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Ketone Body Metabolism in the
Ischemic Heart
Stephen C. Kolwicz Jr*

Heart and Muscle Metabolism Laboratory, Department of Health and Exercise Physiology, Ursinus College, Collegeville, PA,

United States

Ketone bodies have been identified as an important, alternative fuel source in heart

failure. In addition, the use of ketone bodies as a fuel source has been suggested to

be a potential ergogenic aid for endurance exercise performance. These findings have

certainly renewed interest in the use of ketogenic diets and exogenous supplementation

in an effort to improve overall health and disease. However, given the prevalence of

ischemic heart disease and myocardial infarctions, these strategies may not be ideal for

individuals with coronary artery disease. Although research studies have clearly defined

changes in fatty acid and glucose metabolism during ischemia and reperfusion, the

role of ketone body metabolism in the ischemic and reperfused myocardium is less

clear. This review will provide an overview of ketone body metabolism, including the

induction of ketosis via physiological or nutritional strategies. In addition, the contribution

of ketone body metabolism in healthy and diseased states, with a particular emphasis

on ischemia-reperfusion (I-R) injury will be discussed.

Keywords: ischemia, reperfusion, hypoxia, beta-hydroxybutyrate, ketosis

INTRODUCTION

Ketone body metabolism has become an important topic in the scientific and medical communities
over the last several years. The identification of elevated ketone body oxidation in hypertrophied
and failing hearts (1, 2) and the potential of exogenous ketone body supplements to promote
exercise performance (3) have been a critical driver in research. Since ketone bodies are suggested
to be more energy efficient than glucose or fatty acids (4, 5), the utilization of ketone bodies as an
energy sourcemay be advantageous for failingmyocardium or exercising skeletal muscle. Certainly,
the therapeutic and ergogenic potential of nutritional or pharmacological strategies that promote
cardiac and muscular ketone body metabolism are of increased interest.

Ketogenic diets (KD) are high fat, low carbohydrates that were originally developed for the
treatment of epilepsy (6). KDs can also be an effective treatment for inherited metabolic disorders
of glucose metabolism (7). Although KDs appear to be effective strategies for weight loss, at least
in the short-term, their ability to promote exercise performance appears to be limited (8). The use
of exogenous ketone body supplementation has been of increased interest in exercise and sport
performance, but the effectiveness of supplements remains controversial (9, 10). Although the KD
or supplementation strategies appear to be recognized as plausible treatments in models of cardiac
dysfunction and failure (11), there is less discussion regarding the role of ketone body metabolism
in ischemic heart disease.

Research studies have uncovered critical changes in cardiac substrate metabolism under
conditions of stress, especially in pathological hypertrophy (12, 13), heart failure (14, 15), ischemia-
reperfusion (16–18), and obesity/diabetes (19, 20). Although the importance of ketone body
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metabolism to the hypertrophied and failing heart has been
well-discussed, the contribution of ketone body oxidation to the
myocardium following ischemia has received less attention. In
this review, ketone body metabolism in the healthy and diseased
myocardium will be discussed, with a particular focus on the
impact of ketone body metabolism in the functional recovery
from ischemic injury.

METABOLIC PATHWAYS OF KETONE
BODIES

Ketone bodies are 4-carbon molecules that are synthesized
through the process known as ketogenesis and broken down and
utilized within tissues via the ketolysis pathway (also referred to
as ketone body oxidation). Three ketone bodies exist: acetone,
acetoacetate, and beta-hydroxybutyrate (β-OHB). β-OHB is the
ketone body which is in highest concentration in the blood
and is typically measured in many commercially available assay
kits or handheld meters used in the research setting. The liver
is the primary site of ketogenesis (Figure 1), which generates
acetyl-CoA via beta-oxidation of fatty acids. The acetyl-CoA is
ultimately converted into acetoacetone or β-OHB via reactions
that require several enzymes, namely mitochondrial acetyl-CoA
acetyltransferase 1 (Acat1, commonly referred to as thiolase),
3-hydroxy-3-methylglutaryl-CoA synthase (Hmgcs2), HMGC-
CoA lyase (Hmgcl), and mitochondrial beta-hydroxybutyrate
dehydrogenase (Bdh1). Of note, acetoacetone is generated
as a result of the Hmgcl reaction and can be converted
to β-OHB via Bdh1. Once β-OHB enters peripheral tissues
via monocarboxylate transporters, MCT1 (encoded by the
Slc16a1 gene) or MCT2 (encoded by the Slc16a7 gene)
(21), the ketolytic process commences (Figure 1). Acetyl CoA
is produced through rapid oxidation of β-OHB by Bdh1,
succinyl-CoA:3-oxoacid-CoA transferase (Scot, encoded by
the Oxct1 gene), and Acat1, which then is available for
entry into the tricarboxylic acid (TCA) cycle. These ketolytic
enzymes are present in the heart and the reactions are
primarily based on the substrate availability. However, the
Scot reaction is also dependent upon the availability of
succinyl CoA.

Older texts often discussed the presence of ketone bodies as
negative consequences of abnormal metabolic processes (22, 23).
However, since serum ketone bodies are measurable in the fed
and fasted condition of healthy humans and animals, there must
be some metabolic value. In fact, the use of ketone bodies as a
metabolic fuel is suggested to be more energy efficient (4, 5).
However, the total ATP yield per carbon atom for ketone bodies is
slightly above glucose (∼5.4 vs. ∼5.2), while both substrates lag
behind fatty acids (∼6.7) (24, 25). In terms of ATP per oxygen
(i.e., P/O ratio), ketone bodies are slightly lower than glucose
(∼2.50 vs. ∼2.58), with both yielding higher ratios than fatty
acids (∼2.33) (24, 25). Based on these values, ketone bodies
would rank second on both scales in relation to glucose and
fatty acids. However, in isolated perfused heart experiments in
rodents, the presence of ketone bodies in the perfusate increased
cardiac efficiency (26, 27) and ATP production (28). Therefore,

the relationship of ketone bodies to overall cardiac metabolism
may require more intricate examination.

PHYSIOLOGICAL AND NUTRITIONAL
KETOSIS

Ketosis is defined as a physiological condition where serum
ketone body concentrations are elevated acutely. Studies
in humans and rodents commonly report serum ketone
body concentrations in the range of ∼0.1 to 0.5mM, so
ketosis is generally identified as serum concentrations above
0.5mM. Conditions that result in nutrient deprivation or low
glucose availability, such as fasting/starvation and exercise (29,
30), are commonly associated with elevated serum ketone
body concentrations, which is termed “physiological ketosis.”
Diabetics, particularly Type I diabetics, may also exhibit elevated
serum ketone body levels (31, 32). However, when in the 3.8–
25.0mM range and accompanied by low arterial pH values, the
term “ketoacidosis” is used to reflect a potentially dangerous
pathological state (33–35). More recently, the term “nutritional
ketosis” has been used to better identify a state where ketosis was
induced by nutritional or supplementation strategies (36–38).
The use of these specific terms could help differentiate between
the physiological/pathological and/or intentional/unintentional
causes of ketosis.

In our recent study, we explored physiological ketosis in
response to both fasting and endurance exercise (29). Female
mice fasted up to 8 h, demonstrated gradual increases in serum
ketone body concentrations, which peaked at ∼ 0.8mM (29).
Our unpublished data showed that male mice respond similarly,
with peak serum ketone body concentrations of ∼0.7mM. In
response to endurance exercise of up to 2.5 h, serum ketone
body levels rose to ∼1.2mM in female mice (29). Interestingly,
this “exercise-induced ketosis” was blunted in fasted female
mice (29). These values of physiological ketosis related to
fasting or exercise are fairly consistent across the literature
in both humans (39–41) and rodents (30, 42, 43). However,
whether physiological ketosis is consistent between the sexes is
relatively unexplored.

To induce nutritional ketosis, one strategy involves the
consumption of the ketogenic diet (KD), a diet that is typically
low in carbohydrates with high fat and adequate protein. The KD
was originally used as a treatment for individuals with diabetes,
epilepsy, and other neurological conditions approximately 100
years ago (6, 44, 45). This classical KD called for a fat to protein
plus carbohydrate ratio of 4:1 (46), which typically results in a
dietary intake of 80-90% of calories from fat, 10-15% calories
from protein, and < 5% of calories from carbohydrate sources
(5). Although the use of the KD in research has increased
significantly over the last several years, the dietary composition
can deviate quite substantially from the classical KD. In some
human studies, dietary regimens referred to as low-carbohydrate
KD (LCKD) or very low-carbohydrate KDs (VLCKD) are used
with carbohydrates ranges from ∼10% to 45% of total calories
(47–50). Despite the varied ranges of carbohydrate intake, all of
these diets tend to be included in the KD category. Therefore,
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FIGURE 1 | Ketone body pathways in the liver and heart. Ketogenesis occurs primarily in the liver from fatty acids obtained from the blood. Acetyl CoA is formed from

hepatic beta-oxidation and ultimately converted to beta-hydroxybutyrate (β-OHB) via multiple enzymatic reactions. Once β-OHB enters the heart, a series of reactions

(Continued)
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FIGURE 1 | forms Acetyl CoA for entry into Kreb’s Cycle. AcAc, acetoacetate; Acac CoA, acetoacetyl CoA; ACAT1, acetyl-coenzyme A acetyltransferase 1, βOHB,

beta-hydroxybutyrate; BDH1, mitochondrial beta-hydroxybutyrate dehydrogenase; HMGCS2, 3-hydroxy-3-methylglutaryl-CoA synthase 2; HMGCL, HMGC-CoA

lyase; SCOT, succinyl-CoA:3-oxoacid-CoA transferase. Created with BioRender.com.

careful attention to the details of the dietary composition is
needed to adequately interpret experimental findings.

Although the KD has been successful for weight reduction
in mice (30, 51) and humans (52, 53), the high fat and
low carbohydrate intake may be problematic for long-term
adherence. Moreover, KDs are associated with negative
consequences such as abnormal glucose homeostasis (54–56),
hyperlipidemia (29, 54, 57, 58), and liver steatosis (29, 55).
Therefore, another strategy to induce nutritional ketosis
has been developed, which involves exogenous ingestion of
ketone bodies as a nutritional supplement. These ketone body
supplements are now commercially available and have been
tested in several studies evaluating the potential ergogenic aid
on exercise performance (3, 59–63). However, special attention
must be paid to the exact formulation of these supplements as
they are available in ketone salts (KS) or ketone esters (KE).
Although more readily available and inexpensive, the use of
KS supplements can be problematic, depending on the exact
formulation, which may include β-OHB or 1,3-butandeniol
(BD). In the salt form, β-OHB is present in both the active
(D) and non-metabolizable (L) form, which may result in a
less effective increase in serum ketone bodies (64, 65). KS
supplements that contain BD may also be a less desirable
method to induce ketosis since dehydrogenase enzymes in
the liver are required to create β-OHB (64, 66). Although
several formulations of KE supplements are available, the
(R)-3-hydroxybutyl (R)-3-hydroxybutyrate ketone monoester,
which converts to D-β-OHB and BD (67) has become the most
commonly used. This KE, when combined with carbohydrates,
elicited an increase in exercise performance in trained cyclists
(3). Of note, other studies using KE supplementation have not
consistently shown an increase in exercise performance (61–63).

KETONE BODY METABOLISM IN THE
HEALTHY HEART

The term, metabolic flexibility, has become synonymous with
the cardiometabolic profile of the healthy heart. Due to the
enormous requirement for continual replenishment of energy
stores, the heart must possess an ability to utilize any carbon-
based substrate available. To this end, the heart can metabolize
the exogenous substrates fatty acids, glucose, lactate, amino acids,
and ketone bodies to produce energy. Research suggests that
the normal healthy heart generates approximately 60-80% of its
energy requirements from fatty acids, with approximately 10-
20% from glucose (68–70). Lactate can also be an important
fuel, particularly during instances of increased workload, such
as exercise (71, 72). The contribution of amino acids to cardiac
energy metabolism is reported to be low, ∼1-3% (73, 74).
However, this low contribution to oxidative metabolism should
not be interpreted as insignificant as disruption of amino acid

catabolism in genetic models can be detrimental, particularly in
stressed conditions (75).

Although previously considered to be a relatively minor
substrate, ketone body oxidation is reported to contribute ∼10-
20% to cardiac energy metabolism (28, 43). Interestingly, ketone
body oxidation may not be essential to the healthy myocardium
as cardiac-specific deletion of Bdh1 (76) or Scot (Oxct1) (77)
virtually eliminates ketone body oxidation with no myocardial
phenotype in unstressed conditions. In contrast, cardiomyocyte
overexpression of Bdh1 increases ketone body oxidation by
approximately 70% without negatively affecting cardiac function
(78). These studies in transgenic mice would suggest that low or
high ketone body oxidation is relatively inconsequential to the
heart in unchallenged situations. However, a potential concern
is the effect of changes in ketone body availability and delivery
on the usage of other fuels, particularly glucose and fatty acids,
on cardiac metabolism. Indeed, increased delivery of β-OHB
suppresses fatty acid oxidation but does not significantly affect
glucose oxidation in animal models (30, 76, 79). Increased ketone
bodies also decreased myocardial glucose uptake in humans (80).
However, increasing β-OHB concentrations in working heart
preparation in mice did not affect fatty acid oxidation and tended
to enhance glucose oxidation (28). In relation to this, increasing
glucose uptake via overexpression of glucose transporter 4
(Glut4) suppressed ketone body oxidation in isolated perfused
mouse hearts (81). These seemingly discrepant findings are likely
due to differences in the experimental logistics, particularly in
the concentrations of ketone bodies employed. However, the
influence of changes in ketone body oxidation on oxidation
of other substrates appears to be essentially meaningless, as
cardiac function remains relatively normal in these situations,
thus highlighting the metabolic flexibility of the heart under
normal, baseline conditions.

KETONE BODY METABOLISM IN THE
OBESE AND DIABETIC HEART

The discussion of ketone bodies in settings of obesity and diabetes
are traditionally thought to represent a pathophysiological state
due to the condition of diabetic ketoacidosis (DKA) that can
result in serious clinical complications (33–35). Indeed, Type 1
diabetic (T1D) patients without insulin therapy quickly develop
ketonemia within 5 h (32). Therefore, the American Diabetes
Association recommends regular monitoring of both glucose and
ketone bodies for T1D (82). However, blood levels of ketone
bodies are also increased in Type 2 diabetics (T2D) patients
(31), indicating that systemic disruptions in glucose homeostasis,
either via insulin deficiency or insulin resistance, result in
changes in systemic ketone body concentrations. Whether the
elevation in ketone body availability contributes directly to the
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cardiac dysfunction often associated with the obese and diabetic
heart is not known.

The cardiometabolic profile of the diabetic and obese heart
has been generally described as increased reliance on fatty acid
oxidation with a concomitant reduction in glucose oxidation
(83), which in is contrast to the hypertrophied and failing heart
discussed in the next section. However, studies conducted over
the last several years also demonstrate alterations in cardiac
ketone body metabolism in diabetes. In T2D patients, myocardial
uptake of the ketone bodies, β-OHB and acetoacetate were higher
than non-diabetic controls, inferring a possible increase of ketone
body oxidation in human hearts (84). However, ketone body
oxidation was shown to be reduced in isolated hearts from
diabetic (db/db) mice (20). Consistent with this, T1D, induced
by streptozotocin (STZ), or T2D, induced by 12-weeks of high
fat diet, was associated with reduced mRNA expression and
protein level of myocardial Bdh1 (81). Moreover, STZ hearts
demonstrated accumulation of cardiac β-OHB with a tendency
for reduced myocardial β-OHB oxidation (81). One potential
interpretation of these animal studies is that the reduction in
ketone body oxidation is a hallmark of the diabetic heart, which
might serve as a therapeutic target. In support of this, a recent
study demonstrated improved systolic and diastolic function as
well as increased expression of ketone body oxidation enzymes
in db/db mice fed a diet supplemented with KE (85). Future
research can help to clarify the impact of enhanced ketone body
metabolism in the obese and diabetic myocardium.

KETONE BODY METABOLISM IN
HYPERTROPHY AND FAILURE

Over the last 5 years, the importance of cardiac ketone body
metabolism in the pathological setting has gained great attention
(1). Although the metabolic derangements that occur in the
hypertrophied and failing heart, including significant decreases
in fatty acid oxidation concomitant with increased glycolysis, are
well established (14, 69, 86), the role of ketone body oxidation
previously received little focus. However, seminal studies in
humans (87) and mice (88) have underscored the contribution
of ketone body metabolism to cardiac pathologies, particularly
in heart failure. These publications have led to a host of recent
studies that have examined the role of ketone body metabolism
in cardiac disease (28, 76, 78, 85, 89, 90).

Findings from recent studies have indicated that the
hypertrophied and failing heart demonstrates elevated ketone
body oxidation (76, 87, 88), which provides an alternative
fuel source to maintain cardiac function. These studies have
provided the framework for targeting ketone body metabolism
as a potential therapeutic treatment for cardiac dysfunction.
Indeed, cardiac-specific deletion of Bdh1 in mice exacerbates
cardiac dysfunction and remodeling in a heart failure model
(76), while overexpression of Bdh1 protects against cardiac
dysfunction and adverse myocardial remodeling (78). These
provocative findings could support the use of the KD as
a nutritional strategy to treat heart failure. In support of
this idea, mice fed a KD of ∼80% fat, ∼20% protein, ∼0%

carbohydrates for 4-weeks had reduced pathological remodeling
in a combined pressure-overload/myocardial infarction heart
failure model (76). However, long term KD treatment (i.e.,
62 weeks) may worsen diabetic cardiomyopathy in rats (89).
Considering the high fat content of KDs, this may not be
a suitable long-term strategy so ketone body supplementation
might offer a better alternative. In agreement with this notion,
a diet supplemented with KEs improved cardiac function, in
part by increased mitochondrial oxygen consumption, in type
2 diabetic mice (85). However, although β-OHB infusion has
been reported to increase cardiac function in failing canine hearts
(76), provision of β-OHB in the perfusate to hypertrophied
and/or failing mouse hearts in isolated heart experiments may
not improve cardiac efficiency (28) or myocardial energetics
(90). Certainly, experimental conditions, including in-vivo vs. ex-
vivo situation and the concentration of ketone bodies used, are
a concern.

KETONE BODY METABOLISM DURING
ISCHEMIA AND REPERFUSION

Consistent with the cardiac metabolic profile in hypertrophied
and failing hearts, the research literature has clearly defined
changes that occur during ischemia-reperfusion (I-R). During
reperfusion following ischemia, excessive rates of fatty acid
oxidation (16, 18) and uncoupling of glycolysis from glucose
oxidation (17, 91) have been reported, which may contribute to
the reduced functional recovery from ischemic injury. In support,
stimulation of glucose oxidation (18, 92, 93) or inhibition of fatty
acid oxidation (94–96) improves functional recovery after cardiac
ischemia. Oxidation of ketone bodies is suggested to supplant
fatty acid oxidation (30, 76, 79), and as a result, upregulation
of ketone body metabolism may decrease reliance on fatty acid
oxidation and/or improve the coupling of glycolysis to glucose
oxidation. Therefore, investigations examining the relationship
of the ketogenic diet, ketone body metabolism, and functional
recovery from ischemia are needed.

Although the role of ketone body metabolism in heart failure
has gained significant attention in the research and medical
communities as a therapeutic intervention (2, 97), the role of
ketone body metabolism in the ischemia and post-ischemic heart
has been less discussed. However, a recent publication identified
that circulating ketone bodies were significantly elevated in
patients presenting with ST-Segment Elevation Myocardial
Infarction (STEMI) (98). Interestingly, elevations in ketone body
concentrations 24 h after percutaneous coronary intervention
(PCI) were independently associated with greater infarct size
and lower LV ejection fraction after 4-months (98). β-OHB
concentrations were higher in blood from acute MI patients and
mice following left anterior descending (LAD) ligation surgery,
which was negatively associated with left ventricular ejection
fraction in both models (99). Ketone bodies, particularly β-
OHB, was associated with higher odds ratios for myocardial
infarction and ischemic stroke (100). Increased ketone body
concentrations have also been reported in heart failure patients
(87, 101, 102), after fasting and exercise (29, 30), and diabetes
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(31, 32). Therefore, speculation could arise as to whether
elevations in serum ketone body concentrations are a hallmark
of metabolic stress.

Since ischemia represents a condition with low oxygen and
nutrient availability, the likelihood that ketone bodies contribute
to metabolic processes would be quite low. Consistent with
this, a recent report demonstrated that ketone body utilization
was suppressed by myocardial ischemia in patients presenting
with chest pain (103). However, β-OHB has been shown to
accumulate in rat hearts exposed to low-flow ischemia (104), and
since the perfusate was devoid of ketone bodies, this suggests
that ketogenesis was active in the ischemic heart. Supporting
this, inhibition of Hmgcs2 decreased β-OHB accumulation and
improved functional recovery during reperfusion (104). This
reported finding is somewhat curious, as extrahepatic tissues have
been considered incapable of ketogenesis. Interestingly, recent
studies have reported changes in gene and/or protein levels of
Hmgcs2 in the hearts of mice and human patients (81, 87, 88).
However, the role of Hmgcs2 in the normal heart or in the
pathogenesis of cardiac disease is relatively unknown. In terms of
ischemia-reperfusion injury, whether improvements in recovery
are due to changes in ketone body oxidation or changes in
oxidation of glucose or fatty acids is not clear and requires more
extensive research.

Several studies from the same laboratory evaluated the effects
of a low-carbohydrate diet (LCD) on tolerance to myocardial
ischemia (105–108). The LCD diet consisted of 60% of the total
calories from fat, 30% of total calories from protein, and 10%
of the total calories from carbohydrates. Consumption of LCD
was shown to induce a mild nutritional ketosis (108). Isolated
hearts from lean and obese rats fed the diet for 2 weeks showed
decreased recovery from low flow ischemia (105, 108). The 2-
week LCD strategy also resulted in poor function, decreased
survival, and increased arrhythmias in rats exposed to left
anterior descending (LAD) ligation (107). One potential critique
of these studies is the relatively short duration of the dietary
intervention as the adaptation to KDs is purported to require
4–6 weeks (8). Since ketosis was relatively mild (∼0.6mM),
perhaps, greater concentrations of serum ketone bodies would be
required to cause positive adaptations. However, increasing the
ketone body concentration to 1.2mM did not improve the poor
recovery in these animals (106, 108). Surprisingly, increasing
ketone body concentrations in the perfusate did not appear to
alter myocardial ketone body oxidation either in baseline or I-
R conditions; however, there was a mild positive correlation
between ketone body oxidation and recovery in all groups (106).
Overall, these studies would suggest that a short-term (i.e., 2
weeks) diet of high fat and low carbohydrates would render the
heart vulnerable to ischemic stress.

A recent study also evaluated the effectiveness of a KD on
cardiac function following MI in mice (99). In this study, mice
were fed a KD consisting of ∼94% calories from fat and ∼2%
calories from carbohydrates for 4 weeks and then were subjected
to LAD ligation. Four weeks following LAD ligation, infarct
size was significantly greater and fractional shortening (FS) was
significantly lower in mice fed the KD (99). MI hearts fed the KD
also had lower protein content of glucose transporter 1 (Glut1)

and hypoxia-inducible factor 1 alpha (HIF-1α) (99). The findings
of this study suggest that elevations in serum ketone bodies have
the potential to suppress glucose utilization in the ischemic heart,
which may enhance myocardial injury.

In contrast to the above studies, fasting-induced ketosis
(109) or long term LCKD (110) were associated with improved
responses to ischemia in rats. Extreme fasting of 72 h increased
β-OHB nearly 15-fold, which reduced infarct size and ventricular
arrhythmias in Wistar rats subjected to occlusion of the LAD
(109). Wistar rats fed a LCKD for 19-weeks demonstrated
improved recovery following global ischemia compared to a
control or high carbohydrate diet, which could be due to
maintenance of mitochondrial number (110). Infusion of β-OHB
to fed rats for 60min prior to left coronary artery occlusion
did not improve infarct size or functional recovery; however, β-
OHB in rats fasted for 84 h led to reduced infarct size and higher
functional recovery (111). Although the findings are promising,
the severity of the fasting period or duration of the dietary
intervention could be a bit impractical. Therefore, alternative
methods of elevating ketone bodies may offer a more realistic
treatment option.

Exogenous delivery of ketone bodies, especially β-OHB, may
represent a suitable cardioprotective strategy for ischemia. Rat
hearts reperfused with a glucose buffer containing a 5mM ketone
body concentration had improved LV contractility following
10min of ischemia (27). Isolated mouse hearts provided with
3mM β-OHB in the perfusate during reperfusion led to
a significant improvement in functional recovery following
30min of ischemia (112). These studies certainly highlight the
potential of acute administration of β-OHB in supraphysiologic
levels to improve recovery from ischemia. Mice implanted
with an osmotic mini-pump with continuous delivery of
β-OHB prior to reperfusion had reduced infarct size and
preserved cardiac function (113). KE supplemented to rats,
either immediately after or 2 weeks post, left coronary artery
ligation resulted in an attenuation of pathological cardiac
remodeling and improved ejection fraction compared to chow
fed rats (114). Overall, the action of β-OHB or KE in the
reperfused myocardium or ischemic myocardium may function
via improved mitochondrial energetics (27, 114), reduced
inflammation (112), and protection against oxidative stress
(113). Certainly, additional investigations are required to further
evaluate the therapeutic potential of ketone bodies from ischemic
injury. In addition, studies examining long-term treatments
would be more practical.

Recently, the use of sodium-glucose co-transporter 2 (SGLT2)
inhibitors have been of increased interest in medicine and
research due to decreased cardiovascular mortality and heart
failure in diabetic patients (115). Although a variety of
mechanisms have been proposed regarding the benefits of
SGLT2 inhibitor on the heart (116), some studies suggest
that SGLT2 inhibitors promote ketone body utilization (117,
118). In animal models, SGLT2 inhibitors are associated with
beneficial outcomes in the non-diabetic ischemic heart (117–
119). Administration of the SGLT2 inhibitor, dapagliflozin,
prior to the onset of ischemia was associated with reduced
infarct size and improved recovery in a rat model of
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in-vivo ischemia-reperfusion injury (119). Rats treated with
empagliflozin for 10 weeks after MI induced by coronary artery
ligation had improved cardiac function, an effect that was
observed if treatment occurred 2 days prior to or 2 weeks after
the surgical procedure (118). Of note, the positive functional
outcomes with empagliflozin treatment were associated with
elevated serum ketone bodies, upregulation of Bdh1 and Scot
(Oxct1), and higher cardiac ATP content, suggesting that
enhanced cardiac ketone body utilization was involved (118).
In non-diabetic pigs, 2 months of empagliflozin treatment
improved cardiac remodeling and LV function after proximal
LAD occlusion, which was also associated with increased
protein content of Bdh1 and Scot in the myocardium (117).
Although these studies in animals are promising and appear
to indicate that enhanced cardiac ketone body metabolism

is mediating the response, additional work is clearly needed
to evaluate the efficacy of SGLT2 inhibitors in ischemic
heart disease.

CONCLUSIONS AND PERSPECTIVES

Despite an increase in the number of studies focused on cardiac
ketone body metabolism in pathological hypertrophy and heart
failure, there seems to be a paucity of research elucidating the
role of ketone body metabolism in the ischemic myocardium.
Given the reported potential of ketone bodies to affect the use
of fatty acids and glucose in the healthy myocardium, their
delivery to the heart following bouts of ischemia could influence
functional recovery. A summary of the findings from various
strategies to enhance ketone body metabolism in models of

FIGURE 2 | Summary of studies investigating ketone body metabolism in the ischemic heart. Various strategies to target ketone body metabolism in models of

cardiac ischemia have been attempted including short-term ketogenic diets (KD, 2–4 weeks), long-term KD (19 weeks), infusion of beta-hydroxybutyrate (β-OHB),

ketone ester (KE) supplementation, and sodium-glucose co-transporter 2 (SGLT2) inhibitors. The observed outcomes of these various interventions are presented as

impaired, improved, or no effect. The current literature is limited on the effectiveness of these specific strategies: short-term KD (five studies), long-term KD (1 study),

β-OHB infusion (four studies), KE supplementation (1 study), SGLT2 inhibitors (three studies). Created with BioRender.com.
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ischemia are presented in Figure 2. Unfortunately, the current
literature does not allow for definitive conclusions to be drawn,
due to the relatively low number of studies in animal models.
Studies investigating the effects of nutritional ketosis on recovery
from ischemia appear to suggest that this strategy is detrimental.
However, most of these studies are limited to short-term
interventions. Physiological ketosis induced by fasting appears
to be promising, but these animal studies seem impractical
with fasting of 3 days or more. Delivery of exogenous ketone
bodies (i.e., β-OHB) in ex-vivo perfused heart preparations have
positive reports, but the concentrations used in these studies
may be unrealistic compared to the in-vivo situation. Although
the use of continuous β-OHB delivery via osmotic mini-pumps
in mice demonstrates positive effects on functional recovery,
the recent report that demonstrated an association between
poor outcomes and high ketone body concentrations in humans
following MI are equivocal. The use of SGLT2 inhibitors in non-
diabetic hearts also appear to be promising. However, additional
investigations to further evaluate all of these treatment strategies

are warranted. For studies in animal models, careful attention
should be paid to the concentrations used either in in-vivo or

ex-vivo experimental conditions to ensure that the ranges of
ketone bodies are within achievable concentrations consistent
with nutritional or physiological ketosis. In human studies, a
focus on the specific etiology of the disease (i.e., ischemic vs.
non-ischemic) could help to delineate important contributions
of ketone body metabolism to cardiac pathologies.
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