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ABSTRACT 

Carter, Sean C., February 2022      Systems Ecology 

 

Facilitating Aquatic Invasive Species Management using Satellite Remote Sensing and 
Machine Learning Algorithms 

 

Chairperson: John Kimball 

The urgent decision-making needs of invasive species managers can be better met by the 

integration of biodiversity big data with large-domain models and environmental data products in 

the form of new workflows and tools that facilitate data utilization across platforms. Timely risk 

assessments allow for the spatial prioritization of monitoring that could streamline invasive 

species management paradigms and invasive species’ ability to prevent irreversible damage, such 

that decision makers can focus surveillance and intervention efforts where they are likely to be 

most effective under budgetary and resource constraints. I present a workflow that generates 

rapid spatial risk assessments on aquatic invasive species by combining occurrence data, 

spatially explicit environmental data, and an ensemble approach to species distribution modeling 

using five machine learning algorithms. For proof of concept and validation, I tested this 

workflow using extensive spatial and temporal occurrence data from Rainbow Trout (RBT; 

Oncorhynchus mykiss) invasion in the upper Flathead River system in northwestern Montana, 

USA. Due to this workflow’s high performance against cross-validated datasets (87% accuracy) 

and congruence with known drivers of RBT invasion, I developed a tool that generates agile risk 

assessments based on the above workflow and suggest that it can be generalized to broader 

spatial and taxonomic scales in order to provide data-driven management information for early 

detection of potential invaders. I then use this tool as technical input for a management 

framework that provides guidance for users to incorporate and synthesize the component features 

of the workflow and toolkit to derive actionable insight in an efficient manner.
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Chapter 1 

 

1 INTRODUCTION 
 
 
 
 

1.1 BACKGROUND 
 
 Non-native, Invasive Species (IS) have drastic impacts on biodiversity and ecosystem 

services (Bellard et al., 2016, Walsh et al., 2016). The pace of biological invasions show no 

evidence of slowing down (Seebens et al., 2017). This situation results in an urgent need to both 

understand and mitigate IS establishment. Although the underlying mechanism is contextually 

dependent, the conditions necessary for successful establishment of a given non-native species 

are a combination of high propagule pressure, adequate resource availability, and favorable 

ecological circumstances (Enders et al., 2020; Pyšek and Richardson, 2010). Despite the lack of 

comprehensive understanding of the mechanism for biological invasions, averting damage from 

IS is highly time sensitive. Thus, preventative measures must prioritize mitigation over 

furthering mechanistic understandings of IS establishment.  

 

 Efficient and proactive strategies to avoid effects of IS establishment involve some 

combination of eradication and anticipatory prevention (Zanden et al., 2010). For example, there 

is evidence that early and aggressive measures can prevent major economic damages, but only 

when search efforts are targeted in areas of high risk (Kaiser and Burnett, 2010). In addition, 

preventative measures have historically been determined to be the most cost-effective approach 

to IS management (Leung et al., 2002), although this understanding has shifted in recent years 
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(Zanden et al., 2010). Regardless of the measures taken to mitigate severe ecological and 

economic repercussions, spatial prioritization of management efforts are greatly furthered with 

proactive approaches and predictive modeling (Ricciardi et al., 2017). 

 

 Various management frameworks have emerged to provide integrated and coordinated 

actions to mitigate the potentially drastic effects of IS establishment. These frameworks range 

from sustainability-oriented and objective-based policies that emphasize the equilibrium among 

various target “pillars” (Larson et al., 2011) to adaptive management paradigms that couple 

management actions with feedback from key performance indices (Foxcroft and Mcgeoch 2011). 

Although the efficacy of different management frameworks has not been evaluated, the choice of 

an optimal strategy requires a proactive assessment of potential costs of action and inaction that 

incorporates both heuristic preconceptions and technical inputs (Hyytiäinen et al., 2013, Hastings 

et al., 2005). Although each of these frameworks differs in their implementation, most emphasize 

proactive and rapid approaches. 

 

 Perhaps the most systematic and extensive IS management paradigm in the United States 

is Early Detection and Rapid Response (EDRR), a guiding doctrine designed to integrate and 

synthesize the conceptual and practical merits of various management frameworks such as those 

described above (Reaser et al., 2020). In calling for widespread and coordinated monitoring 

across agencies, it consists of a series of iterative, step-wise management actions that integrate 

informational and technical inputs with complex directives in a context-specific manner. Each 

action has different technological requirements and management goals. For example, the goal of 

the response measures action is to coordinate an informed and adept management reaction to the 
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detection of an IS that requires a sophisticated understanding of the potential risk and optimal 

strategy for minimizing the impact of the invader. Furthermore, the goal of target analysis is to 

prioritize species surveillance efforts in order to maximize the effectiveness of surveys through 

the use of ecological modeling and forecasting tools. Each stage of EDRR is coupled with 

informational and technical inputs from various sources. Providing and improving effective, yet 

efficient expediency in such input information remains an open challenge. 

 

 For instance, an integral difficulty of target analysis is the proactive modeling of potential 

establishment areas in a reliable and rapid manner. Computational approaches must represent, 

among other considerations, the habitat requirements of potential invaders and project these to 

geographic space while maintaining the flexibility to incorporate new training data as it is 

released (Morisette et al., 2020). Spatially prioritizing management areas in this way provides a 

favorable strategy for conducting monitoring efforts by identifying high-risk areas for the 

success of initial colonizers (Russell et al., 2017). Still, there remains a challenge in creating 

responsive and accurate representations of areas of that maximize the effectiveness and 

efficiency of invasive species detection (Berec et al., 2015; Wang et al., 2014). Major 

improvements could be made in the component spatial occurrence information used in such 

analytical techniques (Darling et al., 2007), the expansion of decision support tools that enable 

spatial prioritization of sampling efforts, and the development of rapid workflows that can 

integrate species occurrence information with geospatial data products representing key 

environmental controls on species distribution (Russel et al., 2017, van Rees et al., 2021).  
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 The improvement of proactive modeling efforts necessitates a tradeoff between highly 

credible (and thus time-intensive) efforts and automated methods (Young et al., 2020). Striking 

the balance between time intensiveness and credibility remains a challenge and hinges on 

assembling either higher quality, narrow-use input information or readily available databases and 

data products. In particular, the availability of environmental data forces users to consider the 

limitation of various products against the value obtained by representing key aspects of 

organismal niche requirements. For example, the timing and duration of peak flow events is 

known to drive Rainbow Trout distributions in the northern Flathead River system (Muhfeld et 

al., 2017; Muhfeld et al., 2014), but there are few data products that are both temporally explicit 

and (spatially) high resolution, so modeling efforts might use static, proximal cues such as a 

surface water extent index (e.g., Pekel et al., 2016), consolidated to ecologically relevant 

polygons, and low-resolution spatially interpolated precipitation data (e.g., gridMET - 

Abatzoglou 2013; NLDAS -Mitchell 2004) to represent this essential driver of Rainbow Trout 

occupancy. Indeed, selection of appropriate environmental data is an integral part of improving 

proactive modeling for target analysis and requires knowledge on the constraints of various data 

types as well as information on the species’ distributional requirements. 

 

Data products appropriate for EDRR differ in terms of their spatiotemporal domains and 

resolutions. Possible data sources include in situ sensor networks, spatially interpolated climatic 

products, and remotely sensed imagery. Each source of environmental information has potential 

advantages and drawbacks. For example, because stream sensors are placed in specific site 

locations, they offer continuous, high spatiotemporal resolution information, but only in those 

specific locations. Similarly, due to being derived from networks of weather stations, 
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meteorological data products provide high temporal resolution (i.e. daily or hourly), but 

compromise their spatial resolution because their spatial continuity is a result of interpolation. In 

addition, this interpolation results in high uncertainty in areas with sparse geographic coverage. 

Lastly, remote sensing data, due to being directly observed with regular pass-over intervals, 

offers a balance between these two extremes. Although affected by observational constrains 

including solar illumination and atmospheric contaminants, remote sensing imagery has various 

advantages. For example, because these products are derived from direct observations of the 

Earth’s surface, the burden of geographic uncertainty is mitigated. In addition, these data offer 

spatially contiguous observations, and open access products are available at relatively low cost to 

the user.     

 

Remote sensing data include static and temporally dynamic products that are either 

highly processed or relatively unrefined. Static products such as digital elevation models and 

high level structural products (e.g. percent tree cover – Hansen et al., 2003; surface water 

occurrence – Pekel et al., 2016) provide ecological information that is distinctly interpretable, but 

suffers from not being temporally explicit. Temporally dynamic products can be low level (e.g. 

raw LANDSAT imagery) or high level (e.g. MODIS Land Surface Temperature- Wan et al., 

2015), and their usability depends on the specific EDRR application.  

 

The constraints of different data types must be balanced with the potential insight that can 

be derived from each product. For example, if one is interested in prediction alone, it would be 

logical to use lower-level data products that may offer higher resolution than high-level products 

that are a result of secondary modeling efforts. On the other hand, if one is interested in deriving 
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ecological insight, higher-level products may be more suited to this purpose due their more direct 

link to biophysical conditions experienced by organisms.  

 

 Capturing, representing, modeling, and projecting the environmental processes that drive 

species distributions at spatiotemporal scales relevant to IS managers is a major challenge. For 

the most part, integrating open access remote sensing data with biodiversity big data provides a 

favorable opportunity for addressing the timely needs of EDRR that compromise precision for 

automation (Randin et al., 2020; Reaser et al., 2020). However, it remains unclear the degree to 

which the rapid demands of EDRR can be met by linking species occurrence information with 

remote sensing and other geospatial imagery. Even though remote sensing data are expected to 

shape the “next generation” of species distribution models (He et al., 2015) and hold 

innumerable supposed advantages, they are unable to capture all relevant dimensions of the 

organismal niche space, particularly for aquatic species. Thus, there is a clear need for 

workflows that leverage the advantages of various types of environmental data layers in order to 

facilitate IS management within the EDRR framework. 

 

1.2 RESEARCH QUESTIONS 
 
To test whether it is possible to improve modeling efforts for the technical input required by 

EDRR, this thesis introduces an empirical machine learning framework to facilitate monitoring 

and forecasting of the risk of colonization, secondary spread, or establishment for aquatic IS 

using a habitat suitability framework. In doing so, it proposes a workflow that integrates species 

occurrence information with various readily available data products, evaluates the efficacy of 
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this workflow, and examines how that workflow might fit into the EDRR management paradigm. 

To guide this research, I ask the following research questions: 

 

 1. How can species occurrence information be integrated with remotely sensed and other 

geospatial imagery to inform invasive species management decisions? 

 2. How can workflows linking existing databases with modeling technologies facilitate 

more efficient, effective spatial prioritization of IS monitoring and intervention while 

augmenting existing management frameworks? 

 

To answer question 1, I develop, implement, and validate a data pipeline that links point-level 

species occurrence information with readily available environmental data that has balanced the 

advantages of different types of geospatial environmental data with capturing the relevant habitat 

requirements of the species of interest. These rasterized data products were chosen to leverage 

the advantages inherent to their method of observation (i.e., directly observed -vs- spatially 

interpolated; static -vs- dynamic) and represent vital aspects of freshwater aquatic ecosystems. 

The pipeline generates rapid spatial risk assessments on aquatic IS using an ensemble approach 

to species distribution modeling with five machine learning algorithms. In order to determine the 

degree to which my approach can inform management decisions, this workflow is tested against 

a well-studied invasion system to determine whether it can result in insights and predictions that 

are well-aligned with expert knowledge. 

 

 To answer question 2, the workflow developed in question 1 is used to develop a 

graphical user interface tool that generates agile risk assessments in a user-friendly manner. In 
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addition, it is published in a software package that allows users to better investigate the 

underlying drivers of occurrence and model performance against various covariates. These tools 

are then used to consider a hypothetical management exercise that feeds into the early detection 

and rapid response target analysis action.  

 

1.3 THESIS OUTLINE 
 

 This thesis is broken into four chapters. In Chapter 2, a workflow for linking species 

occurrence information is developed, implemented, and tested against a well-known invasion 

system in the northern Montana region of the United States. This chapter provides the basis to 

answer Research Question 1 and has been published in the journal Frontiers in Big Data (Carter 

et al. 2021). Chapter 3 of this thesis addresses Research Question 2 and develops a geospatial 

toolbox that implements the Chapter 2 workflow in a user-friendly manner. In addition, it 

proposes a general management framework that uses these tools as technical input for target 

analysis, a vital action in the EDRR paradigm.1 The exercise provided in Chapter 3 will help 

managers use the workflow to facilitate the spatial prioritization of management actions within a 

given area. In addition, it will enable the use of my workflow to confront and support existing 

knowledge of species’ niche requirements in order to direct the monitoring of shifting 

environmental conditions as temporally explicit data products are continually released. Lastly, 

this thesis concludes with chapter four that directly answers both research questions, summarizes 

major findings, limitations, and broader impacts from this work and recommends next steps and 

future research. 

 
1 I use the term technical input to describe the practical information used to evaluate and inform potential 
management actions. This information can come from modeling output or biological knowledge. 
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Chapter 2 

2 TESTING A GENERALIZABLE MACHINE LEARNING 

WORKFLOW FOR AQUATIC INVASIVE SPECIES ON 

RAINBOW TROUT (ONCORHYNCHUS MYKISS) IN 

NORTHWEST MONTANA  
 
 
ABSTRACT 
 
Biological invasions are accelerating worldwide, causing major ecological and economic impacts 

in aquatic ecosystems. The urgent decision-making needs of invasive species managers can be 

better met by the integration of biodiversity big data with large-domain models and data-driven 

products. Remotely sensed data products can be combined with existing invasive species 

occurrence data via machine learning models to provide the proactive spatial risk analysis 

necessary for implementing coordinated and agile management paradigms across large scales. 

We present a workflow that generates rapid spatial risk assessments on aquatic invasive species 

using occurrence data, spatially explicit environmental data, and an ensemble approach to 

species distribution modeling using five machine learning algorithms.  For proof of concept and 

validation, we tested this workflow using extensive spatial and temporal hybridization and 

occurrence data from a well-studied, ongoing, and climate-driven species invasion in the upper 

Flathead River system in northwestern Montana, USA. Rainbow Trout (RBT; Oncorhynchus 

mykiss), an introduced species in the Flathead River Basin, compete and readily hybridize with 

native West-slope Cutthroat Trout (WCT; O. clarkia lewisii), and the spread of RBT individuals 

and their alleles has been tracked for decades. We used remotely sensed and other geospatial data 

as key environmental predictors for projecting resultant habitat suitability to geographic space. 

The ensemble modeling technique yielded high accuracy predictions relative to 30-fold cross-
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validated datasets (87% 30-fold cross-validated accuracy score). Both top predictors and model 

performance relative to these predictors matched current understanding of the drivers of RBT 

invasion and habitat suitability, indicating that temperature is a major factor influencing the 

spread of invasive RBT and hybridization with native WCT. The congruence between more 

time-consuming modeling approaches and our rapid machine-learning approach suggest that this 

workflow could be applied more broadly to provide data-driven management information for 

early detection of potential invaders. 

 

2.1 INTRODUCTION 
 
 Non-native, Invasive Species (IS) are causing severe biological and economic disruption 

worldwide (Sepulveda et al., 2012; Shackleton et. al 2019). IS are the second most prevalent 

driver of species extinctions (Bellard et al. 2015), with estimated financial damages amounting to 

over a hundred billion dollars annually in certain individual countries (Pimentel 2002; Bradshaw 

et al. 2016). Continued anthropogenic landscape change and climate change may favor invaders 

by shifting competitive relationships with native species (Hellmann et al. 2008). Aquatic IS 

represent a particular threat to freshwater ecosystems due to their high potential for 

establishment and spread, and severe ecosystem impacts (Havel et al., 2015). The current and 

predominant paradigm for IS management is Early Detection and Rapid Response (EDRR), but 

the intensive resources and surveillance involved in this framework’s implementation may be 

prohibitive without new and innovative uses of technology (Martinez et al., 2020). EDRR 

depends on frequent, widespread, and ongoing monitoring to enable timely response, but such 

monitoring is extremely labor intensive and likely beyond the capabilities of many management 

actors. Timely risk assessments allow for the spatial prioritization of monitoring that could 
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streamline EDRR and its ability to prevent irreversible damage (Reaser et al., 2020a; Martinez et 

al., 2020), such that decision makers can focus surveillance and intervention efforts where they 

are likely to be most effective under budgetary and resource constraints. Such prioritizations are 

often based on heuristic preconceptions rather than data-driven approaches, and as such are 

neither repeatable nor transparent for system stakeholders. By contrast, scientifically-informed, 

formal target analysis may lack adequate temporal agility and accurate risk assessments. Many 

conventional modeling approaches to knowledge creation operate on long time scales (months to 

years) which may not be helpful to managers. Indeed, current modeling methodologies fail to 

provide managers with sufficient decision-making information in near real-time (Bayliss et al., 

2013). 

 

Given the finite supply of resources and quick timelines for IS management, there is a 

need for improved expediency and accuracy in identifying areas of highest vulnerability to IS 

establishment.  

 

 Species Distribution Models (SDMs) have been widely applied as spatial decision 

support tools for IS managers (Srivastava et al., 2019) and can be broadly categorized into 

mechanistic and correlative model classes (Elith et al., 2015). Process-based, or mechanistic, 

models require considerable developmental and computational effort (Kearney and Porter 2009) 

and can thus be out of sync with the needs for timely analyses for EDRR (Merow et al., 2011). 

These models rely on exhaustive, experimentally derived functional characteristics (Shabani et 

al., 2016) or hierarchal frameworks that are built to elucidate or test hypotheses about ecological 
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relationships rather than simply predict patterns in species occurrence (see Muhlfeld et al., 2014 

and 2017; Berthon 2015; Farley et al., 2018). 

 

On the other hand, correlative SDMs require less mechanistic understanding and instead 

rely on apparent relationships between species and environmental characteristics. Such models 

are comparatively quick to train and develop, but are often built using low-resolution spatially 

interpolated climatic data, such as WorldClim (Elith et al. 2010; Fourcade et al. 2014; Hijmans et 

al. 2005). Since the WorldClim data (Fick and Hijmans 2017) are not temporally explicit, and 

static covariates, by definition, cannot adequately provide a temporally continuous evaluation of 

risk, the value of these data for EDRR is hampered. Although a major drawback of these 

correlative models is that long-term extrapolation is more difficult, this disadvantage is 

outweighed by the acute need for rapid risk assessments to inform IS monitoring and 

biosurveillance. Indeed, facilitating IS management within the EDRR framework would be 

significantly improved by new workflows that can identify readily available drivers of invasion 

and establish relative invasion risk within the operational time scales of managers.  

 

 Many of the challenges outlined above can be met by data-driven and iterative workflows 

made possible by machine learning (ML) and the big data revolution (Runting et al, 2020). For 

instance, one challenge is the need for scalable and fast modeling workflows to guide managers 

and decision-makers (Reaser et al., 2020a). ML algorithms are an increasingly viable method for 

many modeling problems involving big data, particularly when the primary objective is to 

achieve high levels of predictive accuracy rather than develop a mechanistic understanding of the 

study system. ML algorithms, particularly non-parametric iterative algorithms (e.g. random 
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forests), are free from many strict assumptions such as independent observations and the need to 

avoid collinearity (Thessen 2016; Olden et al., 2008). In addition, ML models are well suited to 

the iterative modeling framework due to their automated approach, fast development process 

(Tarca et al., 2007), and highly scalable nature (Farley et al., 2018). This enables them to take 

advantage of other big data attributes, including its widespread proliferation, global coverage, 

and rapid updating (Whitehead et al., 2020). As new data become available, ML frameworks can 

be updated to reflect new understanding.  

 

However, ML models are not a panacea: because they are immensely complex and, with 

the exception of intricate Bayesian ML models, do not incorporate the underlying uncertainty of 

the data (Cressie et al., 2009), making inferences about underlying processes less straightforward 

and dependent on the type of model being used (Farley et al., 2018; Parr et al., 2020). 

Nevertheless, the rapid, iterative, and predictive characteristics of ML approaches are an 

excellent match for the analytical needs of EDRR implementation, which prioritize speed and 

adaptiveness over mechanistic understanding.  

 

 Another challenge of EDRR is the availability and distribution of environmental data 

typically used to assess relative habitat suitability (Randin et al., 2020). Conventional spatially 

interpolated climate data often require enormous developmental effort (Daly et al., 2005; 

Hijmans et al., 2005), which, when temporally explicit, can hinder their utility in developing 

models that meet the adaptive (e.g. annually repeating) demands of EDRR. Moreover, because 

they are based on interpolations from global weather stations, such products yield high model 

uncertainty in areas with sparse geographic coverage (Bedia et al., 2013).  
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In contrast, Remote Sensing (RS) products available from global polar-orbiting 

environmental satellites have regular revisit intervals ranging from 1-16 days and are derived 

from spatially explicit observations, so the burden of geographic uncertainty is mitigated. Indeed, 

because of the complimentary nature and spatial and temporal continuity of many operational 

satellite records, RS observational data are expected to shape the next generation of SDMs (He et 

al., 2015), and are the preferred or perhaps the only option for regional, continental, and global 

scale prediction of IS spread (Vaz et al., 2019). These products are sensitive to many 

environmental properties, such as surface temperature, that constrain and explain species’ 

occurrences (Randin et al., 2020). These and other satellite-based measurements have rarely been 

applied to SDMs relative to spatially interpolated climate data products (Dittrich et al., 2019), 

and their use for assessing species’ distributions has been increasing in recent years (Lausch et 

al., 2016; Randin et al., 2020).  

 

 Although the spatial and temporal continuity of RS data improves the transferability and 

precision of capturing ecological niche requirements in many terrestrial environments (Randin et 

al., 2020), stream environments represent a particular challenge in integrating technological 

advances with IS management. Because the 2-dimensional footprint of RS products is often 

larger than the footprint of streams, such products can only provide proxies for physiologically 

relevant conditions within the aquatic environment. Thus, models trained to link species 

occurrences with environmental remotely sensed information may fail to capture the actual 

processes experienced by aquatic organisms, and care must be taken to avoid spurious 

conclusions. Coherent workflows that link remote sensing data and machine learning 
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functionalities are especially needed for freshwater systems to mobilize myriad spatial products 

in data-driven aquatic IS risk analysis. 

 

 Here, we demonstrate one such workflow linking these technologies to produce rapid and 

adaptable species distribution modeling for spatial risk assessments of aquatic IS. To provide 

proof of concept, we implemented this workflow on a well-documented case study of a climate-

assisted species invasion. This worked case study allowed us to assess not only the predictive 

accuracy of this approach but also whether it gives meaningful insights into the environmental 

drivers of habitat suitability for a focal IS. Our study objectives were to: 1) Identify the most 

effective remotely sensed proxies for characterizing habitat suitability (a proxy for invasion risk) 

for our focal IS (RBT; Oncorhynchus mykiss); 2) Construct habitat suitability maps for spatial 

risk assessments using a combination of RS data products and ML methods; and 3) Test the 

feasibility of ML models for iterative reassessment of IS risk screening efforts within the EDRR 

framework.  

 

2.2 METHODS 
 

2.2.1 STUDY SYSTEM 
 

The study area encompassed the tributaries of upper Flathead River system extending over 

portions of northwestern Montana USA, and southern British Columbia and Alberta CA (Figure 

1). These mountain streams flow through forested landscapes and host several native fish species 

including Westslope Cutthroat Trout (WCT; Oncorhynchus clarki lewisi). Stream temperature 

and the timing and duration of peak streamflow events are key ecological drivers in these 
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streams (Hauer et al., 2007), while the timing and intensity of snowmelt is a key driver 

influencing spring runoff in this system (Pederson et al. 2011; Wu et al. 2012). 

 

 

 Rainbow trout (O. mykiss) were artificially propagated and introduced into watersheds 

across the Continental US for recreational purposes between 1870 and 1971 (Pister 2001; Bennet 

et al. 2010). Since their introduction into the Flathead River in 1880 (Hitt et al., 2003), RBT have 

been hybridizing with native WCT (Allendorf et al. 2004; Hitt et al. 2003; Boyer et al. 2008; 

Muhlfeld et al. 2017). The impacts of RBT on WCT populations, particularly due to the spread 

of RBT individuals and their alleles, has been tracked for decades (Kovach et al., 2016). The 

spread of alleles appears to be driven more by legacy introductions, and thus propagule pressure, 

Figure 1. Overview of study area, including a sample data product (LST) aggregated by hydrologic units 

(HUCs). 
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than environmental conditions (Muhlfeld et al., 2017; Boyer et al., 2008). Relative to WCT, RBT 

prefer warmer temperatures, lower spring flows, earlier spring runoff, and tolerate greater 

environmental disturbance (Fausch et al. 2001; Muhlfeld et al., 2009a,b; Bear et al. 2007). 

During spawning, WCT generally migrate greater distances and spawn during peak flows, 

whereas RBT spawn earlier (i.e., during periods of lower flows) and lower in the river system 

(Muhlfeld et al., 2009b). High flows can affect both RBT and WCT, although reduced spring 

flows and warmer water temperatures have been associated with increased spread of RBT 

hybridization in the Flathead and across the northern Rockies (Muhlfeld et al., 2014; Muhlfeld et 

al. 2017), which are strongly influenced by spring precipitation, winter snowpack, and the timing 

of spring snowmelt (Pederson et al., 2011). 

 

 

 

2.2.2 DATA ACQUISITION – GENETIC AND GENOMIC DATA 
 

Trout have been periodically captured, sampled, and genotyped to assess the degree of 

RBT genetic admixture (the proportion of RBT alleles at the population level) in the study 

system since 2000. We used the associated long-term genetic monitoring data between years 

2002 and 2019 as an index of RBT invasion. United States Geological Survey and Montana Fish 

Wildlife and Parks personnel selectively sampled streams where there was concern that WCT 

were hybridizing with non-native RBT, collecting fin clips from electrofished individuals and 

genotyping these individuals using various markers (microsatellites, SNPs, RAD-Capture 

sequencing). The genetic data were used to calculate RBT admixture in sampled populations.  
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2.2.3 DATA ACQUISITION – PRESENCE ABSENCE DATA 
 

We generated a presence-absence dataset by classifying all occurrence records of less 

than 10% admixture to be “absent”. Although 10% still represents the presence of RBT alleles, 

conditions at these locations are less favorable for the establishment of this invasive taxon. 

Considering the difficulty of acquiring actual absence data (Jimenez-Valverde et al. 2008) and 

that many SDM's rely on ‘pseudo absences’ — background points used to characterize the range 

of environmental conditions in a given study area (Lobo et al. 2010) — we assume that these 

genotypic absences contain insightful information regarding the distribution of RBT, particularly 

in comparison to pseudo absences. We supplemented these absences with a RBT dataset 

acquired from the Non-indigenous Aquatic Species (NAS; USGS 2020) database and clipped 

these records to the bounding box of the RBT genetics dataset. We included only data records 

acquired after year 2002 to match the availability of RS data. We also corrected for the influence 

of spatial autocorrelation by systematically subsampling data records so that no two points fell 

within 500 meters of each other in a given year (Fourcade et al., 2014). The resultant occurrence 

dataset included 323 RBT presence locations and 167 absence point locations distributed across 

the study region over a 14 year record; the occurrence data were then joined to Hydrologic Unit 

Catchment polygons (HUC; Seaber et al., 1987). HUC polygons represent the landscape 

catchment area that drains to a portion of the stream network, whose hierarchical structure allows 

for a multi-scale delineation of drainage systems. 

 

 

2.2.4 DATA ACQUISITION – ENVIRONMENTAL DATA LAYERS 
 

To test whether proximal remote sensing cues contain sufficient environmental 

information to capture RBT niche requirements, we selected a number of readily available 
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satellite RS data products based on a priori assumptions of ecologically relevant drivers of 

hybridization and distribution (see below; Table 1). To avoid scale mismatch issues among 

predictors, we modeled environmental variables aggregated over HUC-12 polygons at the sub-

watershed scale. Aggregating each covariate to HUC polygons mitigates the potential footprint 

mismatch between the RS observations and stream network within a catchment and is a common 

technique used in building freshwater SDMs in order to handle issues of scale relating to 

predictor variables (Friedrichs-Manthey et al., 2020). In addition, this method alleviates the 

inconsistent sampling inherent in the data and implicitly accommodates the mobile nature of 

RBT. Here, we give a brief description of the data products selected for model training and their 

connection to RBT niche requirements. The data products were preprocessed before being 

spatially aggregated to HUC-12 polygons as follows. 

 

 

 Table 1. Library of ecologically relevant data products. aPreprocessed further from published products (see 

methods) 
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 Land Surface “skin” Temperature (LST) observations were obtained from thermal-

infrared measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

mounted on the NASA EOS Aqua satellite (Z. Wan et al., 2015; Li et al., 2013). The MODIS 

LST product is mapped to a 1-km resolution spatial grid similar to the sensor footprint. LST 

retrievals are acquired on a daily basis and composited over coarser eight-day intervals to reduce 

cloud and atmosphere contamination effects. The MODIS Aqua LST retrievals are acquired at 

1330 local time from the sun-synchronous polar orbiting satellite and reflect mid-day conditions 

close to the maximum diurnal temperature range.  Because trout species are limited by high 

temperature (Wenger 2011), we constructed a maximum composite image by capturing the 

maximum LST recorded in each grid cell for each year in our study period. 

 

 The National Land Data Assimilation System (NLDAS) uses a land surface model to 

integrate ground and space based observing systems, providing spatially explicit and temporally 

continuous estimates for various environmental variables including precipitation, potential 

evaporation, and specific humidity (Mitchell 2004) at 0.125 arc° and hourly resolutions. We 

aggregated the NLDAS precipitation product with a per-pixel sum composite at three-month 

seasonal intervals (i.e. Spring Precipitation, Summer Precipitation, etc).  

 

 The Dynamic Surface Water Extent (DSWE) product provides high temporal (8-day) 

repeat, moderate spatial resolution (30m) data on surface water inundation across broad spatial 

scales (Jones 2019). It uses an experimentally derived spectral mixture model and 5 rule-based 

decision criteria to classify Landsat surface reflectance pixels as “not water”, “open water”, or 

“partial surface water” in a spatially and temporally explicit manner. For each week in our study 
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period (i.e. 2002 - 2018), we gathered DSWE observations and generated a weekly per-pixel 

estimate of surface water inundation in our study area. We produced a surface water variation 

metric by finding the per-pixel temporal standard deviation within each year. The temporal 

standard deviation (as opposed to the IQR or variance) of the water variation was chosen as a 

proximal cue for stream flashiness due to its sensitivity to outliers, since RBT spawning is 

known to be sensitive to variations in stream flow rates. 

 

 In contrast to the DSWE product, the Landsat global surface water extent product 

identifies the presence of water over time using a mix of expert systems, visual analytics, and 

evidential reasoning (Pekel et al., 2016). Using this algorithm, Pekel et al. (2016) developed 

several thematic mapping layers including the Surface Water Occurrence metric, which 

quantifies the overall location and persistence of surface water cover at 30m spatial resolution 

from 1984 to present. The surface water persistence metrics are derived from the Landsat 

satellite series record, which provides consistent 30m spatial resolution and potential 16-day 

repeat coverage over the globe. However, actual spatial and temporal coverage of surface water 

dynamics is degraded by cloud and atmosphere contamination, seasonal reductions in solar 

illumination at higher latitudes, and overlying vegetation cover. Slow moving main-stem rivers 

generally have larger surface areas than lower order streams, so when spatially aggregated to 

HUC-level polygons, this product encapsulates information about flow rates and overall aquatic 

habitat connectivity. 

 

 Gross Primary Productivity (GPP) quantifies the plant photosynthetic uptake of 

atmospheric CO2 and represents the amount of carbon and energy flow into the ecosystem. In 
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this study, a 30m resolution daily GPP record for the continental USA was used to characterize 

energy (and nutrients) available to ultimately support aquatic food webs. The GPP record is 

calculated using a modified form of the MOD17 light use efficiency algorithm driven by satellite 

observed fraction of photosynthetic active radiation (FPAR) derived from Landsat 30m spectral 

reflectances, gridded (4-km resolution) daily surface meteorology observations (i.e. gridMET; 

Abatzoglou 2013), and the national land cover database (Robinson et al. 2018). GPP has been 

used to predict freshwater fish species richness across the globe (Pelayo-Villamil et al., 2015), 

and previous research supports the link between primary production and fish productivity 

(Downing et al., 1990). Thus, this proximal product may contain information pertaining to the 

invertebrate community or vegetation structure. We calculated the accumulated annual GPP 

during each year of interest as a temporal sum composite, hypothesizing that the Landsat based 

GPP record captures bioenergetic constraints at scales relevant to RBT. 

 

 The MODIS Enhanced Vegetation Index (EVI; Didan 2015) is a modified version of the 

Normalized Difference Vegetation Index (NDVI), has improved sensitivity to green vegetation 

cover in high biomass regions, and minimizes atmospheric contamination effects. The MODIS 

(MOD13Q1) EVI product is derived globally at 250m, 16-day spatiotemporal resolutions. 

Because plants both absorb radiation in the visible spectrum and emit radiation in the near-

infrared spectrum, the EVI is sensitive to the photosynthetic activity of terrestrial systems. 

Massicotte et al., (2015) used EVI as a proxy for aquatic vegetation biomass to predict larval fish 

abundance. Here, we used EVI as a proxy for the potential productivity of stream and riparian 

systems, where higher productivity systems would be more susceptible to invasion (i.e. hot 
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spots). Thus, we calculated a temporal EVI mean composite for each year to capture average 

conditions relevant to RBT. 

 

 The NASA MODIS Vegetation Continuous Fields (VCF) product provides a spatially 

continuous land cover estimate of general vegetation traits such as percent tree cover, percent 

non-tree cover, and percent barren land at 250m resolution and annual temporal fidelity (Hansen 

et al., 2003). The MODIS (MOD44B) VCF product is derived using a decision tree classification 

trained on MODIS surface reflectance and LST; we used the VCF percent tree cover metric to 

define the vegetative structure of the system within each HUC. The vegetation structure of 

various riparian areas has been linked to macro-invertebrate species richness (Death and Collier 

2009; Sweeney 1993). We chose the VCF product to represent the overall disturbance and 

shadiness of a given HUC. Although GPP, EVI, and Percent Tree Cover quantify similar aspects 

of bioenergetic constraints, macro-invertebrate potential, and habitat structure, we expected to 

see differences in predictive power due to their differing resolutions, underlying algorithms, and 

retrieval accuracy.  

 

 In addition, topographic indices such as Topographic Diversity and Heat Insolation Load 

(Theobald et al., 2015) provide information about the topographic structure, microclimate 

variability, and resultant thermal dynamics of a given HUC. Topographic diversity is also 

congruent with the measurement of the heterogeneity of various landforms including valley 

bottom constraints, hills, and ridges as derived from a multi-scale neighborhood analysis. This 

metric indicates the structural diversity, and therefore the likelihood of connectivity of stream 

networks within watersheds. Heat Insolation Load reflects variations in latitude and incident 
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solar radiation to quantify the heat-loading capacity of different regions. Together with LST, heat 

insolation load provides a proximal cue to the overall stream temperature of a given HUC.  

 

 Covariates were obtained through data preprocessing performed within Google Earth 

Engine (GEE; Gorelick et al., 2017). We subjected each lower-level remote sensing variable (e.g. 

LST, GPP, EVI, Percent Tree Cover) to stringent quality filtering based on pre-published quality 

bands included in each product (see supplemental materials S1 for details).  We kept the quality 

control filters inherent in the higher-level development products (e.g. Surface Water Occurrence, 

Heat-insolation Load). We intersected the RBT survey locations to their encompassing HUC12 

catchments and calculated a weighted average of genetic admixture relative to the number of 

individuals in a dataset. For the RBT occurrence dataset, we simply aggregated occurrence 

points to the HUC level. We classified any HUC containing at least one presence location to be 

suitable. We then averaged each environmental covariate across all HUCs in our study area. This 

resulted in a tabular dataset with each column corresponding to the spatial average of an 

environmental covariate, or — depending on what our dependent variable was— a HUC-level 

weighted admixture percentage or HUC-level occurrence boolean. By taking HUC-level 

aggregates, we controlled for the effects of steep topography that concentrate environmental 

gradients at small spatial scales and the potential footprint mismatch between environmental data 

pixels and stream conditions. Although the same HUC may have been sampled in multiple years, 

we treated each HUC - year pair as an independent observation.  

 

 Data were exported from GEE, and due to the reliance of variable importance techniques 

on predictors being independent of one another, all covariates with a Pearson’s correlation 
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coefficient > 0.7 were dropped (Dormann et al. 2013). In addition, because covariates may 

contain similar explanatory information but may not be represented by a linear relationship, we 

tested for multicollinearity (Mansfield and Helms 1982) by fitting Random Forest models with 

each covariate as an independent variable, and we dropped each variable that was shown to have 

a feature dependence score > 0.7 in predicting another variable. This process was repeated until 

no two columns had a partial dependency exceeding 0.6. This process resulted in 12 covariates: 

land surface temperature, surface water occurrence, heat insolation load, percent tree cover, 

flashiness, winter precipitation, fall precipitation, topographic diversity, summer precipitation, 

spring precipitation, gross primary productivity, and enhanced vegetation index. An overview of 

model inputs, outputs, and overall workflow can be found in Figure 2. 

 
 

Figure 2. Overall workflow, model inputs, and model outputs. Yellow box (left) indicates model inputs. Green 

boxes indicate steps as referenced in the methods. Purple box (right) indicates each model output. RBT presence 

and absence observation locations are denoted by respective red and blue points on the associated study area 

maps. 
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2.2.5 ADMIXTURE MODEL TRAINING 
 
Using the above covariates, we trained an ensemble of Linear Regression (GLM), 

Gradient Boosted Regressor (GBM), Classification Tree Regressor (CTA), Artificial Neural 

Network Regressor (ANN), XGBoost Regressor (XGB), and Random Forest Regressor (RF) 

models using sklearn version 0.23.1 in Python 3.7.7, with 20% of data randomly withheld for 

testing. We used the ensemble method because it has been shown to be an improvement over 

single models by reducing model-based uncertainty (Marmion et al., 2009; Elith et al., 2010). 

For a brief description of each component model, see supplemental materials (S2). Because the 

distribution of RBT hybridization was severely skewed toward higher rates (i.e. right skewed), 

we visually confirmed that testing data had similar distributions to training data. To consolidate 

model estimates, we implemented an ensemble method consisting of each of the above models, 

weighting the overall prediction by the mean absolute error (Willmott and Matsuura 2005) and 

omitting the artificial neural network due to severe inaccuracy. 

 

2.2.6 PRESENCE ABSENCE MODEL TRAINING 
 

The same covariates were used for both the hybridization and occurrence models. We 

implemented an ensemble method consisting of the classification analogues for the above 

regression models, again using Scikit-learn version 0.23.2 (Pedregosa et al., 2011). We took a 

weighted average of each component model prediction by the area under the receiver operative 

characteristic curve statistic (i.e. AUC score; Bradley 1997), omitting the GLM and ANN due to 

the unrealistic predictions (see below; Elith et al., 2010). For example, if the random forest 

model were to have a higher accuracy score than the decision tree model, the overall ensemble 

model prediction would be more influenced by the random forest than the decision tree. We 
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evaluated the predictive accuracy of the resultant ensemble model by computing a 30-fold cross 

validation accuracy score, where the training data was partitioned into 30 random segments of 

equal size, 29 of which were used to train the model, while the remaining segment was used to 

calculate the accuracy score. We calculated this accuracy score by computing the fraction of 

correct predictions of each segment, averaging the scores over all 30 folds for an overall metric 

of ensemble model accuracy. We then generated choropleth range maps (i.e. thematic maps 

showing summary statistics over a set number of polygons) by applying the ensemble of models 

to predict suitable habitat for mean covariates across two vector datasets representing the “first 

decade” (years 2002-2010) and the “second decade” (2010-2018) of the study period, each 

spatially aggregated to HUC level. Although each ensemble model predicted different presence 

amounts for the testing dataset, both the GLM and ANN did not show any variation of predicted 

suitability among first decade and second decade HUCs, so were removed from further analysis. 

To examine the degree of extrapolation, we calculated the Multivariate Environmental Similarity 

Surface (Elith et al., 2010) for each vector dataset. To examine the model prediction certainty, 

we calculated the standard deviation of prediction probabilities for each remaining estimator.  

 

2.2.7 DISCERNING TOP PREDICTORS 
 

To identify top predictors of RBT distributions, we implemented an ensemble of different 

feature importance techniques with each of the aforementioned ML models trained to predict 

occurrence and their analogues trained to predict hybridization. Each model was subject to 

Recursive Feature Elimination (Chen et al. 2018), Permutation Importance (Altmann et al. 2010), 

and Backwards Elimination (Draper and Smith 1981). These feature importance methods are 

similar, but with some important distinctions. Recursive Feature Elimination iteratively drops 
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features which have the smallest impact on model prediction until a pre-defined number of 

features is leftover. Permutation Importance iteratively shuffles the values of a given predictor, 

predicts using all covariates including the artificially permuted feature, and measures the 

subsequent drop in classification accuracy. The predictor whose permutation yields the largest 

drop in classification accuracy is identified as the most important predictor. Backwards Selection 

drops a single predictor entirely, retraining a different model for each iteration and again 

measuring the drop in predictive performance. The top three predictors were selected for each 

remaining model and importance technique, and we tallied the number of times a given predictor 

was found in the top three. We also interrogated partial dependency plots for known mechanisms 

driving occurrence and hybridization. 

 

2.3 RESULTS 
 

The tree-based methods (i.e. Random Forest, Decision Tree, Gradient Boosted Trees, 

XGBoost) yielded higher predictive accuracy than the linear and deep learning models for the 

RBT application (Table 2). Although the occurrence ANN and logistic regression models 

predicted a mix of RBT presence and absence for an unseen test dataset, both models predicted 

homogenous vectors of presence or absence for the first and second decades. For instance, the 

logistic regression predicted that all HUCs in both decades were suitable, and conversely, the 

ANN predicted that all HUCs in both decades were unsuitable. Similarly, both the hybridization 

ANN and linear regression models predicted unrealistic hybridization levels of 100% for every 

HUC, whereas all the tree-based regressors predicted RBT hybridization levels between 0 and 

100%. 
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 In evaluating the hybridization predictor (i.e. the ensemble of regression models), Land 

Surface Temperature, Heat Insolation Load, and Gross Primary Productivity were the most 

predictive features explaining RBT hybridization trends. The ensemble model also produced a 

favorable Mean Absolute Error of 5.5%. 90% of the residuals were less than 15% hybridization, 

although some predicted hybridization values had errors greater than 15%. Although observed 

hybridization percentages ranged from 0 to 100 %, admixture predictions only ranged from 0 to 

60%. Choropleth maps trained on the hybridization dataset did not corresponded with known 

hybridization levels within the study area and showed unrealistic spatial patterning (i.e. 

checkerboarding rather than being spatially correlated) (Figure 3). 

 

Table 2. Predictive 

capability of each ensemble 

model. Bold indicates 

highest accuracy models. 

Asterisk indicates models 

that were removed due to 

unrealistic predictions.  
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 In evaluating the ensemble RBT occurrence model, we identified Land Surface 

Temperature, Surface Water Occurrence, and Heat Insolation Load as key predictive indices 

explaining RBT presence and absence (Figure 4). The model results also showed a favorable 30-

fold cross validation accuracy score of 0.87. Surprisingly, Gross Primary Productivity did not 

show up as a top predictor of RBT occurrence, even though it was identified as a key predictor of 

RBT hybridization. Choropleth maps showed spatial patterns that agreed with known RBT 

occurrence records within the study area and reveal a strong tendency to predict high RBT 

relative suitability in main-stem rivers (Figure 5). In particular, the ensemble model predicted 

high relative suitability in the North Fork of the Flathead River basin and in the upper Flathead 

Figure 3. Predicted RBT hybridization for the second decade (2010-2018) composite, with dimensionless 

hybridization levels ranging from low (0) to high (1); black lines delineate individual HUCs within the larger 

study basin. 
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River system for both the first and second decade. For a comparison of the component classifier 

predictions, see the supplemental materials (S3). The predicted RBT occurrences showed 

relatively small changes between the first and second decades. Although most predicted 

suitability differences were negligible, the ensemble model predicted a large degree of 

decreasing RBT suitability in the Salish and Lewis mountains, with increased suitability in the 

northern Mission mountains and East Glacier Park regions (Figure 6). The multivariate 

environmental similarity surface map shows that most HUCs fall within reasonable extrapolation 

distance from training locations (Figure 7). 

 

 
Figure 4. Top predictors of RBT occurrence as identified by the occurrence model. 
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Figure 5. (A) Predicted RBT relative suitability of first decade (2002-2010,) and (B) second decade (2010-2018) 

vector composites within the Flathead basin study region; black lines delineate individual HUCs within the 

larger basin. 

Figure 6, Normalized 

predicted relative RBT 

suitability change between the 

second and first decades of 

the study period (2002-2018) 

within the Flathead basin. 

The Salish Mountains and 

Lewis Range sub-regions 

decreased in suitability (blue-

green shades; blue arrow), 

while suitability marginally 

increased in other regions and 

increased more drastically in 

portions of the northern 

Mission mountains and East 

Glacier Park regions (red 

shades; red arrow). 
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 Partial Dependency Plots (PDP) for the RBT occurrence and hybridization models 

revealed differing model performances relative to the top predictors, although the PDPs for the 

RBT occurrence model are more reliable because this model revealed more realistic spatial 

patterns of habitat suitability (Figure 3 vs 5). For example, the occurrence PDP for flashiness 

predicted the highest suitability relative to (unitless) flashiness values of 3, whereas the 

hybridization PDP for flashiness predicted the highest hybridization levels at 7 (Figure 8). The 

PDPs for both Land Surface Temperature and Surface Water Occurrence showed similar 

performance between models, and both models showed increasing suitability at temperatures 

below 34°C. Although both ensemble models identified Heat Insolation Load as a top predictor, 

the shape of this PDP differed substantially for both models (Figure 9).  

Figure 7. Multivariate 

Environmental Similarity 

Surface in the Flathead 

basin for the second 

decade (2010-2018) vector 

composite, which was 

consistent with the first 

decade (2002-2010) 

composite. Greener shades 

in the similarity surface 

indicate that most HUCs 

fall within a reasonable 

extrapolation distance from 

RBT training locations. 
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2.4 DISCUSSION 
 

We present a streamlined workflow that can be used for identifying top predictors of species 

occurrence and evaluating areas of high risk for invasion and establishment of IS in freshwater 

ecosystems. This case study allowed us to identify strengths, pitfalls, and opportunities for 

refinement of this workflow. We attained high cross-validation accuracy and identified key 

environmental predictors. Model performance relative to the top predictors reinforced known 

assumptions about RBT distributional requirements in the case of the occurrence model. 

Figure 8. Partial dependency plots for surface water flashiness in both the RBT occurrence ensemble (A) and the 

hybridization ensemble (B) models. 

Figure 9. Partial dependency plots for Heat Insolation Load in both the RBT occurrence ensemble (A) and the 

hybridization ensemble (B) models. 
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We place the utility of this methodology squarely in the realm of prediction-first objectives, 

to be used in tandem with other management tools. Our methodology provides pivotal 

advancement towards integrating research insights between managers, stakeholders, and 

decision-makers, a crucial step towards proactive IS management (Reaser et al., 2020b). The 

effectiveness and efficiency of this data-driven approach not only permit managers to objectively 

prioritize “high-risk pathways” (Pyšek et al., 2020), but also enable frequent sharing of maps 

created from rapidly mobilized occurrence data (Groom et al., 2019). These advantages allow for 

weighing the costs and benefits of potential management actions at intervals and time scales 

relevant to managers. As species occurrence data and temporally dynamic environmental 

information are received, they can be readily mobilized into actionable products using 

methodologies similar to the current study.  

 

The lack of spatial continuity of RBT hybridization predictions suggests that our workflow 

was unable to accurately model this process in part due to a non-random field sampling effort. 

Understandably, sampling protocols prioritized streams where there was concern that RBT were 

hybridizing with native WCT, resulting in an overrepresentation of recent hybrids which may 

have skewed the distribution of hybridization training data or at least underrepresented 

hybridization values in the 40-70% range. It remains unclear whether the unreliable model 

performance was due to the weaknesses of the training information or the difficulty in 

representing this process from remotely sensed data products. Indeed, modeling hybridization 

may not be possible without incorporating a clear dispersal mechanism in the model. In fact, 

RBT hybridization appears to be driven more by propagule pressure than environmental 
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conditions (Muhlfeld et al., 2017). Thus, results of the hybridization model must be interpreted 

cautiously — unless stated explicitly, the remainder of this discussion addresses the RBT 

occurrence model.  

 

Correlative approaches to evaluating relative habitat suitability are well suited to the EDRR 

framework, although the tree-based models (both hybridization and occurrence) performed 

relatively well without additional tuning steps and could be better suited to EDRR. Reaser et al. 

(2020a) define EDRR as a “guiding principle for minimizing the effects of IS in an expedited, 

yet effective and cost-efficient manner”. Here, we demonstrate that readily-available data 

products and empirical machine learning models can facilitate these foundational principles and 

specifically address the target analysis portion of the EDRR paradigm. Due to their flexibility 

and swiftness without the need of tuning procedures, tree-based ML models are especially suited 

to this stage, which is characterized by intensive surveys and proactive biosurveillance to detect 

the presence of IS with limited resources (Ricciardi et al., 2017). This spatial prioritization tool is 

critical during the early stages of invasion (Carlson et al., 2019), and managers using our 

workflow could prioritize high suitability areas to maximize the effectiveness and cost-efficiency 

of field efforts. For example, our occurrence model predicts high RBT suitability in the North 

Fork of the Flathead River and therefore suggests that monitoring efforts could be focused in that 

region. In addition, identifying top environmental drivers of RBT occurrence allows for more 

robust assessments of shifting conditions as observational data products are updated and 

released.  
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The fact that LST was still identified as a top predictor in both the hybridization and 

occurrence models suggests that temperature is an important driver of RBT distributions in this 

region. In addition, our connectivity metric (Surface Water Occurrence) was identified as another 

top predictor in the case of the more robust RBT occurrence model. However, the steep 

topography and dense riparian vegetation of stream ecosystems create a challenge for 

interpretation. For example, the global surface water extent algorithm does not include water 

bodies of less than 30 x 30m, is known to underestimate water occurrence under emergent 

vegetation, and resolves the effects of terrain shadows via slopes derived from a 30m DEM 

(Pekel et al., 2016). Indeed, the diverse vegetation communities and structural heterogeneity of 

aquatic systems biases the detection capability of this product towards open areas and larger 

stream orders. Similarly, although the LST product has been linked to stream temperature at the 

basin or reach level, the connection is less clear in smaller streams, particularly in those with 

mixed inputs (McNyset et al., 2015). Aggregating at a HUC scale mitigates some adverse effects 

but does not preclude all issues of scale mismatch. Still, given the above caveats, a cautious 

interpretation of model performance against such predictors is insightful. 

 

Specifically, the sign and magnitude of PDPs (i.e. Partial Dependency Plots) relative to 

proximal predictors of known niche requirements of RBT can be interrogated for realism. For 

example, the occurrence model predicts increasing relative suitability with increasing LST. 

Previous research has revealed that LST and stream temperature follow a linear relationship at 

roughly a 3:1 slope in the Columbia River Basin (McNyset et al., 2015). After adjusting for this 

relationship, the occurrence model predicts increasing suitability at our highest observed stream 

temperature of 13°C, and Wenger et al. (2011) found that RBT have optimal temperatures at 
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16°C (Figure 10). However, not all PDPs showed realistic model performance. For example, the 

PDP for GPP showed an unrealistic dip at 250 kg C / m2 / 16-days (Figure 11).  

 

 

 

 

Interrogating relatively low-importance model predictors can also be valuable. There were a 

few such products whose lack of explanatory power can be attributed to temporal lag effects, 

Figure 10. Partial dependency plot showing RBT occurrence model performance against stream-temperature 

adjusted Land Surface temperature in the Flathead basin (A) versus predicted water temperature (wtemp) niche 

requirements of RBT (B) from Wenger et al. (2011). 

Figure 11. Partial dependency plot 

showing RBT occurrence model 

performance against Gross Primary 

Productivity in the Flathead basin 

study region. 
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scale mismatch, or model uncertainty. For example, EVI has been used as a proxy for submerged 

aquatic vegetation in open water systems (Massicotte et al., 2015), although the connection to 

species richness in streams is less clear (Vieira et al., 2015). Thus, EVI may not translate to 

ecologically relevant conditions for RBT within the spatial and temporal scale of our study. 

Similarly, a terrestrial GPP metric was the most important variable in predicting global-scale 

species richness of freshwater fish (Pelayo-Villamil et al., 2015) and is correlated with fish 

production in lakes (Downing et al., 1990). However, our analysis did not reveal GPP as an 

important predictor for RBT.  

 

Given that GPP represents terrestrial carbon available to primary producers (Robinson et al., 

2018) and provides the basis for energy flows supporting aquatic food webs (Welti et al., 2017), 

it may not drive the higher-level trophic response of stream vertebrates until after a lagging 

period. In addition, the NLDAS seasonal precipitation metrics did not show up as top predictors, 

even though RBT are known to be sensitive to peak flow events (Fausch et al., 2001). One 

possible explanation is the geographic bias present in such spatially interpolated climatic data. 

Indeed, an examination of the weather stations used in the NLDAS product reveals that 

geographic coverage of the regional weather station network may be too sparse to fully represent 

the climate distribution imposed from relatively complex terrain and orographic effects in the 

Pacific Northwest (Mo et al., 2012). Thus, we recommend the use of landscape scale RS 

products because of their spatial contiguity. Lastly, although the seasonal additive aggregate 

model inputs (i.e. Spring Total Precipitation, Summer Total Precipitation) may have captured the 

magnitude of peak flow events, these aggregates did not inform the timing and duration of flow. 
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More work is needed to integrate the temporal variability of dynamic data products into our 

workflow. 

 

Our workflow compromises interpretability for speed, accuracy, and efficiency. Top 

predictors are correlative at best, and without explicitly modeling the dispersal potential of these 

organisms, our model predicts relative habitat suitability alone. In addition, using temporally 

composited covariates results in a loss of information relating to the timing and duration of 

environmental conditions. However, such improvements would compromise the speed and 

agility strengths of this workflow. As the rate of new biological invasions shows no sign of 

slowing (Seebens et al., 2017), early detection and rapid response is becoming more vital to 

prevent irreversible ecological damage and massive economic costs to societies. New 

technological integrations are needed to facilitate aquatic IS detection and promote proactive 

management. We present and test one such generalizable workflow for integrating occurrence 

information with readily available data products to generate spatiotemporally explicit habitat 

suitability (i.e. risk) maps. While this application case study was for RBT, the underlying models 

and workflow can be readily extended to other aquatic and terrestrial species.  

 

 Given further testing and validation, this workflow could be expanded in its geographic 

and taxonomic breadth by exploiting web-hosted databases of species occurrence data (e.g. 

GBIF, www.gbif.org; USGS NAS, http://nas.er.usgs.gov). Future considerations include 

accounting for sampling bias, integrating presence-only rather than presence-absence datasets, 

and working toward fully automating the data acquisition and preprocessing steps. The 

advancement of data sharing capabilities in ecological sciences, born out of the field’s recent 

http://www.gbif.org/
http://nas.er.usgs.gov/
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rebirth as a big-data science, has enabled robust methodologies and automated pipelines that can 

produce actionable insight based on continuous occurrence and environmental data streams. 

Leveraging workflows such as this provide a major step in the way of integrating these data with 

management action at broad spatial and ecological scales.  
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Chapter 3 

 

3   TOOLKIT AND MAGEMENT FRAMEWORK 
 

 

3.1 BACKGROUND 
 

Despite the enthusiasm for, and pervasive use of, SDMs in a conservation context 

 (e.g. Elith et al., 2010), there are difficulties associated with their integration in structured IS 

management frameworks such as EDRR. In the previous chapter, I suggest that my workflow 

can be used to inform the target analysis action of EDRR but incorporating model output into 

management decision-making remains challenging. Target analysis is vital to the EDRR 

framework, and I define it as a strategic approach for detecting IS using predictive technologies 

(Morisette et al., 2021). The requirements of spatial target analysis cannot be met without 

technical input that proactively illustrates potential establishment areas (Morisette et al., 2021), 

yet high requirements for technical skill, computing resources, and modeling tools makes this 

difficult (Guisan et al., 2013). Indeed, given the urgent and timely demands of IS target analysis, 

the development of SDMs for this purpose requires considerable technical knowledge that is a 

major implementation barrier to end users and managers (Addison et al., 2013; Guisan et al., 

2013).  

 

The “knowing-doing” gap, created by the mismatch between technical expertise and 

decision-making power, can be mitigated by a combination of simple models and heuristic 

approaches that prioritize expediency (Pyšek et al., 2020; Sutherland and Freckleton 2012). I 
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contributed to a recent review that encouraged the coordinated use and uptake of predictive 

technologies for proactive IS management and research (van Rees et al., 2022). This framework 

identified the transfer of research insights from researchers to IS managers as a crucial final step 

in the analytical pipeline for proactive IS management. In particular, it recommended the use and 

development of user-friendly products to decrease the methodological expertise necessary to 

guide conservation actions and close the implementation gap between analytical approaches and 

on-the-ground results. Although these products are essential to the EDRR paradigm guiding such 

actions (Russel et al., 2017; Berec et al., 2015; Wang et al., 2014), the effective implementation 

of such tools is sparse.  

 

 To address this gap, I lead the development of the Chapter 2 workflow in two online tool 

prototypes. I then provide management guidance using tool outputs that considers the technical 

details of the workflow, model outputs, and relevant demands of the EDRR paradigm. This 

information provides a basis from which to answer Research Question 2, and a more targeted 

response is given in section 4.1.2. 

 

3.2 DEVELOPMENT OF TOOLKIT 
 
 The development of this toolkit blended the essential specifications of EDRR with 

technical constraints. By allowing users to directly interface with the data, the toolkit addresses a 

major need to make analytical results be relevant and communicable (van Rees et al., 2022). The 

information necessary for coordinated management action can broadly be divided into two 

classes: rapid and cursory risk assessments on the one hand and thorough examinations of 

environmental drivers and modeled responses to environmental change on the other. To reflect 

these differing demands, I split the toolbox into a front-facing Graphical User Interface (GUI) 
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and a lower-level, open-source Command Line Interface (CLI). The GUI was built using Google 

Earth Engine’s User Interface API that allows users to construct dynamic user interfaces with the 

same functionality that can be found in the JavaScript code editor. Thus, the GUI uses JavaScript 

as its programming language. On the other hand, I constructed the CLI using Python 3.7.7 with 

various open-source libraries including Sklearn (Pedregosa et al., 2011), Pandas (McKinney et 

al., 2010), and Google Earth Engine’s Python API (Gorelick et al., 2017). While the GUI can be 

accessed with any web browser, the CLI must be downloaded and installed using a package 

manager such as Anaconda (Anaconda 2020).  

 

 During the development of the GUI, I needed to compromise some features of the 

Chapter 2 workflow due to technical constraints. This decision was made to address the rapid 

and timely demands of IS management. For the most part, the workflow stays the same, but 

because the Google Earth Engine platform lacks the implementation of classifiers other than 

random forest, I decided to remove the ensemble protocol from this tool. This decision was made 

with the knowledge that the random forest model performed relatively well in the Chapter 2 case 

study and in a multitude of other modeling efforts (Norberg et al., 2019). As such, predictions are 

slightly less robust, but all outputs are similar, and it produces maps in a much more streamlined 

manner without the need of client-side resources. Indeed, it is still able to predict the relative 

habitat suitability of a given area (given by the probability estimate provided by the model) and 

estimate the uncertainty of these predictions using the variation of the vector of predictions given 

by the set of all estimators within the model.  
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By design, the GUI and CLI complement one another’s respective advantages and 

shortcomings, allowing for flexibility in the implementation experience. For example, by 

compromising speed for control, the GUI does not allow for an examination of the top 

environmental drivers of occurrence, nor does it include the ability to automate multi-species 

analyses. In contrast, the technical interface of the CLI allows for more detailed analyses that can 

be used for deriving biological insight of invaders to inform future management. Each tool in the 

toolbox reflects different management needs and fits into different parts of the EDRR 

framework. 

 

3.2.1 DESCRIPTION OF TOOL FEATURES 
 
 This toolbox provides the technical input necessary for target analysis of aquatic invasive 

species. It requires that the spatially explicit species observations be coded in a presence-absence 

binary format and that such observations include a year of observation. With this input 

information, the toolbox can be used for forecasting of aquatic species distributions, assessing 

the uncertainty associated with such forecasts, and examining species-environment relationships. 

 

The toolbox currently houses two different tools. Each tool in the toolbox consists of a 

stack of various software packages, with some subtle differences. Both tools leverage the cloud 

computing power of Google Earth Engine in order to assimilate and process environmental 

information. From there, the GUI continues to use Google Earth Engine to learn, predict, and 

visualize the relative habitat suitability of a given area. On the other hand, the CLI pulls the 

training data onto the client’s computer and uses a stack of open-source Python libraries that 

allow the user more control over the modeling process. Thus, the major benefit of the GUI is an 
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easy-to-use visualization tool that can be used to document and share results from a rapid and 

generalizable habitat suitability model, and the major benefit of the CLI is the detailed and 

complex modeling of habitat suitability that can be used to examine species-environment 

relationships and drivers of species occurrence.   

 

The GUI tool can be found at this Google Earth Engine link 

(https://mstokowski.users.earthengine.app/view/aismodel). This tool generates two major 

outputs: a habitat suitability assessment and an estimate of prediction uncertainty over the 

domain of interest (Figure 12). These two outputs represent major components of the technical 

input for target analysis, and in the following section I provide a brief overview of how they can 

be incorporated into a decision-making process.  

 

 

 

Figure 12. Illustration of GUI that can be found at this link: 

https://mstokowski.users.earthengine.app/view/aismodel 

https://mstokowski.users.earthengine.app/view/aismodel
https://mstokowski.users.earthengine.app/view/aismodel
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 The CLI can be downloaded and installed at this github link: (https://github.com/COYE-

Coder/AIS; Figure 13). Because it is a complete implementation of the Chapter 2 workflow, 

outputs consist of relative rankings of environmental covariates and species responses to shifting 

environmental conditions. In the github repository, users will find an introduction, 

documentation, and guidance for running the tool. It is built using Python 3.7.7 and uses a 

combination of various open-source software packages such as Pandas and Sklearn. Because of 

the lower-level nature of this tool, it has advantages over the GUI, although it does require a 

larger degree of technical skill. For example, it allows for users to modify various 

hyperparameters such as the number of tallies required for a predictor to be given high 

importance in the assessment of top drivers of occurrence (see section 2.2.7). In addition, it can 

be used to automate batch processes for multiple species or different areas of concern. Because 

of its capacity to examine species-environment relationships, the CLI is intended to be used as 

the technical input for the risk screening portion of EDRR (Reaser et al., 2020).  

 

  

 

Figure 13. Illustration of the CLI that can be found at this link: https://github.com/COYE-

Coder/AIS 

https://github.com/KevinIsAProfessional/AIS
https://github.com/COYE-Coder/AIS
https://github.com/COYE-Coder/AIS
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Although these tools are readily available and relatively easy to use, incorporating tool 

output into management decision-making remains challenging. In the following section, I 

provide general guidance for IS target analysis that incorporates the technical input provided by 

the GUI described above. This framework provides guidance for users to incorporate and 

synthesize the component features of the workflow and toolkit to derive actionable insight in an 

efficient manner.  

 

3.3 GUIDANCE FOR INVASIVE SPECIES TARGET ANALYSIS USING THE 

TOOLKIT 
 
 In order to maximize survey effectiveness and cost efficiency, target analysis requires 1) 

identifying priority areas for monitoring or intervention by examining mechanistic dispersal 

constraints and habitat requirements, 2) considering the uncertainty associated with such 

predictions, 3) developing robust and efficient sampling efforts, and 4) conducting thorough 

survey efforts whose component field observations may be used to validate and recursively 

improve initial modeling inputs over iterative cycles (Morisette et al., 2020). Each of the above 

steps can incorporate either technical or heuristic inputs and has many potential considerations 

(Figure 14). This section describes general guidance from which to view these considerations, 

providing an avenue through which the online GUI can be used to address them. In doing so, I 

address both the implementation barrier of SDMs into structured decision-making frameworks 

and Research Question 2. 
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 Identifying priority locations for monitoring must integrate the colonization pressure 

(Lockwood et al., 2009), the niche requirements of a given species, and the uncertainty 

associated with such input information. This vital step makes the most valuable contributions to 

management when undertaken before appropriate sampling efforts are planned and initialized. 

Including colonization pressure into decision making must balance expertise, speed, and 

information availability. Colonization (propagule) pressure can be assessed in a number of 

different ways (Lockwood et al., 2005) ranging from complex agent-based models to qualitative 

composites of propagule size and frequency that incorporate heuristic rules approximating the 

dispersal behavior of a given species and system. In this case, propagule size refers to the 

number of individuals within a potential dispersal source, and propagule frequency refers to the 

relative rate of introduction events from a given source population. Agent-based modeling 

Figure 14. A general workflow for target analysis. Rectangles indicate major steps and ovals 

indicate technical inputs 
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requires, among other considerations, quantifying the dispersal tendencies of each potential 

source population of the IS of concern, quantifying the difficulty of dispersal, and simulating 

potential establishment scenarios given some adaptive feedback process (Macal and North 2005). 

Because these considerations are typically unavailable to managers either due to the lack of 

requisite expertise of input data, the complexity of such models is prohibitively time consuming. 

 

Alternatively, it is possible to qualitatively assess the colonization pressure based on first 

principles and heuristic approximations of animal movement from natural history knowledge. 

For example, the hypothetical example shown in Figure 15 shows four different scenarios of 

similar colonization pressure. By considering first approximations of propagule size and 

frequency, managers can rank different areas from high to low colonization pressure based on 

their heuristic knowledge of the study system. This can be coupled with natural history 

knowledge of the population growth and immigration rates. Thus, regarding colonization 

pressure, the rapid implementation demands and short time scales of EDRR are better addressed 

using qualitative composites that are generated from first principles than complex agent-based 

modeling efforts.  
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 On the other hand, predicting the habitat suitability for an IS and the uncertainty 

associated with such modeling predictions can be accomplished in a rapid and effective manner 

using correlative modeling techniques. User-friendly tools such as the ones detailed in section 

3.2 can provide technical input that, with consideration of colonization pressure described above, 

delineate areas that will be most beneficial to sample. By balancing the urgency described by the 

colonization pressure, the relative habitat suitability, and the uncertainty associated with 

predicting habitat suitability, managers can trade-off the value of sampling under-represented 

areas and prioritizing areas of high projected risk with the ultimate goal of either improving 

model generalizability or detecting organisms before they become too far established to be 

managed effectively. For example, using this tool, managers might consider that areas which are 

Figure 15. Four different scenarios that yield various levels of colonization pressure to an area that is being 

considered for sampling. The top two boxes display similar colonization pressure, which is different than the 

bottom two boxes. By incorporating the two fundamental drivers of colonization pressure, propagule size and 

propagule frequency, managers can rank the relative urgency of conducting sampling efforts in different areas.  
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likely highly suitable should garner more attention, granted that they are in areas of high 

colonization pressure and moderate to high model confidence (Figure 16). 

 

 Evaluating the appropriate compromise in the above situation will differ with the context 

of each individual management case and the needs of stakeholders and decision-makers (Figure 

16). For instance, sampling areas that are predicted to be highly suitable that are well-within 

possible dispersal areas could either redirect the model, if it was wrong, or allow for a deeper 

confidence in predictions to other areas. Similarly, although counter-intuitive, conducting a 

sampling effort in areas that are projected to be low risk may be fruitful if these areas are also 

associated with high uncertainty by providing validation for future modeling projections. Thus, 

gathering input information in such areas would improve model generalizability by increasing 

the size of the environmental envelope captured by the model. Considering this option would 

likely be a result of having determined that there were no areas with crucial danger levels. The 

first step to a diligent target analysis effort requires the interactive consideration of three 

different technical inputs, two of which are provided by the tools described in section 3.2, and 

the third can either be developed qualitatively or quantitatively. 
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 Once an area has been identified that is of primary concern or yielding high insight, target 

analysis then requires the development of a robust sampling effort. This action must consider the 

relative population growth rate, the probability of detection, and the rate of immigration (Mehta 

et al., 2007). Simulation modeling suggests that the efficiency of sampling effort is driven more 

by the density of observation points than their spatial arrangement, but only when survey 

sensitivity (i.e., detection probability) is high. In addition, high population growth rates lead to 

the most efficient performance of grid-based survey efforts, and low population growth rates lead 

to the most efficient performance of random survey efforts (Berec et al., 2015). Lastly, high 

Figure 16. Synthesizing three different considerations for determining the sampling order for various areas. On 

the left are two different scenarios based on differing model output and estimated colonization pressure. Model 

output is shown in color scheme. In the first row, a high colonization pressure causes the top region to be high 

priority, even though the model is highly uncertain. The right region is less important due to less colonization 

pressure, even though model uncertainty is lower. In the second row, small colonization pressure allows the 

managers to decide about how they might wish to improve future modeling efforts. Due to the lack of urgency, 

either the top or left regions can be sampled in order to improve model generalizability because the model is 

highly uncertain in either region. The right region has lower uncertainty, and thus does not take priority over 

higher uncertainty regions.  
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colonization pressure increases the efficacy of grid-based survey efforts through the consequent 

increase of detection probability. Although the consideration of these biophysical parameters 

must be preeminent, managers can be confident that maximizing the detection probability at 

small scales is unlikely to diminish the probability of detection at broad scales. Finally, because 

sampling efforts must be constrained by operational costs, exhaustive design of sampling efforts 

might weigh the risk of potential damages with bioeconomic pre-screenings (e.g. Kller et al., 

2007). However, this work must be made in consideration of the urgent requirements of EDRR. 

Efficient sampling efforts are contingent upon biophysical parameters and operational costs, and 

as with any aspect of this workflow, compromises must be made between speed and precision.  

 

 A crucial final step in the target analysis action is the reincorporation of ground-based 

data from survey efforts into the next model iteration. Labeled data remains the most pressing 

deficiency in machine learning (Sarker 2021). This problem is accentuated within the earth and 

biological sciences due to the difficulty of acquiring robust and accurate ground-based data. 

Indeed, after the acquisition of such training information, it can be fed into the next model 

iteration, where the automated approach and fast development process will facilitate the cyclical 

nature of target analysis. The potential for quick and rapid incorporation of this new information 

is a major advantage of the ML workflow described in Chapter 2 and the general guidance given 

in Chapter 3. 

 

 The challenges of IS Target Analysis can be mitigated with technical support and 

guidance for management decisions. For example, identifying priority areas requires considering 

the colonization pressure and the habitat suitability with its associated uncertainties. My tool 
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provides the technical input necessary for two of those considerations: the predicted habitat 

suitability and its associated uncertainty. From there, Target Analysis requires developing robust 

and efficient sampling efforts and conducting thorough survey efforts whose component field 

observations may be used to validate and recursively improve initial modeling inputs over 

iterative cycles. The guidance in this chapter provides a framework through which these 

requirements can be viewed. Target Analysis is a vital action of the EDRR paradigm. By 

creating tools and guidance to cater to the urgent needs of the EDRR paradigm, this chapter 

serves as a major step towards preventing irreversible damage from IS establishment. 
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Chapter 4 

 

4   SUMMARY AND CONCLUSIONS 
 

 In Chapters 2 and 3 of this thesis, I developed methods and provided avenues to address 

the guiding research questions asked in section 1.2. These questions steered the overall direction 

of the thesis and were developed to address science objectives identified by the presiding grant. 

Indeed, by addressing these questions, I provide the basis for achieving major project goals 

including 1) providing tools for mapping current distributions of focal IS and 2) promoting use 

of remote sensing data and data integration with IS among managers and researchers through 

new workflows and management frameworks.  

 

RQ 1: How can species occurrence information be integrated with remotely sensed and other 

geospatial imagery to inform invasive species management decisions? 

 
 Species occurrence information can be integrated with environmental data layers to 

represent and project areas of high risk to persistence and reproduction of IS of concern within 

the habitat suitability framework. This modeling framework can inform management decisions 

by providing the technical input necessary for the rapid demands of existing management 

paradigms such as Early Detection and Rapid Response. New workflows, such as the one 

provided in Chapter 2, confront these rapid demands, presenting a technique to delineate high 

risk areas that has been validated against a well-known system. Species occurrence information 

can be integrated with remotely sensed and other geospatial imagery in the following manner: 1) 
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selecting appropriate environmental data products, 2) compositing and consolidating them to 

ecologically relevant metrics and modeling units, 3) and projecting habitat suitability using 

iterable and generalizable algorithms. Integrating these disparate data sources in a ML habitat 

suitability workflow provides actionable management insight, as has been demonstrated in 

Chapter 2.  

 

RQ 2: How can workflows linking existing databases with modeling technologies facilitate 

more efficient, effective spatial prioritization of IS monitoring and intervention while 

augmenting existing management frameworks? 

 
 New workflows can augment existing management frameworks to facilitate effective and 

efficient target analysis by providing the technical input necessary for determining areas of 

primary concern. The guidance provided in Chapter 3 suggests that the consideration of the 

relative habitat suitability, the uncertainty of that prediction, and the propagule pressure of a 

given area are integral portions of the target analysis action within the EDRR framework. The 

tools that I developed serve as a foundation to design and implement more methodical target 

analysis used for IS management and intervention. The guidance provided in Chapter 3 

facilitates efficient, effective spatial prioritization of IS by synthesizing technical input and 

management concerns while also augmenting the EDRR paradigm.  

 
 This thesis addresses the need for spatial prioritization of proactive measures for IS 

management via providing both a technical framework and management guidance for evaluating 

areas of high concern. The rapid demands of IS management, coupled with the large 

computational costs to developing technical input, create a large implementation hurdle, which 
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this thesis partially addresses. Correlative machine learning approaches to evaluating relative 

habitat suitability of focal IS are well-suited to these rapid demands of IS managers due to their 

flexibility and swiftness. Workflows, such as the one developed in Chapter 2, can be used as 

technical input for management decision-making actions, such as Target Analysis, as described 

in Chapter 3. The case study presented in Chapter 2 provides evidence that a rapid workflow can 

be used to derive both biological and management insights on the drivers of IS occurrence and 

areas of high priority for field efforts. This workflow can facilitate efficient and proactive 

strategies to avoid irreversible effects of IS establishment and spread. The guidelines for one 

such management strategy are provided in Chapter 3. Target analysis, as with any structured 

decision-making workflow, requires the compromise between different pressing needs. Although 

contributing to only a part of a comprehensive decision process, the guidance provided in 

Chapter 3 can assist in overcoming implementation barriers by structuring the problem, 

providing suggested considerations at each stage within the management action, and supplying 

examples that can be applied to different scenarios. The information provided in this chapter fills 

a gap in the lack of structured and sequential guidance for target analysis in invasive species 

management. 

This thesis addresses a major challenge in IS management but is not free from 

limitations. For example, a major driver of IS spread is propagule pressure, and there remains a 

huge challenge to integrate dispersal information into rapid and effective modeling efforts. In 

addition, the constraints inherent to the environmental information are significant. For example, 

the spatiotemporal resolution of some data products constrains the resolution of prediction maps. 

Furthermore, compositing temporally explicit products results in the loss of information relating 

to the timing and duration of dramatic events. Lastly, there remains a pressing need to generalize 
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the Chapter 2 workflow to presence-only datasets and multiple taxonomic groups 

simultaneously. Steps that can be considered to address these limitations include quantifying the 

uncertainty associated with the model through error propagation (Andriew et al., 2003), 

incorporating the seasonal variation of some data products (Schneider 2012), and accounting for 

spatially biased sampling effort of the species occurrence data (Stolar and Nielsen 2015).  

 

In addition to improvements that can be made on the above limitations, future research 

can focus on specific technical improvements. For example, with the qualitative framework 

proposed in Chapter 3 in place, future actions could feed these technical inputs into a multiple 

criteria evaluation by quantifying the urgency associated with each technical input (e.g., the 

relative habitat suitability, the uncertainty, the colonization pressure), rasterizing these inputs, 

and providing weights associated with each raster layer. This quantification framework could be 

further improved by feeding all management and technical considerations into a cost of outcome 

analysis (e.g., Blaalid et al., 2021). In addition, the GUI and CLI tools can be improved in their 

speed and usability. Still, this thesis addresses a major need to enhance decision-making by 

developing a support system to facilitate monitoring and forecasting of the spread of aquatic IS. 

In doing so, it allows for users to mitigate and prevent drastic damages associated with IS 

establishment. 
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SUPPLEMENTAL MATERIALS 450 

S1)  Detailed quality control filtering actions 451 
 452 

Data Product Quality Control (QC) Flag Description Quality Filtering Action 

Land Surface 

Temperature 

Bits 0 and 1:  

- 0: Pixel produced, good quality, not necessary to examine more 

detailed QA 

- 1: Pixel produced, unreliable or unquantifiable quality, 

recommend examination of more detailed QA 

- 2: Pixel not produced due to cloud effects 

- 3: Pixel not produced primarily due to reasons other than cloud 

(such as ocean pixel, poor input data) 

(Etc) 

Only used pixels where bits 0 and 1 

equal 0 

Gross Primary 

Productivity 

Value 10: Clear not smoothed 

Value 11: Clear smoothed 

Value 20: Snow or water not smoothed 

Value 21: Snow or water smoothed 

Value 30: Climatology not smoothed 

Value 31: Climatology smoothed 

Value 40: Gap filled not smoothed 

Value 41: Gap filled smooth 

Only used pixels where QC band 

equaled 10 or 11  

Enhanced 

Vegetation Index 

Bits 0 and 1: 

- 0: Pixel produced with good quality 

- 1: Pixel produced, but check other QA 

- 2: Pixel produced, but most probably cloudy 

- 3: Pixel not produced due to other reasons than clouds 

(Etc) 

Only used pixels where bits 0 and 1 

equal 0 

Percent Tree 

Cover 

Bit 0: State of input layers DOY 065-097 

- 0: Clear 

- 1: Bad 

Bit 1: State of input layers DOY 113-145 

- 0: Clear 

- 1: Bad 

Bit 2: State of input layers DOY 161-193 

- 0: Clear 

- 1: Bad 

Bit 3: State of input layers DOY 209-241 

- 0: Clear 

- 1: Bad 

Bit 4: State of input layers DOY 257-289 

- 0: Clear 

- 1: Bad 

Bit 5: State of input layers DOY 305-337 

- 0: Clear 

- 1: Bad 

Bit 6: State of input layers DOY 353-017 

- 0: Clear 

- 1: Bad 

Bit 7: State of input layers DOY 033-045 

- 0: Clear 

- 1: Bad 

Only used “Clear” pixels for all bits 

Table S1. Detailed description of pre-published quality filtering heuristic rules and our stringent quality masking procedures.  
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 453 

S2)  Description of Machine Learning model implementation 454 
 455 

Logistic Regression functions within the maximum likelihood framework by performing 456 

gradient descent on the error surface characterized by the difference between observed and 457 

predicted suitability (Cramer 2003). A classification tree is built by splitting the input data into 458 

successive “leaves” to minimize the gini impurity between consecutive layers of the canopy 459 

(Quinlan 1986). Random forests are trained using a series of such classification trees on 460 

independently bootstrapped samples (Breiman 2001). Boosted Regression Trees are similar to 461 

random forests, but instead recursively build each classification tree using the remaining errors 462 

left by previous, intentionally “shallow” trees rather than independently bootstrapped samples of 463 

the same data used to train stronger learners (Mishina et al., 2015). XGBoost is a more 464 

generalizable form of Boosted Regression Trees that incorporates regularization and a more 465 

accurate gradient descent algorithm (Chen and Guestrin 2016). Neural networks are trained using 466 

a gradient descent algorithm that minimizes the error between observations and predictions 467 

(McCulloch and Pitts 1943). 468 

 469 
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S3)  Figure S3 470 
 471 

 472 

 473 

Figure S3. Comparison of estimated relative habitat suitability over the Flathead study region derived from the 

different ML models (i.e. GBM, CTA, GLM, RF, XGB). All of the models predict higher habitat suitability in 

the southwest portion of the study area, an area which was shown to be outside of the training envelope (Figure 

7). The ANN was not included in this figure; predictions are the exact opposite of the GLM (i.e. high suitability 

for all regions of the study area).   
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