University of Montana

ScholarWorks at University of Montana

University of Montana Conference on Undergraduate Research (UMCUR)

Apr 22nd, 3:00 PM - 4:00 PM

Gestating at altitude: How do maternal physiology and evolutionary adaptation influence fetal growth?

Kirksey Cunningham University of Montana, Missoula, kc135843@umconnect.umt.edu

Kate Wilsterman Colorado State University - Fort Collins, KathrynWilsterman@gmail.com

Zac A. Cheviron University of Montana, Missoula, zac.cheviron@mso.umt.edu

Follow this and additional works at: https://scholarworks.umt.edu/umcur Let us know how access to this document benefits you.

Cunningham, Kirksey; Wilsterman, Kate; and Cheviron, Zac A., "Gestating at altitude: How do maternal physiology and evolutionary adaptation influence fetal growth?" (2022). *University of Montana Conference on Undergraduate Research (UMCUR)*. 5. https://scholarworks.umt.edu/umcur/2022/pmposters/5

This Poster is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Gestating at altitude: How do maternal physiology and evolutionary adaptation influence fetal growth?

Kirksey Cunningham¹, Kathryn Wilsterman^{1,2}, and Zachary A. Cheviron¹ ¹Department of Biological Sciences, University of Montana, Missoula, Montana ²Department of Biology, Colorado State University, Fort Collins, Colorado

Fetal growth is reduced for lowland mammals under hypoxia

 Lowland mammals experience increased risk for fetal growth restriction at high altitude, while altitude adapted animals mitigate altitude-induced reductions in fetal growth

Fetal growth is determined Figure 1 Fetal growth is reduced for lowland deer mice under hypoxia by maternal physiology and and maintained for highlanders
 placental function, but the underlying

We hypothesized that altitude dependent changes in maternal physiology affect fetal growth phenotypes

- Fetal masses
- Blood hematocrit, hemoglobin, &
- glucose
- Whole heart & right ventricle
 mass
- Wet & dry lung mass
- Body condition
- Food consumption
- Linear modeling and model comparison approaches were used to assess the relationships between maternal physiology and fetal growth
- To determine whether fetal growth is tied to a composite of changes in many

mechanisms for preservation of fetal growth under hypoxia are not yet understood

aspects of maternal physiology, we used PCA to reduce dimensionality in a linear modeling framework

How is maternal physiology affected by altitude acclimation?

Cardiopulmonary physiology influences oxygen availability for fetal growth

Nonpregnant lowland deer mice display maladaptive cardiopulmonary responses under hypoxia

- increase Hct & Hb,
- exhibit lung edema & right ventricle hypertrophy

Nonpregnant highlanders suppress these cardiopulmonary responses

Figure 2 A There is an effect of strain and an effect of hypoxia treatment on mean corpuscular hemoglobin, but no interaction of strain and treatment. **B** Output of multiple linear modeling; significance of predictors for each trait modeled reported. p < 0.05 in green, p > 0.05 in red

Outcome	Strain	Treatment	Strain*Treatment
Hematocrit			
Hemoglobin, g / dL			
Lung edema, g H ₂ O / g tissue			
Right ventricle hypertrophy, g RV			

Do changes in maternal physiology contribute to fetal growth phenotype?

Maternal acclimation to hypoxia may explain fetal growth phenotypes

- 1. Individual maternal physiology traits may predict fetal growth outcomes
- Fetal growth was modeled as a function of maternal physiological variables and model fit was compared to a null model and a model including the experimental design using AICc

No maternal traits in isolation predict fetal growth

2. A composite of maternal physiology traits may predict fetal growth outcomes

• We reduced dimensionality using PCA (at right) which

/ g whole heart

Cardiopulmonary responses to hypoxia are similar among highland and lowland deer mice during pregnancy

Energy use and allocation may limit fetal growth

Fetal growth deficiency may be related to insufficient energy allocation

Figure 3 A There is a slight trend of increased change in fat mass for both strains under hypoxia (Treatment .05 < p < .1) **B** The effect of strain by treatment interaction for food consumption suggests that this differs for highland and lowland deer mice under hypoxia (Strain*treatment p = .055)

• Highlanders maintain fetal growth while reducing food intake without

separates strains and treatments to some degree

Composite traits do not predict fetal growth

No predictors produced a model similar to or better than that provided by the **experimental design** when evaluated by model comparison

standardized PC1 (32.8% explained var.)

Figure 4 When plotted along PC1 and PC2, individuals in common groups vary together. These are primarily separated along variation in fat and lean mass, food consumption, and glucose. These composites do not predict fetal growth phenotype.

Maternal physiology does not predict fetal growth phenotype

Conclusions

Our results suggest that strain-specific changes in maternal physiology alone do not explain fetal growth under hypoxia

The use of data from a single gestational time point and imprecise

Highland deer mice under hypoxia may manage energy differently than lowlanders

Acknowledgements

- Lowland mice for this work were provided by the Peromyscus Stock Center at USC.
- The methods figure was made using BioRender.com
- Thanks to the Cheviron and Good labs for feedback
- This work has been supported by:
- NSF OIA 1736249 to ZAC
- NIH 1R15HD103925 to ZAC & KW
- Davidson Honors College at the University of Montana

measures (e.g., food consumption) may limit the strength of our results

- Maternal physiology may be tied to fetal growth phenotype, but the placenta is able to compensate
- Future work will examine the role of maternal physiology at an earlier developmental stage
- Data on energy use and allocation merits further attention through dedicated experiments