumed to theo-

retically follow the pattern specified in Figure 3.1. We propose that the

regression parameters β in equation (3.2) are patient specific, say βi for

ith patient, while the change point parameters are population specific. The

cost for patient i at time tij can be written as Cij = Z>ij βi + εij , where

Cij = C(tij), Zij =
(

1, (tij − τ−1)+I(tij<ti0) + (ti0 − τ−1)I(tij≥ti0),
(
− (τ1 − ti0) + (τ1 −

tij)
+
)
I(tij≥ti0),

(
tij− (Di− τ2)

)+
I(tij≥ti0)

)>
, βi =

(
β0i, β1i, β2i, β4i

)>. We model βi as
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a linear function of the patient covariates Xi =
(
Xi1, Xi2, · · · , Xip

)>, that is

βi =



γ01 γ02 · · · γ0p

γ11 γ12 · · · γ1p

γ21 γ22 · · · γ2p

γ41 γ42 · · · γ4p


Xi

∆
= ΣXi,

where Σ ∈ R4×p is the parameter matrix to be estimated. Once, we have Σ

estimated, we can use the estimated γbp (b = 0, 1, 2, 4) to predict the signifi-

cance of the covariate Xp on the patient-level cost parameter Bb for the ith

patient. Also, we can evaluate βi from the estimated Σ and provide predic-

tions of baseline cost β0i, and the rate of change in the other cost phases

from β1i, β2i and β4i as well. Note that

Cij = Z>ij βi + εij = Z>ij ΣXi + εij. (3.3)

To estimate Σ, we apply Roth’s Columns Lemma (Roth 1934), which is pop-

ularly known as the “vec trick”, and rewrite equation (3.3) as,

Cij =
[
Xi
>
⊗

Z>ij
]
vec
(
Σ
)

+ εij,

where [
Xi
>
⊗

Z>ij
]

=
[
Xi1Z

>
ij, Xi2Z

>
ij, · · · , XipZ

>
ij

]
∈ R4p

and vec
(
Σ
)

=
(
γ01, γ11, γ21, γ41, γ02, γ12, γ22, γ42, · · · , γ0p, γ1p, γ2p, γ4p

)
∈ R4p. The

costs of the ith patient at the time sequence Ti = (ti(−ai), · · · , ti0, ti1, · · · , tibi)>

are

Ci =

[
Xi
>
⊗

Z>i

]
vec
(
Σ
)

+ εi, (3.4)
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where

Z>i =
(
Z>i(−ai),Z

>
i(0),Z

>
ibi

)
∈ R(ai+bi+1)×4,

[
Xi
>
⊗

Z>i

]
=
(
Xi1Z

>
i , Xi2Z

>
i , · · · , XipZ

>
i

)
∈ R(ai+bi+1)×4p,

and εi is the vector of random noises for the ith patient. To evaluate Σ and

the change points, we expand equation (3.4) for the entire sample as,

C =



X1
>⊗Z1

...

Xi
>⊗Zi

...

XN
>⊗ZN


vec
(
Σ
)

+ ε (3.5)

where C =

(
C1, · · · , Ci, · · · , CN

)>
∈ R

N∑
i=1

(ai+bi+1)×1
and ε = (ε1, · · · , εN)> is the

vector of random noises, and εi ∼MVN(0, σ2R).

3.2.3 The estimation procedure

The proposed change point model involves the estimation of the regression

parameters {βi}Ni=1, the change points τ = (τ−1, τ1, τ2), and the time to death

Di for patients with δi = 0. We first use the predicted survival time from the

AFT model based on the covariates Xi to estimate Di for patients with δi = 0.

Next, we specify how to estimate the change points, τ , which are population

specific parameters in our proposed model. According to existing literature

(see, e.g., Tramontano et al. 2019), for cancer patients, τ−1, τ1, and τ2 are

often considered as 2 months prior diagnosis, 6 months after diagnosis,

and 6 months before death, respectively. We expand the possible set of
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values for each change point parameter. Namely, we assume that τ−1 is

within a grid of possible values (−6,−5,−4,−3,−2,−1), τ1 is within a grid

of possible values (1, 2, 3, 4, 5, 6), and τ2 is within a grid of possible values

(5, 6, 7, 8, 9, 10). Thus we totally have 6 × 6 × 6(= 216) possible combinations

for the value of τ . For each combination of τ , we fit a linear mixed-effects

model (3.5) to estimate Σ and βi and calculate the residual mean square

errors (RMSE). τ̂ , the optimal choice for τ is the one minimizing the RMSE,

and the final estimate for Σ and βi are obtained by fitting (3.5) using the

optimally chosen τ̂ .

To make inference on the change points τ , we use non-parametric

bootstrap re-sampling scheme to evaluate the accuracy and distribution of

the change points. We obtain B bootstrap samples (say B = 1000) from the

observed data, and then repeat the same estimation procedure for each

bootstrap sample. Subsequently, we can get the distribution of τ̂ , which

provides insight on the accuracy of the optimal selection for τ . In addition,

we provide cost distributions in each phase by calculating the median and

interquartile range (IQR) of the monthly cost in each phase. In the following

section, we present a case study to illustrate the quantities involved.

3.3 Case Study

We applied our proposed method on SEER Medicare 2005 − 2014 pancre-

atic cancer data to study the healthcare cost patterns over time and their

relationship with different covariates. Our main goal is to estimate the

population-specific change points along the patient-level cost trajectory.

This will provide greater details about the cost pattern related to pancre-

atic cancer treatment over the course of time in different health care cost

phases. These cost estimates and the estimation of phases will be impor-
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tant for healthcare systems and cancer control policy leaders and aid in

the guidance of resource allocation for cancer care and research in the fu-

ture (Tramontano et al. 2019). The study cohort included patients with

pancreatic cancer specific diagnosis at primary site, histology, and behav-

ioral code in the SEER database within year 2006− 2013 and having at least

one treatment after diagnosis. If multiple combinations of diagnosis were

found, the first such occurrence was considered. The comorbidities for a

patient were obtained using the NCI comorbidity index based on one year

data prior to pancreatic cancer diagnosis. NCI comorbidity index is can-

cer specific and excludes solid tumors, leukemia, and lymphomas as co-

morbid conditions (Klabunde et al. 2000). NCI comorbidity index was cal-

culated by the 2014 NCI SAS Macro (NCI 2014) using the SEER-Medicare

enrollment file (Pedsf), the inpatient file (Medpar), the outpatient file (Out-

pat) and the carrier claims file (NCH). The other covariates obtained from

Pedsf included demographic variables (i.e., race, age, and sex), geographi-

cal variable (i.e, urban/rural and state) and cancer specific variables (i.e,

stage of cancer). Treatment assigned for each patient was categorized as

chemotherapy or surgery whichever came first after diagnosis. After apply-

ing the inclusion/exclusion criteria, we had 2899 patients in the sample, of

whom 2277 patients died during the study period and 622 patients survived

during the study period.

All costs from Medpar, Outpat and NCH files were obtained as the

observed costs in the analysis. The costs were adjusted to 2014 cost rates

using the Consumer Price Index (CPI-U) data (U.S. Department of Labor

Bureau of Labor Statistic 2021). For each patient, we set the time of di-

agnosis as origin (say, t0 = 0) and calculated the monthly cost as the sum

of all costs occurred during that month. We restricted our time period of
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observations from to 14 months prior diagnosis to have just enough data

to capture the pre-disease phase cost. Examples of cost trajectory for two

randomly chosen patients from SEER Medicare 2005− 2014 pancreatic can-

cer data were illustrated in Figure 3.2. From this figure, it is clear that

the patient who died (dashed line) had experienced five phases with a cost

spike in the last phase (i.e., terminal phase), while the patient who sur-

vived had a very long period of stable phase (solid line) and did not enter

the terminal phase during the study period.

Figure 3.2: Examples of patient-level cost trajectory with diagnosis of pan-
creatic cancer at time t0 = 0, from SEER Medicare 2005 − 2014 pancreatic
cancer database
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As healthcare cost data are often highly skewed, we transformed the

costs into a logarithmic scale to fit our proposed model, following previous

literature (see, e.g., Manning and Mullahy 2001; Başer et al. 2004). We set

6 possible values for each change point: τ−1, τ1 and τ2 range from −6 to −1,

1 to 6, and 5 to 10, respectively. In this case study, τ̂ , the optimal choice

of τ , that minimized the RMSE of our proposed models were obtained as

39



(−1, 3, 8). Figure 3.3 Panel A1 illustrated the contour plot of RMSE for the

different choices of τ−1 and τ1 with τ2 fixed at the optimal value 8. Figure

3.3 Panel A2 provided the contour plot of RMSE for different choices of τ1

and τ2 with the optimal choice of τ−1 at −1. From Figure 3.3 is it evident

that our optimal choice of τ̂ = (−1, 3, 8) minimized the RMSE of the model

among all other chosen values of τ . We further estimated the distribution

of τ̂ by performing 1000 bootstrap sampling. The relative frequency of the

selected change points τ was shown in Table 3.1. It is clear that our optimal

selection for each change point τ = (τ−1, τ1, τ2) = (−1, 3, 8) is the mode of the

distribution of each change point.

Figure 3.3: The contour plot of RMSE for τ−1 versus τ1 with τ2 fixed at the
optimal value 8 (Panel A1), and the contour plot of RMSE for τ2 versus τ1

with τ−1 fixed at the optimal value −1.
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Once we obtained the optimal choice of change points, we then used

it to estimate the regression parameter matrix Σ. We further estimated

the patient level monthly cost during each phase, and summarized the

distribution of monthly cost in-terms of median cost and interquartile range
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Table 3.1: Distribution of τ based on 1000 bootstrap samples

τ−1τ−1τ−1

Choices −1 −2 −3 −4 −5 −6
Occurrence % 80% 20% 0% 0% 0% 0%

τ1τ1τ1

Choices 1 2 3 4 5 6
Occurrence % 0% 0% 84% 16% 0% 0%

τ2τ2τ2

Choices 5 6 7 8 9 10
Occurrence % 0% 2% 6% 38% 34% 20%

(IQR) for the study cohort during different cost phases in Table 3.2. It is

clear that the monthly cost during the diagnosis phase was the highest and

followed by initial treatment phase then terminal phase. The cost during

stable phase was higher than the pre-disease phase.

Table 3.2: Distribution of patient-level monthly costs during the five dif-
ferent cost phases

Cost phases a Monthly cost: Median (Q1, Q3)
Pre-disease phase (−14 ≤ t ≤ t0 + τ−1) $0($0, $185)

Diagnosis phase (t0 + τ−1 < t ≤ t0) $6654($1388, $27351)
Initial treatment phase (t0 < t ≤ t0 + τ1) $3368($181, $9694)

Stable phase (t0 + τ1 < t ≤ D − τ2) $195($0, $1652)
Terminal phase (D − τ2 < t ≤ D) $683($0, $5092)

Finally, for the optimal choice of τ = (τ−1, τ1, τ2) = (−1, 3, 8), we fitted

our proposed model and estimate the monthly costs at log-scale, and we

then transformed the cost into the original scale in dollar amount. Figure

3.4 provided the average observed monthly cost (solid line) and average

predicted monthly cost (dashed lines) for different selected cohorts of the

sample, along with the estimated change points at τ = (τ−1, τ1, τ2) = (−1, 3, 8)

(dotted lines). Figure 3.4 Panel A1 showed the cost and its estimation for

the entire sample while A2 showed the results for the patients who survived

during the study period. Panels B1-B3 provided the similar results but
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for different cohorts of the sample according to their survival time since

diagnosis. Panel B1 showed the results from patients who died between

15− 18 months after diagnosis, Panel B2 showed the results from patients

who died between 21−24 months after diagnosis, and Panel B3 showed the

results from patients who died between 33−36 months after diagnosis. Note

that, all these plots were aligned to the time of diagnosis as origin (at time

0) on the x-axis. Hence, we cannot provide τ2 in the plot in Panel A1 and A2,

as the death time D varies across patients. We provided similar results in

Panels B1-B3 but with relative narrow range of survival time, with x-axis

ranged to the longest survival time in their respective cohort. However,

these representations did not accurately illustrate τ2. All these panels are

standardized to the time of diagnosis and since the time of death varies

for each patient, the best representation of τ2 would be in a panel where

the survival time on the x-axis is aligned with respect to the time of death.

Figure 3.4 Panel A3 presented the summarized cost aligned with death

which illustrated the role of τ2. Here the x-axis had been aligned to the

time of death as origin (at time 0) and represented months prior the time of

death. Hence, we plotted the optimal value τ2 at −8 month, and it clearly

showed an uptrend of cost starting from 8 months before death, indicating

that the estimated τ2 did capture the change point.

In literature, we often see that the major contributing factor to the

change in cost are due to cancer stages (Wijeysundera et al. 2012; Tramon-

tano et al. 2019). We have already included the cancer stage as a factor

variable in our model. To further examine the impact of cancer stages on

the cost, we stratify the 2899 pancreatic cancer patients into two groups:

the first group consisting of patients with stage 1 and 2 pancreatic cancer

and the second group consisting of patients with stage 3 pancreatic cancer.
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Figure 3.4: Average observed and estimated monthly cost along with
change points for different cohorts of pancreatic cancer patients using the
proposed parametric change point approach
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We used our model to predict the costs for both groups. The cost profiles

for the stratified groups are provided in Figure 3.5 Panels A1 and B1 re-

spectively, and each group is further divided into cohorts of surviving and

deceased patients in Panels A2, A3 and B2, B3 respectively. It is clear that

the cancer stage does have a significant impact on the cost. In particular,

the cost after treatment for patients with stage 1 and 2 cancer stabilized af-

ter an initial high treatment phase as compared to the patients with stage

3 cancer. This is likely due to surgical treatment of stage 1 and 2 pancreatic

cancer at the time of diagnosis, whereas stage 3 pancreatic cancer is more

likely treated with chemotherapy only and hence have larger cost variation

after initial treatment period, indicating more costs due to medical needs

and possibly early deaths. Our model is able to capture the first and sec-

ond change points as shown in Figure 3.5 Panels A1, A2, B1 and B2 and

the final change point before death (see Panel A3 and B3).
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Figure 3.5: Average observed and estimated monthly cost along with
change points for different stages of pancreatic cancer patients using the
proposed parametric change point approach
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Table 3.1 and Figures 3.4 and 3.5 clearly showed that our estimation

of the change points τ = (τ−1, τ1, τ2) = (−1, 3, 8) matched the change patterns

of the observed cost trajectories. We also see that our method captured the

upward and downward trends in the cost trajectories with the peaks around

a month after diagnosis and stabilizing after around 3 months. We also see

how well the model captured the rise of the cost before death. Thus, the

proposed model could help to understand the cost pattern, make plans

for cost expenses, and improve an awareness for certain events such as

diagnosis of disease or possible mortality.

3.4 Discussion

In this study, we proposed a parametric change point model to estimate

population-level change points and patient level cost trajectory. The pa-
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tient level cost trajectory could be associated with different patient’s demo-

graphics, comorbidities, and treatment choices. The novel idea here was

to model the cost trajectory based on change point detection models and

further add another layer of accuracy by making the regression param-

eters depend on the patients’ characteristics. The results from the case

study showed that our proposed method provided a good estimate of the

change points in the cost pattern which enabled us to accurately estimate

the cost pattern over time. We demonstrated our method on pancreatic

cancer data from SEER Medicare database. The estimation of the change

points helped us accurately infer about the cost patterns for patients with

certain disease. It further helped us understand the change points in cost

pattern, which enable us to make more informed decisions regarding the

funds for treatment over a period of time. Further, an upward trend in cost

pattern after a stabilized cost period could also act as a warning sign of

deteriorating health of the patient or recurrences of the disease.
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CHAPTER 4

NON-PARAMETRIC MODELS FOR ESTIMATING MEDICAL

COST AND CHANGE POINTS

4.1 Introduction

Estimating healthcare costs due to a certain disease over the course of the

disease from diagnosis to the end of life, is very important to policy makers

and clinicians, given the increasing costs of healthcare delivery, budgetary

constraints, and the aging population (Mihaylova et al. 2011; Wijeysundera

et al. 2012). It could provide important information if the cost pattern and

trajectory over the course of disease progression and the recovery from the

disease can be predicted accurately (Lin et al. 1997; Bang and Tsiatis 2002;

Basu et al. 2011; Li et al. 2016). Based on the recent works, the lifetime cost

of a patient can be divided into different phases due to diagnosis, treatment

and mortality (Brown et al. 2002; Wijeysundera et al. 2012; Tramontano et

al. 2019). In general, medical cost depends on patients’ variable such as

age, gender, and comorbid conditions (Austin 2011). It is of great interest

to develop a flexible and suitable model that can capture the patient level

cost as well as the population cost with great accuracy, which ca provide

information for decision making.

Here, we investigate a flexible non-parametric approach to capture

the cost patterns and change points. In particular, we propose to use I-

spline basis functions along with patient-level regression coefficients to
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capture patient-level cost trajectory as well as cohort-level cost trajectory.

Note that the first derivative of I-splines is M-splines, and it is straight for-

ward to get the first derivative of the cost-trajectory using the relationship

between I-splines and M-splines (Wan et al. 2017). Built on our previ-

ous investigation on cost phases and change points, we propose a flexible

non-parametric approach to estimate the cost trajectory and change points

using the penalized regressions splines and its first derivatives. In the fol-

lowing Section 4.2 we propose a non-parametric model for cost trajectory

and provide estimating procedure for the trajectory and change points. In

Section 4.3, we apply the proposed method to estimate the cost trajectory

for pancreatic cancer patients in SEER-Medicare 2005−2014 database. Sec-

tion 4.4 is reserved for discussions.

4.2 The proposed non-parametric model for cost trajectory

estimation and change point detection

4.2.1 The proposed non-parametric model

Let (X, T , C,D) denote the random variable observed for a patient, where

X denotes a vector of p time invariant covariates of the patient, including

patients’ characteristics, medical history, and treatment information. T =

(t−a, · · · , t0, t1, · · · , tb)> denotes the vector of time points where medical costs

C = (C−a, · · · , C0, C1, · · · , Cb)> occurred. D is an indicator variable whether

the patient died at the last observed time point tb. Without loss of generality,

we align the time of diagnosis of a patient t0 as time 0. Let {(Xi, Ti, Ci, Di)}Ni=1

denote the observed data for N patients in the study.

We propose a non-parametric cost model to capture the monthly cost

trajectory over time which is expressed as the linear combination of the I-
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spline basis functions. Let us denote K knots in the range of observed time

points as (τ1, τ2, · · · , τK) with

min
i=1,··· ,N

(ti(−ai)) = τ1 < τ2 < · · · < τK = max
i=1,··· ,N

(tibi).

The interior knots were taken based on the equally-spaced quantiles of tij

(i = 1, 2, · · · , N ; j = −ai, · · · , 0, · · · , bi). Let us denote I3
κ(t) (κ = 1, · · · , K − 2)

as the cubic I-spline basis functions based on the K knots, where I3
κ(t) is a

smooth monotonic function ranged between [0, 1] with support interval on

[τκ, τκ+3] (Wan et al. 2017). The I-spline basis functions can be constructed

using the iSpline function from the R-package splines2. We propose to use

the linear combination of the I-spline basis functions to model the cost

trajectory over time for the ith patient (i = 1, 2, · · · , N) as

Ci =



I3
1 (ti(−ai)) I3

2 (ti(−ai)) · · · I3
K−2(ti(−ai))

... ... ... ...

I3
1 (tij) I3

2 (tij) · · · I3
K−2(tij)

... ... ... ...

I3
1 (tibi) I3

2 (tibi) · · · I3
K−2(tibi)


βi + εi = I(Ti)>βi + εi, (4.6)

where Ci = C(Ti), I(Ti) is known once the knots and Ti = (ti(−ai), · · · , ti0, · · · , tib)>

are specified, the regression parameter βi =
(
β1i, β2i, · · · βK−2,i

)> are pa-

tient specific which are assumed to depend on patient’s variables Xi, and

εi = (εi(−ai). · · · , εij, · · · , εibi)> ∼ MVN(0, σ2R), where R is an auto-regressive

correlation matrix.

It is noted that the cost usually increases and has an upward trend

towards the end of life for patients who are dying, which results in quite

different cost trajectory than other time periods in their lives. To incor-
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porate this upward trend, we constructed a smooth function for patients

who died during the study period (i.e. for those with Di = 1) to capture

the cost pattern at the end of life. That is, the cost over time for patients

who died during the study would be the combination of two smooth func-

tions. To be specific, we add another smoothing spline function aligned to

the time of death tibi for the patients who died (i.e., Di = 1). That is, we

standardize the time points as T ∗i = (t∗i(−(ai+bi))
, · · · , t∗i(−1), t

∗
i0)> for patients

who died during the study period, where t∗ij = tij − tibi if Di = 1. Since the

cost related to death is usually effective within 12 months prior to death,

we consider knots ranged between [−12, 0] months prior to death. Let us

take L knots in the range of time points aligned to the time of death, say,

−12 = τ ∗1 < τ ∗2 < · · · < τ ∗L = 0 with the interior knots based on the equally-

spaced time-points of t∗ij (i ∈ {i : Di = 1}; j ∈ [−12, 0]). Let us denote

I3
ι (t∗) (ι = 1, · · · , L − 2) as the cubic I-spline basis functions based on the

L knots, where I3
ι (t∗) is a smooth monotonic function ranged between [0, 1]

with support interval on [τ ∗ι , τ
∗
ι+3] (Wan et al. 2017). The cost trajectory for

the patients who died during the study period involves a terminal phase

modelled by the penalized splines with knots as (τ ∗1 < τ ∗2 < · · · < τ ∗L).

To incorporate each patients’ study duration in the model we use a

block diagonal matrix Si which captures the patient’s study duration. The

updated cost trajectory over time for the ith patient (i = 1, 2, · · · , N) is

Ci = I(Ti)>Siβi +Di ID(T ∗i )>αi + εi (4.7)

where Si =

I(ai+bi) 0

0 0

 ∈ R(K−2)×(K−2) captures the study duration of the ith

patient, I ∈ R(ai+bi)×(ai+bi) is an identity matrix,
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ID(T ∗i ) =



I3
1 (t∗i(−12)) I3

2 (t∗i(−12)) · · · I3
L−2(t∗i(−12))

... ... ... ...

I3
1 (t∗ij) I3

2 (t∗ij) · · · I3
L−2(t∗ij)

... ... ... ...

I3
1 (t∗i0) I3

2 (t∗i0) · · · I3
L−2(t∗i0)



>

is known once the knots

and t∗ij are specified, the regression parameter αi =
(
α1i, α2i, · · ·αL−2,i

)> are

patient specific which are dependent on patient’s variables and Di is the

indicator variable for death. That is, we model both βi and αi as linear

functions of the patient covariates Xi =
(
Xi1, Xi2, · · · , Xip

)>:

βi =



σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

... ... . . . ...

σ(K−2)1 σ(K−2)2 · · · σ(K−2)p


Xi

∆
= ΣXi

and

αi =



δ11 δ12 · · · δ1p

δ21 δ22 · · · δ2p

... ... . . . ...

δ(L−2)1 δ(L−2)2 · · · δ(L−2)p


Xi

∆
= ∆Xi

where Σ ∈ R(K−2)×p and ∆ ∈ R(L−2)×p are the parameter matrices to be es-

timated, and Xi =
(
Xi1, Xi2, · · · , Xip

)> is the observed patient’s variables.

Hence, we rewrite equation (4.7) as,

Ci = I(Ti)>Siβi+Di ID(T ∗i )>αi+εi = I(Ti)> Si ΣXi+Di ID(T ∗i )>∆Xi +εi (4.8)

To estimate Σ and ∆ we apply Roth’s Columns Lemma (Roth 1934),

also popularly known as the ”vec trick”, and rewrite equation (4.8) as fol-
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lows:

Ci =

[
Xi
>
⊗
I(Ti)> Si

]
vec
(
Σ
)

+

[
Xi
>
⊗

Di ID(T ∗i )>
]
vec
(
∆
)

+ εi (4.9)

where [
Xi
>
⊗
I(Ti)>Si

]
∈ R(ai+bi+1)×(K−2)p,

vec
(
Σ
)

=
(
σ11, · · · , σ(K−2)1, · · · , σ(K−2)p

)
∈ R(K−2)p,[

Xi
>
⊗

Di ID(t∗ij)
>
]
∈ R(ai+bi+1)×(L−2)p and

vec
(
∆
)

=
(
δ11, · · · , δ(L−2)1, · · · , δ(L−2)p

)
∈ R(L−2)p.

To estimate Σ and ∆, we expand equation (4.9) for the entire sample as,

C =



X1
>⊗ I(T1)> S1

...

X2
>⊗ I(T2)> S2

...

XN
>⊗ I(TN)> SN


vec
(
Σ
)

+



X1
>⊗D1 ID(T ∗1 )>

...

X2
>⊗D2 ID(T ∗2 )>

...

XN
>⊗DN ID(T ∗N)>


vec
(
∆
)

+ ε (4.10)

where C =
(
C1, · · · , Ci, · · · , CN

)> ∈ R
N∑
i=1

(ai+bi+1)
and ε is the vector of random

noises, and εi ∼MVN(0, σ2R).

4.2.2 Estimation procedure

We use penalized regression models to estimate Σ and ∆ from equation

(4.10). It can be performed by the function gam in R-package mgcv. Once

we obtain the estimates for the parameters Σ and ∆, we can estimate the

cost curve and determine the change points by studying the cost trajectory

and its first order derivative. Note that the first order derivative of I-spline

51



is a M-spline. We thus can obtain the first derivative of the cost function

using the same regression parameters Σ and ∆ but with M-spline basis

functions instead of I-spline functions. That is,

C ′ =



X1
>⊗M(T1)> S1

...

X2
>⊗M(T2)> S2

...

XN
>⊗M(TN)> SN


vec
(
Σ
)

+



X1
>⊗D1MD(T ∗1 )>

...

X2
>⊗D2MD(T ∗2 )>

...

XN
>⊗DNMD(T ∗N)>


vec
(
∆
)

(4.11)

whereM(Ti) ==



M3
1 (ti(−ai)) M3

2 (ti(−ai)) · · · M3
K−2(ti(−ai))

... ... ... ...

M3
1 (tij) M3

2 (tij) · · · M3
K−2(tij)

... ... ... ...

M3
1 (tibi) M3

2 (tibi) · · · M3
K−2(tibi)



>

and

MD(T ∗i ) =



M3
1 (t∗i(−12)) M3

2 (t∗i(−12)) · · · M3
L−2(t∗i(−12))

... ... ... ...

M3
1 (t∗ij) M3

2 (t∗ij) · · · M3
L−2(t∗ij)

... ... ... ...

M3
1 (t∗i0) M3

2 (t∗i0) · · · M3
L−2(t∗i0)



>

.

Here M3
κ(t) and M3

ι (t∗) are the cubic M-spline basis functions based on the

K and L knots specified above.

In literature, medical cost are often divided into different cost phases,

and the change points of the phases could provide important information

(Wijeysundera et al. 2012, Tramontano et al. 2019). We are particularly

interested in the 3 change points: τ−1, the change point from pre-diagnosis

phase to diagnosis phase; τ1, the change point from treatment phase to

stabilized phase; τ2, the change point from stabilized phase to terminal
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phase. We proposed the following rules to detect the three change points,

τ = (τ−1, τ1, τ2):

Step 1. Calculate the 95% confidence interval of the first derivative of

the cost function from 12 months to 6 months prior diagnosis.

6 months prior diagnosis is considered because it is a reason-

able window during which cost related to the disease diagnosis

is unlikely to occur. Set the two boundary centered around zero

for the first derivative, which are used to evaluate the change

points.

Step 2. The change point from pre-cancer phase to diagnosis phase (τ−1)

is estimated as the earliest time point prior diagnosis where the

value of C ′(j) exceeds the upper confidence interval boundary.

Step 3. The change point (τ1) from treatment phase to stabilized phase is

assessed as the latest time point after diagnosis where the value

of C ′(j) traveled from negative value into the lower boundary of

the 95% confidence interval calculated in Step 1.

Step 4. The change point (τ2) from stabilized phase to terminal phase is

assessed as the earliest time point before death where the value

of C ′(j) exceeds the upper boundary of the 95% confidence inter-

val calculated in Step 1.

4.3 Case Study

We applied our proposed method to study the healthcare cost pattern for

patients with pancreatic cancer using the SEER Medicare 2005−2014 database.

Our main goal here was to estimate the population-specific change points

53



along the patient-level cost trajectory. The study cohort included patients

with pancreatic cancer specific diagnosis at primary site, histology, and

behavioral code in the SEER database within year 2006 − 2013 and having

at least one treatment after diagnosis. If multiple combinations of diagno-

sis were found, the first such occurrence was considered. The comorbidity

for a patient were obtained by using the NCI comorbidity index obtained

based on one year data prior to pancreatic cancer diagnosis. NCI comor-

bidity index is cancer specific and excludes solid tumors, leukemia, and

lymphomas as comorbid conditions (Klabunde et al. 2000). The NCI co-

morbidity index was calculated using the 2014 NCI SAS Macro from the NCI

website (NCI 2014) using the SEER-Medicare enrollment file (Pedsf) and the

diagnostic codes in the inpatient file (Medpar), the outpatient file (Outpat)

and the carrier claims file (NCH). The other covariates obtained from Pedsf

included demographic variables (i.e. race, age, sex) and geographical vari-

able (such as urban/rural and state). Treatment assigned for each patient

was categorized as chemotherapy or surgery whenever it came first after

diagnosis. After applying the inclusion/exclusion criteria, we had 2899 pa-

tients in the sample, of whom 2277 patients died during the study period

and 622 patients survived the study period.

All medical cost from Medpar, Outpat and NCH files were obtained

as the primary outcome in the analysis. The costs were standardized to

2014 cost rates using the Consumer Price Index (CPI-U) data (U.S. Depart-

ment of Labor Bureau of Labor Statistic 2021). For each patient, we set the

time of diagnosis as origin (t0 = 0) and calculate the monthly cost as the

sum of all costs occurred during that month. We restrict our time period

of observation before diagnosis to 12 months to have enough data to cap-

ture the pre-disease phase cost. We fit our proposed model to the data to
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estimate the cost trajectory. We perform a penalized regression and predict

the cost trajectory and estimate the change points from the first deriva-

tive and the cost patterns. Figure 4.1 and 4.2 Panels A1-A3 provided the

average observed monthly cost (solid line) and average predicted monthly

cost (dashed lines) for different selected cohorts of the sample, along with

the estimated change points (dotted lines). Each panel represented a dif-

ferent sub-cohort. In Figure 4.1 Panel A1 represented the entire sample,

A2 represented the patients who survived during the study period, and A3

represented all those who died during the study period. Similarly, Figure

4.2 Panel A1 showed the results from patients who died between 15 − 18

months after diagnosis, Panel A2 showed the results from patients who

died between 21− 24 months after diagnosis, and Panel A3 showed the re-

sults from patients who died between 33 − 36 months after diagnosis. We

then obtained the first order derivative for the curve at each time point.

The derivatives were displayed below each panel of A1-A3 for ease of visu-

alization and were displayed as solid lines in both Figures 4.1 and 4.2 in

Panels B1-B3. In Figure 4.1, Panel B1 represented the derivative for the en-

tire sample, B2 represented the derivative for patients who survived during

the study period and B3 represented the derivative for all those who died

during the study period. The same followed in Figure 4.2 Panels B1-B3.

We applied our proposed change point detection technique to estimate the

change points. The change points were provided in the plots. Note that, in

Figure 4.1 Panels A1 and A2 were aligned to the time of diagnosis as origin

on the x-axis. Hence, we cannot provide the terminal change point in the

plot in Panel A1 and A2 as it is related to the time of death. We provided the

terminal change point results in Figure 4.2 Panels A1-A3 but with relative

narrow range of survival time, with x-axis ranged to the longest survival
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time in their respective cohort. However, these representations did not ac-

curately illustrate the change point from stable phase to terminal phase.

All these panels are standardized to the time of diagnosis, while the time of

death varies for each patient. The best representation of the change point

from stable phase to terminal phase would be in a panel where the sur-

vival time on the x-axis is aligned with the time of death. Figure 4.1 Panel

A3 represented the most accurate illustration of the terminal change point

dependent upon death which describes the cost change time from death.

Figure 4.1: Observed and estimated average cost trajectory along with
change points for different cohorts in Panels A1-A3 and the estimated first
order derivative of the cost trajectory in Panels B1-B3 for pancreatic cancer
patients as estimated by the proposed non-parametric approach
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It can be clearly seen that the estimated change points matched the

change of cost in different phases. That is, the diagnosis phase started

2− 3 month before diagnosis, followed by an initial treatment phase of 7−

10 months after diagnosis and then a stabilized phase. For the deceased

population, the cost dramatically increased in the last 5−6 months of their
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Figure 4.2: Observed and estimated average cost trajectory along with
change points for different death cohorts in Panels A1-A3 and the estimated
first order derivative of the cost trajectory in Panels B1-B3 for pancreatic
cancer patients as estimated by the proposed non-parametric approach
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lives.

In literature, we often see that the major contributing factor to the

change in cost phases are due to cancer stages (Wijeysundera et al. 2012;

Tramontano et al. 2019). We have already included the cancer stage as a

factor variable in our model. To further examine the impact of cancer stages

on the cost, we stratify the 2899 pancreatic cancer patients into two groups:

the first group consisting of patients with stage 1 and 2 pancreatic cancer

and the second group consisting of patients with stage 3 pancreatic cancer.

We used our proposed model to predict the costs for both groups and esti-

mated the change points based on the derivatives. The observed (solid line)

and estimated (dashed lined) cost profiles for the stratified groups are pro-

vided in Figure 4.3 for stage 1 and 2 cancer patients and Figure 4.4 for stage

3 cancer patients. We first presented the cost pattern for the patients in
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each stage group (Panels A1) then each group is further divided into cohorts

of surviving and deceased patients in Panels A2 and A3. The derivatives

were displayed below each panel of A1-A3 for ease of visualization and were

displayed as solid lines in both Figure 4.3 and 4.3 in Panels B1-B3. The

change points derived from our proposed method is plotted in the figures

as well. It is clear that the cancer stage did have a significant impact on

the cost. In particular, the cost after treatment for patients with stage 1

and 2 cancer stabilizes after an initial high treatment phase as compared

to the patients with stage 3 cancer. This is likely due to surgical treatment

of stage 1 and 2 pancreatic cancer at the time of diagnosis, whereas stage 3

pancreatic cancer is more likely treated with chemotherapy only and hence

have larger cost variation after initial treatment period, indicating more

costs due to medical needs and possibly early deaths. Our model is able to

capture the first and second change points as shown in Figure 4.3 Panels

A1, A2, B1 and B2 and the final change point before death (see Panel A3

and B3).
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Figure 4.3: Observed and estimated average cost trajectory along with
change points for stage 1 and 2 patients in Panels A1-A3 and the estimated
first order derivative of the cost trajectory in Panels B1-B3 for pancreatic
cancer patients as estimated by the proposed non-parametric approach
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Figure 4.4: Observed and estimated average cost trajectory along with
change points for stage 3 patients in Panels A1-A3 and the estimated first
order derivative of the cost trajectory in Panels B1-B3 for pancreatic cancer
patients as estimated by the proposed non-parametric approach
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4.4 Discussion

In this study, we proposed a flexible non-parametric change point models

to estimate cohort-level change points and patient level cost trajectory. The

patient level cost trajectory could be associated with different patient’s de-

mographics, comorbidity, and treatment choices. The change point and

cost trajectory is also dependent on the patients end of life information. To

incorporate these we proposed a model with basis functions based on both

the time of diagnosis and the time of death for the deceased patients. We

used I-spline basis functions to model our cost trajectory. Once we had

the cost curve estimated, we then used the first derivative of the spline

function, particularly the M-spline basis function to estimate the change

points on the cost curve. The results from the case study showed that our

proposed method provided an appropriate estimates of the change points

in the cost pattern. The accurate estimation of the change points can help

infer about the cost patterns due to a disease diagnosis. It further helped

to understand the change points in cost pattern, which enable us to make

more informed decisions regarding the funds for treatment over a period of

time. Further, an upward trend in cost pattern after a stabilized cost pe-

riod could also act as a warning sign of deteriorating health of the patient

or recurrences of the disease.
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APPENDIX

I-spline calculation:

We define I-splines matrix as (Wan et al. 2017):

Ikκ(T ) =



0 , κ > l;

l∑
m=κ

τm+K−1−τm
k+1

Mk+1
m (T ) , l − k + 1 ≤ κ ≤ l;

1 , κ < l − k + 1;

where

for k > 1, Mk
κ (T ) =

k[(T−τκ)MK−1
κ (T )+(τκ+k−T )MK−1

κ+1 (T )]

(K−1)(τκ+k−τκ)
,

for k = 1, M1
κ(T ) =


1

τκ+1−τκ , τκ ≤ t < τκ+1;

0 ,otherwise;

,

min
1≤i≤N

(Ti) = τ1 ≤ τ2 ≤ · · · ≤ τK = max
1≤i≤N

(Ti)

and l = 0, · · · , K.
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Figure A0.1: Flowchart for creating the study cohort (Panel A) and different
treatment combinations (Panel B) in case study of Chapter 2

Figure A0.2: Additional simulation results from Chapter 2 for the average
treatment effect in terms of cost difference over time under different sce-
narios for δ = 100 in Chapter 2
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