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Abstract

This letter presents a detailed study of the electron relaxation lifetimes from the excited p-like

state into the ground s-like state via Auger cooling in positively and negatively charged CdSe

nanocrystals, where the dependence of Auger cooling rates on size, temperature and carrier-carrier

interaction effects is investigated. A nearly two-orders-of-magnitude reduction of Auger rates is

found in small nanocrystals populated by two electrons and one hole at room temperature. This

effect increases with decreasing temperature leading to a total lifetime increase of up to 4 orders of

magnitude for T ∼ 10 K. Such a giant suppression of Auger cooling rates appears to be a general

property of semiconductor nanocrystals. A similar reduction of Auger rates at room T is found in

negatively charged PbSe nanocrystals as well.

PACS numbers: 71.15.-m, 71.55.-i
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Understanding and manipulating carrier dynamics in nanomaterials is of paramount im-

portance for their device application. An excellent example is the quantum cascade laser [1]

where accurate design of the width and composition of the component quantum wells, leads

to an impressive level of control over sub-band populations, carrier dynamics and emission

energies. All this however comes at the expense of a fabrication process involving expensive

high precision growth of the semiconductor structure and a lengthy processing of the wafer.

Semiconductor nanocrystals (NCs), in contrast, are inexpensive, easy to produce through

chemical synthesis and can be manufactured in large quantities. Furthermore, due to their

chemical flexibility, they can easily be ordered in 3D superlattices, prepared as close-packed

films or incorporated with high densities into sol gel, glasses or polymers. NCs with sizes

smaller than the excitonic Bohr radius (strong confinement regime) offer wide tunability of

their electronic and optical properties coupled with strong Coulomb interaction between the

charge carriers forced to coexist within a small volume due to spatial confinement. In CdSe

colloidal NCs, the intraband transition energies between the p-like and the s-like conduction

states are of the order of hundreds of meV, and can be tuned by varying the NC size to

cover most of the infrared (IR) energy window. Since the CdSe bulk optical phonon energy

is ~ωLO = 26 meV, according to the adiabatic approximation, the p-like state should have

a very long lifetime, as the multi-phonon emission process associated with its decay has a

small probability which decreases as the number of phonon emitted increases (this limitation

is known as the phonon bottleneck). This is in contrast with the experimental observation

of sub-picosecond lifetimes [2]. The absence of a phonon bottleneck has been explained [3, 4]

in terms of an Auger-like process whereby the electron excess energy is transferred to the

photogenerated hole which is excited to deep valence levels. The hole then undergoes a fast

relaxation (with typical times ≤ 1 ps) to the band edge through the denser valence band

energy ladder. This hypothesis, although still controversial, has gained increasing evidence

culminating with the very recent direct observation of electron-to-hole energy transfer by

Hendry and co-workers [5], where time-resolved luminescence and terahertz spectroscopy

revealed that the rate of cooling of the photoexcited hole depended critically on the electron

excess energy. Whilst such a fast relaxation would benefit devices based on interband las-

ing (emitting or absorbing in the visible range), it is detrimental to applications exploiting

intraband transitions, such as IR sources and detectors.

Auger cooling (AC) rates have been shown to depend on: (i) the NC size [2, 4] (the
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observed lifetimes increased with size remaining however in the sub-picosecond range for

NC radii up to 40 Å); (ii) the surface termination (i.e., the nature of the capping groups)

[2, 6, 7] (a lifetime increase of up to 2 orders of magnitude in charge-separated, pyridine-

capped dots was observed by Sionnest and co-workers [6], whereas the increase observed by

Klimov et al. [2, 7] in pyridine-capped dots was of only about one order of magnitude); (iii)

the NC temperature [6] (only a weak dependence was observed).

A detailed theoretical investigation into the effects of (i) and (iii) on Auger electron

relaxation rates in CdSe NCs in the presence of a single additional unbalanced spectator

carrier delocalized within the dot (i.e., not trapped in a surface state), is presented using

the formalism developed in Ref. [4]. The electron relaxation in the different configurations

is schematically presented in Fig. 1. Four CdSe NCs with sizes R1 = 10.3 Å, R2 = 14.6 Å,

and R3 = 19.2 Å, and R4 = 28 Å, are considered, spanning the regimes from very strong

to intermediate confinement, and a PbSe NC with R = 15.3 Å for comparison. The Auger

rates are calculated as [4]:

1/τi =
Γ

~

∑

n

| < i|∆H|fn > |2

(Efn
− Ei)2 + (Γ/2)2

, (1)

where |i > and |fn > are the initial and final Auger electronic states, Efn
and Ei are their

eigen-energies, and ∆H is the Coulomb interaction. For T 6= 0 a Boltzmann average is

calculated over the initial states. The single-particle energy levels εi are calculated using the

plane-wave semiempirical pseudopotential method described in Ref. [8], including spin-orbit

effects.

If carrier-carrier interaction effects are neglected (single-particle, SP, approximation), the

presence of an additional spectator electron in the conduction band minimum (CBM, the

es state in Fig. 1) leading to a reduction of the number of available final states by a factor

of 1/2 compared with the neutral NC, results in a decrease of the Auger relaxation rate

1/τ(2e, 1h) by the same amount. Similarly, the presence of a hole in one of the two hs

states in Fig. 1, by doubling the number of final states, yields an electron relaxation rate

1/τ(1e, 2h) twice as large as in a neutral NC. Both effects are shown in Figs. 2 (b) and (c)

(circles), which also illustrate the very weak temperature dependence exhibited by the SP

lifetimes.

When the interactions between carriers are taken into account within the configuration

interaction (CI) formalism [9], however, large departures from the above intuitive predictions
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are found (see Fig. 2 (b) and (c), squares). The AC lifetimes of a negatively charged dot

show a size-dependent increase, compared with the neutral configuration, of about two orders

of magnitude for the smallest NC, and of a factor of ∼ 10 for the largest dot considered.

Furthermore they also exhibit a huge temperature dependence, further increasing by 2-3

orders of magnitude, depending on the NC size, from room temperature to T = 10 K, with

lifetimes of the order of hundreds of ps already at T = 100 K (see Fig. 2 (a), squares). The

presence of an additional hole leads instead to less dramatic effects on the AC lifetime, both

in terms of magnitude and in terms of temperature dependence (see Fig. 2 (c) and (d)). The

rest of this work will therefore concentrate on the more intriguing τ(2e, 1h).

The very different behaviour between SP and CI results may seem artificial but a simple

argument can provide a qualitative explanation for it. The three particles in the initial Auger

state (es, ep, hs) can be in either of 8 spin configurations, in four of which the electrons spins

are aligned and in the remaining 4 have opposite direction. The two electrons in the final

Auger state (es, es, hn) are both in the CBM, therefore they have opposite spins. Transitions

between initial states with aligned electron spins and final states with opposite spins would

require a spin flip and the corresponding matrix elements in (1) will be small, as Coulomb

interactions do not change spin, yielding long lifetimes. On the other hand, transitions

not requiring the electron spin to flip can have large matrix elements with correspondingly

short lifetimes. The difference between SP and CI results is due to the different nature of

multi-particle states in the two approaches. With no interparticle interactions taken into

account, the SP initial state consists of a multiplet of 8 degenerate levels each of which

is a pure spin state with the electrons having either the same or opposite spin; the CI

initial states are instead only two-fold degenerate and, most importantly, resulting from a

superposition of different excitonic configurations, are not pure spin states, but receive all

large contributions from spin-aligned configurations (such contribution is calculated to be

43% in the case of the lowest energy multiplet). The two electrons in the final Auger state

have opposite spins in both SP and CI approaches, the only difference being that, again,

in the SP description the states are pure spin states (i.e., they are contributed to 100%

by a single spin configuration), whereas CI states receive contributions from many different

states, all of which have, however, two electrons with opposite spins (the hole can be in

different spin and ”orbital” configurations). It is now clear why the two approaches yield

such different lifetimes: Auger SP rates contain matrix elements of transitions between pure
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spin states with same electron spins, for each initial state energy, whereas CI matrix elements

only couple mixed-spin (opposite and aligned) initial states with pure opposite spins final

states for all transition energies. The large temperature dependence of the CI rates shown

in Fig. 2(a) and (b) originates from the large contribution of spin-aligned configurations to

the lowest energy initial state mentioned above, leading to a small rate at low temperature,

whilst higher energy levels receive larger contributions from opposite-spin configurations,

yielding larger transition rates, which are dominant at room temperature. This is illustrated

in Fig. 3. The same arguments can of course not be applied to the case of a NC populated

by a single electron-hole pair, as in that configuration there is no restriction on the spin of

the particles in the final states. As a consequence CI and SP yield similar AC lifetimes [4].

The first question that needs to be addressed now is whether configuration (a) in Fig. 1 is

realistic, i.e., can be achieved in laboratory. Experimentally there are two different ways to

excite an electron to the p state: (i) by resonantly photoexciting it directly into the excited

p state [5] (or to a state above it), or (ii) by photoexciting it first to the ground (s) state

and then re-exciting it using an IR pump pulse [6, 7]. If an unpaired ground state electron

is present during procedure (i), it will have a low probability of absorbing the pump photon

and will remain in the s state. The configuration considered here will be achieved directly (or

after relaxation of the high-energy electron-hole pair, in the case of a larger photoexcitation

energy). If procedure (ii) is applied, then, for high enough IR pump fluences, the spectator

electron may be excited to the p level together with the photogenerated electron. We

calculate a very short lifetime for this configuration, with one of the electrons decaying via

AC to the s state in times of the order of tens of fs, bringing the system in the desired

long-lived configuration.

The next question that needs to be considered regards the alternative decay channels ex-

pected to be most effective. Due to the presence of the additional electron, another relaxation

mechanism, namely Auger recombination (AR), where an electron-hole pair recombines non

radiatively via energy transfer to a third particle (the electron in the present case), which

is excited to high energy states, becomes possible. AR was both experimentally observed

[11] and theoretically predicted [4] to occur on time scales of the order of tens of ps at room

temperature when two electrons and two holes are present, and is therefore expected to pro-

vide an upper limit to the lifetime of the p electron. The fact that only one hole is present

here (which together with the two electrons forms a negative trion instead of the neutral
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bi-exciton investigated in Refs. [11] and [4]), is of no consequence since, as mentioned above,

the recombination process is a three-particle process and there is a simple relationship [4]

between the lifetime of the state with 2 electrons and 2 holes and that of the states with 2

electrons and 1 hole and 1 electron and 2 holes. The important difference, however, is that

both measurements and theoretical calculations for AR were done in a configuration where

the two electrons and the two holes occupy the band edge (i.e., are in the respective s states).

This turns out to be a fundamental difference with the configuration assumed in the present

work, where one of the electrons occupies the excited p level. In fact our calculated AR

lifetimes in this case are of the order of hundreds of ps at room temperature, therefore larger

than the corresponding AC decay times. This means that AC is more efficient than AR, and

our calculations show that p state electron lifetimes of the order of ∼ 100 ps are achievable in

negatively charged NCs at temperatures lower than 150 K (see Fig. 2(a)). A slow relaxation

component with lifetimes about two order of magnitude longer than the fast component,

representing less than 10% of the total bleaching signal for TOPO- or thiol-capped samples,

was indeed observed in CdSe NC at room temperature [6], but was attributed to decay in

charge-separated quantum dots. However, a similar slow background was also subsequently

observed [7] in ZnS-capped NCs, where electron-hole charge separation is inhibited, and was

explained in terms of accumulation of electrons in some long-lived state. In the light of the

results presented here it may alternatively be interpreted as having been due to a fraction of

the NCs being negatively charged. In fact it is not uncommon for NC ensembles to contain

some percentage of charged dots. Furthermore the lifetimes of such slow decay measured in

Ref. [6] at 80 K are of the order of a few hundreds of ps, in very good agreement with our

results in that temperature range (Fig. 2(a)).

Finally the generality of the predicted suppression of AC rates found in CdSe NCs is

investigated by calculating p electron Auger lifetimes in PbSe NCs with R = 15.3. PbSe

and CdSe NC have fundamentally different crystal and electronic structure, therefore there

are no a priori simple arguments suggesting any similarity in this effect. A similar increase

in the AC lifetime is found in the presence of a spectator electron in the s state at room

temperature [12] (see Fig. 2b empty squares), suggesting this effect to be a general property

of semiconductor NCs.

In summary, negatively charged CdSe semiconductor NCs with an unpaired electron in

the s state exhibit a 3-4 orders of magnitude reduction of AC rates at low T with a long
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lived excited electron state lasting ∼ 100 ps at temperatures as high as 150 K in small dots.
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FIG. 1: Schematics of Auger decay in the multi-particle configurations considered in this work: (a)

negative trion X−, (b) neutral exciton X, (c) positive trion X+.
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FIG. 2: (Color online): The lifetimes of negatively (a) and positively (d) charged CdSe NCs [10]

and their relative increase [(b) and (c), respectively], compared to that of neutral NCs, in the

configuration interaction (CI, squares) and single-particle (SP, circles) approaches, as a function of

temperature (T) for all sizes considered. All SP curves overlap in (b) and (c). In (b) our calculated

CI lifetime as a function of T for a PbSe NC with R=15.3 Å is shown for comparison (empty

squares).
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FIG. 3: (Color online) Comparison between the rates 1/τi(2e, 1h) (upper panel) in Eq. (1), and

the Boltzmann factors at T=300 K (lower panel) calculated, for each initial state i, within the CI

and SP approaches (the two sets of results have been offset along the x axis for clarity), for a CdSe

NC with R = 14.6 Å. The only appreciable Boltzmann weights at T=10 K are those with value

=1 at room temperature.
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