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Abstract

Using time dependent observations derived from terrestrial LiDAR and oblique

time-lapse imagery, we demonstrate that a Bayesian approach to glacial motion es-

timation provides a concise way to incorporate multiple data products into a single

motion estimation procedure effectively producing surface velocity estimates with

an associated uncertainty. This approach brings both improved computational effi-

ciency, and greater scalability across observational time-frames when compared to

existing methods. To gauge efficacy, we apply these methods to a set of observa-

tions from the Helheim Glacier, a critical actor in contemporary mass loss trends

observed in the Greenland Ice Sheet. We find that the Helheim glacier exhibits

a mean velocity of approximately 19md−1 and discuss the implications of these

methods as they pertain to ongoing efforts to characterize the Greenland Ice Sheet

and its contributions to global mean sea level rise.
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Figure 1: Observed and simulated historical mass changes from the Greenland Ice Sheet
2000–2020 in gigatons (Gt) and centimeters of sea level equivalent (cm SLE). Note that
the 90% confidence interval from various models fail to envelop, or reasonably predict
historical and contemporary observations. Image from Aschwanden et al. (2019)

1 Introduction

Contributions from melting ice sheets and glaciers to the global mean sea level (GMSL)

are projected to increase sea levels anywhere between 0.26m to 0.77m by the year 2100

(Masson-Delmotte et al., 2018). The difference between a realized increase of 0.26m and

0.77m would mean a displacement of 10.4 million people currently living in high density

coastal communities, which demonstrates the need for accurate estimates of changes in

GMSL; low uncertainty estimates provide global leadership the necessary information

needed to implement resource intensive socio-economic and infrastructural adaptions.

Estimates of contemporary dynamics and longer term predictions are based on numerical

models conditioned on past observations. The efficacy of modeling efforts to quantify the

dynamics of a given feature of the cryosphere (be it an ice sheet or individual glacier)

are gauged by their ability to reproduce observed behaviour. Figure 1 illustrates a set of

simulations produced from various models, with their associated 90% confidence inter-

vals in grey. Overlaid onto these simulation plots are observations of mass change from

various studies. From this figure we can see the substantial discrepancy between these

simulations and observations. Owing to complex dynamics and sensitivity to external

forcings, estimating the future behaviour of the cryosphere is a challenge.
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Figure 2: Current State of the GIS - A) Glacier catchments/basins for the GIS and
seven regions overlaid on a composite map of ice speed (12). (B–D) For 1972–2018, the
percentage (B) thickness change, (C) acceleration in ice flux from each basin, and (D)
cumulative loss per basin. The surface area of each circle is proportional to the change
in ice discharge caused by a change in (B) thickness or (C) speed; the (blue/red) color
indicates the (positive/negative) sign of the change in (B) thickness, (C) speed, and (D)
mass. Image From Mouginot et al. (2019)

There is considerable uncertainty in producing regional estimates of mass change

due to the non-linearity in the physical behaviour of ice relative to its scale (Gardelle et

al., 2013) (e.g. because a mountain glacier of mass X contributes Y to sea level rise does

not imply that an ice sheet of mass 10×X contributes 10×Y to sea level rise), the intrinsic

characteristics of a given outlet glacier, and the intra-region variance of environmental

forcings. To reduce the scaling errors in regional estimates, their underlying models

are constantly refined from a continually evolving understanding of dynamics through

observation in the forms of both multi-year field campaigns and remote sensing.

The Greenland Ice Sheet (GIS) is a significant contributor to both the observed and

predicted changes in GMSL, with current net contributions to GMSL at approximately

0.8 - 1.1 mm yr−1 (Mouginot et al., 2019). Mass loss from the GIS is partitioned between

surface mass balance (or the net flux of glacier mass from the surface) and ice loss

from marine terminating glaciers. The distribution of net annual loss between these

mechanisms is one of the primary sources of uncertainty in current estimates, as the ice

discharge from these marine terminating glaciers is highly sensitive to factors such as

fjord bathymetry, ocean temperature and circulation (Howat et al., 2005). For example,

hydrologic processes on the GIS’s surface have proven difficult to model (Smith et al.,

2017) and the dynamics of marine terminating glaciers exhibit larger variance than that

of the ice sheet’s interior (Parizek and Alley, 2004).
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Figure 3: Log spatial vs log temporal resolution of remote sensing methods actively used
in glaciology

Constraining uncertainties in modeling results of respective marine terminating

glaciers is a critical step in the process of drawing a complete portrait of large-scale

dynamics, which in turn produces better long term predictions. Remote sensing data are

useful for characterizing large-scale dynamics. Existing remote sensing satellites, such as

Landsat, typically sample at a spatial resolution of up to 900m2 per pixel, and a temporal

resolution of once every 16 days (Masek, Rocchio, and Taylor, 2020). 30m resolution is

useful for larger scale ice sheets and glaciers that may span 10’s of kilometers, but these

resolutions are not optimal for smaller scale features; techniques must be applied to a

broad distribution of glacier sizes, and over time scales potentially at the hourly scale to

fully capture the influence of ice flow moving mass from the high altitude accumulation

zones down to warmer regions. High spatial resolution can potentially be useful in the

extreme near terminus where peak surface velocities, rapid changes in stress distribution

and calving occurs. Making observations of these dynamics at a high resolution serves

to resolve their respective signals, such that casual forcings which occur at a frequency

above that of satellite-based remote sensing (e.g. precipitation) may be identified. In

contrast to satellite-based remote sensing, DSLR cameras and Terrestrial Based LiDAR

(TBL) can capture observations from many perspectives with high spatial and temporal

resolution and over a time-span limited solely by memory and power constraints.
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These autonomous high-resolution observation products are not without drawbacks.

Existing methods to process high-resolution TBL data are computationally expensive

and limit the their application to small spatio-temporal scales. These novel methods

have been applied to TBL and time-lapse imagery captured at Helheim Glacier in south-

eastern Greenland. Change detection between sequential observations, whether between

oblique time-lapse images, satellite based ortho-photos, or LiDAR derived point clouds

serves to elucidate the physical behaviour of a given glacier across multiple epochs. Tak-

ing a Bayesian approach to utilizing oblique time-lapse imagery to infer glacial surface

motion was first described in Brinkerhoff and O’Neel (2017) and Ahn and Box (2010),

whose efforts provided a robust framework for using high resolution terrestrial data (e.g.,

mounted time-lapse camera) to infer glacial surface motion. Welty (2018) described the

photogrammetry techniques used to incorporate these observations into the motion esti-

mation procedure in Brinkerhoff and O’Neel (2017). Methods to detect change between

sequential point clouds are well established; at the Helheim Glacier, LiDAR derived point

cloud data was used to infer 3D motion between pairs of sequential scans using Particle

Imaging Velocimetry (PIV) and Iterative Closest Point (ICP) as described in Gadomski

(2016).

In this work, the Bayesian approach to motion estimation and photogrammetry

described in Brinkerhoff and O’Neel (2017) and Welty (2018) (respectively) is extended

to incorporate LiDAR derived point clouds for the purpose of inferring glacial surface

velocities. The accuracy of results produced by the methods developed in this work are

directly compared to estimates of velocity fields produced by both coherent point drift

(Gadomski, 2016) and radar interferometer TerraSAR-X (TSX) (Joughin et al., 2010). In

the following sections we develop our approach to motion estimation, describe the model’s

interface used to include time dependent observations from TBL and oblique time-lapse

images, and discuss the relative performance of our approach to existing methods. We

find that the velocity estimates are in good agreement with existing methods used to

produce these estimates, and provide estimates with a quantifiable uncertainty in the

form of a posterior covariance matrix.
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2 A Bayesian Approach to Tracking Glacier Surface

Features From Multiple Data Sources

The fundamental goal of estimating glacial motion and inferring velocity is to take a set

of observations through time, and produce a state estimate for arbitrary spatio-temporal

locations within the observation domain (e.g., velocity along a given axis). Because ob-

servations are both sparse and imperfect, an accurate quantification of uncertainty in

the motion estimations is essential. Doing this requires accurately mapping the observa-

tion set to real world coordinates, utilizing elements of the observation set in temporally

sequential order, and defining reasonable probability distributions over the glacier’s ob-

servable states. Incorporating these observations to complete this process from various

data sources can be described as a problem in feature tracking, or locating identical ob-

jects across multiple images. While the techniques of feature tracking and the inference of

motion from observation sources such as DLSR images and other remote sensing products

are ubiquitous in the field of computer vision, their application in glaciology poses unique

problems (Harrison et al., 1992). Glaciers are often located in areas with severe weather,

which can occlude the entire field of view for a given sensor. The instruments used, when

deployed in environmentally volatile areas are subject to events such as severe snowfall,

cold weather, earthquakes, power issues, and wildlife interference; all probable mecha-

nisms for potentially disorienting and/or disabling the instruments to some degree until

they are field serviceable. These factors necessitate an approach that is robust to glacier

occlusion from weather and debris, variable instrument orientation, and discontinuous

observation sets.

2.1 Glacier Motion Model

If we define a vector of a glacier’s state within given spatial and temporal bounds via

probability distributions along each axis (e.g. x, y, vx, vy), then then a distribution over

the glacier’s dynamics prior to a given observation may be described by a probability

density function.
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In order to represent a given feature’s state as a probability density function, a

Lagrangian state-space model is used to represent the motion of tracked features on the

glacier’s surface as they evolve through time. Originally described in Brinkerhoff and

O’Neel (2017), this model’s variables are the features’ DEM-plane coordinates xk, map-

plane velocities vk, DEM-plane elevation zk, and variance in the DEM elevation values

δS. These variables form the state vector at the k-th time step Mk = [xk,vk, zk, δSk].

This model assumes that a specific feature moves tangential to the glacier’s surface with

its velocity subject to random accelerations, giving the discrete equations as follows:

xk+1 = xk + ∆tvk +
∆t2

2
ak (1)

vk+1 = vk + ∆tak (2)

zk+1 = S (xk+1) + δSk+1 (3)

δSk+1 = δSk + σz ‖v‖∆t. (4)

ak are random acceleration values in both horizontal directions drawn from a normal

distribution,

ak ∼ N (0,Σv,k) , (5)

where Σv,k is a diagonal covariance matrix with entries given an assumed characteristic

variance in glacier velocities. S(xk+1) is the reference surface for the glacier as provided

by a DEM. Errors in the DEM are likely to be systematic, and thus we account for the

uncertainty in their reference δSk+1 via a random walk dependent on the particle’s motion

over the surface. We specify the initial state M0:

x0 ∼ N (x′,Σx) (6)

v0 ∼ N (v′,Σv) (7)

z0 = S (x0) + δS0 (8)

δS0 ∼ N (0,ΣS) (9)
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where x′ is the location of the particle in DEM-plane space, v′ is an initial guess for veloc-

ity, and the various Σ are covariance matrices associated with these initial distributions.

More concisely, we can define this stochastic state-space model as a random vector

drawn from a distribution conditioned on the previous state (Brinkerhoff and O’Neel,

2017), or

P (Mk |Mk−1) = N (F (Mk−1) ,Σv,k) (10)

Where F corresponds to Eq.’s [1-4] and Σv is the co-variance matrix associated with the

model’s process noise.

2.2 Particle Filtering

The initial state of the filter M0 as described by Eq.’s [6-9] in section 2.1 describes the

general motion of the glacier without additional knowledge about a specific location. From

the initial state distributions produced by this model, we seek to approximate the true

probability distribution of the current state Mk with respect to all observations up to and

including the current time Ok = {oj : j ∈ 0, . . . , k}, where ok is an observation at time k.

This is done by measuring the respective likelihoods for a set of samples (called particles)

drawn from these state distributions with a likelihood estimation function unique to the

observation product as described in section 3.

With this set of potential solutions and their associated likelihoods the state’s prob-

ability distribution may be estimated under two assumptions, the first being that the

transition between states is a Markov process, meaning that the state of a given time

step Mk is independent of all previous states of that particle except Mk−1:

P (Mk |Mk−1, . . . ,M0) = P (Mk |Mk−1) (11)

This implies that the transition between states is independent of states prior to the

previous state. The second assumption is that observations depend exclusively on the
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current state, and are independent of all previous states and observations:

P (Ok |Mk, . . . ,M0) =
N∏
k=1

P (ok |Mk) (12)

Using these assumptions in conjunction with Bayes’ Rule (Tarantola, 2005) we can re-

cursively update our distribution as additional measurements are added:

P (Mk | Ok) ∝ P (ok |Mk)P (Mk | Ok−1) , (13)

where the likelihood P (ok |Mk) describes the probability of observing ok with samples

from Mk, and P (Mk | Ok−1) is the prior distribution which describes how feasible a state

is given the previous observations and the dynamics of the motion model. The product

of the likelihood and the prior is proportional to the posterior distribution of the state

Mk after consideration of all observations.

Because the posterior distribution of a given point’s state is a product of the prior

distribution and likelihood, the model naturally weights the influence of these two pa-

rameters depending on the availability of data. For example, in the case of failed instru-

mentation can assume that all potential points for the image are obscured from view,

producing a constant likelihood and thus rendering the posterior distribution propor-

tional only to the prior distribution, which is to say dependent only on the motion model

for evolution beyond the last successful observation. Conversely if the observations are

high fidelity (e.g. DLSR images were captured in optimal sunlight and/or LiDAR point

clouds are available for the time frame in question) and the prior state distribution is

relatively vague (high variance probability density function) then the likelihood would

dominate and the images would contribute more to the posterior distribution.

In order to compute the prior state distribution, the posterior distribution must

be propagated from Mk−1 through the current state. In other words the best guess

for the current state is the previous state that has been updated by the model dynam-

ics described by Eq.’s [1-4] in section 2.1. Mathematically, this is formulated as the

Chapman-Kolmogorov forward equation (Doucet and Johansen, 2009):

8



P (Mk | ok−1) =

∫
P (Mk |Mk−1)P (Mk−1 | ok−1) dMk−1 (14)

In this equation, we can see that the first term is the probability of the new state given

the old state (e.g. the forward model) and the second term in the equation is the pos-

terior distribution from the previous time step. Because of the non-linearity inherent to

both capturing observations and glacial dynamics, computing the posterior distribution

by taking an analytical solution is impossible and instead done through the use of an ap-

proximate numerical solution. The approached used is known variously as the Sequential

Monte Carlo Method (Doucet and Johansen, 2009), sequential importance re-sampling,

bootstrap filtering (Gordon, Salmond, and Smith, 1993), the Condensation Algorithm

(Blake and Isard, 1997), each of which are commonly referred to as the particle filter.

This so-called particle filter relies on a random sample of states (’particles’) (mi ∼ P (M))

that are sequentially updated by a stochastic state-space model and observations as they

are available. This method assumes that we can represent the probability distribution of

the state P (Mk) as a weighted set {(mi
k,w

i
k) : i ∈ 1, . . . , N} of random particles, forming

a probability mass function:

P (Mk) ≈
N∑
i=1

wikδ
(
m̄k −mi

k

)
(15)

where δ(·) is the Dirac delta function and N is the number of random samples. The

respective state of each particle is drawn from a a probability distribution that represents

the next state, or the ’proposal distribution’, q
(
mi

k |mi
k−1,Ok−1

)
, and each particles

respective weight is computed as

wik ∝ wik−1
P (ok |mi

k)P
(
mi

k |mi
k−1
)

q
(
mi

k |mi
k−1,ok

) . (16)

In this case a reasonable proposal distribution is to use the prior distribution at time k

itself

q
(
mi

k |mi
k−1,ok−1

)
= P

(
mi

k |mi
k−1
)
, (17)
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which leads to the simple scheme of evolving the particles according to the model dy-

namics and updating the weights via the likelihood at the current time step

wik ∝ P
(
ok |mi

k

)
= L(mi

k), (18)

where we have assumed constant weights at the previous time step, and L is a likelihood

function described in sections 3.1.3 and 3.2.2, respectively.

Theoretically, the model approximates the posterior distribution given an adequate

number of particles, but by nature of the particle filter’s likelihood estimation step only

a select few (e.g. less than 5% of the particles instantiated at initialization) would have

a significant weight after several iterations. This is overcome by re-sampling at each

step from the samples mi
k, with a probability given by the particles weight wik using a

re-sampling method (Carpenter, Clifford, and Fearnhead, 1999). This re-sampling step

produces a set of particles with equal weights

wik =
1

N
. (19)

The resulting posterior distribution converges to an approximation to the true posterior

probability. This algorithm operates as described in Algorithm 1.

3 Incorporating Time Dependent Observations

In this section we describe the methods used to incorporate time dependent observations

from oblique time-lapse imagery and LiDAR derived point clouds to infer surface motions

via a particle filter. To the best of the author’s knowledge, inferring surface motion from

time dependent observations via a particle filter has thus far only been accomplished

with RGB images, as originally demonstrated by Brinkerhoff and O’Neel (2017) and

Welty (2018). Section 2.2 illustrates a proven framework for utilizing arbitrary data

products, provided they accommodate both a referenced likelihood estimation function

for the respective particles that serves to approximate Eq. 18 / step 3 in Algorithm 1 and

10



Figure 4: Graphical depiction of the likelihood estimation and posterior approximation
steps. Figure from Brinkerhoff and O’Neel (2017)
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Algorithm 1: Algorithmic Summary of The Particle Filter Used in This Work

Init: Initialize mi∈0:N
k=0 state vectors centered about the feature(s) locations

projected into world coordinates. At the mean location of the initialized
state vectors, [X̄, Ȳ , Z̄] = 1

N

∑N
i=1 m[x,y, z]ik=0, initialize the reference

feature.
for ok in {observations} do

1. Evolve particles mi
k ∼ P (Mk) according to the stochastic state space model

described in section 2.2.

2. For each particle mi
k ∈ [m0

k, . . . ,m
n−1
k ], extract a test feature testik from ok at the

particle’s respective location projected into the coordinate system of ok

3. Compute wi
k for each particle [m0

k, . . . ,m
n−1
k ] by comparing its test observation to

the initialized reference observation via a comparison metric unique to the data
product so that wik = F(testik, feat0)

4. Systematically re-sample the particles proportional to their likelihood.

5. (Optional) Characterize the posterior probability distribution via its mean and
covariance

P (Mk) ≈ N

(
1

N

N∑
i=1

mi
k,ΣMk

)

an interface to transform between the filter’s DEM plane coordinates to the observation’s

coordinate system (e.g. easting, northing, elevation to pixel coordinates in the case of

RGB images).

3.1 Photogrammetry

The first step to identifying tangible motion in a glacier is done in image space. During the

Boreal melt season of May through October, visible changes on a given glacier’s surface

can take place on the daily scale and the human eye can visually detect differences in

perspective and object location. In glaciology, this foreground is typically the fjord in

which a tidewater glacier terminates and the background a mountain range in which the

glacier is settled. In the past decade, the use of digital time-lapse photography to capture

geomorphic processes has become ubiquitous in research efforts (Harrison et al., 1992;

Welty, 2018; Brinkerhoff and O’Neel, 2017). Digital camera’s provide a relatively cost

effective method of performing both high spatial and temporal resolution measurements
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that would otherwise be missed by satellite remote sensing due to low temporal frequency

(e.g. LANDSAT captures images approximately every 2 weeks).

3.1.1 World Coordinates to Image Coordinates

Cameras capture an image by performing coordinate transformations that project an

image in 3-dimensional (3-D) world coordinates (x,y,z) into a 2-dimensional pixel space

(u,v). To interface a given image with a particle filter, we must define a camera model

which reproduces the projection performed by the camera upon the image’s capture, or

Fcam : Xworld 7→ Upixel (20)

The first step to modeling this projection is defining a physical 3-D reference system with

the camera’s optical center and orientation at the origin. We can describe a given camera’s

physical 3-D coordinate system (x′, y′, z′) is augmented via rotation R and translation

P so that x′ and y′ point right and down in the image and z′ points through the focal

point of the lens when viewed from the back of the camera as shown in Figure 5. We can

represent this mapping from Xworld to the reciprocal Xcamera as such:

Xcamera = R(Xworld −P) (21)

where the rotation R translation P are matrices which describe the orientation of the

camera’s sensor at the time of capture, defined by indices from the vector

β : [xworld, yworld, zworld, θyaw, θpitch, θroll] (22)

In practice, the cameras position [xworld, yworld, zworld] is typically surveyed in the field,

while angular orientation [θyaw, θpitch, θroll] is estimated through the process of pose esti-

mation described in section 3.1.2. This transformed point Xworld is then projected onto

the 2-D image plane by dividing by z′ to produce normalized coordinates Xc:

13



Figure 5: The Pinhole Camera Model (photo from
https://openmvg.readthedocs.io/en/latest/openMVG/cameras/cameras/)

Xc =
1

z′

 x′

y′

 (23)

Where z′ is the component of Xcamera that represents the points physical distance from

the camera’s focal center. Neglecting the effect of lens distortion, the image’s pixel

coordinates Ui are a linear function of of these normalized camera coordinates:

Ui = fpixelXc + c, (24)

where fpixel is the camera’s focal length in pixels, and c = (cx, cy) is the center point

(intersection of the camera’s reference systems axes) in pixel coordinates. The conversion

of focal length between pixel and physical units (m) is taken by multiplying the ratio of

the sensor size in millimeters to the image size in pixels:

fpixel = f ′mm
sensormm
sensorpixel

(25)
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Figure 6: For a given point in map-plane coordinates, the image sub-sampling function
extracts a tile centered around the point from the camera’s perspective

3.1.2 Camera Model Calibration

The primary task of modeling the projection from world to image coordinates is esti-

mating the correct orientation of the respective camera’s sensor. Completing this task

required both laboratory calibration and the use of landmarks (e.g. mountain tops, glacial

erratics, installed markers) with their location in the world coordinate system . Camera’s

used for outdoor time-lapse photography are subject to considerable amounts of motion,

and thus the orientation β must be defined for each image. The goal of refining the

camera’s pose parameters is to minimize the prediction error between image coordinates

U from real world coordinates Xworld using Eq. 20:

arg min
β

n∑
j=0

‖Fcam(Xworld,j,β)−Uj‖2 ≈ 0 (26)

so as to estimate for a particular model parameter (e.g. view direction, focal length).

Solving Eq. 26 for respective images is done by first performing this on reference image.

A set of ground control points (GCP) containing the world coordinates of distinct features

(mountain tops, glacial erratics, etc.) Xworld = {Eastinggcp, Northinggcp, Elevationgcp}
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and their corresponding location in the anchor image Ximage = {Ugcp, Vgcp} was compiled.

With these GCPs and their world to image mappings (e.g. this disk is located at UTM

point 3937272 E, 6695729 N, 934 M and at image point [500,4500]), camera model pa-

rameter estimation can be completed and further refined by methods described in Welty

(2018).

3.1.3 Computation of the likelihood

This section describes the technique used to estimate a given particle’s likelihood from

time-lapse photos by way of solving Eq 18 and completing step 3 in 1 for time-lapse

images. To begin, the particle filter’s mean location is projected into the first image of

the observation set from which a mr × nr reference template T centered at this point is

extracted. This serves to capture the surface feature to be tracked through the period

of interest. As test images become available, a test sub-image I with size mt x nt ( with

mt > mr, nt > nr) is extracted for each particle at it’s location projected into image

space. With these reference and test sub-images, we compute the area-averaged sum of

squared differences between the reference template and test templates for all possible

pixel offsets u′, v′ for which the reference template falls entirely within the test template:

`(u, v) =
1

mrnr

∑
u′,v′

(T (u′, v′)− I (u+ u′, v + v′))
2
, (27)

for which the likelihood is defined as

L(mi
k) ∝ exp

(
−`(u

i
k, v

i
k)

σ2
` + σ2

m

)
, (28)

where σ` is the measurement uncertainty due to illumination changes and deformation,

and σm is the uncertainty due to camera motion in pixels (Brinkerhoff and O’Neel, 2017;

Nakhmani and Tannenbaum, 2008). In this expression, uik and vik are evaluated at a

particle-wise basis by projecting their spatial coordinates Xworld into camera coordinates.
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Figure 7: Illustration of the template matching procedure. Figure from:
https://riptutorial.com/opencv/example/22915/template-matching-with-java

3.2 LiDAR Derived Point Clouds

Light Detection and Ranging (LiDAR) scanners provides measurements of distance from

a sensor to a given object by illuminating a target with a pulse of laser light and capturing

the return time. This return time provides distance measurements which can be used to

construct a projected surface of a target from the sensor’s vantage point, defined by:

d = c
t

2
, (29)

where d is the distance between the scanner and object, c is the speed of light, and t is

the captured return time.

A given scanner converts the measurements of the pulse-based emissions into raw

distances, and further translates these distances into the scanners respective coordinate

system (Gadomski, 2016). Typically centered inside the scanner, this coordinate system

has the x axis aligned in the direction of the laser emission, the z axis pointed vertically

up from the scanner, and the y axis orthogonal to the first two. To convert from raw

distance to a 3-D geo-referenced point, a scanner records r, φ, and θ where r is the raw

distance from the scanner to the target point, φ us the angle around the z-axis [0 − 2π]

and θ is the angular offset from the z-axis [0 − π]. These measurements (r, φ, θ) can

be then converted into geo-referenced cartesian coordinates using the scanner’s location,

Xscanner:
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
x

y

z

 =


r sin θ cosφ

r sin θ sinφ

r cos θ

+ Xscanner (30)

In aggregate, these measurements produce a set of discrete un-ordered points in a given

frame of reference, otherwise known as a point cloud. When multiple independent point

clouds are captured in sequential order they serve to provide time dependent observations

of a given surface. In this section we describe the techniques developed in this work to

utilize geo-referenced time dependent point clouds as observations within particle filter

for estimating glacier surface velocities.

3.2.1 Model Coordinates to Point Cloud Coordinates

Point cloud data products are typically stored as a set of un-ordered points in 3-D, with

some associated metadata. While this raw data format is memory efficient, it does to

provide consistent information about the spatial relationship between points, nor a way

to spatially index the discrete points from a continuous surface. Accessing a point cloud

so as to extract descriptive features from the glacier’s surface must be done in a way that

is both computationally efficient, and admits for querying a set of discrete points by their

relative location. To do this, the respective point clouds are sorted with a data structure

known as the KD-Tree, or K-Dimensional Tree (KDT). The KDT allows for k-nearest

neighbor and radial distance searches, while only requiring O(logN) construction time

and O(N) memory use (where N is the number of points in the set) (Bentley, 1975).

Because point clouds representing a glacier’s surface have an inconsistent point den-

sity (Gadomski, 2016), querying the point clouds for a predetermined number of points

would provide inconsistent features. A radial distance search is used to access the KDT:

this search algorithm returns all spatially sorted points of dimension k within a euclidean

distance R of search point P . In order to capture a complete portrait of the glacier’s

surface, KDT’s are built using elements from the glacier’s surface plane projection, or in

other words the point cloud’s x and y axes. This allows for the radial distance search
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Figure 8: An example two-dimensional k-d tree (k=2) built from points a through h.
Dividing planes are constructed by cycling through each coordinate and determining the
median node (left). This gives rise to a tree structure (right) that, in conjunction with
an input node, cant hen be searched recursively for a corresponding rectangular domain
in physical space. The last leaf node is labeled as the best candidate for nearest neighbor
and the tree is “unwound” to test other potential candidates. Figure from Ullrich and
Zarzycki (2017)

to ignore surface topography, and sample points from a projected surface. For this ap-

plication, the KDT only stores the point’s indices in the original data, allowing for the

retrieval of elevation values upon querying the surface plane location from the tree.

3.2.2 Computation of the Likelihood

To gauge the degree of which two point clouds represent the same glacier surface feature

(e.g. the same crevasse translated between the two positions) we utilize the technique of

Gaussian Process Regression.

To approximate Eq. 18 and complete step 3 in 1, we pose the problem of gauging

similarity between reference and test point clouds of the glacier’s surface:

Given an observed region of the glacier’s surface at time k0 centered at point p0

represented by a point cloud (X,Z)train, paired with an observed region of the glacier at

time k1 centered at p1 represented by the point cloud (X,Z)test, compute the likelihood

that (X,Z)train and (X,Z)test are representative of the same glacier surface feature (e.g.

the same crevasse) translated between the two positions p0 and p1.

Taking the view that a given point cloud is a collection of random variables drawn

from a probability distribution defined by the glacier’s true surface, we can formulate
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Figure 9: A graphical depiction of the observation points and the subsequent radial query
schema used in this work. The red dots illustrate respective points from the point cloud
and the yellow circle illustrates the radial query used to compute a respective particles
likelihood.

(X,Z) as a Gaussian process (GP) of Z conditioned on X. Gaussian processes are spec-

ified by a mean function m(x) and covariance function K(x,x
′
) of a real process f(x)

defined as:

m(x) = E[f(x)]

k(x,x
′
) = E[(f(x)−m(x))(f(x

′
)−m(x

′
))] (31)

and the Gaussian process is written as

f(x) ∼ GP(m(x), k(x,x
′
)) (32)

Here k(x,x′), the covariance function, specifies the hypothesized covariance between

points in space and the matrix of which has entries Kij = k(xi,xj). In this work, we

evaluate kernels using the stationary Matérn covariance function:

K(X,X ′) =
1

Γ(ν)2ν−1

(√
2ν

l
d(xi, xj)

)ν

Kν

(√
2ν

l
d(xi, xj)

)
. (33)

Where d(xi, xj) is the euclidean distance between points, ` is the characteristic length-
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scale, and ν controls function smoothness (Rasmussen and Williams, 2006). The hyper-

parameters σ2 and ` are found through marginal maximum likelihood estimation on the

training set. We solve the stated problem by making the assumption that should the

two point clouds indeed be representative of the same surface feature, then the test point

cloud will provide adequate training data to produce a probabilistic model of the training

point cloud’s elevation values. This is done by evaluating the distribution of predicted

elevation values at Xtrain, which we call Zpred, as

P (Zpred|Ztrain,Xtest,Xtrain) = N (µ,Σ), (34)

with

µ = K∗(K + σ2obsI)−1Ztrain (35)

Σ = K∗∗ −K∗(K + σ2
obsI)−1KT

∗ , (36)

where µ is the posterior mean of Zpred and Σ its posterior covariance. The matrices K,

K∗ and K∗∗ are covariance matrices (between Xtrain and itself, Xtrain and Xtest, and

Xtest and itself, respectively). With a predictive distribution over elevations at test set

locations, the likelihood of the true elevations Ztest given these predictions this prediction

Zpred is evaluated as

L(mi
k) = exp

(
−
(
n log(2π) + log(| Σi

k |) +
1

2
(Zi

test,k − Zi
pred,k)

TΣ−1,ik (Zi
test,k − Zi

pred,k)
))
(37)

where n are the number of predictions in Zi
pred,k.
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Figure 10: Illustration of the the likelihood estimation function used for point cloud
data. The reference surface (blue) is used to generate a probabilistic model of the test
surface using the easting/northing location as inputs. The log-likelihood of this model
is evaluated using the true elevation values of the test surface, which serves to gauge
congruity between the respective observations.

4 Application to the Helheim Glacier

The Helheim Glacier (66.38 N, 38.8 W) is a marine terminating glacier located in south-

east Greenland, and is one of the Greenland Ice Sheet’s (GIS) largest outlet glaciers.

Boasting some of the fastest surface velocities of any glacier on the GIS, the Helheim ex-

hibits velocities of ≈ 5-11 km yr−1 or 13−27 m d−1. The Helheim Glacier, in conjunction

with the Jacobshavn and Kangerlussaq glaciers jointly account for 12% of the GIS’s mass

and jointly contain enough ice to raise the GMSL by 1.3 m (Parizek and Alley, 2004).

Because of the Helheim’s contributions to the net ice flux of the GIS, it has been the

subject of numerous field/remote sensing studies and is well positioned for the installation

and management of field instruments. In the summer of 2015, the Autonomous Terrestrial

Laser Scanner (ATLAS) system was installed at the Helheim to observe year round glacier

dynamics at an unprecedented level of detail via time dependent point clouds of the

glacier’s surface approximately every 6 hours. ATLAS, in addition to two time-lapse
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cameras provides constant year round observations of the Helheim.

The particle filter described in Section 2.2 is used to infer surface motion at the Hel-

heim Glacier from 2016-08-01 : 2016-10-01. The predicted velocities are then compared

with the nearest spatially and temporally coincident velocity estimations produced via

Coherent Point Drift (Gadomski, 2016) and TerraSAR-X surface images. Filter instances

are initialized on an 8x16 grid DEM-plane points and on the overlapping region of the

ATLAS and time-lapse camera view-sheds as shown in later sections.

4.1 Prior Distribution, Kernel Selection, and Filter Parameters

The particle filter described in 2.2 requires a defined prior distribution over the Helheim

Glacier’s dynamics. Samples drawn from this join distribution serves to provide the test

hypothesis for model likelihood. To define the prior distribution over the initial param-

eters we use reported and observed velocities from Howat et al. (2005) and TerraSAR-X

respectively, described in figure 11. The density of points m−2 is highly variable, and

proportional to the relative distance to the scanner instrument. Because of this, a respec-

tive filter’s kernel length scale ` and observational variance σobs are set to be inversely

proportional to the requisite radius needed to observe 200 points of data. We can see

that d1`1 = d2`2, and so it follows that `2 = d1`1
d2

. Prior to utilizing point cloud data in

the filter, points are sorted by their distance from the median value along the elevation

axis upon the radial distance query. Points within the 60th percentile of distance from the

median elevation are kept, which was found to be the optimal value between signal and

noise during development which was empirically determined to be the optimal amount

of signal vs. noise after multiple test runs.
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Figure 11: Samples drawn from the prior distribution of the particle filter over the re-
spective velocities along the easting, northing, and elevation axes

4.2 Instrumentation and Data Coverage

Time-lapse images were taken every hour from 7:00 AM to 7:00PM local time, and the

LiDAR scans were captured at 6 hour intervals. Respective terrestrial LiDAR and camera

parameters are described in tables 1 and 2, in addition to spatial coverage illustrated in

figure 12.
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Figure 12: Relative location and approximate extent of the Helheim glacier captured by
Landsat 8 on 08-28-16, overlaid by the view-sheds of ATLAS and the time-lapse cameras
used in this work.

Table 1: Terrestrial LiDAR scanner specification

RIEGL Laser Measurement Systems Model VZ-6000

Laser wavelength 1064 m−9

Pulse rate 50 khz

Max range 6 km

Points/scan (apprx.) 50,000,000

Time per scan (apprx.) 30 m

φ range 135°− 234°

Angular velocity of scanner head 3.3degm−1

Scan Interval 6 hours
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Table 2: Camera instrument specification

Stardot - NetCam SC Multi-Megapixel Hybrid IP Camera
Resolution (pixels) (1024,768)
Sensor Size (mm) (5.7,4.28)

Focal Length (pixels) (1794,1338)
ISO Auto

Frame rate Auto

4.2.1 Results

We take the results of the set of respective filter’s posterior estimates across the defined

time-span and compare them to estimates of velocity fields produced by both coherent

point drift (Gadomski, 2016) and radar interferometer TerraSAR-X (TSX) (Joughin et

al., 2010). We show that across all epochs, there is agreement in root median square

error (RMSE) between the filter produced velocity estimates of approximately 1 m d−1

with respect to CPD and 2 m/day with respect to TSX (Fig. 13). Across the time

series of velocity estimates, we smooth estimates by taking the median value of the given

posterior estimate and its 8 nearest neighbors. The lower subplot in Fig. 14 illustrates the

associated uncertainty to each corresponding filter instance. Note how the uncertainty

increases with gaps in observational data.

5 Discussion

Thus far, methods to utilize various data products for surface motion estimate have been

completed independently. In (Brinkerhoff and O’Neel, 2017), oblique time-lapse images

are used to estimate the velocities and the Columbia Glacier in South-central Alaska

while (Gadomski, 2016) explores various methods used to estimate velocities from TBL

derived point clouds at the Helheim Glacier. By generalizing existing methods to accom-

modate both oblique time-lapse images and TBL point clouds, we have coupled multiple

observational data products towards the goal of motion estimation. This approach makes

the observational time-span more robust to equipment failure, occlusion from weather,

and sources of uncertainty unique to the respective instruments. Provided there are fre-

quent observations with minimal gaps, the design of the particle filter used in this work is
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Figure 13: Depiction of surface velocity estimates from temporally adjacent estimates
from coherent point drift and TerraSar-X. The plot on the far right shows the tracker
locations super-imposed on rasterized velocity estimates produced by coherent point drift.

Figure 14: Depiction of Inferred Tracker Velocities. The lower plot shows the median
velocity and median uncertainty for all plots. The color-bar in the both plots represents
the relative northing position, which in this case is proportional to distance from the
glacier’s margin. Solid green lines represent scan observations and solid red lines represent
image observations.
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trivially generalized to produce estimates across time-spans from a few days up to several

months and at resolutions proportional to the available observations. This flexibility in a

given estimate time-span, and quantified uncertainty can provide the requisite knowledge

of dynamics at the terminus needed to draw conclusions about environmental influences,

and resolve both daily and seasonal changes in the respective velocity signals.

In the case of the time span used in this work, the Helheim’s terminus is, for the

most part, out of view of the second camera’s view-shed (figure 12) and both camera’s are

mounted on the same structure. Computing a given particle’s likelihood from time-lapse

photos (section 3.1.3) resolves motion perpendicular to the camera’s focal axis but strug-

gles to resolve motion that is parallel to the focal axis. Because of this, this likelihood

approximation scheme performs best when multiple perspectives capture images of the

glacier’s surface from peripheral locations. Utilizing the point cloud data in conjunction

with time-lapse photos ameliorates this issue, as the point cloud captures the 3-D struc-

ture of the glacier’s surface as opposed to a 2-D projection; observed motion is relatively

consistent across all axes.

5.1 Difficulties With This Approach

During development we found the filter’s performance to be highly sensitive to the num-

ber of points used for likelihood estimation, and co-variance function parameters. What

is likely due to the extraordinary resolution of the ATLAS system, The point cloud data

used in this work is notoriously noisy; this signal from the underlying surface motion

is strongly aberrated by noise from a constantly evolving surface of serac and crevasse

structures. In addition to the challenges presented by this noisy data, the density of obser-

vational points linearly decreases with distance from the scanner instrumentation. This

problems are solved by scaling the respective filter’s query radius, co-variance function

length-scale, and the assumed observational variance by the distance from the scanner at

initialization, which assumes that the particular filter instance remains at a relatively con-

stant distance from the scanner during the observational window prior to re-initialization.

The issue of surface noise is solved by implementing what amounts to a low-pass filter
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to pre-process the observational points prior to filter utilization. In addition to issues

stemming from high resolution data, performance at the margins of the LiDAR scanner

instruments margins remains questionable. In Figure 14 we can see that there are notable

discrepancies that are not physically reasonable estimates. Most egregiously there is a

velocity span of 5-20 meters per-day within a span of 500 meters. We speculate that

this is due to filter instances utilizing data near the occlusion boundary imposed by the

scanner instruments fore-ground.

Algorithmically, there are several bottlenecks in the likelihood estimation scheme for

the the point cloud data. Computing the surface prediction µ, its associated uncertainty

σ and the likelihood requires computing 3 distance matrices and performing 2 matrix

inversions, resulting in an overall computational complexity (which is to say the amount

of work needed to be done by a given machine’s processing hardware) proportional to

O(n3).

Physically improbable values may be computed in posterior velocity estimates. We

address this issue by taking the median velocity between a given filter’s posterior and

the 8 nearest posterior estimates in DEM plane coordinates, serving to provide higher

fidelity estimates than any filter instances independently.

5.2 Future Improvements

There is ample room for improvement in the point cloud likelihood estimation scheme.

Most notably is the fast Gauss transform, which may be used in Gaussian Processes Re-

gression to approximate kernel matrices bringing the calculation of the sum of N Gaus-

sians at M points from O(MN) to O(M +N) (Raykar and Duraiswami, 2006).

6 Conclusion

By devising a method to incorporate time dependent point cloud data into existing sur-

face motion estimation methods, we can effectively produce estimates that incorporate

multiple data products and robustly characterize uncertainty. When applying this novel
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approach to the Helheim Glacier, we can see similar estimates to conventional methods

(e.g. Coherent Point Drift). These methods may be efficiently generalized to produce

estimates across relatively long time spans (e.g. multiple months), and to perform the

computational workload across multiple processing units. Producing temporally high

resolution velocity estimates across broad time spans can enable a more concise under-

standing of the influence of environmental forcings (e.g. submarine melting, meltwater

discharge, etc.) and their overall impacts on GIS dynamics.
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