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Donahue, Kellen, M.S., Spring 2021       Computer Science

Super-resolution Imaging of Remote Sensed Brightness Temperature Using a 
Convolutional Neural Network

Chairperson:  Jesse Johnson

  Steady improvements to the instruments used in remote sensing has led to much higher 
resolution data, often contemporaneous with lower resolution instruments that continue to
collect data. There is a clear opportunity to reconcile recent high resolution satellite data 
with the lower resolution data of the past. Super-resolution (SR) imaging is a technique 
that increases the spatial resolution of image data by training statistical methods on 
simultaneously occurring lower and higher resolution data sets. The special sensor 
microwave/imager (SSMI) and advanced microwave scanning radiometer (AMSR2) 
brightness temperature data products are well suited to super-resolution imaging, and SR 
can be used to standardize the higher resolution across the entire record of observations. 
Of the methods used in super-resolution imaging, neural networks have led to major 
improvements in the realm of computer vision and have seen great success in the super-
resolution of photographic images. We trained two neural networks, based on the design 
of the Resnet, to super-resolution the 25 kilometer resolution SSMI and AMSR2 
brightness temperature data products up to a 10 kilometer resolution. The mean error over
all frequencies and polarizations for the AMSR and SSMI models’ predictions is 0.84% 
and 2.4% respectively for the years 2013 and 2019. 
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1. Introduction

Remote sensing data provides critical information for weather forecasting, resource 
management, conservation, and exploration over comprehensive spatial and daily temporal 
scales. Remote sensed data products have many uses including crop freeze injury [1,2],landslide 
detection [3], and forest monitoring[4,5]. The 34 year time series, daily acquisition, sensitivity to 
the state of water[6], and global reach of the brightness temperature products makes them useful 
for applications such as monitoring soil freeze thaw cycles[6], soil moisture[7,8], and cloud 
dynamics[9,10]. As is often the case, higher resolution and extended coverage improve the 
effectiveness of these data products for complex terrain[11],resource assessment, and operational 
planning[12]. Modern brightness temperature products offer increased resolution, but their 
temporal coverage only extends back to 2012, whereas lower resolution products begin coverage 
in 1987. As it currently stands, any analysis carried out on these data must be tailored to either 
the higher resolution of modern products or the lower resolution, but longer period of 
observation found in the older data products. In order to ‘harmonize’ data products for analysis, 
we propose to upscale lower resolution data to the same resolution as recent, higher resolution 
products, extending high resolution data through the entire observational period.

Super-resolution imaging (SR) is the technique of upscaling low resolution imagery to 
higher resolutions. There are well known methods for achieving this such as bicubic 
interpolation, spline approximation, and kriging[13]. SR is often applied to photographic images 
and has seen application in video enhancement, surveillance, medical diagnosis, and biometric 
identification[14]. As with many computer vision tasks, recent years have demonstrated that 
neural networks produce impressive improvements to SR. Neural networks have achieved 
increased resolutions of up to 50 times on photographic imagery[15,16],satellite imagery[17–19], 
and global climate model data[12]. 

Brightness temperature products span various resolutions and radiometer frequencies. 
The SSMI brightness temperature product extends back from today to 1987 at 25 km resolution 
for the 19.35, 22.24, 37.0, and 85.5 GHz frequencies and both vertical and horizontal polarizations 
except for 22.24 GHz which lacks a horizontal polarization. Alternatively, the AMSR2 brightness 
temperature product only extends back to 2012, has both 25 km and 10 km resolutions, and is 
observed at 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz frequencies in both vertical and horizontal 
polarizations. The similar frequency and overlap in coverage between the SSMI 19.35 and 37.0 
GHz with the AMSR 18.7 and 36.5 GHz channels respectively, makes these frequencies our focus 
as inputs in training our neural network.

In the following sections we present the use of a CNN to SR brightness temperature data.
In section 2, we describe training a convolutional neural network to SR the 25 km AMSR2 
brightness temperature data up to the 10 km resolution. This task is straightforward as we SR 
data from the same sensor at different resolutions. We then train a second network to SR 25 
kilometer SSMI brightness temperature data to a 10 km resolution on the AMSR2 grid, again 
using the AMSR2 10 km resolution data for training. This SSMI to 10 km network provides the 
means of creating a harmonized data product that reconciles both SSMI and AMSR2 data to the 
same 10 km grid.  Finally, we train a third network to SR 90x90 patches of 25 km AMSR2 up to 10
km resolutions that can be reconstructed into a global grid. This network has the advantage of 
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being able to be applied to 90x90 patches of data from different projections. In section 3, we 
report the performance metrics of our networks and break them down by land cover type for one
of our networks. Finally in section 4, we discuss the limitations of our approach as well as the 
major error sources seen in the results and comment on the computational performance of our 
networks.  

2  - Method

2.1 - Experiment design

We use the AMSR2 10km and 25km standard products from JAXA[20] and the 
Pathfinder Daily EASE-Grid 25km SSMI data[21]. To upscale the 25km brightness temperature 
data to a higher 10km resolution we developed a CNN based neural network and trained three 
independent networks for the task. First, we first trained a network that takes global 25km 
AMSR2 brightness temperature data as an input and produces a 10km output to be compared 
with the actual 10km AMSR2 data. This network is useful as a measure of the network’s 
performance when doing SR between datasets with exactly matching acquisition times and 
frequencies. In this paper, this will be referred to as the SR AMSR network. The second network 
we trained to SR 25 km SSMI data to the same 10km resolution used in the first network. For 
training purposes, this network’s output is also compared against 10km AMSR2 data. This 
network will gauge whether the network can learn SR from the different datasets and will be 
referred to as the SR SSMI network. It’s worth pointing out that we had intended to train the SR 
AMSR and then perform transfer learning to generate the SR SSMI network. Although this 
approach worked,we achieved the same results by fully training the SR SSMI network without 
transfer learning in less time, which was useful when experimenting with the model. The third 
network will be trained differently than the other two. The 25km AMSR data will be tiled and the
network will SR each tile individually before they are reconstructed into the full global 10km 
grid. When training the network it will only be trained on the northern hemisphere to show its 
ability to predict the southern hemisphere without having been trained on it. This is useful 
because there is at least partial spatial memorization involved in the other networks so this 
network acts as a test of the network’s performance without that memorization. This network 
will be referred to as the SR Tile network.

To create the SSMI data for the SR SSMI network we first interpolate the SSMI data from 
the 25km EASE-GRID to the 25km equirectangular projection of AMSR2 using a degree 3 
bivariate spline over a rectangular mesh (RBS). One problem with this approach is that pixels 
around missing data swathes are interpolated between actual data and the missing data value of 
0, giving erroneous values. To correct this we used a degree 1 RBS interpolation of the missing 
swathes of data and then dilated the result by 1 pixel creating a mask to replace the values near 
the missing swathes.
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Figure 1.  Averaged absolute difference heatmap between the 18.7 vs 19.35 GHz and 36.5 vs 37
GHz channels for the year 2013

2.2 - Systematic Errors

Figure 1 shows an absolute difference heatmap between similar frequencies of the
25km SSMI and 25km AMSR.  Differences between the data products are expected due 
to their different acquisition times, sensor calibrations, and frequencies. The equatorial 
crossing time for AMSR2 is 1:30 pm on the ascending pass and 1:30 am on the 
descending pass, and for SSMI, the ascending equatorial pass is 6:30 pm and the 
descending pass is 6:30pm[22]. The mean absolute and percent errors between the two 
products globally are 6.69°K and 3.57% respectively. However, most of the errors are 
generated in the ocean and arid and coastal land regions. The low differences of roughly 
2-5°K on land and some sea surfaces gives us confidence in the combination of these two
data products for training neural networks, with a few caveats.  Larger errors on 
coastlines are likely due in part to reprojecting 25km SSMI to the 25km AMSR grid 
because large differences between land and ocean brightness temperature readings are 
interpolated into single grid cells. Furthermore, pixels containing as little as 4% open 
water can bias readings by over 3°K[23] which will affect the brightness temperature 
readings near shorelines. Precipitating cloud coverage plays a role in error due to change 
in cloud position between readings as these cloud covered regions appear warmer 
compared to the ocean at these frequencies[24]. For land, the precipitation will impact 
soil moisture which has a large effect on surface emissivity and therefore recorded 
brightness temperatures[23]. The large differences in hot arid land regions are likely due 
to the large diurnal temperature variance in these regions[25]. Partial coverage of sea-ice 
will lead to high variation in ocean brightness temperatures due to emissivity 
differences[26]. Similarly, snow, frost, and frozen soil affect brightness temperature 
readings leading to variation in higher latitude regions[6].  We will use the error layout of
figure 1 to help gauge the performance of our SSMI SR outputs.
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2.3 - Model

Our model only uses a single band and polarization at a time as an input. We 
experimented with feeding the network different combinations of bands and polarizations
but they all performed worse than the single band approach. Furthermore, we 
experimented with the addition of other data sources such as a digital elevation mask, 
snow cover, and vegetation type. These also led to equal or worse performance to just 
using brightness temperature.

Figure 2. Architecture of our CNN

SR of the 25 km products to the 10 km resolution requires the upscaling 
of 720x1440 inputs to an 1800x3600 output, or a size increase of 6.25 times. 
We used a transposed convolution with a 5x5 kernel and 5x5 stride to scale 
our input by 25 times and then use a convolution with a 2x2 kernel and 2x2 
stride to reduce it by 4 times which results in a change of 6.25 times from the 
input. Afterward, the network follows a resnet[27] inspired design. Each 
block contains a convolutional layer followed by an additive skip connection
and a layer normalization[28] repeated twice with a ReLU activation inserted
before the second layer normalization. This block is repeated 8 times then 
followed by a 1x1 convolution to produce the output. Layer normalization 
requires consistent input shape which limits the network to a single input 
size. Therefore, SR Tile is made to work on 90x90 inputs while SR AMSR and
SR SSMI are made to work on 720x1440 inputs. When reconstructing the full 
image with outputs from SR Tile there are artifacts along the edges of the 
tiles due to slight mismatch between model output on tile edges. To fix this 
we pad the input by 40 pixels on all sides before tiling and make 5 outputs 
by shifting the tiling window by 20 pixels vertically and horizontally each 
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time. These 5 outputs are then aligned and averaged to remove the edge 
artifacts.

 Though the network is simple, it proved to be effective with only 4 
channels which was essential when working with the high resolution images
to run the network within available memory. The models were trained on 
four Nvidia V100 GPUs using Adam[29] with an initial learning rate of 1e-2 
that was manually reduced by factors of 2 between iterations once training 
slowed down. All networks were trained on data from 2014 through 2018 
and then tested on 2013 and 2019 data. 

Figure 3. Comparison of LR SSMI, SR SSMI, and HR AMSR 37 GHz vertical polarization data for
2013-01-01. Shown are: (A) Norwegian Peninsula; (B) Indochinese Peninsula; (C) Region around
the Rio De La Plata. The ocean has been masked in gray to accentuate the details in brightness
temperature found on land.

3. Results
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The results of the SR procedure are presented for selected sub-regions
in  Figure  3.  The  left  and  right  columns  contain  actual  brightness
temperature readings while the middle column is the SR output of our
SR  SSMI  model.  Differences  between  the  center  column  and  the  left
column represent the ‘information’ that is filled in by the SR SSMI model.
Differences between the middle and right columns will be a combination
of model errors and as seen in Fig. 1; differences between the frequency,
timing, and sensors of the products.  Our results  suggest  the model  is
successfully reproducing a great deal of the fine scale structure missing
in the 25 km resolution data, though it does have a smoothed appearance
that is typical to SR by CNNs[19]. 

Commonly used approaches to resolution enhancement of brightness
temperature  include  Backus-Gilbert  Interpolation  and  Signal
Reconstruction  Algorithms[30,31].  These  approaches  work  on  the
ungridded  satellite  swath  data  to  produce  high  resolution  gridded
products.  This  is  different  from  our  approach  which  works  on  the
already gridded low resolution products to produce a higher resolution
product.  As  such  comparison  between  these  techniques  and  ours  is
tenuous.  Instead,  we compare  our product’s  performance  against  two
different  SR techniques.  The first  is  simple bicubic  interpolation for  a
baseline as is common for SR[12,16,18,19]. But, bicubic interpolation will
inherently  smooth  out  high  frequency  data  and  so  for  a  second
comparator we use a modified bicubic interpolation technique that takes
advantage of the static nature of the data’s global grid. We first find the
mean difference between bicubic interpolated data and the 10km AMSR2
data over the course of a year.  We then subtract  this mean difference
from the bicubic interpolated data in order to return some of the high
frequency  detail  that  is  lost  with  basic  bicubic  interpolation.  This
technique will be referred to as Mean Bicubic Interpolation(MBI).  MBI
will not be applied to SSMI data as it doesn’t make sense to do this for
differing  datasets.  Our  metrics  include  mean  per-pixel  absolute
error(MAE),  mean  per-pixel  percent  error(MPE),  Structural  Similarity
(SSIM)  and  Peak  Signal-to-Noise  Ratio  (PSNR).  SSIM  is  of  particular
interest  due  to  its  consideration  of  structural  information  of  the
image[32].
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Table 1. 2013 and 2019 performance metrics for our three models as well as bicubic interpolation
and MBI.

Model MAE MPE SSIM PSNR
SR AMSR 1.65 0.82 0.949 38.01

SR Tile 1.77 0.90 0.946 36.17
SR SSMI 4.47 2.40 0.887 29.34

Bicubic AMSR 2.75 1.40 0.917 29.93
MBI AMSR 2.13 1.07 0.929 31.73

Bicubic SSMI 9.37 4.86 0.831 19.85

Table 1 compares our networks against bicubic interpolation and MBI.
We can see that MBI produces notable improvements over basic bicubic 
interpolation and thus acts as a more effective baseline of comparison. 
The SR AMSR network outperforms MBI by 0.45°K for MAE,  0.21% for 
MPE, 0.05 for SSIM, and 2.01 for PSNR. Likewise, SR SSMI sees 
improvements over bicubic interpolation of 4.9°K, 2.46%, 0.06, and 9.49 
for MAE, MPE, SSIM, and PSNR respectively. Table 1 contains the global
results for SR Tile and shows that it underperforms SR AMSR but is still 
ahead of bicubic interpolation and MBI. For just the southern 
hemisphere, SR Tile achieves 1.58°K, 0.85%, 0.959, and 37.51 for MAE, 
MPE, SSIM, and PSNR respectively, demonstrating SR Tile’s ability to 
work on unseen geographic locations.

Table 2. Mean Percent Error for each polarization and frequency of SR AMSR and SR SSMI by land cover
type. Categories are: A)Artificial Surfaces, B) Cropland, C) GrassLand, D) Tree Covered, E) Shrub Covered,
F) Herbaceous vegetation, G) Mangroves, H) Sparse Vegetation, I) BareSoil, J) Snow and Glaciers, K) Water
Bodies, L) General Land

Model Frequency Polarization A B C D E F G H I J K L

SR
AMSR

37 Ghz
Vertical 0.94 0.62 0.63 0.59 0.65 0.43 2.05 0.64 0.59 0.50 0.69 0.57

Horizontal 1.69 0.84 0.84 0.80 0.86 1.17 4.28 0.89 0.74 0.67 1.45 0.77

18 Ghz
Vertical 0.91 0.51 0.46 0.46 0.50 0.58 1.91 0.48 0.46 0.42 0.61 0.46

Horizontal 1.54 0.79 0.66 0.68 0.75 0.96 3.91 0.73 0.63 0.49 1.14 0.63

SR
SSMI

37 Ghz
Vertical 2.09 1.83 2.28 1.93 1.81 2.97 2.08 2.33 1.48 1.83 2.73 1.92

Horizontal 3.17 2.27 2.73 2.29 2.16 3.83 4.00 2.87 1.78 2.34 5.50 2.36

19 Ghz
Vertical 2.02 1.50 1.60 1.47 1.41 2.12 1.98 1.65 1.20 1.43 2.21 1.47

Horizontal 3.07 2.08 2.20 1.89 1.86 3.09 3.68 2.41 1.63 1.92 4.07 1.98

To further assess the quality of our SR AMSR and SR SSMI networks we 
look at the mean percent error for different land cover types provided by the 
Global Land Cover Share Database(GLCS)[33] and present the results in Table 2. 
We use the dominant land cover type of a pixel to determine its category and 
take a mean of all similarly classed pixels to determine their score. GLCS does 
not include Antarctica so we added it under the classification of snow and 
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glaciers. Additionally, we include a column for land as a whole to present the 
model’s general performance on land. Land is determined to be all pixels not 
classified as water bodies. We also report the results for each polarization 
individually due to the large disparity between polarizations for most categories.
Table 2 shows that SR AMSR performs well in all regions except for mangroves, 
possibly due to mangroves being on coasts where brightness temperatures are 
highly variable. As for SR SSMI, it performs best in cropland, grassland, and tree 
covered regions. On the other hand it performs worse in snowy or moist land 
regions.

4. Discussion

In this work we implemented a CNN to SR 25km brightness temperature 
data up to a 10km resolution. Due to our novel approach we are unable to 
compare against an existing product. Instead, the outputs of the network are 
compared against bicubic interpolation methods using percent error, SSIM, and 
PSNR as metrics. Our SR AMSR model achieved a percent error of .84% 
compared to bicubic interpolations 1.4%. Even better, our SR SSMI model 
achieved a percent error of 2.4% compared to bicubic interpolations 4.86%.

Figure 4. SR AMSR(left) and SR SSMI(right) absolute error heatmaps of Europe for all frequencies
and polarizations.

Figure 3 contains a mean absolute error heatmap for our SR AMSR
and SR SSMI networks over Europe. Europe is chosen due to its wide
range of environments while allowing a more detailed view compared to
a global map. When analyzing the error in the SR AMSR data we can see
some problem areas.  The Coastlines  have a  consistently  high level  of
error  for  both  inland  water  bodies  and  oceans.  Furthermore,  water
bodies  have higher error  levels  compared to the land.  High elevation
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mountain ranges such as the alps or the scandinavian mountains tend to
also have higher amounts of error.

For SR SSMI, similar to SR AMSR, we can see errors in shorelines,
mountains, and the ocean but with higher magnitudes as expected from
the differences between the SSMI and AMSR datasets. When comparing
the errors to the low resolution errors in figure 1 we can see that the
network maintains errors in similar regions though there is an overall
decrease in error of roughly 2°K. A weakness in our approach is the use
of different brightness temperature data products to train our network.
Though our datasets are of similar bands and inspection of our SR data
shows realistic results, this doesn't change that our network is trying to
infer  between  two  different  data  products.  We can  provide  potential
explanations for major error regions, but the weakness of the approach is
that we can't be sure if an error is because of a prediction problem or
because of a difference in datasets.

Figure 5. Averaged absolute difference heatmap of the 18.7 vs 19.35 GHz and 36.5 vs 37 GHz for
A) SR SSMI vs 10km AMSR and B) SR Tile on SSMI vs 10km AMSR.
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Figure  5  shows  an  absolute  difference  heatmap  between  similar
frequencies  of  the  SR  SSMI  and  reprojected  SR  Tile  vs  10km AMSR,
similar to figure 1 for the low resolution data. Because SR Tile works on
90x90 patches it can be applied to SSMI data without reprojection. This
has the advantage of avoiding reprojection errors but seems to cause an
artifact along the 180° longitude line, possibly due to SSMI’s width of
1383 being reprojected 2.5x to 3457.5.  We can see that both heatmaps
maintain  the  distribution  of  differences  seen  in  figure  1,  but  the
magnitude of the differences have changed. The differences in SR SSMI
have  decreased  by  roughly  3-5°K.  This  suggests  that  the  network  is
trying to SR the SSMI data it is given, but its output values have drifted
closer to AMSR values. Alternatively, SR Tile sees an increase in error of
1-3°K in some places, but overall the magnitude of the errors are much
closer  to  those  seen  in  the  low resolution  data.  For  25km  SSMI  and
AMSR data  the MAE is  6.69°K and MPE is  3.57%. As expected from
figure 5,  SR SSMI achieves an MAE of 4.47 and  MPE of 2.40%, which are
both lower than the 25km values. Finally, SR Tile has an MAE and MPE
of 7.64°K and 3.72% respectively, much closer to the 25km values than SR
SSMI.  This  suggests  that  SR Tile is  a  better  approach to SR data that
doesn’t  have  a  corresponding  high  resolution  dataset   to  train  the
network with.
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Figure 6. Comparison of SR Tile, SR AMSR, and HR AMSR 37 GHz vertical polarization data for
2014-01-04. Shown are: (A) Norwegian Peninsula; (B) Indochinese Peninsula; (C) Region around
the Rio De La Plata.  Again,  The ocean has  been masked in gray to accentuate  the  details  in
brightness temperature found on land.

The trade-off  for  using a  tiling approach is  a  loss of  refined detail
compared  to  the  global  SR  models.  Figure  6  shows  a  comparison
between SR Tile, SR AMSR and actual 10km AMSR2 data. Comparing SR
Tile and SR AMSR we can see that SR AMSR manages to capture finer
details of the actual 10km data. Though memorization is often avoided in
machine learning, this shows the advantage of the network being able to
memorize spatial details by working on a global grid. The impact of the
loss of generalizability is minimized as the network is designed to only
work on global AMSR data. The risk is that should a major geographic
change take place, like the creation or draining of a man-made lake, the
network will likely struggle to adapt so it will need to be trained on new
data to avoid this.
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The  different  brightness  temperature  polarizations  perform  quite
differently  from  each  other.  As  seen  in  table  2  the  horizontal
polarizations perform much worse than their vertical counterparts in all
regions. This can be at least partially attributed to the higher sensitivity
of  horizontal  polarizations  to  moisture[23].  For  SR  SSMI,  the  time
difference between the two datasets would lead to even greater variation
due to the compounded effect of moisture change between readings. This
higher error may be unavoidable due to the aforementioned reasons, but
it could perhaps be improved by creating specialized networks for each
different  polarization  to  allow  the  network  to  focus  on  the  specific
connections between each polarization.

Further  improvements  could  be  made  by  the  use  of  additional  or
different  datasets  that  have closer  relationships.  Use  of  the SSMI and
AMSR2 quality control flags could be useful for masking out things like
cloud,  sea  ice,  and  radio  frequency  interference.  Another  potential
improvement would be the use of a loss function such as SSIM which
utilizes the structural information provided by the AMSR data with less
focus on the exact values, though in our tests SSIM was too unstable and
resulted in NaN values during training. Additionally,  testing different
neural network models such as SRGANS[15] that have shown promising
results in other SR tasks could be useful, though memory requirements
may make this difficult for a non-tiled approach.
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