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Effective visualization of unsteady, time-dependent vector fields in a virtual envi-
ronment is not a trivial task. This is due to the fact that most visualization tech-
niques require the user to have a prior understanding of how the vector field will
behave to set the parameters used to create the visualization. In this thesis we will
take air flow data from a computational fluid dynamic simulations to calculate the
amount of turbulence (represented as Reynolds numbers) to identify regions of in-
terest. We then calculate wind pathlines that will intersect with these points sampled
from these regions. We address the issue of optimizing the appropriate number of
pathlines relative to the size and resolution of the simulation. We are then able to
implement the ability to interact with the simulations using a modern video game
engine with virtual reality capabilities. By comparing the results with results that do
not involve the turbulence based sampling methods, we conclude that our method
provides more detail where detail is demanded.
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Chapter 1

Introduction

1.1 Motivation

Simulation modeling has become an invaluable tool for emulating smoke and heat
release from fires. Its use for training urban and wildland firefighters has the capa-
bility to be immeasurably useful as it eliminates the danger of training in hazardous
conditions. For example, in 2020 the United States Fire Administration (U.S.F.A.)
reported that there were a total of 66 firefighter fatalities (this does not include SARS
CoV-2 related deaths). Twelve of those fatalities were at the scene of wildland or
outdoor fires [USF22].

When looking at wildland fire incidents with multiple fatalities related to fire be-
havior, wind is noted to be a major contributing factor to the fatalities. Some notable
examples of this are the Yarnell Hill Fire which had 19 fatalities [Ser13], the El Do-
rado Incident which had one fatality [Ser20], the Twisp River Fire which had three
fatalities [Ser16], and the Mann Gulch Fire which had 13 fatalities [Ser49]. While it is
impossible to definitively state that additional training could have prevented these
fatalities, it has been shown by B. Wiederhold et. all that stress responses in virtual
reality had a high level of correlation to real life stimulus [Wie+03].

A training environment in virtual reality will allow anyone ranging from brand new
firefighters to fire bosses to experience dynamic fire environments. An advantage
with utilizing virtual environments is that we are able to create an unlimited number
of unique situations to train firefighters. The more unique environments and situ-
ations we are able to expose firefighters to, the better prepared they will be to deal
with a fire in an emergency situation. Additionally, virtual reality (VR) is rapidly im-
proving to the point where some VR head mounted displays (HMD) can cost under
$300 and only need to be connected to a phone application to run [Fac22].

Steven G Wheeler, Hendrik Engelbrecht, and Simon Hoermann reviewed six arti-
cles pertaining to the use of firefighter training in virtual reality [WEH21]. In each
experiment they showed that VR training out performed the control groups and
performed at least as well as other traditional training methodologies.

Current visualization software, such as Smokeview or Paraview, allow the users to
change their vantage point and manually filter out what information may be im-
portant. A variety of types of data are needed to build an accurate simulation such
as physical obstructions, topography, fuel types, ignition points, wind speed, and
wind direction.Topography and fuel type information can all be directly pulled from
databases like LANDFIRE. Wind speed and direction data can be obtained from
NOAA and visualized directly or put into a simulation model to estimate future
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wind data [FF17]. While local wind behavior during a fire is complex and dynamic,
we are able to model it using the well validated reaction chain and computational
fluid dynamic simulator from the National Institute of Standards and Technology
(NIST) called Fire Dynamic Simulator (FDS) [McG+21]. FDS allows us to generate
discrete estimates on a structured grid of wind vectors, temperature, and air den-
sity. Improvements in computational hardware and available algorithms has made
visualizing these simulations in a digestible manner a tangible goal.

1.2 Graphing Techniques

Currently there are many unique techniques used for visualizing vector fields in 2-D
or 3-D spaces. These can be sub-categorized as textured-based techniques (line inte-
gral convolution), glyph based (arrow graphs), or particle tracing (streamlines). All
of these approaches have unique benefits but come with a similar set of drawbacks
that our methodology looks to resolve.

Line integral convolution (LIC) simulates surface oil patterns in wind tunnel exper-
iments. To do this, a texture of white noise is applied to the domain of an area. This
can be a flat plane at any orientation, or more commonly, it is a texture mapped
onto a 3-D object. Next a one dimensional convolution with a kernel filter, that is in
the direction of the vector field is applied to the white noise, then finally the kernel
output is normalized [CL93]. The resulting intensity of LIC pixels is recorded and
this provides a visualization of strongly correlated streamlines. A large drawback
when it comes to LIC is that line brightness is not indicative of velocity due to the
local normalization that occurs. Additionally, the texture will occlude any part of
the object behind it; as well as, the small stream lines do not indicate directionality,
i.e., a line going left to right looks identical to a line going right to left [Rez+99].

Hedgehog, or arrow plots, are visualized by inserting glyphs as each cell of data in
a vector field. Glyphs can be represented by a variety of 3-D objects, but arrows are
primarily used. The orientation of the glyphs can be used to indicate directionality,
while the objects scale and color can represent other scalar values. These plots can
also be visualized in 2-D or 3-D. The main advantage to this type of graph is the ease
of implementation and ability to be understood quickly. The drawback with this
technique is when represented in a 3-D area, the visual becomes quite busy if each
point in a vector field is represented. Additionally, when the data being represented
is time dependent, then the previous time-step glyphs are just replaced with the new
glyph. This forces the user to mentally compare the changes and make assumptions
based on that.

Particle tracing tends to be a larger subcategory as the techniques used change dras-
tically based on several factors. If the vector field has steady state flow, meaning it
does not change in time, we refer to these as streamlines. Pathline is the term used if
the vector field is time dependent. We also have streaklines, where a line is created
from all particles that pass through a given point. Placement of these points can
be predetermined, random, or placed to form a designated shape like a ribbon or a
cylinder. To calculate the flow of a particle through a volume, the ordinary differen-
tial equation solvers (ODE’s) are used to move the particles through velocity fields.
ODE solvers with dynamic time stepping, like Runge-Kutta 4(5), ensures that we
have a more accurate model then one with a discrete time step like Euler’s [TGE97].
These visualizations can be textured to indicate velocity at a set point along the line.
They have the same demerits, as previously discussed with LIC; there is no clear
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start or end to each line and resolving areas of interest is difficult without previous
knowledge of the vector field.

All of these visualization techniques generally have a large drawback, all informa-
tion in the field is visualized at once, forcing the user to mentally compare the change
between time steps, all while having other data being occluded by data closer to the
user’s vantage point. Solutions often involve the user having to preselect where they
assume that the most important information will be, which is difficult to do without
prior visualization.

Our goal is to develop an optimized way to visualize pathlines in vector fields fo-
cused on improving firefighter training. For fire simulations the areas we will be
interested in are areas with turbulent air flow that can cause unpredictable fire be-
havior. Using the reynolds number allows us to have a unitless value to indicate air
turbulence, with this we can calculate pathlines that cross these areas of interest.
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Chapter 2

Methods

2.1 Reynolds Number

Our first goal is to identify a set of points of interest. Because turbulent flow is where
we need to study, we need to calculate the reynolds number (RE) of each voxel in
every time step of the simulation. We take the product of p, u and L where p is the
density of the fluid, u is the flow speed of the fluid, and L is the characteristic linear
dimension. Then using the dynamic viscosity of fluid represented as µ as the divisor
to get the RE for that voxel in that time-step(Eqn. 2.1). It should be noted that for
consistency in our simulations L is calculated from the average length of the sides
of each voxel ( 3

√
length ∗ width ∗ height). Due to the scale being a constant in each

calculation, changing this value can affect the scale of values obtained, but it does
not alter the distribution of the values.

RE =
puL

µ
(2.1)

Now we have the reynolds number of every voxel in each time-step REt where t is
an index number referencing a time value. Next, we find the mean value for each
voxel 2.2 then threshold the data into two categories; RE >= 150 as turbulent flow
and 0 < RE <= 40 as laminar flow. We chose to take the mean over the median
or mode as we don’t expect our data to have any outliers to the distribution; and
with reynolds numbers being 32-bit floating point values any numerical repetition
is inconsequential. We exclude RE values of zero because they are indicative of a
voxel that is within an obstruction (e.g. underground, inside of a tree). Next we RE
threshold our 3-D points in space to locate points of interest.

⟨RE⟩mean =
1
T

T

∑
t=1

REt =
1
T
(RE1 + · · ·+ RET) (2.2)

Because the number of voxels with ⟨RE⟩ greater than the threshold is large we run
a clustering algorithm on voxels with ⟨RE⟩ above the threshold, in this case we use
k-means due to its ease of implementation and speed when clustering large sets of
points [Bar22]. This groups all points into k groups while minimizing the distance
between a point and that group’s centroid. We calculate the value of k by taking
the 1

2
3
√

I ∗ J ∗ K where I, J and K are the number of voxels in the x, y and z axis
respectively. We then are able to take the centroid from each cluster and refer to
these as our points of interest reducing the points of interest by approximately 7000.
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FIGURE 2.1: Mean Reynolds Values Histogram

FIGURE 2.2: A top down view of a plot showing areas of turbulent
air flow containing 7705 points
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2.2 Pathline Calculations

Now that we have calculated the points of interest we can use an ordinary differen-
tial equation solver to calculate the pathlines. We will use a fifth-order Runge-Kutta
method for adaptive time steps and to minimize errors in calculations [TGE97]. We
are able to use forward and reverse integration to calculate pathlines for every time
step that passes through these points of interest. After integrating in both directions
we then combine the posting and time data for each pathline while also adding in
the reynolds number for each point as well. We chose to store all of this data in
formatting so it can be efficiently loaded in parallel into our visualization pipeline
[].

2.3 Unity Visualization

Once we read in pathline and scene data into Unity, we determine the largest (REmax)
and smallest (REmin) value within the data set. Now having the minimum and max-
imum values we are able to calculate a color value for each segment of the pathlines.
To do so we have to calculate the interpolant value within the range [REmin, REmax]
(Eqn. 2.3). This provides us with a value between [0,1] allowing us to map this value
to a color on a perceptually uniform color map. We selected Vega’s magma color
map with eight colors [Veg22]. For each time step, we load in the respective data
for all k pathlines. To resolve the issue of being able to see orientation but not true
directionality of a pathline we segment each pathline into n-1 line segments (e.g.
P0 → P1,P1 → P2, ... ,Pn−2 → Pn−1). We then adjust the starting width of each line
segment to be the average length of a voxel and the ending width zero. Figure 2.3
illustrates the benefits of this visual change. Using cones resolves the issues with
directionality of pathlines as previously discussed. We then build a color gradient
texture and apply it to the texture from point to point with the precalculated color
map. We are able to compile and build our Unity system into an executable file that
allows for the end user to run on any compatible system. We have the user interface
(UI) designed to allow for viewing the simulation using a head mounted display, a
virtual reality headset, and controller or a computer monitor with a keyboard and
mouse for movement. Users just need to type in the directory of the files output
discussed previously and the data is cached for quick loading into the simulation.
Users are then able to move around the environment in either virtual reality or just
by using the mouse and keyboard.

f (REmin, REmax, REvalue) =
REvalue − REmin

REmax − REmin
(2.3)
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FIGURE 2.3: Top: Pathlines visualized as a single line Bottom: Path-
lines broken in to line segments
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Chapter 3

Results

3.1 Setup

In this paper, we described a pipeline implemented using python then C# and Unity’s
real time development platform; as the visualization engine. To simulate fire behav-
ior, we ran a Level set 4 FDS simulation, set to output plot3D files every 0.5 seconds
on a 20m x 20m x 20m mesh, containing voxels 0.2m x 0.2m x 0.2m in size, with
open boundary conditions. The simulation was 100 seconds in length with a ground
fire igniting ten seconds into the simulation, a wind of 5.6 m/s originating from the
south west (215°) and trees evenly distributed on the mesh. Figure 3.1 shows a top
down view of our visualization rendered in SmokeView, while Figure 3.2 is the same
visualization rendered in unity.

The sample FDS input file and code used in this paper can be accessed at https:
//github.com/tjschweitzer/ReynoldsNumberSampling.

3.2 Analyses

The CFD simulation was run using FDS 7.6.0, the total run time for this simulation
took 252 (4 Hours 12 Min ) minutes to complete running 4 cores of an i7 4790k in
parallel. The calculations discussed in this paper were able to complete in three
minutes, with no parallelization. Additionally, the size of the CFD output files was
5.0 Gigabytes, while the saved data needed for full virtual reality using our method-
ology is 28.9 Megabytes, a 99.4% reduction in file size. When visualized inside of
unity using a HMD ( HTC Vive and HTC Vive Pro was used during testing) we
were able to average 15-30 frames per second with a resolution of 1440 x 1660 pixels
per eye 3.3, with the lowest frame rate during the transition between timesteps. This
was achieved using an Intel i7 4790k CPU with a RTX 2070-Super GPU.

https://github.com/tjschweitzer/ReynoldsNumberSampling
https://github.com/tjschweitzer/ReynoldsNumberSampling
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FIGURE 3.1: A top-down view of the simulation in SmokeView with
a two meter by two meter square on the right for scale
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FIGURE 3.2: A top-down view of the simulation in Unity
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FIGURE 3.3: A view of the video output to the left eye of a HMD from
Unity
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FIGURE 3.4: A view of the video output to the eyes of a HMD from
Unity

FIGURE 3.5: Fire and wind vectors visualized with Unity, color
mapped based on the heat release rate and air velocity respectively
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Chapter 4

Conclusion and Future Work

Updating the tools available for fire fighter training is a current objective for the U.S.
Forestry Service. New approaches have the capability to save lives if used effec-
tively. Our goal was to design a generalized proof of concept that would be able
to be built on to improve training and safety for firefighters. The use of Unity’s
development platform allows us to compile and provide a self-contained system to
improve training for firefighters.

A necessary focus for this work was the visualization of 3-D wind fields that trans-
port oxygen to and heat away from fires. Improving the fidelity of the visualization
we are able to allow firefighters to experience simulations without the risks of a real
fire. This allows each user to have a larger mental set of fire environments they have
experienced before being put into a dangerous situation. This will allow them to
make more accurate assessments in real life situations and be safer overall.

We were able to substantially lower the total amount of memory needed to store
pertinent data, with only a trivial increase to the amount of processing time, for the
current pipeline of running and visualizing a simulation.

The Unity stage of our pipeline is currently designed for use with HTC, Steam’s
HMD, or no headset. A separate version of the system could be compatible with
other brands of HMD with minimal changes to the configuration; further research
into this would be needed.

In the future, further research into improving or implementing new thresholding
and clustering techniques may be able to further optimize our pipeline. As for fu-
ture capabilities, unity implementation of additional libraries would allow for these
projects to run on the Oculus platform, which would lower the cost of equipment
needed for each training facility. Additionally, further research into utilizing Unity’s
WebVR would allow for the system to be hosted online and accessed remotely; again
lowering the total cost of the equipment needed for each training facility.

Within the VR simulation, allowing the users to select what scalar value is being
shown along the pathlines would also help in the training process. This would re-
quire the simulation to be run multiple times to get different values like temperature,
heat release rate, smoke density, etc. Visualizing the temperature along the paths for
example would allow for firefighters to see how the temperature effects the flow
over ignited areas.
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Appendix A

Software Documentation

The following is a list of the repositories of code used to visualize the simulations, including
descriptions of each script contained within. Additionally, we list and describe each func-
tion/method contained within the scripts as well as the file structure for each data type used.

• FDSPreUnityTool

Converts the plot3D output from Fire Dynamic Simulator (FDS) into a more
optimized data format to be visualized inside of unit.

– fds2ComplexGeom.py

Converts FDS input file into a JSON with tree location data and complex
terrain information

– fdsOutput2Unity.py

Converts plot3D data from FDS into binary data to be loaded into unity

– fdsPathLines.py

Takes plot3D data and calculates the amount of turbulence (represented
as Reynolds numbers) to identify regions of interest. Then calculates
pathlines that will intersect with points sampled from these regions

– main.py

Creates the proper file structure and ensures all functions save data into
the proper location
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• FDS2UnityVR

Visualizes the data from FDSPreUnityTool in an immersive VR environment
using Unity’s Real-Time Development Platform

– ConfigData.cs

Saves all information when transitioning from one scene to another

– hrrLoader.cs

Loads in a color mapped and animated fire particle engine in each voxel
per timestep

– MainMenu.cs

Verifies menu check boxes are selected and verifies fire and directory
structure for input data

– PauseMenu.cs

Checks pause button input and tracks time in pause menu to allow for
accurate timesteps after pausing

– smokeLoader.cs

Loads in a color mapped and animated smoke particle engine in each
voxel per timestep

– smvReader.cs

Loads in and caches heat release rate and smoke density data while track-
ing the current timestep

– tduController.cs

Uses calulations of thermal dosage from Parsons, Russell A., Butler, Bret.
W., and Mell, William “Ruddy" to visualize burn injury potential [PBM14]

– TerrainBuilder.cs

Loads a JSON of terrain data from fds2ComplexGeom.py A.1.1 and maps
to a 3-D mesh with texturing

– TreeLoader.cs

Loads a JSON of tree data from fds2ComplexGeom.py A.1.1 and main-
tains scale regardless of the size of the 3-D tree object

– WindStreams.cs

Loads in and caches pathline data from fdsPathLines.py A.1.3 to be visu-
alized each timestep
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A.1 FDSPreUnityTool

A.1.1 fds2ComplexGeom.py

Converts FDS input file into a JSON with tree location data and complex terrain
information

• Class instantiation

– Parameters

* fds_input_location: Complete path to FDS input file (.fds)

* tree_id: Name of the tree label

* non_terrain_obsts: List of any obstacles that are not classified as ter-
rain

• read_in_fds_obst

Reads in FDS input file and generates a dictionary of dictionaries containing
the elevation data for the terrain

• read_in_tree_locations

Reads in all the locations of trees in the FDS input file and parses other tree
information

• read_in_fds_mesh

Reads in FDS input file and parses the MESH information

• complex_geom

Reads in topographical information and formats it for a 3-D mesh

• save_to_json

Saves all parsed data into a JSON file

JSON File Structure

– meshData

* X_MIN: x value of the origin point of the mesh

* Y_MIN: y value of the origin point of the mesh

* Z_MIN: z value of the origin point of the mesh

* X_MAX: x value of the opposite corner

* Y_MAX: y value of the opposite corner

* Z_MAX: z value of the opposite corner

* I: number of cells in the x direction

* J: number of cells in the y direction

* K: number of cells in the z direction

– verts

List of all vertices of the topographical map
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– faces

List of indices of vertices to form triangle faces (one indexed values)

– treeList

* x: x position

* y: y position

* height: Ground height at position x,y

* crownBaseHeight: Height from ground level where tree crown be-
gins

* crownRadius: Radius of tree crown

* crownHeight: Height of tree crown

• write_hdf5

Saves all parsed data into a HDF5 file

Note: Reading in the complex geometry as a HDF5 file has not been imple-
mented in to the current Unity project

HDF5 File Structure

– meshData Array of nine, 32-bit floats

[X_MIN,Y_MIN, Z_MIN, X_MAX, Y_MAX, Z_MAX, I, J, K]

* X_MIN: x value of the origin point of the mesh

* Y_MIN: y value of the origin point of the mesh

* Z_MIN: z value of the origin point of the mesh

* X_MAX: x value of the opposite corner

* Y_MAX: y value of the opposite corner

* Z_MAX: z value of the opposite corner

* I: number of cells in the x direction

* J: number of cells in the y direction

* K: number of cells in the z direction

– verts

List of all vertices of the topographical map

– faces

List of indices of vertices to form triangle faces (one indexed values)

– treeList 2-D array, Size: N (number of trees) by six

[x, y, height, crownBaseHeight, crownRadius, crownHeight]

* x: x position

* y: y position

* height: Ground height at position x,y
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* crownBaseHeight: Height from ground level where tree crown be-
gins

* crownRadius: Radius of tree crown

* crownHeight: Height of tree crown

A.1.2 fdsOutput2Unity.py

Converts plot3D data from FDS into HDF5 data to be loaded into Unity

• Class instantiation

– Parameters

* fds_output_directory: Full path to where FDS data was output

* fds_input_location: Full path to FDS input file

* save_location: Full path to where data should be saved once pro-
cessed

* save_type: Allows for selection for output file type .

• read_in_fds

Reads in FDS input file to generate list of data being saved as plot3D

• get_file_timestep

Extracts the timestep from the filename

• group_files_by_time

Groups filenames by timestamp to allow for multi-mesh simulations

• find_max_values_parallel

Parallel function to find the maximum values for each time of plot3D data

• get_values

Calculates minimum and maximum values for all types of plot3D data

• runParallel

Reads in and saves all plot3D data in parallel.

• get_mesh_number

Pulls mesh number from filename

• q_file_to_dict

Reads in plot3D data and saves it to a dictionary to allow all threads to access
the data when running in parallel

• write_to_json

Saves all data to JSON format

JSON File Structure

– fire: 2-D array, size: N number of voxels by four
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[x, y, z, q] where x, y, and z represent the position while q represents the
heat release rate

– smoke: 2-D array, size: N number of voxels by four

[x, y, z, q] where x, y, and z represent the position while q represents the
smoke density

– configData:

* min: 1-D Array, Minimum value for [fire, smoke]

* max: 1-D Array, Maximum value for [fire, smoke]

• write2bin

Saves all data in a custom binary format

Binary File Structure

– Header

Five 32-bit integers corresponding to the length of each of the five scalar
values from the plot3D output

– 2-D array with [x,y,z,q] as quantities, where x, y, and z represent the
position while q represents the respective scalar value

Note: this is a space matrix version of the output from plot3D files

• write_to_hdf5

Saves all data in HDF5 format

HDF5 File Structure

– fire: 2-D array, size: N number of voxels by four

[x, y, z, q] where x, y, and z represent the position while q represents the
heat release rate

– smoke: 2-D array, size: N number of voxels by four

[x, y, z, q] where x, y, and z represent the position while q represents the
smoke density

– min: 1-D Array, Minimum value for [fire, smoke]

– max: 1-D Array, Maximum value for [fire, smoke]

A.1.3 fdsPathLines.py

Takes plot3D data and calculates the amount of turbulence (represented as reynolds
numbers) to identify regions of interest. Then calculates pathlines that will intersect
with points sampled from these regions

• Class instantiation

– Parameters

* directory: Location of the FDS output files

* fds_input_location: Location of the FDS input file.
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• __check_valid_file

Verifies file path is valid

• __set_voxel_size

Calculates voxel size

• get_position_from_index

Converts index value into a 3-D position

• __set_minimum_pathline_length

Sets the minimum length of pathlines

• filter_streams_by_length

Generates list of pathlines longer than minimum length

• __add_ribbon_points

Generates a set number of pathline starting points between two given points

– Parameters

* starting_point: starting point for calculation

* ending_point: ending point for calculation

* number_of_points total number of starting points to be calculated

• run_ode

Runs the ode solver for all saved starting points beginning at a specified timestep’s
index, can also run reverse integration

– Parameters

* time_step_index: indexed value of what timestep to start the ode
solver from

* reverse_integration A boolean that if set to true the ode solver will
solve from designated timestep backwards until time is at zero

• start_ode

Calls run_ode on all timesteps including reverse integration if needed

– Parameters

* reverse_integration A boolean that if set to true the ode solver will
solve from designated timestep backwards until time is at zero

• combine_ode_frames

Combines data frames from the forwards and backward integration

– Parameters

* all_forward_data Array of ode solver data frames

* all_backwards_data Array of ode solver data frames

• write_hdf5
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Saves all data in HDF5 format

HDF5 File Structure

– maxValue: Maximum magnitude of wind represented as a pathline in the
current timestep

– number_of_wind_streams: Number of pathlines visualized in the cur-
rent timestep

– length_of_wind_streams: Array the size of the number of wind streams
indicating the number of line segments per pathline

– windstream_{N}: 2-D array, size: N length of current pathlines by five

[Time, Velocity, x, y, z]

• get_velocity

Returns the magnitude of the wind vector at a set point and time

– Parameters

* re_time: current time to be analyzed

* x: 3-D array of position

[x, y, z]

• get_index_values

Returns the vector field index of a set point

– Parameters

* x: 3-D array of position

[x, y, z]

• add_reynolds_number

Adds the reynolds number to the ode solver data frame

• __add_velocity_to_ode_data_frame

Adds the velocity to the ode solver data frame

• draw_stream_lines

Uses matplotlib to draw pathlines for each timestep

• __get_closest_time_step_index

Takes any time value and returns the index value of the nearest plot3D file

• __get_reynolds_matrix

Returns a 3-D array of reynolds numbers for a specified timestep

• __get_reynolds_number

Returns a reynolds number for a specified timestep

• get_data_from_time

Returns a dataframe from the ode solver for a specified timestep
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• __get_max_re

Returns a maximum reynolds numbers from all dataframes

• get_average_re_over_time

Returns a 3-D array of the mean reynolds number over a specified time range

• get_mean_std

Calculates data ranges for histogram plots

• __plot_points_re_range

Returns indices of all points that are within a set range of values

• get_starting_positions

Uses k-means to cluster all points from __plot_points_re_range to calculate
and return a list of centroids

• get_all_starting_points

Calls get_average_re_over_time, get_mean_std, __plot_points_re_range, then
get_starting_positions to generate all starting points of interest for the ode
solver for a set range of reynolds numbers

• set_turbulent_laminar_poi

Calls get_all_starting_points for the ranges of laminar and turbulent flow then
combines the data sets

• set_random_distro_poi

Generates a random set of starting points for the ode solver

• set_even_distro_poi

Generates an evenly distributed set of starting points for the ode solver
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A.1.4 main.py

Creates the proper file structure and ensures all functions save data into the proper
location

• main

Creates a file structure for Unity to read in, copies FDS input file, runs fds2ComplexGeom.py,
FdsPathLines.py, then fdsOutputToUnity.py
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A.2 FDS2UnityVR

Visualizes the data from FDSPreUnityTool in an immersive VR environment using
Unity’s Real-Time Development Platform

A.2.1 ConfigData.cs

Saves all information when transitioning from one scene to another

• Awake

Checks for any data gathered from the main menu scene and saves them to the
correct variables

• getFireSmokeOption

Returns the selected option for fire, smoke, or none

• setFireSmokeOption

Sets an option for fire, smoke, or none

• getLoadTrees

Returns the selected option for trees or none

• setLoadTrees

Sets an option for trees or none

• getWindOption

Returns the selected option for windlines, windvectors, or none

• setWindOption

Sets an option for windlines, windvectors, or none

A.2.2 hrrLoader.cs

Loads in a color mapped and animated fire particle engine in each voxel per timestep

• Start

Creates a pointer to the particle engine that will be used for fire animation and
saves all mesh data needed for scaling the size of the particles

• LateUpdate

Places all particle engines mapped to correct color relative to heat release rate

A.2.3 MainMenu.cs

Verifies menu check boxes are selected and verifies fire and directory structure for
input data

• Start

Initializes progress bar

• FireSmokeToggleChange
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Saves list of what fire, smoke, or none option is selected

• TreeToggleChange

Saves changes when tree option is toggled from on/off

• WindToggleChange

Saves changes when tree option is changed from wind path, wind vector, or
none

• PlayGame

When play button is clicked it preloads the next scene as long as the directory
input is valid

• Update

Moves the loading bar as long as the next scene is loading

• UpdateDirTexField

Updates text field when VR keyboard is used

• FieldInput

Validates that all file types are in input directory

• FileExists

Checks if files exist in specific directory

A.2.4 PauseMenu.cs

Checks pause button input and tracks time in pause menu to allow for accurate
timesteps after pausing

• Start

Checks if pause option was preselected

• Update

If pause button is pressed, change timescale from zero to one or one to zero

• updateTime

Tracks time inside of pause menu to keep accurate timing once it is unpaused

A.2.5 smokeLoader.cs

Loads in a color mapped and animated smoke particle engine in each voxel per
timestep

• Start

Creates a pointer to the particle engine that will be used for fire animation and
saves all mesh data needed for scaling the size of the particles

• LateUpdate

Places all particle engines mapped to correct color relative to heat release rate
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A.2.6 smvReader.cs

Loads in and caches heat release rate and smoke density data while tracking the
current timestep

• Start

Checks if fire, smoke, or none is selected, loads in binary file of sparse matrix
data

• getMeshData

Returns mesh data

• sortedFileArray

Converts list of file paths to dictionary: where the keys are timesteps and the
values are the file path

• getFileTime

Parses file path to timestep

• Update

Calls function to load in plot data

• optimizedFDSLoader

Reads in smoke and fire data, saving to dictionaries to be accessed later

A.2.7 TerrainBuilder.cs

Loads a JSON of terrain data from fds2ComplexGeom.py A.1.1 and maps to a 3-D
mesh with texturing

• Start

Builds smooth 3-D mesh or cubic terrain based on input settings

• MovePlayer

Moves player to the highest point on the topography

• buildTerrainCubes

Builds topography with cubes

• ParseFds

Reads FDS input file to parse mesh data

• GetVerts

Reads in vertices from JSON file saves to mesh and saves as UVs for texturing

• GetFaces

Reads in faces from JSON
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A.2.8 TreeLoader.cs

Loads a JSON of tree data from fds2ComplexGeom.py A.1.1 and maintains scale
regardless of the size of the 3-D tree object

• Start

Checks if trees should be loaded, if so calls fdsReader function

• fdsReader

Reads in tree data from JSON, places trees and scales them based on the size
of the 3-D tree object to keep scale correct

A.2.9 WindStreams.cs

Loads in and caches pathline data from fdsPathLines.py A.1.3 to be visualized each
timestep

• Start

Checks if windlines or windvectors will be visualized, if not script is deacti-
vated, wind data is loaded into dictionary

• GetFileTime

Parses file name to get timestep

• SortedFileArray

Sorts list of file paths based on timestep

• readInData

Reads in binary file data

Note: This is a legacy function that is no longer used

• loadNextWindLines

Loads in the new pathlines

• loadNextWindVector

Loads in the new path vectors

• setMaxVelovity

Updates maximum velocity value if needed

• setMinVelovity

Updates minimum velocity value if needed

• getMaxVelovity

Returns maximum velocity

• readInData2Dict

Reads in binary file data

Note: This is a legacy function that is no longer used

• readInDataHDF5
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Reads in all data from HDF5 files

• Update

Checks if next timestep needs to be loaded in, if so it calls corresponding func-
tion based on menu selection
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