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Understanding how fuel, weather, and terrain interact to produce fire behavior continues to 

motivate fire science and has resulted in development of new physics-based fire behavior models 

that place increased demands on input data such as fuels.  Recent technological advancements in 

computing, unmanned aerial systems (UAS), and sensors (RGB, multispectral, thermal, and 

hyperspectral cameras) can provide new opportunities for land managers and scientists to 

advance knowledge of fuels and fire behavior and their interactions on the landscape. In this 

study, imagery from high resolution multispectral cameras mounted on UAS were used to build 

orthomosaics and point clouds of surface fuelbeds in grass, litter, and shrub fuels of the Sycan 

Marsh Preserve in Oregon.  The purpose of this effort was to develop useful inputs to a fuels 

translator called STANDFIRE that prepares fuels data for use in physics-based fire models. Fuel 

type polygons were delineated using traditional photo-interpretation for nine 1 ha plots that were 

ultimately treated with fire. Each fuel polygon was attributed from field-collected data based on 

their dominant fuel type. Differences between fuel type polygons were assessed statistically to 

document the distinctiveness of each fuel type, to overcome field sample-size limitations, and to 

provide logic for merging fuel types that were similar.  Additionally, 3D point clouds and 

orthomosaics were examined to better understand their information content for more detailed 

characterizations of fuels. In this latter part of the research, shrub height, width, and cover were 

extracted from the point clouds and compared to field measurements. The findings were as 

follows: Defensible fuel type classes were easily delineated using photo-interpretation, resulting 

in 21.4% of the cumulative plot area classified as litter, 65.3% as grass and 10.3% as shrub fuels. 

Effective attribution of fuel polygons was dependent on how and where field data were collected 

and differed by year. Lack of sufficient sample sizes in some fuel type polygons required 

aggregation of field data from all plots within the Brattain burn unit in 2018. These shortcomings 

were overcome in 2019 by acquiring rapid-look imagery prior to field sampling that enabled 

more balanced samples across the range of variability, along with utilization of precision GPS.  

Within the point-clouds, shrub height was underestimated while width was over-estimated. 

Shrub cover was also under-predicted from the point cloud and was better enumerated using a 

conventional dot-grid approach on the orthomosaic. Improvements in data collection methods 

from 2017-2019 have resulted in a stable workflow that produces consistent fuels data formatted 

for STANDFIRE. The polygon-based approach is suitable for use in fire model validation due to 

its ability to rationally integrate sparse field data, because STANDFIRE is designed to work 

easily with polygons, and because there is insufficient evidence that model validation is at a 

point where it will benefit from use of more complex pixel or object-based inputs. Automated 

approaches to polygon delineation via region-growing, machine learning, and segmentation are a 

logical next step, with the caveat that the inputs derived in this study should be tested in the 

modeling environment first. 
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1. Introduction  

1.1 Overview 

As wildfires continue to occur and the encroachment of the wildland urban interface (WUI) 

continues to develop at unprecedented rates across the West (Calkin, Cohen et al. 2014, 

Radeloff, Helmers et al. 2018), land managers face a complex task of managing landscapes and 

balancing growing public and commercial interests in and around public lands. The focus of fire 

management in recent years has shifted from suppression as the main objective to include fire as 

a natural process (Young, Evans et al. 2020) that is needed on the landscape to help restore our 

forests to what they once were before suppression (Cleaves, Haines et al. 1999, Kolden 2019). 

Restoring the role of fire in turn places new demands on science and technology to inform when, 

where, and how we use fire for the benefit of ecological objectives. Quantifying surface fuels in 

forests is problematic for land managers due to the difficulty in measuring fuels of different 

sizes, strata, and spatial variability, yet surface fuels play a key role in fire behavior and fire 

spread (Ottmar, Sandberg et al. 2007). Current approaches of classifying surface fuels can be 

time intensive, costly, and are often not practical to cover large areas. New technological 

advancements in computing and unmanned aerial systems (UAS) and sensors (red, green, blue 

multispectral, thermal, and hyperspectral cameras) can provide new opportunities for land 

managers and scientists to advance knowledge of fire behavior and its interactions on the 

landscape (Hoffman, Sieg et al. 2018). 

 In June of 2016 the Federal Aviation Administration (FAA) introduced a new rule for UAS, Part 

107 (FAR/AIM 2016). This new law codified the commercial use of UAS within the National 
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Airspace (NAS) in the United States (US). After this rule was introduced their commercial and 

research-based uses have greatly expanded since 2016 (Canis 2015). UAS provides new and 

novel ways to collect high resolution visible, thermal, hyperspectral, and multispectral data that 

were not economical or possible on a large scale until recent years without the use of a manned 

aircraft (Patrick, Temuulen et al. 2018, Moran, Seielstad et al. 2019). Additionally, technological 

advancements in computing capacity have allowed new computational fluid dynamics (CFD) fire 

behavior modeling systems to advance (Mell, Jenkins et al. 2007, McGrattan, McDermott et al. 

2012, Mell, Charney et al. 2013), yet at the same time these emerging models have distinct needs 

for more complex fuels data, more specifically surface fuels (Bradshaw 1986, Linn, Goodrick et 

al. 2020) which are the primary drivers of fire and fire behavior in wildland fire. 

 Two of the commonly used CFD fire behavior models are FIRETEC and Wildland-Urban 

Interface Dynamics Simulator (WFDS). FIRETEC was developed at the Los Alamos National 

Laboratory (LANL) from military models used to predict dispersion of chemical and biological 

agents released on the battlefield landscape (Hanson, Bradley et al. 2000). This physics based 

CFD model uses many of the same inputs that are also crucial factors in wildfire modeling. The 

downside to FIRETEC is that it is very computationally intensive and in its current state is only 

available to researchers at the Los Alamos National Lab. The second more accessible physics 

based CFD model is Wildland Fire Dynamic Simulator (WFDS). WFDS was developed in 

collaboration with the National Institute of Standards and Technology (NIST) and the Fire 

Dynamic Simulator (FDS) (McGrattan and National Institute of Standards, 2000). The main goal 

of FDS was to use physics based CFD modeling to simulate structure fires and their interactions 

with materials and wind fields within and around the main structure. WFDS evolved from FDS 

as the FDS model was incorporated into the wildland-urban environment (WUI) to simulate how 
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fire moved from fuels outside the structure to the structures themselves (Meerpoel-Pietri, Tihay-

Felicelli et al. 2022).  

CFD model requirements for detailed fuels and weather information are intense and inputting 

fuels into the models is complex, cumbersome and time consuming (Prichard, Keane et al. 2017). 

These limitations have led to the development of a fuel translator called STANDFIRE (Pimont, 

Parsons et al. 2016). STANDFIRE takes spatially explicit fuel information and converts it into a 

text file (Appendix A) that can be consumed by FIRETEC and WFDS. STANDFIRE reads 

outputs from Fire and Fuels Extension (FFE) and Forest Vegetation Simulator (FVS) (Reinhardt 

2003, Crookston and Dixon 2005) using a fire library to convert them to 3D fuels. These 

approaches have their downsides as well as pitfalls and are not non-scientist friendly (Noonan-

Wright, Vaillant et al. 2014). Within the STANDFIRE framework, fuels can be modeled as 

objects (plants) or as layerSets (layers/areas with known fuel characteristics). These fuel types 

can be mixed in fire simulations and changed based on what is exhibited on the ground.  

The focus of this thesis will be on developing layerSets describing surface fuel characteristics 

from UAS imagery. STANDFIRE creates a text file, within that text file, vertices are created that 

define fuel polygons (Appendix B). Each fuel polygon is given metrics based on sampled fuels 

within that plot. STANDFIRE incorporates three different fuel types: shrub, herbaceous and 

litter. There can be all three fuel types (shrub, litter, and herbaceous) within a single polygon. 

Each fuel type that is represented in the polygons is given a height, base height, cover (fraction), 

patch size, and an integer code identifying it to a spatial group. Live and dead fuels are attributed 

with bulk density, particle density, surface area to volume ratio (SAV), and moisture content as a 

percent. From these inputs, STANDFIRE generates spatially explicit fuels that maintain the 

properties of the inputs, like FFE-FVS. 
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This project seeks to develop methods to classify surface fuels from high resolution UAS derived 

imagery for use in CFD fire behavior modeling, specifically through the new fuel translator 

STANDFIRE (Pimont, Parsons et al. 2016). This is part of a larger project to collect integrated 

weather, fuels, topography, and fire behavior datasets for model validation. Logically, outputs 

from these models will allow managers to assess alternative strategies to meet their ecological 

objectives or management objectives (Linn, Goodrick et al. 2020). Thus, modelers, managers 

and practitioners need access to current, high resolution fuels data. The overarching goal of the 

project is to produce rational, spatially explicit surface fuels data for direct input into 

STANDFIRE and to develop a repeatable workflow that allows a capable but non-scientific 

individual (e.g., fire manager/land manager) to input fuels data into a CFD model easily. This 

research also informs the development of STANDFIRE itself.  

The outcome of this thesis is fuels data for use in a collaborative effort between multiple state, 

federal, and private agencies to study prescribed fire and model its effects on pre, during and post 

burn fire processes. Some of the methods used were the result of other experimental needs within 

this collaborative effort. 

 1.2 Objectives 

This thesis will address the following four objectives.  

1. Derive fuel-type polygons using traditional photointerpretation to mimic a fire manager’s 

approach to fuels classification. 

2. Attribute fuel polygons from field measurements and compare fuel attributes across fuel 

types. 
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3. Quantify and compare shrub heights and widths based on field vs. point-cloud modeled 

and measurements. 

4. Assess shrub cover derived from UAS point cloud height classification, field 

measurements, and conventional point-intercept (dot-grid) and compare across fuel types 

and against field measurements. 

 

The organization of this thesis is a traditional Introduction, Methods, Results, Discussion, 

Conclusions. Each of the following sections is organized specifically around the four objectives 

identified above. In addition, because a major part of this thesis was data collection and 

processing using UAS and I was a major contributor in terms of time, effort, and intellectual 

engagement, data collection procedures are described in detail in the methods section below. 
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2. Methods 

2.1 Study Area 

Throughout a three-year timeframe (2017-2019), twenty-three (Figure. 1) 100 x 100m plots were 

installed across three burn units that spanned open tall grass, short grass, western bunchgrass, 

ponderosa pine forest, and sage-bitterbrush flats in Sycan Marsh Preserve, OR. The twenty-three 

units incorporated all the landscapes and fuel types that are present on the preserve lands at this 

location. Of the twenty-three total plots, nine (Table. 1) are used in this thesis, all from 2018 and 

2019. This is because some plots did not contain complete data or did not experience useful fire 

Figure 1. Sycan Marsh Preserve Study Area and plots 
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behavior, were never burned due to environmental considerations or fire reached the plots before 

during fire behavior imagery could be taken which was part of the collaborative effort to study 

fire behavior. 

Sycan Marsh is in the Klamath Basin, in Lake County, Oregon. The land is owned and managed 

by the Oregon chapter of The Nature Conservancy (TNC) and is surrounded by the Fremont-

Winema National Forest and private inholdings. The name Sycan is derived from the Klamath 

Native American term "saiga keni” and the name Sycan means "level, grassy place'' (The Nature 

Conservancy 2020). The dominant fuel types within this area are open ponderosa pine with litter, 

grass, shrubs, western bunchgrasses, marsh grasses, and xeric shrublands.   The area is 

characterized by a high desert climate with hot dry summers and cold dry winters, the average 

annual high temperature is 64F, while the average low is 30F (U.S. Climate Data 2020). The area 

receives an average of 10.3 inches of precipitation annually and experiences an average of 23 

inches of snowfall per year (U.S. Climate Data 2020).  
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The overall approach to this project was to image 100 x 100 m plots within burn units using 

optical sensors mounted on UAS, derive fuel type polygons within each plot, attribute these 

polygons with field measurements of fuels, and create STANDFIRE inputs for each fuel type 

(Objectives 1 and 2). In order to achieve these ends, it was necessary to analyze similarities and 

differences in fuel attributes among fuel types, in part to overcome sample size limitations, and 

these analyses were used to justify aggregation of field plot data for some fuel type polygons. 

Additionally, the point clouds were examined to better understand how fuel objects such as 

shrubs were dimensioned and how they could be used to estimate STANDFIRE attributes such 

as shrub cover and patch size.  The latter two areas of investigation (Objectives 3 and 4) were 

Plot 
Year Burn Unit Sensor  

Brattain_B 2018 Brattain X3/MSRE  

Brattain_C 2018 Brattain X3/MSRE  

Brattain_F 2018 Brattain X3/MSRE  

Brattain_H 2018 Brattain X3/MSRE  

1A_Grass 2019 BICO West X3/MSRE  

1C_Grass 2019 BICO West X3/MSRE  

1C_Forest 2019 BICO West X3/MSRE  

Southern_Grass_1 2019 BICO West X3/MSRE  

Southern_Grass_2 2019 BICO West X3/MSRE  

X3 – DJI Zemuse X3 12MP 

MSRE – Micasense Rededge Multispectral camera.  

 Table 1. Plots used in this analysis 
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intended to begin identifying strengths and limitations of point clouds derived from imagery as a 

source of information for fine-scale fuels mapping. 

The project utilized data collected in 2018 and 2019, including eight plots in 2018 and nine in 

2019. The first two objectives applied to data in both years, while the second two objectives 

utilized only data from the Brattain burn unit because this was where shrubs measured in the 

field coincided with high-quality remote sensing data and successful end-to-end (pre-, during, -

post-fire) data collections. Due to the nature of method development in the larger project the 

methods to collect data also evolved from one year to the next resulting in some different issues 

and approaches in each year. For example, in 2018, field measurements were not explicitly 

aligned with fuel type polygons because the polygon approach was not adopted until after 

evaluating the data. As a consequence, there were sample size limitations on field data for some 

fuel types that required logic for aggregating field data from other plots. Additionally, field plots 

in 2018 were not well-located due to limits in GPS technology combined with field 

methodology, and thus it was necessary to validate and attribute by polygon rather than pixel or 

object. Both of these issues were addressed in 2019 by acquiring rapid-look imagery pre- field 

data collection, locating plots within areas of similar tone/texture/color (e.g., fuel type polygons), 

and collecting the location of each field measurement with a newly acquired pair of dual-

frequency, kinematic GPS receivers in a rover-base configuration.  

Finally, some plots proved better than others in terms of quality for the broader study of fuels 

and fire behavior. In some cases, plots did not burn in the prescribed fire or burned with unusual 

patterns. In other cases, equipment malfunctioned resulting in poor or missing data. For example, 

TIR imagery was not obtained for a several plots, and erroneous gain settings were used in 

others. Therefore, the focus of this thesis is on plots with the highest-quality data end-to-end, 
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although fuel polygons and attributes were produced for all non-BICO plots in 2018 and 2019. In 

this thesis, the results for all plots are generally shared in appendices while the high-quality plots 

become the focus of analysis in the body of the thesis document. In 2018, a subset of the plots in 

the Brattain burn unit were the focus of analysis. In 2019, all of the plots not within the BICO 

units were the focus of analysis. A complete set of STANDFIRE inputs was developed for all 

plots and delivered as shapefiles with attribute tables. Attributes that were not obtained from this 

research such as surface area to volume ratio, and particle density are defaults from 

STANDFIRE that can be changed by future users to suit their needs.  

 

2.2 Data Collection and Processing  

Plots were located within the BICO East, BICO West, Brattain, and Coyote South burn units 

(Figure. 1). They are 100 x 100 m in size and monumented with rectangular steel plates which 

Figure 2. 2017 painted numbered GCP, 2018 GCP polished steel plate and 2019 GCP 
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were visible in the drone imagery. In the first year of study (2017), white 40 x 40 cm plates with 

large black numbers in the center (Figure. 2) were placed to create a 10 x 10 m square embedded 

plot within an outer 100 x 100 m square plot. The corners of each plot were marked with one of 

the white plates, without any specific cardinal orientation.  

The centers of these plates were recorded using a cellular phone global positioning system (GPS) 

unit with a reported accuracy of +- 2 m in X, Y and Z values (Merry and Bettinger 2019), and 

occasionally with a Trimble GPS unit (grass north and south). The white paint plates are clearly 

visible in the RBG-NIR imagery, which allowed them to be used as ground control points (GCP) 

later in the processing of the imagery.  

In the second year of study (2018), to help georeferencing and rectifying imagery later in 

processing, plots were laid out with 40 x 40 cm polished steel plates (Figure. 3). One inner 

embedded square plot of 10 x 10 m was nested in the center of the outer square plot of 

100x100m. Each corner was marked with one steel plate and the steel plates were oriented 

magnetic North-South. The Northwest and Southeast corners of the plates were recorded using 

Emlid RS+ GPS unit acquiring data in real time kinematic mode (RTK), which created a locally 

accurate measurement of position for each plate based on a locally known base station which 

then corrects for error to the rover in real time. The use of this RTK GPS system greatly 

increased the accuracy of the locations in the experiment to about +-20 cm in X, Y and Z values 

(Guo, Ji et al. 2001). 

The third year of study (2019) again used 40 x 40 cm polished steel plates with a 3-inch hole 

drilled in the center (Figure. 3). One center plate was placed within a clear view of the sky, two 

more plates were placed within ~50 m in clear view of the sky from the center plate on either 

side in an L shaped pattern. The outer plates were then placed on a 100 m diagonal from the 
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center plates oriented true north. Each plate was then marked on the center hole using an Emlid 

RS2 dual frequency GPS unit running in RTK mode. Again, in the third year of the study 

accuracy was increased using the dual frequency GPS units. In this year the reported accuracy 

was reduced down to +-25 cm X, Y and Z values (Guo, Ji et al. 2001, Tripcevich 2017).  

When using both the Emlid RS+ and RS2 GPS units the user can set up accuracy thresholds for 

each type of data point (single, float, fix). If the accuracy of the point was not within the allotted 

threshold during the collection time, then the point could be manually accepted by the user or 

recollected to make sure the accuracy needed was achieved when collecting the point. In each of 

the years the goal was to achieve better accuracy using new technology. Other experimental 

considerations when placing and choosing the material of the GCP’s were considered, such as 

exploiting the emissivity of the plates to act as thermal GCP’s during fire data collects.  

 

For each plot, data was collected with 

the best visible lighting conditions 

possible to alleviate shadows but also 

accounting for the limited amount of 

time allotted to collect the imagery 

before the plots were burned or pre-burn 

field days were complete. The type and 

quality of data collected varied by year 

(described below), reflecting 

improvements in methods and advancements in mission planning software from year to year. 

Pre-fire data was collected to produce visible orthomosaics and 3D point clouds to characterize 

Figure 3. DJI M100 quadcopter 
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fuels variability. Data was collected using a DJI Matrice M100 quadcopter with dual 5700maH 

batteries (Figure. 3), using three different cameras. The Micasense Rededge 3 (MSRE) 

multispectral camera (blue, green, red, near infrared, red edge) (2018, 2019), the gimbaled DJI 

X5 16-megapixel RGB camera (2017), and the gimbaled DJI X3 12-megapixel RGB camera 

(2018, 2019). The X3 and X5 were mounted on a gimbal to compensate for the aircraft’s roll, 

pitch, and yaw differences in flight. This compensation for the UAS attitude allowed for more 

control in the sensor's ability to capture NADIR images and allowed for more efficient, effective 

data collects, allowing sidelap and endlap to be reduced while still achieving the proper amount 

of endlap and sidelap for processing of forested areas using Agisoft. By reducing the amount of 

sidelap and endlap the missions were able to be flown in one or two battery cycles. The 

Micasense was mounted in a fixed 10° forward facing mount, this mount was used to 

compensate for the forward leaning aircraft during flight, and this was done to better achieve a 

NADIR photo from the fixed mount. Both cameras collected imagery simultaneously but were 

offset approximately 20 cm from the focal center of each camera. All photo exposure points were 

automatically calculated for the endlap and sidelap for each mission within Map Pilot's Pro 

Business Edition (Figure. 4).  

To develop flight plans, the outer 

plot points were imported into Map 

Pilot's Pro Business Edition 

(versions 2.5.0-4.1.2) as a KML 

layer to mark the outer edges of  

Figure 4. Map Pilot’s Pro Business Edition flight plan 
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the plot from Avenza maps. A square box was created with approximately 2.5-3 hectare for the 

flight mission using Map Pilots, at 90-100 m above ground level (AGL) flying a cross-grid 

pattern North-South, then East-West, with 85% endlap and 90% sidelap (Figure. 5). This endlap 

and sidelap was calculated for the RGB cameras to equate to a 75% sidelap with the micasense 

camera. This was needed because the MSRE and the X3/X5 have different resolutions. When 

imaging forested areas it is recommended 

that endlap and sidelap be high due to 

forested areas having very little structure 

and geometry within each image and this is 

especially true when imaging closed 

canopy forest stands (Carrivick, Smith et 

al. 2016). Map pilots allow the use of 

terrain following using the Shuttle Radar 

Topography Mission (SRTM) terrain tiles 

cached to the Map Pilots application. 

Using terrain following allowed the UAS 

to maintain a constant height above the 

plot area, allowing for a more consistent 

Ground Sample Distance (GSD) across the entire acquisition, as well as efficiently keeping the 

endlap and sidelap to a constant distance. Although having SRTM was not crucial for these data 

collections as there was very little elevation change from one end of the plot to the other in either 

direction North-South or East-West, it was used to maintain constant flight elevation. Each 

Figure 5. Micasense calibration 

panels bands 1-5 
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mission was on average 25 minutes per flight for the entire cross-grid, resulting in on average 

500 photos with the X3/X5 and 5000 photos with the micasense red edge. The difference in the 

number of photos collected is due to the micasense capturing Red, Green, Blue, Red edge, and 

Near-infrared (NIR) bands.  Before each flight and before each battery change images of the 

micasense calibration panel (Figure. 5) were taken in the fullest view of the sun and without any 

shadows. Together with the calibration panel and the daylight sensor (DLS) the micasense can 

account for a change in solar angle and cloud conditions by calibrating the photos in metashape 

after importing them. All images were captured in raw format without editing any aspect of the 

photo before importing them into the processing software. 

Field data were collected in all three 

years (2017, 2018, and 2019) of the 

study, with significant differences in 

methods between years due to 

advancements in technology and 

evolution of thinking from year to 

year. The between-year variability in 

field methods is primarily due to the 

locations of the field plots (sampling 

strategy) and the accuracy of measurement of sampled locations. The information collected on 

each field plot in each year was essentially the same with a bit of between year variability (only 

shrub heights taken was in 2018). The variability in methods is a major reason this project has 

adopted the polygon as the spatial unit of analysis rather than the pixel.  Field plots were 1 m2 

areas, as squares (Figure. 6) in 2017-2018 and circles (Figure. 7) in 2019. The following data 

Figure 6. 1m2 square photoload sample plot 
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were recorded within each field plot using the photoload (Keane, Dickinson et al. 2007) 

sampling technique: percent cover for grass, bare earth, litter, CWD, 1 hour, 10 hour and 100-

hour, grass, and litter fuel load estimates, average fuel heights, and litter depth. In 2017 field 

plots were randomly distributed by throwing CDs into the plots and referenced using a 

consumer-grade cellular phone GPS. Field data collected in 2018 plots were distributed near plot 

monuments to characterize the diversity of fuel types within the plot and referenced by distance 

and bearing from the monumented plates used to mark the plots using a compass and laser 

rangefinder. Plot monuments were referenced using an Emlid RS+ RTK GPS as mentioned 

earlier. The areas sampled were a 1 x 1 m square. In 2018, shrub field measurements were also 

taken, consisting of width two times (north-south and east-west) and height for 42 sages, 

bitterbrush, and rabbitbrush. One issue with using the square sample areas is that the spatial 

orientation needs to be consistent within each photo. 

 Field data collected in 2019 

used Emlid RS2 multi-

frequency RTK GPS to collect 

all sample points. The general 

locations of sample points were 

identified ahead of time from a 

single overhead drone image 

using visual texture and tone as 

the basis for identifying fuel 

type differences. In the field, 

field samples were distributed 

Figure 7. Hula-Hoop photoload sample plot 
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across the range of textures and tones arbitrarily but ensuring an adequate sample size within 

each strata. Fuels plot boundaries were defined by a circle (hula-hoop, Figure. 7) instead of a 

square. Within the hula-hoop percent cover for grass, bare earth, litter, and shrub were recorded. 

One hour, ten hour and hundred-hour fuel estimates, average grass heights, average grass fuel 

loading, litter depth measurements were also taken. Load measurements used the Photoload 

technique as in 2018. Using round sample areas with the GPS point avoided the orientation 

issues associated with square sample areas.  

Pre-fire imagery was processed using Agisoft Photoscan and Agisoft Metashape (versions 1.4.0-

1.7.2) structure from motion (SfM) software (Figure. 8)  using multi-node processing on five 

computers at one time. The RGB photos were brought into metashape via the import photos tab 

and a quality assessment was run on each photo. Photos that did not meet the standard quality 

assessment of 0.80 and above were culled from the processing stream. The number of 0.80 was 

decided based on assessing all the photos quality assessment and noticing a large gap from 0.80 

to 0.60 and looking at where 

those photos were within the 

data collect. Most of the photos 

below the 0.80 threshold were 

where the UAS was turning into 

another flight line and motion 

blur was quite large because of 

the yaw of the UAS.  Because of 

the location of these photos, 

they were able to be deleted. It is 
Figure 8. Agisoft Metashape processing 

program. 
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worth pointing out that sometimes a photo that does not meet the quality assessment cannot be 

thrown out due to its location within the other data collected.  

   The micasense photos processing stream was slightly different from the RGB camera. They are 

natively organized in photo sets of five (Red, Green, Blue, Red Edge and NIR). Once selected, 

metashape prompts the user to bring the cameras in as single cameras or groups of multi-spectral 

cameras. The multi-spectral option was used and the micasense images were then calibrated 

based on data from the on-ground reflectance panel and from EXIF data within each photo from 

the onboard daylight sensor (DLS). Once the multi-spectral micasense images are calibrated the 

processing stream is the same as the RGB camera except one may have to adjust the brightness 

depending on how the photos look after calibrating reflectance.  

Once photos from both cameras were adjusted, calibrated, and corrected they were each aligned 

to create a sparse point cloud using the highest accuracy, generic preselection, and reference 

preselection, key point limit set to 40,000, tie point limit set to 4,000, and adaptive camera mode 

turned on, these are all default options within metashape. Once the photos were aligned and 

GCP’s in NAD 1983 UTM zone 10N were imported into metashape from a CSV. Aligned 

camera position thumbnails were turned on to show where each photo exposure point was within 

the sparse point cloud. While maintaining a NADIR look within the sparse cloud, the model was 

moved to the four inner GCP’s and photos that were near these inner four GCP’s were selected, 

and the imported points used to mark the GCP were placed on the physical GCP shown within 

the photo. As GCP’s are moved in metashape to match GCPs in the images Metashape updates 

the model and places the other GCP’s where it thinks they should be. This is oftentimes very 

close to where they should be placed but oftentimes the point was manually fine-tuned to home 

in the accuracy of the GCPs. Once the four inner GCP’s are marked in a minimum of three 
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different images (the more images with GCP’s marked in photos, the more accurate the model 

metashape will be produced). The outer four GCP’s were then marked using the same process as 

the inner four. Photos that contain the GCP’s marked by metashape are depicted with blue flags 

and photos that contain GCP’s manually marked by the user are shown with green flags.  Once 

all GCP’s are marked, all the photos are deselected, and the sparse model is optimized and 

updated with the new GCP model. The sparse point cloud is then filtered using three gradual 

selection criteria, reprojection error, reconstruction uncertainty, and projection accuracy. There is 

no hard-fast rule for each of these filtering criteria, but a good general rule of thumb is to get rid 

of ~10% of the points within the sparse point cloud each time (Carrivick, Smith et al. 2016). 

Once gradual selection is complete the project is saved as a .psx project, then it is reopened, and 

under project settings the camera, coordinate, and marker reference are all set to NAD 1983 

UTM Zone 10N EPSG:26910 and saved as a .psz project.  

The next step in the workflow requires the user to invoke a python script that runs a Monte Carlo 

analysis on the sparse point cloud (James, Robson et al. 2017). This script injects noise into the 

sparse point cloud 2000 times or how many times the user chooses to. After each iteration of 

noise, the overall error associated with the GCP’s is reduced until the reductions become 

negligible. We found that 2000 iterations were more than enough as after that the results were 

not worth adding more.  Once the script is complete it saves the project in metashape and exits 

the script within the program. The new saved project is then resaved as a .psx. The reason for 

saving between different extensions is because of the way the file structure is built for each 

project type. One file structure (.psx) allows the user to do parallel processing (multi-node, more 

than one computer) and the other file structure (.psz) only allows the user to process on a single 

machine (node). Multi node processing or “parallel processing” as Agisoft calls it can greatly 
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speed up the processing of projects reducing the amount of time needed to complete a project 

(Han and Hong 2019). This is a very important consideration as often land managers only have a 

small window to accomplish ecological objectives or small windows in which they are approved 

to burn due to many factors such as airshed and weather. Once the Monte Carlo process 

completed and as much of the error as can be removed has been, it is time to build the dense 

point cloud. The following settings are used when building the dense cloud: quality set to ultra-

high, depth filtering set to moderate, and reuse depth maps and calculate point colors checked. 

Building depth maps and the dense cloud is the most time-consuming process in the workflow 

and it can oftentimes take two plus days to finish this process depending on the number of photos 

and area you have as well as the processing power. After the dense cloud completed it is 

exported from metashape in LAS format, using the WGS 84 UTM Zone 10N EPSG: 26910 

projections. Ground points must now be classified using the classify ground within the batch 

processing window in metashape. Ground is classified based on all available points within the 

dense cloud using max angle of 15 degrees, max distance 1m, and cell size 50 m, these are all 

default ground classification settings in metashape and (Bhandari, Oli et al. 2015, Çelik, 

Alptekin et al. 2020) were found to produce dependable realistic digital surface models (DSM).  

After classifying the ground points, the DSM was built using the classified ground points using 

the following settings: projection type is geographic, projection WGS 84 EPSG:4326 as this was 

what the original data was produced in. The source data is the dense point cloud, interpolation 

enabled, point classes: ground. The DSM is then used to build the orthomosaics with the 

following parameters, projection type is geographic in WGS 84 EPSG:4326, built from the DSM 

surface, refine seamlines, and enable hole filling both turned on, after the process was complete 

both orthomosaics and DSM were exported as .tiff files in WGS 84 UTM Zone 10N EPSG: 
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26910 projection for further processing in ArcGIS and LASTools. After exporting the 

orthomosaics, DSM, and the 3D point cloud all plots were trimmed to an approximate buffer of 

50 m outside of the original 100 m plots. This was done to reduce edge effects and was 

accomplished using ArcGIS clip raster feature and the LASTools cliplas tool. 

2.3 Derive Fuel-type Polygons using Photointerpretation  

Fuel polygons were derived by delineating areas of distinct fuel characteristics (e.g., shrubs, 

grasses, litter, and bare earth) on orthomosaics. The method used for polygon delineation- 

classification was based on traditional photo interpretation (Lillesand, Kiefer et al. 2008). 

Polygons were derived through traditional photointerpretation to mimic the approach that most 

fire managers will take and could do. The fuel polygons were delineated using traditional photo-

interpretation methods of association, tone, texture, color, and hue (Avery 1966). Preliminary 

analysis of orthomosaics showed that litter fuel is closely associated with the presence of trees as 

well as the red hue from the dead needle cast spread on the forest floor (Figure. 9). Another 

major cue was the difference in texture between a grass dominant fuel class and a shrub 

dominant class, which is evident in the orthomosaics as is the difference in texture between 

bunch grass and cheatgrass. Color played a key role in creating fuel polygons among the grass 

classes as well as the cheatgrass had a lighter tan color than the bunch grasses and smoother 

texture. The difference in color from the shrub fuel class compared to the grass fuel class 

allowed an easy distinction when deriving those fuel classes (Table. 2).  
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Land 

Cover Tone Texture Description  Image 

Bare Black/Gray Rough 

Dark black in 

color with 

lighter shades of 

gray. Does not 

exhibit any 

spectral 

difference in 

NIR. 

 

Litter Red/Brown Smooth 

Reddish brown 

tone that is not 

found elsewhere 

in imagery as 

well as 

association with 

the presences of 

trees. 
 

Bunch 

Grass 
Golden/White Rough 

White golden 

patches 

intermixed 

among the red 

bare mineral 

soil. 
 

Cheatgrass Tan/White Smooth 

Continuous 

cover of tan, 

brown and white 

with 

interspersed 

black. 
 

Shrub Silver/Gray  Rough 

Patchy silver-

gray objects 

intermixed 

among the red 

bare mineral 

soil. Some 

shrubs exhibit 

spectral 

difference in 

NIR. 
 

 

Table 2. Photo-interpretation key 



- 23 - 
 

The main reason for choosing photo interpretation over spectral and height classification is the 

fact that land managers will often have access to this type of information readily from UAS 

imagery, National Agriculture Imagery Program (NAIP), and related sources and may be unable 

to classify fuels using more automated but more complex image classification techniques such as 

segmentation and unsupervised/supervised image classification. These maps will provide a point 

of reference for automated techniques that may be developed in the future. 

 Using orthomosaics created from UAS RGB imagery with a ground sampling distance (GSD) 

between three to eight centimeters, four fuel classes (grass, shrub, litter, bare earth) were 

manually delineated using ArcGIS. The fuel polygons were drawn on the orthomosaics using a 

Microsoft Surface Pro Four laptop using the stylus pen and the polygon tool on the draw toolbar 

within ArcGIS. The stylus allowed better control and a much quicker way to manually draw the 

polygons although it was not necessary and a simple mouse with the polygon tool could also be 

used. Polygons were originally drawn on the orthomosaics as graphics and they were converted 

from a graphic to a shapefile and exported into a geodatabase. Due to the fact there were often 

small gaps and overlapping areas between the polygons that modeling software may have 
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difficulty differentiating or 

dealing with, any overlap or 

gaps in the polygons were 

corrected using the ArcGIS 

topology rules to create 

“pure” polygons that 

represent a dominant fuel 

type within that polygon 

(Figure. 9) Two topology 

rules were used to identify 

areas of concern within the 

polygons. The first rule was 

“must not overlap” and the second rule used was “must not have gaps.” The ArcGIS topology 

rule does not automatically fix the areas of concern but just searches, finds, and marks the 

mistakes in red so they can be corrected later. Gaps and overlaps were then corrected by using 

the editor toolbar and the snap to vertices tools within ArcGIS to get rid of all the overlap and 

gaps in the shapefiles. 

2.4 Attribute Fuel Polygons from Field Measurements  

Following derivation of polygons using photointerpretation, each polygon was attributed with 

fuels data collected in the field, guided by the input requirements of the STANDFIRE translator 

program. To complete attribution, field plots were extracted by fuel type polygons, summarized, 

and compared statistically (ANOVA) to fuel attributes from other fuel type polygons. Not all 

fuel type classes contained a sufficient number of field plots for statistical analysis, so data from 

Figure 9. Brattain H topology rule used to correct polygons 
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different burn blocks were combined in such cases. In 2019, overhead photos were taken prior to 

field sampling to aid in sampling field fuel variability within the plots. The idea was to identify 

tone and texture differences in the plot area quickly in order to ensure that field plots were 

distributed across the range of variability. This effort normalized the number of samples within 

each fuel type in 2019, allowing decisions about aggregation of field fuel attributes to be based 

on statistical differences rather than small sample sizes. 

To determine if field plot data from different fuel type polygons could be aggregated, analysis of 

Variance was run in RStudio to assess differences between fuel classes. If there was a 

statistically significant difference, a Tukey Post Hoc test was run in RStudio to determine which 

fuel classes were different. Fuel attributes in fuel types with no significant differences were 

aggregated. For all the fuel sample and photo-load plots in the polygons, the mean, median, and 

standard deviation (SD) for percent cover, shrub height, shrub width, litter depth, one-hour fuels, 

ten-hour fuels, and fuel load (Kg/m2) and 100-hour fuels were calculated for all fuel classes for 

entire burn units (aggregated 2018) and for each plot (individual 2019).  To check the 

distributions for normalcy, skewness and kurtosis were calculated for each field measured 

variable. 
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Finally, some adjustments were necessary to produce complete attributes for STANDFIRE. 

STANDFIRE requires estimates of fuel height, cover, loading, and patch size along with bulk 

density, surface-area-to volume ratio (SAV), and particle density to create LAYERSETS that 

distribute fuels rationally within polygons.  Height and cover for grasses and litter were 

characterized in the field data in 2018. In 2019 height and cover for grasses, shrubs and litter 

were characterized in the field data. Loading for grasses and patch size for shrubs as well as bulk 

density for grasses were also characterized in the field in 2018 and 2019 data but SAV, particle 

density, patch size for grasses and litter, integer code, and particle density values were not 

captured in the field data and therefore I used default outputs from STANDFIRE that can quickly 

be changed within the shapefiles 

attribute table if it needed to match 

new world values or values that are 

actually represent measurements from 

the burn units being modeled.  

Because shrub cover was absent from 

the field data collections methods, 

three methods were used to determine 

shrub percent cover information for 

STANDFIRE. In the first method, 

shrub cover was estimated ocularly from the photos taken of the field plots during the photoload 

Figure 10. Sample photo-load used for field data 
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sampling and summarized by fuel type polygons as described above (Figure. 10). This is 

effectively the same method used in the field to measure percent cover of grasses and bare earth. 

 The second method was to create a 15 x 

15 m fishnet with points labeled (Figure. 

11) using the clipped orthomosaics as the 

bounding box to perform a dot/grid 

sample. Each fuel class was used to clip 

the fishnet and if one of the labeled points 

fell on a shrub within the orthomosaics it 

was tallied as a yes or if it did not fall on a 

shrub a no. Once all points were identified 

the total number of points that fell on shrubs were divided by the total number of points within 

that fuel class polygon to estimate shrub cover using the orthomosaics. At the end, the total 

number of points in the entire Brattain unit that fell on shrubs was also divided by the total points 

to estimate a total percent cover shrub for the entire burn unit.  

The third method used to determine shrub cover exploited the 3D point cloud elevation data 

converted to a 2D height raster. The logic was that shrubs had measurable dimensions (height, 

width) above ground, and were therefore quantifiable by identifying positive elevation anomalies 

in the surface fuel bed area of the point clouds.  In ArcGIS, the point clouds were converted from 

a 3D .las file into a 2D .tiff elevation raster using the las to raster function within ArcGIS. When 

using the las to raster function the following settings were applied to all the point clouds: 

elevation value field, binning Cell Assignment Methods set to nearest and void fill method to 

none, using floats, sampling type is cellsize and the size of cells is set to what each plot GSD 

Figure 11. Example of fishnet plot used to 

estimate shrub cover 
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was, and the z factor is left at 1 meaning no change in actual values. After converting the 3D 

point clouds into 2D images the tree canopies were masked out of the image using ArcGIS. 

Using the raster calculator, all points above 2 m were selected. Using the 2 m and above raster as 

a spatial mask and adding a 2m buffer, tree canopy points and the noisy height data around tree 

driplines was removed by clipping from the raster using the raster clip function. The remaining 

raster was considered the canopy height model (CHM) of the fuel bed and included all fuel bed 

points from the ground to 2 m height.  The raster calculator was then used to create a conditional 

statement (Con((raster>=.25), raster) to clip all points 0.25 m and above to create a new raster of 

shrub heights as determined by the modeled vs field measured shrub measurements. Once the 

shrub heights were calculated the raster had to be smoothed using a 3 x 3 cm focal maximum 

filter to remove the anomalies and noise created from the raster calculator (Figure. 12). After 

smoothing the raster was reclassified using a conditional statement (Con((raster>=.25), 1) in the 

raster calculator to ones and zeros with one assigned to shrub and zero to no shrub. Finally, shrub 
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area was calculated using the zonal geometry as table function. The shrub area was then divided 

by the total area of each fuel class polygon to get an estimation of shrub cover. 

2.5 Quantify and Compare Shrub Heights and Widths 

An advantage of data from 3D point clouds is their ability to characterize structure, height, and 

dimensions. These measurements can potentially be used directly to get at metrics such as fuel 

bed height or can be used to inform classifications of fuel characteristics.  For example, Moran 

(2019) used point-cloud based height measurements to classify fuels at Lubrecht Experimental 

Forest, MT from imagery collected just a few meters (5-10 m) above the fuel bed. A preliminary 

analysis of UAS point clouds from Sycan Marsh obtained from imagery collected at 90-100 m 

AGL suggests that height may not be well characterized in the surface fuel bed. A 2-part 

approach was used to understand how fuel bed heights and widths are characterized in the 3D 

point cloud.  The first is to compare height and width measurements of shrubs in the point cloud 

to field measurements of shrubs collected at Sycan Marsh in 2018.  Because the field locations of 

the shrubs are not precise, a search radius of 2 meters around each shrub point in the rasterized 

Figure 12. Rasterized shrub heights Brattain H 
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point clouds was used to identify matching shrubs if a shrub was outside of the search radius it 

was discarded. When more than one shrub appeared in the search radius, their dimensions were 

averaged.  If the object nearest the point was doubtful to be a shrub due to its shape or 

dimensions, an NIR orthomosaic was consulted to confirm that it was a shrub and not a rock, 

which look similar in the orthomosaics.  

In addition to the shrub-to-shrub comparison described above, ten random points were generated 

using the ArcGIS random point generator feature (Figure. 13) and from these ten points, the 

closest shrub visible in the orthomosaic was measured in the CHM. The highest pixel value in 

the shrub nearest to each random point 

represented shrub height.   Widths were 

measured twice and averaged, once 

north-south and the second east-west. 

The data from these shrubs were 

summarized in box-whisker plots and 

compared to the similarly summarized 

field measured shrubs. Measuring in this 

manner-maintained consistency across 

plots, and using the random points helped 

determine if field measurements of shrub dimensions are similar to point cloud measurements. 

2.6 Derive a ground surface for generation of the CHM 

In order to develop the canopy height model (CHM) used in the shrub dimension assessment 

described previously, it was necessary to create and smooth a bare earth model from the point 

clouds.  Using the DSM output from Metashape a bare earth model was created using ground 

Figure 13. Random points for shrub 

measurements 
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classified points in a two-step approach; in the first step, the dense point cloud was divided into 

cells of a specific size. Within each cell, the lowest point was detected. Once the lowest points 

were detected triangulation of these points gave the first rough calculation of the terrain model. 

Additionally, at this first step, Metashape filters out some noise points to be handled as low 

points class. In the second step, new points are added to the ground class, providing that it meets 

two conditions. First, the point lies within a certain distance from the terrain model and second, 

the angle between the terrain model and the line to connect this new point with a point from a 

ground class is less than a certain angle. The second step is repeated multiple times while there 

still are points to be checked. The three main factors that influence a good ground point 

classification are the maximum angle in degrees, maximum distance in meters and the size of 

cells in meters.  Due to some of the DSM’s having abnormalities related to noise from tree boles, 

coarse woody debris (CWD) or other above ground anomalies that the ground classification was 

unable to get rid of, three focal statistics were used to smooth the DSM. The first was a Min filter 

with a 4 x 4 cm moving window, the second was a Max filter with a 3.75 x 3.75 cm moving 

window and the final focal stat was a mean (Figure. 14). These statistical sizes were based on 

multiple outputs within ArcGIS to determine what was the best size of moving window to use. 
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The approach assumed that the lowest point in the initial Min filter was ground, the following 

max filter intended to remove erroneous negative noise below ground, and the mean filter then 

averaged the remaining ‘ground’ point heights.   

After creating the bare earth model and differencing the point cloud from it (e.g., generation of 

the canopy height model), the point clouds were converted from 3D las files into a 2D tiff 

elevation rasters using the las to raster function within ArcGIS. When using the las to raster 

Figure 14. Smoothing the DSM output from Metashape 
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function the following settings were applied to all the point clouds: elevation value field, binning 

Cell Assignment Methods set to nearest and void fill method to none, using floats, sampling type 

is cellsize and the size of cells is set to what each plot GSD was, and the z factor is left at 1 

meaning no change in actual values. 3D point clouds converted to rasters of height. After 

converting the 3D point clouds into 2D images the tree canopies were masked out of the image 

using ArcGIS. Using the raster calculator all points above 2m were selected. Using the 2 m and 

above raster as a mask it was then converted to a polygon in ArcGIS with a 2 m buffer. This 

created a tree canopy mask that masked out all points that were tree bowls or tree canopies.  This 

new raster was considered the final canopy height model (CHM) and included all fuel bed points 

from the ground to 2 m height.  
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3. Results 

3.1 Derive Fuel-type 

Polygons using 

Photointerpretation  

Fuel polygons were delineated using 

common photo interpretation 

methods (Paine and Kiser 2012) and 

represented by polygons on the 

orthomosaics (Figure. 15). Each fuel 

class polygon is represented on ArcGIS maps as a different color polygon. The following colors 

on the map represent these fuels, green is grass class (herbaceous), red is litter class, yellow is 

shrub class, and purple is bare earth (Figure. 16). Each fuel class is not a homogenous class but a 

representation of the dominant fuel within that area based on the above photo interpretation 

methods. The total area interpreted for both 2019 and 2018 is 397342 m2. For 2018 the total area 

interpreted is 231323 m2. Within 2018 plots, grass fuel classes accounted for 51% (119761 m2) 

of the area, shrubs accounted for 14% (33793 m2) of the area and litter accounted for 33% 

(77768 m2) of the area. On a plot-to-plot basis this qualitatively matched what was observed 

visually while collecting the imagery and installing the GCP’s. In 2019 the total area interpreted 

was 166019 m2. Out of the total area in 2019 interpreted 84.1% (139679 m2) was considered 

grass fuel class, shrub fuel class accounted for 4.4% (7271 m2) of the total area and litter fuel 

Figure 15. Brattain H delineated fuel polygons 
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class accounted for 4.4% (7354 m2). In both 2018 and 2019 this percentage breakdown of fuel 

classes was comparable to what was observed in the field while installing the plots and collecting 

the imagery. Many of the plots (SG_1, SG_2, grass_1A and grass_1C) in 2019 consisted 

primarily of grass fuels and is the reason why 84% of fuels were interpreted as grass fuel types. 

3.2 Attribute Fuel Polygons from Field Measurements 

The field data from 2018 Brattain Unit are summarized by plot and fuel type in Table 2. The n/a 

values represent that the respective fuel class was not present within the plot.  Of the 1071 field 

fuel samples taken in 2018, 306 samples fell within the Brattain unit. Of these, 197 samples were 

from plots B, C, F and H, higher quality plots that are the focus of this thesis. Of the 197 samples 

18 were from the shrub fuel type, 60 from the cheatgrass, 39 from the bunch grass, and 80 were 

from the litter type. Additionally, some plots had none to a few samples per fuel type. For 

example, Brattain C had 0 shrub, 1 litter, 0 bunch grass and 1 cheatgrass samples within its 

boundaries (Table. 2). Given the inconsistent number of field samples among plots and fuel type 

polygons, it was necessary to aggregate all field data from Brattain into the four fuel type 

categories, and thus the fuel attributes for each fuel type polygon in any particular plot are the 

same as in other plots. An analysis of similarities and differences in fuel attributes between fuel 

types (Box and Whisker plus ANOVA) is shown in boxplots 1-6. It is worth pointing out that 

every fuel type polygon contains quantities of the other fuels. For example, the shrub type also 

has grass and litter in it, while the grass type contains some shrub and litter. One might expect 

that a grass type polygon should have more grass in it than other fuel type polygons given its 

status as grass, and this is often but not always the case. Boxplots 1-3 suggest that all fuel types 

have similar grass loads, but grass cover and height are greater in grass-dominant polygons. 

Additionally, cheatgrass is shorter and has higher cover than bunch grass and this is a common 
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characteristic of cheatgrass variety of grasses compared with bunch grasses whereas bunch 

grasses only cover a smaller area while cheatgrasses blanket the entire area. With respect to the 

litter fuel type (Boxplot 4-5), litter depth and cover are higher than in any other fuel type 

polygon. The shrub fuel type (Boxplot 6) is confounding because there is no difference in shrub 

cover across all fuel types, despite shrub type polygons clearly having more shrub cover based 

on field inspection.  This discrepancy is analyzed and evaluated further in section 3.4 below. 

 

 

 

 

 

 

 

 

 

 

 

 Table 3. 2018 Fuel samples summary. 
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Boxplot 2. 2018 grass load by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 1. 2018 grass cover by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 4. 2018 gras height by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 3. 2018 litter depth by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 
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In 2019, the overhead images 

(Figure. 17) helped the field 

sampling of fuels by ensuring 

that fuel type polygons had a 

sufficient number of samples. 

This allowed fuel attributes of 

each 100 x 100 m plot to be 

compared with other plots and 

either combined or kept 
Figure 16. Overhead image to aid sampling 

Boxplot 5. 2018 litter cover by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 6. 2018 shrub cover by fuel type 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 
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separate plot due to their differences. There was a more consistent number of samples within 

each fuel type when using the overhead image sampling assisted method (Table. 3). Thus, the n/a 

in Table 3 represents fuel classes that were not present within a plot rather than a lack of field 

samples.   

 

 

 

 

 

 

 

Plot Fuel Class N 
Percent 

Cover 
SD 

 
Median Min Max Range Skewness Kurtosis SE 

Forest_1C Shrub 21 36.67 35.27  13 0 88 88 0.29 -1.69 7.7 

Forest_1C 
Bunch 
Grass 22 44.82 26.93 

 
38 0 88 88 0.05 -1.23 5.74 

Forest_1C Litter 51 74.76 22.56  88 13 88 75 -1.52 1.09 3.16 

Grass_1A Shrub 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

Grass_1A 
Bunch 
Grass 38 84.71 10.35 

 
88 38 88 50 -3.12 9.45 1.68 

Grass_1A Litter 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

Grass_1C Shrub 0 0 0  0 0 0 0 0 0 0 

Grass_1C 
Bunch 
Grass 50 70.5 20.98 

 
75.5 13 75 62 -1 0.2 2.97 

Grass_1C Litter 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

1_SG Shrub 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

1_SG Grass 45 81.89 12.1  88 38 88 50 -1.72 2.08 1.8 

1_SG Litter 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

2_SG Shrub 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

2_SG Grass 39 84.15 9.14  88 63 88 25 -1.85 1.44 1.46 

2_SG Litter 0 n/a n/a  n/a n/a n/a n/a n/a n/a n/a 

Table 4. 2019 fuel sample summary 
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In 2019, there were 510 fuel samples taken, 100 in forest_1C, 38 in grass_1A, 50 in grass_1C, 38 

in 2_SG, 45 in 1_SG, 74 in forest_1B, and 39 in BICO_9E_south, 89 in BICO_9E_middle and 

43 in BICO_9E_north. Out of the 510 samples in the 2019 unit, 216 were from the non-BICO 

plots and these are the plots used in this analysis (e.g., 1C_forest, grass_1A, 1C_grass, 1_SG and 

2_SG (Table. 3). Most of the latter plots were in pure grass fuel types (e.g., 1_SG, 2_SG, 1A, 

1C_grass). Plot 1C_grass was distinct as an upland native bunchgrass community while the other 

grass dominated plots were characterized mainly by rhizomatous marsh/agricultural grass. The 

only plots that had any fuel type other than grass were 1C_forest (grass, shrub, litter) and 

1C_grass (grass and shrub). Due to no field fuel samples being taken in a tiny sliver of shrub fuel 

type in 1C_grass, this sliver was attributed with shrub data collected in the adjacent plot 

1C_forest.  Boxplots 7-13 show field fuel distributions and differences (Box and Whisker plus 

ANOVA), for each of the 100 x 100 m plots. 1_SG and 2_SG which are separated by a mow-line 

in the field and appear identical, are no different in any attributes and thus, their field 

measurements were combined to produce STANDFIRE attributes. The rest of the plots were kept 

separate because of observed differences in one attribute or another.  For example, the grasses in 

1C_forest and 1C_grass are mainly bunch grass.1C_forest also has a mix of forest litter fuels 

plus several shrub type polygons. Grass height is the same in both plots, but load, bulk density, 

and cover are significantly higher in 1C_grass. Similarly, Plot 1A which is also exclusively 

agricultural grass and resembles 1_SG and 2_SG in appearance, has a significantly higher fuel 

load and taller fuel bed. In the end, apart from 1_SG and 2_SG grass load was consistently 
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different from plot to plot (Boxplot. 7). Shrub percent cover was similar across the plots within 

the unit except for 1C_forest (Boxplot. 8) which is the only plot that had much shrub cover. One 

hour, ten hour, and hundred-hour fuel loadings (Boxplot. 9-11) had a negligible difference across 

plots, while litter depth was varied (Boxplot. 12). Other than 1C_forest there was little litter fuel 

class within the 2019 units as much of them were grass. Although there were a few fuel 

characteristics that were similar among the 2019 plots, there were not enough similarities to 

aggregate them into one unit like what was done in 2018, plus the modified sampling technique 

of 2019 allowed the area to be sampled on a per plot basis without the need for aggregation as 

occurred in 2018.   

As described previously, the overhead images taken to help aid sampling increased the number 

of samples taken within all fuels present in the 2019 plots. Because these images showed textural 

differences in grasses in 1_SG, 2_SG and grass_1A, each had its own fuel classes. For the sake 

of ease, these two different grass fuel classes were called flat grass and stream grass based on 

their appearance and the proximity of the latter class to subtle topographic drainages. Further 

assessment of the grasses and fuel samples from each showed that they were in fact the same 

grass class and just visually different but with no differences in grass attributes such as cover 

(Boxplot. 13), grass load (Boxplot. 14) or grass height (Boxplot. 15). Due to these findings, all 

the grass field data were combined in 1_SG and 2SG and the flat and stream grass in 1A was 

also aggregated within that plot. These plots then, are characterized by a maximally homogenous 

fuel bed. Otherwise, the fuel type polygons are attributed with data only from the photo-

delineated fuel type polygons of each individual plot. 
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Boxplot 8. 2019 grass load vs. plots 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 7. 2019 shrub cover vs. plot 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 
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Boxplot 12. 2019 One-hour fuel vs. plot 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 11. 2019 Ten-hour fuel vs. plot 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

Boxplot 10. 2019-hundred-hour fuel vs. plots 

Differing letters above boxes denote statistically 

significant differences (p<0.01). 

Boxplot 9. 2019 litter depth vs. plots 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 
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Boxplot 13. 2019 grass cover vs. fuel type 

 

Boxplot 15. 2019 grass load vs. fuel type 

 

Boxplot 16. 2019 grass height vs. fuel type 

Boxplot 14. 2019 grass height vs fuel type 
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3.3 Quantify and Compare Shrub Heights and Widths  

After identifying shrubs within a 

designated 2m search radius of field 

measured shrubs in the point clouds as 

well as identifying the nearest shrub to 

the ten randomly generated modeled 

shrub points (Figure. 21), the 

dimensions of each shrub were 

measured manually within the CHM 

The data revealed that shrub height was 

under-estimated (Boxplot. 17) in the 

CHM shrubs compared to the field 

measured shrubs in both the search radii (shrubs that might correspond with field measured 

shrubs) and at random points (unbiased sample of shrubs). CHM shrub height was about 0.5 

times shorter than field measured height. Shrub widths were the exact opposite, where field 

shrubs were less-wide (Boxplot. 16) than shrubs measured in the CHM. Modeled shrub width 

was about 1.5 times wider than the field. 

Figure 17. Ten random points for shrub 

measurements 
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3.4 Assess Shrub Cover Derived from UAS Point Clouds  

Shrub cover was initially derived from estimates obtained from downward looking photos of fuel 

plots taken in the field for the Brattain H 100 x 100 m plot. Brattain H was the focus of this 

investigation because it contained a diversity of fuel types including large expanses of 

shrublands, and its end-to-end data quality was high. This method produced an overall shrub 

cover for Brattain H of 11.2% across all fuel types. The dot/grid method across the same 

landscape produced a shrub cover estimate of 12.5%, and the CHM-derived estimate from the 

UAS imagery gave a shrub cover of 6.3%.  Within fuel polygons that were shrub-dominant 

(shrub type polygons), the ocular estimate from field photos was 2% (Figure 19), dot-grid was 

57% (Table 4), and CHM-derived estimate was 18% (Table 5).  These large discrepancies are 

likely the result of bias in the field sampling for the ocular estimate, and insensitivity to short-

statured shrubs in the CHM-derived approach. The old-fashioned dot-grid on a high-resolution 

Boxplot 18. Modeled vs. field measured 

shrub widths 

Boxplot 17. Modeled vs. field measured 

shrub heights 
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orthoimage produced the best match to field-observed shrub cover, likely due to its unbiased 

sampling combined with the power of photointerpretation to identify shrubs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fishnet Shrub Percent Cover 

Plot Fuel Class Present Total % Cover Shrub 

Brat B Shrub 1 1 100.00 

Brat B Cheatgrass 3 35 8.57 

Brat B Bunch Grass N/A N/A N/A 

Brat B Litter 15 176 8.52 

Brat C Shrub 33 81 40.74 

Brat C Cheatgrass 6 22 27.27 

Brat C Bunch Grass N/A N/A N/A 

Brat C Litter 9 122 7.38 

Brat F Shrub 3 6 50.00 

Brat F Cheatgrass 2 96 2.08 

Brat F Bunch Grass 5 100 5.00 

Brat F Litter 0 23 0.00 

Brat H Shrub 29 77 37.66 

Brat H Cheatgrass 3 103 2.91 

Brat H Bunch Grass N/A N/A N/A 

Brat H Litter 1 39 2.56 

 Total Unit Shrub Cover 110 881 12.49 

 Avg. Cover Shrub Polygons    57.10 

Table 5. Fishnet derived shrub cover 
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CHM Shrub Percent Cover 

Plot Fuel Class Polygon Area Shrub Area % Cover Shrubs 

Brat B Shrub 106.20 24.11 22.70 

Brat B Cheatgrass 6715.14 267.06 3.98 

Brat B Bunch Grass N/A N/A N/A 

Brat B Litter 28043.41 967.09 3.45 

Brat C Shrub 14482.85 1152.45 7.96 

Brat C Litter 23500.31 844.38 3.59 

Brat C Cheatgrass 3862.06 246.12 6.37 

Brat C Bunch Grass N/A N/A N/A 

Brat F Shrub 1802.20 627.16 34.80 

Brat F Cheatgrass 25129.88 1452.16 5.78 

Brat F Bunch Grass 26242.15 3549.06 13.52 

Brat F Litter 6159.62 733.39 11.91 

Brat H Shrub 17402.64 1138.54 6.54 

Brat H Cheatgrass 24173.36 638.79 2.64 

Brat H Bunch Grass N/A N/A N/A 

Brat H Litter 8720.59 179.18 2.05 

 Total Shrub Cover 186340.41 11819.49 6.34 

 Average Shrub Cover Shrub Polygons   18.00 

Table 6. CHM derived shrub cover. 
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4. Discussion 
 

 

4.1 Objective 1. Derive Fuel-type Polygons using 

Photointerpretation 

Deriving fuel polygons using photo interpretation provided a simple, reliable, and well 

documented method for deriving fuel classification polygons on orthomosaic imagery from a 

UAS. It is easily replicated not only with UAS imagery but can also be used with satellite 

imagery or even NAIP if temporal scale is not an issue. Using this method provides land 

managers an easy way to classify fuels of their units and oftentimes it is these land managers 

who know their land and what fuels classification an area may represent. A shortcoming of this 

approach is potentially the need to provide realistic and specific fuel properties for fuels of each 

type of polygon. They could be estimated from field measurements like what was done in this 

thesis, or they could be estimated from other measurement and modeling systems such as fire 

behavior fuel models or the Fuel Characteristics Classification System (FCCS) that summarize 

fuel attributes as a function of fuel or forest type. Either way, there is a potentially time-

consuming step to attribute polygons with realistic fuels data. The polygon approach is well 

suited to the STANDFIRE-to-FIRE-MODEL pathway because STANDFIRE incorporates the 

logic to distribute fuels within polygons based on estimates of cover, height, and patch size, 
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among other metrics. Using automated techniques may also provide another avenue for reliable 

fuels classifications such as a supervised classification of principal components as shown in 

figure 26 (C. Moran, 2020, unpublished) for Brattain Plot H, which closely matches the image 

interpretation technique mentioned earlier. Other techniques such as convolutional neural 

networks and Random Forests could also be explored to train an automated classification 

algorithm on high resolution UAS imagery (Duarte, Andriolo et al. 2020). Using spectral 

differences in addition to height data could also prove to be a fruitful avenue of investigation 

regarding automatic image 

classification as was 

mentioned in section 3.3 

where multispectral images 

were used for confirming 

what was a shrub based on 

reflectivity in the NIR. 

4.2 Objective 2. 

Attribute Fuel 

Polygons from 

Field Measurements  

Attributing the fuel polygons, although 

simple in practice, proved challenging with the number of samples taken in the plots, variable 

location control, and lack of systematic, unbiased sampling in all the fuel types. In 2019, 

methods were improved with the use of the overhead aerial photos being used to guide the 

sampling strategy. The application of a high-accuracy differential GPS to locate field plots also 

Figure 18. Segmentation fuel classification based 

on principle component analysis 

(C. Moran, 2020, unpublished)  
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improved the quality of results.  Despite shortcomings, this approach provided a simple 

framework on how to attribute imagery for use in fire modeling, and with a more robust 

sampling method, other plots could easily be sampled and attributed in better fashion. A more 

systematic sampling method would have greatly improved the attribute data, particularly in 2018, 

but as shown in earlier methods, there are ways to improve or gather sampling data after the 

imagery has been processed using conventional dot grids and perhaps directly from the CHM 

with a bit more research. In 2017, the intent was to use a pixel-based classification using orange 

CDs to locate areas sampled but due to inaccurate locations and poor-resolving power in the 

imagery, this approach was later switched to the current approach of using polygon-based units. 

The primary benefit of a pixel-based approach is the potential ability to link height and spectral 

data from the point cloud directly to specific fuel attributes such as bunch grass, coarse wood, or 

shrub. Another approach is to use object-based identification as was explored in section 3.3 

above for shrub dimensions.  This approach could be useful for identifying objects such as 

shrubs but would still not account for other fuels such as litter or grasses that are not object-

based fuels. In the end, the simplicity of the polygon approach prevailed, and although it does 

not account for all the spatial variability, it does allow for the variability to be expressed 

correctly within polygons.  

4.3 Objective 3. Quantify and Compare Shrub Heights and 

Widths  

The point clouds derived from imagery obtained at a height of 100m AGL (3cm Ground Sample 

Distance) underestimate the height of small, close-to-the-ground objects such as shrubs and over-

estimate their widths. One of the main areas of concern with respect to height is how to define 

ground so that an accurate canopy height model can be derived.  Photo-derived point clouds only 
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produce points where matter is visible, often missing low points in shadows and between objects. 

The method of assuming that minimum heights within a neighborhood are ground is logical, but 

there was not a good way to verify the quality of the bare earth model in this study. The 

overestimation of shrub widths is in part attributable to the edge problem where pixels with 

specific dimensions encompass only a part of the shrub and artificially extend its edge outward.  

However, pixel-size was 3cm, so there is probably something else going on too.  Distinguishing 

ground at the edge of objects such as trees (and shrubs) is difficult because the ground tends to 

be noisy where the algorithms can’t determine whether a point is on the object or in the 

background. This effect may also be contributing to the artificial widening of shrubs in the 

CHM. In the end, shrub, and shrub-like objects (rocks) are reliably identifiable in the CHM but 

they produce fuel beds that are shorter and have higher cover than reality.  Another issue with 

CHM derived shrub cover is that it also includes other objects such as coarse woody debris 

(CWD) which will artificially inflate shrub cover by incorporating it into the estimates. It seems 

possible that this issue could be overcome by incorporating spectral data in a classification in 

addition to height data. 

4.4 Objective 4. Assess Shrub Cover Derived from UAS 

Point Clouds 

Automated extraction of shrub cover from the CHM was compromised by many of the issues 

discussed in Section 3, above. After experimenting with many resolutions, height thresholds, and 

filters, the best results severely underestimated actual shrub cover for two primary reasons. First, 

the edges of shrubs either were too conservative or filled in all the space between shrubs at 

different settings without anything in between. Second, small diameter shrubs were consistently 

missed by the method.  The idea still seems promising with a better CHM, and a more 
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conventional classification or machine learning approach that utilizes the height data along with 

spectral information from the optical band passes could be useful.  Although not entirely 

conclusive, the results from the dot-grid suggest that the information content for shrub cover is 

contained in the ortho-imagery, and it is interesting that such an old-fashioned approach 

produced the best result. The results could potentially be improved when using multispectral data 

during a different season. In this case, data were collected at the very end of the growing season 

so much of the spectral information that the shrubs could have exhibited due to photosynthesis 

had ceased. However, it does require interpretation by a person and these types of methods have 

mostly fallen out of favor in modern science where automation is preferred.  Another area of 

improvement to help identify smaller shrubs could be to use a higher resolution camera but with 

higher resolutions come larger datasets which greatly increases the already long processing times 

and when using modeling to run almost real-time fire behavior this would become an issue. 

Another issue with using the CHM derived shrub cover is based on how the SfM software 

reconstructs the shrubs which suffer greatly from any defined geometry whereas objects with 

very defined geometry are often reconstructed much better utilizing the algorithms based in the 

software. SfM suffers greatly when objects lack any defined geometry due to lack of initial tie 

points when reconstructing the objects from photos. Others approaches for imaging surface fuels 

have been shown to improve the quality of the reconstruction but rely on flying under the canopy 

manually which is very difficult and time consuming and defeats the purpose of an autonomous 

data collection. 
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4.5 Data Collection and Data Quality 

Quality data matching the objectives of users is the most important factor to consider when 

collecting UAS data. One of the main issues with UAS data in forests is shadows and the effect 

of shadows in the reconstruction of 3D space. There are several papers and workflows published 

on methods to alleviate the issues associated with shadows (e.g., Rahman, McDermid et al. 

2019) but these often require techniques to “fill-in” data in the areas where there is no 

information, or they are unreliable and time consuming to collect considering the workflows 

needed to blend imagery from different illumination conditions. Fortunately, this project was not 

strongly affected by shadows because some of the best collection days for forest plots happened 

when there was a large wildfire nearby that blocked the sun and created ideal diffuse lighting 

conditions with zero shadow effects (2018). Then in 2019, most of the study plots were grass 

rather than forest, in these areas, the shadows from shrubs and grasses appeared to increase 

texture and contrast and perhaps add information content to the images. 

One of the biggest issues in processing was deriving a valid ground model from the 3D point 

cloud. Determining height variability from 3D point clouds was problematic due to the noise that 

remained from the 3D point cloud when information was lost along the edge of tree canopies 

where the algorithms have difficulty separating ground from crown. For grass fuel classes, it was 

impossible with the current camera configuration to get an accurate assessment of grass height 

due to the resolution of the pixel sampled being larger than the individual grass component. The 

same can be true for shrub fuel types that are leafless because the branches are often smaller 

resolution than the sensor is capable of sensing. Increasing resolution may solve this problem but 

it also increases the amount of processing time.  
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Due to the amount of time spent processing data, the computing power needed to process the 

data and steep learning curve as well as the constant “beta” testing of UAS hardware and 

software it may be more economical for land managers to use satellite-based imagery for fuel 

surveys of this type, particularly for those based on polygons and gradients. Satellite-based 

image resolution is increasing, as is its availability, coverage, and temporal frequency. 

Additionally, anecdotal evidence suggests that for every hour of data collection, there will be 

about ten hours spent processing the data, and there is not a single UAS system that can collect 

every data set needed.  Rather, it often is necessary build the UAS around the data to be 

collected. 

Finally, a more robust and systematic field sampling method would have greatly increased the 

efficacy of the fuel samples and in hindsight more samples should have been collected at each 

plot so they could have been attributed on per plot basis instead of on a unit basis. The overhead 

pictures in 2019 greatly increased the sampling accuracy by ensuring that data was collected 

across the full range of variability seen within the images.  

5. Conclusions 

The primary intent of this project was to produce useful inputs to the STANDFIRE fuels 

translator to prepare fuels data for use in physics-based fire models. Fuel type polygons were 

effectively and efficiently delineated using traditional photo-interpretation. Each fuel polygon 

was attributed from field-collected data based on its dominant fuel type represented within that 

polygon. Differences between fuel type polygons were assessed statistically to document the 

distinctiveness of each fuel type, to overcome field sample-size limitations, and to provide logic 
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for merging fuel types that were similar in 2018. Plots in 2019 were also assessed statistically to 

document the distinctiveness of each fuel type and to assess the difference among plots. 

Although these methods were done on a smaller scale this workflow is easily repeatable for large 

areas such as for a burn unit instead of on a plot scale. 

The secondary intent of this project was to examine 3D point clouds and orthomosaics to better 

understand their information content for more detailed characterizations of fuels. Shrub height, 

width, and cover were extracted from the point clouds and compared to field measurements. The 

findings showed that fuel type classes were easily delineated using photo-interpretation, and 

effective attribution of fuel polygons was dependent on how and where field data were collected 

and differed by year. Lack of sufficient sample sizes in some fuel type polygons required 

aggregation of field data from all plots within the Brattain burn unit in 2018. These shortcomings 

were overcome in 2019 by acquiring rapid-look imagery prior to field sampling that enabled 

more balanced samples across the range of variability observed within the rapid-look imagery.  

Within the point-clouds, shrub height was underestimated while width was over-estimated. 

Shrub cover was also under-predicted from the point cloud and was better enumerated using a 

conventional dot-grid approach on the orthomosaic. Although shrub height was over estimated 

and shrub width was underestimated the 3D point clouds did provide some height and width 

information just not the same measurements as taken in the field. If these over and under 

estimations remain constant across other datasets it could prove that by just adjusting the height 

and width by a constant value could improve the value of height and width information within 

the 3D point clouds. Shrub cover could also possibly be improved with higher resolution 

imagery and a smaller GSD, this can be achieved by either increasing the camera resolution or 

decreasing the height the imagery was collected at. Improvements in data collection methods and 
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technology from 2017-2019 have resulted in a stable workflow that produces consistent fuels 

data formatted for STANDFIRE. The polygon-based approach is suitable for use in fire model 

validation due to its ability to rationally capture and integrate sparse field data because 

STANDFIRE is designed to work easily with polygons, and because there is insufficient 

evidence that model validation is at a point where it will benefit from use of more complex pixel 

or object-based inputs. Automated approaches to polygon delineation via region-growing, 

machine learning, and segmentation are a logical next step with the caveat that the inputs derived 

in this study should be tested in the modeling environment first. After validating that these fuel 

polygons are accurate and what fire behavior models need, AI based on-the-fly classification 

could possibly be another logical step in classifying surface fuels. Given the steep learning curve 

to collect proper actionable UAS data, expensive hardware, and software it may be easier and 

more economical to use other high-resolution imagery available if temporal scale is not an issue. 

These other sources could be NAIP or satellite imagery.  
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7. Appendices 

7.1 Appendix A  

Below is an output of a text file from STANDFIRE. 

# Default additional properties file  

HT= Height, PD= Particle density, BD= Bulk Density, PS=Patch Size 

understoreyFuelOption=1 

{(1,1);(191,1);(191,127);(1,127)} 

 {1;2} {false;false} 

{(0,0);(1,0);(1,128);(0,128)}  

 {3;4} {false;false} 

{(1,127);(191,127);(191,128);(1,128)}

 {5;6} {false;false} 

{(191,0);(192,0);(192,128);(191,128)}

 {7;8} {false;false} 

{(1,0);(191,0);(191,1);(1,1)}  

 {9;10} {false;false} 

{(0,0);(192,0);(192,128);(0,128)} 

 {11} {true}

              Height   Base HT  Cover   PS 

1 Shrub 0.35 0.0 0.5 5.0

 1  

Leave_Live 0.72BD 500PD

 5000SAV 100Moisture 

Leave_Dead 0.08 500 5000 40 

2 Herb 0.35 0.0 0.8 1.0

 1 

Leave_Live 0.0BD 500PD 5000SAV 

 100Moisture 

Leave_Dead 0.8 500 5000 5 

3 Shrub 0.35 0.0 0.5 5.0

 1 

Leave_Live 0.72 500 5000 100 

Leave_Dead 0.08 500 5000 40 

4 Herb 0.35 0.0 0.8 1.0

 1 

Leave_Live 0.0 500 5000 100 

Leave_Dead 0.8 500 5000 5 

5 Shrub 0.35 0.0 0.5 5.0

 1 

Leave_Live 0.72 500 5000 100 

Leave_Dead 0.08 500 5000 40 

6 Herb 0.35 0.0 0.8 1.0

 1 

Leave_Live 0.0 500 5000 100 

Leave_Dead 0.8 500 5000 5 

7 Shrub 0.35 0.0 0.5 5.0

 1 

Leave_Live 0.72 500 5000 100 

Leave_Dead 0.08 500 5000 40 

8 Herb 0.35 0.0 0.8 1.0

 1 

Leave_Live 0.0 500 5000 100 

Leave_Dead 0.8 500 5000 5 

9 Shrub 0.35 0.0 0.5 5.0

 1 

Leave_Live 0.72 500 5000 100 

Leave_Dead 0.08 500 5000 40 

10 Herb 0.35 0.0 0.8 1.0

 1 

Leave_Live 0.0 500 5000 100 

Leave_Dead 0.8 500 5000 5 

11 Litter 0.1 0.0 1.0 -1.0

 0 

Litter 0.5 500 2000 10 

DefaultLeave_Live 0.9 150 

DefaultTwig1_Live 0.9 100 

DefaultTwig2_Live 0.9 80 

DefaultTwig3_Live 0.9 70 

DefaultLeave_Dead 0.1 10 

DefaultTwig1_Dead 0.1 10 

DefaultTwig2_Dead 0.1 10 

DefaultTwig3_Dead 0.1 10 

PSME Leave_Live 0.9 150 
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PSME Twig1_Live 0.9 100 

PSME Twig2_Live 0.9 80 

PSME Twig3_Live 0.9 70 

PSME Leave_Dead 0.1 10 

PSME Twig1_Dead 0.1 10 

PSME Twig2_Dead 0.1 10 

PSME Twig3_Dead 0.1 10

 

7.2 Appendix B 

ArcGIS Shapefile Key 

Fuel Type – from dominant fuel in imagery for each polygon 

sh_ht – average height of shrub from field plots (m) 

sh_base – base height of shrub, assumed 0 (m) 

sh_cover – average shrub cover from field plots (percent) 

sh_patch – average shrub diameter from field plot subset (used for all droneplots) (m) 

sh_intcode – code from STANDFIRE (check with russ on meaning) (integer) 

sh_live_bd – constant – used STANDFIRE example – no load data from field (kg/m3) 

sh_live_pd – particle density constant – used STANDFIRE example (kg/m3) 

sh_livesav – live surface area to volume constant – used STANDFIRE example (m^-1) 

sh_liveh2o –live moisture constant – used STANDFIRE example (adjust from field) (percent) 

sh_dead_bd – dead bulk density – used STANDFIRE example, no data on live vs dead (kg/m3) 

sh_dead_pd – dead particle density constant used – used STANDFIRE example (kg/m3) 

sh_deadsav – dead surface area to volume constant – used STANDFIRE example (m^-1) 

sh_deadh2o – dead moisture constant – used STANDFIRE example (adjust from field) (percent) 

hb_ht – average height of herb from field plots (m) 

hb _base – base height of herb, assumed 0 (m) 

hb _cover – average herb cover from field plots (percent) 

hb _patch – average herb patch size constant (1) – used STANDFIRE example (m) 

hb _intcode – code from STANDFIRE (check with russ on meaning) (integer) 

hb_live_bd – average live bulk density set to 0 (all herb assumed dead) (kg/m3) 

hb_live_pd – live particle density constant – used STANDFIRE example (kg/m3) 

hb_livesav – live surface area to volume constant – used STANDFIRE example (m^-1) 

hb_liveh2o –live moisture constant – used STANDFIRE example (adjust from field) (percent) 
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hb_dead_bd – dead bulk density – used STANDFIRE example, no data on live vs dead (kg/m3) 

hb_dead_pd – average dead particle density, calculated from height and load from field 

plots (kg/m3) 

hb_deadsav – dead surface area to volume constant – used STANDFIRE example (m^-1) 

hb_deadh2o – dead moisture constant – used STANDFIRE example (adjust from field) (percent) 

lit_ht – average thickness (depth) of litter layer from field plots (m) 

lit_base – 0 (m) 

lit_cov – average litter cover from field plots (percent) 

lit_patch - litter patch size constant (-1) – used STANDFIRE flag (-1) example (m) 

lit_intcode – code from STANDFIRE (check with russ on meaning) (integer) 

lit_bd – litter bulk density constant – used STANDFIRE example, no field load data for litter 

(kg/m3) 

lit_pd – litter particle density constant – used STANDFIRE example 

lit_sav – litter surface area to volume constant – used STANDFIRE example (m^-1) 

lit_h2o – litter moisture constant – used STANDFIRE example (adjust from field) (percent) 
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7.3 Appendix C  
Charts and plots

Plot 
Year Burn Unit Sensor  

Brattain_B 2018 Brattain X3/MSRE  

Brattain_C 2018 Brattain X3/MSRE  

Brattain_F 2018 Brattain X3/MSRE  

Brattain_H 2018 Brattain X3/MSRE  

1A_Grass 2019 BICO West X3/MSRE  

1C_Grass 2019 BICO West X3/MSRE  

1C_Forest 2019 BICO West X3/MSRE  

Southern_Grass_1 2019 BICO West X3/MSRE  

Southern_Grass_2 2019 BICO West X3/MSRE  

X3 – DJI Zemuse X3 12MP 

MSRE – Micasense Rededge Multispectral camera.  

Plots used in this thesis. 
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Modeled Vs. Field Measured Shrubs Height. Modeled Vs. Field Measured Shrubs width. 
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Plot Fuel Class N 
Percent 

Cover 
SD 

Medi

an 
Min 

Ma

x 

Rang

e 

Skewnes

s 
Kurtosis SE 

Brat H Cheat Grass 25 49 27.08 38 13 88 75 0.24 -1.32 5.42 

Brat H Bunch Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat H Litter 15 53 33.81 63 13 88 75 -0.12 -1.88 8.73 

Brat H Shrub 18 3.06 9.26 0 0 35 35 2.59 5.51 2.18 

Brat G Cheat Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat G Bunch Grass 9 15.78 8.33 13 13 38 25 2.07 2.63 2.78 

Brat G Litter 26 53.38 33.22 50.5 13 88 75 -0.09 -1.56 6.52 

Brat G Shrub 10 0.5 1.58 0 0 5 5 2.28 3.57 0.5 

Brat F  Cheat Grass 29 56.1 26.64 63 13 88 75 -0.49 -1.06 4.95 

Brat F Bunch Grass 39 39.9 29.36 38 0 88 88 0.36 -1.36 4.7 

Brat F Litter 6 2.17 5.31 0 0 13 13 1.36 -0.08 2.17 

Brat F Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat E Cheat Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat E Bunch Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat E Litter 9 51.89 33.33 63 13 88 75 -0.11 -1.92 
11.1

1 

Brat E Shrub 6 0.83 2.04 0 0 5 5 1.36 -0.08 0.83 

Brat D Cheat Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat D Bunch Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat D Litter 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat D Shrub 1 0 n/a n/a n/a n/a n/a n/a n/a n/a 

Brat C  Cheat Grass 1 13 n/a n/a n/a n/a n/a n/a n/a n/a 

Brat C Bunch Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat C Litter 1 38 n/a n/a n/a n/a n/a n/a n/a n/a 

Brat C Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat B Cheat Grass 5 44.25 37.5 38 13 88 75 0.14 -2.28 
18.7

5 

Brat B Bunch Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat B Litter 59 42.24 32.55 38 13 88 75 0.43 -1.6 4.24 

Brat B Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat A Cheat Grass 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Brat A Bunch Grass 2 25.5 17.68 25.5 13 38 25 0 -2.75 25 

Brat A Litter 37 37.32 28.56 38 13 88 75 0.7 -1.05 4.69 

Brat A Shrub 8 3.75 45.26 2.5 0 90 90 0.42 -2.02 16 

 

 

 

 

2018 Brattain fuel sample statistics. 
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Plot Fuel Class N 
Percent 

Cover 
SD Median Min Max Range Skewness Kurtosis SE 

Forest_1C Shrub 21 36.67 35.27 13 0 88 88 0.29 -1.69 7.7 

Forest_1C 
Bunch 
Grass 22 44.82 26.93 38 0 88 88 0.05 -1.23 5.74 

Forest_1C Litter 51 74.76 22.56 88 13 88 75 -1.52 1.09 3.16 

Grass_1A Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Grass_1A 
Bunch 
Grass 38 84.71 10.35 88 38 88 50 -3.12 9.45 1.68 

Grass_1A Litter 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Grass_1C Shrub 0 0 0 0 0 0 0 0 0 0 

Grass_1C 
Bunch 
Grass 50 70.5 20.98 75.5 13 75 62 -1 0.2 2.97 

Grass_1C Litter 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1_SG Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1_SG Grass 45 81.89 12.1 88 38 88 50 -1.72 2.08 1.8 

1_SG Litter 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

2_SG Shrub 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

2_SG Grass 39 84.15 9.14 88 63 88 25 -1.85 1.44 1.46 

2_SG Litter 0 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

 

 

2019 BICO fuel sample statistics. 
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2018 grass height by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots grass height. 

2018 grass cover by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots grass cover. 
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2018 grass cover by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots grass cover. 

2018 shrub cover by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots shrub cover. 
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2018 litter cover by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots litter cover. 

2018 litter depth by fuel type. Differing letters 

above boxes denote statistically significant 

differences (p<0.01). 

2018 all plots litter depth. 
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2019 grass cover by fuel type. 2019 grass load by fuel type. 

2019 grass height by fuel type. 
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2019 grass cover by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots grass cover. 

2019 grass load by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots grass load. 
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2019 grass height by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots grass height. 

2019 shrub cover by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots shrub cover. 
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2019 grass bulk density by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots grass bulk 

density. 

2019 one-hour fuel by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots one hour fuel 

load. 
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Figure 36. 2019 ten-hour fuel by plot. 

Differing letters above boxes denote 

statistically significant differences 

(p<0.01). 

2019 all plots ten-hour fuel 

load. 

2019 Litter depth by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots litter depth. 
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2019 Litter cover by plot. Differing 

letters above boxes denote statistically 

significant differences (p<0.01). 

2019 all plots litter cover. 
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