
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2021

Multilateratin index. Multilateratin index.

Chip Lynch
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Computational Engineering Commons, Databases and Information Systems Commons,

Data Science Commons, Data Storage Systems Commons, Geometry and Topology Commons, Health

and Medical Administration Commons, Health Information Technology Commons, Multi-Vehicle Systems

and Air Traffic Control Commons, Numerical Analysis and Computation Commons, Space Vehicles

Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Lynch, Chip, "Multilateratin index." (2021). Electronic Theses and Dissertations. Paper 3733.
Retrieved from https://ir.library.louisville.edu/etd/3733

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/663?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/663?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1239?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/220?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/220?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3733?utm_source=ir.library.louisville.edu%2Fetd%2F3733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

A MULTILATERATION ALTERNATE COORDINATE SYSTEM

By
Chip Lynch

B.S. Xavier University, 1997

A Thesis Submitted to the Faculty of the
J.B. Speed School of Engineering of the University of Louisville

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
in Computer Science

Department of Computer Engineering and Computer Science
University of Louisville
Louisville, Kentucky

August, 2021

i

A MULTILATERATION ALTERNATE COORDINATE SYSTEM

Submitted by:

Chip Lynch

A Thesis Approved on:

2021/07/29

By the following Thesis Committee

Dr. Mehmed Kantardzic, Thesis Chair

Dr. Hermann Frieboes, Committee Member

Dr. Ahmed Desoky, Committee Member

ii

ACKNOWLEDGEMENTS

Thanks to my Wifey - Mary Ann Lynch - for putting up with and supporting the hours of late nights
in front of my laptop. Thanks also to my family and friends who I’m sure I ignored more than I
should while I worked on this, and to the teams at Passport Health Plan and SpaceX for having
real-world problems to solve that led to an interesting thesis topic. And of course I appreciate the
help and guidance of all the teachers, professors, and mentors I’ve had. But mostly still thanks to
my Wifey.

iii

ABSTRACT

A MULTILATERATION ALTERNATE COORDINATE SYSTEM

Chip Lynch

July 20, 2021

We present an alternative method for pre-processing and storing point data, particularly for Geospatial

points, by storing multilateration distances to fixed points rather than coordinates such as Latitude

and Longitude. We explore the use of this data to improve query performance for some distance

related queries such as nearest neighbor and query-within-radius (i.e. “find all points in a set P

within distance d of query point q”).

Further, we discuss the problem of “Network Adequacy” common to medical and communications

businesses, to analyze questions such as “are at least 90% of patients living within 50 miles of

a covered emergency room.” This is in fact the class of question that led to the creation of our

pre-processing and algorithms, and is a generalization of a class of Nearest-Neighbor problems.

We hypothesize that storing the distances from fixed points (typically three, as in trilateration) as an

alternative to Latitude and Longitude can be used to improve performance on distance functions when

large numbers of points are involved, allowing algorithms that are efficient for Nearest Neighbor and

Network Adequacy queries. This effectively creates a coordinate system where the coordinates are the

trilateration distances. We explore this alternative coordinate system and the theoretical, technical,

and practical implications of using it. Multilateration itself is a common technique in surveying and

geo-location widely used in cartography, surveying, and orienteering, although algorithmic use of

these concepts for NN-style problems are scarce. GPS uses the concept of detecting the distance of a

device to multiple satellites to determine the location of the device; a concept known as true-range

multilateration. However while the approach is common, the distance values from multilateration

are typically immediately converted to Latitude/Longitude and then discarded. Here we attempt to

use those intermediate distance values to computational benefit. Conceptually, our multilateration

iv

construction is applicable to metric spaces in any number of dimensions.

Rather than requiring the complex pre-calculated tree structures (as in Ball and KD-Trees)(Liu,

Moore, and Gray 2006), or high cost pre-calculated nearest-neighbor graphs (as in FAISS)(Johnson,

Douze, and Jégou 2017), we rely only on sorted arrays as indexes. This approach also allows for

processing computationally intensive distance queries (such as nearest-neighbor) in a way that is

easily implemented with data manipulation languages such as SQL.

We experiment with simple algorithms using the multilateration index to exploit these features. We

set up experiments for Nearest Neighbor and Network Adequacy on high computational cost distance

functions, on various sized data sets to compare our performance to other existing algorithms.

Our results include a roughly 10x performance improvement to existing query logic using SQL

engines, and a 30x performance gain in Cython - compared to other NN algorithms using the popular

ann-benchmark tool - when the cost of the atomic distance calculation itself is high, such as with

geodesic distances on earth requiring high precision. While we focus primarily on geospatial data,

potential applications to this approach extend to any distance-measured n-dimensional metric space

where the distance function itself has a high computational cost.

v

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Problem Space 1 - Satellite Communication and Expensive Distance Functions . . . 1
1.2 Problem Space 2 - Healthcare and Network Adequacy for Overlapping Sets 2
1.3 Proposed Solution: Multilateration Coordinate System and Index 4
1.4 Practical Advantages . 4
1.5 Implementation Details . 5

2 REVIEW OF CURRENT LITERATURE 7
2.1 Geospatial Computations . 7
2.2 Multilateration . 8
2.3 Nearest Neighbor . 9
2.4 Network Adequacy Minimal Literature . 15

3 NETWORK ADEQUACY 16
3.1 Formalization of Network Adequacy . 17

4 INTRODUCING THE MULTILATERATION INDEX 19
4.1 Multilateration Index – General Definition . 19
4.2 2-D Bounded Example . 19
4.3 Underlying Theory Concepts and Problem Statement 25
4.4 Simple Multilateration Index Operations . 26

5 EXPERIMENTATION 33
5.1 Experimental Setup . 33
5.2 Multilateration NN Algorithms . 36
5.3 Multilateration NA Algorithms . 41
5.4 Experimental Results . 44
5.5 ANN-Benchmarks . 44
5.6 SQL Network Adequacy Results . 49

6 CONCLUSIONS 58

7 FUTURE WORK 59

REFERENCES 62

CURRICULUM VITA 67

vi

LIST OF TABLES

1 10 Random Points . 21
2 Multilateration Index of 10 Random Points WRT Fixed points F 22
3 Timings (seconds) of 5000 Calls to Distance Functions 25
5 Indexed sample data with respect to r2 . 31
6 Record Counts by Category ID . 34
7 Approximate relative complexity on a 1-5 scale . 36
8 Record counts by category used in experiment . 49
9 d vs. ~NAP . 50
10 P vs. ~NAP for d=0.1, Q=10000 . 55

vii

LIST OF FIGURES

1 Example calculation of reference points in 2d area. Three reference points (red) are
derived from an equilateral triangle (blue) inscribed in the largest circle possible in
the bounded area. 21

2 Sample Reference points (red) and Data Points (blue) 23
3 Distance Arcs to Two Sample Points (X2, X10) from Reference points F1 (red bands),

F2 (blue bands) and F3 (green bands) . 24
4 Within time complexity illustration. Points within the dashed circle are closer to the

query point (green square) than point 2. The Red band indicates the are where those
points must lie with respect to the distance to reference point 1 (red triangle 1). . . 29

5 WithinMulti time complexity illustration - Points within the dashed circle are closer
to the query point (green square) than point 6 (yellow diamond). Any point closer
must be within the intersection of the red bands measured from each of the three
reference points (red triangles). 30

6 Monte Carlo Estimating Ring Overlap Area. Of the many random points selected,
only 9.4% (lighter color) fall within the intersection of all three distance bands. . . . 32

7 A set of 150,000 Geodesic sample data points based on population density in the US
state of Kentucky. Points are semi-transparent so darker areas display higher density
of point data. 35

8 Queries Per Second for Geodesic (Q=150,000; higher is better) 45
9 Queries Per Second and Time to Build Indexes for 20-dimension Euclidean 46
10 Queries Per Second and Time to Build Indexes for glove-25-angular 47
11 Overall Timings By Category (s) - log10 scale - lower is better 49
12 SQL Timings (s) relative to dist (d) - lower is better 50
13 SQL Timings By Category (s) for distance d=0.1 - lower is better. Each square

represents a query with a given number of search points P (x-axis) and query points Q
(y-axis) with fixed adequacy distance d. The numbers represent the time (in seconds)
to determine the NAP: percent of points in Q within distance d of any point in P. . 52

14 SQL Timings By Category (s) for distance d=1 - lower is better. 52
15 SQL Timings By Category (s) for distance d=10 - lower is better. Note how query

times go up quickly as the query point size (y-axis) increases, but shows a decrease
then increase as the search point cardinality (x-axis) increases. 53

16 SQL Timings By Category (s) for distance d=100 - lower is better 53

viii

1 INTRODUCTION

1.1 Problem Space 1 - Satellite Communication and Expensive Distance Functions

Imagine a constellation of thousands of communications satellites traveling around the earth in

overlapping elliptical orbits. These need to communicate directly to one another, and to terminals on

the ground. To communicate quickly and effectively, several important questions must be constantly

answered at all times:

• For any given satellite what is the nearest satellite to which it can communicate?

• For any given ground station, if redundancy is needed, what are the nearest 5 satellites?

• If a satellite can communicate with ground stations within a radius of, say, 500 km, at any

given time are all ground stations within 500km of a satellite’s communications center?

The first two are well known problems in computer science - the Nearest Neighbor (NN) question

(which satellite is nearest), and the k-Nearest Neighbor question (which 5 satellites are closest). We

explore this in the Nearest Neighbor section.

The third bullet above is related but somewhat less common - we refer to it as “Network Adequacy”

(NA) - in short: are there enough resources within the needed distance of objects that need them?

See our section Network Adequacy for a thorough discussion.

There are many existing solutions to the nearest neighbor problem in computer science literature,

and the network adequacy question can be solved with repeated application of nearest neighbor

algorithms. (If every ground station’s closest satellite is within the required distance, the network is

adequate). However there are aspects of the satellite problem which make it particularly vexing to

existing NN and NA solutions:

• Satellites are constantly moving. Many existing state-of-the-art algorithms to determine the

nearest neighbor require expensive pre-processing that excludes them for use in a fast moving

system.

• Calculating the instantaneous distance between two satellites, or a satellite and a ground

1

station to a precision required for laser communications is computationally expensive (due to

the ellipsoidal shape of the earth and specific orbits of satellites), with one calculation taking

some 500 times as long as a simple euclidean distance calculation. Existing algorithms ignore

this computational cost of the distance function which, in many real-world scenarios, makes

them less efficient.

1.2 Problem Space 2 - Healthcare and Network Adequacy for Overlapping Sets

We find it interesting that satellite communications shares a computational problem with the US

healthcare system, but that is exactly what we have found.

Consider a healthcare system as a system of people (who may need medical care) and service provider.

In the US, the government seeks to maintain an adequate network of medical service providers so that

people have reasonable access to them. This is called “Network Adequacy” in the Medicare/Medicaid

literature, and is where we originally encountered the term. Metrics that the government seeks to

maintain for a given insurance company may look like:

• 90% of members must live within 50 miles of a covered emergency room

• 80% of female members over the age of 13 must live within 25 miles of a covered OB/GYN

• 80% of members under the age of 16 must live within 25 miles of a covered pediatrician

• etc.

On its surface, if we ask questions like “how many people are within 50 miles of a hospital,” it

seems similar to our satellite question about “how many ground stations are within communications

distance of a satellite.” Healthcare would seem easier in two ways:

• Healthcare doesn’t require nearly the accuracy of satellite communications - a person a half

mile closer to a hospital isn’t that much different than one a half mile further (while a laser

pointing only a few feet away from a satellite will miss it entirely).

• People and service providers don’t really move; certainly not constantly at tens of thousands of

miles per hour like satellites. We can formulate questions about these based on fixed addresses.

At the same time, there are some patterns in the data and questions that make this computationally

interesting:

• Most distance related questions deal with only two sets (computationally generally referred

to as P and Q, the “population” and “query” set). These would refer to the satellites and

the ground stations, or the patients and hospitals. However in reality the questions we ask in

2

healthcare are interested in only a small group of the people or service providers. Looking at our

example questions for example, the first (90% people must be within 50 miles of an emergency

room) deals with all people, but only a small set of service providers (i.e. emergency rooms).

Other questions may concern only a subset of either group: people are divided by gender, age,

race; and a subset of service providers: hospitals, pharmacies, oncologists, pediatricians, and so

on. What’s noteworthy about these groups is that they overlap. . . any one person will be a

member of a gender group, one or more age groups, one or more racial groups, etc. Medical

providers may or may not be grouped - a hospital will contain many individual services, while

individual practitioners may have standalone offices. As we discuss in our Review of Current

Literature section, there is little investigation of optimizing for answering these questions with

these real life overlapping sets.

• The questions proposed for Network Adequacy, while they relate to counting objects by distance,

differ from Nearest Neighbor in two particular ways:

1. Adequacy questions don’t specify which items are in proximity, only that there exist

services of a given type within a given distance, while Nearest Neighbor is very specific

about identifying the specific points that qualify.

2. We aren’t really interested in individual answers so much as the collective percent of

coverage. In satellite communication, every component must know it’s nearest points so

that it can at least knows which way to point. Here, it is presumed too expensive to have

everyone within a quick drive of every possible healthcare convenience, so only a threshold

percentage matters. We discuss this in our Network Adequacy Threshold section, and

show how real-life implementations for healthcare, using SQL databases, can gain from

our approaches in our SQL Network Adequacy Results section.

In the interest of complete transparency, the mechanisms presented in this paper were originally

conceived while working on these precise healthcare problems while the author was designing com-

mercial software and database techniques for sale and licensing to Kentucky Medicare and Medicaid

provides, including Passport Health Plan, to which an early version of the SQL implementation was

licensed. In general, this version comprised scheduled processes to create data structures similar to

the Multilateration Index, queries to perform analysis similar to the one used to perform the SQL

algorithm described later (in the TRILAT-NA section), and reports to summarize the results. Please

contact the author for details if needed.

We explore these questions and ultimately present a practical response: the Multilateration Coordinate

3

System and Index.

1.3 Proposed Solution: Multilateration Coordinate System and Index

If you ever find yourself lost in the woods, and you have a map, and you can see the peaks of three

mountains (or other features - not in a line) that appear on the map, you can precisely calculate your

position by comparing the angles at which you observe the mountains, without having to estimate

their distance. This is a process called “triangulation.”

If, rather than observing the angles, you can calculate the specific distances to three points, you can

also identify your position. For example, there will be only one point where the mountain peak is

500 meters away, the fire tower is 1000 meters away, and the radio tower is 200 meters away. Any

other possible combinations of distances would be a different, unique point. This approach is called

trilateration. If you were in a park, with that mountain, fire tower, and radio tower, you could

map every point in the park by the distances to each of those features. This could even be a valid

coordinate system, just like a Cartesian or polar coordinate system; a replacement for latitude and

longitude.

And this is exactly what we propose; storing multilateration distances as an alternative coordinate

system to Latitude and Longitude. Specifically, for any point on earth, we measure the distances

from these three points, and treat those three distances as coordinates:

• Point 1: 90.000000, 0.000000 (The geographic north pole)

• Point 2: 38.260000,−85.760000 (Louisville, KY on the Ohio River)

• Point 3: −19.22000, 159.93000 (Sandy Island, New Caledonia)

Storing those coordinates for analysis is a data structure we call a Trilateration Index. We explore

this idea in depth in this paper, and in our sections on Introducing the Multilateration Index.

1.4 Practical Advantages

This formulation provides some significant advantages over Latitude and Longitude when answering

the types of questions we identified above in our satellites and healthcare networks examples. We

will explore these in more detail, but in short:

• It is very easy to calculate relatively tight bounds on distances between two points knowing

only their trilateration coordinates. For example, if you are 300 miles from Louisville, KY and

your friend is 1000 miles from Louisville, KY, you cannot be closer than 700 miles apart.

4

• Similarly, if your distance from points 1, 2, and 3 differ from your friends distances from those

points by less than 20 miles each, then you are (very likely) within 20 miles of one another.

• Since these trilateration values are themselves distances, we can store them along with attributes

such as gender, age, and facility type allow us to partition and calculate on distances and

attributes at the same time. Some algorithms pre-process on distances first, building trees or

network graphs or other data structures based on distance alone. We can exploit the overlapping

nature of various attributes to enhance performance across multiple queries by avoiding high

pre-processing costs.

These facts imply algorithmic improvements for solving Nearest Neighbor (NN) and Network Adequacy

(NA), respectively. Operations on the trilateration index can take complex distance functions and

convert them to basic comparison (i.e. a single mathematical subtraction per dimension). This offers

a huge computational savings for each distance function avoided by these estimates.

We propose, discuss, and implement specific algorithms using these constructs to solve general NN and

NA problems, and we can show significant (2-30x performance increase) improvement in real-world

scenarios over other state-of-the art methods when complex distance functions are involved. While we

build on common basic geometry and while we are not the first to observe the challenges expensive

distances can make for these classes of problems, we believe our final algorithms and the trilateration

index construct is a unique and novel approach.

1.5 Implementation Details

The rest of this paper will be a guide through the more technical details of the Multilateration Index

and its application to improving NN and NA algorithms.

• Chapter 2: Review of Current Literature begins by examining existing papers on Geospatial

Computations to establish them as a candidate for high calculation cost distance metrics. We

further review literature on Multilateration and establish baselines for existing algorithms for

Nearest Neighbor algorithms and describe our search (and dearth of existing literature) on

Network Adequacy algorithms.

• Chapter 3: Network Adequacy formally introduces Network Adequacy since there was little

literature describing the computational approach as a distinct problem from Nearest Neighbor,

when we believe the two are distinct.

• Chapter 4: Introduces the Multilateration Index in a formal way, including proposing a standard

5

to compare to standard Latitude and Longitude standardized in ISO-6709. We provide a detailed

example in 2 dimensions and walk through the math and theory with a 10-data point example.

We break down several common distance queries as sub-algorithms on top of the Multilateration

Index to show how they can quickly answer the questions we described in our satellite and

healthcare examples. We provide detailed descriptions and illustrations to help describe the

index and how to query it. We perform numerical analysis and theoretical analysis of the time

complexity of our algorithms. While we focus on the NN and NA algorithms, we mention

some other areas where a Multilateration Index may be useful while leaving them for future

exploration.

• Chapter 5: Experimentation describes the specific experiments we intend to run to test our

algorithms performance, and the results. We test both Cython and SQL implementations of

four NN algorithms and one algorithm tuned for NA queries based on the Multilateration

Index. We compare the results against traditional solutions in those spaces. We find that we

are in fact able to improve performance in certain situations (those with expensive distance

functions), and we discuss the circumstances and degree of our improvements.

6

2 REVIEW OF CURRENT LITERATURE

We divide our current literature review into several major sections:

1. Geospatial computational considerations

2. Multilateration

3. Nearest Neighbor Algorithms

4. Ancillary references outside those two areas:

2.1 Geospatial Computations

The key to our problem is accurate distance calculation on the Earth. In particular, we explore

the topic of the computational complexity of a single call to the distance function for geospatial

distances.

In general, the difficulty of determining distances on the earth goes back to the origins of sailing and

before, with modern geography tracing its origins to Eratosthenes, whose claim is to be the first to

calculate the circumference of the earth around 200BC, and who himself was building on the ideas of

a spherical earth from Pythagoras and others around 500BC. (Kaplan 2018)

Haversine

The Haversine is the measurement of distances along a sphere; particularly great-circle (minimum)

distances on a spherical earth’s surface. Tables of the Haversine were published around 1800AD,

although the term was not coined until around 1835 by James Inman.(Brummelen 2012)

Given the radius of a spherical representation of the earth as r = 6356.752km and the coordinates of

two points (latitude, longitude) given by (φ1, λ1) and (φ2, λ2), the distance d between those points

along the surface of the earth is (Gade 2010):

d = 2r sin−1(
√

sin2(φ2 − φ1

2) + cos(φ1) cos(φ2) sin2(λ2 − λ1

2))

7

Obviously this is somewhat computationally complex, comprising five trigonometric functions, two

subtractions and a square root. While it is a closed form solution, it causes an error over long

distances of up to 0.3%, which can mean distances are off by up to 3 meters over distances of 1000

kilometers. From the equator to the north pole, which on a sphere is defined as precisely 10,000 km,

the actual distance is off by over 2 km, which is a sizable error for even the most robust applications.

Vincenty’s Formula

The shortcomings of the spherical calculation was thoroughly discussed by Walter Lambert in

1942.(Lambert 1942) However it wasn’t until 1975 that an iterative computational approach came

about to give more accurate distance measurements with a model of the earth more consistent with

reality. By considering the earth as an ellipsoid, rather than a sphere, the distance calculations are

more complex, but far more precise. Vincenty was able to create an iterative approach accurate

down to the millimeter level on an ideal elliptical earth; far more accurate than the Haversine

calculations(Vincenty 1975). This algorithm, however, was a series which failed to converge for points

at near opposite sides of the earth.(Karney 2013)

Karney’s Formula

Karney was able to improve upon this in 2013 to fix these antipodal non-convergences, and the

resulting formula are now widely available in geospatial software libraries where precision is required

(commonly referred to as “Geodesic” distances. (Karney 2013) This is currently the state-of-the art

implementation of precise geospatial distances. Implementations of this approach have already been

implemented in Python (in the Geopy library), which we use in our Python implementations.(Brian

Beck, n.d.)

2.2 Multilateration

There are numerous uses of multilateration as an approach to determining the position or location of

real world objects including:

• GPS (Abel and Chaffee 1991)

• RFID (Zhou and Shi 2009), (Zhang et al. 2017) ** And wireless networks in general (Singh

and Sharma 2015)

• Machine Tooling and Calibration (Linares et al. 2020)

• Air Traffic Control (Strohmeier, Martinovic, and Lenders 2018), (Kazel 1972)

8

• Machine Learning (Tillquist and Lladser 2016)

Many of these papers describe mechanisms for taking multilateration measurements, from Radar,

Wireless Networks, Lasers, Satellites, etc. and transforming them into another coordinate system,

and acting on that information. The cost of this transformation is itself expensive, requiring iterative

numerical techniques for real world solutions.(Lee 1975) These perspectives do not address using

multilateration data in any more direct way for eventual computations such as to solve Nearest

Neighbor or Network Adequacy; we discuss those problems separately next.

2.3 Nearest Neighbor

The nearest neighbor (NN) problem should need no introduction. For our perspective, we talk about

NN and k-NN as:

Given a non-empty set of points P , a non-empty set of query points Q in a metric space M of

dimension d, and a distance function D(a, b) describing the distance between points a and b for

a ∈ M and b ∈ M , the “Nearest Neighbor” of a given point q ∈ Q is the point p ∈ P such that

D(p, q) is the lowest value of D(p′, q) over all points p′ ∈ P (i.e. D(p, q) < D(p′, q)∀p′ with p 6= p′.

Note that it is possible that such a point does not exist if there are multiple points with the same

lowest distance; we do not explore that situation here.

The k-nearest neighbors (kNN) of a given point q as above is the list of k points R = p1..pk ∈ P

such that D(pk, q) is the lowest value of D(p, q) over all p ∈ P such that D(p′, q) for p′ 6= p and

p′ 6∈ R. It should be evident that NN = kNN when k = 1.

An approximate nearest neighbor (ANN) algorithm is one which will provide k points R′ = p1..pk ∈ P ,

however it does not guarantee that there exists no point in P 6∈ R′ closer than any point in R′.

A c − ANN formulation, for example, requires that, if there is such a point p′, that it cannot be

more than some ε < c farther from q than any point pi ∈ R′; that is, a solution must guarantee

that D(p, q) < c ∗D(p′, q) In general, ANNs are used when we can get a ‘close enough’ solution

algorithmically faster than a perfect kNN solution. For our purposes, we largely ignore ANNs

except for their historical value, as our construction did not yield algorithms that exhibited this

beneficial trade-off. See the “TrilatApprox” algorithm section for some more discussion.

For clarity in this paper we use the common notation |P | and |Q| to refer to the number of points in

P and Q respectively.

9

Comparing Algorithms

Solutions for NN queries can be compared across a variety of metrics which, when possible, we

explore for each algorithm:

1. Training Time Complexity - the O() (typically in terms of |P |) required to pre-process the

points p if any

2. Memory Space - the memory requirements of the structures resulting from pre-processing

3. Prediction Time Complexity - the O() required to find the kNN ∈ P for a single point q

4. Insertion/Move Complexity - the O() complexity required to add or move (or remove) a point

p ∈ P

In some cases these are directly calculable theoretically, however many algorithms suffer from theo-

retical worst-case situations that are not realistic. Synthetic benchmarks such as “ANN-Benchmark”

(which we use to report our experimental results) exist for this reason.(Aumüller, Bernhardsson, and

Faithfull 2020)

In general we want some standard bounds on these values. Our list here is compatible with (G. H.

Chen and Shah 2018), which sets the following bounds (adjusted for our definitions above):

ideally we would like nearest neighbor data structures with the following properties:

1. Fast [Prediction Time Complexity]. The cost of finding k nearest neighbors (for

constant k) should be sublinear, i.e., < O(|P |) for a single point q ∈ Q; the smaller

the better.

2. Low storage overhead [Memory Space]. The storage required for the data structure

should be subquadratic in n, i.e., < O(|P |2); the smaller the better.

3. Low pre-processing [Training Time Complexity]. The cost of pre-processing data to

build the data structure should not require computing all pairwise distances and

should thus be < O(|P |2); the smaller the better.

4. Incremental insertions [Insert Complexity] It should be possible to add data incre-

mentally to the data structure with insertion running time O(|P |).

5. Generic distances and spaces. The data structure should be able to handle all forms

of distances D(p, q) and all forms of spaces M .

6. Incremental deletions [Move Complexity] The data structure should allow removal

of data points from it with deletion running time O(|P |).

10

We don’t address point 5 from (G. H. Chen and Shah 2018); we compare Euclidean, Angular,

and Geodesic distances with the ANN-Benchmark software; other distance functions should be

generally compatible with all approaches here, but we do not attempt to address all possible distances,

particularly those which operate outside of metric spaces.

Also, while worst-case computational analysis of NN algorithms is necessarily pessimistic, theoretical

differences for average performance are impacted by the relationship between the dimension d and

the sample size |P |. . . three situations are identifiable, when a point set is: “dense with d << log(n);

sparse with d >> log(n); moderate with d = Θ(log(n)).”(Prokhorenkova 2019)

A History of k-NN Solving Algorithms

Brute-Force The naive approach to solving k − nn is a brute-force algorithm, iterating over every

point pinP and keeping track of the lowest k distances. This is trivial to examine:

1. Training Time Complexity: Zero; i.e. O(1) No pre-processing is performed.

2. Memory Space: |P |, which is simply the cost of storing the list of points p ∈ P

3. Prediction Time Complexity: O(|P |) - each query must process every point; this is not a worst

case, but the every-time case for brute force

4. Insertion/Move Complexity: O(1) - a list element can be added to the end of an array, or a

location can be updated in place. There is no complexity to changing a point.

Space Partitioning Trees Space partitioning trees use a trie to arrange points from p into groups

with a hierarchical search structure, such that, generally, points which are close to one another

exist in nearby hierarchies. The k − d tree was described in 1975.(Bentley 1975) This partitions

a space by dividing the underlying points at the median point along one of the dimensional axes,

recursively, resulting in a searchable trie. An adaptation of this - the Ball-Tree - partitions the space

into hyper-spheres, rather than along dimensional axes.(Liu, Moore, and Gray 2006)

These are straightforward structures that are easy to describe and implement.

Per (G. H. Chen and Shah 2018) space partitioning trees, such as k-d and ball trees have:

1. Training Time Complexity: O(|P | ∗ log(|P |)) (To calculate a binary search tree [BST] along d

dimensions)

2. Memory Space: O(|P |) - the BST is space efficient; every point needs to be stored only once

3. Prediction Time Complexity: O(d ∗ 2O(d) + log(|P |)) to query the binary search tree; with low

11

d (d << log(|P |)), this is efficient, but since the d appears in the exponent, large numbers of

dimensions cause significant problems here.

For point 4 (Insertion/Move Complexity), k-d and ball-trees generally provide no approach which

preserves the integrity of the first three complexity measurements. While a O(log(|P |)) insertion

is possible (inserting in a BST is not atomically difficult, per se), and while a single insert may

not really erode the utility of the tree, if new data is repeatedly added which does not match the

distribution of the original space partitioning, the tree will become imbalanced and the logarithmic

effect previously guaranteed by the original space division which preserves a balanced tree, will fade,

leaving the eventual time complexity back to O(|P |), which is typically >> d, and therefore worse.(G.

H. Chen and Shah 2018)

Locality Sensitive Hashing Locality (sometimes “Locally”) Sensitive Hashing (LSH) relies on creating

a hash function that hashes points into bins with a property that two points with the same hash

have a high likelihood of being nearer to each other than points with different hash values.(Indyk

and Motwani 1998) Formally:

For a given threshold ε > 0, and a hash function H(p) => S maps to a space S for all p ∈ P *

if d(p, q) < ε then H(p) = Hq with probability at least λ1 * if d(p, q) > ε then H(p) 6= H(q) with

probability at MOST λ2

And a value k which is the approximate number of points p ∈ P which hash to a given value. (Paulevé,

Jégou, and Amsaleg 2010) think of this value as the fraction sel = k/|P |: “the selectivity sel is the

fraction of the data collection that is returned in the short-list, on average, by the algorithm.”(Paulevé,

Jégou, and Amsaleg 2010)

LSH as a concept lends itself to no specific complexity analysis, since it is dependent on the particular

hash functions chosen. LSH can leverage L multiple hashes, and the selection of the number and

type of hashing algorithm is itself the basis of research and variety.(Paulevé, Jégou, and Amsaleg

2010),(G. H. Chen and Shah 2018)

1. Training Time Complexity: if the hash function(s) take time t(), the LSH prep takes O(|P | ∗

L ∗O(t)) - the cost of executing the functions to hash into L buckets against all points p ∈ P

2. Memory Space: a single hash function typically requires O(|P |) space or for L hashes memory

space: O(L ∗ |P |).

3. Prediction Time Complexity: This feature is the most highly dependent on the selection of

12

hash function, and the width of the hash buckets (k). The worst case is O(|P |), however for

large enough sets given λ2, the average case can be estimated as: O(L ∗O(t) + L ∗ |P | ∗ d ∗ λk2)

- (Prokhorenkova 2019) simplifies this to O(d ∗ |P |φ) for c−ANN algorithms where φ ≈ 1
c

4. Insertion/Move Complexity: O(L ∗O(t)) - the cost of executing the L hash functions on the

new point’s data

Graph Based Search More recent algorithms, such as Facebook Research’s FAISS, follow a graph

based search structure.(Johnson, Douze, and Jégou 2017)

A good overview of this approach was available from Liudmila Prokhorenkova: “Recently, graph-based

approaches were shown to demonstrate superior performance over other types of algorithms in many

large-scale applications of NNS (Aumüller, Bernhardsson, and Faithfull 2020). Most graph-based

methods are based on constructing a k-nearest neighbor graph (or its approximation), where nodes

correspond to the elements of D, and each node is connected to its nearest neighbors by directed

edges.(Dong, Charikar, and Li 2011) Then, for a given query q, one first takes an element in D

(either random or fixed predefined) and makes greedy steps towards q on the graph: at each step, all

neighbors of a current node are evaluated, and the one closest to q is chosen.”(Prokhorenkova 2019)

The construction costs of these structures can be very high. A Brute Force construction of a k-Nearest

Neighbor Graph (kNNG) has time complexity O(n2) which is of course completely untenable for large

data sets. Approaches exist to improve upon this, including improvements resulting in approximate

results, but this class still tends to trade the highest construction cost for some of the fastest query

times in high dimensions.(Dong, Charikar, and Li 2011), (Prokhorenkova 2019)

One interesting point about FAISS is that it is designed to be highly parallel, and particularly focused

on optimization available to GPUs.(Johnson, Douze, and Jégou 2017) This may be a disadvantage

for comparisons with the ANN Benchmark suite that we use, which forces single-threaded operation,

in order to test the algorithm rather than the hardware.(Aumüller, Bernhardsson, and Faithfull 2020)

As these are relatively new, and as implementations focus on real-world performance, rather than

theoretical, “Graph-based approaches are empirically shown to be very successful for the nearest

neighbor search (NNS). However, there has been very little re-search on their theoretical guaran-

tees.”(Prokhorenkova 2019)

As with LSH, Graph search methods differ in their specific choices; typically the mechanism for

generating the search graph. In general, these graphs are called “Monotonic Search Networks”

13

(MSNETs). . . (Fu et al. 2018) compares “Monotonic Relative Neighborhood Graphs” (MRNGs) and

“Navigating Spreading-out Graphs” (NSGs).

1. Training Time Complexity: (Fu et al. 2018) reports O(|P |2 log(|P |) + |P |2 ∗ c) for an

“MRNG” where c is the average out-degree of [the graph]". For NSGs, this can be reduced to

O(k|P | 1+d
d log(|P | 1d) + |P |1.16) and O(k|P | 1+d

d log(|P | 1d) + |P | ∗ log(|P |)) for FAISS. Note that

these are all by far the largest preparation complexities of all our reviewed algorithms.

2. Memory Space: Efficient graph storage requires storing k edges for each of |P | points for a base

space complexity of O(k ∗ |P |)

3. Prediction Time Complexity: (Fu et al. 2018) reports theoretical results for NSGs as

O(c|P | 1+ε
d log |P | 1d), which, for large d approaches O(log |P |), which matches their experi-

mental results.

4. Insertion/Move Complexity: This doesn’t seem closely studied, but in principle inserting a

new row costs the time to re-evaluate the kNN graph for that point, and update any points

for which the kNN graph would change with its addition. We expect this should roughly be

between O(k log |P |) and O(k2 log |P |)

Dealing with Expensive distance functions We have found only one approach in the literature that

focuses squarely on the same problem that we do here; namely: optimizing an NN algorithm when

the distance function D itself is very expensive. Where “very” here is loosely imagined as meaning

that it is costly enough to change the relative efficiency of existing NN algorithms.

In the article “Indexing expensive functions for efficient multi-dimensional similarity search”(H. Chen

et al. 2011), the authors write “[. . .] approaches so far have concentrated on reducing I/O, and

ignored the computation cost. For an expensive distance function such as Lp norm with fractional

p, the computation cost becomes the bottleneck,” and from their experimentation: “the computation

cost of the functions affects the performance as significant as the I/O cost.” This is in line with our

analysis, and was the root driver of both of our approaches.

At first glance their approach has similar goals as ours, but the resulting algorithm differs in several

key ways. First, Chen, et. al’s approach relies a technique called Vector Approximation (VA) files,

pioneered by (Weber, Schek, and Blott 1998). The VA structure is designed, according to the authors,

to improve sequential scans on high dimensional data sets. In this way it somewhat differs from

our algorithms which apply to costly distance functions even on low dimensional data. The second

primary difference between our and Chen et. al’s approach, which is that we use data structures and

14

sorted indexes explicitly to avoid sequential scans, with the intent of executing significantly less than

n comparisons in the average case (even with a proxy distance function). By comparison, Chen’s

approach, we believe, requires one full sequential pass to establish a subset of points that may require

comparison with the expensive distance function.

Still, this remains the approach most similar to ours that we can find.

2.4 Network Adequacy Minimal Literature

We can find no literature where this topic is solved in a particular algorithmic way. There are

numerous discussions in health care about satisfying network adequacy, but more as policy or health

care topics than as computational approaches. (Wishner and Marks 2017),(Mahdavi and Mahdavi

2011)

In general, it appears that most practical solutions are done in SQL databases which are commonly

the source of member and provider data for health care data sets. Still, there is little published here;

this information is anecdotal based on the author’s personal direct knowledge and informal research.

Satellite and cellular network discussions of this problem appear to be proprietary, but again

anecdotally, appear to simply apply common Nearest-Neighbor algorithms.

Where we can find references to actual applications, the implemented solutions tend to be iterative,

exhaustive implementations of existing Nearest-Neighbor algorithms.

It is worth noting that the phrase “Network Adequacy” appears in studies of electric grids bearing a

meaning that is NOT related to these distance algorithms. (Mahdavi and Mahdavi 2011; Ahmadi

et al. 2019) Satellite “coverage” appears similar at first, and in some cases (like GPS or Satellite

Internet) asks a similar question, but often the term “coverage” has a temporal component - for

example with satellite imaging - where a satellite must pass over every point it wants to cover at

some point in time. We do not explore this treatment for those problems with temporal components,

although with some works the ideas may be extended there.

15

3 NETWORK ADEQUACY

The trilateration index was originally designed to improve efficiency of the “network adequacy” (NA)

problem for health care. Network adequacy is a common legal requirement for medicare or insurance

companies with constraints such as:

• 90% of members must live within 50 miles of a covered emergency room

• 80% of female members over the age of 13 must live within 25 miles of a covered OB/GYN

• 80% of members under the age of 16 must live within 25 miles of a covered pediatrician

• etc.

Note that these are all illustrative examples; the real “Medicare Advantage Network Adequacy

Criteria Guidance” document for example, is a 75 page document.

Similar requirements, legal or otherwise, show up in cellular network and satellite communication

technology (numbers are illustrative):

• Maximize the number of people living within 10 miles of a 5G cell tower

• 100% of all major highways should be within 5 miles of a 4G cell tower

• There must be at least 2 satellites within 200 km of a point 450 km directly above every ground

station for satellite network connectivity at any given time

• There must be at least 1 satellite with access to a ground station within 50 km of a point 450

km directly above as many households as possible at any given time

The nearest-neighbor problem was called the “Post-Office Problem” in early incarnations, and the

system of post offices lends itself to a similar construction: * Ensure that all US Postal addresses are

within range of a post office

and so forth.

16

3.1 Formalization of Network Adequacy

Since we could not find formal mathematical definitions in existing literature, we now formalize the

concept of “Network Adequacy” here as:

Given a non-empty set of points P and a non-empty set of query points Q in a metric space M

(where P ∩Q comprises the ‘network’), the network is ‘completely adequate’ for a distance d and a

distance function D(a, b) describing the distance between points a and b for a ∈M and b ∈M if for

every point q (where q ∈ Q) ∃ at least one point p (p ∈ P) 3 D(p, q) <= d. Otherwise the network

is ‘inadequate.’

We call a single point q ‘adequate’ itself, if it satisfies the same condition – i.e. ∃ at least one point p

(p ∈ P) D(p, q) <= d.

Network Adequacy Percent

If, within P , we consider the largest subset P ′ ∈ P where P ′ is ‘completely adequate,’ then P has a

“Network Adequacy Percent (NAP)” of |P ′|/|P |. Note that P ′ can be defined (identically) as the

union of all ‘adequate’ points p ∈ P .

Network Adequacy Threshold

We can generalize this slightly more by describing a network as ‘adequate with threshold T ’ by

introducing a percent T (0 <= T <= 1) such that the same network is adequate if at least T ∗ |Q|

(or T percent of points in Q) are individually ‘adequate.’

Another way of saying this is that the network is ‘adequate with threshold T ’ if the Network Adequacy

Percent NAP > T .

In this case, if T == 1 we have the original case. If T == 0 we have a trivial case where the network

is always adequate (even if Q and/or P are empty, which is generally disallowed).

k-Network Adequacy (kNA)

Similarly to the kNN extension of nearest-neighbor search, where we want the k nearest values, a

k-network adequacy problem could be stated:

Given P and Q as before, a network is ‘completely k-adequate’ for a given k if ∃ at least k points

p ∈ P 3 D(p, q) <= d. Otherwise the network is ‘k-inadequate.’

17

Similarly, a single point q is ‘k-adequate’ itself, if it satisfies the same condition – i.e. ∃ at least k

points p ∈ P 3 D(p, q) <= d. Otherwise the point is ‘k-inadequate.’

18

4 INTRODUCING THE MULTILATERATION INDEX

4.1 Multilateration Index – General Definition

Given an n-dimensional metric space (M,d) comprising universe of points M in the space and

a distance function d(x, y) which respects the triangle inequality, a typical point X in the co-

ordinate system will be described by coordinates x1, x2, . . . , xn, which, typically, represents the

decomposition of a vector V from an “origin” point O : 0, 0, . . . , 0 to X into orthogonal vectors

{x1, 0, .., 0}, {0, x2, 0, .., 0}, . . . , {0, 0, .., 0, xn} along each of the n dimensional axes of the space.

The Multilateration of points in the space requires n+ 1 fixed reference points Fp (p from 1 to n+ 1),

which contains no subset of any length m which all lie on the same m− 2 hyper-plane. (i.e. in a 3d

coordinate system, with four reference points, the four points cannot lie on the same plane, no three

points can lie on the same line, and, trivially, no two points can be the same). The Multilateration

Coordinate X ′ for the point X is then: X ′ = {t1, t2, . . . , tn+1} where ti is the distance d(X,Fi) (in

units applicable to the system).

A “Multilateration Index” is a data structure which, for a given set of points p ∈ M stores the

Multilateration Coordinates. Depending on implementation and use, these can be stored in a single

structure sorted by one of ti, or in multiple structures sorted individually by each ti, or some other

variant. See Multilateration NN Algorithms and Multilateration NA Algorithms for our specific

implementations.

4.2 2-D Bounded Example

Consider a 2-dimensional grid – a flattened map, a video game map, or any mathematical x − y

coordinate grid with boundaries. WOLOG in this example consider the two-dimensional Euclidean

space M = R2 and bounded by x, y ε {0..100}. Also, let us use the standard Euclidean distance

function for d. This is, trivially, a valid metric space.

Since the space has dimension n = 2, we need 3 fixed points Fp. While the Geospatial example on

19

Earth has a specific prescription for the fixed points, an arbitrary space does not. We therefore

prescribe the following construction for bounded spaces:

Construct a circle (hyper-sphere for other dimensions) with the largest area inscribable in the space.

In this example, that will be the circle centered at (50, 50) with radius r = 50.

Select the point at which the circle touches the boundary at the first dimension (for spaces with

uneven boundary ratios, select the point at which the circle touches the earliest boundary xi). Such

a point is guaranteed to exist since the circle is largest (if it does not, then the circle can be expanded

since there is space between every point on the circle and an axis, and it is not a largest possible

circle).

From this point, create a regular n+ 1-gon (triangle here) which touches the circle at n+ 1 points.

These are the points we will use as Fp. They are, by construction, not all co-linear (or in general do

not all exist on the same n-dimensional hyper-plane) satisfying our requirement [proof].

The point y = 0, x = 50 is the first point of the equilateral triangle. The slope of the triangle’s line

is tan(pi3), so setting the equation of the circle:

(x− 50)2 + (y − 50)2 = 502 equal to the lines: y = tan(π3)(x− 50) gives x = 25(2 +
√

3) on the right

and y = tan(−π3)(x− 50) gives x = −25(
√

3− 2) on the left, and of course the original (0, 50) point.

Applying x to our earlier equations for y we get a final set of three points:

F1 = (x = 50, y = 0)

F2 = (x = 25(2 +
√

3), y = tan(π3)((25(2 +
√

3))− 50)

F3 = (x = −25(
√

3− 2), y = tan(−π3)((−25(
√

3− 2))− 50)

20

−50 0 50 100 150

0
20

40
60

80
10

0

X

Y

Figure 1: Example calculation of reference points in 2d area. Three reference points (red) are derived
from an equilateral triangle (blue) inscribed in the largest circle possible in the bounded area.

Remember, any three non-colinear points will do, but this construction spaces them fairly evenly

throughout the space, which may be beneficial to provide more variety in the indexed distances.

The trilateration of any given point X in the space, now, is given by:

T (X) = d(F1, X), d(F2, X), d(F3, X)

That is, the set of (three) distances d from X to F1, F2, and F3 respectively.

10 Random Points As a quick example of the trilateration calculations, we use a basic collection of

10 data points:

Table 1: 10 Random Points

x y
58.52396 53.516719
43.73940 43.418684
57.28944 7.950161
35.32139 58.321179
86.12714 52.201894
41.08036 78.065907
51.14533 47.157734

21

x y
15.42852 80.836340
85.13531 64.090063
99.60833 78.055071

The trilateration of those points, that is, the three points d1, d2, d3 = d(F1, X), d(F2, X), d(F3, X)

are (next to the respective xn):

Table 2: Multilateration Index of 10 Random Points WRT Fixed
points F

x y d1 d2 d3
58.52396 53.516719 54.19130 40.877779 56.10157
43.73940 43.418684 43.86772 58.768687 48.67639
57.28944 7.950161 10.78615 76.108693 83.99465
35.32139 58.321179 60.14001 60.331164 33.12763
86.12714 52.201894 63.48392 23.900247 82.63550
41.08036 78.065907 78.57382 52.310835 34.51806
51.14533 47.157734 47.17164 50.520446 52.44704
15.42852 80.836340 87.91872 78.091150 10.50105
85.13531 64.090063 73.08916 13.627535 79.19169
99.60833 78.055071 92.48557 7.008032 92.95982

Note that we do not need to continue to store the original latitude and longitude. We can convert

the three dn distances back to Latitude and Longitude within some ε based on the available precision.

Geospatial coordinates in Latitude and Longitude with six digits of precision are accurate to within

< 1 meter, and 8 digits is accurate to within < 1 centimeter, although this varies based on the

latitude and longitude itself; latitudes closer to the equator are less accurate than those at the poles.

The distance values dx are more predictable, since they measure distances directly. While the units

in this sample are arbitrary, F (x) in a real geospatial example could be in kilometers, so three

decimal digits would precisely relate to 1 meter, and so on. This is one reason that we will later

examine using the trilateration values as an outright replacement for Longitude and Latitude, and

this feature is important when considering storage requirements for this data in large real-world

database applications.

For now, continuing with the example, those 10 points are shown here in blue with the three reference

points F1, F2, F3 in red:

22

−50 0 50 100 150

0
20

40
60

80
10

0

X

Y 1

2

3

4
5

6

7

8

9

10

F1

F2
F3

Figure 2: Sample Reference points (red) and Data Points (blue)

To help understand the above values, the following chart shows the distances for points x2 and x10

above. Specifically, the distances d1 from point F1 are shown as arcs in red, the distances d2 from

point F2 in blue, and d3 from point F3 in green.

23

−50 0 50 100 150

0
20

40
60

80
10

0

X

Y

x2

x10

F1

F2
F3

Figure 3: Distance Arcs to Two Sample Points (X2, X10) from Reference points F1 (red bands), F2

(blue bands) and F3 (green bands)

Geospatial Trilateration Index

Applying this to real sample points; we propose a standard geospatial trilateration index to allow for

comparability across data sets by setting the following specific initial reference points on the globe:

Point 1: 90.000000, 0.000000 (The geographic north pole)

Point 2: 38.260000,−85.760000 (Louisville, KY on the Ohio River)

Point 3: −19.22000, 159.93000 (Sandy Island, New Caledonia)

Optional Point 4: −9.42000, 46.33000 (Aldabra)

Optional Point 5: −48.87000,−123.39000 (Point Nemo)

Note that the reference points are defined precisely, as exact latitude and longitude to stated decimals

(all remaining decimal points are 0). This is to avoid confusion, and why the derivation of the points

is immaterial (Point Nemo, for example is actually at a nearby location requiring more than two

digits of precision).

Only three points are required for trilateration (literally; thus the “tri” prefix of the term), but

we include 5 points to explore the pros and cons of n-fold geodesic indexing for higher values of

n. These optional points turn out to serve no real purpose, as we were unable to improve performance

24

with the use of additional points, however we leave them for posterity and for consistency in future

experimentation. We note that Sandy Island, New Caledonia is not a real place (Seton et al. 2013),

so there may be value in replacing it in some situations. Point Nemo was selected as being the

furthest point from any piece of land. (Barnes 2020) The thought being that if distances were more

commonly measured on land, perhaps an anchor point like this may provide more uniformity in

distances. In any case these alternatives proved to be of no particular value.

4.3 Underlying Theory Concepts and Problem Statement

The benefit of storing geographic points as a set of trilateration distances rather than latitude and

longitude boils down to the simplification of comparing distances between points by short-cutting

complex distance queries using simple subtractions. We discuss the math behind the geospatial

queries, to exhibit their complexity, and set some theoretical bounds on quick distance calculations

using the trilateration index.

Problem: High Cost of Geospatial Calculations

Calculating the distance between two points around the globe with precision is required for Satellite

Communications and Geospatial Positioning Systems (GPS), as well as for ground based surveying

and generally all applications requiring precise (sub-meter) measurements accounting for the curvature

of the earth.(ASPRS 2015) Recall from our research that modern methods of calculating accurate

distances on a properly modeled (elliptical) earth requires calculating a converging series with an

iterative algorithm. This is significantly more computationally expensive (from ~25-1000 times more

costly) than closed form mathematical distance functions like the Haversine spherical distance or

more common Euclidean distances.

To get an idea of the relative complexity, we ran some basic timings using widely available python

libraries that perform both calculations. The Haversine is about 22 times faster than Karney’s iterative

approach. For comparison, we include Euclidean functions, which are of course computationally simple,

although their usefulness on curved surfaces are minimal, and subtraction, which our algorithms use

as a bounding function in place of exact results, thus leveraging this timing delta:

Table 3: Timings (seconds) of 5000 Calls to Distance Functions

title time ratio
Geodesic 1.2110690 575.548427
Haversine 0.0553729 26.315417

25

title time ratio
Euclidean 0.0021042 1.000000
Subtraction 0.0012876 0.611919

4.4 Simple Multilateration Index Operations

Before jumping into Network Adequacy and Nearest Neighbor algorithms let’s look at the core usage

of the trilateration data structure and its use in simple distance functions.

What we mean by ‘simple distance functions’ is one of the following primitive functions common to

SQL or map related software libraries:

• D(p, q): returns the distance between points p and q

• Within(d, q, P): returns the set of all points in P within distance d of query point q **

CountWithin(d, q, P): returns the count of the set of points from Within(d, q, P)

• AnyWithin(d, q, P): returns a Boolean result - True if Within(d, q, P) is non-empty; False

otherwise

Distance Function

How can we use the Trilateration Index (TI) to improve the performance of a single distance function

D(p, q)? In the simplest case, we cannot. . . the construction of the TI structures requires three

distance functions to be calculated each for p and q (to the three fixed reference points).

However, for large data sets with fixed points where many distances need to be calculated between

them, particularly if the distance function itself is computationally intensive (such as geospatial

distances on an accurate ellipsoid model of earth) (Lambert 1942), we can use the TI structure to

create approximate distances, and provide upper and lower bounds on exact values.

For example, let’s take our sample data:

x y d1 d2 d3
8 15.42852 80.836340 11.63066 78.32131 88.19694
4 35.32139 58.321179 33.14272 60.36431 60.21479
6 41.08036 78.065907 34.64818 52.46354 78.73275
2 43.73940 43.418684 48.68666 58.76869 43.87912
7 51.14533 47.157734 52.59935 50.76727 47.55169
1 58.52396 53.516719 56.13720 40.89001 54.19130
9 85.13531 64.090063 79.41866 15.32024 73.52568
5 86.12714 52.201894 82.65970 24.08779 63.60981
3 57.28944 7.950161 83.99465 76.11526 10.97000

26

x y d1 d2 d3
10 99.60833 78.055071 93.22300 10.63544 92.92245

Here, X and Y are euclidean Cartesian coordinates, and d1, d2, d3 are the distances from these

points to our three reference points respectively. See 2-D Bounded Example for more details on the

construction. Note that in this case we have sorted the data by d1 – this is essential, and incurs

only O(n ∗ log(n)) overhead. This equates to how database indexes or arrays will hold the data in

memory.

Distance between two points

If we compare points 1 and 2 here (lines 4 and 2 in the d1-sorted table), what can we say about those

two points’ distances without invoking a distance function? If we compare the distances, we can put

lower bounds on their proximity using a direct, simple application of the triangle inequality. For

example |d1(P1)− d1(P2)| = |54.19130− 43.87912| = 10.33 which means the points can be no closer

than 10.33 units to one another. Similarly with d2 and d3, we get |58.76869− 40.89001| = 17.88 and

56.13720− 48.68666 = 7.45054. So now, the points can be no closer than 17.88 units, although they

are closer relative to the d1 and d3 points.

Within/AnyWithin Distance

It’s similarly easy to use this mechanism to approximate answers to “which points are within distance

d of query point Q?” and, relatedly, “is there at least one point in P within distance d to point Q?”

Looking back at our table, let’s examine the question “which points are within distance 20 of point

5?” Point 5 has coordinates (86.12714, 52.201894), and is 63.60981 units from d1. Since we’ve stored

the list sorted by d1, we can instantly limit our search to a sequential walk from points between

43.60981 and 83.60981 – that is, points (7, 1, 4, 9, 6) (excluding 5 itself). This is, immediately, a 50%

reduction in the data set.

While performing the walk, we look for d2 between 24.08779± 20 and d3 between 82.65970± 20. d2

rules out points (7, 4, 6) and d3 rules out (1), leaving only (9) for consideration. To be completely

certain, we can calculate d =
√

(86.12714− 85.13531)2 + (64.090063− 78.065907)2 = 14.0109936

which is, indeed, within 20.

In pseudo-code:

27

1 Within(d, P, TI):
2 lowi = lowest i such that TI[i, d1] > P[d1] - d
3 highi = highest i such that TI[i, d1] < P[d1] + d
4 FOR i FROM lowi to highi:
5 if TI[i, dx] between P[dx] - d and P[dx] + d for all x:
6 ADD i to CANDIDATES
7 FOR c in CANDIDATES:
8 if D(c, P) < d:
9 ADD c to RESULTS

10 RETURN RESULTS

CountWithin is simply the same code but returning the count of RESULTS not the points

themselves.

If we were answering the “is there at least one point. . . ” AnyWithin version, it would be easy to

shortcut the sequential walk when a match is reached.

Alternate Order Indexes

For an additional possible performance improvement, we can create alternate indexes which store

the data in sorted order along d2 and d3 (or any/all distances for arbitrary dimensions). We search

for the low and high indexes as before, but now we do so along each sorted index (for distances to

each reference point). Once we have the lists of individual candidates from each index, we need to

find any point that is common to all candidate lists. In practice we have not seen this behave as

effectively as the single-index function, but this seems to come down to the cost of merging n-lists to

find common elements.

In pseudo-code:

1 WithinMulti(d, P, TI):
2 FOR each ref point rx:
3 lowi = lowest i such that TI[i, dx] > P[dx] - d
4 highi = highest i such that TI[i, dx] < P[dx] + d
5 FOR i FROM lowi to highi:
6 if TI[i, dx] between P[dx] - d and P[dx] + d:
7 ADD i to CANDIDATES[x]
8 FOR c in CANDIDATES[1]:
9 if c in CANDIDATES[x] for all x:

10 ADD c to POSSIBLE
11 FOR c in POSSIBLE:
12 if D(c, P) < d:
13 ADD c to RESULTS
14 RETURN RESULTS

28

Time Complexity

Estimation of Time Complexity of “Within” query Note that lines 2 and 3 are O(log2(n)) operations,

since we can do a binary search on the sorted TI structure to find points closest to a specific value.

The loop in line 4 is a sequential walk along the array; the time complexity being subject to the

distance d and the composition of the points P .

To estimate time complexity in random or average cases, let’s take a closer look at what’s happening

with some visual elements. Looking at the “Within Complexity” Figure, we see the following:

• Three reference points r1..r3 as triangles

• 10 data points p1..p10 as numbered small circles

• The query point q, a small square

• A dashed circle with radius d. Note that, in this example, point 2 lies precisely d units from q,

with d ≈ 22.47

• Dashed lines from r1 to each point indicating their distance pd1 (and sort order in TI) from r1

• A large ring representing all of the space where a point within d of q must lie, with respect to

r1

8

4

6

2
7

1

9

5

3

101 2

3
0

25

50

75

100

0 25 50 75 100 125
x

y

Figure 4: Within time complexity illustration. Points within the dashed circle are closer to the query
point (green square) than point 2. The Red band indicates the are where those points must lie with
respect to the distance to reference point 1 (red triangle 1).

Comparing this to our sample data, the length of the dashed lines correspond to the sort order in the

29

TI index. That is, 8, 4, 6, 2, 7, 1, 9, 5, 3, 10 are increasingly distant from r1. This is how we quickly

prune the list – points within d distance of q are, by definition, between qd1 − d and qd1 + d distance

from r1 - namely, points 4, 6, 2, 7, 1. The rest can be no closer than this. In this case, all the points

in the ring happen to also be within d of q, but of course that will not always be the case.

Clearly there are antagonistic data sets that would thwart any benefit. If the data were arranged

in a circle all near distance d from r1, we would have culled no points from this approach. In that

particular case, the alternate WithinMulti construction would be beneficial.

If the points were randomly distributed, however, then the expected culling ratio of the index becomes

the area of the ring divided by the area of the total point space. On an infinite plane, of course,

this approaches zero, but in finite spaces, such as this example (and geospatial coordinates), we can

calculate the area. Here, we use a common Monte Carlo method to estimate that, for this distance,

on the 100x100 grid, the ring covers about 48.7% of the area.(Wasserstein, Kalos, and Whitlock

1989) Given that we had to check five of our ten points, this seems reasonable.

Time complexity of WithinMulti If, rather than cull by one ref point then search the remainder, we

cull by all three (the WithinMulti approach), we see something different:

1 2

3

8

4

6

2
7

1

9

5

3

10

0

25

50

75

100

0 25 50 75 100 125
x

y

Figure 5: WithinMulti time complexity illustration - Points within the dashed circle are closer to
the query point (green square) than point 6 (yellow diamond). Any point closer must be within the
intersection of the red bands measured from each of the three reference points (red triangles).

This time we’ve used a slightly smaller d - the distance from q to p6 or d ≈ 16.127, which helps

30

illustrate excluded points 2, 7.

To perform this efficiently, we would need to store additional sorted lists in memory - namely the

points P sorted along distances from r2 and r3 respectively. . . for example the index with respect to

r2 could look like this (x and y need not even be stored again to save more memory, as long as the

point index is available):

Table 5: Indexed sample data with respect to r2

x y d2
10 99.60833 78.055071 10.63544
9 85.13531 64.090063 15.32024
5 86.12714 52.201894 24.08779
1 58.52396 53.516719 40.89001
7 51.14533 47.157734 50.76727
6 41.08036 78.065907 52.46354
2 43.73940 43.418684 58.76869
4 35.32139 58.321179 60.36431
3 57.28944 7.950161 76.11526
8 15.42852 80.836340 78.32131

Here, culling points along the three distances respectively we get:

• r1: 4, 6, 2, 7, 1

• r2: 1, 7, 6, 2, 4

• r3: 1, 4, 6

It’s clear that r3 is the most restrictive; examining the images, it’s easy to see why. . . points 2 and 7

reside within the rings around r1 and r2, but not that of r3. The final step, of finding which elements

are common to these three lists is, unfortunately, not efficient. We can start with the smallest list,

which is some help, but as these are sorted in different orders, finding the intersection of all of the

lists is, algorithimcally, non-trivial. Given m sets containing N elements total which result in o points

in the intersection, modern research indicates space complexity of at least O(N log(N)) and time

complexity O(
√
N ∗ o+ o)).(Cohen and Porat 2010)

Still, the improvement in the initial cull may be worth it. Recall that, using a single reference

point, the time complexity was a result of the area of the ring divided by the area of the space.

In the multi-reference-point version, with m reference points, the result is m times the area of the

intersection of the m rings, divided by the area of the space.

31

Numerical Approximation: In this current example, with d ≈ 16.127, we can numerically approxi-

mate this value:

• total area: 100x100 = 10000

• r1 ring area is ≈ 33.1%

• r2 ring area is ≈ 32.7%

• r3 ring area is ≈ 37.9%

• Intersection of all three rings has area ≈ 9.4%

A Monte Carlo simulation of this is illustrated in Figure: “Monte Carlo Estimating Ring Overlap

Area.”

0

25

50

75

100

0 25 50 75 100 125
x

y

Figure 6: Monte Carlo Estimating Ring Overlap Area. Of the many random points selected, only
9.4% (lighter color) fall within the intersection of all three distance bands.

Again, these numbers will vary with d more than anything else, but the concept here is that for low

d, the area of the ring can be significantly less than that of the entire search area, even more so the

intersection of the area of three such rings, benefiting the actual time complexity of the query.

32

5 EXPERIMENTATION

5.1 Experimental Setup

We plan experiments for Network Adequacy in SQL databases, and Nearest Neighbor applications

using Python.

We describe the experiment, setup, process, and results here in detail, but note that our Appendix

includes links to the specific code and sample data used, which should answer any particular

implementation detail.

Experiment 1: Python Nearest Neighbors with ANN

1. We adapt the popular Python package scikit-learn to execute our Trilateration Index and

perform nearest-neighbor search.

2. We adapt the ANN-benchmarks software, which is designed explicitly for comparing performance

of nearest neighbor algorithms(Aumüller, Bernhardsson, and Faithfull 2020), to record results.

This includes the addition of a geodesic data set and distance function (ANN-benchmarks only

supported Jaccard, Hamming, Euclidean, and angular distance functions) for consistency (see

[Experimental data - Geodesic query points] for details).

3. We implement the four algorithms described in Multilateration NN Algorithms, namely “Tri-

lateration” (TRI), “TrilaterationApprox” (TIA), “TrilaterationExpand” (TIE), and “Trilatera-

tionExpand2” (TIE2)

4. We execute the ANN-benchmarks software against our and other modern NN algorithms, and

record the results in ANN-Benchmarks

Note that we use a widely available geodesic distance implementation from Geopy to provide a

consistent distance function implementation, thus avoiding any bias in results due to differences

between implementations.(Brian Beck, n.d.) Since the geodesic distance function is the result of

a convergent series, it is possible to vary the precision of the calculation, trading performance for

accuracy. We use the default settings in the Geopy implementation, again for a consistent comparison

33

across NN techniques.

Experiment 2: SQL Network Adequacy

For Network Adequacy, no standard benchmark exists (such as ANN-benchmarks for Nearest

Neighbor), so our experimental setup requires a bit more setup. We use the following steps:

1. We take the same 150,000 point geospatial data set used in the NN experiment (see [Ex-

perimental data - Geodesic query points] for details) and assign the points randomly to 15

categories of varying sizes (see table [Record Counts by Category ID]).

Table 6: Record Counts by Category ID

0-9 10 11 12 13 14 15

Record Count 10000 100 900 2000 5000 10000 32000

2. We implement our two Network Algorithms (NAIVE-NA and TRILAT-NA) described in

Multilateration NA Algorithms in the SQL database.

3. We execute these over various combinations of categories in our data set, logging the duration

of each combination for comparison.

Note that the above categories are used to simulate the answers to the questions we had from our

healthcare examples. . . rather than “90% of the members must live within 50 miles of a covered

emergency room,” we ask if “90% of the points in category 10 are within 50 miles of a point in category

13.” The charts in our Result Charts section effectively describe the performance of calculating the

percent for various distances for these sorts of questions.

Experimental data - Geodesic query points:

We have created a data set specifically to test Geodesic queries. The data set is a synthetic set

of 150,000 geospatial points spread across and near Kentucky with roughly the distribution of the

population.

34

Figure 7: A set of 150,000 Geodesic sample data points based on population density in the US state
of Kentucky. Points are semi-transparent so darker areas display higher density of point data.

35

5.2 Multilateration NN Algorithms

We present a new Trilateration (TRI) algorithm, which uses the Trilateration Index to solve the

Nearest Neighbor problem.

We include three other algorithms derived from the original TRI algorithm, but with various

algorithmic changes which we describe in depth below. These were the result of speculation on

our part for potential improvements, our Experimentation section will describe how these perform

in various dimensions and metric spaces. In particular we describe three variations on our TRI

algorithm: TrilaterationApprox (TIA), TrilaterationExpand (TIE), and TrilaterationExpand2 (TIE2).

These are based on simple core well established algorithms - sorted list searches, heaps, and the base

index algorithms we described in Simple Multilateration Index Operations.

Comparing Algorithms

Recall from our Review of Current Literature, we are comparing NN algorithms by four areas

Training Time Complexity, Memory Space, Prediction Time Complexity, Insertion/Move Complexity.

For each of these Trilateration algorithms, complexity is:

1. Training Time Complexity is O(|P |) - each point p ∈ P is compared to the d + 1 reference

points (d+ 1 = 3 for Trilateration).

2. Memory Space is |P | ∗ (d+ 1) since each structure requires the storage of a d ∗ p array of d+ 1

distances for each point p ∈ P

3. Prediction Time Complexity is, as with other kNN algorithms, bounded by worst-case of O(n).

The algorithms may differ in their average case performance.

4. Insertion Complexity is O(|P |) - being the cost if inserting or updating an element in the sorted

array of distances for each p ∈ P .

For comparison, we assign a somewhat arbitrary numeric scale to the O() complexity values researched

in our earlier review. This helps exemplify how we sacrifice worst-case prediction complexity, but gain

some average prediction time, in exchange for Training and Insertion performance improvements.

Table 7: Approximate relative complexity on a 1-5 scale

Algorithm Training
Time

Memory
Space

Worst
Prediction Time

Average
Prediction Time

Insertion
Time

Brute-Force 0 1 5 5 1
Space Partitioning
Trees

2 1 2 2 2

36

Algorithm Training
Time

Memory
Space

Worst
Prediction Time

Average
Prediction Time

Insertion
Time

Locality Sensitive
Hashing

2 3 3 2 3

Graph Based
Search

5 3 1 1 5

Multilateration 1 1 5 3 2

We explore four variations to explore various possible optimization that we imagined prior to

experimentation, since the experiment was required to determine which would perform best under

which circumstances. While we go into more detail later, in short:

• TRI - search along a sorted 1-dimensional (d1) distance until the worst 1d distance is farther

than the top-k nearest so far

• TIA - an approximate solution based solely on a 1-dimensional distance (this turns out not to

be very good)

• TIE - set a low and high bound on a radius (r) using the efficient Within() function to bisect

the range until k records remain

• TIE2 - start with a radius r being the distance of the closest point along 1-dimension and

select the next multiple of k (a “chunk”) points along that dimension at a time until k nearest

records are identified

Trilateration (TRI) The main trilateration algorithm for exact Nearest-Neighbor solutions takes

the Trilateration Index (recall - the distances stored in a sorted array form from all points in P with

respect to d+ 1 fixed reference points – 3 in the case of 2-d Trilateration) and applies the following

for a query point q. This provides simple a simple O(log(n)) binary search by distance, along with

the ability to quickly iterate through points consecutively closer or farther from a given point in list

order using common array operations.(Tainiter 1963)

1 Calculate qd1..qdn as the distances from point q to the n reference points r1..rn
2 Find the index i1 in TI for the nearest point along the d1 distance to q
3 Create HEAP - a max heap of size k
4 Let WORST_DIST bet the maximum distance on HEAP at any time
5 Calculate LOW_IDX = i1-(k/2) and HIGH_IDX = i1+(k/2)
6 For all points c in TI between TI[LOW_IDX] and TI[HIGH_IDX]:
7 push c onto HEAP
8 Find the index LOW_IDX_POSSIBLE in TI as:
9 the highest point along d1 where |TI[,d1]-qd1| > WORST_DIST

10 Find the index HIGH_IDX_POSSIBLE in TI as:
11 the lowest point along d1 where |TI[,d1]-qd1| > WORST_DIST

37

12 While LOW_IDX > LOW_IDX_POSSIBLE or HIGH_IDX < HIGH_IDX_POSSIBLE:
13 Choose the closer of TI[LOW_IDX-1, d1] or TI[HIGH_IDX+1, d1] along d1 (call it c)
14 If ALL of |TI[c, dx]-qx| (for all x 2..n) are < WORST_DIST
15 Calculate D(q, c)
16 If D(q, c) < WORST_DIST:
17 Add c to the HEAP
18 recalculate LOW_IDX_POSSIBLE and HIGH_IDX_POSSIBLE
19 depending on the choice, decrement LOW_IDX or increment HIGH_IDX
20 Return HEAP

Basically, looking only along one distance dimension (proximity to d1), find the closest k points to

q (which is very quick along a sorted array - O(log n) to find the first point and O(1) to add and

subtract k/2 to the indices to get the boundary). Expand the low and high values (selecting the next

point as the closest of the 2 along d1) until we have k points such that the farthest (worst) distance

to one of those points is closer than the distance along d1 for any other point (which is bounded by

LOW_IDX_POSSIBLE and HIGH_IDX_POSSIBLE, since that distance is our sort order).

TrilaterationApprox (TIA) In an attempt to gain benefit from the relaxed constraints of an

“approximate” aNN approach, we experiment with an algorithm that effectively excludes the distance

calculations altogether, from our TRI algorithm altogether. Recall that, for a given dx distance

to reference point rx, a point p can be no closer than qdx − pdx; if we treat the approx_distance

(q, p) =
∑m

x=1
qdx−pdx
|d| (the mean of the relative distances from q to all reference points rx), or, more

aggressively, the minimum such distance, we can return an approximate result without ever having

to call the distance function itself (after the index is created).

We ended up abandoning this approach after only a few tests - there was a significant drop in recall

(the mechanism by which ANN-benchmarks measures effectiveness of aNN algorithms) - up to 99%,

which is unacceptable for these approximations - with no particular improvement in performance.

This effectively removed aNN from our consideration; our results are primarily focused on exact

NN results as a consequence.

Note that the TIA algorithm is the only one that is not 100% accurate by design, and since it under-

performed so much, the remaining analysis does not focus on accuracy, but instead on performance,

given that the remaining algorithms are guaranteed by design to be 100% accurate.

TrilaterationExpand (TIE) We theorized that the TRI approach may be slowed down by the

overhead of having to iterate one point at a time, and by not utilizing more than one reference

point early in the process. Given the efficiency of the Within() function (see Time Complexity), we

38

wondered if we should treat the distance d as the target variable, and use an incremental search to

zero in on the proper value to result in k neighbors within d.

This turns out to be a silly idea, once we get the results back, but here we are. The algorithm would

look like:

1 set radius = 0.5
2 set too_low = 0
3 set too_high = maximum possible distance in the space
4 set x = CountWithin(radius, q, P)
5 while x != k:
6 if x < k:
7 set too_low = radius
8 set radius = (radius + too_high)/2
9 else:

10 set too_high = radius
11 set radius = (radius + too_low)/2
12 return Within(radius, q, P)

TrilaterationExpand2 (TIE2) Another approach to minimizing the overhead of expanding the range

in the TRI algorithm by one at a time is to simply expand by some fixed amount > 1. This actually

shows performance gains when the distance functions are inexpensive, although not enough to really

be competitive with other NN solutions, but shows no benefit (in fact, it incurs quite the cost) when

using our expensive geodesic distance functions. See our results section for more details.

Fundamentally, the change to the TRI algorithm is that we expand by k (which is a convenient

constant), or some larger constant, at a time, rather than 1 point along d1 in TI. In effect:

1 Set CHUNK equal to the greater of k or 500
2 Calculate qd1..qdn as the distances from point q to the n reference points r1..rn
3 Find the index i1 in TI for the nearest point along the d1 distance to q
4 Create HEAP - a max heap of size k
5 Let WORST_DIST bet the maximum distance on HEAP at any time
6 Calculate LOW_IDX = i1-(k/2) and HIGH_IDX = i1+(k/2)
7 For all points c in TI between TI[LOW_IDX] and TI[HIGH_IDX]:
8 push c onto HEAP
9 Find the index LOW_IDX_POSSIBLE in TI as:

10 the highest point along d1 where |TI[,d1]-qd1| > WORST_DIST
11 Find the index HIGH_IDX_POSSIBLE in TI as:
12 the lowest point along d1 where |TI[,d1]-qd1| > WORST_DIST
13 While LOW_IDX > LOW_IDX_POSSIBLE or HIGH_IDX < HIGH_IDX_POSSIBLE:
14 If TI[LOW_IDX-1, d1] is closer than TI[HIGH_IDX+1, d1]:
15 PRIOR_IDX = LOW_IDX
16 LOW_IDX = LOW_IDX - CHUNK
17 Evaluate points between TI[LOW_IDX,] and TI[PRIOR_IDX,]:
18 If ALL of |TI[c, dx]-qx| (for all x 2..n) are < WORST_DIST
19 Calculate D(q, c)

39

20 If D(q, c) < WORST_DIST:
21 Add c to the HEAP
22 else:
23 PRIOR_IDX = HIGH_IDX
24 HIGH_IDX = HIGH_IDX + CHUNK
25 Evaluate points c between TI[PRIOR_IDX,] and TI[HIGH_IDX,]:
26 If ALL of |TI[c, dx]-qx| (for all x 2..n) are < WORST_DIST
27 Calculate D(q, c)
28 If D(q, c) < WORST_DIST:
29 Add c to the HEAP
30 recalculate LOW_IDX_POSSIBLE and HIGH_IDX_POSSIBLE
31 Return HEAP

Implementation Notes There’s a lot to digest in these algorithms; many choices were made, and

various performance issues were encountered. Of note, many of the implementation specifics were due

to building our algorithms on top of the existing scikit-learn code.(Pedregosa et al. 2011) The use of

the HEAP structure, mentioned in our code, is immediately attributable to leveraging scikit-learn’s

source. Also, being built in Cython, and having been field-tested for about 10 years, it’s possible our

code could be improved or may have bugs compared to the rest of scikit-learn, but we tried real hard.

As mentioned before, the TIA algorithm failed dominantly because either performance or recall were

too slow. . . recall was a problem when only 1 reference point was used, and performance faltered

with multiple reference points due to the high cost of calculating the intersection of candidate point

lists from multiple reference points.

The implementation on both “Expanding” algorithms (TIE and TIE2) presented many choices. We

sought to find an initial guess for the candidate radius, however no suitable algorithm presented

itself that was superior to guessing “0.5” (curiously true regardless of the coordinate scale). Similarly,

the value of 500 for CHUNK size was found reasonable via trial and error, although heuristics to

arrive at the number, rather than hard-coding it, could probably benefit specific cases.

See Experimental Results and Experimentation for the results and specifics of how we tested these

algorithms.

40

5.3 Multilateration NA Algorithms

Recalling our definition of Network Adequacy (NA), we look to leverage the Multilateration Index to

improve performance when computationally answering NA questions.

In SQL, we implement two NA algorithms to compare this theoretical setup to a typical real-world

example detecting whether there exists a record in P within d of each of a set of query points Q:

• “NAIVE-NA” - the default SQL Query algorithm

• “TRILAT-NA” - the approach we’ve described

NAIVE-NA

The most basic SQL query, in a database that has Geospatial extensions, to calculate Network

Adequacy is something like:

1 select count(q.sampleid) as qcount,
2 count(p2.sampleid) as tcount
3 from q_points q
4 left join lateral (select p.sampleid from p_points p
5 where
6 st_distance(p.st_geompoint, q.st_geompoint) <= (1609.34 * mydist)
7 limit 1
8) p2 on true

This assumes two tables - “q_points” and “p_points” containing the points in Q and P respectively.

Each has a field “st_geompoint” containing a geospatial position for each point. The “st_distance”

function is a SQL function to calculate the distance between two points - in our case we need to

ensure the database uses the accurate Geodesic calculation from our research.(Karney 2013)

This returns the number of records in Q as qcount and the number of records in P as tcount. The

Network Adequacy Percent is then tcount
qcount .

Note that this function is in PostgreSQL syntax; it requires slight moderation but otherwise works

(we tested) in Microsoft SQL Server and MySQL. It likely works with little modification in any

database which supports the SQL:1999 standard for lateral joins and geospatial points and distance

functions. One thing that is NOT identical between database implementations is the ability or

effectiveness of database indexes on this query. In PostgreSQL, we have experimented and found that

Also note the 1609.34 - this is to convert the distance from meters to miles, which is not core to the

algorithm, but left here since these are the units we work with in our experimental results, and as an

example.

41

TRILAT-NA

Recall that we require fixed reference points for Trilateration, and per our previous construction, we

selected these:

• Point 1: 90.000000, 0.000000 (The geographic north pole)

• Point 2: 38.260000,−85.760000 (Louisville, KY on the Ohio River)

• Point 3: −19.22000, 159.93000 (Sandy Island, New Caledonia)

The “NAIVE-NA” query requires no real setup, other than storing the data from the P and Q

data sets. Not so here – we require additional fields added to the database in the q_points and

p_points tables to store the distances from each point to these reference points. We name those

fields refdist1, refdist2, and refdist3. Recall that this is a one-time setup requiring 3 ∗ |P |+ 3 ∗ |Q|

calls to st_distance.

The SQL implementation of the TRILAT-NA algorithm then looks like this:

1 select count(q.sampleid) as qcount,
2 count(p2.sampleid) as tcount
3 from q_points q
4 left join lateral (select p.sampleid from p_points p
5 where
6 abs(q.refdist1 - p.refdist1) <= (1609.34 * mydist)
7 and abs(q.refdist2 - p.refdist2) <= (1609.34 * mydist)
8 and abs(q.refdist3 - p.refdist3) <= (1609.34 * mydist)
9 and st_distance(p.st_geompoint, q.st_geompoint) <= (1609.34 * mydist)

10 limit 1
11) p2 on true

Note that this is identical to the query for NAIVE-NA, with the addition of the three lines comparing

the refdist values.

These accomplish two things:

1. They allow SQL to optimize using normal (non-geospatial) database indexes when comparing be-

tween the two points p and q, using simple subtraction rather than a complicated geodesic query.

2. They allow for three opportunities to reduce the data set size before the high cost geodesic

query is performed. Recall our figure [Monte Carlo Estimating Ring Overlap Area] that

exhibited how the area of the three overlapping rings of width d was << the area of the

search space; a similar thing happens here. . . For a given distance d, the set of points where

q.refdisti − p.refdisti <= d, is the intersection of those three rings of width d with centers on

42

the three reference points and with diameters such that the middle of each ring passes through

q. This eliminates most points if d is relatively small - small enough that some points q are

inadequate is generally a good test.

See the Experimentation and Experimental Results sections for details on our specific implementations,

tests, and results.

43

5.4 Experimental Results

We implemented our new algorithms in Cython/Python and SQL as described in previous sections.

The source code used for this analysis is linked in the Appendix.

5.5 ANN-Benchmarks

We used the “Ann-Benchmarks” software - a widely available open source benchmark designed for

timing Nearest Neighbor algorithms - to compare our algorithm to others in the NN space. (Aumüller,

Bernhardsson, and Faithfull 2020) We specifically modified the popular “scikit-learn” package to

implement our algorithms, as it was already the basis for many benchmarks in this suite.(Pedregosa

et al. 2011) We tested three scenarios:

• Our Geodesic data set using the (expensive but accurate) Karney distance algorithm (Karney

2013) coded in the geopy package (Brian Beck, n.d.)

• A standard 20-dimension Euclidean distance test provided by the ANN-Benchmarks software

• A 25-dimension Angular distance test (“Glove”) provided by the ANN-Benchmarks software

We expect that our algorithm will not fare well in the second and third tests as those are widely

available and other algorithms are highly tuned for them. We note, however, that the individual

distance functions in those cases are relatively fast to calculate, so we expect our algorithms, designed

to handle more expensive functions, will do well in the Geodesic test.

Lastly note that all algorithms in our results section are 100% accurate. The TIA was the only one

which sacrificed accuracy for speed, and that algorithm performed so poorly we excluded it from the

results entirely.

A Note on Accuracy

All results below produced 100% accurate results. All algorithms produced identical results, as the

dataset is fully deterministic for NN and kNN . There was a chance that synthetic data would have

allowed ties in some situations that could have been broken in different ways but this did not happen

in practice. While the ANN software allows for “approximate” results, it is more than sufficient for

exact results, and all of the algorithms used here were measured with exact results, at 100% accuracy.

44

3D Geodesic 150k points

As hoped, our Trilateration algorithm really shines when applying the complex but accurate geodesic

distance function. The Trilateration algorithm is over 30 times faster than the next best candidate (the

Ball Tree algorithm with leaf_size=10). The Brute Force algorithm is unbearably slow here, which is

expected since it should be calling the expensive distance function n2 or 150, 0002 = 22, 500, 000, 000

(22.5 billion) times. . . more than any other algorithm by far. Recall that our test of 5000 calls to a

single geodetic function took ≈ 1.2 seconds, so we’d expect 22.5 billion to take 5.4 million seconds,

or about 62 days on similar hardware. The other algorithms ran to completion.

2.249

0.683

0.182

0.05

0.099

0.096

0.089

73.119

0.364

1.335

BallTree(leaf_size=10)

BallTree(leaf_size=100)

BallTree(leaf_size=1000)

BruteForce

KDTree(leaf_size=10)

KDTree(leaf_size=100)

KDTree(leaf_size=1000)

Trilateration

TrilaterationExpand

TrilaterationExpand2

0 20 40 60 80
QPS

A
lg

or
ith

m

Figure 8: Queries Per Second for Geodesic (Q=150,000; higher is better)

Random 20-dimension euclidean distance:

The ANN-benchmark tool includes support for a randomly generated 20-dimension euclidean data

set, which is one of its most basic tests. We note that our performance here is abysmal for the initial

“Trilateration” algorithm, even failing to beat the brute force approach. This seems to be due to the

overhead we incur determining which candidates to test next. Remember that we traded a number

of subtractions and some array navigation in exchange for fewer distance function calls. In this case,

when the distance function itself is extremely fast, that overhead is a net loss.

It is worth noting that we tuned the two expansion based algorithms here as well. “TrilaterationEx-

pand” performs far better than the stock Trilateration algorithm, but still just below the Brute Force

algorithm. The “TrilaterationExpand2” algorithm, however, is actually competitive here, more than

doubling the queries per second of the Brute Force approach, and reaching more than 60% as fast as

45

some tree algorithms.

For Euclidean distances, however, we cannot recommend our algorithms against competitors.

BallTree(leaf_size=10)

BallTree(leaf_size=100)

BallTree(leaf_size=1000)

BruteForce

Trilateration

TrilaterationExpand

TrilaterationExpand2

0 1000 2000 3000 4000
QPS

A
lg

or
ith

m

Figure 9: Queries Per Second and Time to Build Indexes for 20-dimension Euclidean

We are somewhat disappointed in our results here, but not terribly surprised. Recall that our intent

was to optimize for expensive distance functions. . . this particular experiment is using a standard

euclidean function which, even in 20-dimensions, has a closed form straightforward calculation, which

has benefited from years of optimization. The per-distance-function call is relatively inexpensive

– not the domain our algorithms target – but we felt it was important to include the results for

comparison.

Glove 25-dimension Angular distance

The GloVe (“Global Vectors for Word Representation”) data set “is an unsupervised learning algorithm

for obtaining vector representations for words. Training is performed on aggregated global word-word

co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear

substructures of the word vector space” per the authors. (Pennington, Socher, and Manning 2014)

It is one of the built-in data sets in the ANN-benchmark tool. Under the hood, this issuing a euclidean

distance function, once the angular coordinates are transformed, so the relative performance is similar

to the euclidean data set.

Of note, we include only results that were full (not approximate) nearest neighbor solutions.

These results include the addition of the FAISS algorithm, one of the graph index based NN solvers

46

which came out of Facebook Research in recent years.(Johnson, Douze, and Jégou 2017) On these

data sets, FAISS is a beast, but unfortunately it is a very highly tuned GPU-based implementation

which makes it difficult to adapt to unsupported distance functions, such as the Geodesic we target

with Trilateration. We leave it here for information, but are unable to compare it on our core task.

Note that our performance has suffered again similarly to with the random euclidean data set.

Trilateration is extremely slow; as is TrilaterationExpand. TrilaterationExpand2 beats BruteForce

and is somewhat shy of the Tree-based algorithms. But we are not competitive in this space.

BallTree(leaf_size=200)
BruteForce()

FaissIVF(n_list=1024, n_probe=200)
FaissIVF(n_list=128, n_probe=100)
FaissIVF(n_list=128, n_probe=200)

FaissIVF(n_list=128, n_probe=50)
FaissIVF(n_list=256, n_probe=100)
FaissIVF(n_list=256, n_probe=200)

FaissIVF(n_list=32, n_probe=100)
FaissIVF(n_list=32, n_probe=200)
FaissIVF(n_list=32, n_probe=50)

FaissIVF(n_list=512, n_probe=200)
FaissIVF(n_list=64, n_probe=100)
FaissIVF(n_list=64, n_probe=200)
FaissIVF(n_list=64, n_probe=50)

Trilateration
TrilaterationExpand

TrilaterationExpand2

0 50 100 150
QPS

A
lg

or
ith

m

Figure 10: Queries Per Second and Time to Build Indexes for glove-25-angular

Similar to the Euclidean distance function, our under-performance here is not particularly surprising

as, again, this is not a particularly expensive calculation at the individual level. FAISS, BallTree,

and KD-Tree algorithms trade off more pre-processing time for pruning techniques to divide their

search area quickly when querying. This approach does not necessarily optimize for fewer calls to the

distance function, so when that function is more expensive, those calls have more impact. While our

algorithm substitutes subtraction as a proxy for the distance function, we see great improvements

when that substitution has high savings, but less improvement when the distance cost was already

low.

NN Results Summary

As we hoped, we outperformed generic algorithms on Geodesic distance queries, however the degree

to which we outperformed them – some 30 times – exceeded our expectations. More-so we were able

to do so with a training time some five times less than the next best performing Ball tree algorithm

47

(58 seconds training time for Trilateration, 258 seconds for Ball Tree).

Our algorithm severely under performed on the Euclidean and Angular distance functions, but this

is unsurprising, as the existing algorithms have been heavily tuned for those use cases.

48

5.6 SQL Network Adequacy Results

We conducted our experiment as described, resulting in 36 combinations of point (P) and query

(Q) sets from the same 150,000 point sample we’ve used for NN experiments. The data sets are

categorized and range from 100 to 32,000 points, as shown here:

Table 8: Record counts by category used in experiment

category record count
166 10 100
168 11 900
180 12 2000
192 13 5000
276 14 10000
294 15 32000

Result Charts

Recall that we are calculating the Network Adequacy Percent (NAP), which requires a distance d,

and we performed experiments with d ∈ (0.1, 1, 10, 100). At a high level, our TRILAT-NA algorithm

performs well against the naive algorithm overall. This initial density box-plot shows the Trilateration

performance against the st_distance function overall. Note that this figure is on a log scale - some of

the Trilateration improvements are 100 times faster in the best case, and overall notably faster in

aggregate:

st_distance

Trilateration

1e−01 1e+00 1e+01 1e+02 1e+03
timing_s

T
im

in
g

in
 s

ec
on

ds

algorithm

st_distance

Trilateration

Figure 11: Overall Timings By Category (s) - log10 scale - lower is better

49

It turns out that the relative performance of these queries depends strongly on the value of d, and

the resulting NAP that d implies. Charts of our results against d show this impact quite strongly:

0

250

500

750

1000

0.1 1 10 100
dist

tim
in

g_
s algorithm

st_distance

Trilateration

Figure 12: SQL Timings (s) relative to dist (d) - lower is better

It’s worth noting that the actual NAP for d varies in this data set; using |P | = 32000 and |Q| = 10000

we find:

Table 9: d vs. ~NAP

d NAP
0.1 42%
1.0 88%
10.0 98%

100.0 100%

Of course this varies with the size of the data set, but the rough bounds are important. The data set

comprises points in Kentucky which is roughly 400 miles east-west and 200 miles north-south. When

d is 100 miles, even with 100 points (our smallest sample), 100% coverage is all but guaranteed. At

10 miles, we see some holes in coverage, but not many – thus the 98% value. When we get down to

the one mile and one tenth of a mile ranges, coverage drop precipitously. Even with our largest two

categories, NAP is only 88% at 1 mile and 42% at 0.1 miles. If we had been using real world data,

imagine that we ask the question “what percent of people live within 1 mile of a pharmacy” to get

an idea what these numbers could mean (if this were not synthetic data).

These percentages are akin to those we need to answer the healthcare questions set forth in the

50

introduction. For example to answer “80% of members under the age of 16 must live within 25 miles

of a covered pediatrician” we would set d=25 miles, and identify the sets of points for “members

under the age of 16,” and “covered pediatrician” - those sets could be compared to some categories

here, (i.e. category 11 and category 14). The charts below show how efficiently we could calculate

the percent, to determine if it is more or less than 80%, and answer the question.

51

In any case, comparing performance those are our parameters. . . the size of Q, size of P , and the

distance d. We chart the results here, for both the NAIVE-NA and TRILAT-NA queries:

0 1 1 2 2 5

12 1 15 20 24 47

27 31 5 45 54 101

72 80 85 33 132 255

131 150 156 197 113 535

459 472 513 642 852 965

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Naive

|Q
|

0

250

500

750

1000
timing_s

0 1 1 1 0 0

12 0 11 10 7 6

29 28 0 21 16 13

72 72 66 2 41 34

145 143 114 94 11 76

433 476 360 303 263 91

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Trilateration

|Q
|

0

250

500

750

1000
timing_s

Figure 13: SQL Timings By Category (s) for distance d=0.1 - lower is better. Each square represents
a query with a given number of search points P (x-axis) and query points Q (y-axis) with fixed
adequacy distance d. The numbers represent the time (in seconds) to determine the NAP: percent of
points in Q within distance d of any point in P.

0 0 0 0 0 1

7 0 4 5 6 11

17 10 2 12 15 26

43 24 25 12 38 65

82 48 49 57 40 126

262 160 159 183 236 263

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Naive

|Q
|

0

100

200

300

400

500
timing_s

0 0 0 0 0 0

8 0 3 2 2 2

17 8 0 5 4 5

44 19 16 1 11 12

83 38 32 24 8 25

269 124 103 78 71 56

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Trilateration

|Q
|

0

100

200

300

400

500
timing_s

Figure 14: SQL Timings By Category (s) for distance d=1 - lower is better.

52

0 0 0 0 0 0

1 0 0 1 1 3

3 2 0 2 3 7

10 5 4 3 8 16

19 9 9 11 12 33

63 32 29 35 55 81

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Naive

|Q
|

0

25

50

75

100
timing_s

0 0 0 0 0 0

1 0 0 0 1 1

4 1 0 1 1 3

10 4 3 1 4 8

20 7 5 5 7 16

63 26 17 17 28 49

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Trilateration

|Q
|

0

25

50

75

100
timing_s

Figure 15: SQL Timings By Category (s) for distance d=10 - lower is better. Note how query times
go up quickly as the query point size (y-axis) increases, but shows a decrease then increase as the
search point cardinality (x-axis) increases.

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 1 3

1 1 1 1 4 8

2 2 2 4 7 17

8 6 7 13 25 51

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Naive

|Q
|

0

10

20

30

40

50

60
timing_s

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 3

1 1 1 1 3 7

2 2 2 3 6 15

8 5 6 11 22 48

100

900

2000

5000

10000

32000

100 900 2000 5000 10000 32000
|P| − Trilateration

|Q
|

0

10

20

30

40

50

60
timing_s

Figure 16: SQL Timings By Category (s) for distance d=100 - lower is better

Interpretation

We find these charts quite interesting. What is happening? we make several distinct observations:

Accuracy First we wanted to reaffirm that the code remained 100% accurate. . . both algorithms

agreed with one another completely, and the NAP and adequacy thresholds were calculated identically.

We focus on performance in our results, then, given the 100% accuracy of all approaches, as expected.

53

Processing time is directly realted to |Q| As the size of the query data set (Q) increases along

the y-axis, it’s clear that the computation time increases at roughly the same rate. The top row is

roughly 3x the row below it (the ratio of 32,000:10,000). . . the next row is roughly half (10,000:5000),

and so on. This makes sense; if we consider the query a for loop over Q, which is how we implement

it in another language, the cost should go up proportionately, and it clearly does.

The diagonal is strangely fast. This we originally thought of as a flaw in our experimental design,

but now that we analyze it it’s quite interesting and we chose not to change it. The situation along

the diagonal is that we’re using the same category for P and Q; this means that the data sets are

identical, and that there is a 100% chance, always, of finding a point p within d of q∀q ∈ Q namely

the point itself - since it is in the data set and we made no effort to restrict this. There may or may

not be a second point within distance, but recall that our definition only requires one (since we did

not extend to k −NA). But why is this so fast? Given the guaranteed success of finding at least

one qualifying point in every data set, we surmise that the performance improvement is a statistical

result of almost never having to iterate over the entire set P . The average time to find a point if

one is guaranteed to exist, should be roughly half the time (over repeated iterations) of searching

the whole set. The entire query time is then some statistical fraction of a prior expectation of the

likelihood of finding a match.

Given our chart of d vs. NAP earlier, it makes sense that the diagonal’s relative value is higher

when d is low. That is, when d = 100 every point is adequate, even without itself as a guaranteed

qualifying point, so there is no real performance gain – we never have to search every p for a match.

When d = 0.1, on the other hand, we have to search the entire data set, in vain, over 50% of the

time (per our chart), wasting an entire scan of P . Along the diagonal this never happens, and the

time results mirror this fact.

The impact of varying distance d Our best results are on low d with high |Q| and high |P |. The

NAIVE-NA query took nearly 15 minutes on our hardware to execute a 32,000x32,000 point search

for network adequacy for d = 0.1. A little over 4 minutes for d = 1, and just over and under a minute

for d = 10 and d = 100 respectively. A similar pattern exists for the TRILAT −NA algorithm.

The reason for this seems straightforward. . . the smaller the distance d, the less likely it is that any

given point p is within d of a query point q. Thus, in a large sample P we expect to have to search

more points, and spend more time, as d decreases. This is a simple theory consistent with the result.

54

Complex relationship with |P| for NAIVE-NA A more complicated relationship exists as we walk

the charts from left to right. Examine the chart where d = 1 for a moment. On every but the bottom

line (where zeroes probably hide this as a rounding problem), on the NAIVE-NA chart, the query

time is HIGHER for |P | = 100 than it is for |P | ∈ (900, 2000, 5000, 10000), however it picks UP again

when |P | = 32000.

Why? We’ve run these tests repeatedly, in random order, back to back, to rule out hot/cold cache

issues or other start-up problems.

Let’s look at the actual NAP values for that row:

Table 10: P vs. ~NAP for d=0.1, Q=10000

P NAP
100 36.27%
900 70.81%
2000 76.37%
5000 83.66%

10000 100.00%
32000 93.50%

With only 100 candidate points, only 36.27% of Q is within 0.1 miles of a point in P . The other

63.73% must iterate all |P | ∗ |Q| comparisons (in the NAIVE-NA implementation), resulting in

0.6473 ∗ 10000 ∗ 100 = 647, 300 comparisons plus a portion of the other 36.27% which is at most

0.3627∗10000∗100 = 362, 700. Applying the same math for |P | = 900, at 70.81% (29.19% inadequate)

we get 0.2919 ∗ 10000 ∗ 900 = 2, 627, 100. So, we see no direct theoretical observation that would

make this make sense.

Sooo. . . we have to look at the SQL query plan:

Aggregate (cost=37295851666.13..37295851666.14 rows=1 width=16)
(actual time=86693.568..86693.570 rows=1 loops=1)

-> Nested Loop Left Join (cost=0.00..37295851616.50 rows=9925 width=8)
(actual time=152.251..86690.574 rows=10000 loops=1)

-> Seq Scan on sample_cat_ref_dists m
(cost=0.00..4018.00 rows=9925 width=60)
(actual time=151.943..166.146 rows=10000 loops=1)
Filter: (category = 14)
Rows Removed by Filter: 140000

-> Limit (cost=0.00..3757768.00 rows=1 width=4)
(actual time=8.651..8.651 rows=0 loops=10000)

-> Seq Scan on sample_cat_ref_dists p
(cost=0.00..3757768.00 rows=1 width=4)

55

(actual time=8.649..8.649 rows=0 loops=10000)
Filter: category=10 ...
Rows Removed by Filter: 95609

Planning Time: 0.464 ms
JIT:

Functions: 11
Options: Inlining true, Optimization true, Expressions true, Deforming true
Timing: Generation 4.194 ms
Inlining 9.301 ms
Optimization 86.339 ms
Emission 55.402 ms
Total 155.236 ms

Execution Time: 86697.917 ms
(15 rows)

Time: 86699.517 ms (01:26.700)

Aggregate (cost=3107991549.46..3107991549.47 rows=1 width=16)
(actual time=43705.837..43705.839 rows=1 loops=1)

-> Nested Loop Left Join (cost=0.00..3107991499.83 rows=9925 width=8)
(actual time=158.346..43702.035 rows=10000 loops=1)

-> Seq Scan on sample_cat_ref_dists m
(cost=0.00..4018.00 rows=9925 width=60)
(actual time=158.024..172.995 rows=10000 loops=1)
Filter: (category = 14)
Rows Removed by Filter: 140000

-> Limit (cost=0.00..313147.33 rows=1 width=4)
(actual time=4.351..4.351 rows=1 loops=10000)

-> Seq Scan on sample_cat_ref_dists p
(cost=0.00..3757768.00 rows=12 width=4)
(actual time=4.349..4.349 rows=1 loops=10000)

Filter: category=11 ...
Rows Removed by Filter: 43992

Planning Time: 0.189 ms
JIT:

Functions: 11
Options: Inlining true, Optimization true, Expressions true, Deforming true
Timing: Generation 1.702 ms
Inlining 9.062 ms
Optimization 91.460 ms
Emission 56.565 ms
Total 158.790 ms

Execution Time: 43707.634 ms
(15 rows)

Time: 43708.659 ms (00:43.709)

There are two key differences here - the inner (second) “Rows Removed by Filter” which, for |P | = 100

is 95609 and for |P | = 900 is 43992. The other, related, difference being the actual time in the loops

- 86693.568 for the outer and 8.649 for the inner when |P | = 100 and 43705.837 outer, 4.349 inner

for |P | = 900. This indicates that our analysis was flawed; the SQL optimizer swapped what we

56

presumed were the inner and outer loops, and given the percents, the inner loop is more expensive

when |P | = 100 (by about double).

Complex relationship with |P| for TRILAT-NA The pattern is similar, but not identical, in the

right half of the graphs - those using our new TRILAT-NA algorithm.

If we examine the top rows for d = 0.1 and d = 1, where runtime is longest, the NAIVE-NA algorithm

as we described may slightly increase performance for low |P |, but quickly sees a runtime increase as

|P | increases. The TRILAT-NA algorithm, however, while it isn’t monotonic for |P | ∈ (100, 900), it

actually decreases as |P | increases from then on (with the exception of items on the diagonal, which

are special as we discussed before).

This is easier to explain. . . the addition of the filters using the refdisti distances causes a much

quicker elimination of points outside of the d radius from each q. More points in P makes the

efficiency of these culls more pronounced. That is, if we look at the “Rows Removed by Filter” as we

did in the explain before, and remember the figure [Monte Carlo Estimating Ring Overlap Area],

we see that those three additional refdist filters will exclude a high percent of candidate records

quickly. The remaining points, subject to the expensive st_distance calculation, have a high percent

chance of being within d of q.

The higher the number of points in P , the more points culled as a result of the refdist filters that

no longer have to have st_distance called, compared to the NAIVE-NA query, resulting in the

performance gains we see.

NA Performance Conclusions The TRILAT-NA algorithm was as fast or faster in almost every

test we ran; the only major outlier was when d = 0.1 and |P | = 100, in two cases (|Q| = 2000 and

|Q| = 10000), TRILAT-NA was slower by 2 and 14 seconds (about 7% and 10%) respectively. When

d = 1, |P | = 100 again, and |Q| = 900, |Q| = 5000, or |Q| = 10000, TRILAT-NA was slower by 1

second or less in each case. Given that our resolution is 1-second, these are statistically minor. Even

for the larger discrepancies, it seems that the TRILAT-NA algorithm is only slower for very small

values of |P |, which is where optimization is least needed in the first place. When the workload takes

the longest, the TRILAT-NA algorithm performs significantly faster (up to 100 times, per these

charts) than the naive algorithm.

57

6 CONCLUSIONS

We find that we were able to achieve our original goal, of designing data structures and related

algorithms using Multilateration to improve upon Nearest Neighbor and Network Adequacy algorithms

in situations where the distance function is computationally expensive. We summarize the following

results:

• On Geodesic data for Nearest Neighbor search, our index and algorithm is ~30 times faster

than the next best (a tuned Ball-Tree algorithm)

• On Euclidean and Angular data for NN, our performance is significantly worse - between 3%

and 50% as fast as alternatives

• For Geodesic data answering Network Adequacy questions, our SQL index and algorithm is

50% faster in sparse data (when the coverage percent is <= ~50%) than competing algorithms

• For Geodesic NA questions, our performance is roughly equivalent of standard SQL approaches

for dense data (when the coverage percent is » ~50%).

So our results are mixed, but for certain use cases which are predictable in advance, our treatment

shows definite improvement.

58

7 FUTURE WORK

There are a number of areas that we speculate, with minimal investigation, that Multilateration

indexes and algorithms have benefits worth exploring. A brief list of such areas that may be good for

future investigation include:

Precision: Queries are not constrained by precision choices dictated by the index, as can be the case

in Grid Indexes and similar R-tree indexes, which must be tuned for . R-tree indexes improve upon

naïve Grid Indexes in this area, by allowing the data to dictate the size of individual grid elements,

and even Grid Indexes are normally tunable to specific data requirements. Still, this involves analysis

of the data ahead of time for optimal sizing, and causes resistance to changes in the data.

Proximity to reference points: One question that could use more investigation is whether the

algorithms presented are more or less effective if the query and static points (Q and P) are nearer

or farther from the reference points. One of our data sets is near Louisville, KY, where one of our

reference points sits near the edge of the entire set of points P ∩Q. By some logic, this is beneficial

– the band of points between two distances d1 and d2 from the nearest reference point r covers a

smaller area than if the points were further from r. further experimentation may prove enlightening.

Geohashing: Trilateration distances can be used as the basis for Geohashes, which improve somewhat

on Latitude/Longitude geohashes in that distances between similar geohashes are more consistent

in their proximity. Geohashing is a mechanism of encoding a location into a short string of letters

or numbers - a “geohash,” based on structures proposed in 1966.(Morton 1966) The Trilateration

index could be converted to such a hash by selecting the most significant digits of each Trilateration

distance to some precision and concatenating them. I.e. point #1 in our 10-point sample set had

d1=56.13720, d2=40.89001, and d3=54.19130. A 1-digit hash would be 545; a 2-digit would be

564054, and so on. The advantage of this is that two geohashes can be quickly be compared for

distance. For example a point hashed to 545 would be closer to a point that hashes to 656 than it

would to one hashed 577.

Distributed Computing: Those geohashes can be used as hash values, compatible with distributed

59

computing (I.e. MongoDB shards or Teradata AMP Hashes). Our algorithms can also be effective

when distributed - that is; if the data is divided across N workers, each can independently apply

the Multilateration index and algorithms, and the case of combining data from the N workers is a

fairly trivial merge sort. Also, simple message passing could be implemented to pass upper bounds

on distances as nodes improve their individual top-k, allowing other nodes to quickly prune results.

Bounding Bands: The intersection of Bounding Bands (the rings radiating fixed distances from the

trilateration index points) overlap in shapes that are effective metaphors to bounding boxes, without

having to artificially nest or constrain them, nor build them in advance as with KD- and Ball-Trees.

Readily Indexed (B-Tree compatible): Trilateration distances can be stored in traditional

B-Tree indexes, rather than R-tree indexes, which can improve the sorting, merging, updating, and

other functions performed on the data.

Fault Tolerant: This coordinate system is somewhat self-checking, in that many sets of coordinates

that are individually within the correct bounds, cannot be real, and can therefore be identified as

data quality issues. For example, a point cannot be 5 kilometers from the north pole (fixed point F1)

and 5 kilometers from Louisville, KY (fixed point F2) at the same time. A point stored with those

distances could be easily identified as invalid.

Theoretical shortcomings:

Index Build Cost: Up front calculation of each trilateration is expensive, when translating from

standard coordinates. Each point requires three (at least) distance calculations from fixed points

and the sorting of the resulting three lists of distances. This results in O(n*logn) just to set up the

index.

*This could be mitigated by upgrading sensor devices and pushing the calculations back to the data

acquisition step, in much the way that Latitude and Longitude are now trivial to calculate in practice

by use of GPS devices. Also, we briefly discuss how GPS direct measurements (prior to conversion

to Lat/Long) may be useful in constructing trilateration values.

Storage: The storing of three distances (32- or 64- bits per distance) is potentially a sizable percent

increase in storage requirement from storing only Latitude/Longitude and some R-Tree or similar

index structure.

*Note that if the distances are stored instead of the Lat/Long, rather than in addition to them,

storage need not increase.

60

Projection-Bound: The up-front distance calculations means that transforming from one spatial

reference system (I.e. map projection – geodetic – get references to be specific) to another requires

costly recalculations bearing no benefit from the calculation. For example a distance on a spherical

projection of the earth between a given lat/long combination will be different than the distance

calculated on the earth according to the standard WGS84 calculations).

*This said, we expect in most real-world situations, cross-geodetic comparisons are rare.

Difficult Bounding Band Intersection: Bounding Bands intersect in odd shapes, which, particu-

larly on ellipsoids, but even on 2D grids, are difficult to describe mathematically. Bounding boxes on

the other hand, while they distort on ellipsoids, are still easily understandable as rectangles.

61

REFERENCES

Abel, Jonathan S., and James W. Chaffee. 1991. “Existence and Uniqueness of Gps Solutions.” IEEE

Transactions on Aerospace and Electronic Systems 27. https://doi.org/10.1109/7.104271.

Ahmadi, Seyed Alireza, Vahid Vahidinasab, Mohammad Sadegh Ghazizadeh, Kamyar Mehran,

Damian Giaouris, and Phil Taylor. 2019. “Co-Optimising Distribution Network Adequacy

and Security by Simultaneous Utilisation of Network Reconfiguration and Distributed Energy

Resources.” IET Generation, Transmission and Distribution 13. https://doi.org/10.1049/iet-

gtd.2019.0824.

ASPRS. 2015. “ASPRS Positional Accuracy Standards for Digital Geospatial Data.” Photogrammetric

Engineering & Remote Sensing 81 (February): 1–26. https://doi.org/10.14358/pers.81.3.a1-a26.

Aumüller, Martin, Erik Bernhardsson, and Alexander Faithfull. 2020. “ANN-Benchmarks: A

Benchmarking Tool for Approximate Nearest Neighbor Algorithms.” Information Systems 87:

101374. https://doi.org/https://doi.org/10.1016/j.is.2019.02.006.

Barnes, Richard. 2020. “Optimal Orientations of Discrete Global Grids and the Poles of Inaccessibility.”

International Journal of Digital Earth 13. https://doi.org/10.1080/17538947.2019.1576786.

Bentley, Jon Louis. 1975. “Multidimensional Binary Search Trees Used for Associative Searching.”

Communications of the ACM 18. https://doi.org/10.1145/361002.361007.

Brian Beck, et. al. n.d. Geopy. https://github.com/geopy/geopy.

Brummelen, Glen Van. 2012. Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry.

Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. https://doi.org/10.33137

/aestimatio.v11i0.26065.

62

https://doi.org/10.1109/7.104271
https://doi.org/10.1049/iet-gtd.2019.0824
https://doi.org/10.1049/iet-gtd.2019.0824
https://doi.org/10.14358/pers.81.3.a1-a26
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1080/17538947.2019.1576786
https://doi.org/10.1145/361002.361007
https://github.com/geopy/geopy
https://doi.org/10.33137/aestimatio.v11i0.26065
https://doi.org/10.33137/aestimatio.v11i0.26065

Chen, George H., and Devavrat Shah. 2018. “Explaining the Success of Nearest Neighbor Methods

in Prediction.” Foundations and Trends in Machine Learning 10. https://doi.org/10.1561/220000

0064.

Chen, Hanxiong, Jianquan Liu, Kazutaka Furuse, Jeffrey Xu Yu, and Nobuo Ohbo. 2011. “Indexing

Expensive Functions for Efficient Multi-Dimensional Similarity Search.” Knowledge and Informa-

tion Systems 27. https://doi.org/10.1007/s10115-010-0303-2.

Cohen, Hagai, and Ely Porat. 2010. “Fast Set Intersection and Two-Patterns Matching.” In Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Vol. 6034 LNCS. https://doi.org/10.1007/978-3-642-12200-2_22.

Dong, Wei, Moses Charikar, and Kai Li. 2011. “Efficient k-Nearest Neighbor Graph Construction

for Generic Similarity Measures.” In Proceedings of the 20th International Conference on World

Wide Web, WWW 2011. https://doi.org/10.1145/1963405.1963487.

Fu, Cong, Chao Xiang, Changxu Wang, and Deng Cai. 2018. “Fast Approximate Nearest Neighbor

Search with the Navigating Spreading-Out Graph.” In Proceedings of the VLDB Endowment. Vol.

12. https://doi.org/10.14778/3303753.3303754.

Gade, Kenneth. 2010. “A Non-Singular Horizontal Position Representation.” Journal of Navigation

63 (3): 395–417. https://doi.org/10.1017/S0373463309990415.

Indyk, Piotr, and Rajeev Motwani. 1998. “Approximate Nearest Neighbors: Towards Removing the

Curse of Dimensionality.” In Conference Proceedings of the Annual ACM Symposium on Theory

of Computing. https://doi.org/10.4086/toc.2012.v008a014.

Johnson, Jeff, Matthijs Douze, and Hervé Jégou. 2017. “Billion-Scale Similarity Search with GPUs.”

arXiv Preprint arXiv:1702.08734.

Kaplan, Philip. 2018. “Ancient Geography: The Discovery of the World in Classical Greece and

Rome.” The AAG Review of Books 6. https://doi.org/10.1080/2325548x.2018.1402263.

Karney, Charles F. F. 2013. “Algorithms for Geodesics.” Journal of Geodesy 87. https://doi.org/10.1

007/s00190-012-0578-z.

Kazel, Sidney. 1972. “MULTILATERATION RADAR.” Proceedings of the IEEE 60. https:

//doi.org/10.1109/PROC.1972.8886.

Lambert, W. D. 1942. “The Distance Between Two Widely Separated Points on the Surface of the

63

https://doi.org/10.1561/2200000064
https://doi.org/10.1561/2200000064
https://doi.org/10.1007/s10115-010-0303-2
https://doi.org/10.1007/978-3-642-12200-2_22
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.14778/3303753.3303754
https://doi.org/10.1017/S0373463309990415
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1080/2325548x.2018.1402263
https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1007/s00190-012-0578-z
https://doi.org/10.1109/PROC.1972.8886
https://doi.org/10.1109/PROC.1972.8886

Earth.” Journal of the Washington Academy of Sciences 32 (5): 125–30. http://www.jstor.org/st

able/24531873.

Lee, Harry B. 1975. “A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration

Systems.” IEEE Transactions on Aerospace and Electronic Systems AES-11. https://doi.org/10.1

109/TAES.1975.308023.

Linares, Jean Marc, Santiago Arroyave-Tobon, José Pires, and Jean Michel Sprauel. 2020. “Ef-

fects of Number of Digits in Large-Scale Multilateration.” Precision Engineering 64: 1–6.

https://doi.org/https://doi.org/10.1016/j.precisioneng.2020.03.009.

Liu, Ting, Andrew W. Moore, and Alexander Gray. 2006. “New Algorithms for Efficient High-

Dimensional Nonparametric Classification.” Journal of Machine Learning Research 7. https:

//doi.org/10.7551/mitpress/4908.003.0008.

Mahdavi, Meisam, and Elham Mahdavi. 2011. “Transmission Expansion Planning Considering

Network Adequacy and Investment Cost Limitation Using Genetic Algorithm.” World Academy

of Science, Engineering and Technology 80. https://doi.org/10.5281/zenodo.1086125.

Morton, G. M. 1966. “A Computer Oriented Geodetic Data Base and a New Technique in File

Sequencing.” International Business Machines.

Paulevé, Loïc, Hervé Jégou, and Laurent Amsaleg. 2010. “Locality Sensitive Hashing: A Comparison

of Hash Function Types and Querying Mechanisms.” Pattern Recognition Letters 31. https:

//doi.org/10.1016/j.patrec.2010.04.004.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011.

“Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. 2014. “GloVe: Global Vectors for

Word Representation.” In Empirical Methods in Natural Language Processing (EMNLP), 1532–43.

http://www.aclweb.org/anthology/D14-1162.

Prokhorenkova, Liudmila. 2019. “Graph-Based Nearest Neighbor Search: From Practice to Theory.”

arXiv.

Seton, Maria, Simon Williams, Sabin Zahirovic, and Steven Micklethwaite. 2013. “Obituary: Sandy

Island (1876-2012).” Eos, Transactions American Geophysical Union 94. https://doi.org/10.100

2/2013eo150001.

64

http://www.jstor.org/stable/24531873
http://www.jstor.org/stable/24531873
https://doi.org/10.1109/TAES.1975.308023
https://doi.org/10.1109/TAES.1975.308023
https://doi.org/10.1016/j.precisioneng.2020.03.009
https://doi.org/10.7551/mitpress/4908.003.0008
https://doi.org/10.7551/mitpress/4908.003.0008
https://doi.org/10.5281/zenodo.1086125
https://doi.org/10.1016/j.patrec.2010.04.004
https://doi.org/10.1016/j.patrec.2010.04.004
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1002/2013eo150001
https://doi.org/10.1002/2013eo150001

Singh, Santar Pal, and S. C. Sharma. 2015. “Range Free Localization Techniques in Wireless Sensor

Networks: A Review.” In Procedia Computer Science, 57:7–16. Elsevier. https://doi.org/10.1016/

j.procs.2015.07.357.

Strohmeier, Martin, Ivan Martinovic, and Vincent Lenders. 2018. “A k-NN-Based Localization

Approach for Crowdsourced Air Traffic Communication Networks.” IEEE Transactions on

Aerospace and Electronic Systems 54 (June): 1519–29. https://doi.org/10.1109/TAES.2018.2797

760.

Tainiter, M. 1963. “Addressing for Random-Access Storage with Multiple Bucket Capacities.” Journal

of the ACM (JACM) 10. https://doi.org/10.1145/321172.321178.

Tillquist, Richard C., and Manuel E. Lladser. 2016. “Metric-Space Positioning Systems (MPS) for

Machine Learning.” In Proceedings of the 7th ACM International Conference on Bioinformatics,

Computational Biology, and Health Informatics, 479. BCB ’16. New York, NY, USA: Association

for Computing Machinery. https://doi.org/10.1145/2975167.2985641.

Vincenty, T. 1975. “DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID

WITH APPLICATION OF NESTED EQUATIONS.” Survey Review 23 (176): 88–93. https:

//doi.org/10.1179/sre.1975.23.176.88.

Wasserstein, Ronald L., Malvin H. Kalos, and Paula A. Whitlock. 1989. “Monte Carlo Methods,

Volume 1: Basics.” Technometrics 31. https://doi.org/10.2307/1268841.

Weber, Roger, Hans J Schek, and Stephen Blott. 1998. “A Quantitative Analysis and Performance

Study for Similarity-Search Methods in High-Dimensional Spaces.” In Proceedings of the 24rd

International Conference on Very Large Data Bases.

Wishner, Jane B, and Jeremy Marks. 2017. “Ensuring Compliance with Network Adequacy Standards:

Lessons from Four States.” Robert Wood Johnson Foundation.

Zhang, Yipeng, Fan Zhang, Yang Wang, Yulin Ma, and Honghai Li. 2017. “Localization of Nearest-

Neighbour and Multilateration Analyse Based on RFID.” In Proceedings - 2nd International

Conference on Smart City and Systems Engineering, ICSCSE 2017. https://doi.org/10.1109/IC

SCSE.2017.64.

Zhou, Junyi, and Jing Shi. 2009. “RFID Localization Algorithms and Applications-a Review.”

Journal of Intelligent Manufacturing 20. https://doi.org/10.1007/s10845-008-0158-5.

65

https://doi.org/10.1016/j.procs.2015.07.357
https://doi.org/10.1016/j.procs.2015.07.357
https://doi.org/10.1109/TAES.2018.2797760
https://doi.org/10.1109/TAES.2018.2797760
https://doi.org/10.1145/321172.321178
https://doi.org/10.1145/2975167.2985641
https://doi.org/10.1179/sre.1975.23.176.88
https://doi.org/10.1179/sre.1975.23.176.88
https://doi.org/10.2307/1268841
https://doi.org/10.1109/ICSCSE.2017.64
https://doi.org/10.1109/ICSCSE.2017.64
https://doi.org/10.1007/s10845-008-0158-5

APPENDIX

Code and data sets

When possible, this document will be published with the code and data referenced below, but the

original location for these files, if not attached, are as follows:

All code including markdown and custom sample data files to generate this document are available

here: https://github.com/chipmonkey/TrilaterationIndex

A custom fork and branch of scikit-learn which includes the Python/Cython implementation of our

Multilateration Nearest-Neighbor and related distance functions is available here: https://github.c

om/chipmonkey/scikit-learn/tree/feature/chip-test-index

A custom fork and branch of the ANN Benchmarks code which includes hooks to our Multilateration

NN implementation (from the custom scikit-learn fork) is available here: https://github.com/chipm

onkey/ann-benchmarks

66

https://github.com/chipmonkey/TrilaterationIndex
https://github.com/chipmonkey/scikit-learn/tree/feature/chip-test-index
https://github.com/chipmonkey/scikit-learn/tree/feature/chip-test-index
https://github.com/chipmonkey/ann-benchmarks
https://github.com/chipmonkey/ann-benchmarks

CURRICULUM VITA

NAME: Chip Lynch

ADDRESS: 1922 Wrocklage Ave.

Louisville, KY, 40205

EDUCATION: B.S. Mathematics / B.S. Computer Science

Xavier University

1997

M.S. Computer Engineering and Computer Science

University of Louisville

2021

PUBLICATIONS:

• “Discrepancies in metabolomic biomarker identification from patient-derived lung cancer re-

vealed by combined variation in data pre-treatment and imputation methods” - Metabolomics

• “Prediction of lung cancer patient survival via supervised machine learning classification

techniques” - International Journal of Medical Informatics

• “Application of unsupervised analysis techniques to lung cancer patient data” - PubMed /

PlosOne

67

	Multilateratin index.
	Recommended Citation

	INTRODUCTION
	Problem Space 1 - Satellite Communication and Expensive Distance Functions
	Problem Space 2 - Healthcare and Network Adequacy for Overlapping Sets
	Proposed Solution: Multilateration Coordinate System and Index
	Practical Advantages
	Implementation Details

	REVIEW OF CURRENT LITERATURE
	Geospatial Computations
	Multilateration
	Nearest Neighbor
	Network Adequacy Minimal Literature

	NETWORK ADEQUACY
	Formalization of Network Adequacy

	INTRODUCING THE MULTILATERATION INDEX
	Multilateration Index – General Definition
	2-D Bounded Example
	Underlying Theory Concepts and Problem Statement
	Simple Multilateration Index Operations

	EXPERIMENTATION
	Experimental Setup
	Multilateration NN Algorithms
	Multilateration NA Algorithms
	Experimental Results
	ANN-Benchmarks
	SQL Network Adequacy Results

	CONCLUSIONS
	FUTURE WORK
	REFERENCES
	CURRICULUM VITA

