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Accurate annotation of biological sequences is fundamental to modern molecular biology. Tools
such as BLAST and HMMER which can quickly and accurately annotate many types of biological
sequences by aligning them to known sequences or sequence models. The work described in this
thesis is motivated by the goal of annotating protein-coding DNA, particularly for genes that are
highly diverged from known sequences. I demonstrate that gains in annotation sensitivity are
achieved both by aligning protein-coding DNA directly to protein sequences (so called ”translated
alignment”) and through the use of profile hidden Markov models (pHMMs). These pHMMs provide
position-specific patterns of sequence conservation and enable computation of annotation support
by summing over all possible sequence alignments.

Even with pHMMs, translated annotation of protein-coding DNA sequences containing frameshift
inducing indels can be particularly troublesome, as standard models do not support alignment
through frameshifts. Here I present FATHMM: Frameshift Aware Translated Hidden Markov
Models. This translated sequence alignment tool produces high-quality translated alignments and
accurate annotation for even heavily frameshifted DNA sequences. Built within a fork of the open
source HMMER software package, FATHMM is based on a new frameshift-aware pHMM archi-
tecture, and includes a complete frameshift-aware re-implementation of HMMER’s Forward and
Backward algorithms, posterior probability calculations and alignment recovery, and score adjust-
ment for composition bias. FATHMM promises to increase annotation of sequences that have
endured frameshifts through neutrally-selected mutation (such as pseudogenes and transposable
element proteins), as well as sequences containing frameshifts due to sequencing error.

iii



ACKNOWLEDGMENTS

First I would like to acknowledge my son, Oscar, who is my inspiration in all things. He taught

me the meaning of perseverance and I strive to be someone he can be proud to call his mom.

I would also like to thank all the members of the Wheeler lab, past and present, who have

worked along side me in the completion of this work. I have been blessed to have such ready access

to so many talented peers, and all around fun people, who have helped to keep my mind active and

my heart light.

Special thanks to my advisor, Travis Wheeler, who believed in me from the very start; who

challenged me to do good science and treated me with compassion. I could not have asked for an

better mentor.

This work was supported by grants from the DOE (DE-SC0021216 ) and the NIH (NIH

1R15HG009570-01 ).

iv



TABLE OF CONTENTS

COPYRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Domain Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Output Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Constructing a benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Assessing accuracy of annotation - without frameshifts . . . . . . . . . . . . . 37

3.1.3 Assessing accuracy of annotation - with frameshifts . . . . . . . . . . . . . . . 39

3.1.4 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.5 Overextension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.6 Underextension (completeness of coverage) . . . . . . . . . . . . . . . . . . . 43

3.1.7 Accuracy in specific frameshift calls . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Application to real sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



CHAPTER 4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



LIST OF FIGURES

Figure 1.1 Pairwise Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Pairwise Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.3 Core Profile Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.4 Null Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.5 Dynamic Programming for Sequence Alignment . . . . . . . . . . . . . . . . 4

Figure 1.6 Codon Translation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.7 Translation Frames and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 Comparison of hmmsearcht ad FATHMM pipelines . . . . . . . . . . . . . . 8

Figure 2.2 Full pHMM used by HMMER . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3 Frameshift Aware Codon pHMM . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.4 Mapping Stop Codons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.5 Mapping Pseudo-Codons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.6 Frameshift Aware Codon Model Special States . . . . . . . . . . . . . . . . . 15

Figure 2.7 Multiple Segment Viterbi Pseudocode . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.8 Viterbi Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.9 Forward Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.10 Naive Frameshift Aware Forward Pseudocode . . . . . . . . . . . . . . . . . 21

Figure 2.11 Memoized Frameshift Aware Forward Pseudocode . . . . . . . . . . . . . . . 22

Figure 2.12 Backward Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.13 Memoized Frameshift Aware Backward Pseudocode . . . . . . . . . . . . . . 26

Figure 2.14 Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.15 Heuristic Posteriors for Standard Domain Definition . . . . . . . . . . . . . 28

vii



Figure 2.16 Heuristic Posteriors for Standard Domain Definition . . . . . . . . . . . . . 28

Figure 2.17 Domain Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.18 Standard vs Frameshift Aware Forward Matrices . . . . . . . . . . . . . . . 31

Figure 2.19 Non-FA Posterior Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.20 FA Posterior Probabilities For Alignment Recovery . . . . . . . . . . . . . . 33

Figure 3.1 Performance of DNA Annotation Tools on the Transmark Benchmark . . . 38

Figure 3.2 Performance of DNA Annotation Tools on the Framemark1 Benchmark . . . 40

Figure 3.3 Performance of DNA Annotation Tools on the Framemark2 Benchmark . . . 40

Figure 3.4 Performance of DNA Annotation Tools on the Framemark5 Benchmark . . . 41

Figure 3.5 Performance of DNA Annotation Tools on the Framemark10 Benchmark . . 41

Figure 3.6 Alignment Overextension on Transmark . . . . . . . . . . . . . . . . . . . . 44

Figure 3.7 Alignment Overextension on Transmark - FA Only . . . . . . . . . . . . . . 44

Figure 3.8 Alignment Coverage on Transmark . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.9 Alignment Coverage on Framemark1 . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.10 Distribution of False Frameshifts in FATHMM Alignments . . . . . . . . . . 48

Figure 3.11 Alignment with False Frameshifts . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.12 FATHMM vs hmmsearcht on Four Pseudogenized Genomes . . . . . . . . . 51

Figure 3.13 FATHMM Pseudogene Alignment . . . . . . . . . . . . . . . . . . . . . . . 52

viii



LIST OF TABLES

Table 3.1 Benchmark Run Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.2 Number of Alignments Used to Measure Coverage . . . . . . . . . . . . . . . 47

ix



1

CHAPTER 1 INTRODUCTION

Pairwise sequence alignment (Fig. 1.1) is the dominant mechanism for the annotation of protein

sequences. Databases of previously annotated proteins (e.g. Uniprot [1]) or protein domains (e.g.

Pfam [2]) can be used to classify an unidentified sequence by aligning the new sequence to each

of the database sequences, seeking evidence of evolutionary relationship. The term used for these

relationships is homology, and it suggests the existence of a common ancestor and, often, a common

function. For each alignment, we begin with the null hypothesis that the unidentified sequence

(which we will call the target sequence) and the annotated sequence from the database (which we

will call the query sequence) are not related (non-homologous). If the queries from one protein

family produce particularly high quality alignments with a target sequence, we may be able to

reject the null hypothesis and label the target as belonging to that family.

To test the null hypothesis, we need both a model of homology and a model of non-homology,

called the null model. These models can be as simple as saying that homologies should have more

matches than mismatches or gaps. An alignment can then be assessed under this model by adding

one point for each match and subtracting one for each mismatch or gap. If the final sum is positive

Figure 1.1: Pairwise sequence alignments are performed
between two sequences, or between one sequences and one
sequence model. The alignment organizes letters from the
sequences into columns. Each column can consists of one
of three types of pairings. In a match column, highlighted
above in blue, two identical letters are paired. In a mis-
match column, highlighted above in red, two non-identical
letters are paired. In a gap column, highlighted above in
orange, a letter from one sequence is paired with a gap
character. When the gap character is in the target it is
called a deletion, when it is in the query it is called an
insertion. If the two aligned sequences are indeed related,
then the mismatches and gaps represent mutations where
letters have been substituted, removed or added.
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then it supports homology, but if it is negative the null model is more likely. This model works for

sequences that are so closely related as to be mostly identical, but not for those separated by more

evolutionary distance [3]. More sophisticated models, called substitution matrices (Fig. 1.2), were

built based on large sets of trusted alignments between homologous sequences. The substitution

matrix gives each pair of amino acids its own score. These scores correspond to the ratio of the

probability finding that pair of letters in an alignment of two related proteins (homology) over the

probability of finding those two amino acids by randomly selecting two letters (null model).

Substitution matrices, such as BLOSUM [6] and PAM [7], are used by many sequence align-

ment tools, including the popular software BLAST [8]. However, by using a fixed scoring scheme

Figure 1.2: Substitution matrices include an integer score for each pair of amino acids. Above is the BLOSUM62
matrix [4], which was constructed from a dataset of homologous alignments of sequences that are at least 62%
identical. The positive scores are highlighted in red to show that substitutions do not always count against homology.
The score (S) of each pair of letters (i and j) is calculated as a rounded log odds ratio [5]: Sij = lg(

qij
(pi∗pj)

) ∗ 1
λ

Here, pi and pj represent the probability of any letter in any protein from the dataset being an i or a j, and qij is
the probability of any column in any homologous alignment in the dataset containing the pair (i,j). The ratio gives
us the probability of seeing i and j aligned in a homology divided by the probability of seeing i and j in any two
sequence. To produce integer values, probabilities are converted into log space, modified with a scaling factor λ, then
rounded to the nearest integer. Insertions and deletions (indels) require gap scores (the cost of aligning a letter to a
gap character). Most schemes utilize affine gap penalties, in which the first gap character, “gap open”, is more costly
than than any consecutive gap characters, “gap extensions”.
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regardless of the specific proteins being aligned, these programs miss out on nuanced amino acid

conservation patterns specific to each protein family. Profile hidden Markov models (pHMMs)

can be used to model a collection of one or more related proteins, representing the family with

a scoring scheme that reflects position-specific patterns for both substitutions and gaps. The se-

quence alignment tools within the HMMER software package model homology by building pHMMs

from multiple sequence alignments (MSAs) of related query sequences (Fig. 1.3), and test the null

hypothesis by comparing them to a simple null pHMM (R) (Fig. 1.4). This approach provides

superior sensitivity in protein homology search [9].

Figure 1.3: Above we see an illustration of how HMMER turns an MSA of homologous sequences into the three core
states, match (M), insert (I) and delete (D), of a protein pHMM. Each M state corresponds to one column in the MSA
and has a set of 20 emissions probabilities, one for each amino acid, which are analogous to substitution scores. These
probabilities are drawn from the distribution of amino acids observed in the corresponding MSA column. To prevent
over-fitting, the MSA distributions are combined with a background distribution learned from a large set of protein
families [10]. Transition probabilities give the likelihood of moving from one state to another and are analogous to
gap penalties. Insertions or deletions observed in the MSA (such as at D2 and I3 above) mix with background indel
probabilities to yield position-specific transition probabilities. This includes both the gap open transitions from an
M state to an I or D state, and the gap extension transitions from Ij to Ij or from Dj to Dj+1 [11, 12].

Profile HMMs are generative models. Given that the model (Y) contains the set of probabilities

defining a protein family, it can be used to compute the probability that a given sequence (X)

would be generated by the model: P(X|Y) [11]. To find P(X|Y), we must consider all the possible

Figure 1.4: In HMMER the null model provides the denominator for
the likelihood ratio used to determine if the null hypothesis can be
rejected. For protein target sequences, the null model emits amino
acids according to their background frequencies. The null model sets
it’s transition probabilities according to a geometric length distribution
so that the expected length of sequence it emits will equal the length
(L) of the target [13].
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the alignment between the target sequence and the query model (the path Z through the model

Y to generate X), but it is not possible to simply enumerate them, since there are approximately

22N√
2πN

such alignments (where N is the length of the sequences) [14]. Fortunately, a class of

dynamic programming (DP) algorithms addresses this limitation. The classic Viterbi [15] algorithm

computes a maximum-probability path Z, with run time O(L ∗M), where L is the length of the

target and M is the length of the query. A simple example of dynamic programming for sequence

alignment is provided in Figure 1.5.

(a) Empty DP matrix (b) Memoizing Unrolled
Recursion

(c) DP Traceback

Si,j = MAX


Si−1,j−1 + Substitution(i, j),

Si−1,j +GapCost,

Si,j−1 +GapCost


(d) DP Recursion (e) Recovered Global Alignment

Figure 1.5: Dynamic Programming (DP) algorithms for sequence alignment (see [14]) enable computation of the
optimal alignment score (S) for aligning query to target. In (d) we see a simple DP recurrence for finding the best
possible score of aligning the first i letters from the target to the first j positions from the query. To find the best
score over the full length of sequences, we simply seek the value of SL,M , where L is the length of the target and M
is the length of the query. In (a) we see an example of an L x M DP matrix used to store memoized solutions to
subproblems. To fill this matrix, computation of the recurrence is performed top-down, observing that each cell can
be solved once the cells directly above and to the left have been solved. In (b) we see that the cell highlighted in
orange can be solved by applying the recurrence from (d). In this case I have used a scoring scheme of +1 for matches
and -1 for mismatches or gaps. Once the matrix has been filled, a traceback is used to recover the path that leads to
the optimal alignment score, as seen in (c). The path through the highlighted cells is equivalent to the columns in
the alignment, which we see in (e).



5

Figure 1.6: Protein coding DNA is made up of con-
secutive codons. Each codon is three nucleotides long
and maps either to one of the twenty amino acids or
to a stop codon (which terminates a growing protein).
Open reading frames (ORFs) are runs of amino-acid
encoding codons containing no stop codons.

The examples so far have focused on proteins,

but sequence alignment is also be used for the an-

notation of DNA. However, in the case of protein-

coding DNA, comparison at the level of the encoded

amino acids (so-called ‘translated alignment‘) gen-

erally produces more accurate alignments [16, 17].

DNA encodes proteins through the use of codons,

in which nucleotide triplets encode amino acids ac-

cording to one of many translation mappings. The

mapping seen in eukaryotes is shown in the codon

translation table by Figure 1.6.

One approach to translated alignment is to per-

form the translation of the target DNA up front,

converting codons into amino acids in all six frames

(three from each of the DNA’s stands) (Fig. 1.7a). The resulting collection of open reading frames

(ORFs) can then be searched against a query protein database. This method is used by the trans-

lated alignment tools in both HMMER (hmmsearcht) and BLAST (tblastn). However, upfront

translation only works if the codons can be translated into the correct amino acids. When a

DNA sequence contains insertions or deletions (indels) that disrupt the three-letter codon period

(Fig. 1.7b), this strategy can fail to find sequence relationships.

Frameshifts can occur naturally, particularly in pseudogenes (sequences that once encoded func-

tional protein, but have since become inactive and allowed to accumulate random mutations).

Frameshifts can also occur as the result of sequencing technology error. The latter is particularly

common with the newer long-read sequencers such as PACBIO and Oxford NanoPore[18]. If the

proper translation of these sequences cannot be found, translated alignment will fail.

Here I present FATHMM (Frameshift Aware Translated Hidden Markov Models), a tool de-

signed to perform translated alignment on sequences that may contain frameshifts. While other
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(a) Three Frame Translation (b) Translation Errors

Figure 1.7: Each strand of DNA can be translated in three separate frames, with an additional three on the reverse
complement strand. In (a) we see the translation of three different frames in the same DNA sequence. Since we
cannot be sure which frames are used to make proteins, translated search tools attempt to align all six. In (b) we
see the impact of errors in the DNA on translation. The top translation has a substitution error. This changes the
translation of one amino acid but does not impact the rest of the translation. In the bottom two translations, indels
cause frameshift errors by changing the start and end points of each subsequent codon. This can cause the rest of
the sequence to be translated out of frame or to be cut short by the introduction of a stop codon.

tools have been developed to address frameshifts, including FASTA[19], LAST[20] and GeneWise[21],

FATHMM’s approach is unique. By creating a modified pHMM model and novel implementations

of DP algorithms, FATHMM is able to produce more accurate translated alignments for sequences

that are both highly divergent and heavily frameshifted. FATHMM is available on github, in the

frameshift branch of HMMER, at https://github.com/TravisWheelerLab/hmmer/tree/frameshift.
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CHAPTER 2 Methods

FATHMM was built within the HMMER code base. The alignment tools inside of HMMER all

rely on a basic pipeline design consisting of four parts, Preprocessing, Filtering, Domain Definition,

and Output Generation. FATHMM uses this same general architecture for its pipeline, with several

key innovations. Figure 2.1 compares the FATHMM pipeline to that of its closest HMMER relative,

the translated search tool hmmsearcht which is currently available via a pull request from the

TravisWheelerLab fork of the main HMMER github repo, https://github.com/TravisWheelerLab/

hmmer/tree/frameshift).

2.1 Preprocessing

Both FATHMM and hmmsearcht require two input files. The first file contains the target

DNA sequence(s) in a recognized format, such as fasta. The second is an HMM query file that

contains one or more protein pHMMs. A pHMM file can be generated from an MSA file by another

HMMER program, hmmbuild. Each pHMM in the file contains basic information (family name,

HMM length, etc), a set of emissions and transition probabilities for each position in the model,

and learned parameters for determining the significance of the alignment scores produced by the

DP algorithms. HMMs produced with FATHMM’s modified hmmbuild tool include an extra set

of statistical parameters used to asses the significance of scores produced by frameshift-aware DP

algorithms. FATHMM pHMMs also include a MAXL field. The MAXL value is an estimate of

the maximum length of a sequence which could belong to the family represented by the pHMM -

specifically, it is the length L such that only 1 ∗ 10−7 of the sequences emitted by the model are

expected to be longer than L. HMM files built in other versions of HMMER will not include these
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Figure 2.1: Side by side comparison of the pipelines for FATHMM (shown in color) and hmmsearcht (shown in grey).
The pipelines are separated into 4 stages: (1) Preprocessing, (2) Filtering, (3) Domain Definition, and (4) Output
Generation. During Preprocessing, the input files are read and their data is converted and stored. In the Filtering
stage, three DP algorithms are run in a series, with each estimating alignment quality and removing non-homologous
target-query pairs. For target-query pairs that make it past Filtering, the potential areas of homology are isolated
and analyzed during the Domain Definition stage. Finally, Output Generation produces an alignment, score, and
E-value for each detected homology.
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variables and must be passed though the hmmconvert tool before running FATHMM.

The Preprocessing step consists of converting the textual information in these input files into

data structures that can be efficiently accessed by the relevant subroutines. For both hmmsearcht

and FATHMM, this includes translating each target DNA sequence into the set of all possible

ORFs on both the input strand and its reverse complement. Translation is done via a hard coded

codon translation table, and creates an ORF for every stretch of at least 20 amino acids that is not

interrupted by a stop codon. To accommodate organism-specific codon usage, the user may specify

a codon translation table with the -c flag. The default is the codon translation utilized by most

eukaryotes.

The emission and transition probabilities from the HMM file are stored as logarithm-transformed

floats. As with the BLOSUM62 matrix (Fig 1.2), the emission probabilities are used as the numer-

ators of log odds ratios, by dividing the probability of a homologous substitution by the probability

of a random pairing. At each match state (Mj) in the pHMM, the score for each of twenty amino

acids, xi, is computed as the log of the ratio of the match state’s emission probability, P (Mj(xi)),

and its null model probability, R(xi), (Eq. 2.1). This yields a positive score if the pairing supports

homology and a negative score if does not. The null transition probabilities, R(T ), depend on the

length of the target sequence, and are introduced later during the Filtering and Domain Definition

Stages. For now, the probability of transition from one state to another, say from Mj to Mj+1, is

simply stored as its log (Eq. 2.2).

E(Mj(xi)) = log2(
P (Mj(xi))

R(xi)
) (2.1)

T (Mj ,Mj+1) = log2(P (Mj ,Mj+1) (2.2)

Once the emission and transition scores for the core model have been calculated, hmmsearcht

and FATHMM both include additional states, which I will refer to as special states, to the beginning

and end of the model (Fig. 2.2. These states allow for local alignments by emitting non-homologous

portions of the target before, after, and between any homologous sections. They emit amino acids
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at the same background distribution as the null model and use similar expected length distributions

to determine their transition probabilities.

Figure 2.2: To allow for local alignment between the target and query, HMMER uses a pHMM with a core model,
consisting of the match, insert and delete states (M, I, and D), and several special states. I describe the model briefly
here - see [13] for further details. All paths through the pHMM begin at the S state and then transition the to
N state. The N state emits residues from the target (e.g. amino acids or nucleotides) which come before the area
of homology with the query. The N state transition probabilities ( L

L+3
for N to N transitions and 3

L+3
for N to B

transitions) depend on the the length of the target (L). This yields an expected L
3

length of sequence emitted by
N. The B state allows for the alignment between target and query to begin at any M state in the core model. The
alignment can then exit the core model from that M state, or any subsequent M or D state, by transitioning to the
E state. Since a local alignment through a length M model may include any of M(M+1)

2
possible start/end pairs, the

uniform local alignment fragment length distribution of 2
M(M+1)

is used as the transition probability from the B state
to any M state. The E state can then transition to either the J or the C state. The J state emits residues and then
reenters the core model via the B state, allowing for a target to contain multiple disconnected regions of homology.
The C state emits residues that come after the last homologous region has been emitted, and then transitions to the
T state at the end of the target sequence. Both the J and C states have the same transition probabilities as the N
state, accounting for the other 2L

3
of the sequence length.

In addition to the reading and adjusting the protein pHMM, FATHMM creates a Frameshift

Aware (FA) codon model (Fig. 2.3) based on the protein model. A codon model without frameshift

awareness would simply replace the match state amino acid emissions probabilities with codon

emissions probabilities, according to the codon translation table, while also including some way

of handling stop codons. Transition probabilities would remain the same but the I and D states

would pertain the the insertion or deletion of codons, rather than amino acids.To adding frameshift

awareness, the model must also include some way to account for the possibility of individually

inserted or deleted nucleotides.

One approach might be to create an additional state that allows the path through the model



11

(a) Amino acid pHMM (b) Codon pHMM

(c) Frameshift aware codon pHMM

Figure 2.3: FATHMM uses both a protein pHMM and a frameshift aware codon pHMM. In the protein pHMM,
shown in (a), both the match states (M) and insert states (I) emit a single amino acid. A codon model without
any frameshift awareness, as shown in (b), would emit three nucleotides from its match and insert states. A zoomed
in view of the frameshift aware model is seen in (c). For this model, the insert state is identical to (b) but the
match states emits a variable length string of nucleotides. These include both codons (shown as three pink circles)
and pseudo-codons. Pseudo-codons with fewer than three nucleotides (show in blue) are presumed to be missing
deleted nucleotides (shown as darkened circles). Pseudo-codons with more than three nucleotides (shown in yellow)
are presumed to contain inserted nucleotides (shown at triangles).

to move between frames by emitting either one or two nucleotides between codons. I considered

this strategy, but determined that integrating frameshifts into the match state emission provided

greater flexibility in modeling the length and location of the indels and retained any evolutionary

information present in the original nucleotides. To accomplish this, the FA model match states

can emit not only codons, which are always three nucleotides long, but also ’pseudo-codons’ that

contain indels and can be of length 1, 2, 4 or 5 nucleotides.

To create the FA model, first all the codons that do not encode a stop are mapped to their amino

acid translations and the corresponding emission scores, using a codon translation table (Fig. 1.6).

For instance, the codon CAA would be mapped to the amino acid Q using the translation table

shown in Figure 1.6 and the probability that a match state in the protein model had assigned to

emitting Q would be assigned to the emission of the codon CAA by the corresponding match state
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in the FA model. The model also needs to be able to accommodate stop codons, which can arise in

protein coding DNA due to substitution or frameshift errors; this is done via a ’substitute one’ max

function in which each stop codon is mapped to the maximum scoring codon that can be made by

substituting one of its three nucleotides. Since the maximum scoring codon was already mapped to

it’s amino acid translation this becomes the stop codon translation as well (Fig. 2.4). For instance,

by substitution one of its nucleotides, the stop codon TAA and be changed to one of nine other

possible codons, which in turn can be translated into 6 different amino acids. Whichever of those

six amino acids has the highest emissions probability at a match state in the protein model will be

mapped to the stop codon for the corresponding match state in the FA model.

Figure 2.4: A pictorial example of how stop codons are mapped to codons in the FA codon model. Using the standard
eukaryotic codon translation table, TAA, TAG, and TGA all encode a stop. The protein model match state in this
example has Q as its highest scoring amino acid emission, followed by E and then R. Two of the stop codons can be
changed to codons that translate to Q by substituting a single nucleotide. For the third stop codon the highest scoring
codon it can be changed to with a single substitution translates to R. The stop codons must also pay a substitution
penalty s, which by default is 0.01. This means that, for our example, E(Mj(TAA)) in the FA codon model is equal
to E(Mj(Q)) from the protein model, plus log2(s). Once all stop codons are mapped, the other non-stop codons
have their emissions scores normalized so that, for instance, E(Mj(CAG)) = E(Mj(Q)) + log2(1− s).

Once all the codons and stop codons have been mapped, the model moves on to mapping the
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pseudo-codons (Fig. 2.5). This is done by inserting or deleting nucleotides to form proper three

nucleotide codons and mapping the pseudo-codon to the one with the highest score. As with the

stop codons, this also assigns the mapped codon’s amino acid translation to the pseudo-codon. To

prevent the model from emitting stop codons and pseudo-codons erroneously, a low probability

is assigned to these emissions. The user can adjust this probability with the --fs option which is

defaulted to 0.01 for stop codons and for pseudo-codons with a single nucleotide indel, and to 0.005

for pseudo-codons with two nucleotide indels.

Figure 2.5: An example of how the four types of pseudo-codons are mapped to codons. For this example we have a
match state where the top amino acid emissions in the protein model are Q, then E, then R. One-nucleotide pseudo-
codons require two nucleotides to be inserted to find the maximum scoring codon that can be made. In our example
the addition of two A’s allows the pseudo-codon C to be mapped to a codon that translates to Q, which is the highest
scoring of all alternatives. For two-nucleotide pseudo-codons, the same is done but with just a single nucleotide
insertion. For the four-nucleotide pseudo-codons, one of the nucleotides must be deleted to make a codon. In our
example, deleting the T in ATGA allows it to map the highest possible score as the codon AGA, which translates
to E. The same is done for five-nucleotide pseudo-codons, but with two nucleotides being deleted. A frameshift cost,
f , is applied to all pseudo-codons, and the codon emissions score are normalized with he remaining probability. By
default f = 0.01 and the cost for a pseudo-codon with z inserted or deleted nucleotides is log2( f

z
). This gives each

match state in the FA model a 1% probability each of emitting a two or four nucleotide pseudo-codon, a 0.5% each
of emitting a one or five nucleotide pseudo-codon and a 97% percent chance of emitting a codon.
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Since each match state in the protein model has its own set of amino acid emissions scores,

this mapping must be done once for each position in the model, increasing the model’s memory

usage. The protein model uses a 20*M float matrix to store the emissions scores of the 20 amino

acids, (where M is the length of the model). The FA codon model has 64 codons and and 1300

pseudo-codons. This means the space to store the emissions increases to a 1364*M float matrix.

This surely has an impact on cache performance when the FA model in used in DP algorithms.

Finally, the special states are added to the FA codon model. In the protein model the N, J and

C states all emit single amino acid. If the FA model special state were to emit single nucleotides

this would allow for an alignment to exit the core model in one frame, emit one or two nucleotides

from the J state, and then reenter the core model in a different frame. By having the N, J and C

states emit codons instead of single nucleotides the FA model ensures that the only way a path can

move from one frame to another is by emitting a pseudo-codon from a match state. This required

the creation of two additional sets of special states (see Fig. 2.6) so that each set could operate in

a single frame.

The Prepossessing step concludes when the data in the two input files has been read, converted,

and stored in memory. This includes the target as both a DNA sequence and its translated ORFs,

as well as the query as a protein pHMM and, in the case of FATHMM, an FA codon model. Both

hmmsearcht and FATHMM then begin to consider the potential for homology between targets and

queries.

2.2 Filtering

The Filtering stages of hmmsearcht and FATHMM are designed to decrease the runtime of

these programs. They do this by filtering out the majority of non-homologous pairs with a series

of increasingly stringent (and slow) DP algorithms. The filters in hmmsearcht use the protein

pHMM as the query and translated ORFs as the targets. The same is true for the first three DP

filters in FATHMM, with the codon model and DNA sequence only being used by an additional

fourth DP filter. The decision to use ORFs for these filters in FATHMM, despite their potential



15

Figure 2.6: Each frame of the target DNA is handled by its own set of special states. The N, J, and C states each
emit codons from just one frame. This means that the only way for probabilities from one frame to be included in
the probabilities of another frame is through the pseudo-codons. The transition probabilities for these states are the
same as for the protein pHMM, except that each set of specials is only responsible for the 1

3
of L. For instance, the

N to N transitions are changed form log2( L
L+3

) to log2(
L
3

L
3
+3

).

for mistranslation due to frameshifts, was based on the experience that a sequence that is too

heavily frameshifted to produce an ORF capable of passing these filters is typically also too heavily

frameshifted to be recovered at all, even with a frameshift model. In the current implementation,

these filters are unmodified from those outlined in [9], but future work may include adding frameshift

awareness to these filtering steps. I describe them here for completeness.

The first filter is a DP algorithm called multiple segment Viterbi (MSV) (Fig. 2.7). This

algorithm looks for short sections of ungapped alignment by using only the match states of the core

pHMM. The score produced by MSV includes the emissions and transitions probabilities for the

maximum scoring ungapped alignments between the target and query, as well as the null emission
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Multiple Segment Viterbi (MSV)

/* Special conditions for 0th, Lth and M th indices are omitted for simplicity */
1 for i in {1..L} do // For each residue in the target
2 N(i)← N(i− 1) + T (N,N) ; // N state

3 B(i)←MAX

 N(i) + T (N,B),

J(i) + T (J,B)

 ; // B state

4 for j in {1..M} do // For each position in the core model

5 M(i, j)←MAX

 B(i− 1) + T (B,M),

M(i− 1, j − 1) + T (Mj−1,Mj)

+ E(Mj(xi)) ; // M state

6 E(i)←MAX

 M(i, j)

E(i)

 ; // E state

7 end

8 J(i)←MAX

 E(i− 1) + T (E, J)

J(i− 1) + T (J, J)

 ; // J state

9 C(i)←MAX

 E(i− 1) + T (E,C)

C(i− 1) + T (J,C)

 ; // C state

10 end
11 T ← C(L) + T (C, T ) ; // T state

Figure 2.7: The Multiple Segment Viterbi (MSV) DP algorithm seeks to identify a high-scoring run of matches between
the target and query, containing no indels. It uses a doubly-nested loop to calculate each cell in the L ∗ (M + 5)
matrix, where L is the length of the target sequence, M is the length of the query core model, and 5 is the number
of special sates which are part of the matrix (N, B, E, J, and C). The outer loop is used for the N, J, C, and B
states. The emissions probabilities from these special states are taken from the same background distributions as
the null model. Therefore, the log odds ratios used to make their emissions scores always come out to zero and are
not included in the calculation. The inner loop is used for the core match states and the E state. The E state, E(i),
transitions from whichever M(i,j) state has the highest score. After the loops finish, the T state transitions from the
final C state, C(L), and holds the full MSV score.

probabilities built in to the emissions scores. What the score does not yet contain is the null

transition probabilities. These are calculated as a single null score (NS) based on the length (L)

of the target (Eq. 2.3). By subtracting this log probability from the MSV score, the pHMM

transitions probabilities are finally converted to log odds ratios.

NS(X) = L ∗ log2
(

L

L+ 1

)
+ log2

(
1

L+ 1

)
(2.3)

Some sequences can have a highly skewed distribution of residues, leading to false positives

between repetitive sections of the target and query [9]. To prevent this, a heuristic DP algorithm is

used to compute a bias score (BS) (Eq. 2.4), which can be used to adjust the default null emissions
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score to account for a difference between the background distribution and the biased distribution.

When subtracted from the alignment score, the BS effectively replaces the old background distri-

bution null model with a new null model informed by the distribution in the pHMM’s consensus

sequence (Eq. 2.5). If the old null model overestimated the probability of non-homology, the BS

will be negative and the alignment score will increase. If non-homology was underestimated, the

BS will be positive and the alignment score will decrease.

BS(xi) = log2

(
newR(xi)

oldR(xi)

)
(2.4)

E(Mj(xi))−BS(xi) ≈ log2
(
P (Mj(xi))

oldR(xi)

)
− log2

(
newR(xi)

oldR(xi)

)
= log2

(
P (Mj(xi))

newR(xi)

)
(2.5)

MSV scores are known to follow a Gumbel distribution (Eq. 2.6), where λ ≈ ez and z is the log

base of S(X,Y ) [9]. In our case z = 2, while µ, being specific to each pHMM, was determined by

hmmbuild and is thus read from the HMM file. Once the MSV alignment score t has been adjusted

by the null and bias scores, the K and λ computed by hmmbuild are used to find the p-value

P (S(X,Y ) > t) - the probability that an MSV score of t or higher would be produced by the query

and a randomly generated sequence. Both hmmsearcht and FATHMM discard any target-query

pair with an MSV p-value over 0.02, removing an expected 98% of all non-homologous pairs. The

rest are passed on the second filter.

P (S(X,Y ) > t) ≈ 1− e−e−λ(t−µ) (2.6)

The second filter is the Viterbi DP algorithm (Fig. 2.8). Using all three states in the core pHMM,

it finds the maximum scoring alignment between the target and query, allowing for insertions and

deletions. The scores it produces are adjusted by the null and bias scores and then converted to

p-values, following the same Gumbel distribution as MSV but with a different value of µ. Only

target-query pairs with a Viterbi p-value at or below 0.001 are passed on to the third filter.
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Viterbi
/* Special conditions for 0th, Lth and M th indices are omitted for simplicity */

1 for i in {1..L} do // For each residue in the target
2 N(i)← N(i− 1) + T (N,N) ; // N state

3 B(i)←MAX

 N(i) + T (N,B),

J(i) + T (J,B)

 ; // B state

4 for j in {1..M} do // For each position in the core model

5 M(i, j)←MAX


B(i− 1) + T (B,M),

M(i− 1, j − 1) + T (Mj−1,Mj)

I(i− 1, j − 1) + T (Ij−1,Mj)

D(i− 1, j − 1) + T (Dj−1,Mj)


+ E(Mj(xi)) ; // M state

6 I(i, j) ←MAX

 M(i− 1, j) + T (Mj , Ij)

I(i− 1, j) + T (Ij , Ij)

 ; // I state

7 D(i, j)←MAX

 M(i, j − 1) + T (Mj−1, Dj)

D(i, j − 1) + T (Dj−1, Dj)

 ; // D state

8 E(i) ←MAX


M(i, j)

D(i, j)

E(i)

 ; // E state

9 end

10 J(i)←MAX

 E(i) + T (E, J)

J(i− 1) + T (J, J)

 ; // J state

11 C(i)←MAX

 E(i) + T (E,C)

C(i− 1) + T (J,C)

 ; // C state

12 end
13 T ← C(L) + T (C, T ) ; // T state

Figure 2.8: The Viterbi DP algorithm is very similar to MSV, except that it uses the I and D states to allow for
gaped alignments. Insert states, like the N, J, and C states, emit at the background distribution probabilities and
so do not need to include an emissions score. Each i,j pairing in the core matrix is captured in its own M, I, and D
cells, increasing the size of the matrix to L ∗ (3M + 5).

The third filter, the Forward algorithm (Fig. 2.9), unlocks the full potential of the pHMMs.

As stated in the introduction, the fully probabilistic nature of pHMMs enables the calculation of

probability that the target (X) would be generated by the query model: P (X|Y ). Since there are

multiple paths (or alignments) by which Y can generate X, P (X|Y ) is found by integrating over

(summing) the probabilities of all alignments. Viterbi approximates P (X|Y ) by finding the prob-

ability of a single optimal path (Z) taken through the model to generate X, P (X,Z|Y ). However,

the maximum probability path may not be a good approximation of the full P (X|Y ), particularly
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Forward
/* Special conditions for 0th, Lth and M th indices are omitted for simplicity */

1 for i in {1..L} do // For each residue in the target
2 N(i)← N(i− 1) + T (N,N) ; // N state

3 B(i)← log2

∑ 2N(i)+T (N,B)

2J(i)+T (J,B)


 ; // B state

4 for j in {1..M} do // For each position in the core model

5 M(i, j)← log2


∑


2B(i−1)+T (B,M)

2M(i−1,j−1)+T (Mj−1,Mj)

2I(i−1,j−1)+T (Ij−1,Mj)

2D(i−1,j−1)+T (Dj−1,Mj)



+ E(Mj(xi)) ; // M state

6 I(i, j)← log2

∑ 2M(i−1,j)+T (Mj ,Ij)

2I(i−1,j)+T (Ij ,Ij)


 ; // I state

7 D(i, j)← log2

∑ 2M(i,j−1)+T (Mj−1,Dj)

2D(i,j−1)+T (Dj−1,Dj)


 ; // D state

8 E(i)← log2

∑


2M(i,j)

2D(i,j)

2E(i)


 ; // E state

9 end

10 J(i)← log2

∑ 2E(i)+T (E,J)

2J(i−1)+T (J,J)


 ; // J state

11 C(i)← log2

∑ 2E(i)+T (E,C)

2C(i−1)+T (J,C)


 ; // C state

12 end
13 T ← C(L) + T (C, T );

Figure 2.9: The Forward DP algorithm uses all the same state transitions as Viterbi, but rather than picking one
maximum scoring transition for each cell, Forward sums all possible transitions. Adding probabilities can not be
performed when those probabilities are stored in log space, so probabilities are moved out of log space, addition is
performed, and then log conversion is performed to ensure acceptable dynamic range.

when the target ans query are more distally related. The Forward algorithm removes the limita-

tions of an approximated P (X|Y ) by summing the probability for all possible alignments: P (X|Y )

=
∑

z P (X, z|Y ) [13].

The score produced by Forward, S(X|Y ) = P (X|Y )
P (X|R) , is adjusted with the same NS and BS scores

as the MSV and Viterbi scores and then fitted to a probability distribution to find the Forward

p-value. Unlike MSV and Viterbi, Forward scores do not follow a Gumbel distribution and instead

are relatively “fat-tailed”. The exponential of this tail converges to the the log base of the score
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for so that Equation 2.7 hold for t > τ . τ can be approximated by first fitting Forward scores to

a Gumbel distribution and finding t′ such that P (S(X,Y ) < t′) = 0.04 and making τ = t′ [13].

Only target-query pairs with a Forward p-value of less than 1e-5 pass this filter.

P (S(X,Y ) > t) ∝ µe−λ(t−τ) (2.7)

For hmmsearcht the Forward filter marks the end of the filtering stage. FATHMM uses the

MSV, Viterbi, and Forward Filters in same way as hmmsearcht, with the protein pHMM as query

and the translated ORFs as targets. However, it also runs a novel frameshift-aware version of the

Forward filter with the FA codon model as query. For the target, FATHMM borrows the concept

of a DNA window from HMMER’s DNA alignment tool, nhmmer [22].

DNA windows are sub-sequences of full length DNA targets (often chromosomes), built around

a potential area of homology. In nhmmer the areas of potential homology are identified by the

DNA-to-DNA equivalent of the MSV filter. In FATHMM these areas are identified by the original

DNA coordinates of the ORFs which pass the Viterbi Filter. The window is created by pulling

out a sub-sequence around this area whose length approximates the MAXL variable described in

the Preprocessing section, so that it will be certain to encompass any reasonably long match to

the query. Finally, any overlapping windows are merged. IN FATHMM this means that the DNA

window target used by the FA Forward filter may correspond to more than one of the ORF targets

used by the standard Forward filter.

In aligning a DNA target to an FA codon model query, the FA Forward algorithm allows for

emissions of both in frame codons and between frame pseudo-codons. It does this by adding a

third nested loop to count for the five emission lengths (1-5 nucleotides). A naive approach to this

would increase the total operations per match state cell from 13 for standard Forward to 65 for FA

Forward (Fig. 2.10). Through memoization, the number of operations for each match state cell can

be cut to just 27 (Fig. 2.11).

New null and bias scores are also needed for the DNA window. The DNA window NS score

is calculated in three separate frames just as with the the FA N, J, and C states. NS(F ) is



21

Frameshift Aware Forward
/* Special conditions for 0-4th, Lth and M th indices are omitted for simplicity */

1 for i in {5..L} do // For each residue in the target
2 N(i)← N(i− 3) + T (N,N) ; // N state

3 B(i)← log2

∑ 2N(i)+T (N,B)

2J(i)+T (J,B)


 ; // B state

4 for j in {1..M} do // For each position in the core model
5 for c in {1..5} do // For each codon/pseudo-codon length

6 M(i, j)← log2


∑


2M(i,j)

2B(i−c)+T (B,M)

2M(i−c,j−1)+T (Mj−1,Mj)

2I(i−c,j−1)+T (Ij−1,Mj)

2D(i−c,j−1)+T (Dj−1,Mj)




+ Ec(Mj(xi)) ; // M state

7 end

8 I(i, j)← log2

∑ 2M(i−3,j)+T (Mj ,Ij)

2I(i−3,j)+T (Ij ,Ij)


 ; // I state

9 D(i, j)← log2

∑ 2M(i,j−1)+T (Mj−1,Dj)

2D(i,j−1)+T (Dj−1,Dj)


 ; // D state

10 E(i)← log2

∑


2M(i,j)

2D(i,j)

2E(i)


 ; // E state

11 end

12 J(i)← log2

∑ 2E(i)+T (E,J)

2J(i−3)+T (J,J)


 ; // J state

13 C(i)← log2

∑ 2E(i)+T (E,C)

2C(i−3)+T (J,C)


 ; // C state

14 end

15 T ← log2

∑


2C(L−2)

2C(L−1)

2C(L)


+ T (C, T ) ; // T state

Figure 2.10: FA Forward uses a third loop (lines 5-7) to sum over the five possible (pseudo-)codon lengths. The
Emissions scores for all (pseudo-)codons ending with xi are stored in Ec(Mj(xi)), with c being the length of the
(pseudo-)codons. The N,J, and C sates, as well as the insert state, all emit codons and so transition from three rows
above rather than just one. The probabilities from the 3 frames in the C state are summed before transitioning to
the T state.

responsible for the one third of the target length, L3 , in a single frame. The probability in NS(F) is

then multiplied by three to reach the full DNA window null score, NS(X) (Eq. 2.8). To account for

the DNA window’s multiple frames, the BS calculation begins by translating the DNA window into
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Memoized Frameshift Aware Forward
/* Special conditions for 0-4th, Lth and M th indices are omitted for simplicity */

1 for i in {1..L} do // For each residue in the target
2 N(i)← N(i− 3) + T (N,N) ; // N state

3 B(i)← log2

∑ 2N(i)+T (N,B)

2J(i)+T (J,B)


 ; // B state

4 for j in {1..M} do // For each position in the core model
5 for c in {4..1} do // For each memorized transition
6 Memo(c+ 1, j)←Memo(c, j) ; // Shift memoized transitions up by one row
7 end

8 Memo(1, j)← log2


∑


2B(i−1)+T (B,M)

2M(i−1,j−1)+T (Mj−1,Mj)

2I(i−1,j−1)+T (Ij−1,Mj)

2D(i−1,j−1)+T (Dj−1,Mj)



 ;
/* Calculate new tran-

sition and memoize */

9 M(i, j)← log2


∑


2Memo(1,j)+E1(Mj(xi))

2Memo(2,j)+E2(Mj(xi))

2Memo(3,j)+E3(Mj(xi))

2Memo(4,j)+E4(Mj(xi))

2Memo(5,j)+E5(Mj(xi))




;

/* Sum memoized tran-

sitions and codon/

pseudo-codon emis-

sions */

10 I(i, j)← log2

∑ 2M(i−3,j)+T (Mj ,Ij)

2I(i−3,j)+T (Ij ,Ij)


 ; // I state

11 D(i, j)← log2

∑ 2M(i,j−1)+T (Mj−1,Dj)

2D(i,j−1)+T (Dj−1,Dj)


 ; // D state

12 E(i)← log2

∑


2M(i,j)

2D(i,j)

2E(i)


 ; // E state

13 end

14 J(i)← log2

∑ 2E(i)+T (E,J)

2J(i−3)+T (J,J)


 ; // J state

15 C(i)← log2

∑ 2E(i)+T (E,C)

2C(i−3)+T (J,C)


 ; // C state

16 end

17 T ← log2

∑


2C(L−2)

2C(L−1)

2C(L)


+ T (C, T ) ; // T state

Figure 2.11: The transition calculations for the five emissions length of the FA match states can be memoized in a
5 ∗M matrix (Memo). Cell M(i, j) and cell M(i− 1, j) transition from the same cells for four out of five emissions
lengths. For each M(i, j), Memo(5,j) is equal the (Memo(4,j) for M(i − 1, j), Memo(4,j) is equal the Memo(3,j) for
M(i− 1, j) and so on. Only the one nucleotide transition in Memo(1,j) is newly calculated for every increment of i.
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three sets of ORF’s, one set for each frame (O(Fi)). Each ORF is then run through the standard

BS calculation with the query protein pHMM. The sum of the BS for all ORFs in each frame is then

the total BS for that frame (BS(Fi)). Finally, the three frame BSs are summed as probabilities to

get the windows full BS (BS(X)). (Eq. 2.9).

NS(F ) =
L

3
∗log2

(
L
3

L
3 + 1

)
+log2

(
1

L
3 + 1

)
NS(X) = log2(3 ∗ 2NS(F )) (2.8)

BS(Fi) =
OFi∑
j=1

BS(OFij ) BS(X) = log2

( 3∑
i=1

2BS(Fi)
)

(2.9)

After adjusting the FA Forward score with the DNA window NS and BS, a FA Forward p-value

is calculated. FA Forward scores are assumed to follow the same fat tailed distribution as standard

Forward scores, but with a different value of µ and τ from the pHMM file. Simulations to validate

this assumption are still needed (see Discussion). A target-query pair pass the FA Forward filter if

they generate a p-value bellow 1e-5.

At this point FATHMM performs comparison between the FA Forward p-value of the DNA

window and the standard Forward p-value(s) of any Viterbi filter-passing ORFs that were used to

create that window (more than one may exist if overlapping windows were merged). Depending

on the results of this comparison, FATHMM will determine whether possible homology between

the target and query is better explained by using a the protein pHMM of the FA codon model.

The pipeline then follows one of two parallel tracks, one for standard translated alignment and the

other for FA translated alignment.

There are four possible scenarios under which this comparison can take place: (1) both p-values

fail to pass, (2) only the FA p-value passes, (3) only one or more of the ORF’s standard p-values pass

or (4) both the FA and standard p-values pass. The first scenario is the simplest; if neither p-value

passes, then the target-query pair is discarded as non-homologous. Under the second scenario, only

the FA p-value is suggestive of homology, and the DNA window and FA codon model are passed to
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the Domain Definition state along the FA branch. Under the third scenario, the potential homology

is limited to the ORFs with passing Forward p-values, and only they and the protein PHMM are

passed the the Domain Definition state along the standard (non-FA) branch. The forth and final

scenario is the most complicated. One approach might be to run both branches and wait to select

the one with the highest e-value just before outputting results to the user, but this would result in

an unnecessary increase in both runtime and memory usage. Instead, FATHMM seeks to select the

alternative with the greatest support: the scores of all standard-ORF Forward scores in the active

DNA window are summed, and used to create a new non-FA Forward p-value. If this is lower than

the FA Forward p-value, then the standard branch is used; otherwise the FA branch is used.

2.3 Domain Definition

The algorithms described in this section were originally designed for protein-to-protein align-

ment. Their goal was to identify the boundaries of one or more copies of a protein domain in a full

length protein target (a protein domain is a contiguous run of amino acids that folds independently

from the rest of the protein). In nhmmer [22], the process of “Domain Definition” is repurposed

to find the boundaries of of homologous regions within the larger DNA window. By isolating these

target sub-sequences where the support for homology is high (which I will refer to as domains), the

Domain Definition stage supports more accurate alignments and scores while reducing the memory

usage and run time needed to produce them.

FATHMM uses the original protein-to-protein Domain Definition algorithms for target query

pairs that are passed to the non-FA branch. For pairs that passed to the FA-branch FATHMM uses

Domain Definition in the same way as nhmmer, but with modified FA algorithms. The first of these

algorithms is Backward. As the name suggests, Backward is essentially just Forward in reverse,

summing the probabilities of all possible alignments starting at the last residue in the target and

the T state in the model. Depending on which pipeline branch was selected by Forward p-value

comparison, the target-query pair will either be run through standard Backward (Fig. 2.12) or a

memoized FA Backward (Fig. 2.13).
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With complete Forward and Backward matrices, it is possible to compute the posterior proba-

bility that each cell in the matrix is part of a correct alignment path through the DP matrix. Each

cell in the Forward matrix holds the sum of the probabilities of all paths starting from the S state

and the first target residue and ending at that cell, while the corresponding cell in the Backward

matrix holds the sum of the probabilities of all paths beginning at that cell and ending at the

T state and the last target residue. Multiplying the probabilities in the same cell from Forward

and Backward matrices and normalizing by the full matrix probability (i.e. the Forward alignment

Backward
/* Special conditions for 0th, Lth and M th indices are omitted for simplicity */

1 for i in {L-1..0} do // For each residue in the target
2 for j in {M..1} do // For each position in the core model

3 B(i)← log2

∑ 2B(i)

2M(i+1,j)+T (B,M)+E(MJ (xi+1))


 ; // B state

4 end

5 J(i)← log2

∑ 2B(i)+T (J,B)

2J(i+1)+T (J,J)


 ; // J state

6 C(i)← C(i+ 1) + T (C,C) ; // C state

7 E(i)← log2

∑ 2J(i)+T (E,J)

2C(i)+T (E,C)


 ; // E state

8 N(i)← log2
(∑{

B(i) + T (N,B) N(i+ 1) + T (N,N)
})

; // N state

9 for j in {M..1} do // For each position in the core model

10 M(i, j)← log2


∑


2E(i)+T (M,E)

2M(i+1,j+1)+T (Mj ,Mj+1)+E(Mj+1(xi+1))

2I(i+1,j)+T (Mj ,Ij)

2D(i,j+1)+T (Mj ,Dj+1)



 ; // M state

11 I(i, j)← log2

∑ 2M(i+1,j+1)+T (Ij ,Mj+1)+E(Mj+1(xi+1))

2I(i+1,j)+T (Ij ,Ij)


 ; // I state

12 D(i, j)← log2

∑


2E(i)+T (D,E)

2M(i+1,j+1)+T (Dj ,Mj+1)+E(Mj+1(xi+1))

2D(i,j+1)+T (Dj ,Dj+1)


 ; // D state

13 end

14 end

Figure 2.12: The Backward DP algorithm begins at the ends of the target and query, pulling summed probabilities
from the bottom right to the top left of the DP matrix. Another important difference with Forward is that emissions
scores for target residue xi are not included in the match states at row i but pulled into the sum at row i+ 1 by the
cells transitioning from the emitting match state.
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Memoized Frameshift Aware Backward
/* Special conditions for 0th, L-(L− 5)th and M th indices are omitted for

simplicity */
1 for i in {L-1..0} do // For each residue in the target
2 for j in {M..1} do // For each position in the core model

3 Memo(j)← log2


∑


2M(i+1,j)+E(MJ (xi+1))

2M(i+2,j)+E(MJ (xi+1,xi+2))

2M(i+3,j)+E(MJ (xi+1,xi+2,xi+3))

2M(i+4,j)+E(MJ (xi+1,xi+2,xi+3,xi+4))

2M(i+5,j)+E(MJ (xi+1,xi+2,xi+3,xi+4,xi+5))




;

/* Memoization of

emissions used by

B, M, I and D

states */

4 B(i)← log2

∑ 2B(i)

2Memo(j)+T (B,M)


 ; // B state

5 end

6 J(i)← log2

∑ 2B(i)+T (J,B)

2J(i+3)+T (J,J)


 ; // J state

7 C(i)← C(i+ 3) + T (C,C) ; // C state

8 E(i)← log2

∑ 2J(i)+T (E,J)

2C(i)+T (E,C)


 ; // E state

9 N(i)← log2

∑ 2B(i)+T (N,B)

2N(i+3)+T (N,N)


 ; // N state

10 for j in {M..1} do // For each position in the core model

11 M(i, j)← log2


∑


2E(i)+T (M,E)

2Memo(j)+T (Mj ,Mj+1)

2I(i+3,j)+T (Mj ,Ij)

2D(i,j+1)+T (Mj ,Dj+1)



 ; // M state

12 I(i, j)← log2

∑ 2Memo(j)+T (Ij ,Mj+1)

2I(i+3,j)+T (Ij ,Ij)


 ; // I state

13 D(i, j)← log2

∑


2E(i)+T (D,E)

2Memo(j)+T (Dj ,Mj+1)

2D(i,j+1)+T (Dj ,Dj+1)


 ; // D state

14 end

15 end

Figure 2.13: In a FA Forward matrix the cell M(i, j) contains the emissions scores for all codons and pseudo-codons
emitted by the jth match state and ending with the target nucleotide xi. In a FA backward matrix cell M(i, j)
contains the emissions scores for all codons and pseudo-codons emitted by the j + 1th match state and starting with
the target nucleotide xi+1. This distinction effects the way in which FA Backward can be memoized, and prevents
multiple rows from using the same memoized values. Still there are reusable values which can reduce the total
number of operations from for the M, I, D and B states at each i,j pair from 93 in a naive implementation to 48 for
the implementation shown above.
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score) produces a total probability of all alignments going through that cell (Fig. 2.14).

(a) Forward (b) Backward (c) Posteriors

Figure 2.14: In a filed Forward matrix (a) each i,j cell (such as the one shown in red) contains the probability of all
possible alignments between the target sub-sequence 1..i and the query sub-model 1..j (shown at the grey area in
(a)). In a filed Backward matrix (b) each i,j cell contains the probability of all possible alignments between the target
sub-sequence i..L and the query sub-model j..M (shown at the grey area in (b)). By multiplying these probabilities
in a posterior matrix (c), each i,j cell will contain the probability of any possible alignment between the target and
the query that contains that i,j cell.

Only special state posteriors are needed for finding the boundaries of a domain, allowing Forward

and Backward to keep a fixed number of rows for the core model’s portion of their matrices. Since

the calculations in the standard versions of Forward and Backward never need values more than

one index away from the current row, the L∗ (3M +5) matrices are replaced with (L∗5)+(2∗3M)

matrices. Two rows are used (and reused) to calculate values for the core model matrix, with one

tracking the current target index (i), while the other tracks the previous target index (i − 1 for

Froward and i+ 1 for Backward). Meanwhile, all computed special state values are retained. The

pseudocode in Figure 2.15 shows how, for every residue in the target (i), posterior probabilities

are calculated for the B and E states (BTotal and ETotal respectively), and how a single heuristic

posterior is calculated for all states in the core model (MTotal).

The FA versions of Forward and Backward are also run with reduced matrices, but with six core

model rows instead of two. Thus, the FA branch must also rely on the probabilities in the special

states to compute heuristic posteriors (Fig. 2.16). To account for the existence of multiple frames,
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Non-FA Heuristic Posteriors for Domain Definition
/* Special conditions for 0th index are omitted for simplicity */

1 TotalScore← fwd[T ] ; // Total score taken from T state of Forward matrix
2 for i in {1..L} do // For each residue in the target
3 BTotal[i]← 2(fwd[B(i−1)]+bck[B(i−1)]−TotalScore) ; // Probability of entering the core model

4 ETotal[i]← 2(fwd[E(i)]+bck[E(i)]−TotalScore) ; // Probability of exiting the core model

5 NJCTotal←
∑


2(fwd[N(i)]+bck[N(i)]−TotalScore)

2(fwd[J(i−1)]+bck[J(i)]+T (J,J)−TotalScore)

2(fwd[C(i−1)]+bck[C(i)]+T (C,C)−TotalScore)

 ;

/* Posterior probability

for xi being emitted

by a special state */

6 MTotal← 1.0−NJCTotal ; // Estimated core model probability

7 end

Figure 2.15: BTotal and ETotal hold the posterior probabilities of the B and E states which transition in and out of
the core model. MTotal holds the estimated probability of residues being emitting by the core model. This estimate
is attained by summing the probabilities of a residue being emitted by the N, C or J state and then subtracting that
sum from one.

FA Heuristic Posteriors for Domain Definition
/* Special conditions for 0-3rd and L− 1-Lth indices are omitted for simplicity */

1 TotalScore← fwd[T ] ; // Total score taken from T state of the Forward matrix
2 for i in {1..L} do // For each residue in the target

3 BTotal[i]←
∑


2(fwd[B(i−3)]+bck[B(i−3)]−TotalScore)

2(fwd[B(i−2)]+bck[B(i−2)]−TotalScore)

2(fwd[B(i−1)]+bck[B(i−1)]−TotalScore)

 ;
/* Probability of entering

the core model */

4 BTotal[i]←
∑


2(fwd[E(i)]+bck[E(i)]−TotalScore)

2(fwd[E(i+1)]+bck[E(i+1)]−TotalScore)

2(fwd[E(i+2)]+bck[E(i+2)]−TotalScore)

 ;
/* Probability of exiting

the core model */

5 NJCTotal← −∞ ; // 2−∞ = 0
6 for c in {i..i+2} do // For each codon containing xi

7 NJCTotal←
∑


2NJCTotal2(fwd[N(c)]+bck[N(c)]−TotalScore)

2(fwd[J(c−3)]+bck[J(c)]+T (J,J)−TotalScore)

2(fwd[C(c−3)]+bck[C(c)]+T (C,C)−TotalScore)

 ;

/* Sum N, J and C state

posteriors for codon

xc−2xc−1xc */

8 end
9 MTotal← 1.0−NJCTotal ; // Estimated core model probability

10 end

Figure 2.16: In the FA DP matrices the probabilities of the special states emitting the target residue xi are spread
out over three frames. The heuristic posteriors for each row are therefore summed over all codons containing xi.

the FA posteriors for the ith row sums the probabilities for all codons that contain the nucleotide

xi. Only one frame at a time will be the true translation of the domain, and therefore hold the

majority of probability. By summing all three frames in the special states, we ensure that every

index of the heuristic posteriors contains the correct frame’s probability, even if the core model has
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shifted the domain from one frame to another by emitting a pseudo-codon.

Once the heuristic posteriors have been calculated, both branches of FATHMM use the same

thresholds to find the probable start and end points of a domain (Fig. 2.17). The start is identified

based on accumulated probability for use of the B state, and the end based on accumulated proba-

bility for use of the E state. The sub-sequence of the target that falls between these start and end

points delineates a “domain”, which is then passed on to the Output Generation Stage where it is

realigned and rescored before being reported to the user.

Domain Definition
/* Special conditions for 1st and Lth indices are omitted for simplicity */

1 InDomain← FALSE ; // Begin not in a domain
2 for i in {1..L} do // For each residue in the target
3 if InDomain = FALSE then // If not in a domain
4 if MTotal[i]−BTotal[i] < 0.10 then // If xi is a good place to state a domain
5 p← i ; // Make xi the first residue in the next domain
6 end
7 if Mtotal[i] > 0.25 then // If xi is in a domain
8 InDomain← TRUE ; // There is a domain that includes xi
9 end

10 else // If in a Domain
11 if MTotal[i]− ETotal[i] < 0.10 then // If xi is a good place to end a domain
12 q ← i ; // Make xi the last residue in the current domain
13 ProcessDomain(p, q) ; // Realign the domain from xp to xq
14 InDomain← FALSE ; // No longer in the last domain
15 p← i+ 1 ; // New possible start of next domain

16 end

17 end

18 end

Figure 2.17: A Domain is defined as a sub-sequence of the target from xp to xq, where at least one residue xr
(p ≤ r ≤ q) has an estimated core model posterior probability greater than the heuristic threshold of 0.25. The
Domain begins and ends as close as possible to xr such that the difference between the probability of a residue or
codon being emitted by the core model (MTotal), and the probability of of that residue or codon being the first or
last in the domain (BTotal and ETotal), is less than the heuristic threshold of 0.1.

2.4 Output Generation

At the end of the Domain Definition stage we have the coordinates of a target region (“domain”)

with a high probability of homology to the query. At the end of the Output Generation stage we

will have an probabilisticly optimal alignment between the target domain and query model, a score

for that alignment, and an e-value measuring the significance of that score.
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In the introduction I briefly touched on how a maximum scoring alignment can be recovered from

a Viterbi matrix be retracing the max functions, which is the method used by many substitution

matrix based alignment tools. When using pHMMs we have the advantage of fully probabilistic

scores which allow us to calculate posterior probabilities. Alignments recovered from posterior

probabilities matrices have been shown to be superior to those recover from Viterbi matrices [23].

The HMMER alignment tools, including FATHMM, build alignments from posterior probabilities

in three steps.

The first step is to rerun Forward and Backward on the target domain and query model, but

with one less special state and with a full set of L rows for the core model. Since the domain as

already been identified as an uninterrupted homologous region, the model is altered to eliminate the

J state, updating the N and C state transition scores so that they each have an expected emitted

sequence length of L
2 . For the non-FA branch of the FATHMM pipeline Forward and Backward

now use are L∗ (3M + 4) sized matrices, but in the FA branch Forward uses a L∗ (8M + 4) matrix.

The extra columns all belong to the match states so that each M(i, j) has six cells, indexed with a

third dimension c to become M(i, j, c) Each cell M(i, j, c), 1 ≤ c ≤ 5, holds the Forward score for

the alignment of a length c (pseudo-)codon ending with the nucleotide xi to the jth match state.

The cell M(i, j, 0) holds the summed probability of the other five (Fig. 2.18).

The second step is to calculate the posterior probability of every cell in the Forward and Back-

ward matrices. As with the heuristic posteriors used in domain definition this involves multiplying

the probability in each cell of the Forward matrix by the probability in that same cell of the Back-

ward matrix and then diving by the total probability from the end of the Forward matrix. An

additional step is then taken to normalize the probabilities of the emitting states (N, C, M and I)

across each row. In a standard posterior probability matrix this causes the sum of all those columns

for row i to equal one with each cell holding the probability that the residue corresponding to that

row was emitted by the state corresponding to that column (Fig. 2.19).

HMMER uses these posteriors not only for alignment recovery but also for a final bias score

correction. For FATHMM these two purposes cannot be achieved from the same set of posterior
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(a) Non-FA Forward Matrix

(a) FA Forward Matrix

Figure 2.18: The two toy DP matrix examples above demonstrate how the Frameshifts Aware approach differs from
a standard DP algorithm. The matrices on the top show the transitions in a standard Forward algorithm where the
target and the query are both amino acids or both nucleotides and the match and insert state only emit a single
residue from the target. In the Frameshift Aware Forward matrix the query model emits of codons and pseudo-codons
while the target is made of nucleotides. Each insert states emission includes three target nucleotides, and the match
state can emit anywhere from one to five target nucleotides. When FA Forward is run on a target domain each match
state emission length is stores in it’s own cell (C1-C5). The sum of all five math emissions is also stored in sixth cell
(C0). When transitioning from a match state it is this summed match state score which is used, while the separate
scores are used in alignment recovery.

probabilities. Thus the FA-branch must create two posterior probability matrices, one for bias

correction that has the standard one column per state, making it L ∗ (3M + 4), and one for

alignment recovery that uses the same 6 column per match state as the FA Forward, making it

L ∗ (8M + 4).

For bias correction, posteriors are calculated and normalized across each row in the same way as

in the non-FA branch. For alignment recovery this would normalization make it hard to distinguish

which rows are in the correct frame, especially around any frameshifts, making recovery of the true

alignment difficult if not impossible. Instead each row is normalized by the summed probability

from all codons and pseudo-codons containing xi. With this approach, each cell in the alignment
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Non-FA Posterior Probabilities
/* Special conditions for 0st index are omitted for simplicity */

1 TotalScore← fwd[T ];
2 for i in {1..L} do // For each residue in the target

3 D ← 0 ;
/* Scaling factor used to normalize

across emissions of xi */

4 for j in {1..M} do // For each position in the core model
5 PP [M(i, j)]← 2(fwd[M(i,j)]+bck[M(i,j)]−TotalScore) ; // M state posteriors

6 PP [I(i, j)]← 2(fwd[I(i,j)]+bck[I(i,j)]−TotalScore) ; // I state posteriors

7 D ← D + PP [M(i, j)] + PP [I(i, j)] ;
/* Add M and I state posteriors for the

emission of xi to the scaling factor */

8 end

9 PP [Ni]← 2(fwd[N(i)]+bck[N(i)]−TotalScore) ; // N state posteriors

10 PP [Ci]← 2(fwd[C(i−1)]+T (C,C)+bck[C(i)]−TotalScore) ; // C state posteriors
11 D ← D + PP [N(i)] + PP [C(i)] ; // Add N and C state posterior to scaling factor
12 for jin{1..M} do // For each position in the core model
13 PP [M(i, j)]← PP [M(i, j)]÷D ; // Normalize M state posteriors
14 PP [I(i, j)]← PP [I(i, j)]÷D ; // Normalize I state posteriors

15 end
16 PP [N(i)]← PP [N(i)]÷D ; // Normalize N state posteriors
17 PP [C(i0]← PP [C(i)]÷D ; // Normalize C state posteriors

18 end

Figure 2.19: Posterior probabilities are calculated for each cell in the Forward and Backward matrices and stored
in a third matrix (PP). For each row in the matrix a scaling factor (D) sums the posteriors of the emitting state
and then uses it to normalize those potteries. This allows the non-FA branch to find which state had the maximum
probability of emitting each target domain amino acid. The non-emitting D, B, and E state cells of the PP matrix
are all set to zero and not shown in the pseudocode.)

recovery FA posterior matrix holds the probability that the residue corresponding to that row

was emitted by the state corresponding to that column as the last nucleotide in the corresponding

(pseudo-)codon (Fig. 2.20).

Once the posteriors have been calculated and normalized, the third step in alignment recovery

seeks a Viterbi-like path through the matrix that maximizes the expected accuracy, or sum of

posterior probabilities. In the FA branch this is done with special attention to selection of frame

in the special states and selection of emissions length in the match states. The optimal path is

then stored in a set of arrays, recording the query state, target index and, in the case of the FA-

branch, the (pseudo-)codon length of each cell in the path. These arrays are then used to produce

human readable alignments. Samples of FATHMM alignments can be seen in the Results section.

Every alignment also has a score taken from the domain Forward matrix and then adjusted by
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FA Posterior Probabilities for Alignment Recovery

/* Special conditions for 0-2nd and L− 3-Lth indices are omitted for simplicity */
1 TotalScore← fwd[T ];
/* Calculate posteriors */

2 for i in {1..L} do // For each residue in the target
3 for j in {1..M} do // For each position in the core model
4 for c in {0..5} do // For each match state emissions length
5 PP [M(i, j, c)]← 2(fwd[M(i,j,c)]+bck[M(i,j)]−TotalScore) ; // Posteriors for all M state

emissions

6 end

7 PP [I(i, j)]← 2(fwd[I(i,j)]+bck[I(i,j)]−TotalScore) ; // Posteriors for I state

8 end

9 PP [N(i)]← 2(fwd[N(i)]+bck[N(i)]−TotalScore) ; // Posteriors for N state

10 PP [Ci]← 2(fwd[C(i−3)]+T (C,C)+bck[C(i)]−TotalScore) ; // Posteriors for C state

11 end
/* Normalize posteriors */

12 for i in {1..L} do // For each residue in the target
13 D ← 0 ; // Scaling factor for normalization
14 for j in {1..M} do
15 D ← D + PP [M(i, j, 0)] + PP [I(i, j)] ; // M and I state emissions ending in xi
16 for c in {2..5} do
17 D ← D + PP [M(i+ 1, j, c)] ; // M state emissions ending in xi, xi+1

18 end
19 D ← D + PP [I(i+ 1, j)] ; // I state emission of xi, xi+1

20 for c in {3..5} do
21 D ← D + PP [M(i+ 2, j, c)] ; // M state emissions ending in xi, xi+1, xi+2

22 end
23 D ← D + PP [I(i+ 2, j)] ; // I state emission of xi, xi+1, xi+2

24 for c in {4..5} do
25 D ← D + PP [M(i+ 3, j, c)] ; // M state emissions ending in xi, xi+1, xi+2, xi+ 3
26 end
27 D ← D + PP [M(i+ 4, j, 5)] ; // M state emission of xi, xi+1, xi+2, xi+ 3, xi+4

28 end
29 D ← D + PP [N(i, j)] + PP [C(i, j)] ; // N and C state emission of xi−2, xi−1, xi
30 D ← D + PP [N(i+ 1, j)] + PP [C(i+ 1, j)] ; // N and C state emission of xi−1, xi, xi+1

31 D ← D + PP [N(i+ 1, j)] + PP [C(i+ 1, j)] ; // N and C state emission of xi, xi+1, xi+2

32 for j in {1..M} do
33 for c in {0..5} do // For each match state emissions length
34 PP [M(i, j, c)] = PP [M(i, j, c)]÷D ; // Normalize M state posteriors
35 end
36 PP [I(i, j)] = PP [I(i, j)]÷D ; // Normalize I state posteriors

37 end
38 PP [N(i, j)] = PP [N(i, j)]÷D ; // Normalize N state posteriors
39 PP [C(i, j)] = PP [C(i, j)]÷D ; // Normalize C state posteriors

40 end

Figure 2.20: In order to recover FA alignments from a posterior probability matrix we to do two things differently
then in a non-FA posterior matrix. First the matrix must provide five columns per match state in order to keep
separate posteriors for the five different (pseudo-)codon lengths as well as a sixth column to keep the sum of the
other five. Secondly the denominator used to normalize all posteriors in row i must be the sum of all posteriors that
include xi in the codon or pseudo-codon emitted there. This include The I, N and C state codons at rows i+ 1 and
i+ 2 as well as M state codons and pseudo-codons on rows i+ 1, i+ 2, i+ 4 and i+ 5.
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null and bias scores. The null score introduces the background model transition probabilities (the

denominator of the log odds ratio), and is calculated as during the Filtering stage (e.q. 2.3 for the

non-FA branch and e.q. 2.8 for the FA branch), but with L now being the length of the domain. The

bias adjustment accounts for the extent to which the background model emissions probabilities do

not reflect the bias in the composition of the target and query. The new null score is calculated with

L equaling the length of the domain and the new bias scores are calculated using the a posterior

probability (PP) matrices.

For hmmsearcht and the non-FA branch of FATHMM this is done with the same posterior

probability (PP) matrix as the alignment recovery, but the FA branch uses a separate PP matrix

built just for bias scoring. The PP matrix is used to build a set of bias emission scores, one for

each amino acid. This is done by first finding, for every emitting state in the query model (M, I,

N and C) the average PP over all L of that state’s cells in the PP matrix. Remember that the PP

matrices used to find the bias score have been normalized so that the M, I, N, and C state PP in

a single row of the matrix will sum to one. This means that the average PP of a column will give

us the posterior probability that the state was used in the alignment.

Each match state’s average PP is then used to weight it’s emissions scores. These weighted

scores are then summed across all match states, and across the average PP of the N, C and I

states, producing an expected frequency for each amino acid or (pseudo-)codon (Eq. 2.10). The

bias score for the domain X ′ is the sum of the bias emissions scores, BS(xi) for each amino acid

or (pseudo-)codon emitted by one of the states. For the non-FA branch the target amino acids are

all emitted by one state or another so this simply means summing across the length to the domain

(Eq. 2.11). For the FA-branch the alignment is used to determine which codons and pseudo-condos

are part to the path trough the matrix and sum the bias scores just for those emissions.

BS(xi) = log2

( M∑
j=1

(
E(Mj(xi)) ∗ PP (Mj) + PP (Ij)

)
+ PP (N) + PP (C)

)
(2.10)

BS(X ′) = log2

(
2
∑L
i=1(BS(xi))+ω + 1

)
(2.11)
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By subtracting the new bias score and null score from the Domain’s Forward matrix score, a final

hit score is achieved for the target query pair, and a p-value is generated using the same distribution

as the Forward filter. To this point in the pipeline, p-values have been sufficient for determining if

a target query pair warrants further consideration, but now a correction for multiple testing must

be done before the hit and it’s significance can be reported to the user. For hmmsearcht, each

translated ORF is considered to be a distinct test, so that a hit’s e-value is simply the product

of its p-value and the total number of ORFs. This same procedure is used for FATHMM hits

coming from the non-FA branch of the pipeline. However, the use of DNA windows in the FA

branch makes the relationship between each test and the number of ORFs less clear. For these

hits I instead applied the multiple-testing correction used by HMMER’s DNA to DNA alignment

tool, nhmmer [22]: the number of unique tests is set as the total number of nucleotides in all

target sequences (and reverse complements) divided by the pHMM’s MAXL value (the maximum

plausible length of sequences emitted from the model). This quotient gives an approximate number

of separate windows in all target sequences, which is then be used as the number of independent

tests to convert the FATHMM FA pipeline branch p-values into e-values. Regardless of the branch,

FATHMM (under default settings) discards any hit with an e-value above 10.

Any hits passing this final significance test are reported to the user. The user can opt to see

the alignment for each hit, and to have each hit’s score, bias, e-value, and alignment coordinates

reported in a tabular format.
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CHAPTER 3 RESULTS

3.1 Benchmark results

3.1.1 Constructing a benchmark

In order to assess FATHMM’s performance I tested it on both a set of manufactured benchmarks

and a real world data set. The benchmarks are based on the Transmark benchmark created by Walt

Shands and Travis Wheeler [personal communication], Transmark is a benchmark for assessing the

annotation of protein coding DNA (without frameshifts), and can be used to evaluate tools that

perform either translated (protein-to-DNA) or DNA-to-DNA alignment. Transmark is itself based

on the protein annotation benchmark Profmark that was developed by Sean Eddy for evaluating

protein annotation tools [9].

Transmark was built using MSAs from the protein domain families in Pfam version 27 [2]. Each

protein sequence in these MSA’s was mapped to its encoding genome, enabling creation of a new

MSA of the true protein-coding DNA sequences. Any protein sequence that could not be mapped

to the original DNA was discarded, resulting in 14724 protein domain families being turned into

DNA MSA’s. Each family’s DNA MSA was then examined to see if it could be split into test and

train sets meeting the following criteria: (1) a minimum of 10 sequences in both the test and train

sets, (2) a maximum of 60% identity between any sequence in the test set and any sequence in the

train set and (3) a maximum of 70% identity between any two sequences in the test seat. A total

of 1463 families were found to meet this criteria, with a total of 27,521 test sequences.

To evaluate false discovery risk, decoy protein-coding DNA sequences were produced, and added

a as a supplement to the sequences in the test set from above. A set of 50,000 decoy sequences were
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generated; each sequence was produced by first selecting a protein sequence at random from the

families not used to make the test and train sets, shuffling the amino acids of the protein sequence,

then reverse translating the protein into encoding DNA (randomly selecting an appropriate codon

for each amino acid). Half of the test and decoy sequences are reverse complemented to test that

the tools can annotate sequences on both strands.

To provide a backdrop for annotation of protein-coding DNA in a genome, Transmark generates

10 simulated chromosomes, each 100 Mbp long, from a 15-sate HMM trained on 1000 randomly

selected 100 Kbp chunks of sequence from real archaeal, bacterial and eukaryotic genomes. All test

and decoy sequences are then embedded into these simulated chromosomes at randomly selected

positions, with the start position and length of every embedding being recorded.

After an annotation tool has been run with the 10 chromosomes as the target and the training

sequences as the queries, Transmark reports an analysis of true and false positive rates. A true

positive is any hit in which a query aligns to an embedded test sequence of the same family on the

correct strand and with at least 50% overlap. A false positive is any hit where a query aligns to

a decoy or background sequence. Hits in which a query aligns to a test sequence from a different

family, or the same family but the wrong strand, are ignored (i.e. not counted as a false match)

because we cannot be sure that the tool is wrong (i.e. perhaps the tool in question has identified

a previously un-recognized relationship).

3.1.2 Assessing accuracy of annotation - without frameshifts

In Figure 3.1 we see how FATHMM performs on the frameshift-free Transmark benchmark com-

pared with six other DNA annotation tools (see figure legend for tool details). As the results show,

translated alignment tools, with or without frameshift awareness, perform better than DNA-to-

DNA alignment tools on protein coding DNA. This is not surprising, since alignment at the level of

protein sequence can leverage the greater information content of amino acids relative to nucleotides

(larger alphabet, with more nuanced relationship between letters of the alphabet). If the target

uses codons not seen in the query, nucleotide alignments will penalize these differences even if the
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codons translate to the same amino acid or to one which would be positive scoring if using a protein

alignment.

It is also clear that the tools using pHMMs outperform the tools doing the same sort of search

using pairwise alignments (e.g. FATHMM does better than LAST and tfasty, while nhmmer does

better than blastn). The frameshift aware tools show slightly worse performance than the translated

tools using the same type of query, (e.g. FATHMM does worse than hmmsearcht and LAST and

tfasty do worse than tbalstn), as the allowance for frameshifts slightly increases the early occurrence

of false positives for these tools. FATHMM’s performance, however, is much closer to that of

hmmsearcht than either LAST or tfasty are to tbalstn.

Figure 3.1: Comparison of seven DNA annotation tools on the Transmark benchmark. Two of the tools, nhmmer and
balstn, perform DNA to DNA alignments. Two of the tools, hmmsearcht and tblastn, perform translated alignments
without accounting for frameshifts. Three of the tools, FATHMM, LAST and tfasty, perform frameshift aware
translated alignment. For tools that use pHMMs (FATHMM, hmmsearcht, and nhmmer), each family’s set of train
sequences are aligned and turned into a query pHMM. For the sequence-to-sequence alignment tools (LAST, tfasty,
tblastn and blastn), a separate search is performed for each training sequence and only the best scoring hit for each
test sequence is used. The Y-axis measures each tool’s sensitivity as the percent of all true positive test sequences
that are recovered as a function of the average number of false positive per query sequence family (X-axis).
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3.1.3 Assessing accuracy of annotation - with frameshifts

Transmark can only tell us how these tools perform in the absence of frameshifts, so I created

four frameshifted versions of Transmark. These benchmarks use the same structure as the original

Transmark, except that each test sequence has a non-zero probability of including randomly inserted

or deleted nucleotides. These four ’Framemark’ benchmarks each have a different frameshift rate,

with indels being added to the test sequence in Framemark1 at a rate of 1%, Framemark2 at a

rate of 2% , Framemark5 at a rate of 5% and Framemark10 at a rate of 10%. Thus, for every ith

nucleotide position in a test sequence in Framemark2, there is a 2% probability that an indel will

begin at i. (Note: a 5% indel rate means that a frameshift-inducing indel is expected to appear

once every 20 nucleotides, or once every ∼7 amino acids, while a 10% indel rate means expected

frameshifts every ∼3 amino acids - these are exceptionally high rates of frameshift.)

For all Framemark benchmarks, an indel at position i may be either an insertion or deletion

with equal probability. For an insertion, a random nucleotide is inserted at position i, and a

deletion causes the ith nucleotide to be removed. Each insertion or deletion has a 50% probability

of terminating and a 50% probability of extending another nucleotide, repeating until the indel is

terminated. Thus, 50% of all indels will be of length 1 nucleotide, 25% will be of length 2, 12.5%

will be of length 3, and so on. Since some of these lengths are multiples of three they will not cause

frameshifts, slightly lowering the true occurrence of frameshift to about 85% of the stated indel

probability.

Figures 3.2, 3.3, 3.4, and 3.5 show the performance of FATHMM and the other tools on the

Framemark benchmarks. FATHMM out-performs the other tools on all four of these benchmarks,

capturing more true positives with fewer false positives, and even demonstrating modest sensitivity

in the extreme case of a 10% indel rate.

For Framemark1 and Framemark2, hmmsearcht (translated pHMMs, with no frameshift model)

is the second best performer; inspection of the positive matches shows that hmmsearcht alignments

are on average only 48% as long as FATHMM’s positive alignments for Framemark1, and only

40% as long for Framemark2. As shown below, FATHMM does not appear to produce inappro-
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Figure 3.2: Framemark1 has a 1% rate of nucleotide indels.

Figure 3.3: Framemark2 has a 2% rate of nucleotide indels.
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Figure 3.4: Framemark5 has a 5% rate of nucleotide indels.

Figure 3.5: Framemark10 has a 10% rate of nucleotide indels.
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priately long alignments (so-called overextension), so this difference is attributable to hmmsearcht

cutting hits short when encountering a frameshift that FATHMM is capable of accommodating.

For Framemark5 and 10, nhmmer performs better than any of the translated search tools except

FATHMM. At this level of frameshift nhmmer’s ignorance of codons becomes and advantage as it

naturally absorbs nucleotide indels. On these benchmarks, FATHMM remains the best-performing

tool, as it can account for indels while still benefiting from considering similarity at the level of

amino acids. The other frameshift aware tools, LAST and tfasty, do not perform nearly as well

as FATHMM. Their reliance on substitution matrices and Viterbi scores prevents them from do-

ing much better than any of the other translated search tools despite attempting to account for

frameshifts.

3.1.4 Run time

Because genome annotation involves increasingly large data sets, I also examined the run time

of FATHMM relative to other tools. Table 3.1 shows the run times of all seven tools on all five

benchmarks when run with 16 threads. All of these programs require O(L*M) worst-case run

time, but distinct implementation optimizations and heuristics lead to differences in run times. An

important factor is whether L and M refer to the length of the target and query in nucleotides or in

amino acids. FATHMM’s run time is most easily compared to hmmsearcht and nhmmer since they

share the same general architecture. With its current implementation, FATHMM runs an average

of ∼ 4.5 times slower than hmmsearcht and about the same speed as nhmmer. Considering the

greater number of calculations and the fact that the standard versions of Forward and Backward

have been implemented using SIMD vector-parallel instructions, these numbers are well within

tolerance. Future work to improve run time will be covered in the Discussion.

3.1.5 Overextension

In addition to sensitivity, specificity, and run time, I also used the Transmark and Framemark

benchmarks to consider the problems of over-extension, coverage and false frameshifts. Overexten-
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Run Times (hours)

Benchmark FATHMM LAST tfasty hmmsearcht tblastn nhmmer blastn

Transmark 26.25 7.43 20.96 6.55 5.95 29.33 5.33

Framemark1 29.86 6.35 20.32 4.36 3.88 28.65 11.33

Framemark2 32.36 6.41 17.09 6.05 3.62 26.16 9.02

Framemark5 24.86 6.21 19.39 4.48 4.72 29.76 9.99

Framemark10 28.19 5.36 21.89 4.99 3.25 26.58 14.84

Average 28.30 6.35 19.93 5.29 4.28 28.10 10.10

Table 3.1: Run times (in hours) of 7 DNA annotation tools on 5 benchmarks. All tests were run with 16 threads on
a system with a 32-core Intel Xeon E5-2630 v3 @ 2.40GHz, and 64 Gb RAM.

sion happens when a tool reports a true positive but extends the alignment beyond the correct start

or end points of the target. I had hypothesised that overextension could be a significant problem

for FATHMM, as it could shift frames near the start and end of an alignment to pick up a few extra

bits of score outside the coordinates of the target true positive. Transmark is the best benchmark

to test this hypothesis with because it lacks any implanted frameshifts so that, (1) all frameshifts

called by FATHMM are presumably false and (2) frameshifts will not cause ant tool to cut their

alignments short.

Figure 3.6 shows occurrences of overextension on Transmark true positive hits. These results

make it appear that FATHMM’s rate of overexertion (1.1% of true positives with an average length

of 9 nucleotides) is not any higher than hmmsearcht’s (1.2% of true positives with an average

length of 8 nucleotides). However, the fact that the majority of the true positives FATHMM

reports for Transmark (82%) come from the non-FA branch could be obscuring the true impact of

false frameshifts. To look into this possibility I separated out the relatively small number (3421) of

FATHMM hits coming from the FA branch and compared them against the other tools (Fig. 3.7).

Here we do see an increase in FATHMM’s overextension both in terms of rate (2.9%) and length

(average of 10 nucleotides). However, this is still a small percentage of mostly short overextensions

3.1.6 Underextension (completeness of coverage)

Tools that correct too heavily for overextension may encounter the opposing problem of underex-

tension, in which the alignment fails to cover the full length of the true positive. Low coverage can



44

Figure 3.6: The x-axis shows the lengths of the overextensions, in nucleotides, and the height of the bars shows the
percent of all true positives found by the tool which were overextended by that particular length. Only true positive
hits with e-values less than one were used to make this graph.

Figure 3.7: The x-axis shows the lengths of the overextensions, in nucleotides, and the height of the bars shows the
percent of all true positives found by the tool which were overextended by that particular length. The result for
FATHMM only include hits from the FA branch. Only true positive hits with e-values less than one were used to
make this graph.



45

also be caused by low sensitivity if a tool only aligns the sections of a true positive with higher

percent identity with the query. We can measure coverage as the percent of the full length of a

true positive which is included in the alignment.

Figures 3.8 and 3.9 show coverage for 6 of the 7 tools on Transmark and Framemark1 (blastn was

excluded due to poor true positive recovery). This coverage was measured on the set of true positives

test sequence which all 6 tools were able to find (i.e. the intersection of positives with E-value <

1, for all 6 tools). In the Transmark results, the lack of alignment-interrupting frameshifts means

that frameshift awareness does not bestow any advantage and coverage closely tracks accuracy

(Fig. 3.1). However, even at the relatively low 1% frameshift rate of Framemark1, we see that tools

able to handle frameshifts (FATHMM, last, and tfasty) produce considerably better coverage of

the shared hits, even though two of them (LAST and tfasty) have lower overall accuracy (Fig. 3.2).

FATHMM does particularly well in term of coverage on Framemark1, combining high accuracy and

robust frameshift awareness.

Figure 3.8: A set of 14,680 true positives from Transmark that were found by all 6 tools were used to analyze
coverage. Any nucleotide inside the bounds of a true positive that was included in one or more alignments was
considered ”covered”. Coverage is the percent of the total number of nucleotides in the positive target (i.e. the
length) that are covered. Coverage percents are binned in 10 coverage ranges (seen on the x-axis) with percent per
bin displayed on the y-axis.
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Figure 3.9: A set of 12,709 true positives from Framemark1 that were found by all 6 besides tblastn were used to
analyze coverage in the face of frameshifts. Coverage was defined as in the previous figure.

The total coverage for a true positive is computed as the fraction of all letters in the sequence

that are covered by any alignment, meaning that the coverage may be broken up over more than one

alignment. This is particularly true for the non-frameshift-aware tools on Framemark1. Table 3.2

shows the average number of alignments used to arrive at each true positives coverage. For Trans-

mark, the alignment counts are all essentially one (with the exception of tfasty). As frameshifts are

introduced in Framemark1, some tools require multiple alignments to capture segments in different

frames, in addition to getting lower coverage. This is particularly true of the non-FA translated

tools, hmmsearcht, and tblastn. FATHMM and nhmmer’s alignment counts are practically unaf-

fected by the change from Transmark to Framemark1. For nhmmer this is because it is oblivious

to codon structure and so is mainly limited by DNA-to-DNA sensitivity. For FATHMM, we see

once again that the combination of translated search, pHMM, and frameshift awareness produces

superior results.
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Number of Alignments Used to Measure Coverage

Benchmark FATHMM LAST tfasty hmmsearcht tblastn nhmmer

Transmark 1.04 1.06 1.76 1.06 1.11 1.11

Framemark1 1.06 1.29 1.91 1.80 1.73 1.11

Table 3.2: Tools may split coverage between more than one alignment. The table above shows the average number
of alignments per true positive used to get the coverage shown in Figures 3.8 and 3.9.

3.1.7 Accuracy in specific frameshift calls

The final analysis sought to learn how often and under what circumstances FATHMM produces

false frameshifts (defined as a pseudo-codon in an alignment with no implanted frameshifts). In

FATHMM-Transmark hits with e-values less than 1, false frameshifts occur in 5% of all true pos-

itives. On average, the FATHMM-Transmark alignments with these false frameshifts contain 2.0

pseudo-codons. This compares to LAST, which produces false frameshifts in 12% of Transmark true

positive alignments with an average of 1.7 false frameshift in each. Similarly, tfasty produces false

frameshifts in 22% of Transmark true positive alignments with an average of 1.8 false frameshift in

each.

To determine the cause of FATHMM’s false frameshifts, I looked first at where in the align-

ments they were occurring. I suspected that false frameshifts might be causing a higher rate of

overextension in FA branch alignments, but Figure 3.10 shows that false frameshifts are actually

less likely to occur near the ends of alignments and are otherwise evenly distributed. This suggests

another reason for false frameshifts occurring nearer to the center of alignments.

Figure 3.11 shows an extreme example of a true positive FATHMM-Transmark alignment with

10 pseudo-codons, in which compensating frameshifts repeatedly return the aligning to the primary

frame. Comparing the FATHMM alignment to the hmmsearcht alignment, it is not hard to see why

FATHMM called these 10 false frameshifts. The hmmsearcht hit has a score of 96.9 and an e-value

of 2.4e-24; it has 126 positive scoring matches, of which 75 are identities (exact matches); it also

has 5 amino acid indels. The FATHMM hit has a higher score of 172.4 and an e-value of 1.6e-49.

The FATHMM alignment has 162 positive scoring matches, of which 106 are identities, and just 1

amino acid indel. When such significant improvements in alignment quality can be made by calling
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Figure 3.10: Each FATHMM-Transmark alignment that contained at least one false frameshift was cut into ten equal
sub-sequences and the number of pseudo-codons in each tenth was counted and plotted above.

false frameshifts they will inevitably occur, but it may be that a lower default frameshift probability

(currently 1%) could decrease their frequencies without losing sensitivity on true frameshifts (see

Discussion for more details).

3.2 Application to real sequence data

Analysis on the above simulated benchmark shows that FATHMM appears to provide good per-

formance compared to other tools. However, no manufactured benchmark can perfectly simulate

the complexity of real genomic data, so I performed a small-scale analyses on actual frameshifted

genes. For this task, I used the genomes of bacterial endosymbionts of a species of cicada.

As is the case with many sap feeding insects, the cicada species Magicicada tredecim relies on

endosymbionts (in this case Candidatus Hodgkinia cicadicola) to provide essential amino acids not

found in their food [24] [25]. The long life of Magicicada tredecim results in unique evolutionary

circumstance for its endosymbionts. These pressures have induced extensive linage splitting, leading

to more than 40 separate circular genomes of various sizes, each having their own subset of the

original genes. Not all missing genes are entirely lost in these genomes, as some may simply have

accumulating function-destroying mutations such as frameshifts (producing inactive remnants of



49

(a) FATHMM Alignment

(b) hmmsearcht Alignment

Figure 3.11: Alignment of the same target and query from FATHMM (a) and hmmsearcht (b). Each row of the
alignments has four lines. The top line is the query consensus sequence and the bottom line is the target DNA,
separated into (pseudo-)codons. Above the target DNA is the amino acid translation for those (pseudo-)codons
and the line above that indicates positive scoring mismatches with a ’+’ and exact matches with the amino acid.
The FATHMM alignment has 10 false frameshifts and the out of frame regions are shown in red. These alignments
demonstrate how false frameshifts can accrue when doing so improves alignment quality.
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genes called pseudogenes).

Matthew Campbell and John McCutcheon provided me with 43 Candidatus Hodgkinia cicadicola

genomes found in Magicicada tredecim by [personal communication], along with protein multiple

sequence alignments from all known Hodgkinia genes to use as a query set. The genomes ranged in

size from 8821 to 61,247 bp, with an average length of 26,490 bp. I annotated all 43 genomes with

both FATHMM and hmmsearcht, and compared the results. FATHMM produced greater coverage

than hmmsearcht on all 43 targets (where coverage is the percent of the full length of the genome

that is aligned to a query with an e-value less than one). On average, FATHMM increases coverage

of the chromosomes by 12% over hmmsearcht. This improvement is from both creating full length

alignments where hmmsearcht could find only partial hits, and finding entirely new alignments that

hmmsearcht could not identify. Figure 3.12 shows the three genomes with the greatest improvement

in coverage from FATHMM. From the top right and going clockwise, these genomes saw a 43%,

28%, and 26% gain in coverage.

In alignments where FATHMM called frameshifts, the average rate at which they were called

(measured as the number of pseudo-codons per nucleotide length of the alignment) was 1% (with

the range being 0.07% to 3.35%). Figure 3.13 shows a FATHMM alignment of the cobN protein

against the largest of the Hodgkinia genomes. The alignment has a frameshifts rate of 1.4%, and

is 10 times as long as the alignment produced by hmmsearcht for the same query-target pair.

On both benchmarks and real world data FATHMM has been shown to be a powerful tool for

the annotation of protein coding DNA in the presence of frameshifts. With the rise in the use

of long-read sequencers, which are far more likely to introduce frameshifts than their short-read

counterparts, and the continued interest in exploring genomic history through pseudogenes and

transposable elements, I believe FATHMM will make an important contribution to the improved

annotation of such sequences. Ongoing development (see Discussion), will serve to make it even

more valuable going forward.
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Figure 3.12: Above are four Candidatus Hodgkinia cicadicola genomes from Magicicada tredecim. The black circle
represents the complete circular genome. The blue arcs inside the circle show where FATHMM found hits; the orange
arcs show where hmmsearcht found hits.
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Figure 3.13: Pseudogene Alignment from FATHMM on Candidatus Hodgkinia cicadicola genome. This figure contains
an alignment of the cobN protein to a pseudogenized region of the largest Hodgkinia genome, with 16 alignment rows
serving as word-wrapped segments of a single full-length alignment. Each row of the alignment has four lines. The
top line is the query consensus sequence and the bottom line is the target DNA sequence, separated into codons and
pseudo-codons. Above the target DNA is the amino acid translation for those (pseudo-)codons. The remaining line,
second from the top, indicates positive scoring matches with a ’+’ and exact matches with the amino acid in question.
The area highlighted in orange marks the boundaries of the annotation provided by hmmsearcht. Frameshifts called
by FATHMM are shown in red.
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CHAPTER 4 DISCUSSION

FATHMM has reached a stage in it’s development where it is ready for general use. It has demon-

strated a high rate of sensitivity, a low false positive rate, and accuracy in locating frameshifts, all

with an acceptable run time. We have also applied it to real data from collaborations, and others

are beginning to use the software. Still there are improvements that can be made in all areas.

Run time is an obvious area for potential improvement. One idea is to create SIMD vector

parallel implementations of the FA versions of Forward and Backward. Another idea to adapt work

done by David Rich [26] to prune the calculation space of Forward and Backward, which results

in a typical speedup in that stage of 30-40x. This is achieved by first recognizing that the vast

majority of the probability in Forward/Backward matrices exist in a could of cells surrounding the

optimal alignment, and then pruning away paths in the matrices that fall outside of that cloud. A

possible middle ground is to adopt a pHMM analog to the SMID vectorized block aligner strategy

of [27].

It is also likely possible to improve cache performance when accessing the larger range of emis-

sions scores needed for the FA codon model. Currently there is a separate score stored for every

one of the 1364 codons and pseudo-codons, resulting in a great deal of redundancy. There are ac-

tually only ∼60 unique scores, twenty for codons, twenty for length 2 and 4 pseudo-codons, twenty

for length 1 and 5 pseudo-codons, plus a few for stop codons. Since the pseudo-codons and stop

codons currently map differently at each match state it is not straightforward to devise a universal

mapping system that would allow us to only keep one set of those 60 values. Thus, I am stuck with

the M*1364 size of the emissions score matrix if I wish to keep using position specific scores for the

pseudo-codons.
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The logic behind position-specific scoring and the max-function mapping used to create the FA

codon model is that it preserves the potential for homology that exists in the pseudo-codons. For

instance, if FATHMM maps the pseudo-codon ac to the amino acid D (whose codons are gac and

gat) and not to the amino acid E (whose codons are gaa and gag) it retains the information that the

two remaining nucleotides can provide. However, the difference between the emissions probability

of D and E for any match state is likely small compared to the frameshift penalty applied to pseudo-

codon emissions and it is unclear if the max-functions actually improve accuracy. Future work may

involve comparing the current implementation with two simple universal frameshift scores for all

pseudo-codons (one for those with a single indel and one for those with two indels).

Another important area for future improvements is the calculation of e-values. As stated in

the Methods section, I made an assumption that the FA forward scores followed the same distri-

bution as standard Forward scores when computing p-values both for the Forward filter and for

the output e-values. Testing this assumption will require running FATHMM on a very large set of

randomly generated targets (with both the MSV and Viterbi filters turned off), or development of

an importance sampling approach to reduce the simulation load.

There is also the potential to improve FATHMM’s performance on highly frameshifted sequence

by addressing another assumption made by the current implementation. In the Methods section

I mentioned that FATHMM used translated ORFs as the targets for both the MSV and Viterbi

filters, allowing it to use the efficient, SIMD vectorized, standard implementations of these filters

already present in the HMMER code base. As the rate of frameshifts in the target DNA sequence

increases, the accuracy of these filters will decrease due to mistranslation. It may be that this is

inconsequential because any sequence that is too frameshifted to pass MSV and Viterbi is also too

frameshifted to pass FA Forward, or it may be a serious limitation of the current implementation.

To test this I would need to run FATHMM on Framemark5 and Framemark10 with the MSV and

Viterbi filter’s turned off to see if they are throwing away a large number of true positives, and

possibly implement a Frameshift-aware Viterbi filter.

FATHMM is intended to be useful for identifying instances of protein coding DNA that contains
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frameshift inducing indels. These will arise in pseudogenes and in the case of sequencing error.

Importantly, in either of these cases, it is also reasonable to expect nucleotide substitutions that

may change the encoded amino acid in ways that do not obey expectations represented in emissions

scores based on protein MSAs. It will be important to explore potential modifications to the codon

emissions scoring scheme, allowing for non-synonymous substitutions.

A final improvement could be made by optimizing the default frameshift penalty and possibly

implementing and iterative approach to finding the optimal frameshift penalty for each target-query

pair. The current default of 1% probability for each inserted of deleted nucleotide was selected ad

hoc and, as of yet, has not bee rigorously tested. To do so, a variety of frameshift penalties would

need to by used to run the Transmark and Framemark benchmarks. The results of these tests

would tell if one penalty performs best for all benchmarks, in which case I will make that the

default, or if it differs depending on the underlying rate of frameshifts. If the results are different

for the different benchmarks, as I suspect they will be, I still won’t know which penalty is best to

use on any particular real world dataset, whose rate of frameshifts is entirely unknown and may

differ across the target. In this case the best results may be attained by performing an iterative

approach: run a single target-query pair though the Forward filter more than once with a set of

increasingly permissive frameshift penalties until the optimal penalty for that pair is identified. The

exact details of how, and even whether, such an approach can be implemented remain as future

work.

Three of the aforementioned non-run time improvements (e-values, filters and frameshift penal-

ties) require testing that is currently run time prohibitive. Therefore, the first order of business

will be to address the areas for potential run time improvement. Yet, even with the potential for

improvement, FATHMM is production ready today. I look forward to making it broadly available,

and working with collaborators to apply it to a number of datasets containing expected frameshift

errors.
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