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Indifference to Chaotic Motion May Be 
Related to Social Disinterest in Children 

with Autism 
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Wayne Fisher, University of Nebraska Medical Center 
Nicholas Stergiou, University of Nebraska–Omaha 
 

Abstract 
Children with autism spectrum disorder tend to have little interest in the presence, 
actions, and motives of other persons.  In addition, these children tend to present with a 
limited and overly redundant movement repertoire, often expressing hyperfixation and 
aversion to novelty.  We explore whether this is related to a more fundamental lack of 
appreciation for various temporal dynamics, including periodic, chaotic, and aperiodic 
motion structures. Seven children with ASD (age, gender, and height matched with 
children without ASD) were asked to stand and watch the motion of a visual stimulus 
displayed on a large (55”) video monitor. Gaze and posture movements were recorded 
and assessed using cross recurrence quantification analysis for qualities of 
coordination, including rate and duration of bouts of coordination. Results showed that 
children with ASD do not express an affinity to chaotic motion of the stimulus in the 
same way as children without ASD. We contend that this indifference to chaotic motion 
is foundational to their general disinterest in biological motion. 
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Autism spectrum disorder (ASD) is identified as a mixed set of general social 

communication deficits combined with a propensity toward restricted or repetitive 
behaviors (American Psychiatric Association, 2013).  Some children with ASD may 
have severe language and social deficits, which makes diagnosis fairly straightforward. 
However, others may have much more subtle impairments, being commonly described 
as high-functioning children (Attwood, 2007), which are less noticeable but still cause 
significant impairment in the realms of self-care and quality of life. Many times, these 
children are able to acquire speech in a basic functional manner, yet lack the transition 
to the social functional value of speech and the interpersonal interaction that it affords 
(Baron-Cohen, 1988). Often, the nonverbal aspects of interactions are particularly 
inhibited. This includes a lack of attention to the nonverbal behaviors of others (such as 
pointing to objects, facial expression, and eye contact), a lack of socioemotional 
reciprocity, and a general lack of peer relationships (Sullivan et al., 2007). 

These tendencies may impact the behavior of the child at any given moment, and 
they are likely to have compounding detriment on the child’s developmental trajectory 
as well. Recently, Bhat, Landa, and Galloway (2011) proposed that in order for an 



individual to understand the communicative gestures of others, it is required that the 
individual have a complete movement repertoire. More specifically, it was suggested 
that there is a direct developmental link between motor and social communication 
deficits in ASD (Bhat et al., 2011), which highlights the multi-interactive nature of the 
perception-action-cognition cycle. For example, some children experience social 
isolation due to lack of motor coordination competence (e.g., never being chosen to play 
in team sports), or when they avoid playtime in kindergarten and preschool years, which 
is correlated with their lack of typical movement coordination (Bar-Haim & Bart, 2006; 
Piek, Bradbury, Elsley, & Tate, 2008; Smyth & Anderson, 2001). Healthy motor 
development, then, seems to have a dramatic impact on the subsequent cognitive and 
social behaviors of a child. 

Hadders-Algra (2010) describes typical motor development as a two-phase 
process beginning with a period of primary variability during which self-generated, 
nonadaptive movement experience is pursued. Transitions to the secondary variability 
phase tend to occur at function-specific ages, when the demand for task 
accomplishment begins to outweigh the value of continued exploration. It seems to be 
around these time periods that observational interest increases toward peer behavior.  
Sanefuji, Ohgami, and Hashiya (2008) demonstrate that children are particularly 
interested in watching the skill behavior of peers when it matches their own skill. Given 
the opportunity, toddlers will prefer to observe another toddler, instead of a crawler, and 
vice versa.  

So, what exactly is gained by watching others? Observing another’s behavior 
allows the viewer to gain task-relevant experience, without the need to perform the task 
on their own. Interestingly, this gives the viewer a particular perspective that cannot be 
achieved otherwise—namely, insight into the various sources of variance in an instance 
of movement.  Observation permits “repetition without repetition” (Bernstein, 1996). 
More specifically, it affords awareness of the essence of a given problem’s solution, 
which maps into the full set of actionable solutions. In this way, associated modeling 
and imitation play might directly support typical development by providing a new means 
for understanding self-driven behavior and its consequences (Meltzoff & Moore, 1992; 
von Hofsten, 2004). According to Hadders-Algra (2008), task motives are what propel 
us toward the secondary variability phase of development, from which our behaviors 
become purpose driven. Yet, imitation requires a connection to the attributes of motive 
and intentionality in the viewed behavior. 

In contrast, children with ASD are often impaired in their attention to, and 
understanding of, the behavior of others. This appears related to undeveloped joint (or 
shared) attention—that is, coordinating one’s attention to an object in accord with 
another’s attention to that same object (Whalen & Schreibman, 2003). Lack of joint 
attention is implicated in the inhibited development of imitative play skills (Charman et 
al., 1997), language development (Mundy, Sigman, & Kasari, 1990), and a general 
theory of mind (Baron-Cohen, 1993). Deficiencies in the development of these skills 
may be directly linked to the socioemotional deficits that are characteristic of ASD.  
Specifically, though, reduced interest in the movement behavior of others leaves the 
child with autism at a loss for the benefits of imitation learning that would otherwise be 
available. For these children, this seems to pose yet another layer to the challenge of 
acquiring a rich behavioral repertoire. Developing a distinct awareness of self and 



others may be a critical juncture for children with autism, especially for the refinement of 
movement skills. 

We propose that this reduced social awareness may be attributable to a more 
fundamental aspect of visual attention of children with ASD. Researchers have 
previously shown that children with ASD have a general lack of preference to biological 
motion (Blake, Turner, Smoski, Pozdol, & Stone, 2003). This occurs, even when there is 
no sign of perceptual deficit, as children with ASD still demonstrate the ability to 
respond to nonsocial, physical contingencies of object motion (Klin, Lin, Gorrindo, 
Ramsay, & Jones, 2009). It appears then, that biological motion must contain some 
characteristic quality, which allows for its differentiation from nonbiological motion. We 
propose that awareness of temporally contingent variability may be the differentiating 
factor that affords visual attention selective to biological agency. Biological motion 
contains particular inherent features describable through mathematical chaos and 
complexity metrics (Haworth, Vallabhajosula, Tzetzis, & Stergiou, 2013; Stergiou, Buzzi, 
Kurz, & Heidel, 2004). Healthy biological motion exhibits a complex variability, meaning 
it is neither too rigid nor too random (Stergiou & Decker, 2011; Stergiou, Harbourne, & 
Cavanaugh, 2006).  Complexity of particular movements has also been described by 
other mathematical constructs—for example, two-thirds power law (hand motion, Viviani 
& Flash, 1995) or 1/f noise (gait; Rhea, Kiefer, D’Andrea, Warren, & Aaron, 2014). In 
this study, we consider the double pendulum model of chaotic motion, which has been 
shown to effectively model the postural sway dynamics of an upright human (Suzuki, 
Nomura, Casadio, & Morassa, 2012). The ability to perceive and identify this complexity 
has previously been observed in typically developing children (Haworth, Kyvelidou, 
Fisher, & Stergiou, 2015), and could potentially be a discriminating factor in the ability to 
identify biological motion. 

Difficulty with complex, chaotic motion structures may also explain the tendency 
toward motor redundancy in children with ASD. An inability or aversion to the 
experience of chaotic motion would require some alternate tendency for structure of 
movement variability. Random variation would make it extremely difficult to plan and 
execute purposeful movements, leaving it reasonable that an effort would be given to 
the production of less variant behaviors. For example, children with ASD seem to exhibit 
more rigid and less adaptive posture (Kohen-Raz, Volkmar, & Cohen, 1992). It is 
plausible that children with ASD fixate on repetitive aspects of motion (e.g., watching 
wheels spin) and engage in repetitive motor responses (e.g., rocking), and that this 
perceptual and motor rigidity interferes with their attention to, and perception of, the 
complex variability found in the motion of others and, thus, with their ability to 
discriminate biological from nonbiological motion. 

Further, this perspective provides a theoretical link between cognitive social 
deficits and behavioral redundancy, which, together, constitute the diagnostic criteria for 
ASD (DSM, 1994). Under this theoretical approach, it is entirely reasonable that posture 
(a continuous gross motor behavior that relies heavily on coordination with the viewed 
environment) would suffer in persons with ASD. This has been shown to be the case by 
Molloy, Dietrich, and Bhattacharya (2003), who report drastic effects on posture under 
conditions of modified vision. In addition, children with autism exhibit hyporeactive 
postural response to motion of the visual environment (Gepner & Mestre, 2002; Gepner, 
Mestre, Masson, & de Schonen, 1995). However, none of the aforementioned studies 



fully resolve whether the observed postural deficits are due to diminished visual motion 
perception or disordered integration of the temporal aspects of visual information. 

The current study focuses on the influence of perceived object motion on concur-
rent sensorimotor behavior; specifically, on whether children with autism are able to 
distinguish chaotic movement variability (characteristic of biological motion), and 
whether this information is able to guide typically responsive strategies for postural 
movements. We propose a two-factor design to compare the responses of children both 
with and without ASD (group) across three separate stimulus motion conditions 
(stimulus includes periodic, chaotic, and aperiodic motion structures). Previous studies 
have used these stimuli to explore differences in gaze and posture behavior in adults 
(Haworth, Vallabhajosula, & Stergiou, 2014) and typically developing children (Haworth 
et al., 2015). These studies indicate a particular capacity to appreciate chaotic motion 
dynamics in the gaze response of both children and adults. Adults did not appear to 
reciprocate stimulus complexity with postural changes, though the children did to some 
extent. Based on the differences in preferred attention to biological motion and the 
tendency toward motor rigidity in ASD, we anticipate an interaction effect to show that 
children with ASD will not have increased coordination of gaze or posture with chaotic 
motion, whereas children without ASD will increase coordination with chaos. In addition, 
we anticipate that posture will coordinate differently in response to stimulus motion 
structure, with a possible group effect. 

Finding a deficiency in the detection or production of stimulus movement 
characteristics, as they modulate gaze or posture, may help explain the behaviors of 
those with ASD. In addition, assessment of these behaviors at very young ages may 
prove to be useful as an early indicator of atypical development. This analysis may 
provide further information regarding discontinuities in the dynamic structure of motion 
perception and production of typical complex biological motion in children with ASD, 
holding considerable promise for significantly improving the lives of persons with ASD 
and allowing for early detection of risk and treatment. 

 

Methods 
Participants 

Fourteen children participated in this study (see Table 1 for descriptive statistics). 
Seven were reported to have ASD diagnosis (from clinic or school-based assessment, 
via parent report) and expressed at least reciprocal phrase speech. Seven gender-, 
height-, and age-matched typically developing children were included for comparison. 
Each group consisted of six boys and one girl. The ASD group did turn out to be slightly 
heavier, by roughly 4 kg (independent t test, p= .031). All children were verified to have 
normal vision, no further neurological history, and otherwise typical development 
confirmed by using the Denver II scale (Frankenburg, Dodds, Archer, Shapiro, & 
Bresnick, 1992). All children actively engaged in toy play and/or use of an art easel 
(chalk or marker drawing) during preparation and testing intervals. Procedures were 
approved by the Institutional Review Board of the University of Nebraska Medical 
Center, and consent was obtained from the parent(s) of each child before the beginning 
of this study. 

 
Procedure 



Children were asked to stand in front of a 55” 1920 × 1200 pixel LCD display, 
which was adjusted vertically to match the midline of the monitor to the height of the 
child’s eyes. Children stood on a force platform (Advanced Mechanical Technology Inc., 
OR6–7, with MSA-6 amplifier), that measured posture sway motion (center of pressure; 
COP) at 50 Hz. FaceLab 4.5 (Seeing Machines, Acton, MA) eye-tracking equipment 
was mounted on the monitor stand and was used to track eye movements (Gaze) also 
at 50 Hz. Figure 1 shows the experimental setup with relevant dimensions regarding 
monitor position with respect to the participants. Lights were dimmed throughout the 
collection, and a black curtain surround was in place to minimize the sight of objects in 
the peripheral visual field.  Three conditions were presented in random order, with time 
to rest and play in between. A minimum of 1 minute between trials was observed to 
reduce carryover between conditions and to foster maintained interest of the children. 
Foot position was marked before the first condition, and was returned to for each 
subsequent condition. 

Each condition consisted of the presentation of a stimulus image (Elmo 
character, with 25 pixel radius) that moved only horizontally on the screen, while 
concurrent measurement of mediolateral aspects of Gaze and COP were recorded. All 
data were managed with custom software written in Labview (National Instruments, 
Austin, TX). The motion of the stimulus differed across three conditions—namely, 
periodic (Sine), pseudoperiodic (Chaos), and aperiodic (Brown Noise) motion 
structures. The Sine signal represents the simplest form of redundant movement 
structure, and was generated using the sin() function in Matlab (MathWorks, Natick, 
MA). This type of motion is too perfectly rhythmic to appear as animate motion. Chaos 
is a much more complex motion structure that expresses pseudorandom fluctuations, 
but is actually deterministically organized and representative of the variability found in 
animate motion. The chaos signal was generated as the horizontal motion of the distal 
segment of a double pendulum model, shown previously to express chaotic dynamics 
(Shinbrot, Grebogi, Wisdom, & Yorke, 1992) and emulate upright human postural sway 
(Suzuki et al., 2012). For additional verification, surrogation testing was performed to 
affirm that our signal exhibited chaos (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 
1992). Brown Noise (equivalent to integrated white noise) presents aperiodic, stochastic 
structure, and is generated by the iterative addition of a random perturbation (within 
specified bounds) to the original point position. Brown noise is argued to be too erratic 
to represent controlled postural motion. This signal structure allows for smooth pursuit 
gaze following, as the change of stimulus position was bounded to prevent a velocity 
that would require saccadic eye movement (velocity < 30°/s). 
Each stimulus display lasted for 3.5 minutes. Often, children did not remain still and 
attentive throughout this entire duration.  All children, however, maintained at least one 
30 s segment of continuous engagement (with steady stance and forward head 
orientation) during each condition. Postprocessing included video-based selection of 
these segments for further analysis, with care given to exclude occasions when the 
child was speaking or making overt motions with their head or arms. Some of these 
segments contained instances of sustained blink, where no viable gaze position data 
were available. A fifth order cubic spline was applied to resolve these periods. Gaze and 
COP data were both filtered using a double-pass Butterworth filter with a 10 Hz cutoff, 



and normalized to a common scale from zero (0) to one (1) for subsequent 
comparability. 

 

 
 

 
 

Recurrence Quantification 



Gaze and COP were then submitted to cross recurrence quantification analysis 
(cRQA), by which each was assessed for coordination with the viewed stimulus motion 
position data. Further, the two measured behaviors were submitted to cRQA to be 
compared against each another, providing a proxy metric of the sensorimotor 
coordination (SensMot) of the child during each condition. Outcome metrics from cRQA 
were calculated using custom Matlab software (Shockley, Butwill, Zbilut, & Webber, 
2002; Shockley, 2005). 

The cRQA tests the relative likelihood that two time series visit similar posi-tions 
in a common, multidimensional phase space. To accomplish this, each time series must 
first be “embedded” into this space (Takens, 1981). This is done using parameters of 
delay and embedding dimension, which are calculated from the average mutual 
information (AMI; Fraser& Swinney, 1986) and the False Nearest Neighbors (FNN; 
Abarbanel, 1996) algorithms, respectively. In our case, values of 15 and 6, respectively, 
were found to be appropriate for embedding. After embed-ding, additional parameters 
must be selected to ensure that proper resolution is given to the analysis of recurrence. 
Specifically, these include one parameter to throttle the rate of recurrence and one to 
define the minimum criteria for continual recurrence. Rate of recurrence is regulated 
through establishing an appropriate radius, or distance, within which points are 
considered recurrent (Shockley, 2005). In our study, we chose time series–specific 
values of radius to limit each analysis to a 5% recurrence rate.  Minline is the parameter 
set to define the minimum criteria for recurrence, representing the shortest duration (in 
data points) within which the two signals are sequentially recurrent that will be 
considered in subsequent computations. We set Minline to 25, which relates to 0.5 s 
duration of experiment time. We chose this on the logic that smooth pursuit and 
saccadic eye movements can both occur in shorter time spans, but the saccades would 
not last longer. Preliminary analyses suggested that this value would provide more 
stable and comparable outcome measures across the three conditions. 

Outcomes of cRQA include percent determinism and maxline (Shockley, 2005). 
Each outcome gives a unique description of the cross recurrence. Percent determin-ism 
is the ratio of recurrent points that form lines divided by the total number of recurrent 
points, and it is reported from 0 to 100%, representing the proportion of trial time spent 
in coordination, without sensitivity to intermittency. If every point of recurrence between 
two signals is part of a bout of continuous coordination (i.e., gaze coordinates with the 
stimulus throughout the trial), percent determinism would report as 100%. It is possible 
that none of the recurrent points are part of a continuous coordination (line), in which 
case percent determinism would report as 0%. If within a single trial gaze were to 
coordinate with the stimulus on 10 separate occasions, 5 of which lasted longer than 0.5 
s and 5 of which were shorter, then percent determinism would be roughly 50%.  
Essentially, percent determinism represents the relative rate of coordination of 
behaviors. Maxline is the length of the longest line formed by recurrent points, 
expressing the maximum extent of coupling between the two signals, reported in 
number of data points. With minline set at 25, the smallest value of maxline possible is 
also 25. The upper limit is the length of the data in phase space, which would occur if 
the two behaviors were continuously coordinated throughout every time step of the trial. 
Larger values of maxline indicate longer bouts of continuous coordination between the 



compared behaviors.  Data are collected at 50 Hz, so each increment of 50 data points 
for maxline represents one second of signal coordination. 
 
Statistical Analyses 
Separate 2 × 3 (Group × Stimulus) Mixed ANOVAs assessed the dependent measures 
of percent determinism and maxline. This analysis was performed for each of Gaze, 
COP, and SensMot. The two-way design tests for a main effect of stimulus (whether 
children responded differently to each stimulus), a main effect of group (whether 
children with ASD responded differently than those without), and interaction (whether 
having ASD impacts the response to each stimulus). Follow-up t tests were used to 
elucidate identified differences. All statistical tests were conducted using IBM SPSS 
Statistics software (IBM Corporation, Armonk, NY, Version 18), with an alpha level set 
at .05. 
 

Results 
Stimulus 

A main effect of stimulus was found for Gaze and COP, for both percent 
determinism and maxline (Figure 2). Children exhibited different rates of coordinated 
Gaze to different stimuli (percent determinism; F(2, 24) = 16.7, p < .001, ηp2 = 0.583, 
99.9% observed power). Post hoc analysis showed similar rates for Sine and Chaos 
stimuli (p = .528), while significantly less percent determinism was found for the Brown 
Noise stimulus (p = .001 to Sine; p < .001 to Chaos). Simi-lar results were found for 
duration of coordination to different stimuli (maxline; F(2, 24) = 5.8, p = .009, ηp2 = 
0.326, 82.4% observed power), with the longest coordination bouts in response to 
Chaos. Post hoc analysis showed no significant difference between Sine and Brown 
Noise stimuli (p = .98), near difference between Sine and Chaos (p = .062), and 
significant difference between Chaos and Brown Noise (p = .016).  

COP percent determinism was different in response to stimulus, F(2, 24) = 20.0, 
p < .001, ηp2 = 0.625, 100% observed power, showing a decreasing trend as the 
stimulus motion became less periodic. Significant differences were found between Sine 
and Chaos (p = .042), Sine and Brown Noise (p < .001), and Chaos and Brown Noise (p 
= .002). COP maxline, F(2, 24) = 3.8, p = .037, ηp2=  0.240,  63.2%  observed  power,  
showed  the  opposite  trend,  with  the  shortest  maximum in response to the Sine 
stimulus. Significant differences were found between Sine and Chaos (p = .049), Sine 
and Brown Noise (p = .021), but not Chaos and Brown Noise (p = .496). No main effect 
of stimulus was found for either SensMot measure. 
 
Group 

Although no main effect of group was identified for COP or SensMot, a near 
significant difference is acknowledged for Gaze maxline, F(1, 12) = 4.4, p = .059, ηp2= 
0.267, 48.5% observed power. The influence of group is likely better interpreted in light 
of the noted interaction effect. 
 
Interaction 

An interaction was found for Gaze maxline, F(2, 24) = 3.8, p = .036, ηp2 = 0.243, 
64.0% observed power, indicating that children with and without ASD expressed 



different responses to the set of stimulus motions. As seen in Figure 3, this difference 
can be found in the response to the Chaos stimulus motion. 

 
 
Simple main effects of stimulus results showed that children with and without 

ASD did not differ in response to the Sine stimulus motion, F(1, 12) = 1.40, p = .260, 
ηp2 = 0.104, 19.3% observed power, though they differed in their response to the 
Chaos, mean difference = 509.4 ± 220.0; F(1, 12) = 5.36, p = .039, ηp2 = 0.309, 56.7% 
observed power, and Brown Noise, mean difference = 104.1 ± 43.0; F(1, 12) = 5.88, p = 
.032, ηp2 = 0.329, 60.6% observed power, stimuli. 

Simple main effects of group-wise results showed that typically developing 
children differed in their response to the three stimuli, F(2, 11) = 5.64, p = .021, ηp2 = 
0.506, 74.5% observed power, though children with ASD did not, F(2, 11) =  0.32,  p  =  
.736,  ηp2  =  0.054,  8.8%  observed  power.  The typically developing group had much 
longer maxline in response to the Chaos stimulus motion when compared with Sine 
(mean difference = 332.5 ± 113.2, p = .012) or Brown Noise (mean difference = 466.5 ± 
133.2, p = .004). Children with ASD did not show this elevated maxline in response to 
Chaos stimulus motion. 



 
 
Typically developing children coordinate their gaze for longer bouts (higher 

maxline) in response to the Chaos stimulus, relative to other stimulus motion conditions. 
However, children with ASD do not express this increased coordination to the Chaos 
stimulus motion. Gaze behavior for this group is consistently coordinated to the motion 
of the stimulus for a relatively short duration (at 50 Hz, 200 data points is 4 s of task 
time). No other interactions were identified in our data. 
 

Discussion 
Gaze 

The results of this study confirm our hypothesis that children with and without 
ASD express different patterns of gaze coordination based on the temporal structure of 
the motion of a viewed stimulus. In general, children expressed a similar rate of 
coordination (percent determinism) to the rhythmic and chaotic stimuli, with lower rate 
toward the aperiodic stimulus.  Further, they showed an affinity for longer coupling of 
their gaze (maxline) with the motion of a chaotic stimulus, relative to fully periodic or 
aperiodic motions. These findings corroborate those of Haworth et al. (2015), who found 
similar effects in a group composed only of typically developing children. 

In the current study, though, we found an additional interaction effect of stimulus 
conditions and group. It is noteworthy, according to simple main effects analysis, that 
children with ASD did not share this propensity for coordinating their gaze with the 



motion of the chaotic stimulus. Children with ASD did express ability to coordinate their 
gaze to each stimulus motion; roughly, 160 data points, averaged across all conditions, 
at 50 Hz relates to periods of more than 3 s. Given this, it seems reason-able to suggest 
that observed indifference to chaos is not resultant from a general inability to coordinate 
gaze to the motion of a viewed stimulus. We contend that our results point to a specific 
difference in the groups’ appreciation of chaotic motion. Whether this data represent a 
disinterest or an inability remains unresolved. We will proceed later with a look to the 
literature for clarity on this matter. 

 
Posture 

We found a main effect of stimulus on the rate of coordination (percent 
determinism) and duration of the longest coordination (maxline) of posture with stimulus 
motion.  Percent determinism indicates a decreasing rate of coordination as the 
stimulus motion became less periodic, with the most frequent rate in response to the 
most rhythmic stimulus (Sine). Maxline, however, indicates the shortest maximum in 
response to the Sine stimulus, and is longer for the less periodic stimuli. With no main 
effect of group, or interaction, we conclude that these effects hold true for both typically 
developing children and those with ASD. Thus, it appears that there is some dynamic 
informational interdependence of stimulus motion complexity and the subsequent 
organization of posture, a finding consistent with Haworth et al. (2015). 
 
SensMot 

No main effects or interactions were found for the rate (percent determinism) or 
duration (maxline) of coordination of gaze and posture to one another (SensMot). The 
rate of coordination appears modest (51.2% ± 21.8%) across all participants and 
conditions, which indicates that gaze and posture were infrequently coordinated in a 
similar way during all trials. Consistent maxline values of 141.5 ± 35.2, nearly 3 s, 
suggest that nontrivial coordination of these behaviors was present during the trials. 
This suggests a stable coordination between gaze and posture, which is resistant to the 
local motion presented by our stimuli. This could be due to the stability of the 
mechanism across persons, or a contextual dependence on its informational 
usefulness. It would be interesting to follow up with more elaborate stimuli that serve to 
emulate environmental motion, as these have been found to effect postural sway 
behavior in kids with and without autism (Gepner et al., 1995; Gepner & Mestre, 2002). 
These types of conditions might have a bigger impact on internal sensorimotor 
coordination that is represented by our SensMot measure. 
 
General Discussion 

Contrasting views have been presented to explain altered perceptual abilities 
observed in persons with ASD, including an enhanced perceptual functioning model 
(EPF; Mottron & Burack, 2001; Mottron, Dawson, Soulieres, Hubert, & Burack, 2006) 
and a weak central coherence model (WCC; Happé & Frith, 2006). EPF describes that 
a hyperfixation on particular aspects of the experienced world drive the child with autism 
into the behavioral redundancy that characterizes the disorder. In other words, an 
overdeveloped interest in local details keeps the child from exploring the remaining 
available information in their environment. Following the EPF model, we would expect 



children with ASD to have demonstrated an increased tendency to fixate on the motion 
of the stimuli, particularly the periodic motion of the Sine stimulus. However, we did not 
find such to be the case. Our data show a similar response to all motion types by these 
children, and that being in the form of only short bouts of coordinated interest. Notably, 
the longest duration of coordination of Gaze to any stimulus is shorter than that of the 
shortest duration coordination of the typically developing children. 

Our findings suggest that attention to the temporally contingent variability found 
in chaos is not part of the sensory motivation of children with ASD. Further, they 
suggest that visual stimulation alone is insufficiently motivating of sensorimotor 
coordination. The weak central coherence (WCC) hypothesis argues that persons with 
ASD appear overly fixated on the local features of objects, because they are unable to 
extract an essence (or formulate a Gestalt) of higher meaning. In this view, the 
“excessive” variation of the Chaos stimulus presented in our study may have been 
dismissed due to a lack of perspective shift of the viewer. Chaos exhibits redundancy on 
multiple time scales, and a focused microperspective would certainly miss out on this 
observation and its meaningfulness. Bertone, Mottron, Jelenic, and Faubert (2003) 
discussed a similar reflection to a lack of perceptual engagement with complex motion 
visualizations. Furthermore, they point out that limitations on the perceptual processing 
of complex information appear in other sensory modality domains, as well. They lead 
further into the notion that compromised integrative processing may be a root agent in 
the child’s apparent disinterest in complex information within his or her environment. 

In contrast, other works have indicated that multisensory integration provides 
advantageous “sparks” of coherency to the perceptual processes of children with ASD. 
Klin and colleagues (2009) describe this in conjunction with the common observation 
that biological motion preference is lacking in children with autism. When presented with 
side-by-side movies of point-light motion, one upright and the other inverted, children 
with autism showed no preference to either movie. Typical controls and delayed, 
nonautism controls both showed preference toward upright biological motion. In 
response to one of the animations (the actor was playing pat-a-cake, a highly 
audiovisual synchronous activity), an ASD participant jumped to 93% preference to the 
“correct” upright video. Klin et al. suggest that a mechanism for this preference is an 
affinity for the causal physical contingency—that is, awareness that the motion caused 
the sound. This led to further evaluation with new animations scaled across audiovisual 
synchrony (AVS), with level of AVS calculated as the product of change in velocity and 
change in sound amplitude. Behavior of the second cohort fit their predictions with 90% 
correct viewing during the preferential looking task (preference to upright animation), 
with highest rates in response to the animations with highest AVS. This finding lends 
explanation to the study by Klin, Jones, Schultz, Volkmar, and Cohen (2002) showing 
that children with ASD fixate the mouth (instead of the eyes) of an actor within their 
environment, supporting the notion of searching for high AVS cues. 

Thus, it appears that children with autism are not actually averse to complex 
information (a possible interpretation of our data), but instead seem to prefer it to come 
in coherent multimodal format. This insight could lend new perspective to understanding 
the appreciation of biological motion by those with ASD. In addition, this could help 
explain the attribution of agency onto the actions of others. Neri, Morrone, and Burr 
(1998) present an interesting look on how individuals typically see movement. 



Specifically, they report on the natural sensitivity of individuals to perceptions of 
biological motion. Using point-light animations of human walkers, embedded in a noise 
field, they demonstrate a couple of interesting observations. They show a seemingly 
obvious finding that biological motion is more readily identified when greater numbers of 
point-light markers are present. The less obvious caveat is that this enhanced sensitivity 
(due to increased available information) increases more rapidly for biological motion 
than for simple, nonbiological motion. In other words, the information threshold for 
identifying biological motion is lower (possibly just more adaptive, as we will discuss 
shortly) than that of nonbiological motion.  Their second major finding was that the 
temporal summation of visual information had a dramatically longer interval (up to 3 s) 
for biological motion than it was for simple motion: nearly an eightfold difference. They 
suggest that the increased time required for assessment is due to the greater number of 
dependent couplings of the various joint centers needed to form a complete percept.  It 
is interesting to note here the differences in Gaze maxline that we found for children 
with and without ASD. Those with ASD showed little more than 3 s of coordination 
(average across all conditions), whereas children without ASD engaged more than 4.5 s 
and as high as 14 s (to Chaos) to stimulus motion. Perhaps, these results combine to 
suggest a reduced capacity for temporal summation of motion information in children 
with ASD. 

Neri et al. (1998) draw the conclusion that biological motion detection does not 
depend on hard-coded neural architecture. Instead, they propose that accurate 
biological motion detection is reliant on a “very sensitive, but flexible, mechanism with 
variable efficiency.” They further explain that a system that is able to adjust its internal 
noise could lead to this variable efficiency, and thus have the capacity to demonstrate 
optimum recognition under any visual conditions. Further advantage (over simpler 
matched-filter systems) would be that minimal neural resources would be necessary to 
yield information from a vast array of potential stimuli.  This suggests that a flexible and 
adaptable brain is thus more likely to navigate its way through the noise field and 
ultimately land on the identification of relevant information. Based on the results of our 
study, we propose that this is one feature that is not available to the autistic brain. A 
lack of dynamic optimal neural activations would lead to deficient flexibility and 
adaptability, which would manifest in a hyper-rigid motor repertoire combined with the 
inability to recognize complex motions—that is, the motions of others. Grice et al. (2001) 
explored the connection between visual processing and oscillatory brain activity, and 
conclude that atypical neural burst patterns have an effect on binding visual information 
into a coherent percept in children with ASD. These results further support the notion 
that errant temporal processing is an underlying feature of ASD. 

We consider that motion detection might be less related to an interest or attention 
deficit, but instead arises from a sort of filter malfunction, which precludes the 
identification of relevance from noisy incoming information. This coincides with what we 
have seen about the perceptual processing behavior of children with ASD. More 
information of the same modality is not better; in fact, it seems to drive an aversion. 
More information across multiple sensory modalities appears to advantage the 
perception of biological motion (Wuerger, Crocker-Buque, & Meyer, 2012), particularly 
by those with ASD (Klin et al., 2009). This is especially the case when high-velocity 
components of the separate modalities coordinate in time. Under such events, it may 



seem to the child that the world itself has become more coherent, and thus finally 
perceivable above the previous state of near-random complexity. This perspective 
affords an entirely new interpretation of the hyperfixation behaviors seen in children with 
ASD. We see this as an effort by the children to seek coherency among the noise field 
of their sensory universe. Under normative circumstances, this occurs quite often, albeit 
not necessarily in a continuous fashion. This may be part of what leads to the isolated 
and discontinuous social interest of children with ASD. Other people may just not be 
constantly coherent enough to provoke sustained attention. 

Ultimately, we conclude that our investigation has provided a novel effort toward 
the understanding of complex motion perception in children with ASD. We have 
presented a methodology that can be used for further research including the exploration 
of perceptual response to visual signals of differing dynamical structure. Future studies 
may also be informed by some of the limitations of the current study, including the 
modest sample size (considering also the reported effect sizes) and the limited 
characterization of the ASD group. Furthering the current paradigm with an ASD group 
with expanded characterization and the incorporation of multiple sensory modalities 
would be great next steps to verify the claims made herein. In addition, brain imaging 
techniques could be used during replications of the current study, which could provide 
an extremely fruitful insight into the temporal dynamics of the underlying neural 
architecture. 
 

Acknowledgments 
Funding was provided by a fellowship from the Dennis Weatherstone Predoctoral 
Fellowship Program (Autism Speaks grant #7070, awarded to author JLH), with 
additional support for materials from the American Society of Biomechanics.  Authors 
Anastasia Kyvelidou and Nicholas Stergiou currently receive support from the National 
Institutes of Health Centers of Biomedical Research Excellence (1P20GM109090-01). 
The funders had no role in study design, data collection and analysis, decision to 
publish, or preparation of the manuscript. 
 

References 
Abarbanel, H.D.I. (1996). Analysis of observed chaotic data. New York: Springer-

Verlag. doi:10.1007/978-1-4612-0763-4 
American Psychiatric Association.  (2013).  Diagnostic and statistical manual of mental 

disorders.4th ed. Washington, DC: American Psychiatric Association (older 
editions: 1952, 1968, 1980, and 1994). 

Attwood, T. (2007). The complete guide to Asperger syndrome. London: Jessica 
Kingsley Publishers. 

Bar-Haim, Y., & Bart, O. (2006). Motor function and social participation in kindergarten 
children. Social Development,15, 296–310. doi:10.1111/j.1467-
9507.2006.00342.x 

Baron-Cohen, S. (1988). Social and pragmatic deficits in autism: Cognitive or affective? 
Journal of Autism and Developmental Disorders,18(3), 379–402. 
doi:10.1007/BF02212194 

Baron-Cohen, S. (1993). From attention-goal psychology to belief-desire psychology: 
The development of a theory of mind and its dysfunction. In S. Baron-Cohen, H. 



Tager-Flusberg, & D. Cohen (Eds.), Understanding other minds: Perspectives 
from autism (pp. 59–82). Oxford: Oxford University Press. 

Bernstein, N.A. (1996). On dexterity and its development. In M.L. Latash & M.T. Turvey 
(Eds.), Dexterity and its development (pp. 1–244). Mahwah, NJ: Erlbaum. 

Bertone, A., Mottron, L., Jelenic, P., &Faubert, J. (2003).  Motion perception in autism:  
A “complex” issue.  Journal of Cognitive Neuroscience,15(2), 218–225.  
doi:10.1162/089892903321208150 

Bhat, A.N., Landa, R.J., & Galloway, J.C. (2011). Current perspectives on motor 
function-ing in infants, children, and adults with autism spectrum disorders. 
Physical Therapy,91(7), 1116–1129. doi:10.2522/ptj.20100294 

Blake, R., Turner, L.M., Smoski, M.J., Pozdol, S.L., & Stone, W.L. (2003). Visual 
recognition of biological motion is impaired in children with autism. Psychological 
Science,14(2), 151–157. doi:10.1111/1467-9280.01434 

Charman,.,  Swettenham,  J.,  Baron-Cohen,  S.,  Cox,  A.,  Baird,  G.,  &  Drew,  A.  
(1997).  Infants with autism:  An investigation of empathy, pretend play, joint 
attention, and imitation. Developmental Psychology,33, 781–789. 
doi:10.1037/0012-1649.33.5.781 

Frankenburg, W.K., Dodds, J., Archer, P., Shapiro, H., & Bresnick, B. (1992). The 
DENVER II:  A major revision and restandardization of the Denver 
Developmental Screening Test. Pediatrics,89, 91–97. 

Fraser, A.M., & Swinney, H.L.  (1986).  Independent coordinates for strange attractors 
from mutual information.  Physical Review A.,33, 1134–1140.  doi:10.1103/Phys-
RevA.33.1134 

Gepner, B., Mestre, D., Masson, G., & de Schonen, S. (1995). Postural effects of 
motion vision in young autistic children. Neuroreport,6, 1211–1214. 
doi:10.1097/00001756-199505300-00034 

Gepner, B., & Mestre, D.R. (2002). Brief report: Postural reactivity to fast visual motion 
differentiates autistic from children with Asperger syndrome. Journal of Autism 
and Developmental Disorders,32(3), 231–238. doi:10.1023/A:1015410015859 

Grice, S.J., Spratling, M.W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & 
John-son, M.H. (2001). Disordered visual processing and oscillatory brain activity 
in autism and Williams syndrome.  Neuroreport,12(12), 2697–2700.  
doi:10.1097/00001756-200108280-00021 

Hadders-Algra, M. (2008). Reduced variability in motor behaviour: An indicator of 
impaired cerebral connectivity?  Early Human Development,84(12), 787–789.  
doi:10.1016/j.earlhumdev.2008.09.002 

Hadders-Algra, M. (2010). Variation and variability: Key words in human motor develop-
ment. Physical Therapy,90(12), 1823–1837. doi:10.2522/ptj.20100006 

Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive 
style in autism spectrum disorders. Journal of Autism and Developmental 
Disorders,36(1), 5–25. doi:10.1007/s10803-005-0039-0 

Haworth, J., Kyvelidou, A., Fisher, W., & Stergiou, N. (2015). Children’s looking 
preference for biological motion may be related to an affinity for mathematical 
chaos. Frontiers in Psychology,6, 281. doi:10.3389/fpsyg.2015.00281 



Haworth, J.L., Vallabhajosula, S., & Stergiou, N. (2014). Gaze and posture coordinate 
differently with the complexity of visual stimulus motion. Experimental Brain 
Research,232(9), 2797–2806. doi:10.1007/s00221-014-3962-5 

Haworth, J., Vallabhajosula, S., Tzetzis, G., & Stergiou, N.  (2013).  Optimal variability 
and complexity: A novel approach for management principles. In S. Banerjee 
(Ed.), Chaos and complexity theory for management: Nonlinear dynamics. USA: 
IGI Global. doi:10.4018/978-1-4666-2509-9.ch017 

Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002b). Visual fixation 
patterns during viewing of naturalistic social situations as predictors of social 
competence in individuals with autism. Archives of General Psychiatry,59(9), 
809–816. doi:10.1001/archpsyc.59.9.809 

Klin, A., Lin, D.J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with 
autism orient to non-social contingencies rather than biological motion. 
Nature,459, 257–261. doi:10.1038/nature07868 

Kohen-Raz, R., Volkmar, F.R., & Cohen, D.  (1992).  Postural control in autism.  Journal 
of Autism and Developmental Disorders,22(3), 419–432. 
doi:10.1007/BF01048244 

Meltzoff, A.N., & Moore, M.K.  (1992).  Early imitation within a functional framework:  
The importance of person identity, movement, and development. Infant Behavior 
and Development,15(4), 479–505. doi:10.1016/0163-6383(92)80015-M 

Molloy, C.A., Dietrich, K.N., & Bhattacharya, A. (2003). Postural stability in children with 
autism spectrum disorder.  Journal of Autism and Developmental 
Disorders,33(6), 643–652. doi:10.1023/B:JADD.0000006001.00667.4c 

Mottron, L., & Burack, J.A. (2001). Enhanced perceptual functioning in the development 
of autism. In J.A. Burack, T. Charman, N. Yirmiya, & P.R. Zelazo (Eds.), The 
development of autism: Perspectives from theory and research (pp. 131–148). 
Mahwah, NJ: Erlbaum. 

Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced 
perceptual functioning in autism: An update, and eight principles of autistic 
perception. Journal of Autism and Developmental Disorders,36(1), 27–43. 
doi:10.1007/s10803-005-0040-7 

Mundy, P., Sigman, M., & Kasari, C. (1990). A longitudinal study of joint attention and 
language development in autistic children.  Journal of Autism and Developmental 
Disorders,20, 115–128. doi:10.1007/BF02206861 

Neri, P., Morrone, M.C., & Burr, D.C. (1998). Seeing biological motion. 
Nature,395(6705), 894–896. 

Piek, J.P., Bradbury, G.S., Elsley, S.C., & Tate, L. (2008). Motor coordination and 
social-emotional behaviour in preschool-aged children. International Journal of 
Disability Development and Education,55(2), 143–151. 
doi:10.1080/10349120802033592 

Rhea, C.K., Kiefer, A.W., D’Andrea, S.E., Warren, W.H., & Aaron, R.K. (2014). 
Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.  
Human Movement Science,36, 20–34. doi:10.1016/j.humov.2014.04.006 

Sanefuji, W., Ohgami, H., & Hashiya, K. (2008). Detection of the relevant type of 
locomotion in infancy: Crawlers versus walkers. Infant Behavior and 
Development,31, 624–628. doi:10.1016/j.infbeh.2008.07.003 



Shinbrot, T., Grebogi, C., Wisdom, J., & Yorke, J.A. (1992). Chaos in a double 
pendulum. American Journal of Physics,60(6), 491–499. doi:10.1119/1.16860 

Shockley, K., Butwill, M., Zbilut, J.P., & Webber, C.L., Jr. (2002). Cross recurrence 
quantification of coupled oscillators.  Physics Letters [Part A],305, 59–69.  
doi:10.1016/S0375-9601(02)01411-1 

Shockley, K. (2005). Cross recurrence quantification of interpersonal postural activity. In 
M.A. Riley & G.C. Van Orden (Eds.), Tutorials in contemporary nonlinear 
methods for the behavioral sciences (pp. 142– 177). Arlington, VA: Digital 
publication avail-able from the National Science Foundation website: 
http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp 

Smyth, M.M., & Anderson, H.I.  (2001).  Football participation in the primary school 
playground: The role of coordination impairments. British Journal of 
Developmental Psychology,19, 369–379. doi:10.1348/026151001166155 

Stergiou, N., Buzzi, U.H., Kurz, M.J., & Heidel, J. (2004). Nonlinear tools in human 
movement.  In N.  Stergiou (Ed.), Innovative analyses of human movement (pp.  
63–90).  Champaign, IL: Human Kinetics. 

Stergiou, N., & Decker, L.M.  (2011).  Human movement variability, nonlinear dynamics, 
and pathology: Is there a connection? Human Movement Science,30, 869–888. 
doi:10.1016/j.humov.2011.06.002 

Stergiou, N., Harbourne, R.T., & Cavanaugh, J.T. (2006). Optimal movement variability: 
A new theoretical perspective for neurologic physical therapy. Journal of 
Neurologic Physical Therapy,30, 120–129. 
doi:10.1097/01.NPT.0000281949.48193.d9 

Sullivan, M., Finelli, J., Marvin, A., Garrett-Mayer, E., Bauman, M., & Landa, R. (2007). 
Response to joint attention in toddlers at risk for autism spectrum disorder: A 
prospec-tive study. Journal of Autism and Developmental Disorders,37, 37–48. 
doi:10.1007/s10803-006-0335-3 

Suzuki, Y., Nomura, T., Casadio, M., & Morassa, P. (2012). Intermittent control with 
ankle, hip, and mixed strategies during quiet standing: A theoretical proposal 
based on a double inverted pendulum model. Journal of Theoretical Biology,310, 
55–79. doi:10.1016/j.jtbi.2012.06.019 

Takens, F. (1981). Detecting strange attractors in fluid turbulence. In D. Rand & L-S. 
Young (Eds.), Dynamic systems and turbulence. New York: Springer Verlag. 

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J.D. (1992). Testing for 
nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear 
Phenomena,58, 77–94. doi:10.1016/0167-2789(92)90102-S 

Viviani, P., & Flash, T.  (1995).  Minimum-jerk, two-thirds power law, and isochrony:  
Converging approaches to movement planning. Journal of Experimental 
Psychology. Human Perception and Performance,21(1), 32–53. 
doi:10.1037/0096-1523.21.1.32 

von Hofsten, C. (2004). An action perspective on motor development. Trends in 
Cognitive Sciences,8(6), 266–272. doi:10.1016/j.tics.2004.04.002 

Whalen, C., & Schreibman, L. (2003). Joint attention training for children with autism 
using behavior modification procedures. Journal of Child Psychology and 
Psychiatry, and Allied Disciplines,44(3), 456–468. doi:10.1111/1469-7610.00135 

http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp


Wuerger, S.M., Crocker-Buque, A., & Meyer, G.F.  (2012).  Evidence for auditory-visual 
processing specific to biological motion.  Seeing and Perceiving,25, 15–28.  
doi:10.1163/187847611X620892 

 


	Indifference to Chaotic Motion May Be Related to Social Disinterest in Children With Autism
	tmp.1652912724.pdf.h6Enj

