
Brunel University London

College of Engineering, Design and Physical Sciences

Department of Computer Science

Computational Biology Team

Application of Bio-Model Engineering

To Model Abstract Biological Behaviours

A Doctorate Thesis

Author:

Leila Ghanbar

leila.ghanbar@brunel.ac.uk

Supervisors:

Doctor Alessandro Pandini

Professor David Gilbert

RDA:

Doctor Rumyana Neykova

https://leilaghanbar.webador.co.uk
http://pandinilab.org/
http://people.brunel.ac.uk/~csstdrg/

i

“I like crossing the imaginary boundaries people set up between different fields.”

Maryam Mirzakhani

Professor of mathematics in Stanford University

(1977 - 2017)

ii

iii

Abstract

Life in nature is defined by many characteristics. Whether something can move, communi-

cate, response to the others, reproduce or die, indicate if it is alive or not. Among these features,

communication can be considered the most basic and yet the most important as it happens both

inside and outside an organism; between every molecule and every cell there are signals to be

passed and to be responded to. Communication defines biology.

A network of molecules or a society of organisms are both complex systems. The smallest

change in this snarled network affects the whole system and changes the output significantly.

Comprehending and manipulating them in detail is time and resources consuming and involves

human error. But there is a way to simplify the process of inspecting the living creatures.

Bio-model engineering lies at the crossroads of biology, mathematics, computer science,

engineering and is a branch of systems biology. In this field of science, biological models are created

and/or re-designed for simplification, abstraction and description of biological networks. Modelling

these networks based on past experimental observations in silico with a set of pre-designed models

and a collection of components would make this process faster and simpler.

This thesis contributes to science by providing a collection of model components built in

Petri nets with Snoopy. These components each describe a specific behaviour and they can be

used individually or as a combination. The set of behaviours in this collection include chemotaxis,

reproduction, death, communication and response. These are a few of the most basic behaviours

in nature that mark something as alive. These basic behaviours choose that a piece of stone is

not alive but the small microscopic bacteria on it are.

Starting with small achievable steps, these components are modelled in abstract, meaning

they demonstrate only the critical parts of the behaviours. Not only the models, but also

the process of modelling and combining the components is provided from the adaptation and

manipulation of a general protocol.

The components in this library are categorised based on their complexity. In this cat-

egorisation, the models have four levels, with each level more complex than the former. The

more complex levels, are built from the simpler ones in a hierarchical manner. There are two

application of the models to two different microorganisms, each from one of the main biological

iv

superkingdoms to demonstrate the practicality of this collection. The chosen microorganisms are

from: the domain of Prokaryotes E. coli and Eukaryotes Dictyostelium a.k.a slime mould.

Each model contains a set of rate constants that define the speed of the reactions. A set

of expected behaviours based on biological literature is defined for these models to be compared

with the outcome result of the analysis of the models. The models are simulated by Spike, a

command line programme for simulation of models built in Snoopy, and are analysed with R and

Python. To achieve the expected results, optimisation methods are used to find the best rates

possible in the models in order to achieve a defined behaviour. In this thesis the optimisation is

applied to Dictyostelium model to achieve the best rates for the accumulation of Dictyostelium

cells in one location to create fruiting bodies. Random Restart Hill Climbing and Simulated

Annealing are the chosen methods for optimisation.

Key Words: Model component, hierarchical modelling, Petri net, optimisation, quorum

sensing, biofilm formation, chemotaxis, communication, location, locality, space, grid, gradient,

alive, basic behaviours, movement, reproduction, death, signal, dynamic, systems, networks.

v

Acknowledgements

Throughout this research I have faced many challenges and I could not possibly overcome

them without the help of the great people around me. I would first like to offer my sincere gratitude

to my supervisor, Professor David Gilbert, for providing guidance and feedback throughout this

project as well as guiding me so positively and always making me feel confident in my abilities. I

am extremely grateful for what he has offered me.

Also I would like to thank Dr Alessandro Pandini whose knowledge and experience have

encouraged me in my academic research. I am also thankful to Professor Monika Heiner for

her guidance through my research and constructive advice that directed me in every step of my

research. I am grateful as well to my RDA, Doctor Rumayna Neykova who has been guiding me

kindly and patiently.

I thank profusely Doctor Yasoda Jayaweera and Doctor Sarath Dantu for offering me their

assistance in computational aspects of my research with patience and understanding. Thank you

for all the time you spent to aid me with my research. Your insight and experience have inspired

me and made learning more fun and easy.

Last but not least, I would like to thank my parents for their love and sacrifices for

educating me and supporting me all the way through by always believing in me.

CONTENTS vi

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Aims and Objectives . 5

1.3 Novel Contributions to Science . 7

1.4 In the Next Chapters . 9

2 Literature Review 10

2.1 Systems and Synthetic Biology . 10

2.2 Bio-Model Engineering . 12

2.3 Choice of Microorganisms For Modelling . 13

2.3.1 Bacteria . 14

2.3.2 Dictyostelium: The Slime Mould . 15

2.4 Chosen Behaviours . 17

2.4.1 Quorum Sensing and Biofilm Formation 17

2.4.2 Duplication, Chemotaxis and Death . 23

2.5 Bio-modelling Tools and Techniques . 24

2.5.1 Differential Equations . 25

2.5.2 Agent-Based Models (ABMs) . 26

CONTENTS vii

2.5.3 π-Calculus . 27

2.5.4 λ-Calculus . 28

2.5.5 Statecharts . 29

2.5.6 P systems models . 30

2.5.7 CellML . 30

2.5.8 Bio-PEPA . 31

2.5.9 Petri net . 32

2.5.10 Tool Box . 32

2.6 A Review of Previous Models . 32

2.7 Discussion . 38

3 Methodology For Modelling, Simulation, Optimisation and Data Analysis 40

3.1 Chosen Software Tools for Modelling and Simulation 40

3.1.1 Snoopy . 40

3.1.2 Different Classes of Petri nets: . 41

3.1.3 Spike . 43

3.1.4 Optimisation Method . 44

3.1.5 Data Analysis Tools . 44

3.2 Discussion . 45

4 Model Library 46

4.1 Properties . 48

4.2 Level-0: Basic Components . 52

4.2.1 Level-0 Diffusion and Movement . 53

4.2.2 Level-0 Duplication . 53

CONTENTS viii

4.2.3 Level-0 Death . 53

4.2.4 Level-0 Transmitter . 53

4.2.5 level-0 Receiver . 53

4.3 Level-1: Simple Models . 55

4.3.1 Level-1 Transmitter . 55

4.3.2 Level-1 Receiver . 56

4.3.3 Level-1 Chemotaxis . 57

4.3.4 Level-1 Duplication and Death . 58

4.3.5 Level-1 Limited Strip Glu . 59

4.3.6 Level-1 Semi-permeable obstacle and Transmitter 60

4.4 Colouring the Models . 61

4.5 Discussion . 63

5 Application of Models from the library 66

5.1 Bacteria E. coli . 67

5.1.1 Level-2 Transmitter and Receiver(TR) . 67

5.1.2 Level-2 Duplication, Chemotaxis and Death (DCD) 68

5.1.3 Level-2 Combined Strip Glu, DCD and TR 70

5.1.4 Level-2 Biofilm Formation . 73

5.1.5 Level-3 Quorum Sensing . 74

5.2 Level-2 Dictyostelium: Slime Mould . 75

5.3 Collection of Model Components . 77

5.4 Discussion . 78

CONTENTS ix

6 Optimisation 81

6.1 Definitions . 82

6.2 Random Restart Hill Climbing . 85

6.2.1 Pseudocode . 86

6.3 Simulated Annealing . 87

6.3.1 Pseudocode . 87

6.4 Discussion . 88

7 Data Analysis and Results 90

7.1 Timing the Simulations . 91

7.2 Models . 92

7.2.1 Diffusion / Movement . 92

7.2.2 Chemotaxis . 94

7.2.3 Semi-permeable Obstacle and Transmitter 95

7.2.4 Combined Strip Glu, DCD and TR . 97

7.3 Optimisation Results . 98

7.4 Principle Data Analysis . 98

7.4.1 PCA on Random Restart Hill Climbing 99

7.4.2 PCA on Simulated Annealing . 101

7.5 Inspecting the Behaviour of Dicty . 105

7.5.1 Visualisation of Random Restart Hill Climbing 105

7.5.2 Visualisation of Simulated Annealing . 110

7.5.3 Random Restart Hill Climbing Versus simulated Annealing 114

CONTENTS x

7.6 Discussion . 115

8 Summary, Conclusions and Further Works 117

8.1 Summary . 117

8.2 Conclusion . 119

8.3 Further Work . 121

8.3.1 Biological and Non-Biological Applications 121

8.3.2 Stochastic and Complex Movement . 121

8.3.3 Automated Modelling . 122

8.3.4 Improving the collection . 122

Bibliography 123

A Acinetobacter baumannii 144

B Random Restart Hill Climbing Code 146

C Simulated Annealing Code 154

LIST OF FIGURES xi

List of Figures

2.1 A general image of biofilm formation process . 20

2.2 Spatial distribution of biofilm . 23

2.3 Statechart of an air conditioner . 29

4.1 Hierarchical Modelling . 47

4.2 Four main Level-0 components . 54

4.3 Level-1 Transmitter . 55

4.4 Level-1 Receiver . 56

4.5 Level-1 Chemotaxis . 58

4.6 Level-1 Death and Duplication . 59

4.7 Limited Strip Glu . 60

4.8 Level-1 Semi-permeable obstacle and Transmitter 61

4.9 A summary of the process of colouring a model in coloured Petri nets. 63

5.1 Transmitter and Receiver Model . 68

5.2 Duplication, Chemotaxis and Death . 70

5.3 Transmitter and Receiver Model . 72

5.4 Biofilm formation model . 73

LIST OF FIGURES xii

5.5 Li_Ghanbar model . 75

5.6 Model of Dictyostelium . 77

6.1 Flow Chart of Optimisation . 84

6.2 System Diagram of Optimisation . 85

7.1 Diffusion / Movement plot . 94

7.2 Heat Map Plots of Chemotaxis . 95

7.3 Heat Map Plots of Semi-Permeable Obstacle and Transmitter 97

7.4 The behaviour of Combined Strip Glu, DCD and TR 98

7.5 Plots of PCA of Hill Climbing . 100

7.6 Correlation between PC1, PC2 and PC3 in RRHC 101

7.7 Correlation matrix of RRHC data . 102

7.8 Plots of PCA of Simulated Annealing . 103

7.9 Correlation between PC1, PC2 and PC3 in Simulated Annealing 104

7.10 Correlation matrix of SA data . 105

7.11 Heatmap of simulation 4147 . 107

7.12 Dicty Behaviour in Simulation 4147 with Diffusion rate of 0.0001 108

7.13 Dicty Behaviour in Simulation 4147 with Diffusion rate of 0.001 109

7.14 Plot of maximum population density in SA . 113

7.15 Bar Plot of the Location of Maximum Population Density From SA Results . . . 113

7.16 Heatmap of Simulated Annealing With Maximum Population Density 114

A.1 A.baumannii quorum sensing and biofilm formation 145

LIST OF TABLES xiii

List of Tables

2.1 The table of different software tools using different methods 33

2.2 Summary of the models discussed in 2. 39

4.1 The information of 1D, 2D and 3D grids for ColPN 49

4.2 The neighbouring functions for 2D and 3D grids. 50

4.3 The functions of the Sink Transition. 51

4.4 The function definitions for obstacles and the changed neighbour function 52

4.5 Creating a strip of food source on one side of the grid. 52

4.6 The table of Basic Components and their properties. 54

4.7 The table of Simple Models and their components and properties. 65

5.1 A summary of all the properties that are defined in this study. 78

5.2 The list of all model components. 80

7.1 Timing Spike Simulations . 93

7.2 Timing of Optimisation . 93

7.3 Table of PCA Analysis of Hill Climbing . 99

7.4 Importance of components in PCA Analysis of Hill Climbing 100

7.5 Table of PCA Analysis of Simulated Annealing 102

LIST OF TABLES xiv

7.6 Importance of components in PCA Analysis of Simulated Annealing 103

7.7 Random Restart Hill Climbing Outstanding Data 106

7.8 Movement of the Clump of Dicty Over Time on the Grid for model 3673 110

7.9 Accepted Simulated Annealing Rates . 111

7.10 Top Ten High AP Solutions Sorted Based on the Maximum Population. 112

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

“Life” is a complex concept with many definitions from different aspects. However,

biology has its own way to decide if something contains life and is “alive” by considering some

characteristics such as whether or not it reproduces, moves, dies and/or communicates. Among

these characteristics, communication could be considered one of the most basic and yet important

features as it is required for the other behaviours to happen. Intercellular or intracellular

communication is required for an alive organism to survive. Whether it is between the organelles,

organs or between different organisms, the presence of this communication is crucial. Therefore,

it can be said, that communication defines biology.

Biological networks within and without the living creatures are complex and difficult to

comprehend. This complexity brings the necessity to create a simplified version of the networks, by

designing models, and achieving a better understanding of them [52]. Modelling biological systems

is a developing area of science in which using the data provided by experimental laboratories,

the scientists create models, mathematical or computational, to get a better observation of

the behaviour of a biological system as well as the detailed interactions inside it [72]. These

models then could be used not only to describe and analyse the behaviours, but also to predict

them [175, 169, 196].

By modelling the structure of biological systems less time and resource is spent compared to

a biological laboratory, whilst the models provide the details behind the interactions inside them.

These models can be useful in many areas from suggesting new therapeutic methods [175, 169] and

preventive strategies for different diseases [163] to finding solutions for industrial problems caused

by microorganisms such as formed biofilm on the hulls of the ships [28]. Thus, by modelling

CHAPTER 1. INTRODUCTION 2

biological networks and analysing them, it is possible to provide testable approaches, reproducible

models and results while saving time [177].

Thanks to the informatics and computational sciences, biology has been more informational

than before. This allows to shift the focus on construction and re-construction of biological models

using engineering principles. Bio-Model Engineering is a branch in systems biology, that designs,

constructs and analyses computationally built models of biological networks [88]. In Bio-Model

Engineering models can be constructed in different levels of complexity and abstraction from

atomic to cellular structure and from inter- to intracellular scales [88, 78, 73]. In this thesis, using

engineering principles, models are designed and constructed in different levels and scales in a

multidimensional, multi-level and multi-scale environment.

To begin the modelling, choosing a simple case study is the first step. The simplest

forms of life are the unicellular microorganisms. These microorganisms might live in isolation

planktonically or in societies or colonies [200, 112]. In this thesis, the focus is on two different

microorganisms each from one main domains of life: Eukaryotes and Prokaryotes. The chosen

microorganisms from each domain are bacteria and Dictyostelium respectively. In chapter 2 a

detailed explanation about these microorganisms is convened. The second step of modelling is to

choose the basic behaviours to model. As the aim of this study is to simplify the understanding

of biological networks, simple behaviours are chosen such as communication, response, movement,

duplication and death which are modelled in silico.

The third step of modelling is to choose a tool and a platform. After considering different

methods and tools which have been used before for modelling biological networks [a complete

comparison is provided in chapter 2 section 2.5], the use of Petri nets as the tool and Snoopy

as the software platform was decided. Snoopy supports different types of Petri nets such as

Stochastic, Continuous and Coloured. Using these different types it is possible to model different

aspects of the behaviours as required. Coloured Petri nets are especially useful as they provide

a multidimensional grid which then could be used for spatial modelling [77]. Here, Coloured

Continuous and Coloured Stochastic Petri nets are used mostly to present a multi-level, multi-scale

and multidimensional model of basic biological behaviours.

These models are components in a collection which could be used individually and/or

combined to test and analyse the biological system under different circumstances. Then, using

different tools, such as Spike the models are simulated to produce output data in csv format.

These data are analysed with different techniques, such as R and Python. Analysing the data

CHAPTER 1. INTRODUCTION 3

from simulations, provides a primary understanding of the function of the models.

By understanding the functionality of the models, it is possible to go further into making

the models function as expected. This means finding a target function and optimising the models.

Optimisation is a mathematical programming technique to find the best solution for a problem.

There are different methods for optimisation, which of those, Random Restart Hill Climbing and

Simulated Annealing are chosen for this study. After writing the algorithm for each of these, the

codes are written in Python. In this code, the rate constants of the models are changed. These

rates define the action rates in the models, meaning they describe how fast an action should

occur. The codes use Spike to simulate the models and then speculates the behaviour in order to

decide whether to accept the new constants or not. The target function is defined to find the

maximum number of the cells in one location and find a better combination of rates to achieve

a higher number. The reason for this choice is to mimic the construction of fruiting body in

unicellular microorganism Dictyostelium. The target function is not under the influence of the

location. A detailed description is provided ins Chapter 6.

A part of this thesis has been published in BMC Bioinformatics Journal in 2019 [77]. In

this Article, a model of biofilm formation was combined with a model of quorum sensing in E.coli

using Coloured Petri nets to discuss the affect of distance on the communication of bacteria on a

grid.

1.1 Research Questions

To call a system “alive” there are fundamental behaviours to consider such as movement

towards a chemical trigger, reproduction, communication, response and death which are only

some examples of these behaviours. This means these behaviours can be observed in any system

that is alive and that makes studying these behaviours interesting. It is now possible to use

computational and engineering methods to model these behaviours in order to obtain a better

understanding of them. Modelling biological networks provide a better perceptive of the system

while it saves time and resources. Constructing a collection of model components that contains

the most simple behaviours could be helpful in providing an easy way to model networks for

different purposes such as, in case of biological models, disease prevention or treatment. These

models are abstract, they are reproducible and could be used for different studies. The motivation

of this study is to create such a collection, to quicken the process of modelling and studying

biological systems while finding the best combination of rates in the model in order to achieve

CHAPTER 1. INTRODUCTION 4

the desired behaviour.

Considering the importance of microorganisms in human life, and their simplicity, these

creatures are used in this study for the application of the model components. In a biological

laboratory, the researchers should wait some time between 2 hours to weeks to achieve the

desired results, excluding the human errors from the experiments. Using this collection of model

components, this process is invigorated.

Not only modelling, but also analysing the models is a matter of importance. The models

provide an abstract comprehension of the system and should behave as expected based on

biological experiments observations. To get from modelling to analysis and achieving the desired

outcome, optimisation is the bridge; which means using optimisation methods, it is feasible to

achieve the desired behaviours.

Since biological networks are complex, it is easier to break the complicated networks down

into small pieces and model them in separately. This means to construct a model that only

contains the most important parts of that network. The motivation of this study is to:

• construct a library of models components to demonstrate the most basic biological behaviours

such as communication, response, reproduction, movement and death;

• successfully combine the model components from the collection and achieve the expected

behaviours based on biological literature;

• improve/re-design the components, and combine them with new models using engineering

principles;

• Set an expected behaviour and achieve the best solution for it.

There are many methods and tools that could be used for modelling biological systems,

which have been discussed in detail in Chapter 2 Section 2.5. In this study, Petri nets are chosen

as the modelling tool and Snoopy as the platform as it supports different types of Petri nets such

as Coloured Petri Net. Using this method a collection of abstract models and model components

are constructed in different levels of complexity to be used individually or in a combination as

required. Models that are constructed previously by other researchers have been also used in this

study (see Chapter 4). To analyse the output data from the models, R is used and to check the

accuracy of the model as well as to achieve an optimised solution for the defined target function,

CHAPTER 1. INTRODUCTION 5

Python routines are employed (See Chapter 5 for the chosen prototypes. 6 for the methods of

optimisation and Chapter 7 for the final results).

1.2 Aims and Objectives

Designing models of biological systems using engineering principles, provides a better

comprehension of interactions inside and between the biological entities. These models also could

be used to analyse or predict biological behaviours. The main purpose of these models is to

study the biological components at a cellular level [99]. By using these models it is possible, for

example, to predict a drug’s influence on every molecule and each pathway that ends up forming

the cell behaviour [7].

The aim of this study is to provide a general methodology to construct complex models

from the combination of simpler components to describe some basic biological behaviours, using

characteristics such as space and location to describe basic behaviours such as movement or

communication. This study includes a step-by-step protocol that describes a method for modelling,

a collection of properties that are the basis of modelling, stratified model components, categorised

based on complexity and examples of application of the collection’s components in different

biological settings and optimisation for finding the best combination of rate constants for a desired

outcome.

Looking at this methodology, from different angles, provides the objectives of this study

which are to:

1. Construct a collection of model components in structured different levels of complexity.

These reproducible models could be used to study different biological behaviours under

different circumstances. From the aspect of system complexity, the models are four groups:

one group of Properties and four Group of Models which are categorised based on their

complexity:

I Properties: The definitions and declarations of the models, such as Grid, Neighbour

Function, etc.

II Level-0: Simple Components which contain one place, one transition and the properties.

III Level-1: Basic Models, which are the simple combinations of the Simple Components

and a few properties.

CHAPTER 1. INTRODUCTION 6

IV Level-2: Systems which are complex networks and a combination of a few Basic

Components and/or Basic Models.

V Level-3: Complex networks built from Level-2 models and a few properties.

2. Categorise the components based on biological complexity aspects into two groups:

I Intercellular interactions, the interactions outside the cells such as:

i. Movement and chemotaxis,

ii. Duplication,

iii. Death,

iv. Communication with a focus on bacterial quorum sensing and Dictyostelium’s

accumulation around the signalling molecule cAMP.

v. The response to the communication.

II Intracellular interactions, the network inside the cell, such as:

i. Production of signalling molecule. (This part of the model was constructed by Li

et al and was assembled with one of the models from this study)

ii. The interactions of the molecules inside the cell after the cell receives the signalling

molecule.

3. Apply the models of chemotaxis, death, duplication and communication in two different

domains of life, choosing one microorganism in each domain as case studies:

I Prokaryote: bacteria in a general form. In this study the focus is not on any specific

type or species of bacteria

II Eukaryote: Dictyostelium known as “slime moulds”.

4. Design a a step-by-step protocol adapted from a general protocol written by Professor

Monika Heiner and Professor David Gilbert with introductions for modelling using Petri

nets, Snoopy and Spike as the method as well as the guid to combine different components

together.

5. Optimise the models using Random Restart Hill Climbing and Simulated Annealing methods

as an employment of Python routine codes. Using optimisation, the aim is to find the

best combination of rates in the model for a defined behaviour. This defined behaviour is

explained in detail in 1.3.

CHAPTER 1. INTRODUCTION 7

An extended explanation of all of these models and how they are constructed and worked

in in Chapter 4 and the biological applications these models can be found in Chapter 5. The

models are stored as a structured data collection, categorised based on their level of complexity

as CANDL files. CANDL files are exported from Coloured Petri nets, are small in size, can be

edited simply and can produce ANDL files for unfolded models.

1.3 Novel Contributions to Science

The contributions of this thesis could be summarised as follows:

1. A reproducible structured library of model components to improve the understanding of

biological systems. These models could be used to comprehend the biological behaviours

and predict them under different circumstances. This library consists of:

I Constructed models in different levels, inter- and intracellular, and are abstract, which

could be used individually or as a combination

II Abstract models of the most basic principles of life: movement, death, reproduction,

communication and response.

III Detailed models of communication and response, taking quorum sensing and biofilm

formation illustrated by examples of studying these behaviours.

2. A protocol of how to use and apply the models components from the collection to a variety

biological scenarios.

3. A methodological approach for modelling biological network. Using Petri nets, Snoopy and

Spike as a combination of tools and techniques to achieve the objectives.

4. Optimisation of a chosen model in order to find the best action rates to achieve a specific

behaviour.

In detail, the novel contributions of this research is as follows:

1. A reproducible structured library of model components to improve the under-

standing of biological systems as well as a protocol of how to use them. These

models can be used to comprehend the biological behaviours and predict them under

different circumstances. After investigating about different potential methods and tools

CHAPTER 1. INTRODUCTION 8

for biological modelling [see Chapter 2], Petri nets are chosen as the tool to model this

collection of model components. This library contains models which describe intracellular

and intercellular levels of biological systems. For each level, a chosen behaviour is used

as an application of the model components. The result is a library of abstract models

of movement, reproduction, death, communication and response, and detailed models of

communication and response. The models are designed in 2D and all of them could be

applied in 3D as well. These sets of model properties which could be used for different

scenarios by changing their rate and/or location. The model properties (explained fully

in Chapter 4 Section 4.1) are the basics of the model. In other words, Properties of this

collection are functions, definitions, coloursets, grid sizes and other variables such as Glu,

Sink, Wall and pseudo-infinite grid. The model components could be used to study different

scenarios of the desired behaviour. Also, by changing the rate of transitions or the location

of these components it is possible to investigate the effect of these changes on the outcome

of the model. [See Chapter 4 for the collection of components]

2. protocol of how to use and apply the models components from the collection

to a variety biological scenarios. The process of design, construct and assemble of the

models is explained in this study in detail. Using the components of the library, complex

systems are created to describe multiple biological behaviours in one model. The models

describe two different microorganisms from different biological superkingdoms: bacteria

and Dictyostelium. 1 [See Chapter 5 for application of the components.]

3. A methodological approach for modelling biological network. Using Petri

nets, Snoopy and Spike as a combination of tools and techniques to achieve

the objectives. After investigating different potential methods and tools for biological

modelling, Petri nets and Snoopy are chosen as our tools. Snoopy has a built-in simulator

which could be used for abstract and simpler models. But in the case of 2D models on

larger grids, Snoopy may take time for simulation due to its graphical user interface. That

is why the developers of Snoopy, created a command line program which can promote the

speed of simulation for the more computationally intensive models, called Spike. Spike

provides csv data files which then could be analysed using different tools such as R. In this

study, all the data files accorded from Spike are called “output data”. [See Chapter 3 for

the methodology used in this thesis.]
1In bacteria, the model of Biofilm Formation is not created from the components of the library as it was initially

created in detail and combined with the model of signal production to exhibit quorum sensing as an intracellular

communication and response.

CHAPTER 1. INTRODUCTION 9

4. Optimisation of a chosen model in order to find the best action rates to achieve

a specific behaviour. The model chosen for optimisation is the Dictyostelium which is

built from the components of the model library in this study. The models contain some

constant rates which define the rate or speed of each action in the model. The expected

behaviour is for the Dictyostelium cells to move towards a chemical trigger, cAMP, and

accumulated around it. This behaviour has been observed in Dictyostelium in nature for

the production of a fruiting body. For optimisation method, Random Restart Hill Climbing

and Simulated Annealing are used as the methods in order to compare these two methods

in finding the best possible solution which in this case is the highest possible accumulation

of the most Dictyostelium cells in one location. The code is written in Python and could be

reused by other researchers. [See Chapter 3 Section 3.1.4 and Chapter 6.]

1.4 In the Next Chapters

The following chapters will discuss this study in detail. Chapter 1 explains the aim and

objectives of this study as well as the novel contributions it provides to science. Chapter 2 provides

biological studies for a better understanding of biological systems that have been modelled. Also

in this chapter there is a computational background study for different methods and tools which

could have been used alternatively for this study and the reasoning behind the choices of tools and

techniques for this study. Chapter 3 is the methodology that introduces the tools and methods

used for modelling, data analysis and optimisation. Chapter 4 provides the collection of models

and a protocol that includes all the required information to produce the same models in Petri nets

and Snoopy and in Chapter 5 model components from the collection are used to be applied to

real-life scenarios in two different microorganisms: bacteria and slime mould. Chapter 6 provides

the algorithms for the python routines, using two methods of Random Restart Hill Climbing and

Simulated Annealing. In Chapter 7 is the data analysis and visualisation of outcome data from

the models with R and the result of optimisation of the models using python routines. Finally, in

Chapter 8 a summary of the study is provided as well as some suggestions for further research in

this area .

CHAPTER 2. LITERATURE REVIEW 10

Chapter 2

Literature Review

In this chapter, the different fields of this study are thoroughly explained. In Section 2.1

systems and synthetic biology and how this work is related to these fields are described. Then

in Section 2.2 the relatively-new concept of Bio-Model Engineering and how this concept have

been used in this study is discussed. In Section 2.3 the reason for choosing each microorganism

as the case study prototypes is explained. In the next section, 2.4, the biological behaviours that

are chosen for this study are explained in detail. In Part 2.4.1, the type of communication and

response and in Part 5.1.2 Duplication, Chemotaxis and Death behaviours are explained from a

biological perspective. In the final two sections, there are two reviews: a review of the previous

models that have been constructed in the same areas (Section2.6) and a review of other possible

methods and tools that could have been used for this study. Then the reason of choosing Petri

nets and Snoopy is clarified (Section 2.5).

2.1 Systems and Synthetic Biology

Biological and biochemical systems are complex, detailed, and in different levels of struc-

ture. These systems need to be deeply understood and examined and this understanding could

be achieved faster and more efficient when there is a combination of biological experiment,

computational sciences and engineering principles. This crossover of different areas of science

creates systems and synthetic biology [24, 124]. Even though both systems biology and synthetic

biology are the combination of these fields, there are some differences between them.

With the study of protein structure and DNA sequencing in 1950s, research in biology

CHAPTER 2. LITERATURE REVIEW 11

took a turn in how biologists analysed the biological systems and applied computational methods

to understand the logical explanations behind the biological networks. This era was the beginning

of systems biology in the following decades [209].

In systems biology - also called computational biology or computational systems biology,

a better understanding of the living systems is the main objective. As a result of research in

this field it has become possible to describe the dynamics of the complex biological systems

in detail or abstract, analyse and/or predict them. In these systems, usually there are many

elements interacting with one another, making complicated networks that result in forming a

behaviour. Therefore, the result of this compound network, depends on each and every involved

element [107, 186, 104].

Systems biology was initially used to provide an understanding of genes, reactions, and

protein structures and localisation. But as time passed, it expanded to more complicated and

detailed networks. Over time, systems biology developed synthetic biology with the main focus

on reconstruction of biological systems for description and prediction of the results after the

changes which mainly sourced inside the genetics of that biological network [104, 105]. The term

“synthetic biology” was first used in 1912, however, it has recently become a theoretical and

technical field of science that connects engineering, computing, maths and biology. In the synthetic

biology, by using mechanical tools and biological knowledge, new organisms are created with new

characteristics. In this field the scientists look at the biological networks as a system formed from

different individual elements. These basic elements are used to create new systems [51].

With the development of systems biology, and its combination especially with computational

studies, it has expanded biology from a descriptive research to an analytic and predictive

approach [134] using models. A model could be a simplified version of a system, to ease the

process of studying that system, or a detailed structure to provide a deep understanding of the

details in the system. Some modellers such as Stan, believe that the model can only be the

essential aspects of a network [181]. However, detailed models have also proven to be useful in

the last years, especially when it comes to biology.

Materi and Wishart explain that a computational-biological model is only useful when

it can save money and time, could be understood better than the pure biological system, the

results could be matched with biological data and it can identify missing parts or components

in a network [134]. The systems biology models have been successful in different fields such as

evolutionary biology, epidemiology and ecology [104]. A model with these features could be used

CHAPTER 2. LITERATURE REVIEW 12

for different purposes such as drug discovery, personalised medicine and personalised nutrition

projects [157, 134, 107].

In computational and systems biology, the biological systems could also be predicted with

simulations and data analysis while the accuracy of the results could be examined in biological

laboratories with the quantitative and qualitative data provided by the model. The goal is to

design a model which can describe, analyse and predict the system’s processes and its results

under various circumstances [20, 107].

2.2 Bio-Model Engineering

At the intersect of modelling, biology, computer science, mathematics and engineering,

Bio-Model engineering lays. As a part of both systems and synthetic biology, in Bio-Model

Engineering the models are constructed, designed and developed in order to study, analyse and

predict the enquired systems under different circumstances [99]. In this field, different versions of

the same model are developed in order to study the hypothetical conditions in each version [88].

One of the most important aspects of Bio-Model Engineering is to construct a library of

model components which is generalised enough to be used for different studies. These models can

be in different scales, and different levels from molecular to whole-cell structures in space and

time [22] and could be used individually or as a combination. The models created in bio-model

engineering then go through structural analysis and model checking [23, 88].

This study is closely similar to the aspects of Bio-Model Engineering. Here, using graphical

methods, a library of model components from the most basic concepts of life in an abstract setting

is constructed. Based on the meaning of “alive” in Wikipedia, anything that could be called alive

needs to have seven characteristics: Homeostasis, organisation, metabolism, growth, adaptation,

response and reproduction. The whole article can be read at Wikipedia. In this study, These

aspects are modelled as below:

• Movement as a response to a chemical trigger, i.e. chemotaxis;

• Reproduction which in this study is duplication of unicellular microorganisms;

• Death as a part of growth, as it is a change over time;

• Communication and response to the communication which are parts of Metabolism and

https://en.wikipedia.org/wiki/Life

CHAPTER 2. LITERATURE REVIEW 13

Response.

Using Petri nets, detailed illustrations of the biological systems are shown which are easy

to understand and follow.

2.3 Choice of Microorganisms For Modelling

Microorganism is a term used for microscopic organisms which might be unicellular or live

as a colony or a cluster that can include microorganisms from both biological superkingdoms:

Prokaryote and Eukaryote (based on two-empire classification system). These microorganisms

include bacteria, archaea, amoeba, protists and even viruses which are non-cellular organisms.

Prokaryotic, literally meaning "before Kernel" are the organisms that do not have a nucleus

surrounding their genetic information. Eukaryotic, the “true nucleus”, have a membrane separating

the DNA from the rest of the cell, making these cells more complex than Prokaryotes. [168, 25].

Prokaryotic cells are divided to two major evolutionary kingdoms: Bacteria (=Eubacteria)

and Archea (=Archaebacteria). The latter has not received much attention since they usually

live under specific circumstances and are difficult to culture in the laboratory. But the bacteria

kingdom, has been studied well since they can grow almost everywhere, are used in industry, and

most importantly have interactions with human body [25].

Interestingly, most of the domains of microorganisms from both superkingdoms could

be found in human body[179, 192] which makes studying them an important area of science,

especially from human health and industry perspectives. The microorganisms that are in direct

interaction with human body are rather symbiotic or pathogenic.

In this study, two different microorganisms are chosen to build the models based on them

as the prototypes or case studies. These two microorganisms are bacteria from the Prokaryote

kingdom and Dictyostelium a.k.a. slime mould from the Eukaryote kingdom. In Section 2.3.1 the

importance of bacteria in human life and in Section 2.3.2 Dictyostelium is and what makes it a

good prototype, are explained

CHAPTER 2. LITERATURE REVIEW 14

2.3.1 Bacteria

There is a huge population of symbiotic microorganisms living inside and on the surface

of human body, containing around 1013to 1014 cells. These microorganisms have been living

with us ever since birth [98, 172, 46] and their construction have been developing since then [46].

These microorganisms, exceed the number of our own cells with the ratio of 1 to 10 [174, 11];

however, there are some debate about this ratio as some report it as 1 to 1 [27, 174]. In 1960,

these bacteria started to be known as “mircobiota” and “microbiome” [158]. In this study they are

referred to as “microbiota”. Microbiota could be found almost everywhere in the body, nonetheless,

the concentration of this population is inside the digestive tract. Most of these microorganisms,

around 1014 CFU/g, are bacteria [194, 35] [CFU = Colony-forming unit].

Microbiota have a direct interaction with human cells, wherever they live, which is why

studying them is crucial. While they provide vitamins and effect the behaviour and body’s

function [111], they can be used to prevent some diseases or, they can cause them [189, 192].

Recent studies have confirmed that microbiota is related to brain development [132], irritable

bowel syndrome (IBS) [56], liver disease [130], oral cancer [208], colorectal cancer [130, 102, 35, 53],

diabetes [70], Crohn’s disease [27], Parkinson’s disease [171] and encompassing ulcerative colitis [85].

Accordingly, microbiota plays an important role in human well being.

The digestive system contains the greatest population of microbiota, becoming one of

the most important populations of microbiota in human body and is known as gut microbiota.

The construction of these microorganisms is unique for each individual and is directly influenced

by diet, although it also depends on lifestyle, use of antibiotics, infections, genetics, stress and

other factors. The gut microbiota modifies during childhood and eventually is stable throughout

adulthood [111, 188, 145].

In the past decades, most of the studies on gastrointestinal diseases was about pathogens

and how they cause diseases; but while these microorganisms can cause diseases, they could be also

beneficial [128, 190]. Recently the impact of gut microbiota on human health, their modifications

and their usage for human health improvement and treat diseases, have become an interesting

field of study [172, 56]. In fact, studies have shown that the gut microbiota play essential roles

for humans to survive [188, 9, 189]. Gut microbiota and the host’s immune system interactions

assist the immune system to develop, while the immune system in return aids the microorganisms

with their composition which results in a complicated vast network, that connects brain, liver

and gut and other organs all together for a better function of human body [145, 133, 97].

CHAPTER 2. LITERATURE REVIEW 15

Another important population of bacteria in human body, is the oral microbiota; the

bacteria in oral cavity. In 1970s a study on human dental plaques showed that oppose to

the common belief of that time, bacteria do not live completely free and independent. They

communicate with each other, build a society and adhere to their surface with biofilms [175].

There is no stop for biofilm formation, since it is a natural process in the bacteria. Biofilm

formation can be “disturbed” with brushing. If left undisturbed, The biofilm becomes confluent [13].

Biofilm made by bacteria on the teeth and gums can cause plaques; and plaques can cause dental

caries or periodontal disease [218]. In a healthy person there is a balance between the gum tissue

and the biofilm formation and there is a symbiotic relationship between the host and the bacteria.

But when this balance is elapsed there will be some problems for human health [175].

Biofilms are the result of the microorganisms communication, especially bacteria. The

communication, known as quorum sensing, happens when the concentration of the microorganisms

increases. Quorum sensing and Biofilm formation are one of the main focuses of this study, as an

example of communication and the response to it. The detail about Quorum sensing and biofilm

formation is explained in section 2.4.1.

Considering bacteria’s importance from many aspects, as well as the simplicity of data

collection about this domain, bacteria was chosen as one of the prototypes. When modelling

detailed models are bacterial communication and response, the bacteria species should have been

specified. As E. coli is one of the best recognised bacteria in the domain, the detailed models are

built based on this species.

2.3.2 Dictyostelium: The Slime Mould

Among Eukaryotes plants and animals are the most known which are multicellular organ-

isms. However, there are many unicellular species in this superkingdom. Dictyostelium (Dicty)

is a social amoeba that is unicellular in parts of its life cycle, and multicellular in other parts,

making this species very interesting. It is one of the well known microscopic Eukaryotes commonly

known as the slime mould [112, 200]. Dicty is one of the most studied model microorganism for

chemotaxis due to its similarities to mammalian cells [144].

Naming Dicty as a social amoeba is because this unicellular microorganism communicates

with other Dicty cells in the area. Under normal circumstances, when there is no pressure, Dicty

moves around randomly in a diffusion-like behaviour [63, 200]. But under pressure or starvation

CHAPTER 2. LITERATURE REVIEW 16

they gather together and create a multicellular aggregated society to survive. As a result of this

communication, a fruiting body is created which bears the spores. In the final stage of the life

cycle of this amoeba, the spores are detached from the fruiting body, off the tip of the fruiting

body structure [59, 92]. The main focus in this study, is the stage when Dicty cells communicates

and aggregates and eventually create the fruiting body.

The signalling molecule produced by Dicty is called cyclic adenosine monophosphate

(cAMP). The mechanism of this communication is similar to bacteria and hence it is also called

quorum sensing: the communication based on the population density. Under pressure, Dicty cells

produce cAMP into the intercellular environment. Reaching a threshold, the cells start moving

to where the concentration of the signalling molecule is the highest and create the multicellular

structure [59, 200].

Even though the mechanism of the communication is the same in bacteria and Dicty, the

physiology of the movement itself is completely different. In bacteria, the movement happens

with the help of motility motors called flagella. However, in Dicty, as it is an amoeba with the

ability to change its shape, it slides on the surface by creating extension of its plasma [144]. In

this study the mechanism is the focus and not the physics of the movement and how it happens.

But this difference could be helpful in further modelling, when the focus is more towards the

physical characteristics of movement rather than the interactions between the cells.

There is another difference between the movement of the two microorganisms in the

collection of models in this thesis. In bacterial movement, the trigger of the movement, a.k.a. the

food source, is placed in one side of the modelling grid and the food molecules diffuse on the grid.

the bacteria sense the food and move towards it. As a result, the concentration of bacteria is, at

the end, around where the food is located. On the other hand, in the Dicty model of movement,

the source of the chemotaxis trigger is the Dicty cells that produce cAMP. So, while they are

producing these molecules, they move as well and slowly their random movement changes to

chemotaxis as the concentration of the signalling molecule increases at some point on the grid.

This means the location of the final lump of Dicty on the gird could be changed on every run of a

stochastic model. This is explained in more detail in Chapter 5.

CHAPTER 2. LITERATURE REVIEW 17

2.4 Chosen Behaviours

There are many behaviours in biological systems that could be modelled. In this study

some of the most basic behaviours and examples of them that happen in microorganisms are

chosen to be modelled. As mentioned before, communication and response to it are two of

the chosen behaviours in this thesis. As an example of this behaviour quorum sensing and

biofilm formation in bacteria were picked and modelled in detail. The other behaviours include

duplication, movement/chemotaxis and death which are modelled in abstract. This section

explains each of these behaviours in detail.

2.4.1 Quorum Sensing and Biofilm Formation

In this section quorum sensing and biofilm formation processes are explained. As the

models of these two behaviours are in detail in the collection of components, these two are

elaborated in detail, with mentioning all the biological parts that are used in the models.

Microorganisms tend to communicate with one another in different ways. One of the well

studied communication methods is quorum sensing (QS). QS is a cell-to-cell communication

based on cell density in the environment. To communicated, microorganisms produce signalling

molecules and receive them simultaneously as soon as the density of the molecule is reached a

threshold [80]. There are many different responses to this type of communication, varying based

on the organisms. For example, in bacteria one of the many outcomes of QS is the formation of

an intercellular matrix called biofilm and in Dicty it is aggregation of the cells together [112, 68].

This responses are as a result of regulations in gene transcription and cell behaviour [72, 58]

This chemical broadcasting communication is dependent on density of the communicators

which is why it is called quorum sensing: communication when the density of cells around reaches

to a quorum [150, 103] QS was first observed in early 1970s [84]. It is related to virulence,

bioluminescence, swarming, motility, antibiotic resistance and biofilm formation [103, 191].

Signalling molecules in QS are the language between the microorganisms [217]. The

microorganisms who have the suitable receptor will understand and respond to this language. In

other words, if they have the receptors for that certain type of the molecule receive it, they are able

to respond to it. These diffusible molecules are known as autoinducers(AI) in bacteria [191, 5].

To this day three different classes of autoinducers have been discovered: acyle homoserine

CHAPTER 2. LITERATURE REVIEW 18

lactones AI-1 produced by Gram negative bacteria, peptide based AI-2 the inter-species signalling

molecule produced by both Gram negative and Gram positive bacteria and aromatic AI-3 which

is the inter-empire signalling molecule for cell to cell communication between bacteria and their

host [94, 43]. Vast studies have been done on AI-1 and AI-2 as they are the most common

types of autoinducers among bacteria. Though, not all strains of bacteria produce all these

types [184, 91, 103]. Some bacteria produce only one type or even none at all; but they may

have the receptor for them. For example, E.coli does not produce AI-1 but it can respond to

it [203, 90, 103].

Among different types of autoinducers, AI-2 is the inter-species signalling molecule among

different bacteria which can be produced and detected by both Gram positive and Gram negative

bacteria and acts as a common language for them[150].

At the beginning of the journey of modelling biological systems, the first model constructed

was a detailed model of quorum sensing and biofilm formation. This model, which the steps of its

construction is explained in detail in 5.1.5, is made of two parts: quorum sensing, constructed in

2006 by Li et al. [114] and biofilm formation which was constructed by our group [77]. As this

model is detailed, in this section quorum sensing and biofilm formation mechanism iare explicitly

explained.

The Gram negative bacteria E.coli is one of the well-known microorganisms that could be

found almost everywhere, including human body as a pathogen or a commensal bacteria [193]

which produces AI-2 through a particular pathway that involves an enzyme called LuxS which is

the starter protein for the production of AI-2 from methionine [211, 50].

Wang et al. [204] and Sun et al. [183] explain the pathway of the production of AI-2 in

E.coli as follows: Methionine adenosyl Transferase (MetK) changes Methionine to S-adenosine

methionine (SAM) by using an ATP and changing it to AMP. SAM can be affected by two

enzymes with two different destinations:

1. SAM can be a methyl donor for Methyl Transferase enzyme. This enzyme effects on

a methyl acceptor, which causes a production of methyl. Here, SAM itself is changed

to S-adenosyl-homocysteine (SAH). SAH can be toxic if accumulated. Therefore, the

cell rapidly changes it to adenine and S-ribosyl homocysteine (SRH) by Pfs, which is

anucleosidase. Pfs here uses a water molecule to synthesise a polyamine. Then LuxS acts

on SRH and causes the production of homocysteine. This homocysteine can be recycled to

methionine and 4,5-dihydroxy-2,3-pentamidine (DPD). The second product can undergo

CHAPTER 2. LITERATURE REVIEW 19

some rearrangements to produce AI-2 [204] by LuxS protein [166]

2. The other pathway that SAM can undergo, wouldn’t end up to produce AI-2. SAM

decarboxylase (SpeD) would change SAM to Decarboxylated SAM (De-SAM) by releasing

CO2. After that Spermidine synthase (SpeE) would act on De-SAM and change it to

5’-Methylthioadenosine (MTA) while changing Putrescine to Spermidine. The same Pfs

enzyme would act on MTA and would change it to 5’-methylthioribose (MTR) while taking

a water molecule and synthesis of polyamines [204].

As soon as the entrance of AI-2, it is phosphorylated by a Kinase named LsrK (LuxS

Regulator Kinase). This phosphorylated AI-2 appears to be the factor, which effects on the

transcription of LsrR (lsr transcription Regulator), a DNA binding transcriptional regulator [113].

Phosphorylated AI-2 binds to LsrR and makes it separated from the operon of lsr genes (LuxS

regulator genes). On the other hand, Phosphorylated AI-2 binds to a two-component regulatory

system (a coupling mechanism to sense and respond to environmental changes), QSeBC (Quorum

Sensing E.coliregulator B and C) to control biofilm formation. When non-pathogenic E.coli

produce AI-2 in the intestine, it induces an inflammatory response in the body, which is quickly

stopped. Since AI-2 can act as an inter-kingdom signal, when AI-2 system is activated the signal

molecule is quickly removed from the environment to stop other strains of bacteria to use this

molecule and prevent the change of their behaviour through this molecule. In E.coli, AI-2 effects

on virulence factors, motility, pathogenicity and biofilm formation [204, 166, 148]. Figure 2.1

shows a simple model of what happens in the cell after AI-2 is imported.

Considering the bacterial life which includes four different phases, the production of AI-2

happens in the middle to the end of the second phase, exponential growth phase [91]. When AI-2

is produced it is exerted to the extracellular matrix to congregate there. The more number of

AI-2 producers, the more density of AI-2 in the environment [82]. When it reaches a minimum

threshold [90], the bacteria discover that there are enough of them around to start detection and

import of the signalling molecule [139, 184, 141]. Not all types of bacteria in the environment

can produce AI-2, but the ones who have the receptor have the ability to detect it [183].

The changes start when AI-2 enters the cell through a protein complex gate called LsrABCD.

AI-2 activates the two- component system Quorum Sensing E.coli regulator B and C (QSeBC).

QSeBC has two proteins: one is bound to the membrane and is a histidine kinase sensor for

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.1: As soon as the AI-2 enters the cell through LsrABCD (1) it is phosphorilated by

LsrK (2). The phosphorilated AI-2 activates QseBC) (3) or is attached to LsrR (4) and separates

it from the lsr genes operon so now the genes can transcribe (5). The result of the depression

of lsr genes is the production of proteins of Lsr family such as LsrABCD, LsrK and LsrR (7)

to involve more AI-2 molecules. LsrR interacts with QSeBC for biofilm formation (6) and also

QSeBC is activated by AI-2 which both of them result in biofilm formation (8).

environmental changes and one is a regulator for target genes. This system is capable of activating

the process of biofilm formation [180, 148, 43].

On the other hand, the imported AI-2 is phosphorylated by LsrK upon entering the cell.

The Phosphorylated AI-2 (AI-2-P) binds to LsrR on the prompter of lsr genes and separates

the promoter from the gene. lsr genes (LuxS Regulator) are a group of genes with one promoter

(the transcription start area) in the DNA of bacteria. One of the proteins that are made from

the expression of this family gene, is LsrR (lsr Regulator Protein). In the quorum sensing-

deactivated situation, when AI-2 is not inside the cell, LsrR is bound to the promoter to stop the

transcription [95, 113].

Now that the promoter is free, the transcription of lsr gene family, which includes lsrA,

lsrB, lsrC, lsrD, lsrK, lsrR, starts [148, 113]. The results of the transcription are:

CHAPTER 2. LITERATURE REVIEW 21

• More LsrABCD will be produced, so more AI-2 can enter the cell,

• More LsrK will be produced, thus more AI-2 can be phosphorylated, and

• More LsrR will be produced so that more AI-2-p can bind to it.

Novak states that LsrR also can activate QSeBC and cause biofilm formation [148].

However, it is not clear how LsrR can activate QSeBC while bound to the promoter, or it is

after it is separated from the promoter by AI-2-P. It is also unclear if AI-2 is it consumed when

activating QSeBC or it acts as a catalyser to activate this two-component system. On the other

hand Li explains that that ”as soon as AI-2 enters the cell it is phosphorylated by LsrK ” [113].

This causes an inconsistency here. If AI-2 is phosphorylated “as soon as” entrance when does it

find the chance to activate QSeBC. These unclear points made some problems for us, to model

biofilm formation in the cell by AI-2.

The first observations of biofilm goes back to 1683 when Antoni van Leeuwenhoek described

the bacteria from his dental plaques as “an unbelievable great company of living animalcules,

a-swimming more nimbly than any I had ever seen up to this time, the biggest sort bent their body

into curves in going forwards" [175, 64]. However, the study of biofilm did not start until the late

1970s when the biofilm was accidentally observed on dental plaques. In late 1970s after quorum

sensing rejected the theory of planktonic lifestyle of bacteria, biofilm as a matrix protective layer

consisting of societies of bacteria was observed [175].

Biofilm formation is one of the results of quorum sensing among microorganisms [167].

Biofilm is a hydrated matrix polymer layer of extracellular polymeric substances (EPS) which its

components are DNA, proteins and other small molecules [212, 68]. Bacteria secrete this protective

layer to attach to the surface and/or each other [65] in order to communicate, improve life style

and survive by making them resistant to antibiotics and other environmental changes [116, 94]

while being a diffusion barrier for small molecules [123, 129]. Interestingly, as biofilm is a surviving

plan in case of starvation [4], the metabolic activity of the cells in biofilm decreases notably. The

reason is to decrease the needed energy for metabolic pathways while being protected inside the

biofilm [35, 54].

Bacteria who are embedded in biofilms are resistant to antibiotics for different reasons such

as the production of the matrix, modified metabolic pathways, gene transfer between bacteria or

higher anti-oxidative capacity [175, 15]. Recent studies have shown that the amount of required

antibiotic to destroy biofilm is 250 times more compared to when the bacteria is not surrounded

CHAPTER 2. LITERATURE REVIEW 22

by biofilm [137]. By using too much of antibiotic on bacteria, they improve antibiotic resistance

as well. These studies prove why biofilm is not treatable with antibiotic [175]. As the relationship

between biofilm and pathogenicity gets more serious, researchers focus more and more on biofilm

formation in different pathogen bacteria [49, 182, 201].

It has been reported that biofilms are related to infections in teeth, urinary tract and

skin [110, 123, 30]. It can cause a problem as simple as plaques formation on the teeth or as complex

as cancer in different parts of the body [208]. Chen et al. [35] showed the relationship between

colorectal cancer and biofilm formation due to chronic inflammation caused by biofilm. Because

of biofilm, there might be chronic infections, failed treatment or slow healing processes [136].

However, it should be noted that biofilm per se is not the problem [115]; it causes the problem

when it is rather produced inside the mucus layer of digestive tract, or slows and/or prevents

the treatment strategies or causes infections in the body [160, 27]. That said, biofilms are not

always trouble makers. for example in case of dental plaque, they are not necessarily causing any

diseases, if the tissue and bacteria are kept in a balance [175].

Biofilm is not always in biological systems and in microbial scale. They can exist anywhere,

on the hulls of the ships, inside the pipes or on ants’ bodies, or even on food [206, 8]. With the

recent development of using bacterial products in industry, biofilm has been used for beneficial

purposes for instance, in waste water treatment [212]. Interestingly, research shows that biofilms

can be quite advantageous for some plants’ growth [176]. Biofilm is not always corrupting for

human either. Commensal bacteria in human gut produce biofilm naturally as well [115, 27]. In

the field of design, the researchers have worked on modelling a position-based dynamic design for

bacteria growth. They used synthetic biology and engineering to model biofilm formation and

show the growth, communication and interactions with environment to find a way to use biofilm’s

features for human use [12]. All these said, biofilm can be beneficial or harmful depending on the

place it is formed and the amount it has been produced.

Elias and Banin [64] show that there can be three types of structure for biofilm: They

can be two different biofilm societies separate from one another, compact together or layered.

There are not enough studies about the different types of the biofilm construction and different

components in different bacteria but generally biofilm consists of proteins, small DNA and

polysaccharides. To stop the infections and problems caused by biofilm different strategies such

as using bacteriophages (phage therapy), dietary changes to adjust microbiota composition,

prevention or suppression of biofilm has been suggested [35, 115]. In the figure 2.2 the three

different types of biofilm formation is shown:

CHAPTER 2. LITERATURE REVIEW 23

Figure 2.2: Spatial distribution within mixed-species biofilms. species is mixed in biofilms can

organise in several ways: (a) separate mono-species microcolonies, (b) co-aggregation (c) arranged

in layers. from [64].

2.4.2 Duplication, Chemotaxis and Death

Both eukaryotic and prokaryotic cells have the ability to sense the trigger molecules in

their intercellular space which results in moving towards that molecule [135]. The movement

in microorganisms has been studied over the last years and is not a new subject. The trigger

molecule can differ from a nutrition source to a signalling molecule [2, 55]

It is not a new discovery that proves bacteria recognise the food source and migrate

towards it [2]. In case of chemotactic movement starting with attraction towards a food source,

some bacteria duplicate as a part of their life cycle, especially when the concentration of food is

higher [147]. Also, unlike the common thought, bacteria are not immortal. Studies show that in

nature, when the circumstances are favourable for the bacteria they get old and lose the ability to

reproduce. Studies confirm that bacteria could go to the death phase of life cycle, while having

enough nutrients, only because they have aged and lost the ability of reproduction [81]. These

studies show that the bacteria move towards the food, reproduce which is age-dependant and die

in the environment which this situation is another the aim of the study to be shown in a model.

The model in this thesis is in a chemostat (stable nutrient) phase; which means food is provided

CHAPTER 2. LITERATURE REVIEW 24

to the bacteria constantly. Therefore, in this model the death of bacteria happens due to ageing

rather than lack of nutrients.

In other cases such as Dicty, the movement might be towards the food or towards the high

concentration of signalling molecules. As a survival strategy, Dicty cells first move towards their

food, which can be bacteria or other sources, and when they are starved, they start to produce

and export the signalling molecules and then migrate to the highest concentration of the molecule

in their environment [59]. Similar to bacteria, Dicty undergoes binary division when the nutrition

is available and the growth rate decreases when it is starved in order to conserve the energy for

movement towards the food [122, 216].

2.5 Bio-modelling Tools and Techniques

Modelling biological systems in biology saves time and resources while providing a detailed

understanding of complex biological systems. Models in systems biology can be in various levels

and scales, from atomic structure [153] to genome scale [131]; from cell structure to multi-cellular

organism [74]. They can describe biochemical networks as well as protein-protein interactions.

Modelling does not end here. It can be used to describe receptors of a cell, movements and

reproduction of cells or in a higher level, tissues and a whole organisms. while all these models

propose a valid prediction of the system [202, 107]. There are many tools and techniques that

could be used for these purposes.

After modelling the system, they can be engineered and adapted with synthetic biology.

Unlike systems biology in which only the biological networks are described, in synthetic biology

some changes are initiated in order to reach a specific result. The change can be inhibition of a

pathway or introducing a new gene to the cell [93]. The goal of this section is to improve the

knowledge of different computational tools and techniques for modelling biological systems and

comparing them to reach a final conclusion: which technique is the best for approaching the aim

of this study to model communication theory in biological systems. A summary of this review in

the table in section 2.5.10, where the tools column shows the software tools which are a platform

for a specific framework and Method column shows the method(s) these tools use, such as ODEs

and PDEs, etc, Table 2.1.

In this section the other potential tools as well as the reason why these tools were not

chosen for the objectives of this study are discussed. Also, in the end the reason for the choice of

CHAPTER 2. LITERATURE REVIEW 25

tool is advocated.

2.5.1 Differential Equations

Differential Equations (DEs) are mathematical methods for modelling. For many years

this method have been one of the primary choices for biological modelling. DEs are usually used

for predictive modelling when one of the factors is time, in order to analyse the behaviour of a

system over time. This method consists of two parts: functions and derivatives; the physical

quantities and the rate of change and the equations represent the relations between the two. i.e it

shows how the derivatives are related to a function based on one or more variables The function

dictates the rules of the model. Considering that the rules are set in the equations, the outcome

of the models based on the same equations is always the same [47, 149].

If the DE has only one variable it is called Ordinary Differential Equations (ODEs) and if

it has more than one it is Partial Differential Equations (PDEs) [149].

Ordinary differential equations (ODEs)

ODEs are mostly used for modelling a continuous behaviour of a biological system over

time [202, 47]. They also can be used for spatial modelling, using mathematically defined

compartments. These compartments need to be in a ’well-mixed’ defined interaction [47]. The

general form of these equations is as Equation 2.1 where shows the evolution of x over time t

based on functions u(x) [149]. To create a continuous quantity, the number of components need

to be significantly high [47].

d4u

dx4
+
d2u

dx2
+ u2 = cosx

variables = u(t, x, y)

(2.1)

Partial Differential Equations (PDEs)

While ODEs are the evolution of one variable over time, PDEs are multi-variable functions.

In these functions, one derivative is constant while the other ones are changing. PDEs enable

modelling space that could be used for modelling biological systems such as diffusion to show

the changes over time and space [47]. A simple PDE is shown in Equation 2.2 in which u is the

CHAPTER 2. LITERATURE REVIEW 26

function and x, t and y are the variables [149].

∂u

∂t
=
∂2u

∂x2
+

∂2

∂y2
− u

variables = u(t, x, y)

(2.2)

Why not DEs? The use of DEs have been increasing in the past few years for engineering,

biology and mathematics [47, 149] but they have their shortcomings. In case of ODEs, there

is only one variable against time. This means geometry and space could not be added to the

equations. For a continuous behaviour the number of components should be high, which is not

achievable for all scenarios. The problems with space, however, can be tackled by using PDEs.

But comparing the two in the speed of simulation, ODEs are usually faster. PDEs, being more

complex with more variables, take a much longer time to simulate. If the models are too complex,

the simulation is too computationally intensive [47].

2.5.2 Agent-Based Models (ABMs)

ABMs are a bottom-up modelling method that use encapsulated agents in an environment

with defined rules. Agent-based models are used for many purposes such as marketing or biological

systems modelling [214, 127, 16] and is one of the most-used methods in systems biology [83]

especially when equation-based methods are not the ideal approach as the details of a system are

unknown [6], since it is a behaviour-based adaptive modelling method [7, 213]. This means that

the model, following the defined rules can change the behaviour based on the outcome or even

create new rules [126]. In this method agents are introduced that are components with specific

characteristics and rules that are traceable. These agents are the adaptive part of the method

that are intelligent and have decision-making abilities and can change based on the environment

or create new rules [126]. In the models, usually the agents are placed next to other agents that

may interact with one another or with the environment. These interactions might adapt over

time [126]. Unlike other methods that are usually models that create data, ABMs can be built

based on data. This means the model can look for a pattern in the data and defined the rules of

the model based on that [7].

ABMs could also be used to design spatial models, usually in 2D grid with spatial

details [7, 178]. They are mostly used for stochastic modelling and new rules could be added to

the model, by adding new agents that changes the existing agents [7].

CHAPTER 2. LITERATURE REVIEW 27

Why not ABMs? As it was mentions, each agent in ABMs carries a set of rules, encapsulated

in an environment. This means carrying a lot of information that makes the simulation quite

intensive computationally [6]. The focus of ABMs is on the differences between the agents, but

when there is too much of difference between the defined information for each agent, not only

this slows down the simulation but also removes ABMs as a choice when it comes to designing a

homogeneous model [213]. (See also: Pros and cons of Agent-Based Modelling).

2.5.3 π-Calculus

π-Calculus is a mathematical process calculus method from process calculi or process

algebra family for distributed concurrent systems, introduced in 1980 to describe theoretically

interactions and communications in biological systems when the resources in the model change over

time [18, 197, 108, 199]. It is also ideal for designing large systems using smaller subsystem [156].

π-Calculus uses channels as a communication link between pairs of processes but these

channels can only be in pairs. This means for modelling broadcast communication, π-Calculus

probably is not the ideal tool [199]. Since π-Calculus is compatible with Gillespie simulation

algorithms, it is one of the most reliable tools for modelling biological systems stochastically [32,

210]. Stochastic π-Calculus are modelled independently as components, instead of a model of

individual reaction which simplifies the models and, therefore, the simulation. This means that

the models are independent from their environment [32, 161]. π-Calculus also allows new names

to be introduced to the modelled system and allows the model pass complex messages [125]. In a

comparison between π-Calculus and Petri nets, it was discussed that Petri nets are more reliable

for modelling biological models containing space [197, 29].

An example of a simple model created by π-Calculus is shown in Equation 2.3 from an

introduction to π-Calculus written by Parrow [151]. This models expresses that the server that

sends a along b is āb. The client that receives some link along b is S. Then S sends data along

b(c). The interaction that is being modelled here, when the client sends a signal to a printer, is

shown as c̄d.P . There are some extension of π-Calculus as well such as stochastic π-Calculus [159]

or applied π-Calculus [1].

b̄a.S|b(c).c̄d.P τ−→ S|ād.P (2.3)

https://educationalresearchtechniques.com/2020/08/07/pros-cons-of-agent-based-modeling/

CHAPTER 2. LITERATURE REVIEW 28

Why not π-Calculus? Even though π-Calculus has been used for biological modelling, it

shows a weakness when it comes to modelling communication as π-Calculus cannot model

communication unless the communicators are paired. π-Calculus does not have a graphical user

interaction (GUI) and is based on mathematical equations to define the behaviour of the model.

Being a mathematical technique, π-Calculus is only limited to a range of researchers and scientists

who can understand and work with it [156]. Similar to DEs, in complex models, the simulations

are computationally intensive, especially when the models include space [199].

2.5.4 λ-Calculus

Introduced in 1930s by Alonzo Church, λ-Calculus is one of the simplest and ’smallest’

programming languages [66, 164]. This programming language consists of one function and one

transformations rule. Being a universal language that can express any computational function,

it is equivalent to Turin Machine. λ-Calculus defines the expression by a name or a variable

application and function [164]. In λ-Calculus the main concept is a “name” or a “variable” which

is an identifier of an expression [164, 66]. λ-Calculus is simpler than π-Calculus since the only

keywords in this language are λ and dot. Also, Unlike π-Calculus functions are not given any

names λ-Calculus. So every time the modeller wants to use a function, they should write the

whole function again [164, 138]. A simple model in λ-Calculus can be seen in Equation 2.4 from

a work done by Rojas [164]. In the function definision, E is the same expression and λ is the

identifier. In this model, the first line is the expressions, the second the identity function, the

third the application and the final line is the body of the function definition.

(. . . ((E1E2)E3) . . . En)

λx.x

(λx.x)y

(λx.x)y = [y/x]x = y

(2.4)

Why not λ-Calculus? λ-Calculus is a very simple programming language. It has not been

used often by the biologists in the past few years either. Considering that the functions are not

given any names, it can only be used for simple models [138]. Also, similar to π-Calculus it is not

suitable for users without mathematical or computational knowledge and does not provide GUI.

CHAPTER 2. LITERATURE REVIEW 29

2.5.5 Statecharts

Used by Agent-oriented Software Engineering (AOSE), statecharts has been used for

modelling interactions. Statecharts are a programming language for modelling complicated

reactive biological systems in which the structure is hybrid with continuous and stochastic

behaviours consisting many interactions. The execution of the statecharts begins at the start

state and continues as a sequel of steps. Statecharts was originally introduced by David Harel for

modelling software systems. Statecharts are hierarchical dataflow diagram or an activity-chart

which each state presents an activity representing the main activities, i.e. AND, OR states or

other basic states [79]. In the statecharts the Reactive systems interact with their environment

and are not independent from it. A reactive system does not behave based on a pre-prepared

chain of instructions. Instead the system reacts in parallel to the new inputs, which is the output

of the reaction before [67]. The statecharts have been used for modelling T-cell activation and

development in thymus before. But the chain linked interaction structure of the language is

useful to model DNA and the other molecules interactions in a cell as well. Using statechart it is

possible to model a biological system’s behaviour in time and it can show how the objects in the

model interact and change under different circumstances. Statechart has GUI but it can have

other approaches for formalism based on the modeller’s need [67]. Figure 2.3 represents a simple

statechart of an air conditioner created by Spanoudakis that was published in 2020 in Lecture

Notes in Artificial Intelligence book.

Figure 2.3: Statechart of an air conditioner in Lecture Notes in Artificial Intelligence published

in 2020 [79].

CHAPTER 2. LITERATURE REVIEW 30

Why not Statecharts? Statecharts are a sequence of steps that occur in a model, rather

than the structure of the model. Currently, this method does not include space or location. It

is an agent modelling and logic based that is mostly used for software engineering rather than

biology. To present the process, or communication of the agents through messages or a blackboard,

statecharts are ideal. But for broadcasting communication, statecharts show weakness [79].

2.5.6 P systems models

P-systems are distributed parallel computational models to describe the structure of a living

cell. Basically P systems consist of a main membrane which embeds several other membranes

called skin and regions which is a space between the membranes. Each membrane contains certain

objects and these objects follow evolution rules in a random parallel manner [165]. It models

the cells with compartments and each reaction takes place in different compartment of the cell.

Because of its multi-scale feature, this method have been used to show biological interactions

and networks. P-systems can be used to predict the concentration of an object, which may

represent proteins and small molecules [19, 165, 162]. It is noteable that P systems are mostly

for representing the structure of a system and not a detailed model of it [165]. There are different

software tools which support P-systems, which based on their website [P-system software tools]

the latest one is for 2013.

Why not P systems? The processes in P-systems are discrete yet not accurate since the

main motivation of this framework is to explore the mathematical and computational aspect of

biological systems [19, 44]. There are not many systems biology research using P systems in the

recent years indicating that this tool is probably out of date or not suitable for studying biological

systems. as mentioned before, this method is used for the construction of a call rather than the

details [165]; which is probably the main reason of this method not being used anymore.

2.5.7 CellML

The System Biology Markup Language (SBML) is a representation format based on

eXensible Markup Language (XML) for modelling biological systems in silico[86]. CellML is

another XML-based mathematical modelling language for system biology which can simulate

CHAPTER 2. LITERATURE REVIEW 31

models based on the given underlying mathematical equations. Usual models are text files with

mathematical formalism in them and they cannot be used by the other scientists to get the same

published results in another platform. In the models made with CellML all the information about

the model are stored in one place which gives CellML the feature of being reusable, not to be

mistaken by reproducible. It consists of components, connections, groups and metadata where

all of them together can make a model in CellML format, thus in XML. CellML itself does not

have GUI, yet it can be exported to other formats and be used in the software tools which have

GUI [86]. The main aim of CllML was to create a virtual physiological human. Ever since the

launch of the project, they have been adding different types of models from different literatures in

their database in order to reach this goal [119]. CellML is still growing this date and the second

version of it was released in 2020 [44].

Why not CellML? As mentioned before, CellML does not provide a reproducible model that

could provide the same result. Even though the language of the model supports the format of

XML, it is a editable text file which needs expertise to work on. One of the aims of this study

is to introduce a way that could be used by people with no knowledge with mathematics and

computer and clearly CellML does not fulfil this mission.

2.5.8 Bio-PEPA

PEPA is a process algebra that was originally used for analysis of computer systems but

since 2008, it was applied to systems biology to model biological systems [41] for stochastic

computational modelling and analysis. Bio-PEPA is designed to describe the biological behaviour

and simulate and analyse the models stochastically with probabilistic model-checking[39]. Bio-

PEPA are used to model events, or changes in the biological system to analyse a biochemical

network. Bio-PEPA can be changed to other formats of modelling, such as ODEs, for analysis in

different platforms such as MATLAB. With Bio-PEPA it is possible to design an abstract model

of the species and reactions which can process concurrently[42].

Why not Bio-PEPA? Even though Bio-PEPA became popular in 2008 and 2009 by a group

of scientists who were interested in modelling biochemical reactions [41, 39, 42, 38], it does not

seem to be of any new uses in the recent years. Bio-PEPA originally was very system and was

focusing on the events and changes of a system. It is a good choice for models in which there

are changes in the pathway, such as biochemical reactions, rather than biological systems that

CHAPTER 2. LITERATURE REVIEW 32

describe a dynamic process[39, 38, 40].

2.5.9 Petri net

Petri net is a multi-scale bipartite graph originally introduced by Carl Adam Petri in

1962 [33] consisting of two types of nodes: places and transitions [87, 76] used for multi-level

modelling on a multidimensional environment [118]. These two nodes are connected to one

another using a discrete arc [17, 72]. The places can contain tokens. The number of tokens can

only be integer in stochastic and non-negative real numbers in continuous. Transitions can carry

functions that defines their action rate and in case of coloured Petri nets, their locations. In a

biological setting, transitions can represent the processes (e.g. biochemical reactions) while the

places are the entities (biochemicals in a reaction). This method can be used for both qualitative

and quantitative modelling and simulations [187, 177] and it is independent from mathematical

techniques as it has a GUI [121, 17, 48].

The transitions in Petri nets are the reactions and the actions rates, or firing rate is a

number that defines how long it takes for the transition to activate. In Stochastic models this

number can only be an integer while in the continuous ones it can be a Real number[21].more

explanation about how the action rates work is provided. Based on the chosen tool that supports

Petri nets, there are different types that could be used as required. More about different types of

Petri nets can be found in Chapter 3.

2.5.10 Tool Box

To use all the methods discussed in the previous section, specific platforms are needed.

Below is a table that introduces different software tools as well as which method these software

tools use.

2.6 A Review of Previous Models

There are a range of methods for bio-modelling. These methods are explained in section

2.5 in detail. Using these methods some models have been constructed and published over the

past years in the same area as our study. In this section the models that are constructed after

the the beginning of the 21st century are chosen to be discussed. Here it is explained explain how

CHAPTER 2. LITERATURE REVIEW 33

Software Tool Method Citation

Lsodar ODE [142]

Omix ODE & PDE [96]

Morpheus ODE & PDE [96]

SmartCell PDE [96]

MesoRD PDE [96]

FLAME ABM [178]

SPARK ABM [7, 178]

NetLogo ABM [178]

RePast HPC ABM [178]

Mobility Workbench (MWB) π-Calculus [199]

Microsoft π-Calculus [18]

PICASSO π-Calculus [14]

STLC λ-Calculus [152]

SCXML Statecharts [106]

P-Lingua P systems [154]

PMCGPU P systems [195]

MeCoSim P systems [195]

OpenCOR CellML [75]

Virtual Cell CellML [120]

Bio-PEPA Workbench Bio-pepa [39]

Cell Illustrator Petri nets [96]

MonaLisa Petri nets [96]

Snoopy ODE & Petri nets [89]

Table 2.1: The table of different software tools using different methods based on Section 2.5 .

they were constructed. It is important to note that there are many models in the area of quorum

sensing and biofilm formation and fewer in the area of movement and duplication.

Perez et al have published a review article of all the mathematical models of quorum

sensing biofilm formation prior to 2015 [155]. Using this review, along with other related studies,

a brief review of the past works on bio-modelling of related models is gathered in this section i.e

quorum sensing, biofilm formation, duplication and movement/chemotaxis.

James et al in 2000 [101] designed a non-linear ODE model with the focus on the regulatory

CHAPTER 2. LITERATURE REVIEW 34

system in a single cell in Vibrio fischeri. The observation on this bacteria that was first studied in

the light organ of some marine fish, showed that in high cell density these bacteria communicate

with each other which results in maintaining light production in the light organ [90]. James et al

developed a model of lux genes control V. fischeri in the simplest form possible. They compared

the regulation of lux genes in two different situations: a) When a free-living cell does not have

the autoinducer in the environment and b) when there is autoinducer added artificially to the

environment and the bacteria is exposed to it [101].

In 2001 Eberl and his colleagues developed a Deterministic spatio-temporal Continuum

Model for biofilm formation [155]. His mathematical model is a density-dependent equation to

show a spatial growth of biofilm in a heterogeneous society. They do not mention any specific

bacteria and all of the work is completely mathematical with no biological verification. However,

after the analysis of the model it seems that the model is able to predict the irregular biofilm

formation in 1D, 2D and 3D. They also present a density-dependant diffusion, environmental

conditions and nutrition in their model [61]

Another model in 2001 was developed by Nilsson et al to describe the autoinducer

concentration in bacterial cells and how biofilm changes in time as a result of bacterial growth

rate and diffusion of autoinducers. Nilsson’s mathematical model is based on one species of

Gram-negative bacteria who form biofilm. The bacteria are completely identical in terms of size,

shape, production and degradation. The goal of their study was to understand the effects of

biofilm formation on signal production. The result of the model is theoretically in agreement

with the expected result of the bacteria in a high rate nutrient culture [155, 146].

Deckery and Keener in 2001 designed a mathematical model of quorum sensing which

is an eight dimensional ODE. in their model they focused on the kinetics of Las system in P.

aeruginosa [155]. They analysed and simulate their results numerically and tried to include

biochemistry of the bacteria as well. They concluded that the quorum sensing depends on the

size of the colony and density, which is expected. The results are completely mathematical with

no verification from biological lab [57].

In 2002 Chopp et al developed a 1D spatio-temporal model of biofilm formation and

quorum sensing [155]. He worked on Gram-negative bacteria P. aeruginosa who has two separate

quorum sensing systems. In the model they separate biofilm in two compartments. One is where

the active cells exist and one is the inert biomass. They also show the diffusion of oxygen and

the limitation of nutrition [37]. In an extended model Chopp models the limited substrate and

CHAPTER 2. LITERATURE REVIEW 35

the production of autoinducers. The used method in this study is Reaction-diffusion equations

which are a type of parabolic partial differential equations [37].

Ward et al in 2003 developed a model that is a PDE non-linear model which was analysed

numerically and the results were in agreement with experimental data [155]. The models describes

the early stages of biofilm formation considering the cells growth on a solid surface and making a

compact society. after that they developed a model of the overall formation of the biofilm [207].

Viretta and Martin in 2004 presented a qualitative model using linear differential equations

method. In this model they explored the process of quorum sensing in detail in the Gram Negative

bacteria P. aeruginosa trying to understand the complexity of this process deeper [201].

Li et al in 2006 designed a stochastic model of autoinducer production in E. coli using

Petri nets[155]. The interesting fact about their model is all the markings, rate constants and

tokens numbers come from a verified reference. The model is based on experimental data and the

results were experimented in biological labs [114].

Muller et al in 2008 developed another differential equation stochastic model to show the

threshold effect of autoinducers in quorum sensing. The results are numeric and mathematical

and data is model-based. Interestingly they revealed that the molecules produced by each cell is

sufficient so that the bacteria can distinguish their own signals [155, 140].

Netotea et al in 2009 developed a 2D agent-based model of biofilm formation to show

that the bacteria P. aeruginosa communicate using diffusible autoinducers. They move toward a

nutrition source and the autoinducer threshold controls the movement. There are both biological

and computational observations in this study: The biological observation focuses on comparing

the wild and the mutant bacteria while the computational observations construct a framework

for early stages of quorum sensing [143].

Duddu et al in another work in 2009 worked on a 2D continuum model of biofilm using

Extended Finite Element Method [155]. Duddu’s model also included fluid flow around the

biofilm on the surface, the shear stress of the biofilm-fluid interface and the reaction of substrate.

The biofilm is assumed to be a continuous medium with two compartments: active and inactive,

the same assumption Chopp used in his model in 2002. The fluid in their model has a constant

viscosity and the shear stress is also considered [60].

Vaughan et al in 2010 developed a finite element 2D model of diffusion, degradation and

production of signalling molecules in biofilm formation [155] similar to Duddu’s model and method.

CHAPTER 2. LITERATURE REVIEW 36

Their bacteria target was P. aeruginosa and their focus was mostly on the distribution of the

autoinducer and the effect of a fluid environment on the quorum sensing and biofilm formation.

In their model they included the fluid velocity of the culture media and studied biofilm formation

in different concentrations of autoinducer and different roughness of the culture medium. The

results are all computational simulations [198].

Fredrick et al in another model in 2010 is a 2D mathematical model of quorum sensing in a

slow-flow environment [155]. They developed the first mathematical model for a two dimensional

biofilm with flow and nutrient-dependent growth and their results were computational simulations

only [69].

Fredrick extended his work on a reaction- diffusion equation for biofilm in 2011 with

numerical solutions [155]. They describe the modelled biofilm structure as a deterministic density-

dependent equation. the model describes the quorum sensing results in biofilm formation in

a narrow conduit to mimic solid pore or plant vessels. They used experimental data for the

parameters of the model but analysed the model with computational simulations. The used

method in this study is Reaction-diffusion equations [69].

In 2012 Ward and King developed a system of PDEs model. They considered that the

biofilm consists of bacteria and water. The volume fraction of bacteria is assumed to be uniform

and the internal stress between bacteria and bacteria is less compared to the bacteria and water.

Their purpose was to describe biofilm formation and quorum sensing process in bacteria using

computational and numerical results [155] [205].

In 2013 Schaadt et al designed a parameter independent multi-level ODE formalism to

model quorum sensing in P. aeruginosa which produces AI-1 to show the complicated network of

the communication process in this bacteria. In their model they did not include the changes in

environment and considered that all cells in their model receive the same amount of autoinducer,

which shows that their model does not describe space, location and distance. However, they have

included aspects of the quorum sensing such as the threshold, degradation and inhibitors [170].

In 2015 Emerenini and colleagues developed a dynamic spatial mathematical PDE model

to show quorum sensing and biofilm formation to show the relation between the cell dispersal

and produced biofilm size. In their model, the society of bacteria is homogeneous, meaning that

all bacteria are the same to simplify their model and thus, the simulations [65].

Matthew Edgington in his thesis in 2015 [62], used a four-dimensional nonlinear ordinary

CHAPTER 2. LITERATURE REVIEW 37

differential equations approach to model the chemotaxis in bacteria as a single cell. In his

study, he mostly focused on the mechanism of chemotaxis, inspecting the flagellar motors of the

bacteria. He then used Agent Based models for studying the bacteria in a population. Using the

mathematical models Edgington proposes new pathways for chemotaxis which are in agreement

with experimental data.

In 2017 David Gilbert, Monika Heiner and Leila Ghanbar modelled an E. coli K12 in Petri

net as a quantitative modelling tool. Petri nets enable us to model stochastically or continuously,

while using coloured Petri net gives space to the model so that we can have models in 1D, 2D or

3D. This method can be developed for personalised models for humans to be used in personalised

medicine and personalised nutrition [76]

The next model of biofilm was published in 2018, by Zhang et al which is a dynamic

flux-based model of biofilm communities and a “kinetic free formulation” based on genomics

data. The model consists of different models, such as general biofilm model, metabolic model and

exchange flux model. This is a novel method to replace the classic methods consisting of kinetics

functions [215].

Another model of biofilm was designed in 2018 by Bardini et al. [15] which showed the

biofilm resistance to antibiotics in hybrid Petri net formalism on Nets-Within-Nets to show the

different antibiotic protocols influence and different levels of resistance of biofilm. However they

do not use locations and space, they have used Coloured Petri nets to show separate bacteria

cells in one place by colouring the tokens in that place. the coloured tokens carry information on

the identity of species and the possibility of the presence of resistance, unlike Snoopy that the

coloured tokens carry information of the space and location of each token [15, 118].

Gilbert et al in 2019 created a combined model of quorum sensing in E.coli from Li’s

model in 2006 [114] and a new part of biofilm formation [77]. This model that was designed in

Petri net using Snoopy Software as a platform, described the biological components of the system

as well as the space and location. The previous model by Li was a non-spatial stochastic model

of quorum sensing via AI-2 with limited nutrition. This model, added spatial properties using

coloured Petri nets to the model and analysed the behaviour.

The latest model of biofilm is proposed by Brown et al. in 2019 which is an agent- based

model presenting the production of biofilm by Haemophilus influenzae bacteria in vivo. Simulating

their models they showed that the reason of different size of cluster of the bacteria in vivo and in

vitro is because of the elimination of single planktonic cells by the host. They also predicted how

CHAPTER 2. LITERATURE REVIEW 38

the processes in the model effects the infection [25].

Brown et al. in 2019 constructed the latest available model of biofilm. It is an agent-based

model of biofilm formation of Haemophilus influenzae bacteria in vivo reasoning that the difference

in the size of cluster of the bacteria in vivo and in vitro is for the elimination of single planktonic

cells by the host [26].

In 2020, for the most recent available model, is a chemotaxis model of bacteria E.coli

using a unique approach called Vivarium done by Agmon and Spangler [3]. In this approach they

created multi-scale models in a spatial environment. This software uses a variety of methods.

The focus of their paper is on the biophysical features of chemotaxis, describing the flagella which

is the movement engine in bacteria.

In this study, first a collection of model components were built. The components of this

library describe different biological behaviours and are used individually or as a combination to

reproduce some scenarios and contains various models. The components of the library include

movement, chemotaxis, reproduction, communication, response to communication and death.

These models are on a multidimensional grid, describing a multi-level and multi-scale model to

study both intercellular and intracellular interactions in microorganisms. They are designed so

simple that could be used by individuals with no computational or mathematical background.

Table 2.2 presents all the models created in 21st century in a summary.

2.7 Discussion

In this chapter the differences between different science fields and where this study exists

were discussed and a biological and computational background for this study was provided. The

biological literature provided in this chapter is required for a better understanding of the models

in this study. In the computational background, two types of reviews were presented: one for the

other alternative tools and why they were not chosen while reasoning the choise Petri net for this

study and the other is a review of the previous models done in the same area of science of this

study. In the next Chapter, software tools used for this study are vastly explained as well as how

the modelling process have been done. Then it follows in the next chapters with the library of

models, data visualisation and optimisation pseudocodes.

CHAPTER 2. LITERATURE REVIEW 39

Year Modellers Model Method Citation

2000 James et al QS Non-linear ODE [101]

2001 Eberl et al BF DE [61]

2001 Nilsson et al QS & BF DE [146]

2001 Deckery and Keener QS ODE [57]

2002 Chopp et al QS & BF Reaction-diffusion equation [37].

2003 Ward et al BF PDE [207]

2004 Viretta and Martin QS Linear DE [201]

2006 Li et al QS SPN [114]

2008 Müller et al QS DE [140]

2009 Netotea et al BF ABM [143]

2009 Duddu et al BF DE [60]

2010 Vaughan et al BF DE [198]

2010 Frederick et al BF Reaction-diffusion equation [69]

2011 Frederick et al QS & BF Density dependent equation [69]

2012 Ward and King BF PDE [205]

2013 Schaadt et al QS Multi-level ODE [170]

2015 Emerenini et al QS & BF PDE [65]

2015 Edgington Chemotaxis Non-linear ODE [62]

2017 Gilbert et al QS PN [62]

2018 Zhang et al BF Flux-based model [215]

2018 Bardini et al BF PN [15]

2019 Gilbert et al QS & BF PN [77]

2019 Brown et al BF ABM [26]

2020 Agmon and Spangler Chemotaxis Vivarium [3]

Table 2.2: The table summarises all the models mentioned above. Acronym: QS = Quorum

Sensing, BF = Biofilm formation, Dicty = Dictyostelium, DE = Differential equation, ODE =

Ordinary Differential equation, PDE = Partial Differential equation, PN = Petri net, SPN =

Stochastic PN, ABM = Agent-Based Model .

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 40

Chapter 3

Methodology For Modelling,

Simulation, Optimisation and Data

Analysis

In this chapter the chosen software tools are introduced for modelling, simulation and data

analysis in Section 3.1. Also the optimisation methods are explained briefly in this chapter in

Section 3.1.4. In Chapter 6 a detailed explanation of the optimisation methods as well as the

pseudocodes are provided. The aim of this chapter is to clarify the different tools used in this

study. In the next chapter the different parts of the library of model components are introduced

as well as a step-by-step protocol for how the colouring and combination works.

3.1 Chosen Software Tools for Modelling and Simulation

In this section the chosen tools of this study are introduced. After introducing the

tools used in this thesis, in Section 3.1.5 and Section 3.1.4 the methods for data analysis and

optimisation are discussed.

3.1.1 Snoopy

Snoopy is a non-commercial free software which runs runs on Windows, Linux and macOS

and is a software tool for hierarchical modelling in Petri nets. This software supports different

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 41

classes of Petri net such as classic/standard, stochastic, continuous and most importantly Coloured

Petri nets. Snoopy has different solvers for each type of the Petri net built-in and can simulate the

models. It also produces CSV data files as well as plots and graphs. In standard or classic Petri

net, Snoopy is equipped with the animation mode that can trace the movement of the tokens

in the model. Snoopy models can be exoroted to ANDL (Abstract Net Description Language)

and CANDL (Coloured Abstract Net Description Language) which are human-readable text files

for easier altering and simulation of the models [89, 36, 76] and can import models from other

different formats of Systems Biology Markup Language (SBML) [89]. Exporting and importing

large and detailed models are slower in Snoopy as it has a graphical user interface.

There are several different types of Petri nets that Snoopy supports. The classes of Petri

nets that are used in this study are described below:

3.1.2 Different Classes of Petri nets:

There are different types of Petri nets for biological modelling which are particularly

supported by Snoopy Software. The types that have been used in this study include: Standard

(qualitative) Petri nets (PN) which do not have the concept of time or space and are the classic

type of Petri nets, Stochastic Petri nets (SPN), Continuous Petri nets (CPN), and Hybrid

Petri nets (HPN) combining both stochastic and continuous; and finally, Coloured Petri nets

(ColPN) [45].

a. Standard Petri Nets are the classic type of Petri nets, used for constructing models

in a qualitative manner, meaning that the semantics of this class does not include time and

the network is described by its topology [78]. The difference between the qualitative Standard

Petri net and the quantitative Petri nets (such as continuous) is in the formalism. While the

qualitative is defined based on linear differential equations, quantitative Petri nets are based on

ODEs [34]. Standard Petri nets are quite simple to use and easy to understand. In Snoopy, as

one of the platforms that supports Petri nets, it is possible to activate the animation mode which

demonstrates the tokens moving between the places and transitions. Providing a graphical user

interface (GUI) and simplicity, make this type of Petri net rather easy for the individuals with

no experience or knowledge of computational modelling as well as for beginners in the field of

modelling with Petri nets. This type of Petri net does not require any mathematical knowledge

either [89]

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 42

b. Stochastic Petri nets (SPN) are used for quantitative modelling. This class of Petri

nets is similar to the PN, with the addition of Time as a quantitative property and the rates

to the transitions which exists also in Continuous, Coloured and Hybrid Petri nets [17]. In

Snoopy software, besides the animation mode, this type also provides simulations using different

simulators, such as Gillespie, as well as plots and output data which can be exported into CSV

data files [134, 89]. The stochastic models can run for one or multiple simulations. By increasing

the number of runs the outcome plots are smoother and the result is closer to a continuous

output [21].

c. Continuous Petri nets (CPN) are another quantitative type to observe how the model

behaves continuously over time. In this type, not only the action rates, but all the numbers can

be non-negative real numbers. Due to this continuity, this class of Petri net is usually used for

studying the overall behaviour of an organism rather than than the individual behaviours [88].

For example, in this study, this class is used for studying the population density rather than the

actual number of the cells in the society. This class is time-dependant as well [23] Continuous

Petri nets can be mapped to ODEs and can be simulated using ODE simulators [21, 78].

d. Hybrid Petri nets (HPN) are the combination of SPN and CPN. Usually, in nature a

biological system is both stochastic and continuous. To construct a more realistic model, HPNs

are an ideal option. This type of PNs allow the co-existance of discrete and continuous places

and transitions in the same model [93]. This type is especially used in the combined model of

quorum sensing and biofilm formation which is explained in 5.1.5 and was published in 2019 in

BMC Bioinformatics Journal [77]

e. Coloured Petri nets (ColPN) are specifically useful when modelling a repeated network

in a multidimensional model. In these situations, it is possible to edit a folded version of the

model and unfold it, in the end, to study the model as a whole [73, 10]. After the work on the

folded version is done, it is possible to export it to a non-colour PN and observe the behaviour of

the model as a whole. ColPN is a class of PN that enable modelling in 2D and 3D environments

by colouring the tokens; which means giving each token a specific set of data or colours that

facilitates the representation of space and location. ColPN represents a compact and folded

version of a complex model where each object in the system becomes a coloured place to have a

location defined by that colour [117].

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 43

ColPNs support can be stochastic or continuous. However, it is important to note that

in the Coloured Continuous Petri nets(ColCPN), only the number of the tokens can be real

numbers more than zero and not the grid. Creating a 2D or 2D grid in ColPN using analysis tools

such as R shows that the grid is discrete. The models built in ColPN incorporate the concept

of space on a grid and the location is defined based on the coordinations of the grid. On each

location, places are set and the transitions are the bridges between two locations of the grid.

That is why the location on places is shown as “Place_1_1” while on transitions it is shown as

"Transition_1_1_1_2”. This means the transition is connecting coordination 1_1 to 1_2.

In Snoopy, when the models are built, they exist in all of the locations by default. By

changing the marking and defining the location, only the marked locations are active. It is

important to note that currently, in Snoopy only the tokens move on the grid while places and

transitions are immobile. When a grid is defined, all the locations contain the models, but when

the location of a place is defined, the other places on other locations are inactive. In other words,

on the coordinations of the grid that no places are set, the model exists, except it is switched off.

3.1.3 Spike

Models built in Petri nets might be so complex that their simulation is time and memory

consuming and computationally intensive [36]. Especially when it comes to coloured Petri nets,

where the models are multi-level, multi-scale and multidimensional, simulating with Snoopy is

not the best idea.

Sipke is a command-line simulation tool that uses Abstract Net Description Language

(ANDL) and Coloured Abstract Net Description Language (CANDL) files to simulate models

exported from Snoopy. ANDL and CANDL are human readable text format files exported from

Snoopy Petri nets that contain the model’s properties [21, 36]. Based on the website of the

developers of Spike, it is “a tool for efficient and reproducible simulation of stochastic/contin-

uous/hybrid Petri nets, coloured or uncoloured ones” [General Description of Spike Website].

Spike has a specific configuration script, a text file called SPC. In SPC files the modeller can

alter some of the parameters of the model, such as the action rates, the gird size, etc, instead

of initiating changes on the original model in Petri net. Spike also has the feature of scanning

through a range of parameters to check the effect of the changes on the model outcome. However,

considering the unlimited numbers and possibilities, optimisation with this method is currently

impossible. Another feature of Spike is that it can simulate models in parallel or sequentially.

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike#generaldescription

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 44

All the changes in the SPC files are saved before the start of the simulation which results in

reproducible simulations. The simulations are happening on a server and there is no GUI to slow

down the simulation. Spike supports Stochastic, Continuous, Hybrid and Coloured Petri nets for

simulation. In the SPC files the different types of solvers can be chosen as required [36].

3.1.4 Optimisation Method

Spike was used for scanning among different parameters. But in the case of complex

systems when multiple parameters need scanning, Spike would not be efficient as it would provide

many datasets that need to be analysed one by one. Therefore, to make the process of scanning

faster, optimisation methods were applied. Python routine codes for Random Restart Hill

Climbing and Simulated Annealing were employed to scan over different constant rates of the

model in order to find the best possible solution for the expected behaviour..

A heuristic technique is an approach to solve a problem by getting approximately the

best solution. It is used when solving a problem would take an unlimited amount of time or the

number of solutions are unlimited. In these situations, approximate best solution is the best

option to use [109].

In this thesis, two methods of optimisation are employed to find the best solution for

the objective of this study, which is to achieve the maximum number possible of Dictyostelium

cells in one location on the grid to mimic the formation of fruiting body in this interesting

microorganism. At this stage of life, Dictyostelium forms a semi-multicellular society to protect

itself under difficult situations such as starvation. For more details on the biological concept of

this Eukaryote see Chapter 2 Section 2.3.2. For a detailed discussion about the optimisation

methods and psuedocodes, see Chapter 6

3.1.5 Data Analysis Tools

To analyse the output data from the models, or rather checking if the behaviour of the

model is as expected as well as for data analysis and visualisation, R is used. To analyse the time

series data taken from Snoopy and Spike R coding program was applied to create 2D and 3D

plots as required. With R also, heatmaps and plots are plotted to study the behaviour of the

models based on the location of the tokens in the model. These heatmaps are set together to

create a movie that shows the development of the model over time, with the focus on the changes

CHAPTER 3. METHODOLOGY FOR MODELLING, SIMULATION, OPTIMISATION AND
DATA ANALYSIS 45

in their locations over time.

3.2 Discussion

In this chapter different tools that have been used in this study were discussed as well as

the chosen methods for optimisation. There are many methods for optimisation, and in this study

two of the most popular ones have been chosen: Random Restart Hill Climbing, which is simple

but may not be accurate since it may provide the local maximum instead of the global one, and

Simulated Annealing, which compared to Hill Climbing is more accurate and searching as many

answers as possible, it might provide a better answer. The expected result of these optimisations

is to find the best constant rates for the four transmitters of the Dicty model, in order for the

Dicty to clump on the grid.

In the following chapters the collection of model components will be introduced and

different levels of models will be discussed following by examples of application of these model

components to a close to real-life scenario. In this study the applications are biological but that

does not limit the adaptation of these models only to biological experiments. These models could

be applied to any non-biological scenarios.

CHAPTER 4. MODEL LIBRARY 46

Chapter 4

Model Library

Specific behaviours define if a system can be considered alive. Some of these behaviours

include movement towards a chemical trigger, reproduction, death, communication and response

which all are modelled in this thesis. The reason for the choice of these specific behaviours is

simply due to their importance for survival. This set of behaviours is only an example of basic

requirements for life. If there is no movement towards a chemical trigger, the organism might

starve to death. In critical situations the organisms need to communicate and respond to one

another to survive. They need to reproduce to pass on their genetic information to the next

generation and finally they will die.

In this chapter different parts of the collection of model components including properties

and different levels of model components, the process of modelling and combining the models are

explained in detail. Here, using the properties, the models are constructed from scratch and each

model component is shown in a figure for a better understanding. In the next chapter, combining

these components and the construction of systems in two case studies is explained.

Putting together components and properties, can lead to the construction of models in

different levels. In this study the collection of models components is categorised into four groups:

1. Properties: The base of modelling which includes definitions of functions, constants and

coloursets.

2. Level-0: Basic components which are usually made from one place and one transition. If

they are modelled in space (ie. in ColPN) then they also include a property.

3. Level-1: Simple models which are the combination of basic components together with more

CHAPTER 4. MODEL LIBRARY 47

than one property.

4. Level-2: Systems and complex models which are combination of Level-1 and/or Level-0

with a few properties.

5. Level-3: Complex networks which are created from Level-2 models as well as properties.

These could contain lower level components as well. They are explained in Chapter 5

All the components of this collection of models are stored as a data collection in CANDL

format. CANDL file are small in size and they are human-readable text format files, and are easy

to edit. From CANDL file it is possible to export to other formats such as ANDL or Coloured

Petri nets.

The modelling method in this thesis is hierarchical. As it can be seen in Figure 4.1,

Properties are the most basic part of the models and exist in all the levels. Level-2 models are

built as a combination of Level-1 and Level-0 components and Level-1 components are built of

Level-0 components. It is important to note that a Level2 model can also be built from Level-0

components only.

Figure 4.1: Modelling in this study is hierarchical, meaning the more complex models are built

from simpler components.

Level-3

Level-2

Level-1

Level-0

Properties

It is important to note that the categorisation of each level, is based on how complex

they are structurally and it is independent from how complex or detailed the model is. The

question is how to decide on the Level of a model? To answer this question, first it is important

to understand that the modelling in this thesis is hierarchical, meaning each model is built

CHAPTER 4. MODEL LIBRARY 48

from simpler components from lower Levels, unless it is a Level-0 model which is the simplest

component. To identify the Level of a model, first the most complex component should be

spotted. Once the Level of the most complex component in the model is decided, the model in

question is categorised on one Level higher. For example, in the Chemotaxis model, Diffusion

which is a Level-0 model can be found. This is the most complex component that can be found,

so Chemotaxis is a Level-1 model. Another example is the Quorum Sensing model which includes

Biofilm Formation model and Signal Production. Biofilm Formation is categorised as a Level-2

model, so the Quorum Sensing model is placed at Level-3. A detailed elaboration of the structure

of each model is provided in this chapter and the next. Table 5.2 at the end of Chapter 5 provides

a summary of all the models in this thesis and their categorisation.

4.1 Properties

To build the models in this library, the basic definitions of the model need to be clarified

first. These terms will be used in the following chapters. These basic definitions are called

“properties” in this study, and are the first steps of modelling in Petri nets. Here, the concept of

action rate, grid, neighbourhood function and coloursets and based on them, Wall, Obstacle and

Sink are introduced.

Action Rate Action rate, firing rate or rate constant is a number that is set for the transitions

that define how fast the action would happen. Using optimisation methods it is possible to find

the best number of the action rates in order to achieve the expected behaviours from the models.

The expected behaviour is based on the biological literature and is different for each model,

depending on what the model demonstrates. For example,The expected result of the movement

model of bacteria is different from Dicty model of movement.

The Grid The grid is a 2D or 3D panel that its size is defined in the coloursets in Snoopy

made of x, y and z (in case of 3D) axes. These axes define the location of the tokens and places

mathematically. For example, a place could be placed on (2,3) which means its location on the

2D grid is: x = 2 and y = 3. As mentioned before, the grid’s structure is not continuous, even

in a continuous model. On the grid it is considered that a token is located in the centre of the

square location. The transitions are placed between the grid locations, connecting the one place

on one location to the next, based on the definition of Neighbour functions. In that case the

CHAPTER 4. MODEL LIBRARY 49

location of the transition that connects (1,2) to (2,2) will be “1_2_1_2”.

In this study, for faster simulations and saving time, all the models are built on a 2D grid.

The grid is only used in ColPN, as they are the only type of Petri nets that can demonstrate

space. To define the size of the grids, after defining “Constants”, the coloursets are created as

a “product” of the constants to make a 2D and 3D grid. The definition of the grid by size and

dimension is as shown in Table 4.1:

Dimension Size Colourset

Grid 1D D = 5 [no coloursets required for 1D grids]

Grid 2D D1 = 5 CD1 = 1-D1 [x axis]

D2 = 5 CD2 = 1-D2 [y axis]

Grid 3D D1 = 5 CD1 = 1-D1 [x axis]

D2 = 5 CD2 = 1-D2 [y axis]

D3 = 5 CD2 = 1-D3 [z axis]

Table 4.1: The information of 1D, 2D and 3D grids for ColPN

Neighbour Function These functions are used to describe the movement of tokens in Petri

nets through the transitions. Neighbour functions can be used in both 2D and 3D grids. On

2D grids, the tokens can move to either 4 or 8 directions moving to the next location from their

initial location and on 3D grid the token has the option to move to 26 locations around it. The

tokens do not jump one location. This means if the token is moving from (3,4) to (3,6), it has to

pass (3,5) as well. It is important to note that the grids introduced here and used in this study

are always squares or cubes. This is not necessarily always the case. The grid can be circular and

cylinder as well. The definition of the functions used in this thesis can be found in Table 4.2:

CHAPTER 4. MODEL LIBRARY 50

Function name Function definition

neighbour2D4 (a=x & b=y-1)|(a=x & b=y+1)|

(b=y & a = x-1)|(b=y & a=x+1)

neighbour2DB (a=x-1|a=x|a=x+1) & (b=y-1|b=y|b=y+1) &

(!(a=x & b=y)) & (1<=a & a<=D1)

& (1<=b & b<=D2)

neighbour3D26 (a=x-1 | a=x | a=x+1) & (b=y-1 | b=y | b=y+1) &

(c=z-1 | c=z | c=z+1) & (!(a=x & b=y & c=z)) &

(1<=x & x<=D1) & (1<=y & y<=D2)

& (1<=z & z<=D3)

Table 4.2: The neighbouring functions for 2D and 3D grids.

The syntax provided in Table 4.2 explains how the tokens are allowed to move on the

grid. x and y define the initial location coordination and a and b are the new locations. So, for

example, when the function is written is (a = x & b = y− 1), this simply means that the token is

permitted to stay in the same x while goes down one location in the y axis.

The Sink The square/cubic grid is a limited closed area as big as the defined constants and

coloursets. To produce a pseudo-infinite grid, a set of transitions can be added to the edges of

the grid which removes the tokens from the edges of the 2D and the faces of the 3D grid. These

transitions are called “Sink” transitions. In this study, the Sink is used when there is a need for

the removal of some tokens from the grid. This transition’s job is to prevent the accumulation of

the tokens in the grid if required. The function defined for this transition for 2D and 3D grid is

shown in Table 4.3.

Another way of defining the location of the Sink transitions is using a colourset called

"Edges". This colourset is the “Union” of 4 Simple coloursets: top, bottom, right and left. These

simple coloursets carry the locations of the edges of the grid. However, using this method the

unfolding of the models can be only done by the “Gecode intern” engine in Snoopy. The output

of this engine is not compatible with Spike. Therefore, in case of the more complex models that

simulations with Spike is required, using this method is not recommended.

CHAPTER 4. MODEL LIBRARY 51

Grid size Function definition

2D Grid ((x=1) & (y>=1) & (y<=D2)) |

((x>=1) & (x<=D1) & (y=D2)) |

((x>=1) & (x<=D1) & (y=1))

3D Grid (x<=1 & x>=D1 & y<=1 & y>=D1 & z=1)&

(x=1 & y<=1 & y>=D1 & z<=1 & z>=D1)&

(x<=1 & x>=D1 & y<=1 & y>=D1 & z=D3)&

(x=D1 & y<=1 & y>=D1 & z<=1 & z>=D1)&

(x<=1 & x>=D1 & y=1 & z<=1 & z>=D1)&

(x<=1 & x>=D1 & y=D2 & z<=1 & z>=D1)

Table 4.3: The functions of the Sink Transition. Based on these function definitions, the Sinks

are located at the edges of the 2D and faces of the 3D grid.

The Wall Adding the “Sink” transition, makes a pseudo-infinite grid. By removing this

transition on one side, the “Wall” is created which can simulate a surface where the bacteria can

adhere to. From side that the wall is located, nothing can leave the grid. Wall can be considered a

surface that the cells are attracted and adhered to. In a biological laboratory it can be considered

the inner wall of a test tube which is coated with food source to attract the microorganisms to it.

The Obstacle Obstacle is a part of the canvas (grid) which nothing can cross it from the

outside. It is defined as a block which can be located anywhere as required, based on its function.

Obstacle also can mimic a semi-permanent membrane which only passes permitted molecules to

the outside while not allowing anything to enter it. By setting the Massaction of the transitions

as zero, the obstacle turns into a solid block that nothing can cross it. The neighbour function

when using obstacle changes. The definition of these functions is as shown in 4.4.

CHAPTER 4. MODEL LIBRARY 52

Function name Function definition

Obstacle (a=x-1|a=x|a=x+1) & (b=y-1|b=y|b=y+1) & (!(a=x & b=y)) &

(((a>=ObsX1 & a<=ObsX2 & b>=ObsY2 & b<=ObsY1)) |

((x>=ObsX1 & x<=ObsX2 & y>=ObsY2 & y<=ObsY1)))

Neighbour2D8_obstacle (a=x-1|a=x|a=x+1) & (b=y-1|b=y|b=y+1) & (!(a=x & b=y)) &

(! (a>=ObsX1 & a<=ObsX2 & b>=ObsY1 & b<=ObsY2)) &

(! (x>=ObsX1 & x<=ObsX2 & y>=ObsY1 & y<=ObsY2)) &

(1<=a & a<=D1) & (1<=b & b<=D2)

Table 4.4: The function definitions for obstacles. In these Functions, ObsX1, ObsY 1, ObsX2

and ObsY 2 are the locations of four angles of the obstacle rectangle.

The Glu Glucose is one of the carbon sources used by the microorganisms. In the models of

this study, “Glu” simulates source of the food that produces food and is the trigger of chemotaxis

for the microorganisms. To define the location of the Glu, the variable “Gluxy” was defined. This

Variable exists in the colourset “GluS” which consists of two constants of Glux and Gluy. To

make a strip on one side of the grid Glux is defined as an integer as big as D1 (the size of the

grid) and Gluy is set as an interval [1-D1]. The information of Glu is summaried in thable 4.5

Constants Colorsets Variables

Glux = D1 GluS (Glux, Gluy) Gluxy (in GluS colourset)

Gluy = [1=D1]

Table 4.5: The information needed for creating a strip of food source on one side of the grid.

4.2 Level-0: Basic Components

Level-0 (Lvl0) models are the simplest stage of modelling. These models are abstract and

without detail and could not be broken down to any simpler models. They are usually made

of one or two place(s) and transmitter(s) and sometimes they include one property. The Basic

Components of the collection are summarised in Table 4.6.

CHAPTER 4. MODEL LIBRARY 53

4.2.1 Level-0 Diffusion and Movement

Diffusion is a simple model of changing the location of tokens in Petri nets, or rather

the movement of the tokens on the grid. The random movement without a controlling trigger

is the same as diffusion. This component only consists of a place and a transition and Grid as

the property. The transition has a Neighbour function which depending on the dimension and

requirement of the modeller it can be neighbour2D4, neighbour2D8 or neighbour3D26. Figure

4.2-a shows the model of diffusion/movement.

4.2.2 Level-0 Duplication

Lvl0 Duplication model contains one place and one transition connected to each other with

two arcs. The out going arc from the place to the transition carries the weight 1 but the incoming

arc from transition to the place carries the weight of two. This means for any one tokens that

goes to the transition, two tokens will come out. The model can be seen in Figure 4.2-b.

4.2.3 Level-0 Death

Lvl0 Death model is a very simple construction which consists of one place and one

transition. The transition does not have any functions defined but the rate of it could be changed

as required. Figure 4.2-c shows the Lvl0Death model. In a coloured model, As this model does

not have movement attached to it, the death only happens in one location defined by the colourset

of the places. Since this model is in the ColPN, this model also includes the Grid property.

4.2.4 Level-0 Transmitter

Lvl0 Transmitter is a part of the model that produces signalling molecules. In the case of

quorum sensing, it is the part of the cell that produces the autoinducers. The simplest way to

show Transmitter, is two places connected by one transition. The model is shown in Figure 4.2-d.

4.2.5 level-0 Receiver

Receiver model is more complex than transmitter. This basic component responds to the

signalling molecule by initiating some changes, such as biofilm formation. In the Receiver model,

CHAPTER 4. MODEL LIBRARY 54

Basic Component Properties Section Figure

Lvl0 Diffusion and Movement Grid section 4.2.1 Figure 4.2-a

Lvl0 Duplication Grid section 4.2.2 Figure 4.2-b

Lvl0 Death Grid section 4.2.3 Figure 4.2-c

Lvl0 Transmitter Grid section 4.2.4 Figure 4.2-d

Lvl0 Receiver Grid section 4.2.5 Figure 4.2-e

Table 4.6: Table of Basic Components and their properties.

there is a place for receiver and a place defined as “RecACC” which is where the tokens from

receiver place are accumulated, the same way that the biofilm could be accumulated on the grid.

The signals emerge from a transition, so they are unlimited but could be changed to a limited

entity if required. The model can be seen in Figure 4.2-e.

Figure 4.2: Four main Level-0 components. a) Diffusion, b) Duplication, c) Death, d) Transmitter,

and e)Receiver.

CHAPTER 4. MODEL LIBRARY 55

4.3 Level-1: Simple Models

Level-1 (Lvl1) components are models made of one or two Level-0 basic components and

one or more properties. They are simpler than complex models (Level-2 and Level-3 models),

and could be broken into basic components. Table 4.7 at the end of this chapter provides a list of

all the simple models in this thesis.

4.3.1 Level-1 Transmitter

The Lvl1 Transmitter, is the combination of basic Transmitter, Diffusion/Movement and

the Sink property. For studying this model under different conditions, one option is to alter the

rate action of diffusion, Sink or TranmsitterTransition which produces the signal. This model

mimics the broadcasting communication of the bacteria without any receivers for the signalling

molecules. Even though the Sink is usually present for the removal of Glu from the grid, here

it is used for removing the signal from the environment to avoid its accumulation. Figure 4.3

demonstrates the SM Transmitter model.

Figure 4.3: Level-1Transmitter: a combination of BC Transmitter, Diffusion and Sink

Required components:

• Level-0 Transmitter (4.2.4),

• Diffusion / Movement (4.2.1),

• Properties: Sink, Grid.

CHAPTER 4. MODEL LIBRARY 56

4.3.2 Level-1 Receiver

The Lvl2 Receiver is the Receiver and Diffusion/movement combined. This model, Figure

4.4, shows the microorganisms which carry the receptor for the signalling molecule, move randomly

on the grid and are not fixed in one place. Since this model is in colour and contains movement,

it is coherent that the Grid would be included in this Simple Model as well.

Figure 4.4: Level-1 Receiver which consists of BS Receiver and BC Diffusion/Movement, as well

as Grid as a property.

Required components:

• Level-0 Receiver (4.2.5),

• Diffusion / Movement (4.2.1),

• Properties: Sink, Grid.

CHAPTER 4. MODEL LIBRARY 57

4.3.3 Level-1 Chemotaxis

Chemotaxis, moving towards a chemical trigger, has been observed in many organisms.

While communicating, some microorganisms such as bacteria move toward the food source

(chemotaxis), accumulate and produce signalling molecules [135]. Some types of communication

such as quorum sensing, when the density of the signalling molecule in the environment reaches a

certain threshold, the microorganisms which have the receptor for it, start importing and then

respond to it in different ways such as biofilm production [110].

The aim is to model chemotaxis, the movement towards food or any other chemical

trigger, via the detection of the gradient of it in the environment on the gird. In order to do so,

unlimited food is produced for the microorganism by connecting a transition to “Glu”. For the

microorganisms to sense the food, it is essential that the food also diffuses in the grid, however,

to prevent its accumulation on the grid we connect it to the Sink transition, placed on the edges,

to leave the system. The chemotaxis model is shown in Figure 4.5.

The chemotaxis model is the combination of diffusion and movement plus the properties

of Glu and Sink. Properties are explained in section 4.1 above.

Required components:

• Diffusion / Movement (4.2.1),

• Properties: Sink, Grid, Glu.

CHAPTER 4. MODEL LIBRARY 58

Figure 4.5: Level-1 Chemotaxis which is a combination of diffusion, movement, Glu and Sink.

4.3.4 Level-1 Duplication and Death

Simple models of duplication and death are combinations of components death and

duplication plus diffusion/movement. Figure below, 4.6, shows how this combination looks. These

models indicate that the bacteria move randomly on the grid while going through reproduction. To

make these two behaviours dependent on a chemical trigger such as food, adding SM Chemotaxis

is possible which will create a system since it would be a combination of two Simple Models.

Required components for Death:

• Level-0 Death (4.2.3),

• Diffusion / Movement (4.2.1),

• Properties: Grid.

Required components for Duplication:

• Level-0 Duplication (4.2.2),

CHAPTER 4. MODEL LIBRARY 59

• Diffusion / Movement (4.2.1),

• Properties: Sink, Grid.

Figure 4.6: Level-1 Models of a) death, and b) duplication.

4.3.5 Level-1 Limited Strip Glu

This simple model is a combination of Glu, Diffusion/Movement and Sink. Using the

Gluxy variable, as explained in the previous chapter, the location of Glu is defined on the right

side of the grid, and creates a strip of food source on one side of the grid. From there, The food,

Glucose or any other chemical compounds diffuses to the rest of the grid and eventually leaves

the grid through the Sink on the other three edges. To make the Glu unlimited, we can add a

transition before GluSource Place, using Gluxy as a variable on the arc to make sure the location

is as required. The model can be seen in Figure 4.7.

Required components:

• Diffusion / Movement (4.2.1),

• Properties: Sink, Grid, Glu, Wall.

CHAPTER 4. MODEL LIBRARY 60

Figure 4.7: Level-1 model of Glu which is located as a strip in one side of the grid with the

variable Gluxy and Sink to remove the excessive Glu out of the grid.

4.3.6 Level-1 Semi-permeable obstacle and Transmitter

The Semi-Permeable Obstacle model is a combination of Diffusion/Movement and Obstacle

properties and Transmitter Basic Component. The obstacle is a simulation of the semi-permeable

membrane of a cell. It has a lower action rate (massaction) than diffusion to be semi-permeable

and a zero mass action to be a block on the way of diffusion of the molecules on the grid. If it

is not zero, then the molecules will enter the area in a lower speed. The model can be seen in

Figure 4.8. Even though Sink is not in this model, it can be added for studying it under another

condition.

Required components:

• Level-0 Transmitter (4.2.4),

• Diffusion / Movement (4.2.1),

• Properties: Obstacle, Grid.

CHAPTER 4. MODEL LIBRARY 61

Figure 4.8: Level-1 Semi-permeable membrane model a combination of Diffusion, Obstacle and

Transmitter.

4.4 Colouring the Models

In ColPN in Snoopy, giving specific data to each token to define their location is called

colouring them [117]. This method gives every token a specific location and is used for multi-level

and multidimensional model construction. ColPN represent a compact and folded version of

a complex model where each object in the system becomes a coloured place and transition to

have a location defined by colour [117]. The models made in ColPN are more realistic, since

they contain space and location and the correct model can be used in many areas such as drug

discovery and personalised medicine and nutrition or other research projects. It is possible to

combine hybrid and colour Petri nets together to study larger biological systems and when the

model is ready it can be exported automatically to hybrid Petri nets for further simulations [118].

Even though the focus of this study is mostly on the biological use of these components, it

is possible to use these models in non-biological content as well. The process of colouring the

models is a generic process which could be used for colouring any models.

The process of colouring in Continuous ColPN for a 2D diffusion model is as follows:

1. Open Snoopy Software. This is the “First Window”.

2. From the tab on the top of the window, click on File and then New.

CHAPTER 4. MODEL LIBRARY 62

3. Choose Coloured Continuous Petri Net. A new window with a white screen will be opened.

This is the Screen

4. Define the “Constant” from the Declaration that is a panel on the left side of the First

Window. For example: D1 = 5 and D2 = 5.

5. Define the “Simple Coloursets” from the Declaration on the First Window based on the

constants from the Declaration on the first window. For example: CD1 = 1-D1 and CD2 =

1-D2.

6. Define the grid from the Declaration on the First Window by clicking on“Compound

Colourset” which is a type “Product” of the Simple Coloursets. For example: Grid2D =

CD1,CD2

7. Define “Variables” on the First Window based on the coloursets. If CD is the size of the x

axis and CD2 the size of the y axis then x = CD1 and y = CD2. This means the variable x

belongs to CD1 and the variable y belongs to CD2. These variables are used for the arcs.

8. Define the “Function" on the First Window based on the neighbouring functions provided

in Table 4.2.

9. Choose “Place” from elements on the tab at top of the First Window and put a place on the

Screen. Double click on the place and after writing a name for the place, on the tap above

the window click on “Markings” and choose the colourset from the list. The Compound

Colourset should be chosen.

10. From elements choose “Transition” and place one on the Screen. Double click on the

transition and after typing a name for it, select “Gurds” from the top tab and underneath

the Guard, write the name of the function with the variables. In the case of the examples

above, it would be “Neighbour2D8(x,y)”

11. From the elements choose “Arc” and drag an arc from the place to the transition. Double

click on the arc and clock on the “Expression” on the top tab. underneath the expression,

define the variables based on the location of the arc as required. For example, (x,y) which

is located in CD1 and CD2 coloursets.

12. Drag an Arc from the transition to the place and do the same steps as the other arc.

13. Now, the model is complete. This is a model of diffusion on a 5x5 grid. After saving the

model, it is possible to export it to a CPN and see the unfolded version of it. Also this

model can be exported to folded CANDL or unfolded ANDL file for further simulations.

CHAPTER 4. MODEL LIBRARY 63

Figure 4.9 demonstrates a summary of the required information for modelling in Snoopy.

Figure 4.9: A summary of the process of colouring a model in coloured Petri nets.

Table 5.1 is a summary of all the types of Properties that have been defined in this study.

The CANDL file of these properties are stored in the data collection. It is important to remember

that once the CANDL file of the properties are unfolded into ANDL files, the Grid2D property

disappears as it is for labelling the places in the folded set.

4.5 Discussion

In this chapter the four levels of modelling were introduced. Properties that are the base

of all the models, Level-0 which are simple and cannot be broken into simpler models and Level-1

model component which are made from simpler models and a few properties. Even though

these models can be used individually, they could be applied in different scenarios to create

biological systems. In the next chapter, these models will be applied to bacteria and Dicty as has

been mentioned before by combining them in different circumstances. Among the applications,

there are two models that are not modelled in the same manner; meaning their sub-models or

components do not exist in the collection of model components. These models are the formation

CHAPTER 4. MODEL LIBRARY 64

of biofilm and the combination of production of AI-2 and biofilm formation. However, due to

their complexity, they are categorised as systems.

CHAPTER 4. MODEL LIBRARY 65

M
od

el
B
as
ic

C
om

po
ne

nt
s

P
ro
pe

rt
ie
s

Se
ct
io
n

F
ig
ur
e

Lv
l1

T
ra
ns
m
it
te
r

T
ra
ns
m
it
te
r,
D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

Se
ct
io
n
4.
3.
1

4.
3

Lv
l1

R
ec
ei
ve
r

R
ec
ei
ve
r,

D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

Se
ct
io
n
4.
3.
2

F
ig
ur
e
4.
4

Lv
l1

C
he
m
ot
ax

is
D
iff
us
io
n
/
M
ov
em

en
G
lu
,S

in
k,

G
ri
d

Se
ct
io
n
4.
3.
3

F
ig
ur
e
4.
5

Lv
l1

D
ea
th

B
C

D
ea
th
,D

iff
us
io
n
/
M
ov
em

en
t

G
ri
d

Se
ct
io
n
4.
3.
4

F
ig
ur
e
4.
6-
a

Lv
l1

D
up

lic
at
io
n

B
C

D
up

lic
at
io
n,

D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

Se
ct
io
n
4.
3.
4

F
ig
ur
e
4.
6-
b

Lv
l1

Li
m
it
ed

G
lu

St
ri
p

D
iff
us
io
n
/
M
ov
em

en
t

W
al
l,
G
ri
d,

Si
nk

Se
ct
io
n
4.
3.
5

F
ig
ur
e
4.
7

Lv
l1

Se
m
i-p

er
m
ea
bl
e
O
bs
ta
cl
e
T
ra
ns
m
it
te
r

T
ra
ns
m
it
te
r,
D
iff
us
io
n
/
M
ov
em

en
t

O
bs
ta
cl
e

Se
ct
io
n
4.
3.
6

F
ig
ur
e
4.
8

Table 4.7: Table of Simple Models and their components and properties.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 66

Chapter 5

Application of Models from the library

In this chapter the components of the model collection are used to create complex models

or Systems. Systems are complex networks which are created as combination of some Basic

Components and/or Simple Models with some properties and they can be broken down into

smaller working models. These systems are applied to some real case scenarios in two microor-

ganisms: bacteria, more precisely E. coli, and Dictyostelium or slime mould. These two are the

representatives of each main biological superkingdom: Eukaryote and Prokaryote.

There is an exception of construction in the application in this study. Bacterial communi-

cation and response model (Quorum Sensing), Signal Production and Biofilm Formation, are not

created from the components of the collection of models in this study. The Biofilm Formation

model, Section 5.1.4 was originally created as a detailed model from scratch and was combined

with the Signal Production model which was constructed by Li et al. [114], in Section 5.1.5.

Since these models are detailed and complex and could be broken down to smaller components,

they are treated as complex systems. Looking at Biofilm Formation Model, it can be broken

down into possible Level-1 and Level-0 components. However, these components are not a part of

the current library but they can be added in a further study. The Quorum Sensing model is an

assembly of Biofilm Formation and Signal Production models, which both are in Level-2, and is

categorised as the only Level-3 model in this study.

The other models such as transmitter and receiver as an abstract form of communication in

a heterogeneous society in section 5.1.1 and Duplication, Chemotaxis and Death in section 5.1.2,

Combined Strip Glu, DCD and TR as a combination of most of the components in this library in

section 5.1.3 and the communication model of Dictyostelium in section 5.2 are all built from the

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 67

Properties, basic components (Level-0) and simple models (Level-1) in this study. In each part the

process of combination is also provided if relevant. It is important to remember that the process

is to introduce the required parts and recognise the repeated parts of the model that should be

removed in order for the models to be combined. The provided guidance is rather a suggestion

than a set of instructions. What matters is to acknowledge the constructing components of the

model. At the end of this chapter a table is provided which summarises all the model components

and systems in this study

5.1 Bacteria E. coli

Systems in this study consist of more than two Properties, two Basic Components and/or

Simple Models together. One of the two microorganisms that were chosen for case study was

bacteria E.coli and the application of the detailed model as well as the models built from the

collection of models are presented int this section.

These models include:

• Transmitter and Receiver, 5.1.1

• Duplication, Chemotaxis and Death (DCD), 5.1.2

• Combined Strip Glu, DCD and TR, 5.1.3

• Biofilm Formation, 5.1.4

• Quorum Sensing and Response, 5.1.5

5.1.1 Level-2 Transmitter and Receiver(TR)

A combination of Lvl1 Transmitter and Lvl0 Receiver models as well as Lvl0 Diffusion, Grid

and Sink properties results in “Transmitter and Receiver” model. In this model the Transmitter

produces a signal. The signal is then diffused on the grid and then reaches the Receiver. In this

model, two different Compound Coloursets are also defined for each of the models in order to

define the location of each part of the model separately. The other method is to simply define the

location in marking of the places while setting the colourset in Grid2D. Using different coloursets

makes amending the values and constants easier, as they are generalised and defined through

constants in the model. For this system, see Figure 5.1.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 68

Required components:

• Level-1 Transmitter (4.3.1),

• Level-0 Receiver (4.2.5),

• Diffusion / Movement (4.2.1),

• Properties: Grid, Glu.

Combination Process: Open the required Transmitter model and Receiver model. Select all

the elements in Receiver model and copy them in Transmitter model (both models should have

the same format, e.g. both should be ColCPN). Remove diffusion, sink and transmittertransition

from Receiver model and connect the signal place of Transmitter to ReceiverTransition of Receiver

model with an arc. set the correct values on the arcs.

Figure 5.1: Simple system model of transmitter and receiver, defined in separate coloursets.

5.1.2 Level-2 Duplication, Chemotaxis and Death (DCD)

Movement, death and duplication are essential parts of microorganisms’ lives. The

mechanism of movement is different in each organism and cell. For example, bacteria produce

flagella while Amoebae moves by extending its cytoplasm. The mechanism of the movement is

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 69

not an argument for modelling in this collection, however the manner of it is. Meaning these

microorganisms move towards a trigger in order to survive and that is what the chemotaxis model

represents. This system, combines the chemotaxis with Lvl0 Duplication and Lvl0 Death. The

duplication rate is dependant on the trigger as well, so that there is more duplication when the

bacteria is closer to the source of the trigger. This model also includes, Glu, Sink, Grid and Wall

Properties. Figure 5.2 shows the model.

Required components:

• Diffusion / Movement (4.2.1),

• Level-0 Death (4.2.3),

• Level-0 Transmitter (4.2.4),

• Level-1 Chemotaxis (4.3.3),

• Level-0 Duplication (4.2.2),

• Properties: Glu, Grid, Sink.

Combination Process: After making sure that all the models are in the same formate, Add

Duplication, Death, Diffusion / Movement and Glu in one Petri net file. Connect death to the

Bact place with (x,y) for its expression. connect division to Bact place with the out going arc

(x,y) and ingoing 2‘(x,y). Connect Diffusion / Movement transition to Glu, with two arc and

both (a,b) expression. When the expression of the arc to and from Diffusion is set as (a,b) it

attracts the tokens but does not affect them in any other way. connect Glu to Sink transition

with Inf expression, or use the Sink_Guard function for it.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 70

Figure 5.2: Duplication, Chemotaxis and Death model. division and movement are dependant on

Glu and Glu is removed form the Sink placed on the edges of the grid.

5.1.3 Level-2 Combined Strip Glu, DCD and TR

The final model that has been applied to bacteria, is the combination of all Lvl0 the

components in the library, except for detailed systems of AI-2 production and Biofilm formation.

Figure 5.3 presents this system. This model includes Chemotaxis, Duplication, Death, Transmitter

(BactT) and Receiver (BactTR) models, which produce AI-2 and biofilm respectively, as well

as Glu, Sink, Wall and Grid properties. The model is created on ColCPN as the population of

bacteria is presented as a density rather than the individual population.

Required components:

• Diffusion / Movement (4.2.1),

• Level-0 Death (4.2.3),

• Level-0 Transmitter (4.2.4),

• Level-0 Receiver (4.2.5),

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 71

• Level-0 Duplication (4.2.2),

• Level-1 Chemotaxis (4.3.3),

• Properties: Glu, Sink, Wall, Grid.

Combination Process: Make sure all the models’ formats are the same. Create a base model

in the desired Petri net format and define the necessary constants, coloursets, values, etc. Copy

chemotaxis and paste it into the base model. Remove the Glu part of the chemotaxis model (Glu,

sink and diffusion are repeated in Glu model) and connect Bact to Glu with 2 arcs both with (a,b)

variables. Rename Bact to BactR representing Receiver. Once again paste chemotaxis model and

do the same. This time rename Bact to BactTR representing Transmitter. Paste Division two

times and connect it to both Bacts. Paste death two time and connect it to both Bacts. Remove

the movement if the SM models were used. Add a transition for AI2 production (AI2production)

and connect BactTR to it. Define its massaction rate based on the provided parameters in the

base model. Add a place for AI2 (AI2) and connect it from AI2production transmition to AI2

place. Add a diffusion to this place and define a massaction rate for it. Add a transition next to

BactR for biofilm formation (biofilmpro) and define a massaction for it. Then add the Biofilm

place and connect it from the biofilmpro transition to biofilm place. Add diffusion to biofilm

place and define a mass action. All new places are on Grid2D colourset. It is possible to use

Receiver and Transmitter models as well. The model can be seen in Figure 5.3.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 72

Figure 5.3: Simple system model of transmitter and receiver, defined in separate coloursets.

The structure of the model is as follows: GluSource is placed on the right side of the

grid and is initialising the simulation. GluSource inhibits the production of biofilm (Biopro)

Glu receives the token from Glusource and can diffuse throughout the whole grid. It exits the

grid through “Sink” in order to prevent its accumulation on the grid. Glu initiates T_ and

R_duplication and causes chemotaxis of both types of bacteria. Both BactTr and BactR use Glu

to duplicate, However, Glu only attracts the bacteria towards the right side of the grid where food

(carbon source) was initiated. BactTr produces AI2. AI2 diffuses on the grid. BactR produces

biofilm only when the number of tokens in GluSource is around one (The inhibitor arc should

start the biofilm formation when GluSource is zero but it does not happen. It seems it does not

inhibits 100%) The produced biofilm diffuses on the grid as well as inhibiting AI2 production.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 73

5.1.4 Level-2 Biofilm Formation

Biofilm is one of the responses to the bacterial communication. The Biofilm Formation

model (BF) was originally made as a whole as a detailed model and its components currently do

not exist in the collection of models of this thesis, except for the Diffusion. However, this model

could be broken to smaller parts as Basic Components and that can be a part of another study.

This model was designed in 2018 and was published in BMC Bioinformatics journal in 2019 [77].

BF describes the process of biofilm formation in E.coli or similar bacteria in detail. The biological

study of this process was explained in Chapter 2 Section 2.4.1. Later on this model is combined

with the model of production of AI-2 done by Li et al [114] to predict the behaviour of bacteria

under different circumstances during quorum sensing and biofilm formation with a focus on the

effect of the distance between the cells on communication. The model is shown in Figure 5.4.

Figure 5.4: The model constructed by our group to show biofilm formation in bacteria.

The “go system” in this model is created by Professor Monika Heiner [77] which creates a

gate in the cell. This gate only opens when the AI-2 reaches threshold which is defined for this

system and is amendable as required. The other parts of the model describe the process of the

production of biofilm which was explained vastly and in detail in Chapter 2.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 74

5.1.5 Level-3 Quorum Sensing

This combined model, published in 2019 in BMC Bioinformatics Journal [77], was the

first system designed in this study. This model is a combination of two detailed models. The

quorum sensing model was designed by by Li et al. [114] in 2006 and was combined by the biofilm

formation model in 2019. The only part of this model that exists in the collection of model

components, is the Diffusion. The model was designed on both 2D and 3D girds. Hybrid Petri

nets were used for modelling which means both continuous and stochastic features were present in

the models. This model shows a broadcast communication occurring in two phases of bacteria life

when they produce AI-2 and then as a response form biofilm. A system was created by Professor

Heiner which made it possible to define threshold for the response to the AI-2 signalling molecule.

Unless that threshold is reached, the bacteria do not allow AI-2 to enter. The model consists of

gene transcriptions, protein productions and inter- and intra-cellular communication [77]. Due to

being a detailed model in can describe may processed in the system. The model can be found

in Figure 5.5. The two AI-2 places in this model are logic places (coloured in Grey), i.e. they

represent the same molecules but are shown with two places.

On an abstract scale, this model is basically a detailed Transmitter, a detailed Receiver

and a Diffusion / Movement model. Currently it is not possible to move complex systems in

Snoopy. Which led us to designing an abstract version which could represent the movement. The

abstract components are explained in 4.3.6.

Required Components:

• Biofilm Formation (5.1.4),

• Signal Production (from Li et al [114]),

• Diffusion / Movement (4.2.1),

• Properties: Grid.

Combination Process: Open Both models and make sure their formats are the same, meaning

both are coloured Continuous Petri nets or Stochastic Petri nets. Select all the elements in

Biofilm_LG and copy them. Paste the model in AIproduction_Li. Remove the Inflow transition

from Biofilm_LG model. Double click on one of the AI-2 places and check the box next to logic.

Do the same for the other AI-2 place as well.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 75

Figure 5.5: System model of AI-2 production and biofilm formation combination of two level-2

components. the AI-2 production part of the model was designed in 2006 by Li et al..

5.2 Level-2 Dictyostelium: Slime Mould

Dictyostelium (Dicty) is a Eukaryote unicellular microorganism that has been a popular

model organism for studying chemotaxis as a response to cAMP [31]. Dictyostelium cells produce

cAMP in order to communicate with one another. The cells then are attracted to the location

with the highest concentration of cAMP [31, 71]. Similar to bacteria, this movement is based

on the density of cells meaning that the cells gather in the place with the most concentration of

the signalling molecule. However, there is a difference between how chemotaxis is modelled in

bacteria and Dictyostelium.

In the model of chemotaxis of bacteria, the bacteria move towards a stable source of food

that has a gradient on the grid. While doing so, they communicate with each other and once

they reach the surface and the amount of the signalling molecule has reached a threshold, then

the bacteria start its changes, such as biofilm formation. In Dictyostelium model, the cells are

attracted towards the concentrations of the signalling molecules which are being diffused on the

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 76

grid. This means that the attraction is not in one place and does not show a stable gradient. As a

result, the bacteria gather around the “Wall” while the Dictyostelium cells might gather anywhere

on the grid as long as there is a high concentration of cAMP. The model can be observed in

Figure 5.6.

This abstract model demonstrates the movement of Dictyostelium towards cAMP, while

cAMP is diffused on the grid. It is important to note that Dictyostelium do not absorb the

molecules and just sense them in order to move towards it. Using a Shell program, the Dic-

tyostelium cells are located randomly on the grid. This shell program, written by Professor David

Gilbert, defines the grid size and the population and produces CANDL and sps files. For axample,

for a grid size of 15x15, around one third of the grid is occupied. However this one third is not

an absolute value and varies between 25% to 30% . The shell program is a random algorithm

that sets numbers 0 to 3 ion each location and then removes the numbers 2 and 3. In Random

Restart Hill Climbing, the initial population of Dicty is 61, 27.11% of the grid and in simulated

annealing this number changed to 69 which is 30.66% of the grid.

Once located on the gird, the cells start producing cAMP and naturally will move towards

where the concentration of this molecule is the highest. The Sink transition is only connected to

the cAMP in order to prevent too much concentration of the molecule on the grid. Otherwise,

there will be too much cAMP everywhere and the movement would not happen.

Required components:

• Diffusion / Movement (4.2.1),

• Level-1 Chemotaxis (4.3.3),

• Properties: Glu, Sink.

Combination Process: Make sure all the models’ formats are the same. Create a base model

in the desired Petri net format and define the necessary constants, coloursets, values, etc. Copy

chemotaxis and paste it into the base model. Rename yarayara to Dicty and Glu to cAMP. Copy

and Paste Diffusion / Movement model. Remove the place connected to Diffusion transition and

connect the transition to cAMP. Do the same with Sink. Add the transition between Dicty and

cAMP for cAMP production. Connect Dicty with two arcs to this transition, so that the Dicty is

not used for production of cAMP. connection this transition to cAMP with one arc. All these

three arcs should carry the expression (x,y).

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 77

Figure 5.6: Model of Dictyostelium chemotaxis.

5.3 Collection of Model Components

The aim of this study is to create a collection of model components in different levels

of complexity. These models have been introduced and discussed in this and previous Chapter.

There are two different groups in the collection: the properties and the model components that

are categorised based on complexity. Table 5.1 is a summary of the properties and their definition

and use while Table 5.2 provides a list of all the models in this library and their components.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 78

Property Definition

Grid The 2D or 3D space that is defined for the model.

Neighbour Functions Define the movement of the tokens and how

the transitions are set on each location.

The Sink The transitions on the edges of a 2D grid or faces of a

3D grid that remove the tokens from the grid.

The Wall By removing the sink from one side of the grid,

a wall is created that from that side no tokens leave the grid.

The Obstacle A membrane that can be located anywhere on the grid.

It can be rigid or semi-permeable.

The Glu The trigger for movement which resembles a food source.

It is places on one side of the grid usually on the same side as the Wall.

Table 5.1: A summary of all the properties that are defined in this study.

5.4 Discussion

Two biological prototypes were chosen to employ the models from the collection of

model components on them. These prototypes are from Prokaryote and Eukaryote biological

superkingdoms and are used as simple samples to represent their families. Bacteria, and more

precisely E. coli, is one of the chosen prototypes. Using the library of models, an abstract model

demonstrating chemotaxis, duplication, death, communication and response was constructed.

Also, a model of biofilm formation was designed, and assembled with another model built by Li

et al [114] for a detailed model of quorum sensing and biofilm formation [77].

The other chosen biological sample is Dictyostelium, the slime mould. This microorganism

have been studied for its unique and interesting communication behaviour. While it is a unicellular

organism, it can join in to build a society as a survival strategy. At this time the cells gather

together and eventually produce a fruiting body which carries their spores for reproduction

purposes. The focus of this study is to simulate the migration stage of Dictyostelim life, when

they are accumulated in one location to create the fruiting body. Using different parts of the

model library, an abstract model was designed to show the communication towards the high

concentration of cAMP and the accumulation of the cells.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 79

Even though these models form the library have been used to demonstrate biological

behaviour, it is possible to use them for other purposes, as the models are generic and abstract.

The models in this thesis are all continuous. Therefore, the numbers that describe population are

non-integers for population density and not individuals. Due to technical issues, it is not possible

to study complex systems in stochastic. To simulate complex system Spike is required but the

current version of Spike at the time of writing this thesis, cannot simulate complex stochastic

models. In further works, this issue can be resolved with the aid of the developers.

In the next chapter, Chapter 7, the output data from the models and optimisation are

provided and analysed using R and Python.

CHAPTER 5. APPLICATION OF MODELS FROM THE LIBRARY 80

T
ab

le
5.
2:

T
ab

le
of

m
od

el
co
m
po

ne
nt
s
in

th
e
co
lle

ct
io
n,

fr
om

bo
th

ca
te
go

ri
es

of
B
as
ic

C
om

po
ne

nt
s
an

d
Si
m
pl
e
M
od

el
s

C
om

pl
ex
it
y
Le

ve
l

M
od

el
bu

ild
in
g
C
om

po
ne
nt
s

P
ro
pe

rt
ie
s

Se
ct
io
n

F
ig
ur
e

Lv
l0

D
iff
us
io
n
/
M
ov
em

en
t

N
/A

G
ri
d

4.
2.
1

4.
2-
a

Lv
l0

D
up

lic
at
io
n

N
/A

G
ri
d

4.
2.
2

4.
2-
b

Lv
l0

D
ea
th

N
/A

G
ri
d

4.
2.
3

4.
2-
c

Lv
l0

T
ra
ns
m
it
te
r

N
/A

G
ri
d

4.
2.
4

4.
2-
d

Lv
l0

R
ec
ei
ve
r

N
/A

G
ri
d

4.
2.
5

4.
2-
e

Lv
l1

T
ra
ns
m
it
te
r

Lv
l0

T
ra
ns
m
it
te
r,

D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

4.
3.
1

4.
3

Lv
l1

R
ec
ei
ve
r

Lv
l0

R
ec
ei
ve
r,
D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

4.
3.
2

4.
4

Lv
l1

C
he
m
ot
ax

is
D
iff
us
io
n
/
M
ov
em

en
t

G
lu
,S

in
k,

G
ri
d

4.
3.
3

4.
5

Lv
l1

D
ea
th

Lv
l0

D
ea
th
,D

iff
us
io
n
/
M
ov
em

en
t

G
ri
d

4.
3.
4

4.
6-
a

Lv
l1

D
up

lic
at
io
n

Lv
l0

D
up

lic
at
io
n,

D
iff
us
io
n
/
M
ov
em

en
t

Si
nk

,G
ri
d

4.
3.
4

4.
6-
b

Lv
l1

Li
m
it
ed

G
lu

St
ri
p

D
iff
us
io
n
/
M
ov
em

en
t

W
al
l,
G
ri
d,

4.
3.
5

4.
7

G
lu

Si
nk

Lv
l1

Se
m
i-p

er
m
ea
bl
e
O
bs
ta
cl
e
T
ra
ns
m
it
te
r

Lv
l0

T
ra
ns
m
it
te
r,

D
iff
us
io
n
/
M
ov
em

en
t

O
bs
ta
cl
e,

G
ri
d

4.
3.
6

4.
8

Lv
l2

T
ra
ns
m
it
te
r
an

d
R
ec
ei
ve
r

Lv
l1

T
ra
ns
m
it
te
r,

Lv
0
R
ec
ei
ve
r,

G
ri
d,

Si
nk

5.
1.
1

5.
1

D
iff
us
io
n
/
M
ov
em

en
t

Lv
l2

D
up

lic
at
io
n,

C
he
m
ot
ax

is
an

d
D
ea
th

(D
C
D
)

D
iff
us
io
n
/
M
ov
em

en
t
,L

vl
0
D
ea
th
,

G
ri
d,

G
lu
,S

in
k

5.
1.
2

5.
2

Lv
l0

D
up

lic
at
io
n,

Lv
l1

C
he

m
ot
ax

is

Lv
l2

C
om

bi
ne
d
St
ri
p
G
lu
,D

C
D

an
d
T
R

D
iff
us
io
n
/
M
ov
em

en
t
,L

vl
0
D
ea
th
,

G
lu
,S

in
k,

5.
1.
3

5.
3

Lv
l0

T
ra
ns
m
it
te
r,

Lv
l0

R
ec
ei
ve
r,

W
al
l,
G
ri
d

C
he

m
ot
ax

is
,L

vl
0
D
up

lic
at
io
n

Lv
l2

B
io
fil
m

Fo
rm

at
io
n

a
D
iff
us
io
n
/
M
ov
em

en
t

G
ri
d

5.
1.
4

5.
4

Lv
l2

D
ic
ty
os
te
liu

m
:
Sl
im

e
M
ou

ld
D
iff
us
io
n
/
M
ov
em

en
t,
C
he

m
ot
ax

is
G
lu
,S

in
k

5.
2

5.
6

Lv
l3

Q
uo

ru
m

Se
ns
in
g
an

d
R
es
po

ns
e

b
Si
gn

al
P
ro
du

ct
io
n,

B
io
fil
m

Fo
rm

at
io
n

G
ri
d

5.
1.
5

5.
5

D
iff
us
io
n
/
M
ov
em

en
t

a
T
hi
s
m
od

el
is

no
t
bu

ilt
fr
om

th
e
co
m
po

ne
nt
s
of

th
e
lib

ra
ry
,a

s
it

or
ig
in
al
ly

w
as

a
de

ta
ile

d
m
od

el
.
H
ow

ev
er

it
in
cl
ud

es
D
iff
us
io
n
/
M
ov
em

en
t
C
om

po
ne

nt
b
T
hi
s
is

a
co
m
bi
na

ti
on

m
od

el
of

Q
uo

ru
m

se
nd

in
g
m
od

el
de

si
gn

ed
by

L
i[
11
4]

an
d
th
e
B
io
fil
m

fo
rm

at
io
n

CHAPTER 6. OPTIMISATION 81

Chapter 6

Optimisation

Optimisation is a target driven heuristic method to find a set of the best solutions for a

problem [100]. Heuristic algorithms provide the closest answer to an optimised solution [109].

Different types of optimisation methods are chosen based on the problem. In this study two

different methods were chosen for the same problem: Finding the optimised rate actions for

the model “Dicty”. These two methods include Random Restart Hill Climbing and Simulated

Annealing. These two methods are well-known, relatively simple to understand and employ, and

computationally fast. While Random Restart Hill Climbing can look for the local (or possibly

global) maxima, Simulated Annealing can explore the search space for the best possible solutions.

The objective of the optimisation is to find the maximum number of Dictyostelium cells that

can accumulate in one location on the grid to model the formation of fruiting body. The target

function is based on the number of Dicty cells on the grid regardless of their locations. Based on

this objective, these two methods seem effective and appropriate.

The code for these methods have been employed in Python. Considering the fact that

Random Restart Hill Climbing is a simple method yet not very accurate, as it might provide

a local maximum instead of the global maximum, Simulated Annealing method was also used.

Using two different methods it is possible to compare the results and conclude which rate(s) have

the most effect on the maximum number of Dicty in one location. In this chapter, after a brief

section of definitions that have been used for optimisation, each method is explained and the

pseudo codes for them for them is provided. The full codes are presented in Appendices B and C.

CHAPTER 6. OPTIMISATION 82

6.1 Definitions

Iteration: The number of loops of simulations. In Random Restart Hill Climbing, there are

two Iterations given by the user. One for the Random Restart of the programme and one for Hill

Climbing steps.

Rate constant: The rate of action for each transition in the model of question. There are four

transitions in the Dicty model to be optimised and all of them are being amended during the

optimisation. This means unlimited number of possibilities for 4 numbers and these numbers are

in a range of 0 to 20.

Delta: After the starting point, specially in Hill Climbing method, the next answers are based

on the previous one. Delta is a number defined in the algorithm that changes the current solution

and creates the new solution.

Temperature: In Simulated Annealing, the Temperature decreases in each iteration, either

way. This temperature is calculated based on the number of Iterations that is set as 100 at the

beginning of the simulation.

Delta condition: Rates less that zero do not make sense in our model. Rate zero means

deactivation of the transition and more than zero defines the activity rate. To avoid achieving

less than zero rate action, a condition is set in the algorithm that changes the solution, if it is

less than zero.

Acceptance Condition: The new solution is accepted only when it is more than the previous

solution. To check that, the maximum amount of Dicty is checked on the grid, since the adjective

is to achieve the highest number of Dicty possible. Checking that, if the new maximum number of

Dicty is higher than the previous, it is accepted, otherwise it is rejected. In Simulated Annealing,

since there is the Acceptance Possibility (AP), the acceptance condition is slightly different. In

Simulated Annealing, if the new maximum number of Dicty is not more than the previous, the

AP is calculated which is based on the temperature. the lower the temperature, the lower the

possibility of accepting the new solution. Other than that, the new solution is rejected.

CHAPTER 6. OPTIMISATION 83

Values_index: Values_index is the csv file output from the optimisation which provides the

required information such as the location of the maximum amount of Dicty, the old and new

solution of the number of Dicty, the rates, the calculated AP, the number of Dicty present on

the grid and the status of the solutions, whether they are accepted or rejected; and in case of

Simulated Annealing whether they were accepted due to high AP.

Mother file: The mother files is the original spc file for Spike created before the simulation.

In this algorithm, a copy is created and all the changes is intended on the copy file. Thus the

mother file remains the same during the process of simulation.

Workflow in Figure 6.1 exhibits the process of optimisation regardless of the method. The

“Randomly located Dicty Andl and spc files” are created by the shell program that places Dicty

cells randomly on the grid and creates the relative spc file. In Random Restart Hill Climbing this

happens at the beginning of every random restart and in Simulated Annealing it. only happens

once at the start of the optimisation. The Fitness is accepted when the new maximum population

on the grid is more than the last.

CHAPTER 6. OPTIMISATION 84

Figure 6.1: Flow chart of optimisation. The process of optimisation regardless of method in this

thesis.

spc

mother file

Randomly located

Dicty Andl and spc files
Spike

First Solution & FitnessChange of Rates

New spc file

New Solution & Fitness

New

Fitness

Better?

First Fitness =

New Fitness

no
yes

Python code in both Random Restart Hill Climbing and Simulated Annealing call Spike

and use the output from it. The output is inspected by the target function in the code and

while it extracts import information from the simulation, it decides whether to accept the new

solution and change the spc file or not and then Spike is called again for the new iteration.

Figure 6.2 displays the system diagram of optimisation, exhibiting the software tools and the files

used during the simulations. It is important to note that in Random Restart Hill Climbing this

diagram starts from the beginning at every random restart whille in Simulated Annealing the

shell programme is used only once at the beginning.

CHAPTER 6. OPTIMISATION 85

Figure 6.2: The files and Software tools used in Optimisation. The white squares represent

software tools and the blue represent the files.

Optimisation pro-

gram in Python

Randomisation

Shell program

Spike

call

call
candl file

modify

spc file

modifyread

input

csv file

write

read

Optimisation

result csv file

writes

6.2 Random Restart Hill Climbing

Hill Climbing (HC) is a heuristic optimisation method that begins the optimisation at

a random point and starts climbing the hill by exploring the search space looking for better

solutions. When reached a peak, the simulation will stop, concluding that the best solution is

found. It is a local search method which only needs memory for the current run. This makes

the process more efficient. But since the found peak might be a local maximum and not the

global maximum, traditional HC is not the best method for optimisation. However, by adding the

Random Restart(RRHC) to it, HC turns to be a more reliable method. In RRHC, the algorithm

restarts randomly and starts over to a new search area. With this method, the possibility of

finding global maximum increases.

Both HC and RRHC can only go up and reject the lower values; This might result in not

finding the global maximum at all. The other issue with RRHC is that the algorithm cannot

predict if there are no solutions so it will continue the optimisation with no end by changing the

local maximum [173].

In Dicty model there is a set of four constant rates. The target function of RRHC is to

change these four rates in order to find the best combination of them when the number of Dicty

cells is as high as possible. Therefore, the condition for the solution to be accepted is to compare

CHAPTER 6. OPTIMISATION 86

the maximum number of Dicty on the grid. if the new maximum number is more than the old

one, the the new solution is accepted; otherwise it is rejected.

The final version of the code, calls a Shell program written by Professor Gilbert to define

random locations for Dicty on the grid and this happens at each random restart. I removed

one part of the acceptance condition of the maximum existing strictly at the centre of the grid

and decreased the delta. Delta is the difference between the current rate constants and the new

ones. The reason was, when delta was too high, the code could not find the best solutions in

between the constants and most of the rates were rejected. Basically, the code would jump over

the possible accepted solutions due to high delta. The code produces plots and an output file

that shows the improvement of the code in each run.

6.2.1 Pseudocode

To increase the chance of getting the best number for each action rate, we decided to set

the delta, not as a constant number but a random number in a range.

This rate is a random number between zero and 10, up to two decimal numbers. So now,

there are two steps of randomised numbers. First, in the HC loop, the initial random numbers

which replace in the mother file and the second is when a delta is randomly chosen and changes

the current action rates. Algorithm 1 shows the pseudocode oof Random Restart Hill Climbing.

Algorithm 1 Random Restart Hill Climbing Algorithm
1: procedure RandomRestartHillClimbing

2: for x← 1 to STARTPOINT do

3: S ← Random_Solution . current solution

4: F ← Fitness(S) . current state’s fitness

5: for i← ITER do

6: S′ ← SmallChange . new solution

7: F ′ ← Fitness(S′) . new state’s solution

8: if F ’ better F then then

9: S ← S′

10: end if

11: end for

12: end for

13: end procedure

CHAPTER 6. OPTIMISATION 87

6.3 Simulated Annealing

Simulated Annealing (SA) is another optimisation method that is inspired by the physical

annealing process, in which the temperature starts at a high point and decreases over the run. In

SA, the initial temperature is set at a high amount. The algorithm looks for the maxima and

accepts the values that are in the acceptance possibility distribution. When the temperature is

higher, the acceptance possibility has a higher range and almost all of the values are accepted. As

the temperature goes down, the values are narrowed down and only the best values are accepted.

Eventually, among the best found valued, the simulation finds the global maximum.

Compared to HC, SA is a more accurate method as it tends to find the global maximum by

accepting the worse solution with a probability and making the worst solutions’ acceptance to be

unlikely. The change in the accepted solutions is defined by “temperature”. At high temperature,

worse solutions than the last accepted soution are accepted but as the temperature decreases,

the probability of this acceptance decreases. This method has more mathematical calculations

which slows down the simulation. Also, the initial temperature which is set by the user, and the

cooling rate must be calculated precisely. Otherwise, in the end, the final value might not be the

best answer, since the initial temperature was not high enough or the cooling down was too fast.

My colleague Yasoda Jayaweera has been assisting me as she had used this same method in her

thesis. The current pseudocode is as below:

6.3.1 Pseudocode

The SA algorithms is based on an article by Stephen Swift et al [185] in which simulated

annealing is used as an optimisation method. In this article they calculate that the best cooling

is c = 0.99994. The initial temperature is set at 100. The Pseudocode for Simulated Annealing is

shown in Algorithm 2.

CHAPTER 6. OPTIMISATION 88

Algorithm 2 Simulated Annealing Algorithm
1: Given : NumberofITERATIONS(ITER)

2: procedure SimulatedAnnealing

3: S ← Random_Solution . initial random rate constants

4: F ← Fitness(S) . maximum number of Dicty in the final time frame

5: θ0 = 100 . θ0 ← InitialTemperature

6: c = 0.99994 . Cooling rate

7: t = θ0 ∗ (c)ITER . Final Temperature

8: for x← 1 to ITER do

9: S′ ← New_Solution . new constants based on the previous solution

10: F ′ ← Fitness(S′) . maximum number of Dicty in the final time frame

11: if F’ better F then then

12: S ← S′

13: else if F better F’ then then

14: e = 2.71828

15: ∆f = F−F ′

θ

16: p = e−∆f

17: r = random(0, 1)

18: if p > r then then

19: S ← S′

20: else

21: pass

22: end if

23: end if

24: θi = c ∗ θi−1

25: end for

26: end procedure

6.4 Discussion

There are many methods for optimisation, and the method is usually chosen based on

simplicity or functionality of the algorithm. In this study two of the most popular Methods are

chosen to optimise the Model “Dicty”: Random Restart Hill Climbing and Simulated Annealing.

The reason to use two different methods is to compare the results and the practicality of these

CHAPTER 6. OPTIMISATION 89

two methods. Hill Climbing is simple but may not be accurate since it may provide the local

maximum instead of the global one while Simulated Annealing is more accurate and searching

as many answers as possible, it might provide a better answer but is more complex so it takes

memory and time. The target function for optimisation is to find the best possible combination

of rates to achieve the maximum number of Dcity cells on the grid in one location mimicking the

creation of fruiting body in nature. In the next chapter, Chapter 7, the output data both from

the models and optimisation simulations are provided.

CHAPTER 7. DATA ANALYSIS AND RESULTS 90

Chapter 7

Data Analysis and Results

There are different ways of analysing the output data from the models. For simulation of

complex models in this thesis, Spike has been used which was introduced in Chapter 3 Section

3.1.3. Also, to analyse the output data from Spike and Snoopy as well as the result of the

optimisations, machine learning and big data analysis methods have been applied using R with a

combination of Python when required. In the Python codes of optimisation, the code selects the

most important parameters and saves them in a separate dataset which creates a sufficient data

frame to be analysed, with all the important information included in it. The optimisation result

is compared to the “expected” behaviour based on the biological literature. No biological data

has been provided for this study for mathematical and computational verification, due to the

unavailability of the experimental data, but based on the previous biological studies, it is possible

to achieve the expected results from the models created in this thesis.

In this chapter, after a brief review of the timing of the simulations in Section 7.1, the

output data of interesting models are provided, to prove that they work as it is expected of

them. In the first part, Section 7.2.1 the output data from the Diffusion Movement is analysed.

In Section 7.2.2 the output data of chemotaxis is visualised and compared with the diffusion.

In Section 7.2.3 the Semi-permeable membrane obstacle model is visualised on a heatmap to

demonstrate the functionality of the model. Finally, in Section 7.2.4, one of the most interesting

models is analysed which is the system in which Glu is on one side of the grid and it is shown

how the bacteria move on the grid to reach it. To avoid repetition of the result of the two models

“Quorum Sensing and Response” and “Biofilm Formation” , the analysis of these models are not

included in this thesis. The analysis of these models can be found in the study done by our

group, published in 2019 in BMC Bioinformatics Journal, “Spatial quorum sensing modelling

CHAPTER 7. DATA ANALYSIS AND RESULTS 91

using coloured hybrid Petri nets and simulative model checking” [77].

On the second part of this chapter, 7.3, the output of optimisation simulations, Random

Restart Hill Climbing and Simulated Annealing are analysed in order to find the best combination

of constant rates that is found in 50000 runs.

7.1 Timing the Simulations

Different machines are used for the simulations in this study. Unfortunately there was no

access to supercomputers for this thesis at the time of simulations or writing. To check how long

each simulation takes in each machine, the time of each simulation is measured. The simulations

were repeated on the most updated machines to provide the most updated information possible.

Table 7.1 provides the time it takes for each model to be unfolded and simulated in Spike. To

achieve these information the command time was used. The grid size in all of these models is 7x7.

The machine runs a macOS Monterey (Version 12.1), its CPU 1.7 GHz Quad-Core Intel ® Core™

i7 and Memory of 16 GB. As it can be seen in Table 7.1, as the models get more complex, the

time it takes to simulate increases. Looking at different levels of Duplication, it in obvious that

these models and the systems that include them are taking more time as the models develop. This

is probably because of the weighed arcs that exist in these models. There are two components

from Systems that are not included in this table: “Biofilm Formation” and “Quorum Sensing

and Response”. These two models were simulated and analysed in BMC Bioinformatics Journal

published in 2019 [77].

The other simulation is the optimisations. Two methods of optimisation were applied

in this thesis: Simulated Annealing and Random Restart Hill Climbing. One of the reasons of

choosing two methods, is to compare them. Computationally, Random Restart Hill Climbing takes

considerably less time and memory compared to Simulated Annealing. Random Restart, starts

the simulation once it reaches the provided number of iterations, in this case 1000. Simulated

Annealing goes through the same simulation by decreasing the temperature. The reasons for this

difference can be as follows:

• Hill Climbing does not require a memory to save the history of simulation while Simulated

Annealing goes through all the iterations, by decreasing the temperature. This means

this method consumes memory for the previous iterations and increases the time of the

simulation.

CHAPTER 7. DATA ANALYSIS AND RESULTS 92

• Simulated Annealing includes some simple mathematical calculations, such as the current

temperature and the minimum temperature. These calculations happen in every iteration

that can slow down the process. Hill Climbing does not consist these calculations.

• The output of the optimisation is saved into a CSV file. Each 1000 Hill Climbing has its

separate file. This means the created and opened file is closed at the end of each 1000

iterations. On the other hand, the whole 50000 iterations of Simulated Annealing are written

in one huge data frame in csv. This file is created and opened at the start of the simulation

and is open for the whole process. This causes an increase in memory consumption and

thus longer time for this method of optimisation.

Table 7.2 provides the time for each optimisation. These optimisations were done on a

macOS machine running macOS version 10.3.1, its CPU 2.5 GHz Quad-Core Intel ® Core™ i7 and

Memory of 16 GB. It is important to remember that the provided times are only estimated. In

case of Random Restart, there are the pauses between the random restarts that are not calculated.

It is important to note that the relationship between the time and the number of iterations is

not linear. It means if it takes 15 hours for 5000 simulations of Simulated Annealing, it does not

mean that it will definitely take 30 hours for 10000. Even though the difference between the

estimated and actual time may not be significant, it is still there.

7.2 Models

Movement and Chemotaxis are two of the most basic and yet most interesting simple

components in this study. In this part these two simple components as well as one Lvl1 model,

Semi-permeable Obstacle and Transmitter and one Lvl2 model, Combined Strip Glu, DCD and

TR are visualised and analysed.

7.2.1 Diffusion / Movement

When the models are small and simple, as it is in the model of Diffusion / Movement

models, the built-in simulation of Snoopy is sufficient enough for understanding the behaviour of

the model and produce numeric data. The numerical data could be exported from Snoopy as an

image or a time-series data frame in CSV format. In this example, the plot of the simulation as

an image is exported to provide an idea of how the plots in Snoopy work. In this model the grid

CHAPTER 7. DATA ANALYSIS AND RESULTS 93

Table 7.1: The time it takes to simulate each model component from the library using Spike.

Model Time

Diffusion 0.26 s

Lvl0-Division 0.58 s

Lvl0-Death 0.18 s

Lvl0-Transmitter 0.25 s

Lvl0-Receiver 0.31 s

Lvl1-Transmitter 0.31 s

Lvl1-Receiver 0.42 s

Chemotaxis 0.45 s

Lvl1-Death 0.30 s

Lvl1-Division 3.20 s

Limited Glu Strip 0.34 s

Semi-permeable Obstacle Transmitter 0.39 s

Transmitter and Receiver 0.54 s

Duplication, Chemotaxis and Death 1.84 s

Combined Strip Glu, DCD and TR 39.99 s

Dicty 0.76 s

Table 7.2: Etimated time it takes for Optimisation to be done.

Method Number of Runs Time

Random Restart Hill Climbing 5000 Random Restarts 12 hours

(5 RR and 1000 Iterations each)

Simulated Annealing 5000 Iterations 15 hours

size (D1) is 11 and the initial location of the place is at (3,3) carrying 100 tokens in one location.

In this model the diffusion rate is defined with the parameter k, which has different rates and

could be chosen upon simulation in “Model Configuration” part of the simulation window.

In this continuous simulation the constant rate for the diffusion is set at 0.1. As it can be

seen in Figure 7.1a, since the number of places is too many, the plot cannot exhibit all of the

places in one image and it is not very informative either. However, to get an understanding of the

model better, a closer look at the plot of all the location where x is 3 can be helpful, which can

be seen in Figure 7.1b. What is obvious in this plot though is that the number of tokens in (3,3)

CHAPTER 7. DATA ANALYSIS AND RESULTS 94

decreases dramatically and increases in other places demonstrating the distribution of the tokens

on the grid. Also, the locations closer to (3,3), such as (3,4) and (3,2) increase to a higher number

faster compared to the further locations. This is due to the Neighbour2D8 function that has been

defined in the model and allows the tokens to move in 8 different direction, but it does not allow

them to jump one location. This means the closest locations to the initial placement, receive

the most tokens, compared to the ones far away. Since the model is continuous non-integers are

accepted as the number of tokens.

Figure 7.1: The plot of Diffusion / Movement model exported from Snoopy.

(a) Dicty Locations in simulation 4147 at the

beginning of the simulation

(b) Location and number of Dicty in the last

time frame of simulation 4147

7.2.2 Chemotaxis

Chemotaxis is a Level-1 model component which indicates the tokens should move towards

a chemical trigger, which in this case it is the food source, Glu.The best way to analyse the

data for a model that its focus is on movement, is heatmaps. These heatmaps in this section

are created by Python, but a similar work can be done with R. For this model, Python codes

were written by my colleague Doctor Sarath Dantu which created heatmaps for each time frame

and from the heatmaps it created a mp4 file, placing the images in order of time and creating a

movie that demonstrates the improvement of the model over time. This method is used for other

models as well when the location or movement is an important aspect of the model. Figure 7.2

is the shots from 4 different time frames that show tokens (mimicking bacteria) at (1,6) move

towards the food placed at (11,6).

CHAPTER 7. DATA ANALYSIS AND RESULTS 95

In this model there are three different rates, Glu Diffusion, Chemotaxis and Sink,that

could be altered as required. As it can be seen in Fugure 7.2, there is only one token placed at

(1,6). This one token, can be found distributed at the Wall of Glu, with the most concentration

at the centre of the Wall, where naturally the concentration of Glu is also the maximum. The

Glu creates a gradient, which is the same behaviour in all the models that include Glu. This

gradient is shown in Figure 7.4a.

Figure 7.2: Heat maps made by python codes put together to show the progress of the model over

time. Figure 1 is at the beginning and Figure 4 is the end. The grid size of this model is 11 x 11

7.2.3 Semi-permeable Obstacle and Transmitter

Designing obstacles on the grid can push the boundaries of modelling a little further.

As challenging as it is to model the obstacles, these models are one of the most interesting

components in the library. The Obstacle can be modelled in one of the three ways:

1. A semi-Permeable membrane consisting of transitions with a lower diffusion rate compared

CHAPTER 7. DATA ANALYSIS AND RESULTS 96

to the other locations. This results in a slower diffusion in the defined area.

2. A membrane that only allows the tokens to leave its area but does not allow anything to

enter.

3. A block that does not allow anything to cross.

Here, the first option is chosen for analysis. This obstacle is a semi-permeable membrane

that has a slow diffusion. So, when the tokens enter in this area, their movement is slowed down.

The obstacle is placed at the top of the grid in two layers. The movement of the tokens is random

but gradually they will cover the whole grid. The expected result is to see a significantly slower

movement of the tokens in the area of the obstacle at the top of the grid. This was achieved

perfectly and is shown in Figure 7.3.

The grid size of this model is 7x7 and the initial number of tokens is set at 10 on (2,4). As

it can be seen in Figure 7.3, the difference in speed of movement or diffusion at the top of the

grid is noticeably slower than the rest of the grid. Again, this is a continuous model, allowing

non-integer numbers. To see the same behaviour in a stochastic model, the initial number of the

tokens should be as great as the grid size or more.

CHAPTER 7. DATA ANALYSIS AND RESULTS 97

Figure 7.3: Heat maps made by python codes for the Semi-Permeable obstacle. The obstacles are

placed on the top in 2 layers. There are no sinks in this model. It is visible that the speed of the

diffusion is lower in the area of Obstacle.

7.2.4 Combined Strip Glu, DCD and TR

This model is one of the most complex models in the collection as it contains movement,

death, duplication, Transmitter and Receiver; basically all of the Lvl0 components. To make

sure that the model is behaving as expected, different methods of visualisation and analysis is

done. For example, to check if the Glu creates a gradient, a heatmap is used that can be seen in

Figure7.4 and to check if the tokens are attracted to Glu, a 3D plot is created, Figure 7.4a, that

shows the number of bacteria in the final time frame in each location.

The Gradient of Glu can be seen in Figure, 7.4a. This heatmap shows how the number

of Glu molecules is higher when closer to the source and less further away with a gradient that

decreases gradually with the distance from the source. The 3D plot in Figure 7.4b, indicates the

location and the number of transmitters (BactTR) on the grid using axis z to show the number of

bacteria. The behaviour of BactTR and Receivers (BactR) is the same. They both move towards

CHAPTER 7. DATA ANALYSIS AND RESULTS 98

the food source and accumulate around it.

Figure 7.4: The behaviour of Combined Strip Glu, DCD and TR demonstrating the gradient of

Glu, the movement of Transmitter and gradient of biofilm as a result of the communication

(a) The Gradient of Glu is visible in this heat-

pam. Close to the source, there are more Glu

compared to the further locations.

(b) Location and number of Transmitter at the

end of the simulation. As expected, the cells

gather around the trigger of the chemotaxis and

remain there.

7.3 Optimisation Results

Hill Climbing is an optimisation method that looks for solutions, checks for their fitnesses

and accepts the better solution. The accepted solution is set as the default solution and is

compared with the next one. If it is not better, the solution is rejected and the previous fitness

remains unchanged. The algorithm for this optimisation is provided in Chapter 6.

7.4 Principle Data Analysis

Principle Data Analysis (PCA) is a data analysis technique that is used for data visualisation

and noise reduction for large datasets. PCA is a suitable method for analysing big data with

multiple dimension variables as it creates a smaller dataset based on principle components which

can be used for understanding the correlation between different variables in the data. This method

is unsupervised, meaning it is used for unlabelled data in hope of finding patterns, clusters and

CHAPTER 7. DATA ANALYSIS AND RESULTS 99

correlations in the data set.

7.4.1 PCA on Random Restart Hill Climbing

Before the analysis, the accepted populations of Dicty are filtered, since these are the data

that we are interested in. Out of 50000 steps 383 observations are accepted. The reason of this

low acceptance rate is that the new clustered population in one locations mostly lower than the

last. For the new solution to be accepted the new clustered population should be higher than the

last. In the most extreme scenarios the when the population is around 0.3, it still reaches to 0.7

which is the maximum number of Dicty achieved in these simulations.

In these simulations, the initial number of Dicty is 61, around 27% of the size of the grid.

If there is Dicty in all 225 locations of the grid, then there will be 0.2 Dicty in each location.

Hence, a population of 0.7 is more than 3 times the number that is on a equally distributed

population of Dicty on the grid.

After filtering the data, PCA is applied to the accepted rates. Since this method can only

be used on numeric data, PCA is only used on the “k_diff”, “k_mvmnt”, “k_pro” and “k_sink”

columns, which define respectively the rates for diffusion, movement, sink and production of

cAMP, in the output data from both Random Restart Hill Climbing and Simulated Annealing.

With this method we hope to find the correlation between the rates. Table 7.3 shows the result

of PCA on these four variables.

Table 7.3: The result of PCA analysis of RRHC.

PC1 PC2 PC3 PC4

k_diff -0.1433535 0.9282277 -0.34306807 -0.01214249

k_mvmnt -0.5371974 0.1997441 0.75351264 0.32208692

k_sink -0.6170094 -0.1329701 -0.07462533 -0.77204233

k_pro -0.5569274 -0.2842791 -0.55583636 0.54778027

Table 7.4 presents the importance of components. Based on this table, the cumulative

proportion shows that by PC3, 91% of the total variability is explained. Figure 7.5a which is the

cumulative proportion of explained variance (PEV) and Figure 7.5b is a histogram of each PC

that shows 91.8% of the variation is explained by the first two PCs. Based on the observations in

the tables and figures, it can be concluded that PC1, PC2 and PC3 are efficient for the rest of

CHAPTER 7. DATA ANALYSIS AND RESULTS 100

the analysis

Table 7.4: The importance of components table of PCA for Random Restart Hill Climbing.

PC1 PC2 PC3 PC4

Standard deviation 1.4334 1.0158 0.7644 0.57384

Proportion of Variance 0.5137 0.2579 0.1461 0.08232

Cumulative Proportion 0.5137 0.7716 0.9177 1.00000

Figure 7.5: The result of PCA of RRHC shows that PC1, PC2 and PC3 are necessary for the

analysis.

(a) Cumulative proportion explained variance.

By PC3 more than 80% of the variability is

explained.

(b) Bar plot of PCs. Based on this bar plot PC1,

PC2 and PC3 are sufficient for the data analysis

Since it seems that the first three PCs provide a satisfactory amount of the required

variance, these three PCs are used to visualise the correlation between the different variables.

The plots 7.6a and 7.6b show that the three variables of k_sink and k_pro are closely correlated

while k_diff is completely different.

CHAPTER 7. DATA ANALYSIS AND RESULTS 101

Figure 7.6: The correlation between PC1, PC2 and PC3 in RRHC in both plots shows that k_diff

is the most different variable in the data set.

(a) Bar plot of correlation between the four vari-

ables in three PCs.

(b) Correlation circle showing the correlation

between the four variables.

To check the effect of k_diff, the rate of diffusion, on the population density a correlation

analysis was run on the original data. This matrix, shown in Figure 7.7, shows that the effect of

diffusion on the population density is completely different to the other rates. Looking at this

plot, however, shows there is no linear correlation between k_diff and ‘max amount new” which

is the population of Dicty. But there is a correlation between the diffusion and movement which

makes sense. If there is no diffusion of cAMP on the grid, the Dicty cells will not move. If the

diffusion is high, then the movement will be faster as well so that the maximum population

density is achieved faster. To see the relationship between the diffusion and population density,

other visualisation and analysis is done which is can be found in Section, 7.5

7.4.2 PCA on Simulated Annealing

Two different method of optimisation were used in this study. In the previous section we

explored the PCA result of Random Restart Hill Climbing. In this section the same method is

used to analyse the data from Simulated Annealing.

Simulated Annealing is an optimisation method that has the ability of accepting worse

solutions, if these solutions have a high Acceptance Possibility (AP). The possibility of a number

being accepted with high AP is higher when the temperature is higher. Therefore, mostly it

happens in the first iterations. As the temperature decreases, the number of accepted solutions

based on high AP also lessens. The calculations for AP is provided in Algorith 2. There are

three groups in the dataset: rejected, AP high and accepted. The PCA analysis is done on the

CHAPTER 7. DATA ANALYSIS AND RESULTS 102

Figure 7.7: Correlation matrix between rates and the population density of RRHC. This shows

the difference in the effect of diffusion on dicty population density compared to the other rates.

accepted solutions.

Table 7.5 presents the result of PCA on the output data from SA and Table 7.6 provides

the information about the importance of each PCA analysis. This table explains the proportion

of explained variance in the dataset. As it can be seen PC1 explains 45% of the variability of the

output data, PC2 explains 21% and PC3 20%. With a look at the cumulative proportion, it can

be seen that by PC3, the total variability reaches 87% which is another proof of the fact that

PC4 is the only principle component that will not be used in the data analysis.

Table 7.5: The result of PCA analysis of SA.

PC1 PC2 PC3 PC4

k_diff 0.5975343 -0.1739437 0.1534465 -0.7675614

k_mvmnt -0.4374830 -0.3024174 0.8404351 -0.1040251

k_sink 0.5101182 0.6414719 -0.1044463 -0.5633686

k_pro -0.4374252 -0.6832285 -0.5091307 -0.2874788

CHAPTER 7. DATA ANALYSIS AND RESULTS 103

Table 7.6: The importance of components table of PCA for Simulated Annealing.

PC1 PC2 PC3 PC4

Standard deviation 1.3506 0.9260 0.8958 0.7181

Proportion of Variance 0.4561 0.2144 0.2006 0.1289

Cumulative Proportion 0.4561 0.6704 0.8711 1.0000

For a better understanding, it is possible to visualise the result of the PCA which can be

seen in Figure 7.8a and Figure 7.8b. These two figures show the plot of cumulative proportion to

confirm the fact that the first three PCs are enough for the data analysis. As it can be seen in

Figure 7.8b the cumulative proportion reaches more than 80% by the third PC.

Figure 7.8: The result of PCA of SA shows that only PC1, PC2 and PC3 are necessary for the

analysis.

(a) Cumulative proportion explained variance.

The total variability of the first three PCs is

87%.

(b) Bar plot of PCs. Based on this bar plot

PC1, PC2 and PC3 are sufficient for the data

analysis.

To understand the correlation between the different variables, a correlation plot is provided

in Figures 7.9a and 7.9b. As it can be seen in these plots, the behaviour of k_diff is completely

different from the others. This is the same outcome from the analysis of RRHC. It can also be

seen in both these figures that there is a similarity in behaviour between k_pro and k_mvmnt.

This demonstrates the relationship between these two variables. When there is no production of

cAMP, the movement does not happen. This behaviour is set as one of the expected behaviours

of the model.

CHAPTER 7. DATA ANALYSIS AND RESULTS 104

Figure 7.9: The correlation between PC1, PC2 and PC3 in SA in both plots shows that k_diff is

the most different variable in the data set.

(a) Bar plot of correlation between the four vari-

ables in three PCs in SA

(b) Correlation circle showing the correlation

between the four variables in SA which indicates

how k_diff is completely different from the other

rates.

Another way to study the correlation between the rates, is to create a correlation matrix

between the rates and the population density which is shown in Figure 7.10. Considering that this

analysis is only done on the 13 solely accepted iterations of simulated annealing iterations, this

matrix provides a better view for the correlation that the matrix of RRHC. Based on this matrix,

there is no linear correlation between the four variables and the population density of Dicty on

the grid. This matrix does not show any linear relationship between the four variables and cluster

of Dicty cells on the gird. This might be due to the few data points that have been analysed,

compared to a much bigger accepted dataset for RRHC. Table 7.9 provides the information for

the accepted Dicty in this optimisation method.

CHAPTER 7. DATA ANALYSIS AND RESULTS 105

Figure 7.10: Correlation matrix between rates and the population density of SA. like RRHC, this

matrix shows that diffusion has a different effect on dicty population density compared to the

other rates.

7.5 Inspecting the Behaviour of Dicty

The models that are used for optimisation are continuous and the number of tokens ban

be non-integer. Therefore, here “population” is used interchangeably with “population density”.

In this section different visualisation methods are used to present tdifferent aspects of the model

for a better understanding of its behaviour.

7.5.1 Visualisation of Random Restart Hill Climbing

RRHC contains 50 random restarts and each random restarts contains 1000 iterations.

The aim of the optimisation is to find the most effective constant rate on the population of Dicty

on the grid as well as finding the optimal combination of these rates to achieve the expected result.

The reason for choosing 50000 runs of Hill Climbing was the time limit. In Further studies, this

number can increase in order to find more and solutions. However, the observation of the output

CHAPTER 7. DATA ANALYSIS AND RESULTS 106

result of RRHC shows that the current best solutions might be the global maxima regardless of

the number of random restarts. To avoid overwriting the data, each random restart has a tag

made of random numbers.

Among the 50000 results, there are some interesting combinations that stand out. The

maximum Dicty on the grid is 0.7865301, when none of the rates are 0. However, the population

can go as high as 3.8861813 when there is no diffusion for cAMP. Table 7.7 summarises the

interesting findings from RRHC:

Table 7.7: Table of outstanding rates and results from 50k RRHC

Diffusion Movement Sink cAMP Production Population Density Tag Number

0.00 139.64 25.08 20.33 3.8861813 4147

0.00 15.33 17.09 25.24 3.6061651 2387

0.00 40.83 73.87 88.85 3.4099376 3644

0.00 6.28 15.19 4.84 3.1146926 1687

159.46 118.02 43.35 0.00 1.0000000 2505

45.93 66.62 18.34 0.00 1.0000000 7572

18.92 30.45 38.07 0.00 1.0000000 3644

25.59 0.00 7.32 5.85 1.0000000 4090

14.79 0.00 21.14 94.34 1.0000000 365

29.41 0.50 15.21 0.04 0.7865301 3673

0.09 21.77 147.55 88.74 0.7739143 9503

0.11 55.29 137.23 15.38 0.7737875 4605

0.09 83.91 93.58 6.65 0.7736439 6089

0.12 45.11 106.07 22.30 0.7735341 9935

As it can be seen in Table 7.7, simulations 2505, 7572 and 3644 have no production of

cAMP, hence the Dicty cells do not move at all. Once again this is an indication that the design

of the model is correct as the Dicty cells are not supposed to move when cAMP is not present on

the grid. The other simulations, 4090 and 365 have no movement, which provides the same result

as when the rate of movement is zero.

When diffusion of cAMP is zero, in four case of simulation numbers 4147, 2387, 3644 and

1687, The population density of Dicty can go as high as 3.88. This indicates that the model is

designed correctly: when there is no diffusion of the cAMP, the Dicty cells produce cAMP in

their own locations. Then, Dicty cells move towards the locations with the highest concentration

CHAPTER 7. DATA ANALYSIS AND RESULTS 107

of cAMP. In model 4147 the first maximum location is (11,4) and in the other three with the

population of higher than 3 and less than 3.88 is at (8,2). Figures 7.11a and 7.11b exhibit a

heatmap of simulation 4147 in which the diffusion of cAMP is zero but the number of Dicty cells

on the grid is the maximum compared to the other simulations.

Figure 7.11: Heatmap of simulation 4147, where the number of Dicty is 3.88 but the diffusion of

cAMP is zero

(a) Dicty Locations in simulation 4147 at the

beginning of the simulation

(b) Location and number of Dicty in the last

time frame of simulation 4147

Since the number of Dicty is the highest in this simulation, a further experiment was done

on 4147, by setting different numbers for diffusion. For this, scanning feature of Spike was used

and four different numbers were set for diffusion of cAMP. The four numbers are 1, 0.1, 0.001,

0.0001. While the rate for diffusion changed, the other three rates remained the same as the

simulation 4147 in order to observe the effect of diffusion rate on the model’s behaviour.

The scanning showed that the diffusion 1 and 0.1 were too fast and the Dicty would reach

maximum in the centre quickly. But 0.001 and 0.0001 showed more interesting results. The

simulations were run for 5000 runs with 1000 intervals, to ensure that it is a long enough run to

capture any possible patterns.

Figure 7.12a shows when the diffusion is set at 0.0001 at the time frame of 500. Three

clumps of Dicty can be detected on the grid and the maximum number of the Dicty is 0.8761380.

The same simulation, at the time frame 1001 is shown in Figure 7.12b. The three clusters can

yet be seen but the maximum number of Dicty is 0.7904900, which is lower than before as the

CHAPTER 7. DATA ANALYSIS AND RESULTS 108

population is distributing on the grid slowly while cAMP is diffusing. This concludes that even

though the other rates are greater than diffusion, the smallest amount of diffusion changes the

behaviour of the model greatly.

On the other hand, by increasing the rate of diffusion to 0.001, the movement of Dicty

is noticeably faster that there is hardly any difference between the time frame 500 and 1001

(See Figures 7.13c and 7.13d) even though the rate for the movement is the same. But looking

at the time frame 100, it is noticeable that the behaviour of Dicty is exactly the same, only

faster. Figure 7.13a presents the Dicty locations on the grid with three clumps at time frame 100

and Figure 7.13b shows Dicty on the grid beginning to create one clump in one corner at time

frame 250. As the cAMP diffuse on the grid, the Dicty cells move less and are distributed almost

everywhere on the grid, and the clump of Dicty population move towards the centre of the grid.

Figure 7.12: Heatmaps of simulation 4147 while the diffusion rate changes from 1 to 0.0001. Note

that the maximum number on the bar is different, even though their colours are the same.

(a) Diffusion = 0.0001, time = 500 (b) Diffusion = 0.0001, time = 1001

CHAPTER 7. DATA ANALYSIS AND RESULTS 109

Figure 7.13: Heatmaps of simulation 4147 while the diffusion rate changes from 1 to 0.001.

(a) Diffusion = 0.001, time = 100 (b) Diffusion = 0.001, time = 250

(c) Diffusion = 0.001, time = 500 (d) Diffusion = 0.001, time = 1001

The other interesting result of the Hill climbing is simulation 3673. In this run, the

maximum number of Dicty cells on the grid is 0.7865301 on location (15,15) while none of the

action rates are zero. To observe the behaviour of Dicty with these rates, the simulation was run

for longer. Interestingly, in the longer run, the maximum clump of the Dicty changes its location

between (1,15) and (15,15). Up to the time frame 32 the maximum number of Dicty exists on

(15,15) and after that the maximum switches to (1,1) and eventually changes to other locations,

while the difference between the number of Dicty is not much between two neighbouring locations.

This is because of the diffusion of cAMP on the grid. As time passes the clumps of Dicty which

CHAPTER 7. DATA ANALYSIS AND RESULTS 110

initially were on the two corners of the gird, get closer to one another and at the end of the

simulation, they accumulate at the centre of the grid. The final location of maximum number

of Dicty is on location (8,7) and is 0.3691614. In other words, the Dicty cells are moving on

the grid from the two corners of the grid (1,1) and (15,15) towards the centre at the cAMP is

being produced and covers the whole grid. Table 7.8 provides the change in the maximum Dicty’s

location over time.

Table 7.8: Random Restart Hill Climbing model 3673 maximum number of Dicty that was

achieved from 50k RRCH, was run for a longer simulation. in a longer run, the maximum number

of Dicty increased to 0.9 and the location of the maximum changes over time as they get closer

to the centre.

Population Density Location Time Frame

0.95252073 15,15 5

0.8959393 15,15 10

0.7956463 15,15 20

0.7516380 15,15 25

0.6963008 15,15 32

0.6896904 1,1 33

0.6019709 1,1 50

0.4512101 1,1 100

0.3594109 5,6 300

0.3600330 6,6 500

0.3691614 8,7 1001

From the results achieved from RRHC, it can be seen that the most effecting rate on the

population density of Dictyis the diffusion of cAMP. The slightest change in this rate, changes

the outcome of the model significantly, as it was tested above in model 4147. Using the exact

same rate for the other actions, and changing diffusion slightly, proves how strong the effect of

diffusion is on the behaviour of Dicty cells.

7.5.2 Visualisation of Simulated Annealing

The simulated annealing runs each contain 69 Dicty on the grid which is 30.66667% of

the grid. The simulation was run for 50000 iterations and the initial temperature 100 and the

final temperature at 5.925502. The calculation for these numbers are provided in Chapter 6,

CHAPTER 7. DATA ANALYSIS AND RESULTS 111

Algorithm 2. There are three categories in the outcome data: accepted, rejected and high AP.

The target function is based on the population of the Dicty cells on the grid. If the number is

higher than the previous run, then it is accepted, otherwise it might be a good enough answer to

be considered, so the AP is calculated . if AP is higher than a random number between 0 and 1,

it is accepted with the tag of high AP otherwise, it is completely rejected. In this section the

focus of the analysis is on the accepted and high AP solutions.

Out of the 50000 runs, only 13 are accepted. This is because at temperature 99.098065

when the production of cAMP is zero, the population of Dicty remains 1.000, since they do not

move. This sets this number as the best solution and the next numbers are being compared to

this. Therefore, only higher numbers are accepted after this temperature. However, the only way

to achieve such numbers is by setting one of the rates to zero, as it can be seen in Table 7.9.

Table 7.9: 13 runs in simulated annealing are accepted

ITER Location Max number Diffusion Movement Sink cAMP Temperature

of Dicty Production

5 (8,8) 0.7496059 0.36 4.73 2.07 8.32 99.976002

17 (8,8) 0.7902603 0.50 5.04 4.52 0.91 99.904043

31 (8,8) 0.8187807 0.41 0.48 5.79 3.60 99.820157

96 (8,8) 0.8621508 0.10 4.49 6.20 4.71 99.431604

138 (8,8) 0.8676832 0.06 1.71 7.04 4.65 99.181345

152 (10,1) 1.0000000 3.79 0.72 0.58 0.00 99.098065

326 (2,13) 1.6761806 0.00 4.79 1.67 5.54 98.068832

544 (2,13) 1.6981981 0.00 2.37 1.21 2.75 96.794407

899 (2,13) 1.7604976 0.00 5.83 8.23 8.80 94.754427

6935 (2,13) 1.8153252 0.00 9.22 4.98 0.45 65.964565

12156 (2,13) 1.8754337 0.00 0.21 5.82 2.90 48.223589

45721 (2,13) 1.8842095 0.00 3.67 8.36 0.21 6.435876

47098 (2,13) 1.8968641 0.00 0.02 1.99 0.88 5.925502

Table 7.10 shows the top ten high AP solutions in order of the maximum population

density. 107 high AP solutions contained zero rates, which were removed and 18817 remain with

no zero rates. At temperature 5.622429, close to the end of simulation, the maximum number of

Dicty with no Zero rates is achieved at 0.9658049. If the Dicty is located in all the locations, there

will be 0.306 in each location. So, achieving 0.9 is three times more than the spread population

CHAPTER 7. DATA ANALYSIS AND RESULTS 112

on the grid. Comparing the different rates, diffusion has a relatively low rate, compared to the

results from RRHC.

Table 7.10: The top ten high AP solutions of SA sorted based on the maximum number of Dicty.

the maximum is 0.9, which could have been an accepted solution is the best solution by this

iteration was not 1.8.

ITER Location Max number Diffusion Movement Sink cAMP Temperature

of Dicty Production

47973 (1,1) 0.9658049 7.65 0.01 6.43 0.10 5.622429

13404 (1,1) 0.9436496 10.74 0.02 9.19 0.12 44.744389

13157 (1,1) 0.9369829 7.83 0.01 2.43 0.07 45.412459

14950 (1,1) 0.8856991 16.73 0.03 2.21 0.04 40.780469

47452 (8,8) 0.8717055 0.09 7.86 18.43 2.45 5.800968

40094 (8,8) 0.8706830 0.08 5.67 13.33 5.93 9.020665

47574 (8,8) 0.8703896 0.12 3.19 18.61 8.83 5.758659

27417 (8,8) 0.8676441 0.05 4.84 7.78 2.66 19.301076

9721 (8,8) 0.8672616 0.05 1.89 8.2 0.34 55.809979

29207 (8,8) 0.8672304 0.06 8.06 6.57 5.59 17.335521

Simulated Annealing and Random Restart Hill Climbing are two different methods in

algorithm. Therefore, the output data from these two should be treated and analysed differently.

Heatmaps are not much of help in the outputs of SA as there are 13 accepted and more than

18 thousand high AP solutions. One of the important things to inspect from the result of the

optimisation is to check the location of maximum population density. Figure 7.14a shows the

scatter plot of the maximum population density of the accepted solutions in each simulation. The

blue point are more than 1 and they have at least one zero rate. Figure 7.14b presents the box

plot of the high AP solutions. As it can be seen, majority of the solutions are between 0.3 and

1.0.

CHAPTER 7. DATA ANALYSIS AND RESULTS 113

Figure 7.14: The maximum population density of accepted and high AP solutions from Simulated

Annealing

(a) The maximum population density of ac-

cepted solution. The population density higher

than 1 are achieved with at least one zero rate.

(b) Box plot of the population of high AP solu-

tions of Simulated Annealing. As it can be seen

most of the solutions are less than 1.

To check the location of maximum population density of Dicty on the 15x15 grid, both

accepted and high AP solutions are visualised with bar plots which can be seen in Figures

7.15a and 7.15b respectively. In Plot 7.15a seven of the accepted solutions are located at (2,13).

However, looking at the Table 7.9 it can be seen that all of these solutions have at least one zero

rate. The only one at (10,1) is the solution with no cAPM production, which means the Dicty

cells did not even move. Therefore, the accepted solutions with no zero rate are located at (8,8).

The same behaviour could be found on the high AP solutions in Figure 7.15b, that the majority

of the high AP are located at (8,8).

Figure 7.15: Bar Plot of the Location of Maximum Population Density From SA Results.

(a) The maximum population density of ac-

cepted solutions are located at (2,13) and (8,8).

(b) The maximum population density of high

AP solutions are located at (8,8)

Looking at Table 7.10, it can be seen that the top high AP solutions are located at (1,1).

CHAPTER 7. DATA ANALYSIS AND RESULTS 114

This is due to the very slow rate for movement. This movement rate, set between 0.01 and 0.03,

is so slow that through the whole simulation the Dicty cells hardly move. This slow transition

can be seen in Figures 7.16a and 7.16b.

Figure 7.16: The heatmap of the maximum high AP population density with the movement of

0.01.

(a) The initial location of Dicty on the

15x15 grid.

(b) The final location of Dicty in the final

time frame.

7.5.3 Random Restart Hill Climbing Versus simulated Annealing

One of the reasons for using Random Restart Hill Climbing and Simulated annealing is to

compare these two methods. These two methods are both well-known for simplicity and have been

used for different studies. RRHC has a faster process, and as this process could be parallelised,

this was an advantage. However, with RRHC, there is always the possibility that the algorithm

is stuck in the local maxima and there is a chance that even with the added random restart

feature, the best solution is not found. Also, this algorithm does not allow the worse solution to

be accepted. So, if the best solution is only achievable through skipping a worse solution, this

method is not the best. The number of accepted fitnesses for this method was relatively high,

considering that because of the random restart, the search for the answers would start from the

first step at the beginning of every random restart. The results show that at the end, the best

solution out of the 50000 steps, without considering the zero rates, has been around 0.7. This

might suggest that the global maxima might have reached in the 50000 steps.

On the other hand the SA simulation provides a new perspective. The highest number

reached in SA is 0.9 and it is accepted because of the high AP. The reason is, the new solutions

are being compared to the “best solution” rather than the previous one. By the time that the

simulation reaches the temperature 5.6, the best solution is 1.89 and that is one of the results of

Diffusion being zero. The algorithm allowed the rates to be zero but not less. The reason for

CHAPTER 7. DATA ANALYSIS AND RESULTS 115

that was to inspect the results of the zero rates as well. This is not surprising as the sum of the

population of Dicty at the beginning of the simulation is 69 instead of 61. Therefore, naturally

the maximum number of the population is higher. As explained before in Chapter 5 Section

5.2, The shell program works in a way that the number of occupied locations might not be the

same. However, it is the same number, 61, for all RRHC rounds and the shell program was used

one at the beginning of SA with 69 occupied locations. Unfortunately this number could not be

checked while the simulation was running, and when after the simulation was finished, there was

not enough time to re-run the simulation as it takes a month for 50000 runs.

Simulated Annealing has a much slower process. Considering the fact that there was no

access to supercomputers for this thesis, this simulation took 35 days while Hill Climbing only

took 5 days, minus the manual random restarts that delayed the process. Some of the restarts for

HC was done manually for the results to be checked before the next steps. But after making sure

that the code is working as expected, the random restart was set to automatic.

In both results it is obvious that the population density of Dicty has a relationship with the

rate of diffusion, which is not unexpected considering the diffusion rate of the cAMP is the trigger

for the movement and thus the accumulation of the Dicty cells. This relationship is especially

visible in the “high AP” data group where the highest population achieved is 0.9658049, when

none of the rates are zero. It is notable that the relationship is not linear. Among the 13 accepted

results of the SA, the highest number is 0.8676832 which is at the beginning of the simulation

and not yet the best solution found. The reason that 0.9658049 was not “accepted” further in the

simulation was that at that temperature the best solution that the population density was being

compared to was as high as 1.8968641 which was achieved with zero diffusion.

Between the two methods, RRHC is a better one for this study as it was quicker and

provided the required information. This simulation can be run for more iterations in further

studies.

7.6 Discussion

The components in the collection of models are only useful if they can behave as they

are expected to. In this chapter one component from each level of complexity was used to be

analysed and visualised as a proof of the models to be behaving as they are expected. Also, for

one of the models, Dicty, the optimisation routines were run in order to find the best combination

CHAPTER 7. DATA ANALYSIS AND RESULTS 116

of constant rate to achieve a maximum number of Dicty as a clump on the grid as well as finding

the most effective rate on the construction of fruiting body. Two methods of optimsation were

used in this study: Random Restart Hill Climbing and Simulated Annealing.

The result from Random Restart Hill Climbing shows that the rate of diffusion has the

most influence on the population of Dicty even if the relationship is not linear. From this it can

be concluded that the smallest change in this constant rate can change the behaviour of the

model completely.

Looking at the output data from SA, it can be concluded that diffusion and movement

have the most effect on the population of Dicty in a cluster as well as the final locations. However,

considering that there are the combination of the four rates, all of them change the behaviour.

Based on the PC analysis, it was concluded that the behaviour of diffusion is the most different

compared to the other rates. It seems when changing the rates, the changes on each rate should

be done accordingly, meaning the three rates of cAmp production, movement and sink should be

changed in one direction (for example, increase) while the changes on the diffusion rate should be

on the opposite direction.

The models in this study are all continuous. Due to technical issues, such as errors from

Spike and not being able to contact the developers, the stochastic models were not run for

optimisation or any other parts of this thesis. However, the behaviour in stochastic models could

be studied as an extension once these errors are fixed.

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 117

Chapter 8

Summary, Conclusions and Further

Works

This chapter summarises this study and concludes what are the outcomes of this thesis.

After that, a few suggestions for further work and moving forward are provided to imply how it

is possible to use the outcomes of this study.

8.1 Summary

“Coming together is a beginning, keeping together is progress, working together is success.”

Henry Ford probably meant this sentence for humans. But in every level of life, from humans

to bacteria, from multi-cell organisms to unicellular microorganisms communication is a must

to survive. They need to communicate not only to one another, but towards the environment

and even within themselves and it is essential to survive. So, even though Henry Ford was only

talking about humans in a society, his quote is true about the whole biology.

Being “alive” in biology means to possess specific characteristics such as reproduction,

movement and death. However, for all of these characteristics to be achieved, the communication is

necessary both inside the cell between the organelles or outside between the organs and organisms.

This proves the importance of communication and response in life. It could be said that the life

exists because of the communication.

Biological networks inside and between the organisms are usually studied in a biological

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 118

laboratory. But this method of studying them does not provide a detailed understanding of what

is really happening. Hence, modelling complex and precise biological systems is a convenient

method to understand, analyse and predict them wile saving time and resources and remove the

human error factor from the results.

In this study a methodology was used to create a collection of model components that

describe some very basic biological behaviours. The method used for creating this collection is

Petri net and the chosen platform for using Petri net is Snoopy. Snoopy provides a multi-level,

multi-scale and multidimensional environment which can be used for modelling complex systems

in folded mannerThe reason for choosing Petri nets and Snoopy is debated in Chapter 2 after

a brief comparison with other methods. Coloured Petri net is especially useful for repeated

networks as it provides a folded model. This folded model can then be unfolded and reveal the

whole complex system in a multidimensional setting. A protocol is also provided in this study

which explains the step by step process of modelling in detail in Chapter 3

The components of this collection include: communication, response, movement, chemo-

taxis, reproduction and death. These are the basic behaviours that define if something is “alive”.

These components could be used individually to study only one behaviour or as a combined model

for more complex behaviours. After constructing the base of all models, Properties, the design of

the models continues step by step from simple (Lvl0) to complex (Lvl2). Lvl0 models describe

very simple behaviours such as Duplication or Diffusion ad Lvl2 models are complex networks. In

all of these levels, the existence of Properties is a must, granted that the modelling is done in 2D

or 3D. As a case study, these models were applied to two different microorganisms: bacteria and

Dictyostelium. Each of these microorganisms belong to one of the main superkingdoms of biology

which are Prokaryotes and Eukaryotes respectively. This is a hierarchical modelling method.

It means that the more complex models are built from simpler components and properties.

These components are explained in detail in Chapter 4 and their application to two different

microorganisms in order to assemble and create a complex system is explained in Chapter 5.

After the modelling is done, the next step is to simulate the models. Of course Snoopy

provides the built-in simulation using different engines, but since Snoopy has GUI the simulation

is slower for the more complicated models. For this reason, Spike is chosen for simulation of

more complex systems. Spike is a command-line programme that uses ANDL and CANDL files

to simulate the models. Using ANDL and CANDL files is another reason for Spike’s speed of

simulation. They are human readable text files that contain the models’ entities and could be

exported from any type of Petri net in Snoopy.

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 119

When a ANDL or CANDL file is exported from Snoopy, it is possible to initiate the desired

changes on these files instead of the Petri net model. Spike then used these files to simulate

the models with a SPC file. It is possible to amend the parameters in the SPC files instead of

the original model. This will make changing the models easier as the main file that belongs to

the model is unchanged, while the outputs of the simulation are based on the new introduced

parameters in SPC file. Using this feature, it is also possible to scan through the parameters of

the model using Spike.

The result of these simulations are then analysed and visualised using R. For each model,

the result is depending on the expected behaviour which in this study this expectation is based

on biological literature.

After simulating the models, it is important to see if it is possible to find the best action

rates for each action in the models in order to receive the expected behaviour. This is where

optimisation is useful. Using two methods of optimisation, Random Restart Hill Climbing and

Simulated Annealing, these models were optimised in order to find the best possible solution.

Python is used to implement these methods.

It is important to note that due to lack of time and the intensity of the python routine that

was written for optimisation, only the Dicty model is chosen as an application of optimisation

into a model. Also, the only models that is used for optimisation is continuous. Due to technical

issues it was not possible to simulate the stochastic models. These technical issues include a bug

in Spike that would not allow the stochastic simulations to run for complex systems. Due to no

access to super computers, it was not possible to use Snoopy for these simulations. As mentioned

before, Snoopy is much slower when it comes to simulation of complex models because of the

GUI compared to Spike.

In this thesis, a step-by-step protocol is also provided to explain the process of modelling

and combination of each part. This can help the future users to use the models independently.

8.2 Conclusion

In this study a methodology was introduced to create a collection of model components

based on engineering principles to study biological system. These components describe movement,

death, reproduction, communication and response. The modelling process is provided in this

study as well as the results of the simulations and optimisation of the models.

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 120

To apply the model components into a simple biological concept, Dictyostelium and bacteria

are chosen as the case studies. however, these models could be used for other (micro)organisms as

well as non-biological applications due to their abstraction. While Chemotaxis demonstrates the

movement towards a chemical trigger, it can also represent movement of a population towards or

away from a trigger. This population could be describing anything, from bacteria to humans.

The main aim of creating this library of model component is to grant an easy way of

modelling biological systems without the need of deep computational knowledge. Therefore,

choosing a technique for this study was one of the most important steps. Due to its simplicity,

and for other technical reasons which have been explained Chapter 2 in detail, Petri net was

chosen. Using this tool, the collection is created in four levels of complexity:

1. Properties which are Functions, constants, coloursets or variables defined in the model;

2. Level-0 Basic Components are the simplest parts of a model that cannot be broken down

and consist of at least one place and one transition;

3. Level-1 Simple Models which consist of One to two level-1 components and properties;

4. Level-2 which are made of more than two Level-0 or Level-1 components and properties.

5. Level-3 which is made of Level-2 models.

Among the systems, there are two complex models that their components are not included

in the collection. These were the first models that were made in detail for this study. But to move

forward a step towards moving the models we faced a technical issue. With the current Snoopy it

is not possible to move complex system. As it has been explained before in Chapter 3, Snoopy in

its current version can only move tokens around. The places exist in all the locations of the grid

but are only “activated” on the marked locations. This prevents the whole model to move on a

grid. Thus, to move forward, the decision was to move towards more generic and abstract models

that can demonstrate movement and other behaviours without causing any problems.

The optimisation is done for finding the best combination of constant rates in the model

Dicty. As discussed in Chapter 7, It turns out that among the four rates in the model, the

diffusion of cAMP has the more influence on the behaviour of Dicty to the point that the slightest

change, can result in the completely different number of Dicty cells. The reason for this, is

because the diffusion rate of the cAMP effects directly on how fast the Dicty cells will move

towards the high concentration of cAMP, while the rate for movement remains the same. This

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 121

shows that even without the change in the rate of chemotaxis, it is possible to change the speed

of movement with diffusion rate. Considering that there is not duplication in this model, this

is an interesting outcome. The optimisation could be moved forward to stochastic models to

observe the behaviour of Dicty when it only accepts integer numbers. However, due to technical

issues this interesting study is not a part of this thesis.

8.3 Further Work

The focus of this study is on the construction of the collection of model components and

describing basic biological behaviours. However, it also contains analysis of the output data from

the models and optimising the models. Due to the limitation of time or computational issues,

some steps of this thesis could not be developed any further. For example, due to the problem

with Spike, it was not possible to work on stochastic models. There are many improvements that

can be done to this study when the time is not limited or the problems are fixed. Here are a few

suggestions for the further works using the outputs of this study:

8.3.1 Biological and Non-Biological Applications

In this study, the components of the collection of models were applied to two different

biological case-studies: Dictyostelium and Bacteria. Even though originally these components

were created for biological behaviour description, they can be useful in non-biological scenarios

as well, since the models are abstract and generic. These models, should they be validated by

biological experimental data, can be used in drug development industry.

8.3.2 Stochastic and Complex Movement

There were technical issues that prevented us from going further in some aspects of this

study. The first issue is the complex movement. As explained before, the current models in

Snoopy can only move the tokens on the grid but not complex models. In this study the places are

located everywhere but are only activated in the defined locations. This prevents the movement

the complex model to different locations. The detailed and complex model of biofilm formation

faced this issue and it could not be moved.This causes a dead end when it comes to moving a

whole system. As a separate funded project this issue is under study by Professors David Gilbert

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 122

and Monika Heiner. But at the moment, this is not possible.

The second problem is the issue with stochastic models. On a Linux machine Spike never

stops for a stochastic model and on a mac, for the same model, Spike does ends with no errors

but no outputs. It seems the size of the gird as well as the complexity of the system prevents the

simulation to be completed. To solve this problem, the developer’s cooperation and more time

for debugging Spike is required.

8.3.3 Automated Modelling

As mentioned before, ANDL and CANDL files are human-readable files exported in Snoopy

from the models. To develop or amend a model, it is possible to simply edit this text file. But

this changes should be done with attention, since the smallest mistake will result in errors when

importing or simulating the models.

It might be possible to create a routine in a programming language that automates the

combination process of the systems. A routine that chooses the correct components and combines

them into a system. This way, times will be saved and human errors will be avoided. The main

focus of this thesis is on creating and developing the library rather than making the process

automated. Hence this suggestions cannot be taken further in this study.

8.3.4 Improving the collection

The components of the System Biofilm Formation does not exist as components in the

collection of models in this thesis. This model was originally built as a detailed model. This

model can be broken down into its building components and these parts can be added to the

library as new components and be combined with other parts. Breaking down this model also

provides this opportunity to created more detailed models from the components of the collection.

The current collection only describes simple, basic behaviours. This collection can be

developed by adding more behaviours to it. There are many biological behaviours that can

be modelled in abstract and from simple parts. Level-0 of this collection could include more

simplistic models which can combine with other parts to create a complex system. The more

Level-0 and Level-1 models are added, more combined models can be created. These models can

then be applied for other case-studies, biological or non-biological.

CHAPTER 8. SUMMARY, CONCLUSIONS AND FURTHER WORKS 123

Examples of more basic biological behaviours can include but not limited to:

1. Sexual reproduction that nrequires two different parents,

2. Physiology of movement, e.g. flagella,

3. Adding intermediate mechanisms such as breaking down the food source for energy and the

consumption of that energy as two different Level0 models.

These are only a few suggestions of further modelling in biological concept. But this

methodology used in this thesis could be used beyond biology.

fin.

BIBLIOGRAPHY 124

Bibliography

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The Applied Pi Calculus. Journal of

the ACM, 65(1):1–41, 2017.

[2] Julius Adler. Chemotaxis in Bacteria Motile Escherichia coli migrate in bands that are.

Advancement Of Science, 153(3737):708–716, 1966.

[3] Eran Agmon and Ryan K. Spangler. A multi-scale approach to modeling E. coli chemotaxis.

Entropy, 22(10):1–22, 2020.

[4] Victoria J M Allan, Maureen E Callow, Lynne E Macaskie, and Marion Paterson-Beedle.

Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter

sp. Microbiology, 148(1):277–288, 2002.

[5] Ahmad Almasoud, Navam Hettiarachchy, Srinivas Rayaprolu, Dinesh Babu, Young Min

Kwon, and Andy Mauromoustakos. Inhibitory effects of lactic and malic organic acids

on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157:H7 and Salmonella

Typhimurium. LWT - Food Science and Technology, 66:560–564, 2016.

[6] G. An, B. G. Fitzpatrick, S. Christley, P. Federico, A. Kanarek, R. Miller Neilan, M. Orem-

land, R. Salinas, R. Laubenbacher, and S. Lenhart. Optimization and Control of Agent-Based

Models in Biology: A Perspective. Bulletin of Mathematical Biology, 79(1):63–87, 2017.

[7] Gary An and Qi Mi. Agent-based models in translational systems biology. Systems Biology

and Medicine, 1(2):159–171, 2009.

[8] Bassam A Annous, Pina M Fratamico, and James L Smith. Scientific status summary:

Quorum sensing in biofilms: Why bacteria behave the way they do. Journal of Food Science,

74(1), 2009.

[9] David Artis. Epithelial-cell recognition of commensal bacteria and maintenance of immune

homeostasis in the gut, 2008.

BIBLIOGRAPHY 125

[10] George Assaf and Monika Heiner. Spatial Encoding of Systems Using Coloured Petri Nets

Spatial Encoding of Systems Using Coloured Petri Nets. Algorithms and Tools for Petri

Nets,, page 38, 2019.

[11] Fredrik Bäckhed, Ruth E Ley, Justin L Sonnenburg, Daniel A Peterson, Jeffrey I Gordon, and

Fredrik Backhed. Host-Bacterial Mutualism in the Human Intestine. Science, 307(5717):1915–

1920, 2005.

[12] Christoph Bader, Sunanda Sharma, Rachel Smtih, Jean Disset, and Neri Oxman. Viva in

Silico: A position-based dynamics model for microcolony morphology simulation. ALIFE:

Artificial Life Journal, 24(3), 2018.

[13] P. C. Baehni and Y. Takeuchi. Anti-plaque agents in the prevention of biofilm-associated

oral diseases. Oral Diseases, 9(SUPPL. 1):23–29, 2003.

[14] Kshitij Bansal, Eric Koskinen, Thomas Wies, and Damien Zufferey. Structural counter

abstraction. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 62–77. Springer, 2013.

[15] Roberta Bardini, Stefano Di Carlo, Gianfranco Politano, and Alfredo Benso. Modeling

antibiotic resistance in the microbiota using multi-level Petri Nets. BMC systems biology,

12(Suppl 6):108, 2018.

[16] Amy L. Bauer, Catherine A.A. Beauchemin, and Alan S. Perelson. Agent-based modeling of

host-pathogen systems: The successes and challenges. Information Sciences, 179(10):1379–

1389, 2009.

[17] Falko Bause and PS Kritzinger. Stochastic Petri Nets: An introduction to the theory.

Vieweg, pages 133–140, 2002.

[18] Jan A Bergstra, Wan Fokkink, and Alban Ponse. Process Algebra with Recursive Operations.

Handbook of Process Algebra, pages 333–389, 2007.

[19] Francesco Bernardini, Marian Gheorghe, and Natalio Krasnogor. Quorum sensing P systems.

Theoretical Computer Science, 371(1-2):20–33, 2007.

[20] Marco Bernardo, Pierpaolo Degano, and Gianluigi Zavattaro. Formal Methods for Compu-

tational Systems Biology: 8th International School on Formal Methods for the Design of

Computer, Communication, and Software Systems, SFM 2008 Bertinoro, Italy, June 2-7,

2008, volume 5016. Springer, 2008.

BIBLIOGRAPHY 126

[21] Mary Ann Blätke, Monika Heiner, and Wolfgang Marwan. BioModel Engineering with

Petri Nets. In R Robeva, editor, Algebraic and Discrete Mathematical Methods for Modern

Biology, chapter 7, pages 141–193. Elsevier Inc., mar 2015.

[22] Mary Ann Blätke and Christian Rohr. A coloured Petri net approach for spatial Biomodel

Engineering based on the modular model composition framework Biomodelkit. CEUR

Workshop Proceedings, 1373(January):37–54, 2015.

[23] Mary Ann Blätke, Christian Rohr, Monika Heiner, and Wolfgang Marwan. A petri-net-based

framework for biomodel engineering, volume 65. Springer, 2014.

[24] Rainer Breitling, David Gilbert, Monika Heiner, and Richard Orton. A structured approach

for the engineering of biochemical network models, illustrated for signalling pathways.

Briefings in Bioinformatics, 9(5):404–421, 2008.

[25] Geo Brooks, Karen Carroll, Janet Butel, Stephen Morse, and Timothy Mietzner. Medical

Microbiology. McGraw-Hill Education, 2015.

[26] Jonathan R Brown, Joseph Jurcisek, Vinal Lakhani, Ali Snedden, William C Ray, Elaine M

Mokrzan, Lauren O Bakaletz, and Jayajit Das. In Silico Modeling of Biofilm Formation by

Nontypeable Haemophilus influenzae In Vivo . mSphere, 4(4):1–13, 2019.

[27] Andre Gerald Buret, Jean Paul Motta, Thibault Allain, Jose Ferraz, and John Lawrence

Wallace. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory

diseases: A role for iron? 06 Biological Sciences 0605 Microbiology. Journal of Biomedical

Science, 26(1):1–14, 2019.

[28] Mette Burmølle, Dawei Ren, Thomas Bjarnsholt, and Søren J. Sørensen. Interactions in

multispecies biofilms: Do they actually matter? Trends in Microbiology, 22(2):84–91, feb

2014.

[29] Nadia Busi and Roberto Gorrieri. A Petri net semantics for π-calculus. In International

Conference on Concurrency Theory, pages 145–159. Springer, 2012.

[30] Allyson L. Byrd, Yasmine Belkaid, and Julia A. Segre. The human skin microbiome. Nature

Reviews Microbiology, 16(3):143–155, 2018.

[31] Huaqing Cai, Chuan Hsiang Huang, Peter N. Devreotes, and Miho Iijima. Analysis of

chemotaxis in dictyostelium. Methods in Molecular Biology, 757:451–468, 2011.

BIBLIOGRAPHY 127

[32] Muffy Calder and Stephen Gilmore, editors. Computational Methods in Systems Biology.

Springer, Edinburgh, Scotland, 2007.

[33] A Carl. Petri. 1962. Kommunikation mit automaten, 1962.

[34] Claudine Chaouiya. Petri net modelling of biological networks. Briefings in Bioinformatics,

2007.

[35] Y Chen, Y Peng, and X Fu. Microbial Biofilms, Colorectal Inflammation and Cancer.

Austin Journal of Gastroenterology, 3(1):1059, 2016.

[36] Jacek Chodak and Monika Heiner. Spike - a command line tool for continuous , stochastic &

hybrid simulation of (coloured) Petri nets. In Proc. 21th German Workshop on Algorithms

and Tools for Petri Nets (AWPN 2018)., pages 1–6. University of Augsburg, 2018.

[37] David L. Chopp, Mary Jo Kirisits, Brian Moran, and Matthew R. Parsek. A mathematical

model of quorum sensing in a growing bacterial biofilm. In Journal of Industrial Microbiology

and Biotechnology, 2002.

[38] Federica Ciocchetta. Bio-PEPA with events. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5750

LNBI:45–68, 2009.

[39] Federica Ciocchetta, Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero, and Jane

Hillston. The Bio-PEPA tool suite. QEST - 6th International Conference on the Quantitative

Evaluation of Systems, pages 309–310, 2009.

[40] Federica Ciocchetta and Maria Luisa Guerriero. Modelling Biological Compartments in

Bio-PEPA. Electronic Notes in Theoretical Computer Science, 227(C):77–95, 2009.

[41] Federica Ciocchetta and Jane Hillston. Bio-PEPA: An Extension of the Process Algebra

PEPA for Biochemical Networks. Electronic Notes in Theoretical Computer Science,

194(3):103–117, 2008.

[42] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for the modelling and

analysis of biological systems. Theoretical Computer Science, 410(33-34):3065–3084, 2009.

[43] Marcie B. Clarke, David T. Hughes, Chengru Zhu, Edgar C. Boedeker, and Vanessa

Sperandio. The QseC sensor kinase: A bacterial adrenergic receptor. Proceedings of the

National Academy of Sciences of the United States of America, 103(27):10420–10425, 2006.

BIBLIOGRAPHY 128

[44] Michael Clerx, Michael T. Cooling, Jonathan Cooper, Alan Garny, Keri Moyle, David P.

Nickerson, Poul M. F. Nielsen, and Hugh Sorby. Cellml 2.0. Journal of Integrative

Bioinformatics, 17(2-3):20200021, 2020.

[45] José-Manuel Colom and Jörg Desel. Application and theory of petri nets and concurrency.

In Proceedings of the 34th International Conference Lecture Notes in Computer Science.

Springer, 2013.

[46] Elizabeth K. Costello, Keaton Stagaman, Les Dethlefsen, Brendan J.M. Bohannan, and

David A. Relman. The application of ecological theory toward an understanding of the

human microbiome, 2012.

[47] Silvia Daun, Jonathan Rubin, Yoram Vodovotz, and Gilles Clermont. Equation-based

models of dynamic biological systems. Journal of critical care, 63(8):1–18, 2008.

[48] Rene David and Alla Hassane. Petri Nets for Modeling of Dynamic Systems A Survey.

Automatica, 30(2):175–202, 1994.

[49] Anna De Breij, Lenie Dijkshoorn, Ellen Lagendijk, Joke Van Der Meer, Abraham Koster,

Guido Bloemberg, Ron Wolterbeek, Peterhans Van Den Broek, and Peter Nibbering. Do

Biofilm Formation and Interactions with Human Cells Explain the Clinical Success of

Acinetobacter baumannii? PLoS ONE, 5(5), 2010.

[50] Sigrid C J De Keersmaecker, Kathleen Sonck, and Jos Vanderleyden. Let LuxS speak up in

AI-2 signaling. Trends in Microbiology, 14(3):114–119, 2006.

[51] V de Lorenzo and Antoine Danchin. Synthetic biology: discovering new worlds and new

words. EMBO reports, 9:822–827, 2008.

[52] Michael A. Deakin. Modelling biological systems. Dynamics of Complex Interconnected

Biological Systems, pages 2–16, 1990.

[53] Christine M. Dejea, Payam Fathi, John M. Craig, Annemarie Boleij, Rahwa Taddese,

Abby L. Geis, Xinqun Wu, Christina E. DeStefano Shields, Elizabeth M. Hechenbleikner,

David L. Huso, Robert A. Anders, Francis M. Giardiello, Elizabeth C. Wick, Hao Wang,

Shaoguang Wu, Drew M. Pardoll, Franck Housseau, and Cynthia L. Sears. Patients with

familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria.

Science, 359(6375):592–597, 2018.

[54] Matthew P Delisa, James J Valdes, and William E Bentley. Mapping Stress-Induced

Changes in Autoinducer AI-2 Production in Chemostat-Cultivated Escherichia coli K-12

BIBLIOGRAPHY 129

Mapping Stress-Induced Changes in Autoinducer AI-2 Production in Chemostat-Cultivated

Escherichia coli K-12. Journal of Bacteriology, 183(9):2918–2928, 2001.

[55] Rui Dilão and Marcus J.B. Hauser. Chemotaxis with directional sensing during Dictyostelium

aggregation. Comptes Rendus - Biologies, 336(11-12):565–571, 2013.

[56] Eleonora Distrutti, Lorenzo Monaldi, Patrizia Ricci, and Stefano Fiorucci. Gut microbiota

role in irritable bowel syndrome: New therapeutic strategies, 2016.

[57] Jack D. Dockery and James P. Keener. A mathematical model for quorum sensing in

Pseudomonas aeruginosa. Bulletin of Mathematical Biology, 63:95–116, 2001.

[58] Vinayak Doraiswamy, Martin Buist, and Andrew B. Goryachev. Computational modelling

of chemotaxis in cooperative phenomena in bacterial populations. BMC Systems Biology,

1(S1):1–2, 2007.

[59] Qingyou Du, Yoshinori Kawabe, Christina Schilde, Zhi Hui Chen, and Pauline Schaap. The

Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia.

Journal of Molecular Biology, 427(23):3722–3733, 2015.

[60] Ravindra Duddu, David L. Chopp, and Brian Moran. A two-dimensional continuum model

of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnology

and Bioengineering, 103(1):92–104, 2009.

[61] Hermann J. Eberl, David F. Parker, and Mark C.M. Vanloosdrecht. A new deterministic

spatio-temporal continuum model for biofilm development. Journal of Theoretical Medicine,

3(3):161–175, 2001.

[62] Matthew Paul Edgington. Mathematical Modelling of Bacterial Chemotaxis Signalling

Pathways. PhD thesis, University of Reading, 2015.

[63] Zahra Eidi, Farshid Mohammad-Rafiee, Mohammad Khorrami, and Azam Gholami. Mod-

elling of Dictyostelium discoideum movement in a linear gradient of chemoattractant. Soft

Matter, 13(44):8209–8222, 2017.

[64] Sivan Elias and Ehud Banin. Multi-species biofilms: Living with friendly neighbors. FEMS

Microbiology Reviews, 36(5):990–1004, 2012.

[65] Blessing O. Emerenini, Burkhard A. Hense, Christina Kuttler, and Hermann J. Eberl. A

mathematical model of quorum sensing induced biofilm detachment. PLoS ONE, 10(7):1–25,

2015.

BIBLIOGRAPHY 130

[66] Hindley J. EngineRoger and Jonathan P. Seldin. Lambda-calculus and combinators, an

introduction. Lambda-Calculus and Combinators, an Introduction, 9780521898:1–345, 2008.

[67] Jasmin Fisher and David Harel. On statecharts for biology. Symbolic Systems Biology:

Theory and Methods, 2010.

[68] Hans Curt Flemming and Jost Wingender. The biofilm matrix. Nature Reviews Microbiology,

8(9):623–633, 2010.

[69] Mallory R. Frederick, Christina Kuttler, Burkhard A. Hense, and Hermann J. Eberl. A

mathematical model of quorum sensing regulated EPS production in biofilm communities.

Theoretical Biology and Medical Modelling, 2011.

[70] Rudolph Freund, Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. Membrane

Computing, volume 3850. Springer, Vienna, 2005.

[71] W Claiborne Fuqua, Stephen C. Winans, and E Peter Greenberg. MINIREVIEW Quorum

Sensing in Bacteria : the LuxR-LuxI Family of Cell Density-Responsive Transcriptional

Regulatorst. Journal of bacteriology, 176(2):269–275, 1994.

[72] Meng Gao, Huizhen Zheng, Ying Ren, Ruyun Lou, Fan Wu, Weiting Yu, Xiudong Liu, and

Xiaojun Ma. A crucial role for spatial distribution in bacterial quorum sensing. Scientific

Reports, 6, 2016.

[73] Qian Gao, Fei Liu, David Tree, and David Gilbert. Multi-cell Modelling Using Coloured

Petri Nets Applied to Planar Cell Polarity. Proceedings of the 2nd International Workshop

on Biological Processes & Petri Nets (BioPPN2011), pages 135–150, 2011.

[74] J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz. Modeling a synthetic multicellular

clock: Repressilators coupled by quorum sensing. Proceedings of the National Academy of

Sciences, 101(30):10955–10960, 2004.

[75] Alan Garny. Opencor. Nature Precedings, pages 1–1, 2011.

[76] David Gilbert, Monika Heiner, and Leila Ghanbar. Personalised models for human – gut

microbiota interaction. PeerJ preprints, 3267(e3267v1):1–4, 2017.

[77] David Gilbert, Monika Heiner, Leila Ghanbar, and Jacek Chodak. Spatial quorum sens-

ing modelling using coloured hybrid Petri nets and simulative model checking. BMC

Bioinformatics, 20(4)(173):1–23, 2019.

BIBLIOGRAPHY 131

[78] David Gilbert, Monika Heiner, and Sebastian Lehrack. A unifying framework for modelling

and analysing biochemical pathways using Petri nets. In International Conference on

Computational Methods in Systems Biology, pages 200–216. Springer, 2007.

[79] Randy Goebel, Yuzuru Tanaka, and Wolfang Wahlster. Multi-Agent Systems and Agreement

Technologies. Springer, 2020.

[80] Laurent Golé, Charlotte Rivière, Yoshinori Hayakawa, and Jean Paul Rieu. A quorum-

sensing factor in vegetative Dictyostelium Discoideum cells revealed by quantitative migra-

tion analysis. PLoS ONE, 6(11):1–9, 2011.

[81] Stavros Gonidakis and Valter D Longo. Assessing Chronological Aging in Bacteria Stavros

Gonidakis and Valter D. Longo Abstract. In Cell Senescence: Methods and Protocols, Meth-

ods in Molecular Biology, volume 965, chapter 28, pages 421–437. Springer Science+Business

Media, 2013.

[82] Andres F. Gonzalez Barrios and Luke E.K. Achenie. Escherichia coli autoinducer-2 uptake

network does not display hysteretic behavior but AI-2 synthesis rate controls transient

bifurcation. BioSystems, 99(1):17–26, 2010.

[83] Thomas E. Gorochowski. Agent-based modelling in synthetic biology. Essays In Biochem-

istry, 60(4):325–336, 2016.

[84] Andrew B. Goryachev. Understanding bacterial cell-cell communication with computational

modeling. Chemical Reviews, 111(1):238–250, 2011.

[85] Caitriona M Guinane and Paul D Cotter. Role of the gut microbiota in health and chronic

gastrointestinal disease: Understanding a hidden metabolic organ. Therapeutic Advances in

Gastroenterology, 6(4):295–308, 2013.

[86] Warren Hedley, Melanie Nelson, David Bullivaant, and Paul Nielsen. A Short Introduction

to CellML. The Royal Society, 359:1073–1089, 2001.

[87] Monika Heiner, Robin Donaldson, and David Gilbert. Petri Nets for Systems Biology.

Symbolic Systems Biology: Theory and Methods, pages 61–97, 2010.

[88] Monika Heiner and David Gilbert. BioModel engineering for multiscale Systems Biology.

Progress in Biophysics and Molecular Biology, 111(2-3):119–128, 2013.

[89] Monika Heiner, Ronny Richter, and Martin Schwarick. Snoopy: a tool to design and

animate/simulate graph-based formalisms. Proceedings of the 1st international conference

BIBLIOGRAPHY 132

on Simulation tools and techniques for communications, networks and systems & workshops,

pages 1–10, 2008.

[90] Burkhard A Hense and Martin Schuster. Core Principles of Bacterial Autoinducer Systems.

Microbiology and Molecular Biology Reviews, 2015.

[91] Moshe Herzberg, Ian K Kaye, Wolfgang Peti, and Thomas K Wood. YdgG (TqsA) Controls

Biofilm Formation in Escherichia coli K-12 through Autoinducer 2 Transport. Journal of

Bacteriology, 188(2):587–598, 2006.

[92] Thomas Höfer and Philip K. Maini. Streaming instability of slime mold amoebae: An

analytical model. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, 56(2):2074–2080, 1997.

[93] Ralf Hofestädt. Advantages of Petri-Net Modeling and Simulation for Biological Networks.

International Journal of Bioscience, Biochemistry and Bioinformatics, 7(4):221–229, 2017.

[94] Alina Maria Holban, Coralia Bleotu, Mariana Carmen Chifiriuc, and Veronica Lazar.

Control of bacterial virulence by cell-to-cell signalling molecules. Microbial pathogens and

strategies for combating them: science, technology and education, pages 311–321, 2013.

[95] Sara Hooshangi and William E Bentley. LsrR quorum sensing "switch" is revealed by a

bottom-up approach. PLoS Computational Biology, 7(9), 2011.

[96] M Hucka, A Finney, H M Sauro, H Bolouri, J C Doyle, H Kitano, A P Arkin, B J Bornstein,

D Bray, A Cornish-Bowden, A A Cuellar, S Dronov, E D Gilles, G Ginkel, V Gor, I I

Goryanin, W J Hedley, T C Hodgman, J . H Hofmeyr, P J Hunter, N S Juty, J L Kasberger,

A Kremling, U Kummer, N Le Novère, L M Loew, D Lucio, P Mendes, E Minch, and E D

Mjolsness. The Systems Biology Markup Language (SBML): a medium for representation

and exchange of biochemical network models. Bioinformatics, 19, 2003.

[97] Niall P. Hyland and John F. Cryan. Microbe-host interactions: Influence of the gut

microbiota on the enteric nervous system. Developmental Biology, 417(2):182–187, sep 2016.

[98] Anisa S Ismail, Julie S Valastyan, and Bonnie L Bassler. A Host-Produced Autoinducer-

2Mimic Activates Bacterial Quorum Sensing. Cell Host & Microbe, 19(4):1–11, 2016.

[99] Sorin Istrail, P Pevzner, and M Waterman. Lecture Notes in Bioinformatics. Springer,

2012.

BIBLIOGRAPHY 133

[100] Sheldon H. Jacobson. Analyzing the performance of local search algorithms using generalized

hill climbing algorithms. Operations Research/ Computer Science Interfaces Series, 15:441–

467, 2002.

[101] Sally James, Patric Nilsson, Geoffrey James, Staffan Kjelleberg, and Torbjörn Fagerström.

Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics

of lux regulation. Journal of Molecular Biology, 296(4):1127–1137, mar 2000.

[102] Caroline H. Johnson, Christine M. Dejea, David Edler, Linh T. Hoang, Antonio F. Santidrian,

Brunhilde H. Felding, Julijana Ivanisevic, Kevin Cho, Elizabeth C. Wick, Elizabeth M.

Hechenbleikner, Winnie Uritboonthai, Laura Goetz, Robert A. Casero, Drew M. Pardoll,

James R. White, Gary J. Patti, Cynthia L. Sears, and Gary Siuzdak. Metabolism links

bacterial biofilms and colon carcinogenesis. Cell Metabolism, 2015.

[103] Amandeep Kaur, Neena Capalash, and Prince Sharma. Quorum sensing in thermophiles:

Prevalence of autoinducer-2 system. BMC Microbiology, 18(1):1–16, 2018.

[104] Paul Kirk, Thomas Thorne, and Michael P.H. Stumpf. Model selection in systems and

synthetic biology. Current Opinion in Biotechnology, 24(4):767–774, 2013.

[105] Marc W. Kirschner. The meaning of systems biology. Cell, 121(4):503–504, 2005.

[106] Gavin Kistner and Chris Nuernberger. Developing user interfaces using scxml statecharts.

In Proceedings of the 1st EICS Workshop on Engineering Interactive Computer Systems

with SCXML, pages 5–11, 2014.

[107] Hiroaki Kitano. Computational systems biology, 2002.

[108] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.

ACM Transactions on Programming Languages and Systems, 21(5):914–947, 1999.

[109] Natallia Kokash. An introduction to heuristic algorithms. Department of Informatics and

Telecommunications, pages 1–8, 2005.

[110] Paul E Kolenbrander, Robert J Palmer, Saravanan Periasamy, and Nicholas S Jakubovics.

Oral multispecies biofilm development and the key role of cell-cell distance, 2010.

[111] Alexander Kurilshikov, Cisca Wijmenga, Jingyuan Fu, and Alexandra Zhernakova. Host

Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology,

38(9):633–647, 2017.

BIBLIOGRAPHY 134

[112] Chang Ro Lee, Jung Hun Lee, Moonhee Park, Kwang Seung Park, Il Kwon Bae, Young Bae

Kim, Chang Jun Cha, Byeong Chul Jeong, and Sang Hee Lee. Biology of Acinetobacter

baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment

options. Frontiers in Cellular and Infection Microbiology, 7(MAR), 2017.

[113] Jun Li, Can Attila, Liang Wang, Thomas K. Wood, James J. Valdes, and William E.

Bentley. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: Effects on small

RNA and biofilm architecture. Journal of Bacteriology, 2007.

[114] Jun Li, Liang Wang, Yoshifumi Hashimoto, Chen-Yu Tsao, Thomas K. Wood, James J.

Valdes, Evanghelos Zafiriou, and William E. Bentley. A stochastic model of Escherichia

coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Molecular systems

biology, 2(1):67, 2006.

[115] Shan Li, Sergey R. Konstantinov, Ron Smits, and Maikel P. Peppelenbosch. Bacterial

Biofilms in Colorectal Cancer Initiation and Progression, 2017.

[116] Yung Hua Li and Xiao Lin Tian. Quorum Sensing and Bacterial Social Interactions in

Biofilms: Bacterial Cooperation and Competition. Stress and Environmental Regulation of

Gene Expression and Adaptation in Bacteria, 2:1197–1205, 2016.

[117] Fei Liu and Monika Heiner. Modeling membrane systems using colored stochastic Petri

nets. Natural Computing, 12(4):617–629, 2013.

[118] Fei Liu, Monika Heiner, and David Gilbert. Coloured Petri nets for multilevel, multiscale

and multidimensional modelling of biological systems. Briefings in Bioinformatics, pages

1–10, 2017.

[119] Catherine M Lloyd, James R Lawson, Peter J Hunter, and Poul F Nielsen. The cellml

model repository. Bioinformatics, 24(18):2122–2123, 2008.

[120] Leslie M Loew and James C Schaff. The virtual cell: a software environment for computa-

tional cell biology. TRENDS in Biotechnology, 19(10):401–406, 2001.

[121] Laurence Loewe and Jane Hillston. Computational models in systems biology. Genome

Biol., 9(12):328, 2008.

[122] William F. Loomis. Cell signaling during development of dictyostelium2014. Developmental

Biology, 391(1):1–16, 2014.

[123] Daniel López, Hera Vlamakis, and Roberto Kolter. Biofilms., 2010.

BIBLIOGRAPHY 135

[124] T. K. Lu and J. J. Collins. Dispersing biofilms with engineered enzymatic bacteriophage.

Proceedings of the National Academy of Sciences, 104(27):11197–11202, 2007.

[125] Markus Lumpe. A Pi-Calculus Based Approach to Software Composition. PhD thesis,

Citeseer, 1999.

[126] Charles Macal and Michael North. Tutorial on agent-based modelling and simulation.

InProceedings of the Winter Simulation Conference, 4(3):14–pp, 2005.

[127] Charles Macal and Michael North. Introductory tutorial: Agent-based modeling and

simulation. Proceedings - Winter Simulation Conference, pages 6–20, 2014.

[128] Stefanía Magnúsdóttir, Almut Heinken, Laura Kutt, Dmitry A Ravcheev, Eugen Bauer,

Alberto Noronha, Kacy Greenhalgh, Christian Jäger, Joanna Baginska, Paul Wilmes, Ronan

M T Fleming, and Ines Thiele. Generation of genome-scale metabolic reconstructions for

773 members of the human gut microbiota. Nature Biotechnology, 2017.

[129] Michele A Maltz, Brian L Weiss, Michelle O’neill, Yineng Wu, and Serap Aksoy. OmpA-

mediated biofilm formation is essential for the commensal bacterium Sodalis glossinidius

to colonize the tsetse fly gut. Applied and Environmental Microbiology, 78(21):7760–7768,

2012.

[130] Julian R. Marchesi, David H. Adams, Francesca Fava, Gerben D.A. Hermes, Gideon M.

Hirschfield, Georgina L. Hold, Mohammed Nabil Quraishi, James Kinross, Hauke Smidt,

Kieran M. Tuohy, Linda V. Thomas, Erwin G. Zoetendal, and Ailsa Hart. The gut

microbiota and host health: A new clinical frontier. Gut, 65(2):330–339, 2016.

[131] Adil Mardinoglu, Saeed Shoaie, Mattias Bergentall, Pouyan Ghaffari, Cheng Zhang, Erik

Larsson, Fredrik Bäckhed, and Jens Nielsen. The gut microbiota modulates host amino

acid and glutathione metabolism in mice. Mol Syst Biol, 11, 2015.

[132] Clair R Martin, Vadim Osadchiy, Amir Kalani, and Emeran A Mayer. The Brain-Gut-

Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 2018.

[133] Kendle M. Maslowski and Charles R. MacKay. Diet, gut microbiota and immune responses.

Nature Immunology, 12(1):5–9, 2011.

[134] Wayne Materi and David S. Wishart. Computational systems biology in drug discovery

and development: methods and applications. Drug Discovery Today, 12(7-8):295–303, 2007.

BIBLIOGRAPHY 136

[135] I S Mian and C Rose. Communication theory and multicellular biology. Integrative Biology,

3(4):350–367, 2011.

[136] C. Milho, M. Andrade, D. Vilas Boas, D. Alves, and S. Sillankorva. Antimicrobial assessment

of phage therapy using a porcine model of biofilm infection. International Journal of

Pharmaceutics, 557:112–123, feb 2019.

[137] Sedlacek Mj and Walker C. Antibiotic resistance in an in vitro subgingival biofilm model.

Oral Microbiol Immunol, 22:333–339, 2007.

[138] Eugenio Moggi. Computational lambda-calculus and monads. University of Edinburgh,

Department of Computer Science, Laboratory for∼. . . , 1989.

[139] Johannes Müller, Christina Kuttler, Burkard A Hense, Michael Rothballer, and Anton

Hartmann. Cell–cell communication by quorum sensing and dimension-reduction. Journal

of mathematical biology, 53(4):672–702, 2006.

[140] Johannes Müller, Christina Kuttler, and Burkhard A. Hense. Sensitivity of the quorum

sensing system is achieved by low pass filtering. Biosystems, 92(1):76–81, apr 2008.

[141] Carey D. Nadell, Joao B. Xavier, and Kevin R. Foster. The sociobiology of biofilms, 2009.

[142] Masoud Najafi, Ramine Nikoukhah, and Domaine De Voluceau. Modeling and simulation

of differential equations in Scicos. The Modelica Association, pages 177–185, 2006.

[143] Sergiu Netotea, Iris Bertani, Laura Steindler, Adam Kerenyi, Vittorio Venturi, and Sandor

Pongor. A simple model for the early events of quorum sensing in Pseudomonas aeruginosa:

Modeling bacterial swarming as the movement of an activation zone. Biology Direct, 4,

2009.

[144] John M.E. Nichols, Douwe Veltman, and Robert R. Kay. Chemotaxis of a model organism:

Progress with Dictyostelium. Current Opinion in Cell Biology, 36:7–12, 2015.

[145] Jeremy K. Nicholson, Elaine Holmes, James Kinross, Remy Burcelin, Glenn Gibson, Wei Jia,

and Sven Pettersson. Host-Gut Microbiota Metabolic Interactions. science, 336(6086):1262–

1267, 2012.

[146] Patric Nilsson, Anna Olofsson, Magnus Fagerlind, Torbjörn Fagerström, Scott Rice, Staffan

Kjelleberg, and Peter Steinberg. Kinetics of the AHL Regulatory System in a Model

Biofilm System: How Many Bacteria Constitute a “Quorum”? Journal of Molecular Biology,

309(3):631–640, jun 2001.

BIBLIOGRAPHY 137

[147] Ben Niu, Hong Wang, Qiqi Duan, and Li Li. Biomimicry of quorum sensing using bacterial

lifecycle model. BMC Bioinformatics, 14(SUPPL8), 2013.

[148] Elizabeth A Novak, HanJuan Shao, Carlo Amorin Daep, and Donald R Demuth.

Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregati-

bacter actinomycetemcomitans. Infection and immunity, 78(7):2919–2926, 2010.

[149] Peter J Olver. Introduction to partial differential equations. Springer, 2014.

[150] Alline R Pacheco and Vanessa Sperandio. Inter-kingdom signaling: chemical language

between bacteria and host. Current Opinion in Microbiology, 12(2):192–198, 2009.

[151] Joachim Parrow. An Introduction to Pi Calculus. In Handbook of process algebra, pages

479–545. Elsevier, 2001.

[152] Marco Patrignani, Eric Mark Martin, and Dominique Devriese. On the semantic expressive-

ness of recursive types. Proceedings of the ACM on Programming Languages, 5(POPL):1–29,

2021.

[153] Mor Peleg, Iwei Yeh, and Russ B. Altman. Modelling biological processes using workflow

and petri net models. Bioinformatics, 18(6):825–837, 2002.

[154] Ignacio Pérez Hurtado de Mendoza, David Orellana Martín, Miguel Ángel Martínez del

Amor, Luis Valencia Cabrera, Agustín Riscos Núñez, and Mario de Jesús Pérez Jiménez.

11 years of p-lingua: A backward glanc. In CMC20: 20th International Conference on

Membrane Computing (2019). Editura BIBLIOSTAR, 2019.

[155] Judith Pérez-Velázquez, Meltem Gölgeli, and Rodolfo García-Contreras. Mathematical

Modelling of Bacterial Quorum Sensing: A Review. Bulletin of Mathematical Biology,

78(8):1585–1639, 2016.

[156] Andrew Phillips, Luca Cardelli, and Giuseppe Castagna. A Graphical Representation for

Biological Processes in the Stochastic pi-Calculus. In InTransactions on Computational

Systems Biology VII, pages 123–152. Springer, 2006.

[157] Gordon Plotkin and Corrado Priami. Transactions on Computational Systems Biology VI.

Springer Verlag, 2006.

[158] Susan L. Prescott. History of medicine: Origin of the term microbiome and why it matters.

Human Microbiome Journal, 4:24–25, 2017.

[159] Corrado Priami. Stochastic Pi calculus. The Computer Journal, 38(7):578–589, 1995.

BIBLIOGRAPHY 138

[160] H M Probert and G R Gibson. Bacterial biofilms in the human gastrointestinal tract. Issues

Intest. Microbiol, 3:23–27, 2002.

[161] Frank Puhlmann and Mathias Weske. Using the pi-Calculus for Formalizing Workflow

Patterns. Lecture Notes in Computer Science, pages 153–168, 2005.

[162] Andrei Pǎun and Gheorghe Pǎun. The power of communication: P systems with sym-

port/antiport. New Generation Computing, 20(3):295–305, 2002.

[163] R. Randal Bollinger, Mary Lou Everett, Daniel Palestrant, Stephanie D. Love, Shu S.

Lin, and William Parker. Human secretory immunoglobulin A may contribute to biofilm

formation in the gut. Immunology, 2003.

[164] R Rojas. A Tutorial Introduction to the Lambda Calculus. Blackwell, 2015.

[165] Francisco José Romero-Campero and Mario J Pérez-Jiménez. Modelling gene expression

control using P systems: The Lac Operon, a case study. BioSystems, 91(3):438–457, 2008.

[166] Elio Rossi, Annika Cimdins, Petra Lüthje, Annelie Brauner, Åsa Sjöling, Paolo Landini, and

Ute Römling. “It’s a gut feeling”–Escherichia coli biofilm formation in the gastrointestinal

tract environment. Critical Reviews in Microbiology, pages 1–30, 2017.

[167] Timothy J Rudge, Paul J Steiner, Andrew Phillips, and Jim Haseloff. Computational

modeling of synthetic microbial biofilms. ACS Synthetic Biology, 1(8):345–352, 2012.

[168] Michael A Ruggiero, Dennis P Gordon, Thomas M Orrell, Nicolas Bailly, Thierry Bourgoin,

Richard C Brusca, Thomas Cavalier-Smith, Michael D Guiry, and Paul M Kirk. A higher

level classification of all living organisms. PLoS ONE, 10(4):1–60, 2015.

[169] Nazanin Saeidi, Mohamed Arshath, Matthew Wook Chang, and Chueh Loo Poh. Char-

acterization of a quorum sensing device for synthetic biology design: Experimental and

modeling validation. Chemical Engineering Science, 103:91–99, 2013.

[170] Nadin S. Schaadt, Anke Steinbach, Rolf W. Hartmann, and Volkhard Helms. Rule-based

regulatory and metabolic model for Quorum sensing in P. aeruginosa. BMC Systems Biology,

7(81):1–14, 2013.

[171] Filip Scheperjans, Velma Aho, Pedro A B Pereira, Kaisa Koskinen, Lars Paulin, Eero

Pekkonen, Elena Haapaniemi, Seppo Kaakkola, Johanna Eerola-Rautio, Marjatta Pohja,

Esko Kinnunen, Kari Murros, and Petri Auvinen. Gut microbiota are related to Parkinson’s

disease and clinical phenotype. Movement Disorders, 30(3):350–358, 2015.

BIBLIOGRAPHY 139

[172] Inna Sekirov, Sl Russell, and Lcm Antunes. Gut microbiota in health and disease. Physio-

logical Reviews, 90(3):859–904, 2010.

[173] Bart Selman and Carla P. Gomes. Hill-climbing Search. Encyclopedia of cognitive science

81, 82:333–336, 2006.

[174] Ron Sender, Shai Fuchs, and Ron Milo. Revised Estimates for the Number of Human and

Bacteria Cells in the Body. PLoS Biology, 2016.

[175] Chaminda Jayampath Seneviratne, Cheng Fei Zhang, and Lakshman Perera Samaranayake.

Dental plaque biofilm in oral health and disease. The Chinese journal of dental research

: the official journal of the Scientific Section of the Chinese Stomatological Association

(CSA), 14(2):87–94, 2011.

[176] Gamini Seneviratne, M.L.M.A.W. Weerasekara, K.A.C.N. Seneviratne, J.S. Zavahir, M.L.

Kecske, and I.R. Kennedy. Importance of Biofilm Formation in Plant Growth Promoting

Rhizobacterial Action. In Plant growth and health promoting bacteria, pages 81–95. Springer,

2010.

[177] oliver James Shaw. Modelling Bacterial Regulatory Networks With Petri Nets. PhD thesis,

University of Newcastle upon Tyne, 2007.

[178] Mohammad Soheilypour and Mohammad R.K. Mofrad. Agent-Based Modeling in Molecular

Systems Biology. BioEssays, 40(7), 2018.

[179] Felix Sommer and Fredrik Bäckhed. The gut microbiota-masters of host development and

physiology. Nature Reviews Microbiology, 11(4):227–238, 2013.

[180] Vanessa Sperandio, Alfredo G. Torres, and James B. Kaper. Quorum sensing Escherichia

coli regulators B and C (QseBC): a novel two-component regulatory system involved in the

regulation of flagella and motility by quorum sensing in E. coli. Molecular Microbiology,

43(3):809–821, 2002.

[181] Guy-Bart Stan. Modelling in Biology. Imperial College London, 8.8(September):1–25, 2020.

[182] Philip S. Stewart. Biophysics of biofilm infection. Pathogens and Disease, 70(3):212–218,

2014.

[183] Jibin Sun, Rolf Daniel, Irene Wagner-Döbler, and An Ping Zeng. Is autoinducer-2 a universal

signal for interspecies communication: A comparative genomic and phylogenetic analysis of

the synthesis and signal transduction pathways. BMC Evolutionary Biology, 4:1–11, 2004.

BIBLIOGRAPHY 140

[184] Michael G. Surette, Melissa B. Miller, and Bonnie L. Bassler. Quorum sensing in Escherichia

coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for

autoinducer production. Microbiology, 96:1639–1644, 1999.

[185] Stephen Swift, Allan Tucker, Veronica Vinciotti, Nigel Martin, Christine Orengo, Xiaohui

Liu, and Paul Kellam. Consensus clustering and functional interpretation of gene-expression

data. Genome biology, 5(11):1–16, 2004.

[186] Kouichi Takahashi, Satya Nanda Vel Arjunan, and Masaru Tomita. Space in systems

biology of signaling pathways - Towards intracellular molecular crowding in silico. FEBS

Letters, 579(8):1783–1788, 2005.

[187] C. Täubner, B. Mathiak, A. Kupfer, N. Fleischer, and S. Eckstein. Modelling and simulation

of the TLR4 pathway with coloured petri nets. In Annual International Conference of the

IEEE Engineering in Medicine and Biology - Proceedings, pages 2009–2012, 2006.

[188] Elizabeth Thursby and Nathalie Juge. Introduction to the human gut microbiota. The

Biochemical journal, 474(11):1823–1836, 2017.

[189] Helena Tlaskalová-Hogenová, Renata Tpánková, Hana Kozáková, Tomáš Hudcovic, Luca

Vannucci, Ludmila Tuková, Pavel Rossmann, Tomá Hrní, Miloslav Kverka, Zuzana Zákos-

telská, Klára Klimeová, Jaroslava Pibylová, Jiina Bártová, Daniel Sanchez, Petra Fundová,

Dana Borovská, Dagmar Rtková, Zdenk Zídek, Martin Schwarzer, Pavel Drastich, and

David P Funda. The role of gut microbiota (commensal bacteria) and the mucosal barrier

in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of

germ-free and gnotobiotic animal models of human diseases, 2011.

[190] Valentina Tremaroli and Fredrik Bäckhed. Functional interactions between the gut micro-

biota and host metabolism, 2012.

[191] Nouha Bakaraki Turan, Dotse Selali Chormey, Çağdaş Büyükpınar, Güleda Onkal Engin,

and Sezgin Bakirdere. Quorum sensing: Little talks for an effective bacterial coordination,

2017.

[192] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob Knight, and

Jeffrey I Gordon. The Human Microbiome Project. Nature, 449:804, oct 2007.

[193] Conway Tyrrell and Paul S Cohen. Commensal and Pathogenic Escherichia coli Metabolism

in the Gut. Microbiol Spectr., 3(3), 2015.

BIBLIOGRAPHY 141

[194] Luke K Ursell, Jessica L Metcalf, Laura Wegener Parfrey, and Rob Knight. Defining the

human microbiome. Nutrition Reviews, 70(suppl_1):S38–S44, aug 2012.

[195] Luis Valencia-Cabrera, Miguel Á Martínez-del Amor, and Ignacio Pérez-Hurtado. A

simulation workflow for membrane computing: From mecosim to pmcgpu through p-lingua.

In Enjoying Natural Computing, pages 291–303. Springer, 2018.

[196] Han Van de Waterbeemd and Eric Gifford. ADMET in silico modelling: Towards prediction

paradise? Nature Reviews Drug Discovery, 2(3):192–204, 2003.

[197] Wil MP Van der Aalst. Pi calculus versus Petri nets: Let us eat “humble pie” rather than

further inflate the “Pi hype”. BPTrends, 3(5):1–11, 2005.

[198] Benjamin L. Vaughan, Bryan G. Smith, and David L. Chopp. The Influence of Fluid Flow

on Modeling Quorum Sensing in Bacterial Biofilms. Bulletin of Mathematical Biology, 2010.

[199] Björn Victor and Faron Moller. The Mobility Workbench—a tool for the π-calculus. In

International Conference on Computer Aided Verification, pages 428–440. Springer, 1994.

[200] Estefania Vidal-Henriquez and Azam Gholami. Spontaneous center formation in Dic-

tyostelium discoideum. Scientific Reports, 9(1):1–11, 2019.

[201] Alessandro Usseglio Viretta and Martin Fussenegger. Modeling the quorum sensing reg-

ulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnology Progress,

20(3):670–678, 2004.

[202] Nikita Vladimirov, Linda Løvdok, Dirk Lebiedz, and Victor Sourjik. Dependence of bacterial

chemotaxis on gradient shape and adaptation rate. PLoS Computational Biology, 4(12),

2008.

[203] MatthewWalters and Vanessa Sperandio. Quorum sensing in Escherichia coli and Salmonella.

International Journal of Medical Microbiology, 296(SUPPL. 1):125–128, 2006.

[204] Liang Wang, Yoshifumi Hashimoto, Chen-Yu Tsao, James J Valdes, and William E Bentley.

Cyclic amp (camp) and camp receptor protein influence both synthesis and uptake of

extracellular autoinducer 2 in escherichia coli. Journal of bacteriology, 187(6):2066–2076,

2005.

[205] J. P. Ward and J. R. King. Thin-film modelling of biofilm growth and quorum sensing.

Journal of Engineering Mathematics, 2012.

BIBLIOGRAPHY 142

[206] J. P. Ward, J. R. King, a. J. Koerber, J. M. Croft, R. E. Sockett, and P. Williams. Early

development and quorum sensing in bacterial biofilms. Journal of mathematical biology,

47:23–55, 2003.

[207] John P Ward, John R King, Adrian J Koerber, Julie M Croft, R Elizabeth Sockett, and

Paul Williams. Digital Object Identifier (Mathematical Biology Early development and

quorum sensing in bacterial biofilms. J. Math. Biol, 47:23–55, 2003.

[208] Jumpei Washio and Nobuhiro Takahashi. Metabolomic studies of oral biofilm, oral cancer,

and beyond. International Journal of Molecular Sciences, 17(6), 2016.

[209] Hans V Westerhoff and Bernhard O Palsson. The evolution of molecular biology into

systems biology. Nature Biotechnology, 22(10):1249–1252, 2004.

[210] Thomas Wright and Ian Stark. The bond-calculus: A process algebra for complex biological

interaction dynamics. arXiv, pages 1–18, 2018.

[211] Karina B Xavier and Bonnie L Bassler. Regulation of uptake and processing of the quorum-

sensing autoinducer AI-2 in Escherichia coli. Journal of bacteriology, 187(1):238–248,

2005.

[212] Jing Yan, Andrew G Sharo, Howard A Stone, Ned S Wingreen, and Bonnie L Bassler.

Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging

. Proceedings of the National Academy of Sciences, 113(36):E5337–E5343, 2016.

[213] Jessica S. Yu and Neda Bagheri. Agent-Based Models Predict Emergent Behavior of

Heterogeneous Cell Populations in Dynamic Microenvironments. Frontiers in Bioengineering

and Biotechnology, 8(June):1–22, 2020.

[214] Le Zhang, Zhihui Wang, Jonathan A Sagotsky, and Thomas S Deisboeck. Multiscale

agent-based cancer modeling. Journal of Mathematical Biology, 58(4-5):545–559, 2009.

[215] Tianyu Zhang, Al Parker, Ross P Carlson, Phil S Stewart, and Isaac Klapper. Flux-Balance

Based Modeling of Biofilm Communities. bioRxiv, page 441311, 2018.

[216] Kai Zhao, Mingzhu Liu, and Richard R. Burgess. Adaptation in bacterial flagellar and

motility systems: From regulon members to ’foraging’-like behavior in E. coli. Nucleic Acids

Research, 35(13):4441–4452, 2007.

[217] Jin Zhou, Yihua Lyu, Mindy Richlen, Donald M. Anderson, and Zhonghua Cai. Quorum

sensing is a language of chemical signals and plays an ecological role in algal-bacterial

interactions. Critical reviews in plant sciences, 35(2):81–105, 2017.

BIBLIOGRAPHY 143

[218] Vincent Zijnge, M. Barbara M. Van Leeuwen, John E. Degener, Frank Abbas, Thomas

Thurnheer, Rudolf Gmür, and Hermie J.M. Harmsen. Oral biofilm architecture on natural

teeth. PLoS ONE, 5(2):1–9, 2010.

APPENDIX A. ACINETOBACTER BAUMANNII 144

Appendix A

Acinetobacter baumannii

One of the most interesting bacteria in human body is Acinetobacter baumannii. This

bacteria lives inside the body naturally but is an opportunist and may cause diseases if the

circumstances allows it. As an experiment for detailed modelling, the process of quorum sensing

and biofilm formation specifically in this bacteria was modelled in detail. However, since this

model was never developed further and was not a part of the collection of models, it was not

published as a part of the main body of this thesis. The model was built in Snoopy. The model

can be found in Figure A.1.

APPENDIX A. ACINETOBACTER BAUMANNII 145

Figure A.1: The detailed model of Acinetobacter baumannii.. that describes the quorum sensing

and biofilm formation specifically in this bacteria

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 146

Appendix B

Random Restart Hill Climbing Code

The code for Random Restart Hill Climbing developed over time. The final code is proved

below:

1 #!/usr/bin/python

2 import random

3 import glob

4 import os

5 import subprocess

6 import pandas as pd

7 import shutil

8 import subprocess

9 import csv

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import sys

13 import pylab

14 from PIL import Image

15

16

17 outer_loop = str (50)

18 m = int(outer_loop)

19 inner_loop = str (10000)

20 n = int(inner_loop)

21

22 for j in range(0, m):

23 print(j, ’the outer loop starts here’)

24 #create a csv file to save all the useful information

25 with open(’Values_index.csv’, mode=’w’) as Values_index:

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 147

26 values_writer = csv.writer(Values_index , delimiter=’,’,

27 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

28 values_writer.writerow ([’number of itereation ’,’status ’,

29 ’total Dicty’, ’k_diff ’, ’k_mvmnt ’,

30 ’k_sink ’, ’k_pro’, ’max location ’, ’max amount new’,

31 ’max amount old’, ’max col first row’,’precentage increase ’])

32 #create a tag for folder name

33 random_f = str(random.randint (0000 ,9999))

34 folder_name = (’HCV4 .2.4’ + ’_’ + inner_loop + ’_’ + random_f)

35

36 #set the directory in a local path

37 path = os.chdir(r’.’)

38 read_file = os.chdir(r’.’) #read the files in the set directory

39 #os.system (’./ randomspc_py.sh ’)

40 os.system(’~/ randomspc_py.sh’)

41 myFiles_old = glob.glob(’*ter.spc’) #read the latest spc file

42 mf = str(myFiles_old [0])

43 #create new and new2 files for the next steps

44 mf_new = (’new_’+mf)

45 mf_new2 = (’new2_’+mf)

46 cp_cmnd = (’cp’ + ’ ’ + mf + ’ ’ + mf_new)

47 cp_cmnd2 = (’cp’ + ’ ’ + mf + ’ ’ + mf_new2)

48 os.system(cp_cmnd)

49 os.system(cp_cmnd2)

50

51 #creat random numbers between 0 and 1, up to 2 numbers decimal

52 rnd_num1 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

53 rnd_num2 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

54 rnd_num3 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

55 rnd_num4 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

56 print(rnd_num1 , rnd_num2 , rnd_num3 , rnd_num4) #create and print 4 random

numbers

57

58 #read the new_*.spc file

59 read_file = os.chdir(r’.’)

60 #read the new_spc file

61 myFiles_old = glob.glob(’new_*.spc’)

62 latest_file = max(myFiles_old , key=os.path.getctime)

63 fin_old = open(latest_file , "r")

64 fin_old_lines = fin_old.readlines ()

65 line17 = fin_old_lines [17]

66 line18 = fin_old_lines [18]

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 148

67 line19 = fin_old_lines [19]

68 line20 = fin_old_lines [20]

69 k_diff = line17 [19:]

70 k_mvmnt = line18 [21:]

71 k_sink = line19 [19:]

72 k_pro = line20 [27:]

73 k_diff = ’’.join(k_diff.split("[["))

74 k_diff = ’’.join(k_diff.split(’]];}’))

75 k_diff = k_diff.replace(’\n’,’’)

76 k_mvmnt = ’’.join(k_mvmnt.split("[["))

77 k_mvmnt = ’’.join(k_mvmnt.split(’]];}’))

78 k_mvmnt = k_mvmnt.replace(’\n’,’’)

79 k_sink = ’’.join(k_sink.split("[["))

80 k_sink = ’’.join(k_sink.split(’]];}’))

81 k_sink = k_sink.replace(’\n’,’’)

82 k_pro = ’’.join(k_pro.split("[["))

83 k_pro = ’’.join(k_pro.split(’]];}’))

84 k_pro = k_pro.replace(’\n’,’’)

85 print("k_strings", k_diff , k_mvmnt , k_sink , k_pro)

86 #replace the Ks with the random numbers that were created earleir

87

88 myFiles_old = glob.glob(’new_*.spc’)

89 mf_new = myFiles_old [0]

90 NewLine17 = line17.replace(k_diff , rnd_num1)

91 NewLine18 = line18.replace(k_mvmnt , rnd_num2)

92 NewLine19 = line19.replace(k_sink , rnd_num3)

93 NewLine20 = line20.replace(k_pro , rnd_num4)

94 fout = open(’new_conf -sim -DictyV13_parameter.spc’, "w")

95 fin_old_lines [17] = NewLine17

96 fin_old_lines [18] = NewLine18

97 fin_old_lines [19] = NewLine19

98 fin_old_lines [20] = NewLine20

99 fout.writelines(fin_old_lines)

100 fout.close ()

101 #copy new_*.spc to new2_.spc so that the files are the same.

102 #new2 is changing and new 1 only changes when the rates are accepeted

103 myFiles_old = glob.glob(’new*.spc’)

104 mf_new = myFiles_old [0]

105 mf_new2 = myFiles_old [1]

106 cp_cmnd = (’cp’ + ’ ’ + mf_new + ’ ’ + mf_new2)

107 os.system(cp_cmnd)

108

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 149

109 port = str(random.uniform (1111 , 9999))

110 #call spike

111 #spike = (’/usr/local/bin/spike -1.6.0rc1 ’ + ’ ’+ ’exe ’ + ’ ’+ ’-f=’+ mf_new

+ ’ ’ + ’-port=’ + port)

112 spike = (’spike ’ + ’ ’+ ’exe’ + ’ ’+ ’-f=’+ mf_new + ’ ’ + ’-port=’ + port)

113 spike = os.system(spike) #call spike

114 list_output = glob.glob(’*_.csv’) #list the csv files in the path

115 latest_output = max(list_output , key=os.path.getctime)

116 #print(latest_output)

117

118 output = pd.read_csv(latest_output)#read the latest csv file

119 output = output.loc[:, ~output.columns.str.startswith(’cAMP’)]

120 output = output.loc[:, ~output.columns.str.startswith(’Time’)]

121 num_di = output.iloc [0,0]

122 output = output.drop(output.columns [0], axis =1)

123

124 row100 = output.iloc[-1]

125 max100 = max(row100 , key=lambda x:float(x))

126 maxValueIndex = row100.idxmax ()

127 max_colr1 = output[maxValueIndex].iloc [0]

128 max_col = output[maxValueIndex]

129 print(’max_col is:’, max_colr1)

130 print(’max100 is:’, max100)

131 pc_increase = ((max100 - max_colr1)/max_colr1)*100

132 length = len(output)

133 label = ("random simulation" , maxValueIndex)

134 plt.plot(max_col , label = label)

135 plt.xlabel(’Time’)

136 plt.ylabel(’Dicty number ’)

137 plt.legend(loc="lower right")

138 nx = str(n)

139 first_run = ’first run’

140

141 with open(’Values_index.csv’, mode=’a’) as Values_index:

142 values_writer = csv.writer(Values_index , delimiter=’,’,

143 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

144 values_writer.writerow ([nx , first_run , num_di ,

145 NewLine17 , NewLine18 , NewLine19 , NewLine20 ,

146 maxValueIndex , max100 , max100 , max_colr1 , pc_increase])

147

148

149 #Create a random spc file

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 150

150 #zip up the csv files

151 zipname = (folder_name + ".zip")

152 zip_command = (’zip -rm’ + ’ ’ + zipname + ’ ’ + ’*_.csv’)

153 os.system(zip_command)

154

155

156 for i in range(0, n):

157 print(i, ’the inner loop starts here’)

158 fin_new = open(’new2_conf -sim -DictyV13_parameter.spc’, ’r’) #open new2

spc file

159 fin_new_lines = fin_new.readlines ()

160 ni = str(i)

161 line17 = fin_new_lines [17]

162 line18 = fin_new_lines [18]

163 line19 = fin_new_lines [19]

164 line20 = fin_new_lines [20]

165

166 k_diff_new = line17 [19:]

167 k_mvmnt_new = line18 [21:]

168 k_sink_new = line19 [19:]

169 k_pro_new = line20 [27:]

170 k_diff_new = ’’.join(k_diff_new.split("[["))

171 k_diff_new = ’’.join(k_diff_new.split(’]];}’))

172 k_diff_new = k_diff_new.replace(’\n’,’’)

173 k_mvmnt_new = ’’.join(k_mvmnt_new.split("[["))

174 k_mvmnt_new = ’’.join(k_mvmnt_new.split(’]];}’))

175 k_mvmnt_new = k_mvmnt_new.replace(’\n’,’’)

176 k_sink_new = ’’.join(k_sink_new.split("[["))

177 k_sink_new = ’’.join(k_sink_new.split(’]];}’))

178 k_sink_new = k_sink_new.replace(’\n’,’’)

179 k_pro_new = ’’.join(k_pro_new.split("[["))

180 k_pro_new = ’’.join(k_pro_new.split(’]];}’))

181 k_pro_new = k_pro_new.replace(’\n’,’’)

182

183 diff_float = float(k_diff_new)

184 mvmnt_float = float(k_mvmnt_new)

185 sink_float = float(k_sink_new)

186 pro_float = float(k_pro_new)

187

188 MaxDelta = 10

189 g = 5

190 #get a random number up to 2 decimals between 0 and MaxDelta

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 151

191 delta1 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

192 delta2 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

193 delta3 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

194 delta4 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

195

196 #adding delta to the current values and round the numbers to 2 decimals

197 sml_chng1 = ’{:.2f}’.format(eval(str((round(diff_float , 2))) + "+" +

delta1))

198 sml_chng2 = ’{:.2f}’.format(eval(str((round(mvmnt_float , 2))) + "+" +

delta2))

199 sml_chng3 = ’{:.2f}’.format(eval(str((round(sink_float , 2))) + "+" +

delta3))

200 sml_chng4 = ’{:.2f}’.format(eval(str((round(pro_float , 2))) + "+" +

delta4))

201

202 while str(sml_chng1) <= str (0):

203 delta1 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

204 sml_chng1 = ’{:.2f}’.format(eval(str((round(diff_float , 2))) + "+" +

delta1))

205 while str(sml_chng2) <= str (0):

206 delta2 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

207 sml_chng2 = ’{:.2f}’.format(eval(str((round(mvmnt_float , 2))) + "+"

+ delta2))

208 while str(sml_chng3) <= str (0):

209 delta3 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

210 sml_chng3 = ’{:.2f}’.format(eval(str((round(sink_float , 2))) + "+" +

delta3))

211 while str(sml_chng4) <= str (0):

212 delta4 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

213 sml_chng4 = ’{:.2f}’.format(eval(str((round(pro_float , 2))) + "+" +

delta4))

214

215 NewLine17 = line17.replace(k_diff_new , sml_chng1)

216 NewLine18 = line18.replace(k_mvmnt_new , sml_chng2)

217 NewLine19 = line19.replace(k_sink_new , sml_chng3)

218 NewLine20 = line20.replace(k_pro_new , sml_chng4)

219 NewLines_new = (NewLine17 , NewLine18 , NewLine19 , NewLine20)

220

221 fin_new = glob.glob(’new2_ *.spc’) #read the latest spc file

222 latest_file = max(fin_new , key=os.path.getctime) #get the latest file in

the fol

223 fout_new = open(latest_file , "w")

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 152

224 fin_new_lines [17] = NewLine17 #write the new files in new2

225 fin_new_lines [18] = NewLine18

226 fin_new_lines [19] = NewLine19

227 fin_new_lines [20] = NewLine20

228 fout_new.writelines(fin_new_lines)

229 fout_new.close()

230

231 #call spike for the new file

232 myFiles = glob.glob(’new2*.spc’)

233 mf_new2 = myFiles [0]

234 #port = str(random.uniform (1111, 9999))

235

236 #spike = (’/usr/local/bin/spike -1.6.0rc1 ’ + ’ ’+ ’exe ’ + ’ ’+ ’-f=’+

mf_new2 + ’ ’ + ’-port=’+ port)

237 spike = (’spike ’ + ’ ’+ ’exe’ + ’ ’+ ’-f=’+ mf_new + ’ ’ + ’-port=’ +

port)

238 spike2 = os.system(spike)

239

240 list_output2 = glob.glob(’*_.csv’)

241 latest_output2 = max(list_output2 , key=os.path.getctime)

242 output2 = pd.read_csv(latest_output2)

243 output2 = output2.loc[:, ~output2.columns.str.startswith(’cAMP’)]

244 output2 = output2.loc[:, ~output2.columns.str.startswith(’Time’)]

245 num_di = output2.iloc [0,0]

246 output2 = output2.drop(output2.columns [0], axis =1)

247 row100_new = output2.iloc[-1]## Extract the 100th row

248 print(row100_new)

249 max100_new = max(row100_new , key=lambda x:float(x))

250 print(max100_new)

251 maxValueIndex_new = row100_new.idxmax ()

252 max_colr1_new = output[maxValueIndex_new].iloc [0]

253 max_col_new = output[maxValueIndex_new]

254 pc_increase_new = ((max100_new - max_colr1_new)/max_colr1_new)*100

255 length = len(output2)

256

257

258 if max100 < max100_new:

259 read_file = os.chdir(r’.’)

260 #copy the new file to the old file

261 original = r’new2_conf -sim -DictyV13_parameter.spc ’

262 target = r’new_conf -sim -DictyV13_parameter.spc ’

263 shutil.copy(original , target) #copy the spc file into *new_spc

APPENDIX B. RANDOM RESTART HILL CLIMBING CODE 153

264 with open(’Values_index.csv’, mode=’a’) as Values_index:

265 values_writer = csv.writer(Values_index , delimiter=’,’,

266 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

267 values_writer.writerow ([ni , ’accepted ’, num_di , sml_chng1 ,

268 sml_chng2 , sml_chng3 , sml_chng4 ,

269 maxValueIndex_new , max100_new , max100 , max_colr1_new ,

pc_increase_new])

270 max100 = max100_new #add the information into the csv file

271

272

273 elif max100 >= max100_new:

274 with open(’Values_index.csv’, mode=’a’) as Values_index:

275 values_writer = csv.writer(Values_index , delimiter=’,’,

276 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

277 values_writer.writerow ([ni , ’rejected ’, num_di ,

278 sml_chng1 , sml_chng2 , sml_chng3 , sml_chng4 ,

279 maxValueIndex_new , max100_new , max100 ,

280 max_colr1_new , pc_increase_new]) #add the information to the

csv file

281 pass #reject the new rates and continue with the previous

rates

282 zipname = (folder_name + ".zip")

283 zip_command = (’zip -rm’ + ’ ’ + zipname + ’ ’ + ’*_.csv’)

284 os.system(zip_command)

285

286

287 mkdir = ("mkdir" + ’ ’ + folder_name)

288 os.system(mkdir)

289 mv_zip = ("mv" + ’ ’ + zipname + ’ ’ + folder_name + ’/’)

290 os.system(mv_zip)

291 mv_index = ("mv" + ’ ’ + ’Values_index.csv’ + ’ ’ + folder_name + ’/’)

292 os.system(mv_index)

293 mv_jpg = ("mv" + ’ ’ + ’*.jpg’ + ’ ’ + folder_name + ’/’)

294 os.system(mv_jpg)

295 #mv_spc = ("mv" + ’ ’ + ’new*.spc ’ + ’ ’ + folder_name + ’/’)

296

297 sys.exit()

APPENDIX C. SIMULATED ANNEALING CODE 154

Appendix C

Simulated Annealing Code

The code used for Simulated Annealing is as below. The main reference for this code is

[185]:

1 #!/usr/bin/python

2 import random

3 import glob

4 import os

5 import subprocess

6 import pandas as pd

7 import shutil

8 import subprocess

9 import csv

10 import numpy as np

11 import matplotlib.pyplot as plt

12 import sys

13 import pylab

14 from PIL import Image

15 import math

16

17 m = int (50000)

18 t0 = 100

19 c = 0.99994

20 Titer = t0 * (c)**m

21

22 Temp = str(t0)

23

24 folder_name = (’V6’ + ’_’ + Runs + ’_’ + Temp)

25

APPENDIX C. SIMULATED ANNEALING CODE 155

26 T = t0

27

28 with open(’SA_ValuesIndex.csv’, mode=’w’) as Values_index:

29 values_writer = csv.writer(Values_index , delimiter=’,’,

30 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

31 values_writer.writerow ([’number of iteration ’,’status ’,

32 ’k_diff ’, ’k_mvmnt ’, ’k_sink ’, ’k_pro ’,

33 ’max location ’, ’max amount new’, ’max amount old’,

34 ’best solution ’, ’max col first row’,’precentage increase ’,

35 ’Dicty on Grid’, ’Temperature ’, ’Fitness diff’, ’PA’, ’Rand’])

36

37 mkdir = ("mkdir" + ’ ’ + folder_name)

38 os.system(mkdir)

39

40 #set the directory in a local path

41 path = os.chdir(r’.’)

42 #Create a random spc file

43 os.system(’~/ randomspc_py.sh’)

44 #Read the newly created spc file = mother file

45 myFiles_old = glob.glob(’*.spc’)

46 mf = str(myFiles_old [0])

47 #create new and new2 files for the next steps

48 mf_new = (’new_’+mf)

49 mf_new2 = (’new2_’+mf)

50 cp_cmnd = (’cp’ + ’ ’ + mf + ’ ’ + mf_new)

51 cp_cmnd2 = (’cp’ + ’ ’ + mf + ’ ’ + mf_new2)

52 os.system(cp_cmnd)

53 os.system(cp_cmnd2)

54

55 #creat random numbers between 0 and 20, up to 2 numbers decimal

56 rnd_num1 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

57 rnd_num2 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

58 rnd_num3 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

59 rnd_num4 = str(’{:.2f}’.format(round(random.uniform(0, 20) ,2)))

60 print(rnd_num1 , rnd_num2 , rnd_num3 , rnd_num4)

61

62 #read the new_*.spc file

63 read_file = os.chdir(r’.’)

64 #read the new_spc file

65 myFiles_old = glob.glob(’new_*.spc’)

66 latest_file = max(myFiles_old , key=os.path.getctime)

67 fin_old = open(latest_file , "r")

APPENDIX C. SIMULATED ANNEALING CODE 156

68 fin_old_lines = fin_old.readlines () #

69

70 #Read the required lines: 17, 18, 19, 20

71 line17 = fin_old_lines [17]

72 line18 = fin_old_lines [18]

73 line19 = fin_old_lines [19]

74 line20 = fin_old_lines [20]

75 #read the required parts of the line [Ks]

76 k_diff = line17 [19:]

77 k_mvmnt = line18 [21:]

78 k_sink = line19 [19:]

79 k_pro = line20 [27:]

80 k_diff = ’’.join(k_diff.split("[[")) #finde the beginning of number

81 k_diff = ’’.join(k_diff.split(’]];}’)) #take the unwanted chr away

82 k_diff = k_diff.replace(’\n’,’’)

83 k_mvmnt = ’’.join(k_mvmnt.split("[["))

84 k_mvmnt = ’’.join(k_mvmnt.split(’]];}’))

85 k_mvmnt = k_mvmnt.replace(’\n’,’’)

86 k_sink = ’’.join(k_sink.split("[["))

87 k_sink = ’’.join(k_sink.split(’]];}’))

88 k_sink = k_sink.replace(’\n’,’’)

89 k_pro = ’’.join(k_pro.split("[["))

90 k_pro = ’’.join(k_pro.split(’]];}’))

91 k_pro = k_pro.replace(’\n’,’’)

92 #print(" k_strings", k_diff , k_mvmnt , k_sink , k_pro) #read the lines

93

94 #replace the Ks with the random numbers that were created earleir

95 myFiles_old = glob.glob(’new_*.spc’)

96 mf_new = myFiles_old [0]

97 NewLine17 = line17.replace(k_diff , rnd_num1)

98 NewLine18 = line18.replace(k_mvmnt , rnd_num2)

99 NewLine19 = line19.replace(k_sink , rnd_num3)

100 NewLine20 = line20.replace(k_pro , rnd_num4)

101

102 #write the new lines in the new)*.spc file

103 fout = open(mf_new , "w")

104 fin_old_lines [17] = NewLine17

105 fin_old_lines [18] = NewLine18

106 fin_old_lines [19] = NewLine19

107 fin_old_lines [20] = NewLine20

108 fout.writelines(fin_old_lines)

109 fout.close ()

APPENDIX C. SIMULATED ANNEALING CODE 157

110

111 #copy new_*.spc to new2_.spc so that the files are the same.

112 #new2 is changing and new 1 only changes when the rates are accepeted

113 myFiles_old = glob.glob(’new*.spc’)

114 mf_new = myFiles_old [0]

115 mf_new2 = myFiles_old [1]

116 cp_cmnd = (’cp’ + ’ ’ + mf_new + ’ ’ + mf_new2)

117 os.system(cp_cmnd)

118 port = str(random.uniform (1111 , 9999))

119 #call spike

120 spike = (’spike ’ + ’ ’+ ’exe’ + ’ ’+ ’-f=’+ mf_new + ’ ’ + ’-port=’ + port)

121 spike = os.system(spike) #call spike

122

123 #list the csv files in the path

124 list_output = glob.glob(’*.csv’)

125 #get the latest csv file

126 latest_output = max(list_output , key=os.path.getctime)

127

128 #read the csv file , remove extra unwanted cols

129 output = pd.read_csv(latest_output)

130 output = output.loc[:, ~output.columns.str.startswith(’cAMP’)]

131 output = output.loc[:, ~output.columns.str.startswith(’Time’)]

132 num_di = output.iloc [0,0]

133 output = output.drop(output.columns [0], axis =1)

134

135 ## Extract the last row

136 row100 = output.iloc[-1]

137 #find the max in the last row

138 max100 = max(row100 , key=lambda x:float(x))

139 #find the col in which maximum exists

140 maxValueIndex = row100.idxmax ()

141 max_colr1 = output[maxValueIndex].iloc [0]

142 max_col = output[maxValueIndex]

143

144 #set the first solution as the best solution

145 best_sol = max100

146

147 #check the percentage increase in the max col

148 pc_increase = ((max100 - max_colr1)/max_colr1)*100

149 length = len(output)

150

151 #zip up the csv files

APPENDIX C. SIMULATED ANNEALING CODE 158

152 zipname = (folder_name + ".zip")

153 zip_command = (’zip -rm’ + ’ ’ + zipname + ’ ’ + ’*_.csv’)

154 os.system(zip_command)

155

156

157 #update the Values index file

158 with open(’SA_ValuesIndex.csv’, mode=’a’) as Values_index:

159 values_writer = csv.writer(Values_index , delimiter=’,’,

160 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

161 values_writer.writerow ([’first’, ’new_sim ’, k_diff , k_mvmnt ,

162 k_sink , k_pro , maxValueIndex , max100 ,

163 max100 , best_sol ,max_colr1 , pc_increase , num_di , T])

164

165 for x in range (1, m):

166 #read new2_.spc file

167 fin_new = glob.glob(’new2_ *.spc’)

168 latest_file = max(fin_new , key=os.path.getctime)

169 fin_new = open(latest_file , "r")

170 fin_new_lines = fin_new.readlines ()

171 line17 = fin_new_lines [17]

172 line18 = fin_new_lines [18]

173 line19 = fin_new_lines [19]

174 line20 = fin_new_lines [20]

175 k_diff_new = line17 [19:]

176 k_mvmnt_new = line18 [21:]

177 k_sink_new = line19 [19:]

178 k_pro_new = line20 [27:]

179 k_diff_new = ’’.join(k_diff_new.split("[["))

180 k_diff_new = ’’.join(k_diff_new.split(’]];}’))

181 k_diff_new = k_diff_new.replace(’\n’,’’)

182 k_mvmnt_new = ’’.join(k_mvmnt_new.split("[["))

183 k_mvmnt_new = ’’.join(k_mvmnt_new.split(’]];}’))

184 k_mvmnt_new = k_mvmnt_new.replace(’\n’,’’)

185 k_sink_new = ’’.join(k_sink_new.split("[["))

186 k_sink_new = ’’.join(k_sink_new.split(’]];}’))

187 k_sink_new = k_sink_new.replace(’\n’,’’)

188 k_pro_new = ’’.join(k_pro_new.split("[["))

189 k_pro_new = ’’.join(k_pro_new.split(’]];}’))

190 k_pro_new = k_pro_new.replace(’\n’,’’)

191 diff_float = float(k_diff_new)

192 mvmnt_float = float(k_mvmnt_new)

193 sink_float = float(k_sink_new)

APPENDIX C. SIMULATED ANNEALING CODE 159

194 pro_float = float(k_pro_new)

195

196 mx = str(x)

197

198 #get a random number up to 2 decimals between 0 and MaxDelta

199 MaxDelta = 10

200 g = 5

201 delta1 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

202 delta2 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

203 delta3 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

204 delta4 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

205

206 #small change

207 sml_chng1 = ’{:.2f}’.format(eval(str((round(diff_float , 2))) + "+" + delta1)

)

208 #adding delta to the current values if smlchange is less than zero

209 while str(sml_chng1) <= str (0):

210 delta1 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

211 sml_chng1 = ’{:.2f}’.format(eval(str((round(diff_float , 2))) + "+" +

delta1))

212

213 sml_chng2 = ’{:.2f}’.format(eval(str((round(mvmnt_float , 2))) + "+" + delta2

))

214 #and round the numbers so there is no more than 2 decimals

215 while str(sml_chng2) <= str (0):

216 delta2 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

217 sml_chng2 = ’{:.2f}’.format(eval(str((round(mvmnt_float , 2))) + "+" +

delta2))

218

219 sml_chng3 = ’{:.2f}’.format(eval(str((round(sink_float , 2))) + "+" + delta3)

)

220 while str(sml_chng3) <= str (0):

221 delta3 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

222 sml_chng3 = ’{:.2f}’.format(eval(str((round(sink_float , 2))) + "+" +

delta3))

223

224 sml_chng4 = ’{:.2f}’.format(eval(str((round(pro_float , 2))) + "+" + delta4))

225 while str(sml_chng4) <= str (0):

226 delta4 = ’{:.2f}’.format(round(random.uniform(0, MaxDelta) ,2) - g)

227 sml_chng4 = ’{:.2f}’.format(eval(str((round(pro_float , 2))) + "+" +

delta4))

228

APPENDIX C. SIMULATED ANNEALING CODE 160

229 #write the new lines

230 NewLine17 = line17.replace(k_diff_new , sml_chng1)

231 NewLine18 = line18.replace(k_mvmnt_new , sml_chng2)

232 NewLine19 = line19.replace(k_sink_new , sml_chng3)

233 NewLine20 = line20.replace(k_pro_new , sml_chng4)

234

235 fin_new = glob.glob(’new2_ *.spc’)

236 latest_file = max(fin_new , key=os.path.getctime)

237 fout_new = open(latest_file , "w")

238 fin_new_lines [17] = NewLine17

239 fin_new_lines [18] = NewLine18

240 fin_new_lines [19] = NewLine19

241 fin_new_lines [20] = NewLine20

242 fout_new.writelines(fin_new_lines)

243 fout_new.close()

244

245 #call spike for the new file

246 myFiles = glob.glob(’new2*.spc’)

247 mf_new2 = myFiles [0]

248 spike = (’spike ’ + ’ ’+ ’exe’ + ’ ’+ ’-f=’+ mf_new2 + ’ ’ + ’-port=’+ port)

249 spike2 = os.system(spike)

250

251 #check the max from the new csv file

252 list_output2 = glob.glob(’*.csv’)

253 latest_output2 = max(list_output2 , key=os.path.getctime)

254 output2 = pd.read_csv(latest_output2)

255 output2 = output2.loc[:, ~output2.columns.str.startswith(’cAMP’)]

256 output2 = output2.loc[:, ~output2.columns.str.startswith(’Time’)]

257 num_di = output2.iloc [0,0]

258 output2 = output2.drop(output2.columns [0], axis =1)

259 row100_new = output2.iloc[-1]## Extract the last row

260 max100_new = max(row100_new , key=lambda x:float(x))

261 maxValueIndex_new = row100_new.idxmax ()

262 max_colr1_new = output[maxValueIndex_new].iloc [0]

263 max_col_new = output[maxValueIndex_new]

264 pc_increase_new = ((max100_new - max_colr1_new)/max_colr1_new)*100

265 length = len(output2)

266 os.system(zip_command)

267

268 #fitness

269 s = max100

270 s1 = max100_new

APPENDIX C. SIMULATED ANNEALING CODE 161

271 def fitness(s):

272 R = max100 * math.exp(max100)

273 res = abs(s * math.exp(s) - R)

274 return(res)

275 f_old = fitness(s)

276 f_new = fitness(s1)

277

278

279 df = abs(f_old - f_new)

280 print(’df = ’, df)

281

282 print(x)

283

284 if T > Titer and best_sol < max100_new:

285 myFiles_old = glob.glob(’new*.spc’)

286 mf_new = myFiles_old [0]

287 mf_new2 = myFiles_old [1]

288 cp_cmnd = (’cp’ + ’ ’ + mf_new2 + ’ ’ + mf_new)

289 os.system(cp_cmnd)

290 best_sol = max100_new

291 max100 = best_sol

292

293 #copy the spc file into *new_spc

294 with open(’SA_ValuesIndex.csv’, mode=’a’) as Values_index:

295 values_writer = csv.writer(Values_index , delimiter=’,’,

296 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

297 values_writer.writerow ([mx , ’accepted ’, sml_chng1 ,

298 sml_chng2 , sml_chng3 , sml_chng4 ,

299 maxValueIndex_new , max100_new , max100 , best_sol ,

max_colr1_new ,

300 pc_increase_new , num_di , T, df])

301

302

303 elif T > Titer and best_sol >= max100_new:

304 #lower T, Higher P

305 e = 2.71828

306 p = e ** -(math.exp(-df/T))

307 print(’p=’, p)

308 PA = p

309 rand = random.random ()

310 #print(’random possibility=’, rand)

311 #rand = 0.9

APPENDIX C. SIMULATED ANNEALING CODE 162

312 RA = rand

313 if p >= rand:

314 myFiles_old = glob.glob(’new*.spc’)

315 mf_new = myFiles_old [0]

316 mf_new2 = myFiles_old [1]

317 cp_cmnd = (’cp’ + ’ ’ + mf_new2 + ’ ’ + mf_new)

318 os.system(cp_cmnd)

319 max100 = max100_new

320

321 #copy the spc file into *new_spc

322 with open(’SA_ValuesIndex.csv’, mode=’a’) as Values_index:

323 values_writer = csv.writer(Values_index , delimiter=’,’,

324 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

325 values_writer.writerow ([mx , ’AP high’, sml_chng1 ,

326 sml_chng2 , sml_chng3 , sml_chng4 ,

327 maxValueIndex_new , max100_new , max100 , best_sol ,

max_colr1_new ,

328 pc_increase_new , num_di , T, df, PA , RA])

329 max100 = max100_new

330

331

332 else:

333 with open(’SA_ValuesIndex.csv’, mode=’a’) as Values_index:

334 values_writer = csv.writer(Values_index , delimiter=’,’,

335 quotechar=’"’, quoting=csv.QUOTE_MINIMAL)

336 values_writer.writerow ([mx , ’rejected ’, sml_chng1 , sml_chng2 ,

337 sml_chng3 , sml_chng4 ,

338 maxValueIndex_new , max100_new , max100 , best_sol ,

339 max_colr1_new , pc_increase_new , num_di , T, df , PA , RA])

340 #add the information into the csv file

341 pass

342

343 if T <= Titer:

344 print("Break of the simulation: Reached the minimum Teperature: ", Titer

)

345 break

346

347 T = c*T

348 print(’new temperature=’, T)

349

350

351 mv_zip = ("mv" + ’ ’ + zipname + ’ ’ + folder_name + ’/’)

APPENDIX C. SIMULATED ANNEALING CODE 163

352 os.system(mv_zip)

353 mv_index = ("mv" + ’ ’ + ’SA_ValuesIndex.csv’ + ’ ’ + folder_name + ’/’)

354 os.system(mv_index)

355

356

357

358 sys.exit()

	Introduction
	Research Questions
	Aims and Objectives
	Novel Contributions to Science
	In the Next Chapters

	 Literature Review
	Systems and Synthetic Biology
	Bio-Model Engineering
	Choice of Microorganisms For Modelling
	Bacteria
	Dictyostelium: The Slime Mould

	Chosen Behaviours
	Quorum Sensing and Biofilm Formation
	Duplication, Chemotaxis and Death

	Bio-modelling Tools and Techniques
	Differential Equations
	Agent-Based Models (ABMs)
	-Calculus
	-Calculus
	Statecharts
	P systems models
	CellML
	Bio-PEPA
	Petri net
	Tool Box

	A Review of Previous Models
	Discussion

	Methodology For Modelling, Simulation, Optimisation and Data Analysis
	Chosen Software Tools for Modelling and Simulation
	Snoopy
	Different Classes of Petri nets:
	Spike
	Optimisation Method
	Data Analysis Tools

	Discussion

	 Model Library
	Properties
	Level-0: Basic Components
	Level-0 Diffusion and Movement
	Level-0 Duplication
	Level-0 Death
	Level-0 Transmitter
	level-0 Receiver

	Level-1: Simple Models
	Level-1 Transmitter
	Level-1 Receiver
	Level-1 Chemotaxis
	Level-1 Duplication and Death
	Level-1 Limited Strip Glu
	Level-1 Semi-permeable obstacle and Transmitter

	Colouring the Models
	Discussion

	Application of Models from the library
	Bacteria E. coli
	Level-2 Transmitter and Receiver(TR)
	Level-2 Duplication, Chemotaxis and Death (DCD)
	Level-2 Combined Strip Glu, DCD and TR
	Level-2 Biofilm Formation
	Level-3 Quorum Sensing

	Level-2 Dictyostelium: Slime Mould
	Collection of Model Components
	Discussion

	Optimisation
	Definitions
	Random Restart Hill Climbing
	Pseudocode

	Simulated Annealing
	Pseudocode

	Discussion

	Data Analysis and Results
	Timing the Simulations
	Models
	Diffusion / Movement
	Chemotaxis
	Semi-permeable Obstacle and Transmitter
	Combined Strip Glu, DCD and TR

	Optimisation Results
	Principle Data Analysis
	PCA on Random Restart Hill Climbing
	PCA on Simulated Annealing

	Inspecting the Behaviour of Dicty
	Visualisation of Random Restart Hill Climbing
	Visualisation of Simulated Annealing
	Random Restart Hill Climbing Versus simulated Annealing

	Discussion

	Summary, Conclusions and Further Works
	Summary
	Conclusion
	Further Work
	Biological and Non-Biological Applications
	Stochastic and Complex Movement
	Automated Modelling
	Improving the collection

	Bibliography
	Acinetobacter baumannii
	Random Restart Hill Climbing Code
	Simulated Annealing Code

