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Landslides are a globally pervasive problem with the potential to cause significant fatalities 
and economic losses. Although landslides are widespread, many at-risk regions may not 
have the high-quality data or resources used in most landslide susceptibility analyses. This 
study aims to develop regional susceptibility relationships that are versatile and use 
publicly available data and open-sourced software. Logistic Regression and Frequency 
Ratio susceptibility relationships were developed in 23 regions in Washington, Utah, North 
Carolina, and Kentucky, with a region referring to a unique area and data combination. 
Regions were diverse in their geology, morphology, climate, and nature and quality of their 
landslide data. The transferability of select models to regions uninvolved in model 
development was also tested. The transferred models were trained using data from a single 
region (single-region cross-validation) or a combination of regions (multi-region cross-
validation). Potential landslide contributing factors were all derived from a globally 
available digital surface model while landslide inventories were publicly available from 
state geological surveys. The contributing factors considered were elevation, slope, aspect, 
planform curvature, profile curvature, and topographic position index. Models developed 
using high-quality landslide data delineating scarps, flanks, and individual slope 
movements performed very well (AUC 0.764 - 0.895; AUC = area under relative operating 
characteristics curve). Models developed using landslide data dominated by deposits 
performed less well, but at or near an acceptable level (AUC 0.67 – 0.81). Models 
developed using older, lower quality landslide data did not perform at an acceptable level 
(AUC 0.63 – 0.64). The results of testing model transferability had acceptable results for 
some but not all regions (AUC 0.563 - 0.844). This study is a promising first step in 
developing generalized landslide susceptibility relationships that can be used in areas that 
share similar regional scale attributes.
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Chapter 1: Project Introduction 

1 Research Motivations  
 
The damage caused by landslides can be catastrophic, both socially and economically. To 
minimize the damage incurred, landslide susceptibility assessments are conducted to determine 
areas of potential mass movements. Landslide susceptibility models are most commonly 
generated from physics-based slope failure models, or from heuristic or statistical analysis of 
past landslide occurrence (Aleotti & Chowdhury, 1999; Guzzetti et al., 1999; Reichenbach et al., 
2018a; van Westen et al., 2006; and references therein). The majority of advancements in 
landslide susceptibility research are implemented in a narrow set of circumstances, require high-
resolution data, and their transferability to other regions is largely untested. Many communities 
with high landslide risk do not have resources to employ these methods. This study aims to 
develop more general regional landslide susceptibility models, a necessary first-step in 
developing models that can be transferred to unstudied regions. 
 
There are a multitude of different qualitative and quantitative methods used to assess landslide 
susceptibility, with the preferred method depending on the level of expertise of the practitioner 
and the available resources. The majority of assessment methods are dependent on landslide 
inventories, the compilation of which are often small-scale and site specific. Landslide 
inventories are created by visual identification from aerial photographs (e.g., Ayalew & 
Yamagishi, 2005), satellite images (e.g., Feizizadeh & Blaschke, 2014), stereoscopic images 
(e.g., Fiorucci et al., 2019), and LiDAR images (e.g., Van Den Eeckhaut et al., 2007). There are 
also semi-automatic detection methods based on surface roughness (e.g., Berti et al., 2013). 
Many countries do not have a national database of events, and if they do they contain 
inconsistent and incomplete data. In the United States, a national database was only released by 
the USGS in October 2019 (Jones et al., 2019). The lack of complete, high-quality landslide 
inventories supports the need to develop susceptibility models that can be applied to regions 
without inventories. 
 
Due to the diversity of climates, geology, land development, and landslide mechanisms it is 
unlikely there is a single statistical relationship that can accurately predict landslide occurrence 
everywhere. Yet multiple studies provide evidence that under certain circumstances 
susceptibility models can be transferred to regions not used in model training (e.g., Kritikos et 
al., 2015; Lee, 2005; Von Ruette et al., 2011). It is possible this process can be expanded to other 
generic study regions. Although this has the potential to oversimplify a very complicated system, 
it can be used as a first-order approach in regions that lack data and resources. 
 
2 Thesis Objectives 
 
The primary goals of this study were to: 1) develop a landslide susceptibility method that can be 
implemented in diverse regions, 2) ensure the method is versatile and uses publicly available 
data and open-source software, 3) move towards susceptibility relationships that can be applied 
to unstudied regions without landslide inventories. 
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3 Research Methodology 
 
Statistical landslide susceptibility models were developed using logistic regression and frequency 
ratio methods. The landslide contributing factors (i.e., independent variables) were “simple” 
morphological variables derived from a 30 m globally available digital surface model. Landslide 
occurrence data (i.e., dependent variable) were from publicly available landslide inventories 
from state geological surveys. Models were developed and tested in all regions, while select 
models were applied in regions uninvolved in training. Four diagnostic statistics were used to 
assess the performance of the models.  
 
4 Concluding Remarks 
 
This study is promising progress towards the creation of susceptibility models that can be applied 
to regions uninvolved in model training. The developed method is easy to implement, interpret, 
uses publicly available data, and open-source software. The method works as expected, with 
higher quality landslide data providing better results than lower quality data. It is also expected 
that landslide data that distinguishes by process domain (e.g., scarps and flanks versus deposits) 
will create better performing models, since each process domain provides unique information 
about landslide occurrence. 
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Chapter 2: Development of regional landslide susceptibility models: a first step towards 
model transferability 
 
Gina Belair1, 2, Rebecca Bendick1 

1 Department of Geosciences, University of Montana, Missoula, Montana, USA 
2 Current address: U.S. Geological Survey, GHSC, Golden, Colorado, USA 
 
Abstract. Landslides are a globally pervasive problem with the potential to cause significant 
fatalities and economic losses. Although landslides are widespread, many at-risk regions may not 
have the high-quality data or resources used in most landslide susceptibility analyses. This study 
aims to develop regional susceptibility relationships that are versatile and use publicly available 
data and open-sourced software. Logistic Regression and Frequency Ratio susceptibility 
relationships were developed in 23 regions in Washington, Utah, North Carolina, and Kentucky, 
with a region referring to a unique area and data combination. Regions were diverse in their 
geology, morphology, climate, and nature and quality of their landslide data. The transferability 
of select models to regions uninvolved in model development was also tested. The transferred 
models were trained using data from a single region (single-region cross-validation) or a 
combination of regions (multi-region cross-validation). Potential landslide contributing factors 
were all derived from a globally available digital surface model while landslide inventories were 
publicly available from state geological surveys. The contributing factors considered were 
elevation, slope, aspect, planform curvature, profile curvature, and topographic position index. 
Models developed using high-quality landslide data delineating scarps, flanks, and individual slope 
movements performed very well (AUC 0.764 - 0.895; AUC = area under relative operating 
characteristics curve). Models developed using landslide data dominated by deposits performed 
less well, but at or near an acceptable level (AUC 0.67 – 0.81). Models developed using older, 
lower quality landslide data did not perform at an acceptable level (AUC 0.63 – 0.64). The results 
of testing model transferability had acceptable results for some but not all regions (AUC 0.563 - 
0.844). This study is a promising first step in developing generalized landslide susceptibility 
relationships that can be used in areas that share similar regional scale attributes. 
 
Keywords. landslide susceptibility assessment, logistic regression, frequency ratio, model 
transferability 
 
1 Introduction 
 
Landslides have the potential to cause a substantial loss of life and damage to infrastructure. The 
USGS estimates that anywhere between 25-50 annual deaths occur due to landslides in the United 
States alone, with the death toll in the thousands worldwide (USGS, 2019). Substantial risk still 
exists due to infrastructure development in landslide-prone areas (Aleotti & Chowdhury, 1999; 
Schuster & Highland, 2001; and references therein) which enhances demand for effective landslide 
susceptibility analyses.  
 
This demand has led to a proliferation of methods, both qualitative and quantitative (Aleotti & 
Chowdhury, 1999; Guzzetti et al., 1999; Reichenbach et al., 2018a; van Westen et al., 2006; and 
references therein). Qualitative methods may consist of an expert geomorphologist identifying 
landslide-prone areas in the field (e.g., Carrara & Merenda, 1976; Kienholz, 1978), or by using 
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index or parameter maps in a geographical information system (e.g., Anbalagan & Singh, 1996; 
Stevenson, 1977). Qualitative methods can be very useful when past landslide information is not 
available, but can be too subjective when trying to decide where future slope failures may occur. 
The majority of new methods being developed and employed are more quantitative. These include 
geotechnical (e.g., Chowdhury & Zhang, 1993; Wu & Kraft, 1970) and statistical methods (e.g., 
Budimir et al., 2015; Alberto Carrara, 1983; Neuland, 1976). Geotechnical methods are physics-
based slope failure models that are very data intensive and best utilized on single slopes or small 
areas. Machine learning and statistical methods have increased in use because of their relative 
objectiveness, but are dependent on the completeness of inventories of past landslide activity in a 
region (Aleotti & Chowdhury, 1999, and references therein).  
 
Many different contributing factors have been used in statistical landslide susceptibility analyses. 
In a review of 565 peer-review articles from 1983 to 2016 (Reichenbach et al., 2018), 105 unique 
variables were found and grouped into 23 unique classes with “slope, geo-lithology, aspect, 
hydrology, landslide, river/catchment and curvature” accounting for 57% of the all variable 
occurrences. The number of contributing factors in each assessment is also highly variable, ranging 
from 2 to 22 variables with an average of 9 variables used. Another review of logistic regression 
landslide susceptibility analyses found several contributing factors that were common, but did not 
have a consistent effect, for all landslide types: slope, aspect, elevation, vegetation, lithology, land 
cover, and distance to drainage (Budimir et al., 2015).  These factors are consistent with the current 
understanding of landslide mechanics (e.g., Hadji et al., 2013; Nilsen et al., 1979; Radbruch-Hall 
& Varnes, 1976; Soeters & Van Westen, 1996). 
 
Given the importance of gravity in accelerating landslide masses, slope is an important 
contributing factor both theoretically and empirically (e.g., Baeza & Corominas, 2001; Dehnavi et 
al., 2015; Kornejady et al., 2017; Kritikos et al., 2015; Pham et al., 2019; Shirzadi et al., 2019; 
Youssef et al., 2016). Although the significance of other “simple” morphometric variables such as 
aspect, curvature, relief and elevation have less theoretical and empirical evidence, many studies 
found these variables to be statistically significant predictors of landslide occurrence (e.g., 
Conoscenti et al., 2016; Kornejady et al., 2017; Shirzadi et al., 2019). 
 
Data characteristics may confound the use of morphometric factors in susceptibility analysis. For 
example, digital elevation model (DEM) resolution is one limiting factor in susceptibility analyses, 
as lower resolution products tend to smooth factor variability. Potential mapping units include 
pixels, slope units, and unique condition units, with pixels being most commonly used 
(Reichenbach et al., 2018). Shirzadi et al. (2019) found the best training to testing ratio for a 
susceptibility analysis is dependent on the resolution of the DEM.  
 
Models highly tuned for a single study area may perform well locally, but poorly outside of the 
study area. More generalized models may perform less well in a single area, but better in the 
aggregate. Different approaches applied to a single area may also differ in skill. The majority of 
susceptibility models are trained in small regions, but some work has been done to develop national 
and global models (Brabb et al., 1999; Günther et al., 2014; Y. Hong et al., 2007; Kirschbaum et 
al., 2016; Stanley & Kirschbaum, 2017). The major limitation of these models is their resolution, 
with the finest resolution being 950 m. 
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The proliferation of statistical susceptibility analyses necessitates methods for evaluating model 
quality. Local statistical robustness can be assessed by looking at the effect of different training to 
testing ratios, persistence of different contributing factors, as well as the effect of variations in 
input data (Guzzetti, Reichenbach, et al., 2006). Model fit can be assessed using performance 
criteria such as relative operating characteristic (ROC) curves (Swets, 1988), Peirce skill scores 
(Peirce, 1884), and Yule’s Q scores (Stephenson, 2000; Yule, 1900). These criteria can, with some 
caveats, be used to compare the skill of different approaches. Most landslide susceptibility analyses 
do not test the predictive ability of relationships since this can only be done using data that is 
independent from the training data, either spatially or temporally. In most studies, available data 
are separated into training and testing regions, but unless these datasets are from a different time 
or location this only provides information about model fit, not prediction ability. This lack of 
prediction testing is likely due to the high variability of landslide occurrence between regions, as 
well as the limitations of landslide inventories that often lack timing information.  
 
Research that does test the predictive ability of susceptibility models is often based on event-
triggered landslide inventories. For example, Von Ruette et al. (2011) found good results when 
they cross-validated rainfall-induced landslides in the Swiss Alps using three training to testing 
scenarios: (1) shared geomorphology, (2) shared rainfall event, and (3) different geomorphology 
and rainfall events. Multiple rainfall-induced susceptibility studies in the Mediterranean found 
relationships with good predictive ability using multi-temporal landslide inventories (Guzzetti, 
Galli, et al., 2006; Guzzetti, Reichenbach, et al., 2006) as well as spatially independent landslide 
inventories (Lombardo et al., 2014). Kritikos et al. (2015) also had positive results when 
comparing co-seismic landslide occurrence using three separate events and regions. Data from the 
1994 Northridge and 2008 Wenchuan earthquakes were combined as a training dataset to test 
against the landslides induced by the 1999 Chi-Chi earthquake.  Cross-validation of relationships 
for non-event-induced landslides have also been tested. Both Lee (2005) and Domínguez-Cuesta 
et al. (2007) had good results cross-validating relationships in South Korea and Spain, respectively, 
while Naranjo et al. (1994) had less favorable results using bivariate statistical methods in 
Colombia. 
 
This purpose of this study is to progress towards the development of more versatile, generalized 
regional susceptibility relationships using minimally sufficient and globally available input data. 
The proposed method was tested in areas diverse in their geology, morphology, climate, and the 
nature and quality of their landslide data: Washington, Utah, North Carolina and Kentucky. 
Landslide contributing factors were derived from a 30-m globally available digital surface model 
and publicly available landslide inventories. We used “simple” morphological variables that were 
easily calculated and classified in open source software (e.g., R or QGIS). The statistical methods 
used were also easy to implement and interpret in open source software (e.g., R or Python). The 
model fit was tested in all regions while statistical robustness was tested in one region. The 
predictive ability (cross-validation) of select susceptibility relationships in Washington was also 
tested. This was done using data from single regions, as well as a combination of data from 
multiple regions. The purpose of this cross-validation is to test whether certain relationships can 
be used to predict landslide occurrence in regions without inventories. It is unlikely there is a single 
relationship that can accurately predict landslide occurrence everywhere, but a single relationship 
could be developed for multiple regions that share large-scale attributes such as climate and 
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geology. Although this has the potential to oversimplify a very complicated system, it can be used 
as a first-order approach in regions that lack data and computational resources. 
 
2 Methods 
 
We created empirical models for landslide susceptibility based on readily available global DSMs 
using logistic regression and frequency ratio methods, following Figure 1. All landslide 
contributing factors were derived from the ALOS World 3D – 30 m (AW3D30) Global Digital 
Surface Model (Takaku et al., 2014). The derived data layers that represent potential contributing 
factors for susceptibility are translated into categorical classes for model training and then 
compared to mapped landslide occurrence to determine weighting coefficients. Model skill was 
evaluated using four different performance metrics. 
 

 
Figure 1. An overview of the methodological approach used in this study. tpi = topographic 
position index; LS % overlap = percent of landslides in “high”-“very high” susceptibility classes; 
PSS = Pierce skill score (True skill score); ORSS = Odds ratio skill score (Yule’s Q); AUC = area 
under relative operating characteristics curve.  

 
2.1 Contributing Factors (independent variables) 
 
We used contributing factors that were derived from a 30 m globally available digital surface 
model. Other potential factors such as geology, distance to faults, precipitation and soil thickness 
(Reichenbach et al., 2018) were considered, but were not included since they are not globally 
available at the desired model resolution. Digital surface models typically capture both natural and 
built features while digital elevation models represent the bare-Earth. Although a DEM would be 
more appropriate, the ALOS 30 m DSM was used because it maintains the desired model 
resolution worldwide (Takaku et al., 2014). 
 
Slope  
Many susceptibility studies found slope to be an important landslide contributing factor (e.g., 
Baeza & Corominas, 2001; Dehnavi et al., 2015; Kornejady et al., 2017; Kritikos et al., 2015; 
Pham et al., 2019; Shirzadi et al., 2019; Youssef et al., 2016). As slope increases the shear stress 
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on soil and other unconsolidated materials increases, but the thickness of these unconsolidated 
materials become negligible at a certain slope angle, so the relationship between landslide hazard 
and slope is non-linear (Roering et al., 2001). Therefore, the occurrence of shallow slides tends to 
increase with slope until other mass movements, such as topples and falls, begin to dominate. We 
derived the slope layer from the DSM using the R 4.0.3 terrain function in the spatialEco package 
following Horn, 1981 (R Core Team, 2020). Slope was split into 6 classes: 0°-10°, 10°-20°, 20°-
30°, 30°-40°, 40°-50°, and >50°.   
 
Elevation 
Elevation has also been found to be an important contributing factor in landslide occurrence (e.g., 
Ayalew et al., 2004; Ayalew & Yamagishi, 2005; Conoscenti et al., 2016; Dehnavi et al., 2015; 
Hong et al., 2018; Kornejady et al., 2017; Shirzadi et al., 2019). Elevation has potential prognostic 
utility due to its correlation to more direct causal factors often more difficult to measure. For 
example, in mountainous terrains elevation is a dominant factor in precipitation patterns (Haiden 
& Pistotnik, 2009). Elevation is also a factor in the complex feedback of vegetation, soil, and 
topography (Pelletier et al., 2013). Elevation was split into 7 equal classes ranging from the 
minimum to maximum elevation. 
 
Aspect 
Many studies also found aspect to be an important landslide contributing factor (e.g., Ayalew et 
al., 2004; Kornejady et al., 2017; Pham et al., 2019; Shirzadi et al., 2019; Youssef et al., 2016). 
Aspect, like elevation, is a proxy for other landscape characteristics known to influence landslide 
mechanics such as soil moisture and vegetation, factors that greatly affect soil strength and 
cohesion (Ray & Jacobs, 2007). These are often climate dependent, so susceptibility as a function 
of aspect varies from region to region. For example, in three regions in Puerto Rico, cloudiness 
and wind direction were more important than sun exposure in controlling soil temperature and 
moisture (Larsen & Torres-Sanchez, 1998). In higher elevation regions, soil moisture and 
temperature may be more distinct between North and South aspects. We derived the aspect layer 
from the DSM using the R 4.0.3 terrain function in the spatialEco package following Horn, 1981 
(R Core Team, 2020). Aspect was broken up into 4 classes: N (315° - 45°), E (45° - 135°), S (135° 
- 225°), W (225° - 315°). 
 
Topographic Position Index 
Multiple studies found topographic position index (TPI) to be a significant landslide contributing 
factors (e.g., Conoscenti et al., 2016; Kritikos et al., 2015). TPI is a simple relief measurement that 
calculates the difference between an elevation value and the mean of the surrounding elevation 
within a certain radius (Weiss, 2000). The TPI used in this study calculates the difference between 
a cell and the mean of the surrounding 8 cells using the R 4.0.3 terrain function in the spatialEco 
package (R Core Team, 2020). The small neighborhood size captures smaller scale features 
(Jenness et al., 2013). TPI can be used to classify a region into discrete slope position classes, 
which have been found to be related to various soil properties (e.g., Martz, 1992; Tsui et al., 2004). 
Positive TPI values indicate the cell is higher than surrounding cells (e.g., ridges) while negative 
values indicate the cell is lower than in surrounding cells (e.g., valleys) (Weiss, 2000). TPI was 
broken up into 5 distribution-based classes corresponding to valleys (min to -1sd), lower slopes (-
sd to -0.5sd), middle slopes (-0.5sd to 0.5sd), upper slopes (0.5sd to 1sd) and ridges (1sd to max), 
where sd equals standard deviation. 
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Plan and Profile Curvature 
Plan and profile curvature are used in landslide susceptibility analyses since the curvature of a 
hillslope affects how water flows above and below the surface. Profile curvature affects flow 
acceleration, erosion and deposition rates, and soil moisture (Moore et al., 1991; Speight, 1980). 
Profile or plan curvature were significant predictors in multiple studies (e.g., Ayalew et al., 2004; 
Chen et al., 2017; Dehnavi et al., 2015; Hong et al., 2018; Kornejady et al., 2017; Shirzadi et al., 
2019; Pham et al., 2019). Planform and profile curvature are the second derivatives of elevation in 
the lateral and vertical direction, respectively. Negative curvature values indicate a concave 
surface, positive values indicate a convex surface, and zero values indicate a flat slope. Planform 
and profile curvature were derived from the DSM using the QGIS 3.4.13- SAGA – morphometry 
package (QGIS Development Team, 2009). Profile and planform curvature variables were each 
split into three classes: concave (min to -0.001), flat (-0.001 to 0.001), and convex (0.001 to max). 
 
2.2. Landslide Data (dependent variable) 
 
We chose landslide inventories based on their public availability and their variability. The datasets 
have different quality and resolution. The inventories were also compiled using various methods 
that include identification from LiDAR-derived DEMs, aerial photographs, stereo-aerial 
photographs, orthophotos, historical records, and some field verification. Some datasets were also 
differentiated by landslide type or landslide process domain (e.g., scarps and flanks or deposits).  
 
Kentucky 
The Kentucky landslide data were publicly available from the Kentucky Geological Survey 
(Crawford, 2021). These data include landslides identified from LiDAR-derived DEMs with 1-1.5 
m horizontal resolution, but not differentiated by type. Other landslides included in the analysis 
were earthflows, debris slides and slumps derived from aerial photographs, historical records and 
field verification between 1977-1981 (Crawford, 2021). Three regions were analyzed in Kentucky 
with areas ranging from 490 to 10970 km2. Study areas 1 and 2 were processed using landslides 
derived from both LiDAR and aerial methods (ky1 and ky2), while area 1 was also processed using 
landslides from aerial methods alone (ky1a). Study areas 2 and 3 were also analyzed using only 
LiDAR-derived landslide data (ky2l and ky3l).  
 
North Carolina 
The North Carolina landslide data were publicly available from the North Carolina Geological 
Survey (North Carolina Geological Survey, 2021). These data include individual slope movements 
identified from aerial photography, orthophotography, and field verification. Landslide deposits 
that consist of earth, debris, and rock fragments were also included in the analysis. The North 
Carolina study area spanned roughly 6016 km2. This area was processed using just individual slope 
movements (nc1sm), deposits (nc1d), and the combination of individual slope movements and 
deposits (nc1). 

 
Utah 
The landslide data for Utah were publicly available from the Utah Geological Survey (Utah 
Geological Survey, 2016). These landslides were identified using LiDAR and stereo-aerial 
photography with some field verification. These data include rotational slides, translational slides, 
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and flows at a scale of 1:24,000 or better, with some slide types unidentified. The Utah study area 
spanned roughly 1082 km2. This area was processed using landslides scarps (ut1s), deposits (ut1d), 
and a combination of both (ut1). 
 
Washington 
The landslide data for Washington were publicly available from Washington Geological Survey 
(Washington Geological Survey, 2020). The landslides used were all detected using LiDAR 
derived DEMs. One subset of data delineates the scarps and flanks, another delineates landslide 
deposits, and another delineates an entire landslide area that includes scarps, flanks, and deposits 
(Washington Geological Survey, 2020). Four areas were analyzed in Washington ranging from 
233 km2 to 2149 km2. We analyzed regions 1-4 using all three datasets together (wa1-4), just the 
scarps and flanks (wa1-4sf), and just the deposits (wa1-4d).  
 
2.3 Statistical Relationships  
 
2.3.1 Logistic Regression 
 
Logistic regression is a common method used in landslide susceptibility analyses (e.g., Budimir et 
al., 2015; Hong et al., 2016; Shahabi et al., 2014; Yalcin et al., 2011). In binary logistic regression, 
the parameters of the logistic model are estimated using the maximum likelihood method which 
maximizes the ratio of the probability an event occurred to the probability the event did not occur. 
The dependent variable is binary; in landslide susceptibility analyses this is whether a landslide 
occurred or not. The independent variables (i.e., landslide contributing factors) can be discrete, 
continuous, or a combination of both and do not need to be normally distributed. The predicted 
value is the probability of landslide occurrence ranging from 0 to 1. The logistic function shown 
below represents the probability of the event occurring. 

𝑃(𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒) =
1

1 + 𝑒./ 
𝑧 = 	𝛽3 + 𝛽4𝑥4 + 𝛽6𝑥6 + ⋯+ 𝛽8𝑥8	

 
𝑃(𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒): probability of the event (landslide) occurring 
𝛽9	(i	 = 	0, 1, 2,… , n): parameters of the 𝑖@A variable 
𝑥9	(i	 = 	0, 1, 2,… , n): values of the 𝑖@A independent variable 
 
2.3.2 Frequency Ratio 
 
Frequency Ratio is another common statistical method used in landslide susceptibility analyses 
(e.g., Aditian et al., 2018; Hong et al., 2016; Shahabi et al., 2014; Yalcin et al., 2011). This method 
uses the ratio of landslide density of the contributing factors to the landslide density of the total 
region. Each explanatory variable is broken up into representative classes. The landslide density 
of each variable class is the landslide area in that class as a fraction of the total class area. The 
landslide density of the region is the total landslide area as a fraction of the total study area. 
Frequency ratio values above 1 contribute positively to landslide occurrence while frequency ratio 
values below 1 are the opposite. Landslide Susceptibility Index (LSI) values are calculated by 
summing the frequency ratios that correspond to the appropriate explanatory variable class. 
Relative probability of landslide occurrence is then found by normalizing the LSI values.   
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𝐹𝑅9E = 	 F
	𝑁9E
𝐴9E

𝑁I
𝐴I

J K 

𝐿𝑆𝐼 = 𝐹𝑅4 + 𝐹𝑅6 +⋯+ 𝐹𝑅8 

𝑃(𝑡𝑟𝑢𝑒) =
𝐿𝑆𝐼 −min	(𝐿𝑆𝐼)

max(𝐿𝑆𝐼) −min	(𝐿𝑆𝐼) 

𝐹𝑅9E: frequency ratio of 𝑗@A  class of 𝑖@A response variable 
𝑁9E   : area of landslides in 𝑗@A  class of 𝑖@A response variable 
𝐴9E   : area of 𝑗@A  class of 𝑖@A response variable 
𝑁I    : total area of landslides 
𝐴I    : total study region area 
LSI  : Landslide Susceptibility Index of each pixel 
 
2.4 Model Building and Validation 
 
Empirical susceptibility relationships were determined for all regions, shown in Figure 2 and Table 
1, using both logistic regression and frequency ratio methods. In this paper, a region refers to a 
unique area and landslide data combination (e.g., region wa1sf refers to Washington area 1 using 
only scarps and flanks landslide data). We cross-validated select logistic regression models on 
regions independent from training; this will be referred to as single-region cross-validation 
(SRCV). This was done in Washington areas 1 – 4 using the scarps and flanks landslide data (e.g., 
model LR-wa1sf was used to predict susceptibility in regions wa2sf, wa3sf, and wa4sf). We also 
developed logistic regression models using data from a combination of regions and cross-validated 
them on independent regions, this will be referred to as multi-region cross-validation (MRCV). 
This analysis was performed in Washington areas 1 – 3 using the scarps and flanks landslide data 
(e.g., a LR model developed from data in wa1sf and wa2sf was used to predict susceptibility in 
region wa3sf). We used two different methods of data classification, contributing factors from 
each region were either classified before they were combined (separate) or after they were 
combined (together). All relationships were determined using a training dataset that consisted of 
70 percent of landslides pixels with an equal number of randomly selected non-landslide pixels. A 
simplified workflow of each of these analyses is shown in Figure 3. We classified the final 
susceptibility predictions into five classes using three techniques: Jenks natural breaks, equal 
intervals ranging from minimum to maximum susceptibility, and equal intervals ranging from 0 to 
1. The five susceptibility classes correspond to “low”, “low-moderate”, “moderate”, “high”, and 
“very-high” susceptibility. 
 



 
 

 12 

 
Figure 2. Study regions. Landslides shown in red. (a) Overview showing location of larger study 
areas; (b) Washington areas; (c) Utah area; (d) Kentucky and North Carolina areas. Note that (b) 
– (d) share the same scale. (Coordinate System: WGS 1984 Web Mercator Auxiliary Sphere) 
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Region Extent (WGS 1984) Study Area 

(km2) 
Landslide 
Area (km2) 

Landslide Data Description 

wa1sf (-122.3, -121.73, 4.7, 47.2) 2121 7 Scarps & Flanks 
wa2sf (-122.3, -121.85, 47.2, 47.77) 2149 12 Scarps & Flanks 
wa3sf (-122.36, -122, 48.65, 49) 1029 14 Scarps & Flanks 

wa4sf (-121.68, -121.5, 45.72, 45.8) 233 4 Scarps & Flanks 
wa1d (-122.3, -121.73, 4.7, 47.2) 2121 47 Deposits 
wa2d (-122.3, -121.85, 47.2, 47.77) 2149 63 Deposits 
wa3d (-122.36, -122, 48.65, 49) 1029 151 Deposits 

wa4d (-121.68, -121.5, 45.72, 45.8) 233 22 Deposits 
wa1 (-122.3, -121.73, 4.7, 47.2) 2121 83 Scarps & Flanks & Deposits 
wa2 (-122.3, -121.85, 47.2, 47.77) 2149 76 Scarps & Flanks & Deposits 
wa3 (-122.36, -122, 48.65, 49) 1029 165 Scarps & Flanks & Deposits 

wa4 (-121.68, -121.5, 45.72, 45.8) 233 26 Scarps & Flanks & Deposits 
ut1s (-111.67, -111.18, 39, 39.23) 1082 8 Scarps 
ut1d (-111.67, -111.18, 39, 39.23) 1082 243 Deposits 
ut1 (-111.67, -111.18, 39, 39.23) 1082 252 Scarps & Deposits 
ky1 (-84, -82.4, 37.3, 38) 10970 60 LiDAR & Aerial 
ky1a (-84, -82.4, 37.3, 38) 10970 53 Aerial 
ky2 (-83.2, -82.95, 37.59, 37.79) 489 10 LiDAR & Aerial 
ky2l (-83.2, -82.95, 37.59, 37.79) 489 5 LiDAR 
ky3l (-84.6, -84.35, 38.8, 39.02) 530 2 LiDAR 
nc1sm (-83.16, -82.13, 35.18, 35.76) 6016 4 Slope movements 
nc1d (-83.16, -82.13, 35.18, 35.76) 6016 146 Deposits 
nc1 (-83.16, -82.13, 35.18, 35.76) 6016 149 Slope Movements & Deposits 

Table 1. Summary of the study regions, the locations of which are shown in Figure 1. A region 
refers to a unique area and landslide data combination. 
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Figure 3. Overview of workflows used for developing and assessing susceptibility relationships. 
Single-region analysis was conducted in all 23 regions, single-region cross-validation was 
conducted in four regions (wa1-4sf), multi-region cross-validation was conducted in three regions 
(wa1-3sf). 

 
To test whether landslide occurrence is dependent on the contributing factors, we extracted the 
statistical significance of each factor from the logistic regression model equation. Statistical 
significance is determined from a p-value, the probability that the result, in this case the effect the 
contributing factor has on landslide occurrence, is just due to chance (R Core Team, 2020). A p-
value below 0.05 is often accepted as very strong evidence that the effect is not due to chance. It 
should be noted that this significance shows whether a factor provides systematic information 
about landslide occurrence, not necessarily whether the factor positively or negatively affects the 
occurrence. Multicollinearity, the interdependency between explanatory variables, can be a 
problem in regression analyses since explanatory variables are expected to be independent (Farrar 
& Glauber, 1967). We tested the degree of multicollinearity between factors by calculating the 
variance inflation factor (VIF), which measures whether a predictor can be linearly estimated by 
the others (R Core Team, 2020). A strict cutoff for the VIF value is not recommended, but it is 
often suggested that VIF values above 5 or 10 suggest a problematic level of multicollinearity 
(Craney & Surles, 2002).   
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We used multiple methods to evaluate the performance of the models. Relative operating 
characteristic (ROC) curves, the true-positive rate versus the false-positive rate, were used to 
assess the accuracy of the assessments (Swets, 1988). ROC curves are useful when the cutoff 
probability that determines a true or a false is unclear. The area under the ROC curve (AUC) is a 
common metric used to assess the accuracy of binary systems. An AUC of 0.5 shows no signs of 
predictive ability while AUC values closer to 1 signify higher performance. Model performance is 
classified as acceptable, excellent, and outstanding for AUC thresholds of 0.7, 0.8, and 0.9, 
respectively (Conoscenti et al., 2016; Hosmer & Lemeshow, 2000). The susceptibility 
relationships were also assessed using the cutoff-dependent criteria shown in Table 2, which 
include the Pierce skill score (PSS; Peirce, 1884) and Yule’s Q score (ORSS; Stephenson, 2000; 
Yule, 1900). These metrics range from -1 to 1 and take all values of a contingency table into 
account (i.e., true positives, true negatives, false positives, and false negatives). Zero scores 
correspond to random no-skill prediction ability, while values closer to 1 indicate higher prediction 
ability. We chose a cutoff value of 0.5 to differentiate between stable and unstable slopes, due to 
its statistical meaning. The percentage of landslides correctly classified in high or very-high 
susceptibility classes (LS % overlap) was also used to assess the methods.   
 

Pierce skill score (True skill score) 𝑡𝑝
𝑡𝑝 + 𝑓𝑛 −

𝑓𝑝
𝑓𝑝 + 𝑡𝑛 

Odds ratio skill score (Yule’s Q) 𝑡𝑝 ∙ 𝑡𝑛 − 𝑓𝑝 ∙ 𝑓𝑛
𝑡𝑝 ∙ 𝑡𝑛 + 𝑓𝑝 ∙ 𝑓𝑛 

Table 2. Cutoff dependent accuracy statistics. tp = true positive, tn = true negative, fp = false 
positive, fn = false negative 

 
We performed a sensitivity analysis to determine the effect of using random training data. The 
analysis was performed in the same region (wa2sf) using 50 randomly selected training datasets 
(see Figure S2 in supplement). The importance of the percent of landslides in the training dataset 
was also considered using different training to testing ratios of 60%:40% and 80%:20% (see Figure 
S1 in supplement). 
 
3. Results 
 
We extracted the statistical significance of each contributing factor from the logistic regression 
models. This statistical significance is a measure of whether the effect the contributing factor has 
on landslide occurrence is real or due to random chance. 21 of the 23 regions found west-facing 
aspect to be a significant predictor of landslide occurrence (p < 0.05). 21 of the 23 regions found 
elevations in the second class to be a significant predictor of landslide occurrence (p < 0.05). 16 
of the 23 regions found convex planform and convex profile curvatures to be a significant 
predictors of landslide occurrence (p < 0.05). 14 of the 23 regions found slopes from 0-10° and 
10-2 0° to be significant predictors of landslide occurrence (p < 0.05). All 23 regions found the 
TPI values in the fourth class to be significant predictors of landslide occurrence (p < 0.05). These 
results are summarized in Table 3. No multicollinearity was found for any of the landslide 
contributing factors in any region. The variance inflation factors of all the variables were below 
1.445 (see Table S2 in supplement), which is well under the problematic VIF of 5 or larger. 
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Landslide 
Contributing Factor 

Number of regions 
factor was significant 

aspect 21 
elevation 21 
planform curvature 16 
profile curvature 16 
slope 14 
tpi 23 

Table 3. Number of regions (out of 23) that found each contributing factor to be a significant 
predictor of landslide occurrence using a cutoff p-value of 0.05. 

 
The area under the relative operating characteristic curves (AUC) for the logistic regression and 
frequency ratio relationships for both the training and testing datasets are shown in Table 4 and 
select ROC curves are shown in Figure 4. According to the AUC performance criteria (0.7 – 0.8 
acceptable, 0.8 – 0.9 excellent, > 0.9 outstanding), the majority of models performed at or above 
an acceptable level. Models with high quality data differentiated by landslide process domain or 
by individual slope movements performed best. These include Washington models that used only 
scarps and flanks data, Utah scarps data, or North Carolina individual slope movements (wa1-4sf, 
ut1s, nc1sm). AUC values for the logistic regression training data ranged from 0.764 - 0.895 with 
an average of 0.83. All models that used just deposits data, or a combination of scarps, flanks and 
deposits data (i.e., wa1-4d, wa1-4, ut1d, ut1, nc1d, and nc1) performed less well but still mostly 
met the acceptable level. AUC values for the logistic regression training data ranged from 0.67 – 
0.81 with an average of 0.717. In Kentucky, the models that used a substantial portion of LiDAR-
derived landslides (i.e., ky2, ky2l, and ky3l) performed at an acceptable or excellent level with 
AUC values from 0.750 - 0.847 for LR training data. In Kentucky, the models dominated by aerial 
derived landslides (i.e., ky1 and ky1a, mapped and verified between 1977-1981) did not perform 
well with AUC values from 0.63 - 0.64 for LR training data. In all regions, logistic regression and 
frequency ratio models had similar AUC values. Logistic regression always had slightly higher 
AUC values than frequency ratio, but FR AUC values were all within 0.033 of their respective LR 
AUC values. For all regions, the difference between AUC values of the training and testing 
datasets were all within 0.017. 
 
The Pierce skill score (PSS) and the Yule’s Q score (ORSS) for the logistic regression models are 
shown in Table 4. These values were not calculated for the frequency ratio relationships since there 
is no statistically significant cut-off value that differentiates between a success or failure (i.e., 
landslide presence or absence) for this type of relationship. For logistic regression this cut-off is 
0.5. For all relationships these values behaved similarly to the AUC values; this behavior can be 
seen in Figure 5. The PSS values range from 0.189 – 0.624, while the ORSS values range from 
0.369 – 0.898. 
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  Logistic Regression Frequency 
Ratio 

Region Train 
AUC 

Test 
AUC 

PSS ORSS Train 
AUC 

Test 
AUC 

wa1sf 0.836 0.823 0.528 0.856 0.807 0.790 
wa2sf 0.864 0.860 0.569 0.860 0.849 0.842 
wa3sf 0.808 0.806 0.476 0.790 0.805 0.801 
wa4sf 0.764 0.753 0.366 0.657 0.759 0.746 
ut1s 0.895 0.896 0.624 0.898 0.881 0.884 
nc1sm 0.811 0.806 0.469 0.769 0.797 0.792 
wa1d 0.730 0.721 0.326 0.603 0.720 0.711 
wa2d 0.803 0.802 0.489 0.790 0.795 0.794 
wa3d 0.716 0.712 0.311 0.576 0.709 0.705 
wa4d 0.682 0.677 0.268 0.517 0.677 0.672 
ut1d 0.698 0.698 0.296 0.548 0.695 0.694 
nc1d 0.703 0.703 0.297 0.548 0.694 0.695 
wa1 0.692 0.692 0.296 0.555 0.688 0.688 
wa2 0.810 0.811 0.497 0.798 0.801 0.802 
wa3 0.722 0.721 0.332 0.611 0.715 0.714 
wa4 0.670 0.672 0.251 0.478 0.664 0.664 
ut1 0.685 0.685 0.275 0.514 0.683 0.683 
nc1 0.698 0.698 0.289 0.536 0.689 0.689 
ky1 0.630 0.629 0.189 0.369 0.624 0.622 
ky1a 0.640 0.636 0.209 0.401 0.637 0.633 
ky2 0.750 0.751 0.389 0.685 0.740 0.743 
ky2l 0.765 0.758 0.394 0.683 0.756 0.749 
ky3l 0.847 0.830 0.558 0.851 0.837 0.832 

Table 4. Diagnostic statistics with no qualitative user input. Cutoff-independent AUC values. 
Cutoff-dependent (0.5 indicates cutoff between stable and unstable slopes) criteria PSS and 
ORSS.  
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Figure 4. Select ROC curves of different types of regions. The diagonal line represents random, 
no information results. ut1s shows the best performance of the ensemble, while ky1 shows the 
worst. ut1s is “scarps, flanks, individual slope movements”; nc1s is “dominated by deposits data”; 
ky1 is “dominated by aerial-derived landslides”; ky2l is “dominated by lidar-derived landslides.” 

 
Figure 5. Plot of logistic regression diagnostic statistics. “KY LiDAR” and “S, F, SM” regions 
consistently outperform “KY Aerial” and “deposits” regions for all diagnostic statistics shown.  
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AUC = area under relative operating characteristics curve; PSS = Pierce skill score (True skill 
score); ORSS = Odds ratio skill score (Yule’s Q); Acceptable AUC = “acceptable” performance 
with AUC values above 0.7. “S, F, SM” = scarps, flanks, individual slope movements; “deposits” 
= dominated by deposits data; “KY Aerial” = dominated by aerial-derived landslides; “KY 
LiDAR” = dominated by lidar-derived landslides.  

 
The overlap between landslide susceptibility classes and landslide occurrence for all regions is 
shown in Table S1 (see supplement). An example susceptibility map for region wa2sf is shown in 
Figure 6. This is a logistic regression model using an equal (0 - 1) classification method for 
susceptibility. The classification method that provides the best results is dependent on region, but 
should capture a large number of landslides in the “high” – “very high” susceptibility classes 
without making those areas too large. For logistic regression the percentage of landslides in the 
“high” – “very high” susceptibility classes ranged from 49.7% - 84.6%, 57.5% – 84.6%, and 20.2% 
- 77.8% for Jenks, equal (min – max), and equal (0 – 1) classification methods respectively. For 
frequency ratio the percentage of landslides in the “high” – “very high” susceptibility classes 
ranged from 51.6% - 95.7%, 59.9% – 91.7%, and 96.6% - 100% for Jenks, equal (min – max), and 
equal (0 – 1) classification methods respectively. The frequency ratio results for the equal (0 - 1) 
classification method are misleading, although a large portion of the landslides are captured, 
anywhere from 58.9% - 100% of the study area falls within the “high” – “very high” susceptibility 
classes. 
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Figure 6. (a) Susceptibility map of wa2sf region using logistic regression model. L = Low, L-M 
= Low – Moderate, M = Moderate, H = High, VH = Very High. Susceptibility was classified 
using the equal (0 – 1) classification method. (b) Landslide occurrence map overlapping elevation. 
(c) Susceptibility map of sub-region. (d) Landslide occurrence map of sub-region. 
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The cross-validation results are more variable. The PSS, ORSS, and AUC values for single-region-
cross-validation (SRCV) and multi-region-cross-validation (MRCV) are shown in Table 5 and 
Table 6, respectively. The SRCV results using data trained and tested between regions wa2sf, 
wa3sf, and wa4sf had acceptable prediction success (AUC: 0.714 – 0.785, PSS: 0.187 – 0.383, 
ORSS: 0.613 – 0.787). The SRCV results that were trained or tested on region wa1sf had poor 
results with the exception of the model trained in wa2sf (AUC: 0.563 – 0.741, PSS: {-0.068} - 
0.366, ORSS: {-0.484} - 0.708). The MRCV results using data classified separately performed 
better that when data was classified together (Separately: AUC: 0.678 – 0.844, Together: AUC 
0.574 – 0.676). 
 

Logistic Regression 
Train Test AUC PSS ORSS 
wasf1 wasf2 0.636 0.358 0.680 

wasf3 0.579 0.028 0.067 
wasf4 0.600 -0.062 -0.457 

wasf2 wasf1 0.741 0.366 0.708 
wasf3 0.750 0.383 0.742 
wasf4 0.721 0.305 0.717 

wasf3 wasf1 0.607 0.033 0.074 
wasf2 0.777 0.282 0.707 
wasf4 0.714 0.334 0.658 

wasf4 wasf1 0.563 -0.068 -0.484 
wasf2 0.725 0.187 0.787 
wasf3 0.785 0.279 0.613 

Table 5. Diagnostic statistics from single-region-cross-validation (SRCV): testing logistic 
regression models on regions not included in training. The values are found using 100% of data 
in testing regions. 

 
Data Train Test AUC PSS ORSS 

Classified 
Separately 

wasf1, wasf2 wasf3 0.678 0.226 0.431 
wasf1, wasf3 wasf2 0.844 0.471 0.817 
wasf2, wasf3 wasf1 0.691 0.333 0.622 

Classified 
Together 

wasf1, wasf2 wasf3 0.574 0.325 0.726 
wasf1, wasf3 wasf2 0.660 0.040 0.095 
wasf2, wasf3 wasf1 0.676 0.321 0.605 

Table 6. Diagnostic statistics from multi-region-cross-validation (MRCV): testing logistic 
regression models on regions not included in training. Training data were either classified before 
(separately) or after (together) combination. The values are found using 100% of data in testing 
regions. 
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4. Discussion 
 
In landslide susceptibility analyses, there are subjective decisions to make that often depend on 
the amount and quality of available data and level of expertise of the practitioner. These decisions 
include the type of relationship determined, the nature and number of contributing factors, the type 
of mapping unit used, the ratio of training to testing data, and how to classify susceptibility. 
Compiling accurate landslide inventories is often time-consuming and resource-heavy. Most 
newly developed techniques are computationally expensive, specific to limited study areas, and 
use data that can be hard to obtain. At the same time, places with substantial landslide hazard may 
not have the resources to obtain high-quality, high-resolution data or perform complex statistical 
analyses. Overfitting is a pervasive problem in landslide susceptibility analyses. 
 
We aim to develop a method that is easy to implement and reduces the number of decisions and 
technical investments the practitioner needs to make. We use a 30-m globally available DSM, 
publicly available landslide inventories, and open-source software packages R and QGIS. 
Contributing factors were all derived from a DSM and were automatically broken into their 
respective classes. We tested the method using landslide data of various quality in diverse regions. 
The more general a method is, the more likely the relationships can be used to determine 
susceptibility in other regions; this study is a first step in this pursuit. If general relationships can 
be used to predict susceptibility in other regions, this would allow susceptibility to be determined 
in places without landslide inventories. The models performed well in most regions diverse in their 
climate, geology, quality of data, extent of study area, and the area of landslides. We also found 
that some relationships developed in one region, or a combination of regions, had good predictive 
performance in other regions. This result indicates the potential transferability of relationships 
under certain circumstances. 
 
Although the Frequency Ratio (FR) relationships have good predictive performance based on AUC 
values, Logistic Regression (LR) is the preferred method. Logistic regression is more statistically 
rigorous. The output of LR is already a percentage likelihood while normalized FR values are 
relative and can only be interpreted in relation to the region used to determine them. The statistical 
significance of factors can be easily extracted from the LR equation and other cut-off-based criteria 
are applicable to LR relationships, which is not true for FR relationships. After normalization, the 
FR relative susceptibility values in this study are very high, with the first quantile values of the 
relationships ranging from 0.564 to 0.867. It is still possible to determine susceptibility from FR 
relationships, but the user should be careful interpreting these values and assigning susceptibility 
classes. It is only slightly more difficult to interpret the results of LR compared to FR, but the 
benefits outweigh this increased difficulty.  
 
It is important to carefully consider what factors should be included in a model since factors may 
be found to be statistically significant predictors of landslide occurrence, but might not be of 
practical importance. We considered factors with strong theoretical or empirical evidence that 
directly connects them to landslide occurrence, or as proxies to factors more directly linked to 
landslide occurrence such as erosion and deposition rates, and soil moisture. VIF values for all 
variables in all regions were 1.445 or less, which shows there is no multicollinearity between 
predictors. A majority of regions (14 of 23) found at least one class of each contributing factor to 
be statistically significant (p < 0.05). If even one class of a contributing factor is found to have 
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predictive power, all classes should be included in order to calculate susceptibility in every range 
of factor values. Although not every region found all contributing factors to be important, all 
factors should be included in a preliminary model. Further analysis could be conducted by 
gradually removing predictors not found to be significant, a method known as backward stepwise 
regression. Backward stepwise regression was not done in this study; even without the removal of 
irrelevant factors the models still perform at an acceptable level.  
 
In this study, there was not one best way to break up susceptibility into classes. Three methods 
were used: Jenks natural breaks, equal breaks (min – max), and equal breaks (0 – 1). Jenks and 
equal breaks (min – max) are dependent on the distribution of susceptibility and since this 
distribution is relative, the classified susceptibility should not be used to compare to other regions. 
Equal breaks (0 – 1) are not dependent on the distribution of susceptibility, so the classified 
susceptibility can be compared to other regions. Careful consideration is needed when breaking up 
susceptibility into classes. It is important to capture as many landslides as possible in high 
susceptibility classes, without increasing the area of these classes too much. Even if you capture 
most of the landslides, this will not provide useful information if the majority of a region is 
considered high susceptibility. Since Frequency Ratio values were normalized they provide 
relative susceptibility and should not be compared to other regions. For the majority of regions, 
the median FR value is very high, so the results should be carefully considered. 
 
We expect that regions with high quality landslide data distinguished by landslide process domain 
will perform well. The locations of scarps and flanks provide information on where landslides are 
likely to originate, while the location of deposits provides information on where landslides have 
traveled as well as where possible reactivation of landslides may occur. Scarps and flanks data and 
deposits data both contain important, but unique information about landslide susceptibility. When 
possible, to increase the usefulness of each dataset, they should be considered separately. This can 
be evidenced by the predictive performance of relationships determined from different datasets in 
Washington, Utah, and North Carolina. The data that describes the scarps, flanks and individual 
slope movements performed the best (LR AUC 0.764 - 0.895). Data that describes landslide 
deposits or a combination of scarps, flanks and deposits performed well, but had less predictive 
ability (LR AUC 0.67 – 0.81). The difference in performance between landslide source data and 
deposits data is likely due to the large difference in landslide area and the more variable nature of 
deposits. In Washington, Utah, and North Carolina the area of deposits was anywhere between 5-
33 times larger than the area of landslide sources (5-11, 29, and 33 respectively). This larger area, 
as well as the nature of deposits leads to more variability in the distribution of deposits within each 
variable class.  
 
The quality of landslide inventories was found to be an important control on model performance. 
The majority of inventories used in this analysis are identified from LiDAR derived DEMS, while 
a smaller portion of landslides were identified using aerial photographs, stereo-aerial photographs, 
orthophotos, historical records, and field verification. Although accuracy of each identification 
method depends on factors such as landslide age, landslide size and vegetation cover, we consider 
high quality inventories to be compiled using more accurate methods such as identification from 
LiDAR-derived DEMs and stereo-aerial photographs. In Kentucky, regions dominated by LiDAR-
derived landslide data performs well (ky2, ky2l, ky3l: LR AUC 0.75 – 0.847). Relationships that 
were dominated by aerial-derived landslide data did not perform well (ky1, ky1a: LR AUC 0.629 
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– 0.64). The reduced performance of regions dominated by aerial-derived landslides is likely due 
to the quality of this specific dataset. This dataset is based on aerial photographs, historical records, 
and field verification between 1977-1981 with a confidence in nature and extent of only 3 out of 
8 (Crawford, 2021). This is not to say non-LiDAR identified landslides cannot be used since the 
North Carolina inventory includes aerial derived landslides, but still performs well. This difference 
is likely due to the age and nature of the KY data that may not be accurate to the current landscape. 
Although this method works well in a variety of situations, care should be taken when using this 
method on landslide inventories of questionable quality. 
 
The method may not perform consistently at all scales. It performed the best at regional scales, 
multi-county in size, which is an appropriate scale for disaster planning purposes. This can be seen 
in the slightly reduced predictive performance for all datasets in Washington region 4, a region 
spanning only ~230 km2. This method should also not be used at a national scale since there would 
be too much variation in topography, climate, and the nature of the landslides. 
 
There were promising results when relationships trained in one region were used to predict 
susceptibility in other regions. This was tested using single-region and multi-region cross-
validation using the Washington scarps and flanks data. SRCV logistic regression models trained 
and tested in regions 2, 3, or 4 had good predictive performance, while results using testing or 
training data in region 1 did not have acceptable performance, as seen in Table 5.  MRCV logistic 
regression models in wa1-3sf had acceptable performance when data was classified separately, as 
seen in Table 6. This could be due to the diversification of the data by including other regions in 
training. Although the performance is not perfect, this method would be useful when trying to 
assess susceptibility in places without landslide inventories. 
 
Future research could build on this work by testing in a variety of other regions as well as 
systematic sensitivity testing for DSM resolution. There should also be more cross-validation of 
relationships to better understand in what circumstances one relationship can be used to predict 
susceptibility in another. This method performs best with high-quality landslide inventories at 
regional scales and can be used as a preliminary analysis to identify areas of greater concern. This 
method uses globally available data, is easy to implement and adjust, and avoids overfitting 
relationships to a specific region. This study is a first step in finding a generalizable method that 
allows the transfer of susceptibility relationships between regions. 
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6 Supplementary Information 
 
Table S1. % LS represents the percentage of landslides classified in “high” – “very high” 
susceptibility classes. % area represents the percentage of area classified as “high” – “very high” 
susceptibility for each region. Three methods were used to classify data into susceptibility classes: 
Jenks natural breaks, equal intervals ranging from minimum to maximum susceptibility, and equal 
intervals ranging from 0 to 1. 
 

  Logistic Regression Frequency Ratio 
  High - Very High High - Very High 

  Jenks Equal  
(min - max) 

Equal  
(0 - 1) Jenks Equal  

(min - max) 
Equal  
(0 - 1) 

Region % LS % 
area % LS % 

area % LS % 
area % LS % 

area % LS % 
area % LS % 

area 

wa1sf 0.846 0.333 0.846 0.333 0.778 0.280 0.930 0.313 0.797 0.435 1.000 0.985 
wa2sf 0.719 0.253 0.828 0.171 0.705 0.164 0.864 0.292 0.843 0.313 0.966 0.589 
wa3sf 0.768 0.300 0.764 0.303 0.718 0.267 0.947 0.472 0.917 0.521 0.995 0.740 
wa4sf 0.681 0.307 0.681 0.307 0.588 0.224 0.882 0.320 0.685 0.544 1.000 0.967 
ut1s 0.761 0.200 0.811 0.143 0.753 0.137 0.861 0.280 0.857 0.288 0.990 0.764 
nc1sm 0.623 0.412 0.739 0.336 0.618 0.218 0.566 0.484 0.764 0.409 0.994 1.000 
wa1d 0.790 0.386 0.698 0.485 0.479 0.204 0.957 0.316 0.599 0.703 1.000 1.000 
wa2d 0.706 0.242 0.717 0.234 0.663 0.213 0.876 0.302 0.763 0.440 0.990 0.859 
wa3d 0.707 0.498 0.764 0.442 0.555 0.310 0.883 0.474 0.730 0.636 0.999 0.975 
wa4d 0.745 0.553 0.788 0.507 0.428 0.242 0.904 0.527 0.758 0.718 1.000 1.000 
ut1d 0.748 0.448 0.676 0.521 0.493 0.302 0.934 0.467 0.693 0.768 1.000 1.000 
nc1d 0.673 0.454 0.697 0.286 0.455 0.210 0.830 0.543 0.704 0.511 1.000 1.000 
wa1 0.755 0.425 0.709 0.460 0.573 0.327 0.783 0.402 0.677 0.492 1.000 1.000 
wa2 0.707 0.252 0.733 0.234 0.670 0.215 0.874 0.289 0.758 0.412 0.989 0.847 
wa3 0.735 0.474 0.753 0.458 0.600 0.345 0.896 0.457 0.726 0.643 0.999 0.974 
wa4 0.701 0.420 0.640 0.482 0.392 0.232 0.918 0.415 0.621 0.750 1.000 0.997 
ut1 0.713 0.453 0.664 0.502 0.454 0.286 0.865 0.449 0.658 0.685 1.000 1.000 
nc1 0.673 0.230 0.694 0.197 0.450 0.193 0.810 0.218 0.758 0.218 1.000 0.903 
ky1 0.777 0.273 0.575 0.180 0.202 0.177 0.668 0.327 0.679 0.172 1.000 0.943 
ky1a 0.497 0.407 0.713 0.382 0.240 0.196 0.516 0.432 0.667 0.595 1.000 1.000 
ky2 0.717 0.413 0.796 0.389 0.548 0.198 0.774 0.499 0.835 0.578 1.000 1.000 
ky2l 0.662 0.584 0.817 0.391 0.567 0.118 0.846 0.487 0.864 0.498 1.000 1.000 
ky3l 0.736 0.509 0.772 0.309 0.729 0.132 0.756 0.466 0.756 0.337 0.990 1.000 
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Table S2. Variance inflation factors (VIF) for each classified variable. VIF values less than 5 do 
not exhibit problematic multicollinearity. 
 

  elevation_class slope_class aspect_class plan_class profile_class tpi_class 
ky3 1.124 1.110 1.010 1.271 1.311 1.223 
ky3a 1.128 1.113 1.009 1.260 1.300 1.221 
ky4 1.310 1.127 1.016 1.245 1.314 1.362 
ky4l 1.314 1.112 1.032 1.224 1.287 1.346 
ky5l 1.164 1.169 1.072 1.326 1.396 1.275 
nc1 1.116 1.153 1.014 1.340 1.345 1.258 
nc1sm 1.250 1.230 1.050 1.306 1.315 1.262 
nc1d 1.114 1.151 1.014 1.340 1.341 1.263 
ut1 1.081 1.128 1.020 1.301 1.343 1.290 
ut1s 1.218 1.221 1.076 1.252 1.361 1.330 
ut1d 1.070 1.105 1.021 1.308 1.346 1.273 
wa1sf 1.168 1.221 1.059 1.260 1.312 1.222 
wa2sf 1.194 1.227 1.038 1.349 1.387 1.239 
wa3sf 1.089 1.117 1.022 1.254 1.253 1.123 
wa4sf 1.052 1.087 1.046 1.291 1.317 1.239 
wa1d 1.102 1.176 1.010 1.329 1.350 1.237 
wa2d 1.089 1.110 1.045 1.393 1.436 1.248 
wa3d 1.193 1.256 1.011 1.319 1.309 1.145 
wa4d 1.076 1.103 1.025 1.316 1.338 1.259 
wa1 1.173 1.247 1.013 1.319 1.349 1.239 
wa2 1.095 1.112 1.044 1.400 1.445 1.240 
wa3 1.192 1.252 1.011 1.316 1.307 1.142 
wa4 1.073 1.102 1.024 1.316 1.349 1.256 
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Table S3. Logistic regression model coefficients. 
 

(Intercept) 

elevation_class2 

elevation_class3 

elevation_class4 

elevation_class5 

elevation_class6 

elevation_class7 

slope_class0- 10 deg 

slope_class10-20 deg 

slope_class20-30 deg  

slope_class30- 40 deg 

slope_class40-50 deg  

aspect_classN
 

aspect_classS 

aspect_classW
 

plan_classlaterally concave 

plan_classlaterally convex 

profile_classupw
ardly concave 

profile_classupw
ardly convex 

tpi_class2 

tpi_class3 

tpi_class4 

tpi_class5 

  

-0.673 

0.002 

0.018 

0.674 

-2.288 

-2.322 

-11.23 

0.095 

0.66  

0.844 

1.21  

1.615  

0.106  

0.105  

0.083  

0.075  

- 0.157 

- 0.009 

- 0.137 

0.043  

-0.02 

-0.19 

-0.433 

ky1 

0.371 

- 0.111  

- 0.189 

0.633 

-2.542  

-2.825  

-11.55  

-0.787  

-0.297  

-0.058  

0.329 

0.653 

0.058 

0.087 

0.096 

0.032 

-0.157  

-0.008  

-0.117  

0.061 

0.011 

-0.131  

-0.365  

ky1a 

- 11.571 

1.102 

1.661 

2.691 

3.663 

3.574 

- 7.78 

9.575 

9.693 

9.588 

9.842 

9.822 

-0.036 

-0.302 

-0.242 

0.139 

-0.159  

-0.165  

-0.247  

0.025 

-0.238  

-0.673  

-1.307  

ky2 

-13.176 

0.908 

2.051 

2.882 

3.82 

4.058 

-8.795 

9.993 

10.978  

10.809  

10.52 

10.347 

0.246 

-0.323 

-0.149 

0.238 

-0.236 

0.133 

0.048 

-0.015 

-0.414 

-0.825 

-1.577 

ky2l 

-29.388 

16.787  

17.111  

16.512 

15.652 

14.643 

0.631 

11.76 

13.515 

15.116 

15.011  

- 0.064 

- 0.153 

0.781  

0.255  

0.209  

0.233  

- 0.275 

- 0.285 

0.016  

- 0.083 

- 0.36  

- 0.033 

ky3l 

-0.393 

-0.46 

0.307 

-0.413 

-1.382 

-1.584 

-2.283  

0.851 

0.943 

0.21 

-0.183  

0.129 

0.331 

-0.162 

-0.199  

0.302 

0.145 

-0.009 

0.04 

-0.153 

-0.421 

-0.776 

-0.917  

nc1 

-0.319 

-0.415 

0.392 

-0.337 

-1.331 

-1.576  

-2.498  

0.658 

0.745 

-0.045  

-0.496  

-0.672  

0.365 

-0.164  

-0.171  

0.273 

0.115 

0.046 

0.095 

-0.127  

-0.385  

-0.723  

-0.877  

nc1d 

3.064 

-1.717 

-1.667 

- 2.681 

- 3.23 

-3.649  

-3.663  

-1.748  

-0.375  

0.275 

0.683  

2.867 

-0.879  

-0.281  

-1.24 

0.21 

0.037 

0.154 

0.016  

-0.562  

-1.095  

-1.421  

-1.396  

nc1sm
 

- 4.053 

1.018  

1.963  

1.954  

2.852  

2.834  

2.517  

1.346  

1.552  

1.038  

0.241  

0.33  

0.441  

0.156  

0.046  

0.24  

0.207  

0.2 

0.228  

0.017  

- 0.239 

- 0.193 

- 0.385 

ut1 

-5.479  

0.915 

1.96 

1.872 

2.76 

2.736  

2.208  

2.933  

3.128  

2.526  

1.129  

- 0.137 

0.426  

0.136  

0.012  

0.25 

0.207  

0.171  

0.198  

0.029  

- 0.216 

- 0.189 

- 0.393  

ut1d 
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-1.733 

2.72 

2.067 

3.609 

4.189 

4.027 

5.203 

-5.334  

-3.304 

-1.96 

-0.852 

0.11 

0.8 

0.347 

0.455 

0.137 

-0.028 

0.443 

0.388 

-0.481 

-0.761 

-0.728 

-0.21  

ut1s 

-0.9 

0.139 

- 1.938 

-4.868 

-15.876 

-15.77  

-15.77 

-0.237 

0.685 

0.626 

0.245 

0.26 

0.031 

-0.011 

-0.151 

0.559 

0.47 

0.479 

0.404 

-0.013 

-0.255 

-0.087 

-0.12 

w
a1 

-1.514 

-0.713 

-17.983 

- 18.06 

- 18.029 

- 17.61 

-17.79 

0.618 

1.519 

1.091 

0.445 

0.178 

0.279 

0.044 

-0.014 

0.716 

0.666 

0.402 

0.342 

0.043 

-0.222 

-0.088 

-0.118 

w
a1d 

1.686 

-0.681 

- 8.353 

-17.712 

-17.855  

-18.29 

-18.16 

-3.913 

-1.712 

-0.706 

-0.641 

-0.466 

-0.149 

0.002 

-0.295 

0.291 

0.148 

0.435 

0.246 

0.037 

-0.09 

0.303 

0.413  

w
a1sf  

0.714 

- 1.084 

0.75 

0.901 

0.544 

0.35 

0.066 

- 2.802 

- 1.305 

- 0.785 

-0.439 

-0.438 

0.199 

0.02 

0.107 

0.858 

0.712 

0.84 

0.662 

-0.252 

-0.498 

- 0.137 

0.035 

w
a2 

0.332 

- 1.191 

0.803 

0.915 

0.102 

0.519 

-0.012  

-2.283  

-0.823  

-0.379  

-0.233  

-0.104  

0.246 

0.003 

0.15 

0.83 

0.705 

0.857 

0.728 

-0.318  

-0.585  

-0.252  

-0.216  

w
a2d 

1.772 

- 0.618 

- 0.962 

0.311  

1.127  

0.406  

- 0.005 

- 5.082 

- 3.312 

- 2.215 

-1.577 

-1.354 

0.041 

-0.012 

-0.162  

0.976 

0.785 

1.007 

0.593 

0.072 

0.115 

0.786 

1.322 

w
a2sf 

-1.911 

1.166 

1.035 

1.416 

1.185 

-0.555 

-9.817 

-0.358 

0.523 

0.621 

0.269 

0.128 

0.199 

0.485 

0.483 

0.414 

0.355 

0.395 

0.361 

-0.071 

-0.313 

-0.193  

-0.167 

w
a3 

-2.52  

1.102 

0.956 

1.341 

1.08 

-1.199 

-9.49 

0.34 

1.224 

1.26 

0.789  

0.459  

0.198  

0.464  

0.499  

0.449  

0.391  

0.385  

0.362  

- 0.094 

- 0.324 

- 0.229 

- 0.233 

w
a3d 

-0.767 

1.587 

1.724 

1.785 

2.064 

1.777 

-10.25 

-3.083 

-1.887 

- 1.034 

-0.672 

-0.304 

0.246 

0.537  

0.338 

0.326 

0.299 

0.318  

0.232 

-0.021 

-0.144 

0.107  

0.358 

w
a3sf 

-2.996  

1.955 

2.663 

2.692 

3.062 

2.141 

1.303 

0.08  

0.643 

0.433 

0.058 

0.005 

-0.075  

-0.154  

-0.582  

0.22  

0.146 

0.296 

0.25  

-0.055  

-0.227  

-0.24  

-0.259  

w
a4 

-4.017 

1.89 

2.636  

2.539  

2.889  

1.587  

0.942 

1.235 

1.749 

1.339 

0.778 

0.376 

-0.099  

-0.183  

-0.565  

0.242 

0.156 

0.432 

0.402 

-0.081  

-0.306  

-0.22  

-0.282  

w
a4d 

- 1.973 

2.275  

2.669  

3.441  

3.687  

3.838  

2.705  

- 2.727 

- 1.796 

-0.942  

- 0.771 

- 0.619 

- 0.249 

-0.062  

- 0.633 

0.154  

0.178  

0.405  

0.396  

- 0.135 

- 0.186 

-0.262  

- 0.034 

w
a4sf 

 
  



 
 

 35 

Table S4. Frequency Ratio values 
 

elevation_1 
elevation_2 
elevation_3 
elevation_4 
elevation_5 
elevation_6 
elevation_7 
slope_0- 10 deg 
slope_10-20 deg  
slope_20-30 deg 
slope_30-40 deg 
slope_40-50 deg 
slope_>50 deg 
aspect_N

 
aspect_E 
aspect_S 
aspect_W

 
plan_laterally convex 
plan_laterally concave 
plan_flat 
profile_upw

ardly concave 
profile_upw

ardly convex 
profile_flat  
tpi_1 
tpi_2 
tpi_3 
tpi_4 
tpi_5 
  

0.911 
0.976 
0.962 
1.228 
0.179 
0.174 
0.000 
0.749 
0.997 
1.064 
1.200 
1.355 
0.667 
1.019 
0.967 
1.002  
1.013 
0.940 
1.060  
0.942  
1.005 
0.996 
0.980  
1.038 
1.054 
1.023  
0.966  
0.860 
ky1 

0.984 
0.990 
0.926 
1.272 
0.166 
0.126  
0.000 
0.775 
0.974 
1.064 
1.218 
1.344 
1.000 
1.003 
0.974 
0.997 
1.024 
0.953 
1.047 
0.965 
1.004 
0.996  
0.989 
1.021 
1.048  
1.023  
0.978 
0.880 
ky1a 

0.159  
0.409  
0.583  
1.049  
1.426  
1.288  
0.000  
0.993  
1.065  
0.950  
0.811  
0.641  
0.000 
1.049  
1.055  
0.924 
0.969 
0.886  
1.101 
1.002 
1.032  
0.959 
1.146 
0.948  
1.081  
1.089 
0.969 
0.703  
ky2 

0.090 
0.296 
0.693 
1.061 
1.393 
1.256 
0.000 
0.633 
1.144 
1.029 
0.726 
0.334 
0.000 
1.124 
1.004 
0.893 
0.965  
0.831 
1.147 
0.842  
1.011 
0.988 
1.017  
1.038  
1.166 
1.053 
0.939  
0.624  
ky2l 

0.000 
0.958  
1.492  
1.261  
0.558  
0.122  
0.000  
0.418  
1.347  
1.831  
1.789  
0.000  
0.000 
0.920 
0.824  
1.247  
0.922 
1.006 
1.033  
0.640  
0.961 
1.051 
0.784  
1.129 
1.084 
0.950 
0.828  
1.090 
ky3l 

1.100  
0.881  
1.234  
0.811  
0.369  
0.300  
0.162  
1.086  
1.139  
0.737  
0.516  
0.603 
0.636 
1.158 
0.993  
0.916 
0.906 
0.902  
1.093  
0.936 
0.905 
1.078  
0.995  
1.210 
1.149  
0.997  
0.785  
0.700 
nc1 

1.073 
0.874 
1.243 
0.813 
0.361 
0.282 
0.125 
1.091 
1.144 
0.720  
0.480  
0.404 
0.696  
1.164  
0.987  
0.908 
0.911 
0.903  
1.091 
0.945 
0.908  
1.077  
0.971 
1.196 
1.148  
0.999  
0.792 
0.703 
nc1d 

1.601 
0.914 
0.973 
0.709 
0.554 
0.398  
0.321 
0.458 
1.016  
1.186  
1.292 
1.832 
0.669  
0.842  
1.187 
1.154 
0.616  
0.909  
1.092 
0.748  
0.945  
1.056 
0.782 
1.397  
1.122  
0.847 
0.773 
0.848  
nc1sm

 

0.205 
0.414 
0.766 
0.823 
1.289 
1.226 
0.960 
1.054  
1.137  
0.794 
0.281 
0.089  
0.088  
1.131 
0.949 
0.992  
0.924  
0.977 
1.034 
0.907  
0.982 
1.024 
0.894  
0.999  
1.108 
1.004 
1.008  
0.828  
ut1 

0.205 
0.414  
0.766  
0.823  
1.289 
1.226 
0.960  
1.054  
1.137 
0.794 
0.281  
0.089  
0.088 
1.131 
0.949  
0.992  
0.924 
0.977 
1.034  
0.907  
0.982 
1.024 
0.894  
0.999 
1.108 
1.004 
1.008  
0.828 
ut1d 

0.032 
0.675  
0.454  
0.746 
0.907 
1.223  
1.677  
0.110 
0.610 
1.253 
1.689  
1.868 
1.789 
1.100 
0.789  
1.076 
0.988 
0.985  
1.053  
0.590 
1.010 
1.014  
0.484  
1.345 
1.001  
0.741  
0.912  
1.356  
ut1s  
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1.015 
1.201 
0.329 
0.021 
0.000 
0.000 
0.000 
0.764 
1.208 
1.119 
0.862 
0.738 
0.504 
1.029 
1.022 
1.022 
0.940 
1.000 
1.041 
0.646 
1.011 
1.009 
0.608 
1.106 
1.078 
0.930 
1.055 
1.027 
w

a1 

1.204 
0.919 
0.000  
0.000 
0.000 
0.000  
0.000 
0.915  
1.260  
0.941  
0.544 
0.346  
0.221 
1.100 
0.962 
0.959 
0.957 
1.006 
1.032 
0.685 
1.003 
1.013 
0.703 
1.061 
1.089 
0.959 
1.036 
0.966 
w

a1d 

1.086 
1.143 
0.002 
0.000 
0.000  
0.000  
0.000 
0.248  
1.004 
1.365  
1.296 
1.230  
1.187 
1.006 
1.065 
1.020 
0.930 
1.018 
1.030 
0.521 
1.050 
0.972 
0.441 
1.098 
1.009 
0.843 
1.107 
1.275 
w

a1sf 

0.977 
0.590 
1.455 
1.636 
1.543  
1.464 
1.379  
0.508 
1.330  
1.557  
1.677  
1.727 
1.878 
1.055 
0.911 
0.976 
1.048 
1.067 
1.080 
0.347 
1.083 
1.002 
0.268 
1.291 
1.009 
0.766 
1.115 
1.279  
w

a2 

0.996  
0.544  
1.479  
1.632  
1.358  
1.442  
1.311 
0.537  
1.340  
1.539  
1.602  
1.680  
1.807 
1.066 
0.905 
0.950 
1.059 
1.054 
1.092 
0.368 
1.061 
1.024 
0.279 
1.327  
1.028 
0.780 
1.106 
1.208  
w

a2d 

0.916  
0.826  
0.880 
1.589  
1.778  
1.707 
1.619 
0.350 
1.217 
1.644 
1.789 
1.876 
1.978 
1.041 
0.951 
1.036 
0.988 
1.117 
1.032 
0.256 
1.168 
0.897 
0.180  
1.069 
0.843 
0.698 
1.191  
1.479  
w

a2sf 

0.524 
1.235 
1.189 
1.374 
1.259 
0.494 
0.000 
0.503 
1.150 
1.270 
1.145 
1.077 
0.966 
0.951 
0.817 
1.089 
1.092 
1.019 
1.052  
0.493 
1.025 
1.011  
0.451  
1.154 
1.083 
0.898  
1.063  
1.075 
w

a3 

0.555 
1.229 
1.173 
1.359 
1.221 
0.286 
0.000 
0.529 
1.174 
1.258 
1.069 
0.905 
0.660 
0.946 
0.816 
1.083 
1.099 
1.016  
1.054 
0.505 
1.018  
1.016  
0.470 
1.157 
1.086  
0.907  
1.056 
1.043 
w

a3d 

0.242 
1.165 
1.258 
1.345 
1.474 
1.400 
0.000 
0.180 
0.789 
1.297 
1.488 
1.630 
1.724 
1.005 
0.798 
1.091 
1.060 
1.042 
1.030 
0.368 
1.056 
0.975 
0.384 
1.130 
1.007 
0.827 
1.094 
1.273 
w

a3sf 

0.131 
0.721 
1.082 
1.106 
1.273 
0.809 
0.457 
0.767 
1.149 
1.065 
0.857 
0.706  
0.600  
1.054 
1.084 
1.004  
0.788  
0.987 
1.041 
0.696  
1.001  
1.017 
0.576  
1.099  
1.069 
0.954 
0.994 
0.981  
w

a4 

0.146 
0.751 
1.136 
1.082 
1.235 
0.620 
0.393 
0.834  
1.183 
1.001 
0.711  
0.440  
0.238 
1.041 
1.097 
0.995  
0.790 
0.983 
1.044  
0.725  
0.995 
1.024 
0.592  
1.111 
1.076 
0.949 
1.009  
0.964  
w

a4d 

0.056 
0.525 
0.697 
1.186 
1.351 
1.298 
0.618  
0.329 
0.828 
1.292 
1.343  
1.317 
1.671 
1.035 
1.071  
1.025  
0.788 
1.015  
1.022  
0.556 
1.018 
1.004  
0.465  
1.118 
1.002 
0.940  
0.977  
1.084 
w

a4sf 
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Figure S1. AUC (area under relative operating characteristics curve) values for different training 
to testing ratios. S, F, SM = scarps, flanks, individual slope movements; deposits = dominated by 
deposits data; KY Aerial = dominated by aerial-derived landslides; KY LiDAR = dominated by 
lidar-derived landslides. 70_30 = 70% training, 30% testing; 80_20 = 80% training, 20% testing; 
60_40 = 60% training, 40% testing. 
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Figure S2. This figure shows the results of the sensitivity analysis found from 50 different logistic 
regression model runs for region wa2sf. Plots (a) – (v) are histograms of the coefficients. Plots (aa) 
– (vv) show the coefficients with their respective z-values plotted against them. In general, the 
coefficients for different variable classes are normally distributed and have consistent statistical 
significance (statistically significant if |z-values| > 1.96). Notable exceptions are the slope 
variables seen in plots (g) – (k). The coefficients with very different behavior have z-values near 
zero, indicating they were found to be highly insignificant predictors in their respective models. 
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Appendix A: Source Code 
 
Source code is also available at https://github.com/gmbelair1/landslide-susceptibility.git 
All code is written in R 
 
Code: 
 
#!/usr/bin/env Rscript 
 
library(raster) 
library(rpart) 
library(pROC) 
 
data_prep <- function(path){   
  # Import Data 
  # ================================================================= 
  elevation = raster(file.path(path,"elevation.tif")) 
  slope = raster(file.path(path,"slope.tif")) 
  aspect = raster(file.path(path,"aspect.tif")) 
  plan = raster(file.path(path,"plan.tif")) 
  profile = raster(file.path(path,"profile.tif")) 
  tpi = raster(file.path(path,"tpi.tif")) 
  landslides = raster(file.path(path,"landslides.tif")) 
  # Transform Data 
  # ================================================================= 
  datarast = stack(elevation,slope,aspect,plan,profile,tpi,landslides)  # Stack raster datasets 
  data = as.data.frame(datarast, xy = TRUE)                          # Coerce rasterstack into dataframe 
  data$landslides[is.na(data$landslides)] = 0           # Set all landslide NA values to zero (so that 
#ls isn't limiting factor) 
  data = na.omit(data)                                  # Omit any rows with NA values  
  data = classify(data) 
  data   
} 
 
# =================================================================== 
# =================================================================== 
classify = function(data){ 
  attach(data) 
  # elevation 
  if(exists("elevation")){ 
    erange = range(data$elevation, na.rm = T) 
    brk = seq(erange[1]-1,erange[2]+1,length.out = 8) 
    cls = as.character(1:7) 
    elevation_class = cut(data$elevation, breaks = brk, labels = cls) 
    elevation_class = as.character(elevation_class) 
    data$elevation_class = elevation_class 



 
 

 47 

  } else{data$elevation_class = NA} 
  # slope 
  if(exists("slope")){ 
    brk=c(-1,10,20,30,40,50,90) 
    cls = c("0-10 deg","10-20 deg","20-30 deg","30-40 deg","40-50 deg",">50 deg") 
    slope_class = cut(data$slope, breaks = brk, labels = cls) 
    slope_class = as.character(slope_class) 
    data$slope_class = slope_class 
  }else{data$slope_class = NA} 
  # aspect 
  if(exists("aspect")){ 
    brk=c(-1,45,135,225,315,360) 
    cls = c("N","E","S","W","N") 
    aspect_class = cut(data$aspect, breaks = brk, labels = cls) 
    aspect_class = as.character(aspect_class) 
    data$aspect_class = aspect_class 
  }else{data$aspect_class = NA} 
  # plan 
  if(exists("plan")){ 
    plan_sd = sd(data$plan, na.rm = T) 
    brk = c(min(data$plan, na.rm = T),-0.01, 0.01,max(data$plan, na.rm = T)) 
    cls = c("laterally concave","flat","laterally convex") 
    plan_class = cut(data$plan, breaks = brk, labels = cls) 
    plan_class = as.character(plan_class) 
    data$plan_class = plan_class 
  } else{data$plan_class = NA} 
  # profile 
  if(exists("profile")){ 
    profile_sd = sd(data$profile, na.rm = T) 
    brk = c(min(data$profile, na.rm = T),-0.01, 0.01,max(data$profile, na.rm = T)) 
    cls = c("upwardly concave","flat","upwardly convex") 
    profile_class = cut(data$profile, breaks = brk, labels = cls) 
    profile_class = as.character(profile_class) 
    data$profile_class = profile_class 
  } else{data$profile_class = NA} 
  # tpi 
  if(exists("tpi")){ 
    tpi_sd = sd(data$tpi, na.rm = T) 
    brk = c(min(data$tpi, na.rm = T), -tpi_sd,-0.5*tpi_sd, 0.5*tpi_sd, tpi_sd,max(data$tpi, na.rm = 
T)) 
    cls = 1:5 
    tpi_class = cut(data$tpi, breaks = brk, labels = cls) 
    tpi_class = as.character(tpi_class) 
    data$tpi_class = tpi_class 
  } else{data$tpi_class = NA} 
  data 
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} 
 
# =================================================================== 
# =================================================================== 
ls_sample <- function(lsdata,p){ 
  # Input variables:  
  # lsdata - data frame with binary landslide variable 
  # p      - training percentage 
  # index  - list that returns the indices of training and testing data 
  lstrue = which(lsdata == 1)                                   # Indices of ls pixels 
  xtrue <- sample(lstrue,length(lstrue), replace=F)             # Generate ls random nums from 
#indices 
  xtrue_train = xtrue[seq(1,p*length(lstrue))]                  # p% of ls random nums 
  xtrue_test = xtrue[seq(p*length(lstrue),length(lstrue))]      # (1-p)% of ls random nums 
  lsfalse = c(which(lsdata == 0), which(is.na(lsdata)))         # Indices of nonls pixels 
  xfalse <- sample(lsfalse,length(lstrue), replace=F)           # Generate nonls random nums. Use 
#length(lstrue) so there will be same num of nonls 
  xfalse_train = xfalse[seq(1,p*length(lstrue))]                # p% of nonls random nums 
  xfalse_test = xfalse[seq(p*length(lstrue),length(lstrue))]    # (1-p)% of nonls random nums 
  ind_train = c(xtrue_train, xfalse_train) 
  ind_test = c(xtrue_test, xfalse_test) 
  index = list(train = ind_train, test = ind_test) 
  index 
} 
 
# =================================================================== 
# =================================================================== 
fr_tabs <- function(data){ 
  #  data$lshaz = rep(0,length(data$x)) 
  attach(data) 
  frtab = function(tab){ 
    ni = tab[,2] 
    ai = tab[,1] + tab[,2] 
    nr = sum(ni) 
    ar = sum(ai) 
    fr = (ni/ai)/(nr/ar) 
    fr[is.nan(fr)] = 0 
    fr 
  } 
  tabs = list(tab_elevation = 0, tab_slope = 0, tab_aspect = 0,tab_plan = 0, tab_profile = 0, tab_tpi 
= 0) 
  # Elevation 
  if(!is.na(tabs$tab_elevation)){ 
    # Calculate FR 
    cls = unique(data$elevation_class) 
    tab = table(factor(data$elevation_class,cls),data$landslides) 
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    tab_elevation = frtab(tab) 
    tabs$tab_elevation = tab_elevation  
  } else{tabs$tab_elevation = NA} 
  # Slope 
  if(!is.na(tabs$tab_slope)){ 
    # Calculate FR 
    cls = unique(data$slope_class) 
    tab = table(factor(data$slope_class,cls),data$landslides) 
    tab_slope = frtab(tab) 
    tabs$tab_slope = tab_slope 
  } 
  # Aspect 
  if(!is.na(tabs$tab_aspect)){ 
    # Calculate FR 
    cls = c("N","E","S","W") 
    tab = table(factor(data$aspect_class,cls),data$landslides) 
    tab_aspect = frtab(tab) 
    tabs$tab_aspect = tab_aspect 
  } 
  # plan 
  if(!is.na(tabs$tab_plan)){ 
    # Calculate FR 
    cls = unique(data$plan_class) 
    tab = table(factor(data$plan_class,cls),data$landslides) 
    tab_plan = frtab(tab) 
    tabs$tab_plan = tab_plan 
  } 
  # profile 
  if(!is.na(tabs$tab_profile)){ 
    # Calculate FR 
    cls = unique(data$profile_class) 
    tab = table(factor(data$profile_class,cls),data$landslides) 
    tab_profile = frtab(tab) 
    tabs$tab_profile = tab_profile 
  } 
  # Classify the tpi 
  if(!is.na(tabs$tab_tpi)){ 
    # Calculate FR 
    cls = unique(data$tpi_class) 
    tab = table(factor(data$tpi_class,cls),data$landslides) 
    tab_tpi = frtab(tab) 
    tabs$tab_tpi = tab_tpi 
  } 
  tabs 
} 
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# =================================================================== 
# =================================================================== 
freq_ratio <- function(data, tabs){ 
  data$lshaz = rep(0,length(data$x)) 
  data$fr_elevation = tabs$tab_elevation[data$elevation_class] 
  data$lshaz = data$lshaz + data$fr_elevation 
  data$fr_slope = tabs$tab_slope[data$slope_class] 
  data$lshaz = data$lshaz + data$fr_slope 
  data$fr_aspect = tabs$tab_aspect[data$aspect_class] 
  data$lshaz = data$lshaz + data$fr_aspect 
  data$fr_plan = tabs$tab_plan[data$plan_class] 
  data$lshaz = data$lshaz + data$fr_plan 
  data$fr_profile = tabs$tab_profile[data$profile_class] 
  data$lshaz = data$lshaz + data$fr_profile 
  data$fr_tpi = tabs$tab_tpi[data$tpi_class] 
  data$lshaz = data$lshaz + data$fr_tpi 
  data[is.na(data)] = 0 
  data$lshaznorm = (data$lshaz - min(data$lshaz))/(max(data$lshaz)-min(data$lshaz)) 
  data 
} 
 
# =================================================================== 
# =================================================================== 
haz_results <- function(data, p, path = NULL){ 
  # Hazard code specifically for the cluster  
  # data: classified data layer. Should contain 13 vars: x, y, elevation, slope, aspect 
  #       plan, profile, tpi, landslides, elevation_class, slope_class, aspect_class,  
  #       plan_class,profile_class, tpi_class 
  # p   : decimal percent used for training 
  # path: path where you want the results saved 
  library(rpart) 
  library(pROC) 
  #if(!dir.exists(path)){dir.create(path)}   # create folder for results if it doesn't already exist 
   
  # Determine training and testing data 
  i = ls_sample(data$landslides,p)       # p/(1-p) Indices 
  print(length(i$train)) 
  e = unique(data$elevation_class); s = unique(data$slope_class); a = unique(data$aspect_class); 
  pr = unique(data$profile_class); pl = unique(data$plan_class); t = unique(data$tpi_class) 
  i2 = c() 
  for(n in 1:length(e)){i2 = append(i2, which(data$elevation_class == e[n])[1])} 
  for(n in 1:length(s)){i2 = append(i2, which(data$slope_class == s[n])[1])} 
  for(n in 1:length(a)){i2 = append(i2, which(data$aspect_class == a[n])[1])} 
  for(n in 1:length(pr)){i2 = append(i2, which(data$profile_class == pr[n])[1])} 
  for(n in 1:length(pl)){i2 = append(i2, which(data$plan_class == pl[n])[1])} 
  for(n in 1:length(t)){i2 = append(i2, which(data$tpi_class == t[n])[1])} 
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  i2 = na.exclude(i2) 
  i$train = append(i$train, i2) 
  print(length(i$train)) 
   
  dataP = data[i$train,]                # Training data, p% of data 
  dataP = na.omit(dataP) 
  dataQ = data[i$test,]                 # Testing data, (1-p)% of data 
  dataQ = na.omit(dataQ) 
  #saveRDS(data, file =  file.path(path,"data.rds")) 
  #saveRDS(i$train, file = file.path(path,"train.rds")) 
  #saveRDS(i$test, file =  file.path(path,"test.rds")) 
   
  lrP = glm(landslides ~ 
elevation_class+slope_class+aspect_class+plan_class+profile_class+tpi_class,data=dataP, 
family=binomial)  
  print(summary(lrP)) 
  lrProc = roc(dataP$landslides, lrP$fitted.values)         # Validation ROC 
  print(lrProc) 
  lrQ = predict(lrP, dataQ, type = "response")              # 30% data prediction values 
  lrQroc = roc(dataQ$landslides, lrQ)                       # 30% data prediction ROC 
  print(lrQroc) 
  lr = list(lrP = lrP, lrProc = lrProc, lrQ = lrQ, lrQroc = lrQroc) 
  #saveRDS(lr, file = file.path(path,"lr.rds")) 
   
  # Frequency Ratio 
  tabs = fr_tabs(dataP) 
  print(tabs) 
  frP = freq_ratio(dataP, tabs) 
  print(summary(dataP)) 
  print(summary(frP$lshaznorm))  
  frProc = roc(dataP$landslides, frP$lshaznorm)             # Validation ROC 
  print(frProc) 
  frQ = freq_ratio(dataQ, tabs)                             # Prediction values  
  frQroc = roc(dataQ$landslides, frQ$lshaznorm)             # Prediction ROC 
  print(frQroc) 
  fr = list(tabs = tabs,frProc = frProc, frQroc = frQroc) 
  #saveRDS(fr, file = file.path(path,"fr.rds")) 
   
  # Logistic Regression 
  lrdf = as.data.frame(summary(lrP)$coefficients) 
  #write.csv(lrdf, file.path(path, "lr.csv")) 
   
  # Frequency Ratio 
  elevationdf = as.data.frame(tabs$tab_elevation) 
  elevationdf$var = rep("elevation",length(elevationdf)) 
  colnames(elevationdf) = c("LSI", "var") 



 
 

 52 

  slopedf = as.data.frame(tabs$tab_slope) 
  slopedf$var = rep("slope",length(slopedf)) 
  colnames(slopedf) = c("LSI", "var") 
  aspectdf = as.data.frame(tabs$tab_aspect) 
  aspectdf$var = rep("aspect",length(aspectdf)) 
  colnames(aspectdf) = c("LSI", "var") 
  plandf = as.data.frame(tabs$tab_plan) 
  plandf$var = rep("plan",length(plandf)) 
  colnames(plandf) = c("LSI", "var") 
  profiledf = as.data.frame(tabs$tab_profile) 
  profiledf$var = rep("profile",length(profiledf)) 
  colnames(profiledf) = c("LSI", "var") 
  tpidf = as.data.frame(tabs$tab_tpi) 
  tpidf$var = rep("tpi",length(tpidf)) 
  colnames(tpidf) = c("LSI", "var") 
  frdf = rbind(elevationdf, slopedf, aspectdf, plandf, profiledf, tpidf) 
  #write.csv(frdf, file = file.path(path,"fr.csv"))   
   
  lr_fr = list(lrP = lrP, lrProc = lrProc, lrQ = lrQ, lrQroc = lrQroc, tabs = tabs, frProc = frProc, 
frQroc = frQroc) 
  lr_fr 
} 
 
data_prep_mix <- function(path1, path2){   
  # Import Data for region 1 
  elevation1 = raster(file.path(path1,"elevation.tif")) 
  slope1 = raster(file.path(path1,"slope.tif")) 
  aspect1 = raster(file.path(path1,"aspect.tif")) 
  plan1 = raster(file.path(path1,"plan.tif")) 
  profile1 = raster(file.path(path1,"profile.tif")) 
  tpi1 = raster(file.path(path1,"tpi.tif")) 
  landslides1 = raster(file.path(path1,"landslides.tif")) 
  # Transform Data for region 1 
  datarast1 = stack(elevation1,slope1,aspect1,plan1,profile1,tpi1,landslides1)  # Stack raster 
datasets 
  data1 = as.data.frame(datarast1, xy = TRUE)                          # Coerce rasterstack into 
dataframe 
  data1$landslides[is.na(data1$landslides)] = 0           # Set all landslide NA values to zero (so 
that ls isn't limiting factor) 
  data1 = na.omit(data1)                                  # Omit any rows with NA values  
   
  # Import Data for region 2 
  elevation2 = raster(file.path(path2,"elevation.tif")) 
  slope2 = raster(file.path(path2,"slope.tif")) 
  aspect2 = raster(file.path(path2,"aspect.tif")) 
  plan2 = raster(file.path(path2,"plan.tif")) 
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  profile2 = raster(file.path(path2,"profile.tif")) 
  tpi2 = raster(file.path(path2,"tpi.tif")) 
  landslides2 = raster(file.path(path2,"landslides.tif")) 
  # Transform Data for region 2 
  datarast2 = stack(elevation2,slope2,aspect2,plan2,profile2,tpi2,landslides2)  # Stack raster 
datasets 
  data2 = as.data.frame(datarast2, xy = TRUE)                          # Coerce rasterstack into 
dataframe 
  data2$landslides[is.na(data2$landslides)] = 0           # Set all landslide NA values to zero (so 
that ls isn't limiting factor) 
  data2 = na.omit(data2)                                  # Omit any rows with NA values  
   
  data12 = rbind(data1,data2) 
  data_mix = classify(data12) 
   
  data1_class = classify(data1) 
  data2_class = classify(data2) 
  data_sep = rbind(data1_class, data2_class) 
   
  data  = list(data_mix = data_mix, data_sep = data_sep) 
} 
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