
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2021

The Impacts of Integrating Interdisciplinary, Introductory The Impacts of Integrating Interdisciplinary, Introductory

Computer Science in High School Courses Computer Science in High School Courses

Jan Roddy

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Roddy, Jan, "The Impacts of Integrating Interdisciplinary, Introductory Computer Science in High School
Courses" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11816.
https://scholarworks.umt.edu/etd/11816

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11816?utm_source=scholarworks.umt.edu%2Fetd%2F11816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

THE IMPACTS OF INTEGRATING INTERDISCIPLINARY, INTRODUCTORY

COMPUTER SCIENCE IN HIGH SCHOOL COURSES

By

Jan Roddy

Bachelor of Arts, The University of Montana, Missoula, MT, 2015

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

Autumn 2021

Approved by:

Ashby Kinch Ph.D., Dean
Graduate School

Yolanda Reimer Ph.D., Chair
Computer Science

Patricia Duce M.S.
Computer Science

Georgia Cobbs Ph.D.
Education

© COPYRIGHT

by

Jan Roddy

2021

All Rights Reserved

ii

Roddy, Jan, M.S., November 2021 Computer Science

The Impacts of Integrating Interdisciplinary, Introductory Computer Science in High School Courses

Chairperson: Yolanda Reimer

Broadening the participation in Computer Science (CS) education is widely recognized as nec-
essary to prepare students for the future however, in Montana, most High School students are not
exposed to CS. In collaboration with High School teachers in Math, Science, and Business this
project integrates interdisciplinary programming in non-CS courses. This preliminary study inves-
tigates the effects of interdisciplinary programming lessons on student interest in programming,
basic learning of CS concepts, and learning of the non-CS material. Pre and post-lesson surveys
were administered to the 132 student participants collecting quantitative and qualitative data. The
results suggest learning gains in both CS and non-CS material post intervention, but student in-
terest in programming did not change significantly. The results of this study provide motivation
and can facilitate further analysis of using CS in high school courses to benefit student learning.

iii

TABLE OF CONTENTS

COPYRIGHT . ii

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTER 1 INTRODUCTION . 1

1.1 Overview and Motivation . 2

1.2 Research Questions . 3

1.3 Hypothesis . 3

CHAPTER 2 LITERATURE REVIEW . 4

2.1 Computational Thinking . 4

2.2 Interdisciplinary CS . 5

2.2.1 Math and Programming Can Reinforce Each Other 5

2.2.2 Programming in STEM Courses Can Improve Students’ Conceptual Learning 6

2.3 Student Reflections on CS in the classroom . 7

2.4 Interactive Python Notebooks in Education Promotes Active Learning 7

2.5 Summary of Studies . 7

CHAPTER 3 METHODOLOGY . 9

3.1 Module Development . 9

3.1.1 Google Colab and Interactive Python Notebooks 12

3.2 Module Instruction . 13

3.3 Data Collection . 13

3.4 Study Participants . 14

iv

3.4.1 Teacher Participants . 14

3.4.2 Student Participants . 14

3.5 Data Analysis . 15

CHAPTER 4 RESULTS . 16

4.1 Student Interest in Programming . 16

4.2 Student CS Concepts Learning . 19

4.3 Host-discipline Learning . 20

CHAPTER 5 DISCUSSION . 21

5.1 Student Interest in Programming . 21

5.2 CS Concepts . 22

5.3 Host-discipline Concepts . 23

5.4 Limitations of the Study . 23

5.5 Teacher Perception of the Lessons . 23

5.6 Recommendations for Future Work . 24

5.7 Conclusions . 25

APPENDIX A Pre-instruction survey questions included in pilots 27

A.1 Biology Content Questions: Graph Choice and Scientific Analysis 29

A.2 Chemistry Content Questions: Molarity . 31

A.3 Chemistry Content Questions: Ideal Gaw Law . 32

A.4 Algebra Content Questions: The Slope of a Line . 32

APPENDIX B Post-instruction survey questions included among all pilots . . . 34

APPENDIX C Example of Ideal Gas Law problem set selected by Chemistry

teacher for the project . 38

APPENDIX D Full example of Chemistry programming Module based off the

Ideal Gas Law problem set provided by Chemistry teacher 42

BIBLIOGRAPHY . 51

v

LIST OF FIGURES

Figure 3.1 Normal Distribution Statistics Module . 10

Figure 3.2 Slope Calculation Programming Exercises Excerpt 11

Figure 3.3 Ideal Gas Law, Chemistry programming exercise excerpt 12

vi

LIST OF TABLES

2.1 A compiled list of CT Concepts and Practices examples. 5

3.1 Student Participants Response to: How much programming experience do

you have? . 14

4.1 Student Interest in Programming Survey Results 16

4.2 Change in Student Interest in Programming Survey Results 17

4.3 Why Students are Interested or not Interested In Learning to Program . . . 18

4.4 CS Content Survey Question Results . 19

4.5 Host Discipline Content Survey Question Results 20

vii

1

CHAPTER 1 INTRODUCTION

Broadening the participation in Computer Science (CS) education is widely recognized as nec-

essary to prepare students for the future [1, 2, 3]. Computational Thinking (CT), or “thinking

like a computer scientist,” is a foundational skill set that teaches creative problem solving and

critical thinking [4]. Additionally, computer programming is relevant for nearly every profession

and academic field [1, 2, 4]. Thus, providing more opportunities to expose students to CS and

programming is essential to equip students with computational competencies across disciplines and

for the workforce. However, most Montana high school students are never exposed to CS Education

and lack a basic understanding of the CS field [1, 5]. Notably, low population and rural schools

are even more affected by the lack of opportunity to study CS [5]. In Montana, only 36% of

high schools teach a foundational computer science course [5]. Computer Science is an elective

course for most students and does not always count towards graduation credit which means many

students do not study CS even if it is offered to them [1, 5, 6]. In high school, many students

first explore disciplines in-depth, consider future careers, and prepare for college which makes high

school students an excellent target for the efforts of broadening participation in CS [2].

Even though the importance of CS education is widely recognized, there are considerable barriers

and competing priorities to CS education to contend with. For one, high school curriculums are

already overburdened with required standards. In addition, there are not enough teachers trained

in teaching CS to fulfill the need, so not every school has the teaching expertise to allow for CS-

specific courses [1, 5, 7]. With all of this in mind, how can we introduce students to programming

who might not otherwise take a full year-long computer science course?; and what are teachers

doing that could be modified and extended to include Computational Thinking and programming?

2

1.1 Overview and Motivation

In this paper, I will present a framework for interdisciplinary, introductory CS curriculum

creation, instruction, and analysis. As one method, among many, of combating the lack of CS

education for students, we propose injecting small doses of interdisciplinary CS into non-CS courses.

In collaboration with teachers across Montana, we are working to integrate Python programming

lessons into existing courses of various disciplines. By covering computational thinking in a class’s

existing curriculum, students can interactively reinforce important concepts and gain exposure to

how computing can be used to solve problems in various fields. Through problem decomposition,

discussion, and code examples students can engage with difficult concepts in a new way and discover

the relevance of computing to their interests and strengths. A study regarding why students with

an aptitude for CS, defined as taking advanced mathematics courses, do not major in CS found

that 98% of students did not have a good grasp of what CS is [6]. Of the students in the study

who were interested in studying CS, interest in applying CS to a different field was one of the top

reasons cited [6].

There are no shortages of introductory CS curricula but this proposed model is different because

of the individualized lessons, teacher support, and incorporation of current high school standards.

The buy-in from high school teachers is also substantial because they reach many students in a

variety of disciplines (some of which are core and required subjects). By integrating programming

lessons into required and elective courses, more students are exposed to CS and the potential of

programming to transform their world by solving complex problems that they care about. This

project provides curricular materials, relevant resources, and lessons that teachers can tailor to their

own needs. With the support of researchers at the University of Montana, teachers can connect CT

and programming to learning goals already set by state standards and demonstrate the role of CT

in non-CS disciplines. Along with developing the materials for this project, a preliminary research

study regarding interdisciplinary CS as an introduction to the field was executed. The research

study was motivated and designed according to the following questions.

3

1.2 Research Questions

The three following research questions motivate the data collection in this preliminary explo-

ration into the impacts of the proposed interdisciplinary programming lessons developed for the

study.

1. Does high school students’ self-reported interest in programming increase after exposure to

this study’s interdisciplinary programming lessons?

2. Can students learn basic computational concepts through this study’s interdisciplinary in-

struction?

3. Does including programming in Science, Math, and Business high school courses outside aid

in student understanding of the host course material?

1.3 Hypothesis

The study’s cross-disciplinary programming implemented in the 5 pilot high school courses in

Math, Science, and Business will increase student’s self reported interest in programming. Addi-

tionally, the student surveys will demonstrate student learning increases in the CS content questions

and the core course material.

4

CHAPTER 2 LITERATURE REVIEW

This review of prior work on Computer Science Education begins by exploring what the CS

Education community determines what Computer Science for K-12 is and the impacts of study-

ing CS on student learning. Next interdisciplinary programming studies findings are summarized

and reviewed to identify best practices and useful lessons. Then, students’ reflections of program-

ming the classroom during a prior research study are presented. Finally, the suggested benefits of

programming as an active learning activity with code ”notebooks,” are presented.

2.1 Computational Thinking

There has been a significant amount of work and thought regarding the importance of Computa-

tional Thinking (CT) in K-12 education [1, 3, 4]. With the goal of incorporating CT and program-

ming into high school student courses, the first step is identifying what defines CT. Computational

thinking is a key 21st-century competence for developing a specific set of critical thinking skills [3,

7]. CT is often characterized by different concepts and specific practices for problem-solving. Some

commonly regarded CT concepts and practices are listed in the table 2.1.

Computer programming is a natural and engaging vehicle for learning CT concepts and practices

[8]. The concepts and practices listed in Table 2.1 inform the study and are incorporated in the

programming modules created for the project. For instance, methods for solving math or science

problems with programming can be broken down into steps to demonstrate problem decomposition

and incremental development. When discussing formulas and procedures, algorithm design and

logic are fitting topics to practice ”thinking like a computer scientist” [1]. After the algorithms are

5

CT Concepts [4, 7] CT Practices [7]

logic and logical thinking problem decomposition

algorithm design testing and debugging

pattern recognition incremental development

evaluation creativity

automation

abstraction

Table 2.1: A compiled list of CT Concepts and Practices examples.

discussed automation and abstraction can be explored with concepts such as functions, variables,

and control structures. Computational Thinking can complement and enhance different areas

of study [7]. For instance, programming in math and science is established and intuitive [4,

7]. It has been shown that extending coursework to include CT content enables deeper STEM

learning [4, 7]. Another benefit of introducing programming to students in math and science

courses is providing students a context for programming that they are already familiar with and

have experience studying [4, 7].

2.2 Interdisciplinary CS

There have been many important efforts and research studies conducted on the viability of

interdisciplinary CS. A few of the more pertinent efforts to this study are outlined regarding how

they inform and motivate this study.

2.2.1 Math and Programming Can Reinforce Each Other

In one research study, Fisler et al. [8] regard how math and programming can reinforce each

other and shares a few best practices regarding interdisciplinary programming. The study is a

six-year reflection on an evolving curriculum for integrating computer science into mathematics by

leveraging programming to help students explore mathematics [8]. The main lessons for integration

6

of the two disciplines include knowing your audience (teachers and students), teaching for knowledge

transfer by explicitly linking concepts in CS and math, and adapting to the teaching practices and

styles of the host class with flexible materials [8]. Additionally, Fisler et al. [8] suggests that

relating CS to a teacher’s interest in integrating computing into their home discipline allows for

more success of the efforts [8]. This research project is motivated by the findings of this study by

relying on the partner high school teachers who know their student and class dynamics to tailor

the lessons for the audience. By working with partner teachers who have an interest in integrating

computing into their discipline, we can focus on the material that the teachers want to link with CS

concepts. Additionally, the Python modules created were set out to be flexible in length, difficulty,

and subject matter.

2.2.2 Programming in STEM Courses Can Improve Students’ Conceptual Learn-

ing

In another study, Jackson et al. [9], used an instructional model to apply programming to STEM

courses [9]. The study participants were undergraduate students in lower-division Mathematics

courses and High School teachers in professional development workshops [9]. The model used

programming to study mathematical concepts with the underlying goal of increasing students’

understanding of abstraction, an essential concept of CT [9]. The study included a control group

of students who were not exposed to the CS content taking the same Math course. According to

the research, the students who learned the content with computer programming improved 38% in

their processing level, whereas the students in the control group improved 15% in processing level

[9]. According to the authors, teachers, and students benefited from the approach and the results

suggest that the integration of programming improved students’ ability to abstract and generalize

their conceptual learning [9].

7

2.3 Student Reflections on CS in the classroom

Celepkolu et al. [10] performed a year-long study with middle school science students engaged

in CT activities and block-based programming. The study found significant learning gains in

students’ CS knowledge, and that the majority of students had positive sentiments regarding the

integration of CS into their classrooms [10]. Some of the themes students reflected on after their

experience was that computing can show the details of science processes, provide active learning

opportunities, and aid in understanding science from a different perspective [10]. The findings of

this study suggest that interdisciplinary programming may be interesting to students as well as

beneficial to their learning in STEM courses.

2.4 Interactive Python Notebooks in Education Promotes Active Learning

iPython Notebooks are a web-based interactive computational environment for creating, exe-

cuting, and visualizing code. They can be used to create a worksheet type lesson, text book and

code editor for students. The use of iPython Notebooks in education has been shown to increase

engagement and participation while also improving understanding of course content [11]. The

notebooks can aid in conceptual learning and make lessons more relevant to diverse interests and

different learning types [11]. The interactivity of the notebooks allows for students to be active

participants in their learning by providing an avenue for exploring, analyzing, synthesizing, and

evaluating the content. In active-learning, students are actively engaged by teaching strategies

rather than passively participating in listening or taking notes [2]. Active learning methods have

been shown to increase in STEM subjects [12]. The format offers a valuable tool for remote and

asynchronous learning as a guided lesson.

2.5 Summary of Studies

The prior work in the area of interdisciplinary programming’s impact on student learning sug-

gests that it enhances STEM learning and problem solving skills. There is ample evidence to

8

support that further work in this area should be pursued and that there is more to learn. Addi-

tionally, the best practices identified by prior studies inform the methodology of this study. The

studies do not however, provide findings regarding shorter exposure to CS and programming which

this study explores.

9

CHAPTER 3 METHODOLOGY

The goal of this year long research study was to design, develop, and evaluate an interdisciplinary

CS introductory curriculum. This curriculum was piloted in a variety of Montana high school

courses that are not identified as programming or CS courses. The methods used to accomplish

this goal are detailed below by demonstrating the curriculum development process, the instruction

of the material, a description of the research study participants, the data collection procedures,

and the data analysis methodologies.

3.1 Module Development

By partnering with high school teachers to develop modules that align with their specific cur-

riculum, learning outcomes, and students’ needs, we were able to integrate complementary program-

ming exercises into classrooms across Montana. For instance, if a high school Chemistry teacher

was already planning on covering Gas Law equations, then demonstrating how programming can

be applied to solve gas law problems is a relevant and natural addition to the course. The com-

plementary nature of using programming in pursuit of the learning outcomes that are already in

place for a course benefits the students, teachers, and the goal of broadening the participation in

CS education.

As high school teachers are an integral part of broadening CS Education, the first step in de-

veloping the modules was identifying teachers who are interested in linking programming to their

core curriculum. We then asked for the teacher partner to identify a set of problems or lessons

that students could benefit from learning with code. Teachers provided lessons on statistics, pay-

roll math, arithmetic sequences, Gas Law formulas, molarity calculations, and more. Examples of

10

teacher provided problems are shown in figure 3.1 and Appendix C.

Figure 3.1: Example of a teacher provided statistics problem and programming assignment .

Next, we developed programming exercises based on the desired problems and worked with

the teacher partners to make the module engaging, clear, and useful. Examples of programming

exercises based on the teacher provided problems are shown in figures 3.1, 3.2, and 3.3 . In-

structions provided step-by-step explanations on how to interact with the code examples. The

instructions frequently include identifying certain parts of the program, for instance, identify a

variable assignment in the code. Other student tasks include changing variable values, making

function calls, writing part of a function, and checking outputs. The programming concepts that

were introduced in the lessons vary based on the material, but generally include input/output, vari-

ables, functions, and using code libraries. Some include more advanced concepts such as branching

and loops. In addition, different concepts and practices of computational thinking are used such

as problem decomposition, algorithmic thinking. The lessons encourage student exploration by

providing options and opportunities to play around with the code cells and visualize the output of

their changes. Resources are often linked and ideas for developing more complexity in the programs

are encouraged.

11

A goal of the project was to provide flexibility for teacher participation, whether that be running

a 30-minute module in a class remotely, writing code and exercises for the project, or somewhere

in between. Teacher education and involvement are essential to solving the CS education problem,

thus their involvement and buy-in are just as important as the students.’ The amount of training

that teachers have regarding CS and programming varied and the individualized support allowed

for teachers with no formal education in CS or experience in programming to run the curriculum

in their classrooms.

Figure 3.2: Example of a slope calculation programming problem introducing functions.

12

3.1.1 Google Colab and Interactive Python Notebooks

The lessons are developed in the Python programming language and distributed in interactive

Python notebooks with the Google Colab environment (see figure 3.3). Python was chosen for

the project because it is a popular high-level, programming language with a readable syntax which

makes it great for beginning programmers [12]. The Python programming language is also powerful,

widely used, and has many relevant libraries for interdisciplinary programming. The Google Colab

IDE runs Python code in an internet browser. Google Colab renders interactive Python notebooks

(Jupyter Notebooks) which allow for the the integration of formatted text, code, inputs, and outputs

in the same window. Google Colab requires no installation or set up to run code and is simple

to learn how to use. It provides a clean and user-friendly interface to provide instructions and

code blocks which allows for an instructional problem-solving narrative to progress throughout the

lesson.

Figure 3.3: Ideal Gas Law, Chemistry programming exercise excerpt from the beginning of the module. The instruc-
tions in the beginning are more explicit, include more comments in the code and ease the students into reading and
running code. The full module is included in Appendix D.

13

3.2 Module Instruction

After developing the content, the modules were ideally co-taught in the classroom with the

partner teacher and researchers from the University of Montana. Given the need for distance

learning, because of the COVID-19 pandemic, the Python modules were also integrated into remote

classrooms and asynchronous learning schedules. We wanted to create useful resources for teachers

and students while creating a community surrounding the larger goal of broadening participation

in CS.

Initially, the instructors guided the students through using the Google Colab environment.

Students began with an introductory module that covered basic coding structures such as input,

output, functions, and parameters. Then, the students worked through the course-specific modules

at their own pace, discussing questions regarding the CS and non-CS material with classmates

and troubleshooting together to debug their code. The modules allowed students to read and

run complete code snippets, change values, and then create their own programs. CT concepts

and practices were immersed in the student instructions, allowing for understanding to broaden as

confidence levels increased and the exercises became more challenging.

3.3 Data Collection

The University of Montana Institutional Review Board approved the collection of data for this

project from the student and teacher participants. To ensure in-depth analysis, both qualitative

and quantitative data in the form of pre-and post-lesson surveys were collected. The student survey

was designed to collect data regarding the research questions of interest. The student participants

took pre and post intervention surveys. The pre and post-instruction survey. The full surveys

are included in Appendix A and Appendix B. The surveys included multiple-choice, short answer,

and ranking questions. The questions regarding the host-discipline subject matter were designed

by the high school teachers to track learning goals relevant to their courses and specific lessons.

The primary research tool used to collect the data was Google Forms. Because of the COVID-19

pandemic, researchers were not able to be present in the classrooms when the instruction or data

14

collection happened which may have affected the consistency of the data collection.

3.4 Study Participants

3.4.1 Teacher Participants

The most important factor for selecting the study’s teacher participants was their interest

in incorporating CT and/or programming into their classrooms. The four high school teacher

participants in the study are Montana educators, teaching grades 9-12, in Biology, Chemistry,

Algebra, and Business. A majority of the partner high school teachers participated in a professional

development course on integrating Python into their Math and Science courses. The teachers self-

identified as having a little to a moderate amount of programming experience.

3.4.2 Student Participants

The 132 student participants in the study were selected based on the teacher partnerships de-

veloped. All of the students were enrolled in high schools in Missoula, Great Falls, or Corvallis

taking a course in Biology, Chemistry, Business, or Algebra. 71.76% of the student participants

had not heard of the Python programming language before the study and the majority of students

identified having no programming experience at all (see table 3.1).

Table 3.1: Student Participants Response to: How much programming experience do you have?

None at
all (1)

A little
(2)

Moderate
(3)

A lot (4) A great
deal (5)

% 57.14 29.76 8.33 3.57 1.19

N=132

15

3.5 Data Analysis

The data was analyzed across all participating classes and summarized to make estimates about

the target population of Montana high school students. Additional analysis of discipline-specific

data was analyzed for statistical significance. Statistical tests completed on the quantitative data

include correlated two-tailed T-tests, percent change between pre and post-intervention results, and

measures of central tendency, and variance. A thematic analysis was performed on the qualitative

data to find patterns and label recurring concepts by grouping them into themes.

16

CHAPTER 4 RESULTS

The results from the data analysis are provided below to indicate whether this method of

broadening the participation of CS education is worth further study. The results are broken into

three main sections: interest in programming, CS learning, and discipline specific learning goals

correlating with the three research questions.

4.1 Student Interest in Programming

To address the research question of whether students’ interest in programming increased after

being exposed to interdisciplinary, introductory CS, the participants were asked to identify how

much interest in programming that they had pre and post-intervention (see table 4.1, and table 4.2).

Additionally, to better understand the reasons behind the quantitative data collected, participants

were asked to explain why they were or were not interested in learning to program (see table 4.3).

Table 4.1: Student Interest in Programming Survey Results

Question Time of
Response

None (1) A little
(2)

Moderate
(3)

A lot(4) A great
deal (5)

How much interest in
learning to program do
you have?

Pre (%) 25.76 38.64 27.27 6.06 2.27

Post (%) 42.03 24.64 24.64 4.35 4.35

N=132

17

Table 4.2: Change in Student Interest in Programming Survey Results

Question Pre Mean Post
Mean

Percent
Change

T-value P-value

How much interest
in learning to

program do you
have?

2.2 2.04 -0.16 -1.06 0.29

N=132

Interest in learning to program decreased slightly across the pilots after the lessons. For this

study, there is no supportive data to show that students were more interested in studying or

pursuing Computer Science after the intervention, however, it would be worth studying more in

the future to better understand students’ lack of interest in programming/CS.

The reasons that students provided (see table 4.3) as to why they were interested in program-

ming did not vary much from the pre and post-survey results. The reasoning provided by the

students could help to improve further curricula. Considering how to frame computer science edu-

cation as applicable, fun, and important for everyone should continue to be studied and incorporated

into curricula.

18

Table 4.3: Why Students are Interested or not Interested In Learning to Program

Interested in CS Not interested CS

Pre-
intervention

Post-
intervention

• fun

• important

• useful

• cool

• job prospects

• scientific applications

• web programming

• trying new things

• application to the Arts

• too busy

• difficult, confusing

• boring

• I don’t understand it

• there are more important things to
learn

• the job I want doesn’t require pro-
gramming

• I don’t think that I will ever use it
outside of school

• I’m not good with technology

• I don’t like computer work

• I would not be good at it

• fun

• jobs

• interested in computers and
code

• liked the assignment

• see an application to a per-
sonal project

• can streamline processes

• I want to make my own pro-
grams

• don’t enjoy/ care about it

• I’m not smart enough

• boring, confusing, complicated

• I don’t think that I a good at it

• I don’t like computer stuff

• I don’t understand how it applies to
”real life”

• I don’t think that I will use it

A compiled list (with duplicates removed and themes combined) of reasons students provided for
their interest or lack of interest in learning to program

19

4.2 Student CS Concepts Learning

Learning gains by the percentage of correct answers regarding CS material and the change

pre and post are presented in table 4.4. All four of the questions had a significant increase in

correct answers after the lesson, and students’ answering “I don’t know,” decreased significantly.

These findings suggest that it is possible to teach students basic computational concepts with an

interdisciplinary curriculum.

Table 4.4: CS Content Survey Question Results

Question Pre Correct (%) Post Correct (%) (%) Change

Which of these Python code
blocks would output a

“Hello!” message to the
screen?

17.74 76.19 +58.45

Which statement best
describes what a function in

Python is?

42.11 68.12 +26.01

Which statement best
describes what an argument

in Python is?

14.3 31.88 +17.58

Which statement best
describes a variable in

Python?

22.73 57.35 +34.62

N=132

20

4.3 Host-discipline Learning

Learning gains by percent change in Host-discipline learning concept correctness after the in-

tervention in 4.5. The questions asked were specific to the lessons being taught and written by the

high school partner teachers. For instance, in the Molarity Module one of the questions asked was:

One mole of H2O is made up of 2 moles of hydrogen atoms and 1 mole of the oxygen

atom. The mass of 1 mole of Hydrogen atoms= 1 g /mol and the mass of 1mole of

Oxygen atoms = 16 g/mol. What is the Molar mass of water? (Answer ”I don’t know”

if you do not know)

Table 4.5: Host Discipline Content Survey Question Results

Course Discipline Mean (%) Change Sample Size

Biology +14.47 22

Chemistry (Class 1) +52.97 28

Chemistry (Class 2) +54.90 20

Algebra +29.35 35

Business +13.4 27

All Classes +33.66 132

The two Chemistry teachers had the greatest percent change in core course content, which

suggests that it was an appropriate fit for the project’s goals. All of the courses provide significant

gains for the host-discipline learning goals. The students’ perception on the usefulness of the as-

signment varied greatly, as well as their opinion on programming being relevant to their coursework

in the host-disciplines. All the questions can be referenced in Appendix A and Appendix B.

21

CHAPTER 5 DISCUSSION

The following sections will discuss the study’s results, in more depth, and implications of the

three research queries regarding: student interest in programming, CS concepts, and discipline

specific learning. Next, the sections will discuss the study’s limitations, partner high school teachers’

perceptions of the lessons, recommendations for future work, and final conclusions.

5.1 Student Interest in Programming

Contrary to the hypothesized association, student interest in programming decreased slightly

after the intervention. The percent change in the data and the qualitative responses to why the

student participants were, or were not, interested in programming were fairly consistent both pre

and post-intervention. Without more data, it is difficult to understand why the results indicate

less interest or the same amount of interest in programming for the students’ post-intervention.

One factor that may have influenced the results is the short amount of time and exposure to a new

academic field and practice. Students may not have had enough time to experience any change

in their interest in CS/programming. Another important factor to consider is the instruction

and content varied between pilots. Some of the students had the lessons taught remotely and

asynchronously, while other lessons were taught in the classroom and in group settings. Remote

learning is difficult for many students and teachers. The teaching style and level of expertise in

programming also varied by instructor.

The results of this question matter because CS is an elective course for most students, if they

are not interested in the subject then they will likely not elect to take CS courses. Having a better

understanding of what influences a student’s interest in CS is essential for working towards the

22

goal of all students having a basic understanding and experience with the field. For instance, for

the students who did indicate interest in the field many noted that the programming assignment

was fun, useful, and learning to the program could provide job opportunities. Interviews with the

students could provide a more thorough understanding of this area, and provide important context

for improving student interest. Focusing further projects with this in mind could help to encourage

more students.

In reflection of the results regarding student interest in programming, interesting lines of inquiry

to include in future data collection may be:

1. Did you enjoy the programming lesson more or less than paper assignments? Why or why

not?

2. What is your interest level in including programming in their class in the future?

3. How interested are you in the host discipline subject area?

5.2 CS Concepts

In accordance with the hypothesis, students appeared to learn basic CS concepts from the

lessons based on the data collected. There was a significant percent change in correct answers of

the CS concept questions post-intervention. These results lend themselves to the conclusions that

students picked up the programming concepts quickly, and that an introduction to programming

with interdisciplinary material that students can provide a basic understanding of the field. These

results suggest that interdisciplinary programming is a promising method for introductory CS

exposure. As the questions were simple, and multiple choice, we were not able to test in depth

understanding of CS/ CT concepts. It may be interesting in the future to include some more

complex questions in the data collection and expand upon the CS concepts taught in the modules.

23

5.3 Host-discipline Concepts

Intending to meaningfully bridge concepts across different disciplines, programming reinforcing

important concepts in other disciplines seems to be the most promising result for this study. As

with the CS concepts, there was a significant percent change in correct answers post-intervention

for the host-discipline questions as well. These results suggest that interdisciplinary programming

may be beneficial to learning in other subjects as well. As the literature suggests, CS/CT provides

a set of tools and ways of thinking to solve problems with decomposition. This exposure aimed

to provide the context for the broad applications of programming. As there is no way to fairly

compare the questions for different classes and account for the variation of student experience I

recommend the continuation of the project to examine this research question more.

5.4 Limitations of the Study

This study had a few limitations to note. Some of the variables were difficult to control for

including variance in instruction, with the different teachers, subjects, cities, grade levels. Ad-

ditionally, some students who took the pre-instruction survey did not take the post-instruction

survey. Because of the COVID-19 pandemic, researchers were not able to be present in the class-

rooms when the instruction or data collection happened which may have affected the consistency

of the data collection. As the teacher participants noted in their exit survey, asynchronous and

remote learning is difficult. Specifically, one teacher noted that“it would have been better if I could

have completed the assignments in person so students could get help and not get too frustrated.”

The teachers also noted that trying something new in the classroom can be difficult and that more

practice would help the success of the project.

5.5 Teacher Perception of the Lessons

Additionally, after reflection on the student data collected in the study, input from the high

school teacher partners was collected. The teachers found the exercises as useful as an average

24

of 3.5 / 5 (with 1 = “not useful” and 5 = “very useful”). Some of the teachers reported that

the assignment aided in their students’ understanding of the learning goals for the course, while

the other teachers were unsure. One teacher reported that the exercises helped students “improve

their problem solving skills.” The teachers liked the formatting of the assignments and the Google

Colab environment. They reported that they are likely to use programming in their classrooms

again. Time restraints were cited as barriers to integrating CS/ programming into their classes;

“the students loved it and wanted more, we just didn’t have time.” Another teacher commented

that “I think they thought it was a complicated way to do something that they could do on a

calculator.” This comment touches on an important issue with the introductory interdisciplinary

CS: how do you explain or discuss the benefit of learning CT. Further, exploration of the topic would

be worthwhile for the next iterations of the project. Just as teacher partnerships for this project

were essential developing the curricula and instruction, teacher perceptions are equally important.

Examining what works well in the classroom from the teacher perspective could be valuable in CS

educational research and important in the efforts of expanding the reach of the future iterations of

the project.

5.6 Recommendations for Future Work

Based on the results of this study, I have a few recommendations regarding further research in

introductory CS education, and specifically for the continuation of this project. Most importantly,

the modules should be co-taught, in the classroom, with host-discipline teachers and CS researchers

from the University. As a researcher, it was difficult not to have been in the classroom to observe

the students and talk with them. Having researchers from the University trained and interested

in CS and especially CS education more involved in the instruction of the modules could be very

beneficial to further research and student learning. Additionally, I recommend adding more time

for students to become comfortable with the programming material and allow for more practice

with the environment and tools. One way to do this would be to work with the teachers who want

to integrate programming into multiple lessons and have a dedication to the project beyond one

25

assignment. Finally, interviews of the students, especially regarding what they liked and disliked

about the lessons and their interest in CS, could provide a better understanding of the research.

Interviews with the students could provide a more thorough understanding of the lack of interest

that high school students may show in CS.

5.7 Conclusions

This research study examined the effects of integrating interdisciplinary CS education into high

school courses. The three specific effects of the programming integration that the study was de-

signed to research were students’ interest in programming, understanding of basic computational

concepts, and the understanding of host-discipline learning goals. The data shows promising,

preliminary results for two of the three research questions: 1) learning CS concepts from interdis-

ciplinary computing, and 2) increased performance of host discipline learning goals. The results of

the third research question about student interest in programming proved inconclusive, but there

were qualitative insights gained. These results build on existing evidence of STEM courses and

programming reinforcing each other in the classroom. However, the results do not fit with the

theory that students enjoy CS/programming or at least in the manner that was practiced in the

study.

The data contributes a clearer understanding of how CS can be introduced to a larger section

of students who may not choose to take an elective CS course. While previous research has focused

on longer term integration of programming in the classrooms, these results demonstrate that short

term lessons can also be effective in teaching concepts and introducing programming to students.

The experiment provides a new insight into the efficacy of small doses of programming and non-CS

STEM high school courses. Overall, the results indicate that more research in this area would

be worthwhile. These results should be taken into account when considering how to tackle the

CS education problem in Montana. By exposing more students and teachers to CS with diverse

methods, less students will be left out of learning important skills and ways of thinking.

The results of this study provide motivation and can facilitate further analysis of using CT in

26

high school courses to benefit student learning. During this research study, many students were

exposed to programming for the first time, and they experienced the wide applications of computing.

A diverse group of students, including underrepresented groups in computing, were exposed to CS’s

relevance to their academic interests, goals, and communities. Further, the teachers in the study

reported that they are interested in incorporating programming into their courses in the future.

Approaches and insights that emerge from this preliminary study can inform further exploration

of this topic and the continuation of the project. Future work with researchers in the field is highly

encouraged and would provide more opportunities to understand the CS problem in Montana.

Research in integrating CS into the humanities, arts, and social sciences would be an interesting

continuation of the project. It may also be beneficial to understand how appropriate the curriculum

is for middle school or elementary school students. Undergraduate and graduate students could be

recruited in co-teaching modules K-12 classrooms creating supportive and encouraging mentorship

opportunities. Other recommendations for building on this study include conducting student and

teacher interviews and considering the impact of classrooms that can work on the project for more

than one lesson or class period.

To the benefit of the field of CS education, the analysis and execution of this project contribute

to a better understanding of how students learn CS; their perceptions of CS and its possibilities;

and the efficacy of cross-disciplinary CS education as an introduction to the field. As a result,

hopefully more students consider studying CS, schools without CS-specific courses can offer students

programming opportunities and increased awareness of CS applications to STEM fields. Just as

society wants all students to have an understanding of English, Math, History, and the Sciences,

all students should have an understanding of Computer Science.

27

APPENDIX A Pre-instruction survey questions included in pilots

1. How much programming experience do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

2. Have you heard of the Python programming language before?

• Yes

• No

3. How much interest in learning to program do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

4. Can you explain why you are (or why you are not) interested in learning to program?

Open-ended response

28

5. Do you think programming is relevant to your professional and/or academic goals?

• Yes

• No

• Maybe

6. Which of these Python code blocks would output a “Hello!” message to the screen?

• output(”Hello!”)

• (“Hello!”)

• print(“Hello!”)

• I don’t know

7. Which statement best describes what a function in Python is?

• a block of code that when called can take inputs and return outputs

• code that executes a mathematical operation

• a description of the program’s purpose

• I don’t know

8. Which statement best describes what an argument in Python is?

• two ways to code the same result

• a value passed to a function

• the final answer to an equation

• I don’t know

9. Which statement best describes a variable in Python?

• a container for a value

• a data type

29

• a library of functions

• I don’t know

10. How comfortable do you feel with understanding [*core course lesson]?

• Very comfortable

• Somewhat comfortable

• A little uncomfortable

• Very uncomfortable

11. How much interest in learning to program do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

12. Do you think that programming is relevant to your course work in [*core course]?

• Yes

• No

• Maybe

A.1 Biology Content Questions: Graph Choice and Scientific Analysis

1. What type of graph is best for data that compares how one numeric value is related to another

(for example height and foot length)?

• a histogram plot

• a pie chart

30

• a Scatter Plot

• I don’t know

2. What type of graph is best to display data from an investigation that compares the variability

within a set of data (for example eagle wingspans in inches)?

• a histogram plot

• a pie chart

• a Scatter Plot

• I don’t know

3. For the following data set: (3,5,6,7,9,6,8), which sequence of numbers accurately represents

the mode? (Answer ”I don’t know” if you do not know)

Open-ended response

4. For the following data set: (3,5,6,7,9,6,8), which sequence of numbers accurately represents

the median? (Answer ”I don’t know” if you do not know)

Open-ended response

5. For the following data set: (3,5,6,7,9,6,8), which sequence of numbers accurately represents

the mean? (Answer ”I don’t know” if you do not know)

Open-ended response

6. Which measure can be used to determine how much a value differs from the rest of the data

points?

• true

• false

• I don’t know

31

7. What type of graph is best to display data from an investigation that compares the variability

within a set of data (for example eagle wingspans in inches)?

• arithmetic mean

• percent deviation

• outlier

• I don’t know

A.2 Chemistry Content Questions: Molarity

1. Which statement best defines molar mass?

• the mass of a given substance divided by its amount of substance (mol), in g/mol

• the amount of a substance dissolved in a certain mass of solvent

• the volume that one mole of a substance takes up

• I don’t know

2. One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms,

molecules, or ions). What is this number known as?

• The molar constant

• Aufbau’s number

• Avogadro’s number

• I don’t know

3. One mole of H2O is made up of 2 moles of hydrogen atoms and 1 mole of the oxygen atom.

The mass of 1 mole of Hydrogen atoms= 1 g /mol and the mass of 1mole of Oxygen atoms

= 16 g/mol. What is the Molar mass of water? (Answer ”I don’t know” if you do not know)

Open-ended response

32

molar mass of water is 18 g/mol. How many grams are in 3 moles of water(H2O)?

Open-ended response

A.3 Chemistry Content Questions: Ideal Gaw Law

1. What is the formula for the Ideal Gas Law?

• P=VnRT

• PV=nRT

• RV=nPT

• I don’t know

2. What does the R variable in the Ideal Gas Law represent?

• The Ideal Gas Law constant

• The rate of gas change

• The Ideal Gas Law real number

• I don’t know

3. What is 67 degrees Celsius in Kelvin? (Answer ”I don’t know” if you do not know)

Open-ended response

A.4 Algebra Content Questions: The Slope of a Line

1. What is the formula for the Point-slope formula?

• m = (y2-x2) / (y1-x1)

• m = (y2+y1) / (x2+x1)

• m = (y2-y1) / (x2-x1)

• I don’t know

33

2. What is 67 degrees Celsius in Kelvin? (Answer ”I don’t know” if you do not know)

Open-ended response

34

APPENDIX B Post-instruction survey questions included among all pilots

1. How much programming experience do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

2. Have you heard of the Python programming language before?

• Yes

• No

3. How much interest in learning to program do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

4. Can you explain why you are (or why you are not) interested in learning to program?

Open-ended response

35

5. Do you think programming is relevant to your professional and/or academic goals?

• Yes

• No

• Maybe

6. Which of these Python code blocks would output a “Hello!” message to the screen?

• output(”Hello!”)

• (“Hello!”)

• print(“Hello!”)

• I don’t know

7. Which statement best describes what a function in Python is?

• a block of code that when called can take inputs and return outputs

• code that executes a mathematical operation

• a description of the program’s purpose

• I don’t know

8. Which statement best describes what an argument in Python is?

• two ways to code the same result

• a value passed to a function

• the final answer to an equation

• I don’t know

9. Which statement best describes a variable in Python?

• a container for a value

• a data type

36

• a library of functions

• I don’t know

10. How comfortable do you feel with understanding [*core course lesson]?

• Very comfortable

• Somewhat comfortable

• A little uncomfortable

• Very uncomfortable

11. How much interest in learning to program do you have?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

12. How much do you think that the programming exercises helped you to understand [*insert

host-disciple course content here]?

• A great deal

• A lot

• A moderate amount

• A little

• None at all

37

13. Do you think that programming is relevant to your course work in [*core course]?

• Yes

• No

• Maybe

14. Can you explain why (or why not) that you think that programming is relevant to your course

work in [*insert course name here]?

Open-ended response

38

APPENDIX C Example of Ideal Gas Law problem set selected by Chemistry

teacher for the project

Name:___________________________________ Date:_________ Per:_________

12B - Ideal Gas Law Problems

Use the ideal gas law to solve the following problems:

1) If I have 4 moles of a gas at a pressure of 5.6 atm and a volume of 12
liters, what is the temperature?

2) If I have an unknown quantity of gas at a pressure of 1.2 atm, a volume of
31 liters, and a temperature of 87 0C, how many moles of gas do I have?

3) If I contain 3 moles of gas in a container with a volume of 60 liters and at a
temperature of 400 K, what is the pressure inside the container?

4) If I have 7.7 moles of gas at a pressure of 0.09 atm and at a temperature
of 56 0C, what is the volume of the container that the gas is in?

5) If I have 17 moles of gas at a temperature of 67 0C, and a volume of 88.89
liters, what is the pressure of the gas?

6) If I have an unknown quantity of gas at a pressure of 0.5 atm, a volume of
25 liters, and a temperature of 300 K, how many moles of gas do I have?

For chemistry help, visit www.chemfiesta.com © 2000 Cavalcade Publishing - All Rights Reserved

❏ I checked my answers

Name:___________________________________ Date:_________ Per:_________

7) If I have 21 moles of gas held at a pressure of 78 atm and a temperature
of 900 K, what is the volume of the gas?

8) If I have 1.9 moles of gas held at a pressure of 5 atm and in a container
with a volume of 50 liters, what is the temperature of the gas?

9) If I have 2.4 moles of gas held at a temperature of 97 0C and in a
container with a volume of 45 liters, what is the pressure of the gas?

10) If I have an unknown quantity of gas held at a temperature of 1195 K in a
container with a volume of 25 liters and a pressure of 560 atm, how many
moles of gas do I have?

11) If I have 0.275 moles of gas at a temperature of 75 K and a pressure of
1.75 atmospheres, what is the volume of the gas?

12) If I have 72 liters of nitrogen gas held at a pressure of 3.4 atm and a
temperature of 225 K, how many grams of gas do I have?

For chemistry help, visit www.chemfiesta.com © 2000 Cavalcade Publishing - All Rights Reserved

❏ I checked my answers

Name:___________________________________ Date:_________ Per:_________

Ideal Gas Law Problems – Solution Key

1) If I have 4 moles of a gas at a pressure of 5.6 atm and a volume of 12
liters, what is the temperature? 205 K

2) If I have an unknown quantity of gas at a pressure of 1.2 atm, a volume of
31 liters, and a temperature of 87 0C, how many moles of gas do I have?
1.26 moles

3) If I contain 3 moles of gas in a container with a volume of 60 liters and at a
temperature of 400 K, what is the pressure inside the container?
1.64 atm 166 kPa

4) If I have 7.7 moles of gas at a pressure of 0.09 atm and at a temperature
of 56 0C, what is the volume of the container that the gas is in? 2310 L

5) If I have 17 moles of gas at a temperature of 67 0C, and a volume of 88.89
liters, what is the pressure of the gas? 5.34 atm 540.3 kPa

6) If I have an unknown quantity of gas at a pressure of 0.5 atm, a volume of
25 liters, and a temperature of 300 K, how many moles of gas do I have?
0.51 moles

7) If I have 21 moles of gas held at a pressure of 78 atm and a temperature
of 900 K, what is the volume of the gas? 19.9 L

8) If I have 1.9 moles of gas held at a pressure of 5 atm and in a container
with a volume of 50 liters, what is the temperature of the gas? 1603 K

9) If I have 2.4 moles of gas held at a temperature of 97 0C and in a
container with a volume of 45 liters, what is the pressure of the gas?
1.62 atm 164 kPa

10) If I have an unknown quantity of gas held at a temperature of 1195 K in a
container with a volume of 25 liters and a pressure of 560 atm, how many
moles of gas do I have? 143 moles

11) If I have 0.275 moles of gas at a temperature of 75 K and a pressure of
1.75 atmospheres, what is the volume of the gas? 0.97 L

12) If I have 72 liters of gas held at a pressure of 3.4 atm and a temperature of
225 K, how many moles of gas do I have? 372.4 grams

For chemistry help, visit www.chemfiesta.com © 2000 Cavalcade Publishing - All Rights Reserved

❏ I checked my answers

42

APPENDIX D Full example of Chemistry programming Module based off the

Ideal Gas Law problem set provided by Chemistry teacher

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 1/8

The Ideal Gas Law Equation:

Variables in the Ideal Gas Law equation

P = pressure in pascals (Pa)
V = volume in liters (L)
n = number of moles (mol)
T = temperature in degrees Kelvin (K)

The Ideal Gas Law

𝑃𝑉 = 𝑛𝑅𝑇

Exercise 1:

If I have 4 moles of a gas at a pressure of 5.6 atm and a volume of 12 liters, what is the
temperature?

Instructions:

1. Take a look at the code in the cell below.
2. Find a variable in the code.
3. Identify a comment in the code.
4. Run the cell and check the output.

Use the Ideal Gas Law to solve the following problems:

1
2
3
4
5
6
7
8
9

10

R = 0.0821 #constant in the ideal gas law equation
P = 5.6
V = 12
n = 4

#PV=nRT
#solve for T
T = (P*V)/(R*n)

print(f"T = {T:.0f} degrees K")

If I have an unknown quantity of gas at a pressure of 1.2 atm, a volume of 31 liters, and a
temperature of 87 0C, how many moles of gas do I have?

Exercise 2:

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 2/8

Instructions:

1. Fill in the values for P, V, and T (don't forget to convert to K) on lines 2 - 4 based on exercise 2.
2. Run the cell and check the output.
3. Solve the equation by hand or with a calculator and compare the answers. If it is not the same,

then check with a classmate and together try to �gure it out.

1
2
3
4
5
6
7
8
9

10

R = 0.0821 #constant in the ideal gas law equation
P =
V =
T =

#PV=nRT
#solve for n
n = (P*V)/(R*T)

print(f"n = {n:.2f} moles")

If I contain 3 moles of gas in a container with a volume of 60 liters and at a temperature of 400 K,
what is the pressure inside the container?

Instructions:

1. Take a look at lines 2 and 3. What do you think this code does?
2. Fill in the variables on lines 5-8.
3. Check the answers again on paper.

Exercise 3:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

#function to convert standard atmospheres to kilopascals
def atm_to_kPa(atm):
 return atm * 101.325

R =
V =
n =
T =

#PV=nRT
#solve for P
P = (n*R*T)/V

print(f"P = {P:.2f} atm. and {atm_to_kPa(P):.0f} kPa")

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 3/8

If I have 7.7 moles of gas at a pressure of 0.09 atm and at a temperature of 56 degrees C, what is
the volume of the container that the gas is in?

Instructions:

1. Fill in the variables P and n based on exercise 4.
2. Use a function call to assign T to the correct temperature. Take a look at the function

de�nition on line 2 for C_to_K(deg_C). It takes one argument deg_C which is the degrees
Celsius that you want to convert to Kelvin. You can assign a variable to a function call. Try "T =
C_to_K(56)" on line 12.

3. On line 13, let's test that our function is working as we would expect. Write print(T). Is it right?
4. Check the answer to exercise 4.

Exercise 4:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

#function to convert degrees Celsius to degrees Kelvin
def C_to_K(deg_C):
 return deg_C + 273.15

R = 0.0821 #constant in the ideal gas law equation
P =
n =
T =

#PV=nRT
#solve for V
V = (n*R*T)/P

print(f"V = {V:.2f} liters")

If I have 17 moles of gas at a temperature of 67 degrees Celsius, and a volume of 88.89 liters, what
is the pressure of the gas?

Instructions:

1. Fill in the variables on lines 5-8, you can use a function call to convert the temperature to K if
you'd like.

2. Solve for P on line 12 (don't forget parenthesis).
3. Check your answer

Exercise 5:

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 4/8

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

#function to convert degrees Celsius to Kelvin
def C_to_K(deg_C):
 return deg_C + 273.15

R =
V =
n =
T =

#PV=nRT
#solve for P
P =

print(f"P = {P:.2f} atm")

If I have an unknown quantity of gas at a pressure of 0.5 atm, a volume of 25 liters, and a
temperature of 300 K, how many moles of gas do I have?

Instructions:

1. solve for n on line 6 after assigning the known variables from exercise 6.

Exercise 6:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

R =
P =
V =
T =

#PV=nRT
#solve for n
n =

print(f"n = {n:.2f} moles")

If I have 21 moles of gas held at a pressure of 78 atm and a temperature of 900 K, what is the
volume of the gas?

Instructions:

1. Solve for the V and don't forget to check your work.

Exercise 7:

 1 R =

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 5/8

 2
 3
 4
 5
 6
 7
 8

P =
n =
T =

V =

print(f"V = {V:.2f} liters")

If I have 1.9 moles of gas held at a pressure of 5 atm and in a container with a volume of 50 liters,
what is the temperature of the gas?

Instructions:

1. Solve for the temperature of the gas.

Exercise 8:

 1
 2
 3
 4
 5
 6
 7
 8

T =

print(f"T = {T:.0f} degrees K")

If I have 2.4 moles of gas held at a temperature of 97 degrees Celsius and in a container with a
volume of 45 liters, what is the pressure of the gas?

Instructions:

1. solve for the pressure of the gas.

Exercise 9:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

def atm_to_kPa(atm):
 return atm * 101.325

#function to convert degrees Celsius to degrees Kelvin
def C_to_K(deg_C):
 return deg_C + 273.15

P =

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 6/8

 12
 13

print(f"P = {P:.2f} atm and {atm_to_kPa(P):.0f kpa}")

If I have an unknown quantity of gas held at a temperature of 1195 K in a container with a volume of
25 liters and a pressure of 560 atm, how many moles of gas do I have?

Instructions:

1. Solve for the number of moles.

Exercise 10:

 1
 2
 3
 4
 5
 6
 7
 8

n =

print(f"n = {n:.0f} moles")

If I have 0.275 moles of gas at a temperature of 75 K and a pressure of 1.75 atmospheres, what is
the volume of the gas?

Instructions:

1. Solve for the volume of the gas.

Exercise 11:

 1
 2
 3
 4
 5
 6
 7
 8

R =
P =
n =
T =

V =

print(f"V = {V:.2f} liters.")

If I have 72 liters of gas held at a pressure of 3.4 atm and a temperature of 225 K, how many moles
of gas do I have?

Instructions:

Exercise 12:

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 7/8

1. Solve for the number of moles.

 1
 2
 3
 4
 5
 6
 7
 8

n =

print(f"n = {n:.0f} moles.")

Let's write a program that could solve any of the previous Ideal Gas Law questions.

Instructions:

1. Take a look at the program below. There will likely be a lot of things you don't understand, but
what do you think is happening?

2. Let's start with the line 1, We are using a function called input to allow the user of the program
to provide which variable we are solving for. Let's try it out.

3. In Python, "==" means equal to. If the unknown variable is equal to 'P' then the code to solve
for P will run.

4. Try running the cell below and entering P for the unknown variable. Try exercise 2 again using
this code: If I contain 3 moles of gas in a container with a volume of 60 liters and at a
temperature of 400 K, what is the pressure inside the container? Did you get the same
answer?

5. Now, try some of the other problems from above.

Exercise 13:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

unknown = input("What is the unknown variable? (P,V,n,T)")
print (f"Ok, we will solve for {unknown}.")

R = 0.0821 #constant in the ideal gas law equation

if unknown == 'P' or unknown == 'p':
 V = float(input("What is the volume (in liters) of the gas?"))
 n = float(input("How many moles of the gas are in the problem?"))
 T = float(input("What is the temperature of the gas (in K?)"))
 P = (n*R*T)/V
 print(f"P = {P:.2f} atm.")

elif unknown == 'n' or unknown == 'N':
 P = float(input("What is the pressure (in atm) of the gas?"))
 V = float(input("What is the volume (in liters) of the gas?"))
 T = float(input("What is the temperature of the gas (in K?)"))

10/25/21, 12:51 PM Copy of Ideal_Gas_Law.ipynb - Colaboratory

https://colab.research.google.com/drive/1sFO2bJYhAlQFxD361FG9f4y1UUdTyFbc#scrollTo=PIvmL_mPXISq&printMode=true 8/8

 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35

 n = (P*V)/(R*T)
 print(f"n = {n:.2f} moles.")

elif unknown == "V"or unknown == "v":
 P = float(input("What is the pressure (in atm) of the gas?"))
 n = float(input("How many moles of the gas?"))
 T = float(input("What is the temperature of the gas (in K?)"))
 V = (n*R*T)/P
 print(f"V = {V:.2f} liters.")

elif unknown == 'T' or unknown == 't':
 P = float(input("What is the pressure (in atm) of the gas?"))
 V = float(input("What is the volume (in liters) of the gas?"))
 n = float(input("How many moles of the gas are present?"))
 T = (P*V)/(R*n)
 print(f"T = {T:.2f} degrees K.")

else:
 print("Error, please try again.")

51

BIBLIOGRAPHY

[1] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3, p. 33–35, Mar. 2006.

[Online]. Available: https://doi.org/10.1145/1118178.1118215

[2] J. Cuny, “Transforming high school computing: A call to action,” ACM Inroads, vol. 3, no. 2,

p. 32–36, Jun. 2012. [Online]. Available: https://doi.org/10.1145/2189835.2189848

[3] “Computer science initiative for all.” [Online]. Avail-

able: https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/

fact-sheet-president-obama-announces-computer-science-all-initiative-0

[4] S. Grover and R. Pea, “Computational thinking in k–12: A review of the state of

the field,” Educational Researcher, vol. 42, no. 1, pp. 38–43, 2013. [Online]. Available:

https://doi.org/10.3102/0013189X12463051

[5] “Code.org state facts mt.” [Online]. Available: https://code.org/advocacy/state-facts/MT.pdf

[6] L. Carter, “Why students with an apparent aptitude for computer science don’t

choose to major in computer science,” vol. 38, no. 1, 2006. [Online]. Available:

https://doi.org/10.1145/1124706.1121352

[7] V. Barr and C. Stephenson, “Bringing computational thinking to k-12: What is involved and

what is the role of the computer science education community?” ACM Inroads, vol. 2, no. 1,

p. 48–54, Feb. 2011. [Online]. Available: https://doi.org/10.1145/1929887.1929905

[8] K. Fisler, E. Schanzer, S. Weimar, A. Fetter, K. A. Renninger, S. Krishnamurthi, J. G. Politz,

B. Lerner, J. Poole, and C. Koerner, “Evolving a k-12 curriculum for integrating computer

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/2189835.2189848
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://obamawhitehouse.archives.gov/the-press-office/2016/01/30/fact-sheet-president-obama-announces-computer-science-all-initiative-0
https://doi.org/10.3102/0013189X12463051
https://code.org/advocacy/state-facts/MT.pdf
https://doi.org/10.1145/1124706.1121352
https://doi.org/10.1145/1929887.1929905

52

science into mathematics,” in Proceedings of the 52nd ACM Technical Symposium on Computer

Science Education, ser. SIGCSE ’21. New York, NY, USA: Association for Computing

Machinery, 2021, p. 59–65. [Online]. Available: https://doi.org/10.1145/3408877.3432546

[9] J. L. Jackson, C. L. Stenger, J. A. Jerkins, and M. G. Terwilliger, “Improving abstraction

through python programming in undergraduate computer science and math classes,” J. Com-

put. Sci. Coll., vol. 35, no. 2, p. 39–47, Oct. 2019.

[10] M. Celepkolu, D. A. Fussell, A. C. Galdo, K. E. Boyer, E. N. Wiebe, B. W. Mott, and

J. C. Lester, “Exploring middle school students’ reflections on the infusion of cs into science

classrooms,” in Proceedings of the 51st ACM Technical Symposium on Computer Science

Education, ser. SIGCSE ’20. New York, NY, USA: Association for Computing Machinery,

2020, p. 671–677. [Online]. Available: https://doi.org/10.1145/3328778.3366871

[11] L. J. B. Lorena A. Barba, “Teaching and learning with jupyter,” 2019. [Online]. Available:

https://jupyter4edu.github.io/jupyter-edu-book/

[12] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and

M. P. Wenderoth, “Active learning increases student performance in science, engineering,

and mathematics,” Proceedings of the National Academy of Sciences, vol. 111, no. 23, pp.

8410–8415, 2014. [Online]. Available: https://www.pnas.org/content/111/23/8410

https://doi.org/10.1145/3408877.3432546
https://doi.org/10.1145/3328778.3366871
https://jupyter4edu.github.io/jupyter-edu-book/
https://www.pnas.org/content/111/23/8410

	The Impacts of Integrating Interdisciplinary, Introductory Computer Science in High School Courses
	Let us know how access to this document benefits you.
	Recommended Citation

	COPYRIGHT
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Overview and Motivation
	Research Questions
	Hypothesis

	LITERATURE REVIEW
	Computational Thinking
	Interdisciplinary CS
	Math and Programming Can Reinforce Each Other
	Programming in STEM Courses Can Improve Students' Conceptual Learning

	Student Reflections on CS in the classroom
	Interactive Python Notebooks in Education Promotes Active Learning
	Summary of Studies

	METHODOLOGY
	Module Development
	Google Colab and Interactive Python Notebooks

	Module Instruction
	Data Collection
	Study Participants
	Teacher Participants
	Student Participants

	Data Analysis

	RESULTS
	Student Interest in Programming
	Student CS Concepts Learning
	Host-discipline Learning

	DISCUSSION
	Student Interest in Programming
	CS Concepts
	Host-discipline Concepts
	Limitations of the Study
	Teacher Perception of the Lessons
	Recommendations for Future Work
	Conclusions

	Pre-instruction survey questions included in pilots
	Biology Content Questions: Graph Choice and Scientific Analysis
	Chemistry Content Questions: Molarity
	Chemistry Content Questions: Ideal Gaw Law
	Algebra Content Questions: The Slope of a Line

	Post-instruction survey questions included among all pilots
	Example of Ideal Gas Law problem set selected by Chemistry teacher for the project
	Full example of Chemistry programming Module based off the Ideal Gas Law problem set provided by Chemistry teacher
	BIBLIOGRAPHY

