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ABSTRACT

AUTOMATIC TARGET RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS

Nada Baili

November 24, 2020

Automatic Target Recognition (ATR) characterizes the ability for an algorithm or device to

identify targets or other objects based on data obtained from sensors, being commonly thermal. ATR

is an important technology for both civilian and military computer vision applications. However, the

current level of performance that is available is largely deficient compared to the requirements. This

is mainly due to the difficulty of acquiring targets in realistic environments, and also to limitations

of the distribution of classified data to the academic community for research purposes.

This thesis proposes to solve the ATR task using Convolutional Neural Networks (CNN).

We present three learning approaches using WideResNet-28-2 [1] as a backbone CNN. The first

method uses random initialization of the network weights. The second method explores transfer

learning. Finally, the third approach relies on spatial transformer networks [2] to enhance the

geometric invariance of the model. To validate, analyze and compare our three proposed models, we

use a large-scale real benchmark dataset that includes civilian and military vehicles. These targets

are captured at different viewing angles, different resolutions, and different times of the day. We

evaluate the effectiveness of our methods by studying their robustness to realistic case scenarios

where no ground truth data is available and targets are automatically detected. We show that the

method that uses spatial transformer networks achieves the best results and demonstrates the most

robustness to various perturbations that can be encountered in real applications.
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CHAPTER 1

INTRODUCTION

Over many decades, Automatic Target Recognition (ATR) has been one of the key com-

ponents of autonomous vehicle missions in the context of defense systems [8]. The ATR system

performs automatic target detection, identification, and tracking by processing a sequence of images

captured from sensors, commonly being infrared. The goal is to perform these functions in real time

and to be able to adapt to dynamic situations and different environments.

The ATR system has successfully and effectively removed the man from the process of target

acquisition and recognition, whose intervention is generally slow, unreliable, vulnerable, and may

limit the performance of the overall system or mission in real situations. The applications of ATR

systems are numerous. They can be used to identify objects such as ground and air vehicles, as well

as living targets such as animals, humans, and vegetative clutter. Possible military scenarios can

take advantage of this application when attempting to identify an object on a battlefield. There

has been more and more interest shown in using ATR for domestic applications as well, such as for

border security, safety systems to identify objects or people on a subway track, automated vehicles,

and many others.

ATR systems feed on infrared images as they offer fundamental advantages over regular

imaging solutions [9]. Thermal imaging has been a boon to the ATR research community because

of its ability to perform well in all weather conditions and all times of the day and night. Infrared

imaging systems can perform well in low-light and low-visibility situations. This is critical for

outdoor applications, such as the ATR task, where light and visibility are a constant variable, and

especially useful in security applications where no camouflage can fool a thermal camera.

Despite their numerous advantages, infrared images pose several challenges that render the

construction of a reliable and robust ATR system a tricky task. In fact, the infrared radiation is

highly sensitive to several factors, such as meteorological conditions and sensor calibration. Targets

are also captured from different viewpoints, different ranges and different times of the day. Moreover,

cold or stationary vehicles may blend with the background or be partially masked by vegetation or
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engine smoke, which makes the ATR task more difficult. Therefore, ATR systems are expected

to be robust against various perturbations related to the object variabilities and the environment

conditions.

Most early work [10–14] include model-based approaches that can typically be decomposed

into five main steps: preprocessing, detection, feature extraction, feature selection and classification.

These classic approaches require significant human intervention and supervision. Considering the

challenges posed by the infrared imagery, hand-crafted features become too shallow and too tricky

to extract in order to build a reliable and robust ATR system. Recent research on ATR has shifted

to rely on deep learning [15–18].

Deep Learning is a new field of machine learning that has recently emerged to become one

of the most popular scientific research trends. This new field has witnessed rapid progress since its

appearance and it has already revolutionized a variety of domains, especially computer vision [19].

Deep learning based algorithms use neural networks to mainly address the issue of shallow learning

algorithms, and to improve and automatize the step of feature extraction. The reason behind their

success is that they attempt to automatically unfold hierarchies of abstraction embedded in observed

data by elaborately designing the layers of neurons in depth and width. By doing so, deep neural

networks outperformed their classic counterparts by a huge margin [20].

Deep learning architectures have different variants. In particular, the Convolutional Neural

Network (CNN) attracted the most interest from the research community for its outstanding clas-

sification performance on large-scale datasets, such as ImageNet [21]. The power of CNNs reside in

their ability to learn hierarchical image representations using its multi-layer feed-forward structure.

This results in the extraction of high quality features that can describe the image at different levels.

The low level features describe generic information about the image, such as the edges and corners.

As opposed to high-level features that describe peculiarities in the image related to the task in hand,

such as object parts.

Similar to many other research areas, the ATR field has been highly impacted by the deep

learning predominance. Several works have been recently published attempting to apply CNNs on

the ATR task [15–18]. Despite the promising results that have been achieved, many limitations

are hindering the progress of deep learning based models in the ATR context. These challenges

are mainly related to the lack of ground-truthed large-scale datasets suitable for the ATR task.

This can be explained by the fact that most ATR systems have been developed for confidential

military missions where the acquisition and the free publication of the appropriate data can be

2



either strenuous or require authorization from the responsible parties.

In this thesis, we investigate the application of a state of the art CNN (WideResNet-28-

2 [1]) to address target identification and recognition in infrared images. We explore three different

CNN-based learning approaches. The first method uses the CNN initialized with random weights.

The second approach uses transfer learning. Finally, we propose a novel approach that consists of

a Spatial Transformer Network (STN) [2] block inserted within the CNN. We evaluate the three

suggested CNN variants on the Defense Systems Information Analysis center (DSIAC) benchmark

data set. Given the targeted operational contexts, we analyze and compare the robustness of the

three suggested CNN variants against possible perturbations introduced by the detection stage. To

simulate such behaviour, we train the three CNNs on images with centered targets and test them

on translated or scaled inputs, and also on targets detected by the state of the art object detector

YOLO [7].

Our analysis is guided by the following Research Questions (RQs) that we investigate through

our experiments:

• RQ1: Does preprocessing of the input images improve the robustness of the ATR?

• RQ2: How well can the learned models generalize to targets captured at different resolutions?

• RQ3: Are the learned models invariant to small scale and shift variations?

• RQ4: Can the models reject the non-targets identified by the detector as potential targets?

The remainder of this thesis is structured as follows. Chapter 2 illustrates the concept of

deep learning and lays out different successful architectures in the context of our ATR application.

It also reviews the previous work conducted in the ATR field. In chapter 3, we describe our different

CNN-based learning approaches, as well as the dataset we will use in our experiments. In chapter

4, we present and analyze our experimental results by answering the outlined research questions.

Finally, in chapter 5, we conclude by summarizing the work, and suggesting possible future directions

of research.

3



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we review existing approaches in areas that are highly relevant to our

proposed ATR application. We start with presenting the area of deep learning. Then, we go over

successful neural network architectures that are relevant to our scope of research. We also present

learning concepts in the context of deep learning that will be adopted in our experiments. Finally,

we describe the task of Automatic Target Recognition, its major challenges, and the previous works

that have been conducted to address these challenges.

2.1 Deep Learning

For many decades, the task of image classification in the field of computer vision was solely

relying on hand-engineered features such as SIFT [22], HOG [23], and Fisher Vector [24]. However,

these techniques require a considerable amount of pre-processing work and usually result in capturing

shallow features. These low-level extracted features may not be effective for most real applications.

Recently, neural networks witnessed significant advances which led the path to the develop-

ment of Deep Learning [25], thus revolutionizing the field of computer vision. Deep learning is a

branch of machine learning that focuses on training deep neural networks, which are neural networks

that encompass multiple hidden layers (Fig. 2.1). The introduction of deep learning in the task of

image classification enabled it to take on several challenges and significantly improve its classification

performance on large-scale data.

The interesting aspect about deep learning is that it cancels the manual feature engineering

because neural networks can learn features on their own from training data. The success behind deep

learning models is mainly due to the way they represent observed data. In fact, these algorithms

perform hierarchical abstraction at many levels, by building on lower level features to generate

more abstract information as the level moves further up. This process enables a sophisticated data

representation in high dimension.

There are numerous achievements accomplished by deep neural networks in the context of

4



Figure 2.1: Artificial neural network architecture (source: [3])

Figure 2.2: Architecture of a convolutional neural network (source: [4])

image classification, among which we can cite the large scale image classification record with the

ImageNet database [26] and the DeepFace face recognition method by Facebook [27].

2.1.1 Convolutional Neural Network (CNN)

The first challenge encountered when dealing with deep neural networks is the necessity to

learn a huge number of parameters, thus the need for large scale training datasets. A convolu-

tional neural network (CNN) is a neural network architecture that is able to reduce the number of

parameters by making small regions share the learnt weights, also called filters or kernels. While

in traditional learning filters are hand-engineered, CNNs have the ability, with enough training, to

learn filters that capture the spatial and temporal dependencies in an image.

The typical architecture of a CNN usually consists of convolutional layers, pooling layers

and fully-connected layers. An example CNN architecture is displayed in Fig. 2.2 and outlined in

the following subsections.
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Figure 2.3: Example activation functions (source: [5])

2.1.1.1 Convolutional Layer

A convolutional layer is what distinguishes the CNN from the rest of the artificial neural

networks. The input data is convolved using multiple kernels to extract features, and then the

output is passed to an activation function to generate feature maps. These feature maps serve as

the input for the next hidden layer.

Let xli denote the ith input feature map of layer l, klij the kernel connecting the jth feature

map of the output layer to the ith feature map of the input layer and blj an additive bias. Hence we

have

xlj = f(
∑
i

xl−1i ∗ klij + blj) (2.1)

By repeating this process multiple times across the convolutional layers of the CNN, we are

able to learn progressive levels of features. The extracted features can be categorized into two types:

low-level and high-level. The low-level features result from the bottom layers of the CNN, and they

usually describe edges, lines, corners, ...etc. The high-level features come from the top layers of the

CNN, and they describe fine details and more peculiar information like object parts.

2.1.1.2 Activation Function

An activation function is a mathematical equation that determines the output of a convolu-

tional layer. It is attached to each neuron in the neural network and decides whether it should be

activated or not, depending on its value. Activation functions also help normalize the output of the

neurons to a specific range. An important characteristic of activation functions is that they have to

be computationally efficient since they will be calculated across thousands of neurons for each input

sample. There are several activation functions that can be used in the context of CNNs. Fig. 2.3

illustrates the most commonly used activation functions: Sigmoid, TanH, ReLU, and Leaky ReLU.
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2.1.1.3 Pooling Layer

Pooling layers work on progressively reducing the spatial size of the output feature map,

thus reducing the amount of parameters in the network. The operation can be formally denoted as

xlj = f(xl−1j ) (2.2)

where f is the down-sampling function. The most commonly used pooling operations are max

pooling and average pooling.

2.1.1.4 Fully Connected Layer

Unlike convolution layers where the neurons are connected only to a local region in the

input, the neurons in the fully connected layer are connected to all the neurons of the input. Fully-

connected layers act as linear classifiers in a CNN. They proceed by flattening the features extracted

from the CNN, and then using this new representation, they are able to predict the probabilities

of the mutually exclusive categories, in which the highest one is corresponding to the predicted

category.

2.1.2 CNN Architectures

While the early CNN network architectures simply consist of stacked convolutional layers,

more recent architectures explore new and innovative ways for constructing convolutional layers in

a way which allows for more efficient learning. Architectures, like ResNet [28], are a breakthrough

idea that enables building very deep neural networks.

2.1.2.1 Residual Neural Network (ResNet)

ResNet is a CNN that was introduced in 2016 to solve the issue of vanishing or exploding

gradients. This problem arises during backpropagation in deep networks and it has been brought to

the attention by noticing that deep networks often result in a higher error rate than their shallower

counterparts. He et al. [28] proposed a remedy to this degradation problem by introducing residual

blocks in which intermediate layers of a block learn a residual function with reference to the block

input (Fig. 2.4). The goal of the residual block is to learn how to adjust the input feature map

for higher quality features. In case there are no new features to learn, the intermediate layers can

simply adjust their weights toward zero such that the residual block can at least represent the
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Figure 2.4: Classic CNN vs. residual block

identity function. In such scenario, classic deep networks fail because their corresponding layers are

always expected to learn new and distinct features.

2.1.2.2 Wide-Residual Neural Network (WRN)

A Wide-ResNet [1] is an improved version of a ResNet that has been introduced in 2017. The

motivation behind WRNs relies on the observation that scaling up ResNets leads to a slow training

along with an insignificant gain in performance. Therefore, the authors in [1] suggested to widen

the regular ResNet, by increasing the number of feature maps (Fig. 2.5), in order to obtain shallow

networks that can achieve a better accuracy than the regular ResNet while taking less training

time. The goal of WRNs is mainly to boost the representational power of ResNet blocks by adding

more convolutional layers per block, widening the convolutional layers by increasing the number of

feature maps, and also increasing the filter sizes. What makes WRNs faster to train is that the GPU

becomes more efficient on parallel computing with wider layers.

A WRN is characterized by two parameters l and k. l is a deepening factor that describes

the number of convolutions in a block, while k is the widening factor that multiplies the number

of features in convolutional layers. Therefore, a WRN can be entirely described by the notation

WRN-l-k. In the rest of the thesis, we use the notation WRN-n-k, where n characterizes the total

number of convolutional layers.

2.1.3 Transfer Learning

One of the most powerful ideas in deep learning is that you can take knowledge that a neural

network has learned from one task, and apply it to a separate task. For example, if one neural

network has learned to recognize objects, this knowledge can be used to improve the performance

of an algorithm that detects and recognizes regions of interest in X-ray scans. This process is called
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Figure 2.5: Residual block vs. Wide residual block. The basic wide residual block displays more
feature maps than the basic residual block.

Figure 2.6: Illustration of the transfer Learning concept [6]

Transfer Learning [29].

When building a computer vision application, rather than training the network from scratch

using random initializations, it is often faster and more effective to train the network using a model

trained on a different domain, in order to transfer the knowledge from one task to a new one (Fig. 2.6).

In fact, training a deep neural network from scratch requires a very large training data, takes a long

time to train, and requires multiple GPUs. So, using open-source weights that have already been

gone through the long and demanding learning procedure, is an efficient way to initialize the training

process of a new network.

In practice, transfer learning simply consists in omitting the last fully-connected layer in

the pretrained model, since this layer is responsible for the classification. A new fully-connected

layer should be created to adapt to the peculiar classes of the new task. Afterwards, there are three

different approaches to carry out the training process:
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• The first approach consists of having all intermediate layers frozen, which means the parameters

will not be retrained and the network will keep the transferred pre-trained weights. Therefore,

only the last newly-created fully-connected layer will be trained. In this case, the pre-trained

model is used as a feature extractor, which means that the new task uses the features extracted

by the original pre-trained model, to perform a classification on a new set of classes.

• The second approach consists of having all the layers of the network retrained and the trans-

ferred weights are only used as an initialization. In this case, the pre-trained model is said to

be fine-tuned on a different dataset to serve a new task.

• The third approach combines the first two methods by partially freezing the layers of the

network and retraining the remaining ones. Usually, the bottom layers are frozen because they

are dedicated to extracting low-level features, which are common to different classification

tasks. However, the top layers, which extract more specific and task-related features, are the

ones that are often retrained.

2.1.4 Spatial Transformer Network (STN)

Spatial Transformer Networks (STNs) were introduced in 2015 by Google DeepMind [2].

A spatial transformer is a differentiable module that can be inserted anywhere between the layers

of a CNN, allowing the spatial manipulation of data within the network. STNs fall within the

category of attention models since networks which include spatial transformers are able to select

the regions of the image that are most relevant (attention). STNs can also help crop out and

scale-normalize the selected regions, which can simplify the subsequent classification task, leading to

improved classification performance. Since the transformation is differentiable, gradients are able to

flow through the STN during backpropagation in order to update the weights of the transformation

parameters as well as the feature map input. Fig 2.7 presents an example of how an STN performs

a geometric transformation to an input image.

STNs are composed of three main building blocks (Fig. 2.8): localization network, grid

generator and sampler. The localization block is a neural network that can either be a stack of fully-

connected layers or convolution layers. Its goal is to learn the parameters of the transformation to

apply to the input feature map. Let fLocNet denote the localization network. As illustrated in (2.3),

the function takes as input the feature map Uε<H×W×C with width W , height H and C channels.

It outputs θ = {θi}iε(2N), the parameters of the transformation, where 2N is the number of the

10



Figure 2.7: Demonstration of the spatial manipulation of the input image by a spatial transformer
network. [2]

Figure 2.8: Spatial Transformer Network. [2]

transformation parameters to be learned by fLocNet. This term is expressed as an even number

because the transformation is applied to a bidimensional input feature map.

θ = fLocNet(U) (2.3)

The second part of a spatial transformer is the grid generator. The grid generator starts by

creating a regular grid G = {Gi} of pixels Gi = (xti, y
t
i) which represent the pixel location coordinates

in G. The created grid forms an output feature map V ε<H′×W ′×C , where H ′ and W ′ are the height

and width of the grid, and C is the number of channels. As illustrated in (2.4), the goal of the grid

generator is to map the target pixel coordinates (xti, y
t
i) of the created grid G to the source pixel

coordinates (xsi , y
s
i ) using the transformation Tθ . For clarity of exposition, Tθ is assumed to be a

2D affine transformation described in the matrix Aθ. This affine transformation allows cropping,

translation, rotation, scale, and skew to be applied to the input feature map, and requires only 6

parameters (the 6 elements of Aθ) to be produced by the localisation network. It can be noted that

the generated target grid does not necessarily have the same height and width as the input source
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Figure 2.9: Application of STNs on Distorted MNIST dataset. [2]

grid, which allows to scale up or down the input feature map.

xsi
ysi

 = Tθ(Gi) = Aθ


xti

yti

1

 =

θ11 θ12 θ13

θ21 θ22 θ23



xti

yti

1

 (2.4)

The third block of the spatial transformer is the sampler. Given the input feature map and

the parametrised sampling grid, the sampler uses a sampling kernel to compute the pixel intensity

of the output feature map V. The only important characteristic that the sampling kernel must have

is differentiability so that it can allow the loss gradients to flow all the way back to the localization

network. A bilinear sampling kernel is shown in (2.5), where V ci is the output value for pixel i on

channel c, U cnm denotes the input pixel at coordinate (n,m), and the two max functions determine

the relative weight assigned for each pixel to contribute to V ci .

V ci =

H∑
n

W∑
m

U cnmmax(0, 1− |xsi −m|)max(0, 1− |ysi − n|)∀i∀c (2.5)

Spatial Transformers proved to be successful in improving the classification results on several

tasks. They have mostly shown their power in classifying the Distorted MNIST dataset (Fig. 2.9)

by selecting the part of the image that is most relevant (attention aspect), thus eliminating the

irrelevant background. STNs also succeeded to correct the distortion and standardize the input to

the classifier, thus making it robust to the geometric perturbations.

2.2 Automatic Target Recognition (ATR)

One of the key components of defense weapon systems to be used on autonomous vehicle

missions is the automatic target recognition (ATR) system. Basically, the ATR system performs
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automatic target acquisition, identification, and tracking by processing a sequence of images obtained

from sensors. Two sensors are commonly used to capture data for ATR: Synthetic Aperture Radar

(SAR) and Infrared (IR). IR imagery is the conventional imaging modality for defense application.

ATR systems have proven to be a necessity in the context of military applications, by enhancing

intelligence and removing the human intervention that may limit the overall system or mission in

real situations.

2.2.1 Challenges

Building a robust and reliable ATR system is a difficult task that highly depends on the

quality of the input images, considering the challenges that the data might pose. The infrared

radiation received by the camera sensor can vary significantly depending on the meteorological

conditions, sensor calibration and time of the day. This leads to large intra-class variability , where

targets from the same class, captured under certain conditions, may look different. Moreover, ATR

systems are expected to be invariant to different viewpoints, since targets are usually captured at

various orientations. These challenges can be more severe to handle when the distance between the

sensor and the target being captured increases, reducing the resolution of the targets as they get

represented by only few pixels. In particular, at low resolutions, different targets might look similar,

leading to large inter-class similarities. The state of targets can also affect the performance of ATR

systems. For example, stationary and cold vehicles blend with the background or plumes of engine

smoke partially mask the target.

2.2.2 Previous work in ATR

Most early work in the ATR task adopted a model-based learning approach [12–14] that

relies on manual feature extraction, accompanied with classification. However, recent successful

ATR applications shifted toward the use of convolutional neural networks [15–18].

2.2.2.1 Model-based Approaches

Traditional model-based approaches proceed by first extracting features and then performing

the classification. For instance, the authors in [12] proposed to automatically identify four different

ships in simulated infrared imagery by considering Scale Invariant Feature Transform (SIFT) [30]

features that they matched to a database of features corresponding to labelled images using the

euclidean distance metric. Similarly, the authors in [13] used Histogram of Oriented Gradients
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(HOG) [23] features followed by a Support Vector Machine (SVM) [31] classifier trained for a binary

object/non-object classification task. When video sequences are available, other methods can be

proposed. For example, the authors in [14] used background subtraction to detect and identify

moving objects in thermal images. Even though successive frames can increase the robustness

to background variations, such techniques may miss cold or stationary targets that blend in the

environment.

2.2.2.2 Deep learning-based Approaches

Most CNN applications for object detection and recognition have been developed for optical

images. Using other imaging sensors (radar, sonar, and infrared) may lead to more challenging

problems due to the intrinsic image characteristics described earlier in Sec.2.2.1. In this thesis, we

focus on mid-wavelength infrared (MWIR) imagery. Some CNNs have been proposed for this kind of

images for target classification. For example, in [15], the authors present a CNN based deep learning

framework for automatic recognition of civilian targets in infrared images. The authors of [16], on the

other hand, used deep representations to address the problem of IR object classification by dividing

the object appearance space hierarchically with a binary decision tree structure that consists of the

object features. Another study [17] combines a CNN for object classification with an automatic

target detection (ATD) algorithm to perform Automatic Target Recognition (ATR) on mid to long-

wavelength infrared imagery. This approach enables to separate the training and validation of each

stage of the ATR chain, which is regarded as a key feature when dealing with real-world applications.

The most recent study in [18] proposed a compact and fully convolutional neural network with global

average pooling (GAP), called cfCNN. The authors used high-quality synthetic data for training and

evaluated their network on three real datasets with increasing quality. The paper also analyzed the

robustness of the proposed CNN against possible perturbations introduced by the detection stage,

such as shifted and scaled bounding boxes. The authors claim that the use of GAP is responsible of

the geometric invariance of their suggested network.

Despite the advances in deep learning, specifically the recent great success of Convolutional

Neural Networks, the number of neural network based ATR systems is still minimal, and this is due

to the lack of very large ground-truthed datasets in the defense context, a paramount factor when

trying to deal with deep neural networks.

In this thesis, we investigate the application of CNNs to automatic target recognition using

infrared images. To this end, we use a backbone CNN architecture of WideResNet 28-2 [1]. We
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explore three distinct learning approaches. The first method is based on randomly initializing

the weights of the CNN. The second method aims to improve the network initialization by using

transfer learning. Finally, the third method is a novel approach that introduces a block of a spatial

transformer [2] into the CNN. We conduct a thorough evaluation, comparison and analysis of the

performances of the three suggested CNNs.
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CHAPTER 3

AUTOMATIC TARGET RECOGNITION WITH CONVOLUTIONAL NEURAL

NETWORKS

In this chapter, we present our adaptation of three CNN variations to automatic target

recognition using infrared imagery. We start by introducing our three models: randomly initialized

CNN, finetuned CNN, and CNN combined with a block of spatial transformers [2]. Then, we

describe the data we used to evaluate our models, along with its preprocessing. Finally, we present

our experiments that were designed to investigate four important research questions.

3.1 Proposed models

For all our models, we use a baseline CNN of WideResNet 28-2 (WRN-28-2) [1]. It is an

architecture that inherits the concept of residual blocks from Residual Neural Networks [28], with 28

convolution layers in depth and twice the number of channels of a regular ResNet. Fig. 3.1 describes

the architecture of WRN-28-2 used in our experiments.

The CNN uses a global average pooling (GAP) layer instead of fully connected (FC) layers,

for its capability to enhance the viewpoint-invariance, mainly toward translation perturbations, by

summing up the spatial information of the feature maps. WRN-28-2 also uses Leaky-ReLU activation

function for its ability to solve the ”dying ReLU” problem since it doesn’t have zero-slope parts,

and for its ability to speed up the training [32].

Figure 3.1: Architecture of WideResNet 28-2.
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3.1.1 Randomly initialized CNN

Our first model is based on the state of the art WRN-28-2 , with random initial weights. The

convolution layers are initialized using Kaiming initialization [33], the batch normalization layers are

initialized with constant values of 1 for the weight layer and 0 for the bias, and finally the linear

layer is initialized using Xavier initialization [33].

3.1.2 Finetuned CNN

Our second model uses transfer learning for a better initialization of the weights of the CNN.

We start with training a WRN-28-2 model on a vehicle dataset, called VMMRdb [34]. It is a diverse

large-scale dataset of vehicles, containing 9,170 classes, consisting of 291,752 images, and covering

models manufactured between 1950 and 2016. Each car image is associated with a label that specifies

the make, the model and the manufacture year of the vehicle. The images are of high resolution,

taken by different users, different imaging devices, and multiple view angles. The vehicles are also

not well aligned, and some images contain irrelevant background, thus ensuring a wide range of

variations to account for various scenarios that could be encountered in a real-life scenario.

In the context of the proposed ATR application, we use the VMMRdb dataset to build a

model that recognizes the vehicle type, given a vehicle image, by classifying it as a Sedan, SUV or

Pickup. We build the appropriate database for this model by regrouping the fine-grained car classes

of VMMRdb into only 3 categories: Sedan, SUV and Pickup. We proceed by merging the different

manufacture years of the same model of a vehicle, and mapping its original label to one of the 3

proposed labels. We only consider the vehicles that have more than 50 images per class of makes

and models combined. Finally, we sample the three classes to balance the resulting dataset. This

results in a data collection that contains 35,000 sample images for each class, and a total of 105,000

images for the three classes. Fig. 3.2 displays sample training images from each class. We convert

the images to grayscale to simulate the infrared aspect of the ATR imagery.

3.1.3 CNN with spatial transformers

Our third model integrates a spatial transformer network [2] in the WRN-28-2 CNN archi-

tecture [1]. As illustrated in Fig. 3.3, we insert one module of STN right before the first layer of the

CNN. Therefore, the STN block takes as input the preprocessed target patch, learns and applies an

appropriate transformation that enhances the global accuracy and generates a transformed input

that will be passed to the CNN for feature extraction and classification. The entire network, that
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Figure 3.2: Sample preprocessed training images from the constructed car dataset with 3 classes.

Figure 3.3: CNN architecture of the third model: WRN-28-2 with a block of STN.

consists of one block of STN and a WRN-28-2, will be trained in an end-to-end fashion.

For the localization network of the STN block, we use a VGG-16 [35] CNN architecture

(Fig. 3.4) that takes as input the target patch and aims to regress the transformation parameters.

We choose to apply an affine transformation on the target inputs, which means that we only consider

rotation, translation or scaling transformations. Therefore, the localization network attempts to

learn 6 parameters that characterize the affine transformation. Finally, we use bilinear interpolation

as a sampling kernel, to compute the pixel values of the transformed input, given the input values

and the pixel locations provided by the grid generator. The bilinear interpolation is specifically

chosen because it takes into consideration weighted pixel values of the source image in order to

compute pixel intensities of the transformed image. This interpolation step will smooth the image

patch by eliminating pixel intensity jumps.
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Figure 3.4: CNN architecture of VGG-16.

3.2 Dataset

To validate and compare the three CNN architectures, we use the data set provided by

the Defense Systems Information Analysis center (DSIAC) 1. The DSIAC data contain a large

collection of Middle Wavelength Infrared (MWIR) imagery collected by the US Army Night Vision

and Electronic Sensors Directorate (NVESD), intended to support the ATR algorithm development

community.

The DSIAC data are captured and stored as videos in ARF2 file extension. Each video file

has a ground truth data stored in JSON 3 format.

Each video is stored as a set of imagery and is labeled using a unique scenario identifier

that contains meta data. The scenario identifier is composed of the sensor identifier (cegr), a

five digit scenario number, and a four digit look number. An example of a scenario identifier is

”cegr01923 0001”. The scenario numbers correspond to time of day and range of the target. For

instance ”01923” is a scenario number that describes targets captured during the night at the slant

range 1000. The look numbers correspond to the particular type of target. For instance, the look

number ”0001” refers to the target PICKUP.

Each frame of a given video has 512 rows and 640 columns. Fig. 3.5 displays an example

frame from the DSIAC database. Each ARF file is associated with a ground truth JSON file that

describes various information about the target, such as, the target type, the slant range, the aspect

orientation of the vehicle, the time at which the frame was collected, and also the coordinates of the

bounding box that locate the target within the frame.

The targets described in the database include people, foreign military vehicles, and civilian

vehicles. In our experiments, we aim to classify 10 vehicle classes:

• 2 civilian vehicles (Fig. 3.6): PICKUP, SUV (Sport Utility Vehicle).

1https://www.dsiac.org/
2Advanced Recording Format [36]
3JavaScript Object Notation [37]
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Figure 3.5: Example of a target frame from the DSIAC database.

Figure 3.6: Example images of civilian targets in the DSIAC database.

• 8 military vehicle targets (Fig. 3.7): BTR70 (Armored Personnel Carrier), BRDM2 (Infantry

Scout Vehicle), BMP2 (Armored Personnel Carrier), T72 (Main Battle Tank), ZSU23 (Anti-

Aircraft Weapon), 2S3 (Self-Propelled Howitzer), MTLB (Armored Reconnaissance Vehicle),

D20 (Artillery Piece towed to MTLB).

These targets were captured at different aspect angles and different slant ranges, from 500

to 5000 meters with steps of 500, during both day and night. This was accomplished by marking a

Figure 3.7: Example images of military targets in the DSIAC database.
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Figure 3.8: Illustration of the quantization of the trajectory of a moving vehicle into 8 zones.

circle with a diameter of about 100 meters at each range that allowed the targets to be consistently

imaged at the same locations and aspect angles. Drivers were instructed to drive in a continuous

circle at a constant low velocity (about 10 mph). Therefore, successive frames of the same video can

have similar content.

In our experiments, we focus on targets that are captured within a minimum range of 1000

and a maximum range of 3500. In fact, targets at higher ranges are captured by only few pixels,

and therefore they do not include sufficient information for training or testing.

We quantize the trajectory made by the moving target in a video into 8 zones, as illustrated

in Fig. 3.8, where each zone has a range of 45◦. The zone quantization of the vehicle trajectory

enables to delimit the different viewpoints of a single target, as shown in Fig. 3.9. This will allow

us to evaluate the performance of the trained models on the different viewpoints of the targets.

For each range, there are 2 videos per target vehicle: one during the day and one during the

night. Considering that each video has 1800 frames, in total there are 21600 images for each target

across all ranges of interest.

3.2.1 Data preparation

Each target vehicle can be delimited within the image frame using the coordinates of the

corresponding ground-truth bounding box, which takes into account the position of the target and

the viewpoint. As illustrated in Fig. 3.10, for a given bounding box dx× dy, we consider a squared
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Figure 3.9: Illustration of the different viewpoints of a civilian target PICKUP in all 8 zones.

patch of size 1.1×max(dx, dy) centered in the center of bounding box. Using a bilinear interpolation,

we rescale this patch to a 32× 32 patch. We adopt this process because it does not affect the shape

and aspect ratio of the target within the image. It also enables us to include some of the background

in the cropped image patch.

The amount of background included in the extracted image patch varies according to the

target orientation. For example, as shown in Fig. 3.11, minimal background is included as the

original bounding box and the extracted square are identical since the target is already detected

within a square box. This mainly happens to targets positioned at certain zones ( zones 1, 4, 5 and

8) that capture either their back or front views. It also happens to targets captured at high ranges,

where they become so small that their true dimensions can no longer be clearly discerned, and thus

they can be delimited by small square bounding boxes.

3.2.2 Training design

The classical training design that typically consists of shuffling the data and splitting it into

training, validation and testing sets is not the best choice for the DSIAC data. In fact, the targets

of this data set are not solely characterized by their class types. There are also other important

information to account for, such as the range of the target, its viewpoint and the time of the day

at which it was captured. Moreover, data of the same video cannot be used for both training and

testing since all target occurences share the same background, which rises an overfitting problem.
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Figure 3.10: An extracted patch image (in green) from the original infrared image using the original
bounding box information (in red). The target is a PICKUP captured at zone 6 and at a range of
1000 meters.

Figure 3.11: An example of an extracted patch image where the original bounding box (in red) is a
square. In this case, no additional background is needed to pad the extracted patch (in green). The
target is a PICKUP captured at zone 4 and at a range of 1000 meters.

To minimize the risk of overfitting, we train and test on different ranges by adopting a 6-fold

cross validation training design. We split our folds based on the range, meaning that, at each time

we train on only 5 of the 6 ranges and we test on the excluded range. Using this data partitioning,

we ensure that both the training and testing subsets include all target types collected during the

day and the night and at all viewpoints. We also ensure that we test on targets captured at ranges

not used for training.

For each fold, the test set is divided into two subsets. The first one is used for validation

during the training to select the best model. The second one is used for testing and evaluation after

the model is fixed. The validation and testing subsets are obtained by splitting the excluded range
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TABLE 3.1

Experimental setting: data split into training, validation and testing

Folds
Train Validation Test

Range # samples Range # samples Range # samples
Fold 1 [1500,2000,2500,3000,3500] 176400 1000 17980 1000 18020
Fold 2 [1000,2000,2500,3000,3500] 176400 1500 18408 1500 17592
Fold 3 [1000,1500,2500,3000,3500] 176400 2000 16787 2000 19213
Fold 4 [1000,1500,2000,3000,3500] 176400 2500 17125 2500 18875
Fold 5 [1000,1500,2000,2500,3500] 178200 3000 17369 3000 16831
Fold 6 [1000,1500,2000,2500,3000] 178200 3500 17501 3500 16699

based on the zones. The validation subset includes zones 1, 3, 5 and 7 of each target video, while

the testing subset includes the remaining zones 2, 4, 6 and 8. We distributed the zones between the

validation and testing subsets this way because the frames that describe targets in consecutive zones

encompass similar contents. Therefore, we can still assume that the validation and testing subsets

include all target viewpoints. Both the validation and the testing subsets include all target types

and both day and night images for each target. Table. 3.1 summarizes our experimental setting.

3.3 Evaluation strategy

The objective of this thesis is to develop a robust ATR system for infrared imagery based

on CNN. We evaluate, analyze and compare three variations of WideResNet-28-2 [1]. We guide

our research by formulating and answering four important research questions (RQ). These RQ’s are

described and explained in the following sections.

3.3.1 RQ1: Does preprocessing of the input images improve the robustness of the

ATR?

Motivation: The pixel values of infrared images have a wide dynamic range and their

distribution can have very long tails. Therefore, using raw data in the training can make the learned

models highly sensitive to the sensor calibration.

Approach: To normalize the pixel values to a [0, 1] range and maintain the image contrast,

we propose to preprocess each input frame by transforming its pixel values using the following two

steps:

• Clipping: To eliminate the long tails of the pixel intensity distribution, we identify a lower

threshold that corresponds to the 0.1 percentile of the distribution and an upper threshold that
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Figure 3.12: (a): Original target patch; (b): Histogram of pixel intensity of (a); (c): Target patch
after preprocessing; (d): Histogram of pixel intensity of (c)

corresponds to the 99.9 percentile. Pixel values below or above these thresholds are mapped

to these values.

• Normalization: The median and the Median of Absolute Deviation (MAD) are statistical

measures that are more robust to outliers than the mean and standard deviation. Thus, we

normalize each frame Xframe using these measures:

Xnormalized frame =
Xframe −median(Xframe)

MAD(Xframe)
(3.1)

The normalized values are clipped again to remain within the range of [-5, 10].

After normalizing the image frame, we extract the target using the corresponding coordinates

of the bounding box. Then, we standardize the pixel values of the resulting target patch, Xpatch, by

normalizing it using its mean and standard deviation, as follows:

Xnormalized patch =
Xpatch − µ(Xpatch)

σ(Xpatch)
(3.2)

Fig. 3.12 illustrates the preprocessing effect on a typical image frame.

To answer RQ1, we train and test our models using the raw data and the preprocessed data.

We analyze and compare the accuracy of the two approaches.
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3.3.2 RQ2: How well can the learned models generalize to targets captured at different

resolutions?

Motivation: The ATR system should be able to identify targets captured at any reasonable

resolution. Since it is not possible to consider all the possible ranges for training, an ATR model

should be able to generalize to the unseen ranges.

Approach: In order to evaluate this generalization ability, we train our models using a

6-fold cross validation based on the range, as described in Sec.3.2.2. Using this approach, for each

fold, we reserve one range for testing and validation and we train using all other ranges.

3.3.3 RQ3: Are the learned models invariant to small scale and shift variations?

Motivation: In real-world situations, ground-truth data is unavailable. Realistic scenarios

consist in having the targets automatically detected using state of the art object detectors, e.g. You

Only Look Once algorithm (YOLO) [7]. Despite their variety and wide success, the performance of

even the most efficient object detector can be hindered by the many challenges of the ATR data (Sec

2.2.1). These object detectors could fail to provide precise bounding boxes that enable to delimit

well the targets within the image frames. For instance, Fig. 3.13 illustrates some detection errors

committed by YOLO. It can be noted that some of the detected boxes are not centered around the

targets, while other boxes tightly delimit the targets to the point of causing the occlusion of some

target parts.

Approach: To assess the robustness of the models to localization errors and their sensitiv-

ity to scaling, we conduct two experiments. The first experiment consists in evaluating the models

on a test set we created, which includes shifted and scaled versions of the ground truth bounding

boxes. The second experiment consists in evaluating the trained models on targets automatically

detected by YOLO [7].

3.3.4 RQ4: Can the models reject the non-targets identified by the detector as po-

tential targets?

Motivation: When using a detector, e.g YOLO [7], the ultimate goal is to minimize the

number of missed targets. As a matter of fact, if a target is missed at the detection stage, the system

will not be able to recover it at any subsequent steps. However, acquiring the maximum number

of detections possible leads to the inclusion of false alarms in the process. Therefore, a robust

ATR system should be able to detect anomalies and reject the maximum number of detections that
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Figure 3.13: Example image frames where the YOLO does not delimit well the target. The ground
truth box is shown as the green box, while the YOLO detected box is displayed as the red box. The
sample image frames are extracted from different ranges and different target types.

correspond to non-targets.

Approach: We investigate an approach that expands the number of classes by introducing

an additional class for the ”non-target” detections. This class includes a variety of anomalies that

do not describe true targets. The objective is to train models to become able to discriminate the

targets of interest from any other surrounding, such as background, animals, vegetation ... etc.

3.3.5 Analysis measures

In our analysis, we evaluate the performance of the trained models with respect to various

parameters that characterize the image patches. Some of these parameters are documented in the

data collection. These include target range, time of collection (day or night), viewing angle (described

in Sec.3.2), ...etc. We also define the following two measures:

• Contrast: The contrast can be defined as the difference in intensity between the object and

its background. We calculate the contrast of the ground truth bounding box with respect to

a larger box that contains more background, using:

contrast =
|µ1 − µ2|
σ1 + σ2

(3.3)

where µ1 and σ1 are, respectively, the mean and standard deviation of the bigger box, while

µ2 and σ2 are respectively the mean and standard deviation of the ground truth box. It is
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Figure 3.14: Steps to compute the contrast measure.

important to mention that we normalize the two boxes similarly using the mean and standard

deviation of the bigger box. We illustrate the different steps to compute the contrast measure

in Fig. 3.14.

The contrast of a target image, depending on its value, may affect the classification power of

the network. In fact, when the contrast is high, which occurs when the target is either hotter

or colder than its background, the target can be easily distinguished which should facilitate

the classification task. However, when the contrast is low, which happens when the target

blends in with the background, the classification task is expected to become more difficult.

• Aspect ratio: In order to have a better understanding of the dimension of a given target, we

calculate the aspect ratio of the ground truth bounding box, as follows:

Aspect ratio =
Height

Width
(3.4)

This measure is helpful in assessing the classification power of the trained models with respect

to the dimension of the ground truth box. As a matter of fact, since we consider a square

patch to delimit the target within the frame (Sec.3.2.2), if the Height << Width or Width <<

Height, the square patch would consequently include irrelevant background which may affect

the classification power.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we evaluate, analyze and compare the models presented in Chapter III. We

start by presenting our experimental setting. Then, we outline our hyperparameter tuning process.

Finally, we address each RQ by describing the conducted experiments and analyzing the results.

4.1 Experimental Setting

In our experiments, we use random sampling [38] to load and process the training data by

randomly permuting the list of indices of the training set for each epoch. We choose to proceed this

way in order to minimize the risk of overfitting the training data and memorizing the data by the

order it was presented to the network. This is likely to happen in our case, mainly because our data

is originally extracted from videos, thus consecutive frames encompass highly similar content.

We define a number of iterations instead of a number of epochs. The number of iterations

corresponds to the number of sampling batches of training data points. In other words, we can

express the number of epochs using the number of iterations as:

nbepochs =
nbiter × k
ltrain

(4.1)

where nbepochs is the number of epochs, nbiter is the number of iterations, k is the sampling batch

size, and ltrain is the size of the training set.

Finally, we create checkpoints during the training to evaluate the trained model on the

validation set. The checkpoint with the best performance is saved and used for testing.

4.1.1 Experimental platform

We ran our experiments on a computer equipped with an Intel Core i7-5930K CPU (12

CPUs), an NVIDIA GeForce GTX TITAN X GPU with 12 Gb of VRAM and 128 GB of RAM.
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TABLE 4.1

Experimental settings and their investigated hyperparameters values

Number of iterations Learning rate Learning rate decay
Setting 1 50k 4e-4 No
Setting 2 100k 4e-5 No

Setting 3 100k 4e-4
decay factor = 0.1
after 50k iterations

Setting 4 100k 4e-4 No

4.2 Hyperparameter tuning

The hyperparameter tuning process is an empirical approach that aims to find the hyperpa-

rameters that optimize the performance of the model. Since we are using a state of the art CNN,

we fix the hyperparameters that are related to the architecture, such as the kernel size of the filters

and the number of feature maps in the convolutional layers , to their default values as suggested in

the original Wide ResNets [1] paper. We also fix the batch size and the optimizer. Therefore, our

hyperparameter tuning experiments focus only on the learning rate, the number of iterations, and

whether we should apply a learning rate decay.

Table. 4.1 summarizes the 4 experimental settings and their hyperparameter values. For

this experiment, we only use the randomly initialized CNN. We assume that, since the other models

(finetuned CNN and CNN with STN) share the same backbone CNN, they should agree on the

hyperparameter values.

Since we are adopting a 6-fold cross validation training design as discussed in Sec.3.2.2, we

choose to train the considered CNN for only three folds, which correspond to three representative

testing ranges: range 1000 that represents the low ranges, range 2500 that represents the medium

ranges, and range 3500 that represents the high ranges. For each experiment, we train the models 3

times using different random initializations. In Fig. 4.1, we report the mean and standard deviation

of the results. We note that settings 3 and 4 equally achieve the best mean classification accuracy for

the three considered testing ranges. However, setting 3 yields a less consistent performance (larger

standard deviation) over the different runs when compared to setting 4.

Fig. 4.2 displays the evolution of the validation accuracy during training for a model trained

with setting 3 versus a model trained with setting 4. As it can be seen, training with setting

3 appears to be more stable, mainly during the second half of the training when we apply the

learning rate decay. Based on the above observations, we select setting 4 as the best configuration
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Figure 4.1: Mean and standard deviation of the classification accuracy for 3 runs with different
random initializations.

of hyperparameters to train our models with.

Table. 4.2 summarizes the final hyperparameter setting considered for the rest of the exper-

iments.

4.3 Experiments designed to investigate the research questions (RQ1-RQ4)

Our objective is to build a CNN-based ATR system that can efficiently and reliably classify

targets captured by an infrared sensor. Most importantly, the proposed model must exhibit robust-

ness against several perturbations imposed by real-life scenarios. To ensure that our objectives are

satisfied, we guide our investigation by defining the four important research questions, introduced

in Sec.3.3. In this section, we investigate each research question by conducting the appropriate
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Figure 4.2: Evolution of the validation accuracy during training of one model trained with setting
3 and one trained with setting 4.

TABLE 4.2

Final hyperparameter setting

Hyperparameter Value
Number of iterations 100k
Sampling batch size 100
Learning rate 4e-4
Batch size 128
Optimizer Adam
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experiments and analyzing the results.

4.3.1 RQ1: Does preprocessing of the input images improve the robustness of the

ATR?

To investigate this research question, we train a randomly initialized WRN-28-2 model and

test it on two variations of the data. The first one is the raw data, and the second one is the data

preprocessed using the steps outline in Sec.3.3.1. We adopt the 6-fold cross validation described in

Sec.3.2.2.

The classification accuracy results are reported in Fig. 4.3. As it can be seen, the model

trained on raw data where no preprocessing was applied, performed better than the model trained

with preprocessed data. The difference in performance is more significant for the high ranges (2500,

3000 and 3500), where it exceeds 10%.

This behaviour may be explained by the fact that all data used in our experiments have been

captured by the same camera. Thus, data normalization is not critical. Moreover, the architecture of

WRN-28-2 (Sec.3.1) contains multiple batch normalization layers, which are accomplishing the job

of normalizing the pixel values of the input images. Consequently, we conclude that no preprocessing

is necessary, and we opt for using unpreprocessed data as it yields higher accuracies.

4.3.2 RQ2: How well can the learned models generalize to targets captured at different

resolutions?

To investigate this research question, we train our three models, which are the randomly

initialized CNN (RD CNN), finetuned CNN (FT CNN) and the CNN combined with a block of STN

(STN CNN), using the 6-fold cross validation described in Sec.3.2.2. We report the classification

accuracy results of the three models on the six testing ranges in Fig. 4.4.

As it can be seen, the FT CNN outperforms the RD CNN on all ranges, except for the high

ranges of 3000 and 3500. This observation can be justified by the fact that FT CNN is initialized with

a pretrained model on the VMMRdb dataset [34]. This dataset contains, as described in Sec.3.1.2,

high resolution car images that could resemble the targets of the DSIAC database captured at low

slant ranges. Nevertheless, the FT CNN still have a highly comparable performance to the RD CNN

even at higher ranges. Therefore, we can fairly conclude that the weight initialization of the CNN

has a crucial impact on the classification performance.

The STN CNN achieves similar classification performance as the RD CNN at low ranges.
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Figure 4.3: Accuracy of the randomly initialized WRN-28-2 model when raw and preprocessed data
are used to train and test the model.

However, at higher ranges, it outperforms the other models significantly.

We examine more in depth the performance of the STN CNN by comparing it to the

RD CNN, since the difference in performance between these two models is the most significant.

We limit our analysis to 3 representative ranges: 1000, 2500 and 3500.

Fig. 4.5 displays the distribution of the aspect ratio values of the testing samples that

are misclassified by the RD CNN and correctly classified by the STN CNN. We notice that the

STN CNN manages to correctly classify samples with low values of aspect ratio ≤ 0.5, unlike the

RD CNN which tends to misclassify them. A low aspect ratio means that the height and the width of

the original bounding box of the target are very different, which leads to the inclusion of background

when attempting to extract a square crop (refer to Sec.3.1.1).
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Figure 4.4: Comparison of the classification accuracy of the 3 trained models on the six testing ranges.
RD CNN: randomly initialized CNN ; FT CNN: finetuned CNN (transfer learning) ; STN CNN:
CNN combined with a block of STN.

Targets captured from their side views are usually delimited with bounding boxes that

have low aspect ratio values. This observation can be further supported by our visualization in

Fig. 4.6, which confirms that the samples that are misclassified by RD CNN and correctly classified

by STN CNN, are mainly captured at zones 2 and 6, where the targets appear from their side views.

The performance of RD CNN drops when it encounters a target situated within irrelevant

background. As for the STN CNN, it spatially transforms the input patch by zooming in on the

relevant parts, which results in eliminating the irrelevant background and preserving the target of

interest. Therefore, the STN block feeds a transformed input to the CNN, that consists of only the

target relieved of its background. This is the ”attention” aspect of STNs, that basically represents
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Figure 4.5: Histograms of aspect ratio values corresponding to samples correctly classified by
STN CNN and misclassified by RD CNN for 3 testing ranges.

Figure 4.6: Distribution, by zones, of samples correctly classified by STN CNN and misclassified by
RD CNN. We conduct our analysis on three testing ranges: a low range 1000, a medium range 2500,
and a high range 3500.
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Figure 4.7: Example input patches that are misclassified by RD CNN and correctly classified by
STN CNN. These samples originally contain irrelevant background (left image). They are trans-
formed by the STN (right image) that highlighted the target in the image by eliminating the back-
ground.

its power of focusing on only what is important in the input, thus making the model invariant to

noisy background. Fig. 4.7 illustrates examples of input patches that are misclassified by RD CNN

and correctly classified by STN CNN. We show the original images that contains the irrelevant

background and how STN CNN transformed the patches by removing the background. The STN

block can also be perceived as a way to improve the target localization within the patch without

causing any distortion due to the rescaling.

Fig. 4.8 displays the distribution of the contrast values of the testing samples that are

misclassified by RD CNN and correctly classified by STN CNN. We notice that the STN CNN

manages to correctly classify samples with low contrast ≤ 0.2, unlike RD CNN which tends to

misclassify them. Typically, a low contrast occurs when the patch contains a target that blends in

with the background. This can happen when data is collected at night and the target is not moving

(cold target) or when the data is collected during a hot day and the target is moving (hot target).

Under these conditions, the spatial transformers have the additional advantage of being able to

smooth the pixel intensity of the image thanks to the sampling kernel. As explained in Sec.2.1.4 and

Sec.3.1.3, the STN computes the pixel intensities of the transformed image using a sampling kernel,

which in our case is the bilinear interpolation. This sampling kernel generates the pixel intensity of

a given location in the transformed image by considering the weighted effects of all the pixels of the
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Figure 4.8: Histograms of contrast values corresponding to samples correctly classified by STN CNN
and misclassified by RD CNN. We conduct our analysis on three testing ranges: a low range 1000,
a medium range 2500, and a high range 3500.

Figure 4.9: Example input patches that are misclassified by RD CNN and correctly classified by
STN CNN. These samples are originally dark with bright blops (left image). They are transformed
by the STN (right image) that helped smooth the pixel intensities.

source image. Therefore, if there are sudden jumps in pixel intensities, they will be smoothed and

the resulting transformed image will display a more balanced distribution of pixel values. Fig. 4.9

illustrates example source images that have low contrast and how the STN managed to smooth them

by enhancing their contrast.
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TABLE 4.3

Number of shifted test boxes by testing range

Range # samples
1000 360400
1500 351840
2000 384260
2500 377500
3000 336620
3500 333980

4.3.3 RQ3: Are the learned models invariant to small scale and shift variations?

To investigate this research question, we evaluate the robustness of the trained CNN models

against potential target localization and scaling errors generated during the detection stage. To this

end, we consider two experiments:

• Evaluate the performance of the trained models on shifted and scaled versions of the ground

truth bounding boxes. These results are presented, respectively, in Sec.4.3.3.1 and Sec.4.3.3.2.

• Evaluate the performance of the trained models on targets automatically detected by YOLO [7].

These results are presented in Sec.4.3.3.3.

For both experiments, we train the models as described in Sec.3.2.2. We should note that

we do not apply any data augmentation during the training stage. Thus, these translated or shifted

exemplars are introduced only during the validation step.

4.3.3.1 Impact of localization errors on identification performance

we create a test set that includes horizontally and vertically shifted versions of the ground

truth boxes. For a given translation direction, namely horizontal or vertical, we apply a translation

of the bounding box. The amount of translation is a predefined fraction of the dimension of the

bounding box along the considered translation direction. We apply this procedure both to vertical

and horizontal directions. Fig. 4.10 illustrates an example of a vertical translation. We create a

dataset with exemplars for translation factors ranging from 0.1 to 0.5 with a step of 0.1, for all four

directions. Table. 4.3 summarizes the statistics of the shifted test data.

In Fig. 4.11 and Fig. 4.12, we compare the target identification performance of the considered

models under horizontal and vertical localization errors. From Fig. 4.11, it can be noted that the

models reach very similar performances for low ranges (1000, 1500 and 2500) where the classification
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Figure 4.10: An extraction of target exemplars accounting for localization errors: We consider here
an upward translation by a factor of 0.3 of the height of the bounding box; we depict both the
original bounding box (red) and the translated bounding box (green).

accuracy remains above 80% for horizontal translations ranging from -20% to +20%. However,

STN CNN shows increased robustness over the other CNNs for high ranges (2500, 3000 and 3500).

In particular, for range 3500, it preserved a high performance over 85% for horizontal translations

ranging from -10% to 10%.

Vertical translations display more oscilations in the behaviour of the three CNNs. In fact,

from Fig. 4.12, we can notice that STN CNN outperforms the other CNNs over all the ranges,

mainly for vertical translations ranging from -40% to 30%. However, STN CNN exhibits a drop

in performance for vertical translation above 40%. This misachievement can be even more glaring

at the 1500 and 2000 ranges, where the performance drops below 40%. Meanwhile, RD CNN and

FT CNN succeeded to keep a reasonable performance over all the ranges, specifically at ranges 1500

and 2000.

This phenomenon that causes the STN CNN to fail over large vertical translations can be

explained by the fact that, at a certain point, a large shifting of the position of the bounding box

leads to the occlusion of important discriminative parts in the target of interest. This masking effect

did not occur at range 1000, because targets captured at such a high resolution have big enough

bounding boxes that would not cause major target masking when shifted horizontally or vertically.

We also notice that large translations were relatively harmless to STN CNN for higher ranges (2500,

3000 and 3500), because targets at these ranges fit inside small bounding boxes, and they are only

described by few pixels. Therefore, no object part is particularly essential to the discrimination of

the class. In this case, the models are insensitive to masked target parts. However, at medium
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Figure 4.11: Performance results on test targets with horizontally translated boxes. LEFT denotes
horizontal shifting of the box to the left, while RIGHT denotes horizontal shifting of the box to the
right. We report the results on all testing ranges.

ranges such as 1500 and 2000, targets are large enough to display discriminative object parts, and

small enough to be affected by the masking effect of the translated box.

This interpretation can be further supported by Fig. 4.13 where we display example test

images with translated bounding boxes. These samples correspond to targets that were misclassified

by STN CNN and correctly classified by RD CNN. We notice that applying a large vertical trans-

lation caused almost a complete disappearance of the target. As we demonstrated in the previous

research question in Sec 4.3.1, STN CNN spatially transforms the input patch to localize exactly the

target within its background and focuses only on the relevant discriminative object parts. If these

parts are masked due to shifting effects, STN CNN fails to recognize the target.
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Figure 4.12: Performance results on test targets with vertically translated boxes. UP denotes upper
box shifting, while DOWN denotes bottom box shifting. We report the results on all testing ranges.

We argue that the success of RD CNN and FT CNN in correctly classifying occluded targets

might be a sign that these models are overfitting. Fig. 4.14 supports this claim, where we show

example test images that demonstrate the masking effect due to a large vertical shifting of the box.

These samples correspond to targets that are misclassified by STN CNN and correctly classified by

RD CNN. We also display three nearest neighbors from the training set that correspond to each

testing sample. To compute the nearest neighbors, we use the learnt features extracted from the

last layer of the CNN, right before the classifier. We can observe from Fig. 4.14 that RD CNN

associates, as neighbors, training images that exhibit a particular pattern in their pixel intensities:

either a dark background with a bright blob or a bright background with a dark spot. Even if the
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Figure 4.13: Example test images that illustrate the masking effect due to large shiftings of the
box position. We consider a vertical translation of 50%. The displayed targets are misclassified by
STN CNN and correctly classified by RD CNN.

neighbors come from a different class, they are still considered to be close to the test image because

they display the same pattern. Therefore, in some cases, RD CNN might be memorizing the targets

by following a certain pattern in the intensity of the pixels, rather than learning and considering

discriminative features during the target recognition process.

The overall robustness against translated inputs exhibited by the FT CNN and RD CNN,

actually derive from the global average pooling layer, which has the ability to make neural networks

insensitive to position shifting perturbations.

4.3.3.2 Impact of scale modification on identification performance

To assess the robustness of the models to scaling effects, we create a test set that includes

scaled boxes given the ground truth boxes. We rescale the bounding box with a factor ranging from

0.5 to 1.5, keeping the center of the bounding box unchanged, as shown in Fig. 4.15. Table. 4.4

summarizes the details about this created test set.

We report in Fig. 4.16 the robustness performance of the considered models regarding scaling

effects. The models achieve highly comparable results in the low ranges, then STN CNN takes the

lead in the higher ranges. STN CNN also exhibits more robustness toward an increase in the scale

of the box. Enlarging the box means that we will be including more background. Therefore, we can

interpret the outperformance of STN CNN in these case scenarios in terms of robustness to dealing
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Figure 4.14: On the left we show example test images from range 1500 and 2000 that display the
masking effect due to a large vertical box shifting of 50%. On the right, we present three nearest
neighbors of the test patch from the training set. We use the features extracted by RD CNN to
compute the nearest neighbors algorithm. We annotate each neighbor by its class and the computed
euclidean distance that separates it from the test image.

Figure 4.15: An extraction of target exemplars accounting for scaling errors: We consider here a
scaling by a factor of 1.3 of the height and the width of the bounding box; we depict both the original
bounding box (red) and the scaled bounding box (green).
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TABLE 4.4

Number of scaled test boxes by testing range

Range # samples
1000 360400
1500 351840
2000 384260
2500 377500
3000 336620
3500 333980

TABLE 4.5

Number of YOLO detections by testing range

Range # detections
1000 37441
1500 37292
2000 40126
2500 38243
3000 33247
3500 25259

with targets situated within irrelevant background, as discussed in the previous research question

(Sec 4.3.2).

We can also note that, when the bounding box size is reduced (with a scale factor below 1),

some parts of the targets may be masked. Thus, these results may also be interpreted in terms of

robustness to masking effects, as discussed in Sec 4.3.3.1.

4.3.3.3 Impact of automatic target detection on identification performance

We assess the ability of the models to handle real-world situations by testing them on targets

detected by the object detector YOLO [7]. YOLO has been retrained from scratch on the DSIAC

dataset using the annotated ground-truth boxes. Figure. 4.17 describes the different steps we adopt

in order to finally generate the class predictions given YOLO detections. Table. 4.5 presents details

about the test set generated using YOLO detections.

We analyze the performance of the models using receiver operating characteristic (ROC)

curve. The ROC curves display plots of the probability of the detection (Pd) of a given class vs.

the probability of false alarm (Pfa). Let ”T1” be the event that a target is present, and ”T0” the

event that a target is not present. The probability of detection (Pd) is the probability of saying that

”T1” is true given that event ”T1” occurred. The probability of false alarm (Pfa) is the probability
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Figure 4.16: Performance results on test targets with scaled boxes. We report the results on all
testing ranges.

Figure 4.17: Different steps of model evaluation using detected targets by YOLOv3.
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Figure 4.18: ROC curves of the models tested on automatically detected targets by YOLO [7]

of saying that ”T1” is true given that the ”T0” event occurred.

Fig. 4.18 shows the ROC curves of the tested models RD CNN, FT CNN and STN CNN

on the considered ranges. It can be noted that YOLO succeeded to detect 100% of the targets in

almost all the ranges, except for the high ranges 3000 and 3500 where it reached a maximum PD

around, respectively, 75% and 55%. At such long slant ranges, the targets become too small for the

detector to capture.

At range 1000, the ROC curves of the three models are almost overlapping, which indicates

that their respective perfomances are highly comparable. Although the ROC curve of STN CNN

is above the ROC curves of the other models, we can fairly judge that the three models perform

similarly well on the detected targets at range 1000, by reaching a PD of 80% with a Pfa less than
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0.1.

At range 1500, STN CNN completely fails to recognize the targets for Pfa values less than

10−3, while RD CNN and FT CNN score PD values of around 30%. However, STN CNN, along

with the other models, manages to reach a PD value of 80% at a Pfa of 10−2.

At range 2000, STN CNN and FT CNN outperform RD CNN by reaching a Pd around 60%

at a Pfa less than 10−3, while RD CNN realized only a Pd of only 20%.

For the remaining high ranges 2500, 3000 and 3500, STN CNN takes the lead, followed by

RD CNN and finally FT CNN. The degradation of the performance of FT CNN on the high ranges

can be, again, traced back to the respective network weight initialization that uses a pretrained

model on the VMMRdb dataset [34], where the vehicles resemble the targets of the DSIAC database

captured at low ranges.

At range 2500, STN CNN reaches a Pd of around 60% for a Pfa less than 0.1, while RD CNN

and FT CNN score a Pd of around 50% for the same Pfa. As for the range 3000, STN CNN scores

a Pd of 60% , out of a maximum of around 75%, for a Pfa of 0.1, leaving RD CNN and FT CNN

behind with a difference of 10%. Finally, in the range 3500 where the maximum Pd that can be

reached is 55%, STN CNN and RD CNN are able to attain, respectively, Pd scores of 30% and 25%

for a Pfa less that 0.1, while FT CNN keeps a Pd of around 0%.

Overall, despite the slight advantage presented by STN CNN, the models are not considered

to be performing well enough on the automatically detected targets by YOLO. This misachievement

is perceived to be even more severe for targets captured at low resolutions (ranges 2500, 3000 and

3500).

We justify the failure of our models to perform well on the automatically detected targets

by the fact that the classification performance is highly dependent on the detection performance.

Unfortunately, the ROC metric does not distinguish between these two steps. Therefore, the classifier

is penalized for any flaw in the detection stage. In other words, if the detector fails to delimit well

the target or generates a false alarm by detecting clutter, the resulting detection, no matter how

relevant it is, will be passed anyways to the classifier for class prediction. This leads to an increase

in the number of misclassifications, which will be translated in the ROC curve as a bad classifier.

Our hypothesis can be further supported by observing that the models show severe failure mainly

in the high ranges, where targets are captured at a very low resolution. In this case, the detector is

most likely to either miss some targets, poorly delimit them or detect false alarms.

One way to mitigate this situation is to teach the models to identify the false alarms so that
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they can be discarded in advance and not be considered for scoring, later, by the ROC.

4.3.4 RQ4: Can the models reject the non-targets identified by the detector as po-

tential targets?

We attempt to boost the ability of the models to identify false alarms generated during the

detection stage. To do so, we introduce a new class named ”Non-Target”. We build this class by

collecting the false detections of YOLO. We consider a given detection a false alarm if there is no

overlap (overlap=0) between the detected box and its ground truth counterpart. We augment this

class in order to balance the total 11 classes by generating random boxes from the background of the

frames. Finally, we train the models using the same design described in Sec.3.2.2, with 11 classes.

We evaluate the trained models on the test set generated by YOLO detections. We use the ROC

curves to report, analyze and compare the results.

We display the resulting ROC curves in Fig. 4.19. We can notice that the ROC curves of

STN CNN indicate an increase in performance compared to the results displayed in Fig. 4.18. This

improvement can be observed in all ranges, mainly in range 1500.

However, this observation can be verified to be true for only STN CNN. The models RD CNN

and FT CNN do not demonstrate a similar improvement in performance. In fact, these models

preserved the same behaviour of their ROC curves compared to their counterparts trained on 10

classes. Their performances even got worse in range 3500 where they scored almost a null Pd for all

Pfa values less than 0.1.

We focus our analysis on the range 3500, since in this range the models display the biggest

gap in performance. Fig. 4.20 presents the confusion matrices of the three models on range 3500.

We can notice that the three models were able to successfully identify the false alarms by scoring

an accuracy of 73% in the ”Non-Target” class.

However, the three models also misclassified target-labeled detections as non-targets. The

confusion is shown to be even more severe for the models RD CNN and FT CNN, particularly for

the targets BTR70, BMP2 and T72. We investigate these misclassified samples by displaying in

Fig. 4.21 the histogram of the overlap ratio. We define the overlap ratio as the ratio between the

intersection area of a detected box and its ground truth counterpart, and the area of the ground

truth box. It can be noted that STN CNN misclassified target-labeled detections that mostly have

small overlap ratios less than 50%. These detections do not delimit entirely the targets. FT CNN,

on the other hand, misclassified target-labeled detections that have high overlap ratios that range
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Figure 4.19: ROC curves of the models trained on 11 classes (with ”Non-Target” class) and tested
on YOLO detections.

Figure 4.20: Confusion matrices of a)RD CNN b)FT CNN, and c)STN CNN trained on 11 classes
and tested on YOLO detections for range 3500. ”NT” indicates the Non-Target class. We display
the results in terms of percentages.
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Figure 4.21: Histograms of the overlap ratio corresponding to target-labeled detections misclassified
as Non-Target by, respectively, RD CNN, FT CNN and STN CNN. The reported results correpond
to range 3500.

from 40% to 100%, with a peak in 90%. This is similar for RD CNN whose histogram shows high

peaks for overlap ratios larger than 50%. This means that RD CNN and FT CNN are misclassifying

actual targets as non-targets.

Therefore, even though RD CNN and FT CNN were able to eliminate the false alarms, they

rejected actual target detections in the process, which hindered their classification performance.

Meanwhile, STN CNN succeeded to both eliminate the false alarms and the target-labeled detec-

tions that do not relate well enough to the ground truth, probably describing false detections too.

Consequently, introducing the ”Non-Target” class further boosted the performance of STN CNN.

51



CHAPTER 5

CONCLUSIONS

In this thesis, we adapted and investigated the application of CNN models to ATR using

infrared imagery. We explored three different learning approaches. The first method relies on random

initialization of the network weights. The second method uses transfer learning. The third method

introduces a block of STN to the network in order to learn a spatial transformation that attempts

to enhance the classification performance.

We evaluated our models on a large-scale collection of infrared images containing civilian

and military vehicles. The proposed models performed comparably well on targets captured at

high resolution. However, the network equipped with STN displayed superior performance even for

targets captured at low resolution. Transfer learning proved to be helpful in boosting the network

classification capabilities over the randomly initialized CNN.

We also assessed the power of our models in handling realistic scenarios. The evaluation

included testing the models on datasets that simulate the potential perturbations that could be

encountered in real-life applications, as well as testing the models on automatically detected targets.

In both experiments, the model with the STN block showed the most robustness and provided the

best results. Finally, we further boosted the robustness of our models by training them not only to

recognize targets, but also to distinguish them from false alarms. This experiment yielded the best

results for the STN model.

We concluded that the most reliable, efficient and accurate ATR system would consist of a

WideResNet-28-2 preceded by a block of STN. This model was shown to achieve superior classifica-

tion results for targets captured at both low and high resolutions.

However, our optimal model is much slower to train. As a matter of fact, the STN is a

neural network itself. When combined with a CNN, the entire network is trained end-to-end, thus

taking longer time to converge than a standalone CNN.

Future work may include investigating efficient preprocessing operations to apply to the

data, so that we can generalize the trained model to other test data captured by different sensors
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with different calibration.

Another potential future work may include exploring more in depth spatial transformers by

using the attention aspect to extract discriminative features in order to explain the model. To do so,

the use of parallel blocks of STNs could be considered, so that each block learns a different region

of interest.

Finally, in order to overcome the potential overfitting issue that rises from the redundancy

of consecutive frames, additional data, captured under different conditions or even generated syn-

thetically, should be considered for training.
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