
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Journal Articles Department of Biomechanics 

11-10-2018 

When Coordinating Finger Tapping to a Variable Beat the When Coordinating Finger Tapping to a Variable Beat the 

Variability Scaling Structure of the Movement and the Cortical Variability Scaling Structure of the Movement and the Cortical 

BOLD Signal are Both Entrained to the Auditory Stimuli BOLD Signal are Both Entrained to the Auditory Stimuli 

Steven Harrison 

Michael Hough 

Kendra K. Schmid 

Boman Groff 

Nicholas Stergiou 

Follow this and additional works at: https://digitalcommons.unomaha.edu/biomechanicsarticles 

 Part of the Biomechanics Commons 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/biomechanicsarticles
https://digitalcommons.unomaha.edu/biomechanics
https://digitalcommons.unomaha.edu/biomechanicsarticles?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/43?utm_source=digitalcommons.unomaha.edu%2Fbiomechanicsarticles%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/
http://library.unomaha.edu/


When Coordinating Finger Tapping to a 

Variable Beat the Variability Scaling 

Structure of the Movement and the 

Cortical BOLD Signal are Both Entrained 

to the Auditory Stimuli 
Steven J. Harrisona, Michael Houghb, Kendra Schmidc, Boman R. Groffb and Nicholas 

Stergioub 

a Department of Kinesiology, University of Connecticut, United States 

b Department of Biomechanics, University of Nebraska at Omaha, United States 

c Department of Biostatistics, University of Nebraska Medical Center, United States 

 

Abstract 

Rhythmic actions are characterizable as a repeating invariant pattern of movement 

together with variability taking the form of cycle-to-cycle fluctuations. Variability in 

behavioral measures is atypically random, and often exhibits serial temporal 

dependencies and statistical self-similarity in the scaling of variability magnitudes across 

timescales. Self-similar (i.e. fractal) variability scaling is evident in measures of both 

brain and behavior. Variability scaling structure can be quantified via the scaling 

exponent (a) from detrended fluctuation analysis (DFA). Here we study the task of 

coordinating thumb-finger tapping to the beats of constructed auditory stimuli. We test 

the hypothesis that variability scaling evident in tap-to-tap intervals as well as in the 

fluctuations of cortical hemodynamics will become entrained to (i.e. drawn toward) 

manipulated changes in the variability scaling of a stimulus’s beat-to-beat intervals. 

Consistent with this hypothesis, manipulated changes of the exponent a of the 

experimental stimuli produced corresponding changes in the exponent a of both tap-to-

tap intervals and cortical hemodynamics. The changes in hemodynamics were 

observed in both motor and sensorimotor cortical areas in the contralateral hemisphere. 

These results were observed only for the longer timescales of the detrended fluctuation 

analysis used to measure the exponent a. These findings suggest that complex auditory 

stimuli engage both brain and behavior at the level of variability scaling structures. Ó 

2018 Published by Elsevier Ltd on behalf of IBRO. 
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INTRODUCTION 

The organization of context-adapted behaviors arises from the interdependent 

dynamics of the nervous system, physical body, and environment (Chiel and Beer, 

1997). Effective context-adapted behavior is thought to depend upon multi-scaled and 

nested system organizations (Bernstein, 1996; Diniz et al., 2011; Delignie`res and 

Marmelat, 2013; Harrison and Stergiou, 2015; Werner, 2010). Accordingly, multi-scaled 

and nested structure is evident in both the architecture and functional activity of brain 

(Bassett and Bullmore, 2006; Bassett et al., 2006; Werner, 2010; Bullmore and Sporns, 

2012; Di Ieva et al., 2014) and body (Turvey and Fonseca, 2014). It is also evident in 

the structure of the environment (Mandelbrot, 1990; Anderson and Schooler, 1991; Blau 

et al., 2013), such that the organization of both perception (Ulanovsky et al., 2004; Yu et 

al., 2005; Turvey and Fonseca, 2014) and memory (Brown et al., 2007; Rhodes and 

Turvey, 2007) appear to be adapted to the spatial and temporal scales and statistical 

structure of environmental events. We assume here that brain, body movement, and 

environmental events possess interdependent dynamics with a multi-scaled and nested 

temporal structure. 

Multi-scaled and nested structure can be quantified in behavioral time series with 

variability scaling measures (Van Orden et al., 2003; Diniz et al., 2011). Variability 

scaling has been quantified via rescaled range analysis (Hurst, 1951), power spectral 

analysis (Eke et al., 2000; Delignie`res et al., 2004), and detrended fluctuation analysis 

(Peng et al., 1993). In DFA, variability scaling is evaluated by plotting the log of the 

amplitude of fluctuations for various time series window sizes against the size of the 

measurement window (see Fig. 11). The scaling exponent a is given by the slope of a 

regression line fitted this data. Scaling exponents distinguish time series with persistent 

or anti-persistent structure. For persistent structure, a trend (e.g. a positive change) in 

the past is likely to be followed by a similar trend in the future. Self-similar or fractal 

structure follows from the nesting of trends. 

Measures of behavior exhibiting variability scaling, include exploratory 

movements of eyes and body (Stephen et al., 2010; Stephen and Anastas, 2011), 

reaction times in cognitive tasks (Gilden, 2001; Van Orden et al., 2003), and various 

rhythmic actions (Hausdorff et al., 1995; Chen et al., 1997; Delignie`res et al., 2004; 

Torre et al., 2007; Wing et al., 2004; Torre and Wagenmakers, 2009; Almurad et al., 

2017). Variability scaling is observed in measures of brain dynamics, including in 

electrophysiological signals measured via MEG and EEG (Novikov et al., 1997; 

Linkenkaer- Hansen et al., 2001; Be ́dard et al., 2006; Hardstone et al., 2012), and 

blood-oxygen-level dependent (BOLD) signals measured via fMRI (Thurner et al., 2003; 

He, 2011; Herman et al., 2011) and functional Near-Infrared Spectroscopy (fNIRS) (Eke 

and Herma ́n, 1999; Khoa and Nakagawa, 2008). 

Variability scaling is interpreted to reflect the outcome of interactions of 

distributed neural (Chen et al., 2008b; Werner, 2010) and mechanical (Turvey and 

Fonseca, 2014) processes unfolding over multiple temporal scales. Variability scaling 



with persistent structure has been interpreted as indicating robust and flexible system 

organization (Harrison and Stergiou, 2015). In the case of brain dynamics, variability 

scaling has been interpreted as an index of metastability, where metastability refers to a 

state in which interacting neural subsystems, each possessing their own intrinsic 

dynamics, can be flexibly integrated in varied task relevant ways (Freeman and Holmes, 

2005; Friston, 1997; Tognoli and Kelso, 2014). The functional significance of variability 

scaling is suggested by observations that deviations away from optimal values of 

persistent structure are associated with functional deficits and pathology (Stergiou et al., 

2006; van Orden et al., 2009). Moreover, simulation studies have shown the exchange 

of information between interacting complex dynamical systems can be maximized via 

complexity matching, that is, when the dynamics of the involved systems possess a 

similar multi-scaled and nested structure (West et al., 2008; Aquino et al., 2011). On the 

issue of efficient information exchange, it has been shown that the existence of 

persistent variability scaling structure in rhythmic auditory stimuli supports a degree of 

anticipation of—as opposed to reaction to—upcoming fluctuations in variable beat-to-

beat intervals (Repp, 2002; Rankin and Limb, 2014; Rankin et al., 2014). 

The proposed functional advantages of complexity matching have motivated the 

prediction that when two complex dynamical systems are coupled, their complexities 

should become drawn toward one another (Delignie`res et al., 2016). Consistent with 

this prediction, the variability scaling structures of coordinated actions have been found 

to be drawn toward the variability scaling of the systems to which they are coupled. 

When two people are asked to rhythmically coordinate their actions, an entrainment of 

movement variability scaling is observed in addition to the expected entrainment of 

movement oscillation periods and phases (Marmelat and Delignie`res, 2012). 

Entrainment of variability scaling structure is observed with interpersonal conversation 

(Abney et al., 2014), musical performances (Hennig, 2014), and coordinated actions 

(Den Hartig et al., 2018; Zapata-Fonseca et al., 2016). 

Entrainment of variability scaling is observed in experiments in which participants 

coordinate their actions to specially created environmental stimuli (Kaipust et al., 2013; 

Torre et al., 2013; Marmelat et al., 2014). Hunt et al. (2014) tasked participants with 

walking in synchronization with auditory metronomes possessing heterochronous beat-

to-beat intervals with variability scalings of a = 0.5 (i.e. no scaling), a = 1.0, and a = 1.5. 

The scaling exponent of participants’ stride-to-stride intervals was drawn toward the 

experimentally manipulated scaling exponent of the stimuli. Here, we extend the 

paradigm of Hunt et al. (2014) to test the hypothesis that variability scaling evident in 

both movement dynamics and associated brain activity dynamics can become entrained 

to the variability scaling of environmental stimuli. The latter prediction, is motivated by 

the results of simulation studies that suggest complexity matching can emerge from 

interactions of elements in neural networks (Mafahim et al., 2015). It is also motivated 

by correlations between the variability scaling of inter-tap intervals and the variability 

scaling of resting state alpha-band oscillations (Smit et al., 2013). 



We test our hypothesis by investigating measures of oxygenated hemoglobin 

(HbO2) levels. Time series of HbO2 levels in regional cerebral blood flow were used as 

indicators of brain activity dynamics. Activity in the two cortical regions of interest (ROI) 

was investigated in left and right hemispheres. The selected ROIs were premotor/motor 

and sensorimotor areas. ROIs were selected given their known sensitivity to the 

conditions of performance of manual coordinated actions. BOLD activity indicators in 

primary motor cortex and/or sensory cortex are affected by the intensity (Kuboyama et 

al., 2004; Shibuya et al., 2008; Shibusawa et al., 2009), frequency (Obrig et al., 1996; 

Kuboyama et al., 2004, 2005; Brigadoi et al., 2012), and phase (Oullier et al., 2005) of 

coordinated actions. Premotor cortex is thought to be relevant to the stability of 

coordinated action. Disruption of premotor cortex via repetitive transcranial magnetic 

stimulation affects the cycle-to-cycle variability of tapping coordinated with isochronous 

auditory metronomes (Pollok et al., 2008; Bijsterbosch et al., 2011; Del Olmo et al., 

2007; Kornysheva and Schubotz, 2011). In the case of the auditory cortex, neural 

oscillations have been found to become entrained to the structure of periodic stimuli 

(Will and Berg, 2007; Large, 2008; Lakatos et al., 2005; Nozaradan et al., 2011). The 

auditory cortex is responsive to the complex nonlinear temporal structure of human 

voices (Herzel, 1993; Kumar and Mullick, 1996), musical instruments (Fletcher, 1999), 

and the structure in temporally complex auditory stimuli (Itoh and Nakada, 2013).  

Premotor/motor and sensorimotor areas were chosen as ROIs of interest, over auditory 

cortex ROIs, because any observed variability scaling entrainment in these ROIs is not 

trivially explainable as being directly driven by the external stimulus. Of note, musical 

rhythms recruit motor and auditory areas of the brain (Chen et al., 2008a), with dorsal 

premotor cortex observed to mediate auditory–motor interactions (Chen et al., 2008b). 

The implication of cortical ROIs in unilateral motor tasks is lateralized, with 

changes in BOLD indicators of activity most pronounced for areas contralateral to the 

coordinated effector (Hirth et al., 1997; Obrig et al., 1996; Sato et al., 2007; Holper et 

al., 2009). For right-handed participants, ipsilateral activation is less pronounced when 

the task is performed by the dominant effector (Plichta et al., 2006). 

To test our hypotheses, we studied performances of thumb–finger tapping 

produced in isolation at a self-selected comfortable pace (self-paced task), or in 

coordination with an auditory stimulus (coordination task). In the coordination task, 

participants coordinated thumb–finger tapping to an isochronous metronome (IM), or to 

heterochronous metronomes (HM) possessing inter-beat interval (IBI) variability with 

scaling structures of a = 0.5, a = 1, and a = 1.5. IBI time series for these stimuli are 

shown in Fig. 1. Following Hunt et al. (2014), stimuli are matched for global mean IBI 

(0.5 s) and each HM is matched for global standard deviation of IBI (0.02 s). Here global 

mean and global standard deviation refer to statistics calculated over all intervals in a 

trial. A local standard deviation that is alternatively calculated over a subset of intervals 

and will differ across HM stimuli (Fig. 1). The magnitude of local variability is significant, 

as it has been taken to quantify the magnitude of perturbing forces affecting the stability 



of the coordination task (Torre and Balasubramanium, 2011). Following Hunt et al. 

(2014), stimuli were played to the tune of Für Elise. 

Thumb–finger tapping was chosen to reduce task complexity and to facilitate 

participants’ ability to comfortably perform the extended duration trials that benefit the 

accurate measurement of a. An additional reason for studying a tapping task is that 

progress has been made in identifying the simple mechanisms supporting sensorimotor 

synchronization in this task (see Repp, 2005; Repp and Su, 2013). 

Marmelat et al. (2014) studied participants walking to the beat of heterochronous 

metronomes with IBI variability scalings ranging from a  0.6 to a 1.5. A DFA analysis 

revealed a positive correlation between changes in the a of IBI intervals and associated 

changes in a of stride-to-stride intervals. Importantly, the performed DFA analysis 

separately considered variability scaling across shorter (10–31 intervals) and longer 

(50–128 intervals) timescale ranges, and a significant correlation was only found for the 

longer timescales of the analysis. This finding, of variability scaling entrainment only for 

longer timescale ranges, appears to depend upon contextual/task constraints.  

Delignie`res et al. (2016) reanalyzed the walking data just described, together with data 

from a bimanual coordinated joystick oscillation task (Torre and Delignie`res, 2008), and 

data from the task of coordinating the swinging of hand-held pendulums between two 

people (Marmelat and Delignie`res, 2012). Using a multi-fractal variant of detrended 

fluctuation analysis, they again observed that in the walking task the correlation of 

variability scaling broke down when shorter interval ranges were included in the 

analysis. In contrast, for the other two tasks, a strong correlation of variability scalings 

was unaffected by whether shorter interval ranges were included in the analysis or not. 

Delignie`res et al. (2016) interpreted these results to be a consequence of whether 

simple mechanisms of cycle-to-cycle adjustments were present in the task. Such 

mechanisms would appear to be implicated when discrete to-be-coordinated-to events 

(e.g. a distinct metronome) are present in the task constraints. Given the discrete nature 

of the presently investigated task, we predicted that only the longer timescales (in the 

DFA analysis) of both tap-to-tap intervals and cortical hemodynamics would show 

entrainment to the variability scaling of the stimuli. 

 

Fig. 1. Inter-beat interval (IBI) and corresponding inter-tap interval (ITI) time series from one participant 

performing the tasks of tapping in coordination with an isochronous metronome (IM), and three 

heterochronous metronomes (HM) that differ in the fractal scaling exponents (a) of their IBIs. 



EXPERIMENTAL PROCEDURES 

Participants 

Seventeen young healthy adults aged between 19 and 36 years participated in 

the study. All participants signed an informed consent form. Seven participants were 

female and ten were male. All participants self-reported that they were right handed. 

The consent process and study procedures were approved by the University of 

Nebraska at Omaha Institutional Review Board. This study complied with the 

Declaration of Helsinki. 

Tasks and procedure 

Four tasks were performed by participants, and were ordered as follows: (1) a 

tap/no-tap task, (2) a baseline no-tapping (rest) task, (3) a baseline self-paced tapping 

task, and (4) a coordinated tapping task. For all tasks, participants positioned 

themselves in a comfortable seated posture in a cushioned backed chair with their right 

forearm supinated and rested on their right thigh. Across tasks, participants sat either 

quietly, or quietly while performing a rhythmic index finger-to-thumb tapping motion. 

Participants were asked to minimize any motions (e.g. head turning or arm 

repositioning) other than those instructed by the experimenter. 

In the tap/no-tap task, ten blocks consisting of 30 s of no-tapping followed by 30 

s of self-paced tapping were consecutively performed. In the baseline no-tapping (rest) 

task, participants sat quietly for 15 min. In the self-paced tapping task, participants 

performed the tapping motion continuously for 15 min. In the coordinated tapping task, 

participants coordinated their tapping motions such that contact of the thumb and index-

finger was contiguous in time with the beats of a heard rhythmic auditory stimulus. Four 

coordinated tapping task trials with differing auditory stimuli were performed in random 

order. Each lasted for 15 min. 

Self-paced tapping was instructed to be performed at a rate that could be 

comfortably maintained for extended periods of time. Tapping was always performed 

with the right hand. The tapping motion was verbally described (as opposed to visually 

demonstrated) by the experimenter. This was done to minimize bias upon the self-

selected movement frequencies adopted by participants in the tap/no-tap task and the 

baseline self- paced tapping task. 

The experiment lasted approximately 120 min. Breaks in which the participants 

were free to stand up and to chat to the experimenter were offered approximately every 

15 min. 

 

Auditory stimuli 

Four metronomic auditory stimuli were created as midi files using MATLAB and 

played using a midi player (Olympus WS-600S digital voice recorder) through loud 



speakers. The duration of each generated beats was 0.125 s. Given that participants 

typically make about two taps per second when asked to tap at a comfortable rate 

(Drake et al., 2000), all stimuli were designed to possess an average inter-beat interval 

of 0.5 s. Following Hunt et al. (2014) pitch changes were imposed upon the stimuli to 

produce a repetition of the first section (the first 50 notes) of the song Fu ̈r Elise. Note 

frequencies ranged from 261.63 Hz (middle C) to 659.26 Hz. The four auditory stimuli 

included one IM and three HM. All stimuli were designed to possess an IBI mean of 0.5 

s. The three HM stimuli matched the design of the stimuli used in Kaipust et al. (2013) 

and Hunt et al. (2014). HM stimuli were designed to possess an IBI standard deviation 

of 0.02 s. These stimuli differed in the fractal scaling exponent (a) of their IBI variability. 

The IBI structure of the HMa=0.5 stimulus was created from a random time series. 

Following Kaipust et al. (2013), the IBI structure of the HMa=1.5 stimulus was created 

by integrating a random time series and the IBI structure of the HMa=1.0 stimulus was 

generated by filtering an integrated random time series. 

 

Data acquisition 

Thumb–index finger tap events were recorded using a 12.7-mm diameter force-

sensitive resistor taped to the pad of each participant’s right thumb. A TrignoTM 4- 

channel footswitch sensor (Delsys, Boston, MA, USA) was used to synchronously 

record thumb–index finger contact events (tapping) registered via the force-sensitive 

resistor, and acoustic events registered by splitting the audio output from the midi player 

and feeding it into a channel of the footswitch sensor. Data from the Trigno sensor was 

sampled at 1000 Hz.  

A fNIRS system (ETG-4000 Optical System; Hitachi Medical Corporation, Tokyo, 

Japan) was employed to record hemodynamic response measurements of the 

underlying neural tissues. This system uses two wavelengths (695 and 830 nm). 

Relative changes in the absorption of near-infrared light between an optode emitter and 

an optode detector was measured and sampled at 10 Hz. This measure was converted 

into relative concentration changes of HbO2 and deoxygenated hemoglobin (Cope and 

Delpy, 1988; Obrig and Villringer, 2003). Our analysis was focused on the study of 

HbO2. This measure was chosen following evidence that HbO2 is a more sensitive 

measure (Hoshi et al., 2001; Wilson et al., 2014) and bears a closer correspondence to 

BOLD fMRI (Toronov et al., 2001; Strangman et al., 2002). 

Eight infrared optode emitters and eight optode detectors were arrayed in a 4 x 4 

configuration with 3-cm inter-optode spacing (Fig. 2). This configuration supported 24 

possible channels of hemodynamic response measurements with each fNIRS channel 

located midway in between an optode emitter–detector pair. Optodes were housed in a 

flexible plastic sheet that molded to the surface of the scalp. The optodes and housing 

were secured in position on the scalp with elastic straps. 



The positioning of the optode array on the head followed the International 10/20 

scalp-based coordinate system (Jasper, 1958). The intersection of the inion/nasion 

plane and the periaruicle plane define the reference position Cz. The location of Cz on 

the scalp was identified by determining the midpoint intersection of over-scalp paths 

between the nasion to the inion and between the left and right periauricles. The optode  

array was centered over Cz. Following methods for transforming 10–20 system 

coordinates to Montreal Neurological Institute (MNI)-based coordinates (Okamoto et al., 

2004; Okamoto and Dan, 2005), the activity of four cortical ROI were identified. Each 

was associated to groupings of four fNIRS channels (Fig. 2). These ROIs distinguished 

motor and sensorimotor cortical regions in the left and right hemispheres (Okamoto et 

al., 2004; Hatakenaka et al., 2007; Leff et al., 2011). Two participant’s audio data was 

lost due to a faulty cable. These participants are not present in analyses involving 

acoustic events. 

 

Fig. 2. Configuration and placement of fNIRS emitter and detector array. (A) Studied fNIRS channels are 

shown, with lines connecting the studied fNIRS channels identifying groupings of channels into 

investigated regions of interest (ROI). (B) Placement of emitter and detector array on a participant 

performing the task in a comfortable posture. 

 

Data analysis 

We followed the procedures of Wilson et al. (2014) in our analysis of HbO2 data 

in the tap/no-tap task. Following Wilson et al. (2014), a 5.0 s moving average and 0.01- 

Hz high pass filter were applied to the HbO2 concentration waveforms for each channel. 

Principal component analyses were then implemented to increase the signal-to-noise 

ratio (Boas et al., 2004; Zhang et al., 2005; Wilson et al., 2014). Components for each 

trial were compared to a reference waveform, which was a trapezoidal function with a 5-

s increase in concentration at the start of tapping, a 25-s sustained peak concentration, 



and a 5-s decrease in concentration following the trial. A trapezoidal function has been 

shown to approximate observed HbO2 dynamics (Buxton et al., 2004; Cui et al., 2011; 

Wilson et al., 2014). If the correlation between the component and reference waveform 

was greater than 0.25, the component was incorporated into the final reconstruction of 

the HbO2 time series for individual channels. Components with a correlation to the 

reference waveform of less than 0.25 were excluded from reconstruction. Following 

reconstruction, data were averaged across trials for each channel and participant. Thus, 

average HbO2 waveforms were generated to represent the average hemodynamic 

activity for individual channels during finger tapping trials. The average waveforms 

consisted of a 10-s no-tapping baseline, 30-s tapping, and 20-s no-tapping recovery 

period. To assess if the production of right-handed finger tapping was associated with a 

significant change in HbO2 concentration for any ROI, the difference between the 

means of the no-tapping baseline period and tapping test period was calculated for 

each channel and participant and was averaged over blocks and channels in each ROI. 

For the coordination task, time series of onsets of pressure events (taps), onsets 

of acoustic events (metronome beats), and changes in the relative concentration of 

HbO2 were analyzed. Prior to event picking the magnitude of baseline noise was 

determined in the pressure and audio data signals. These signals were then each  

filtered with a median filter with a width of 11 samples. Events were identified as the 

onset times of regions in which the determined baseline noise level was exceeded in 

the filtered time series. The difference between successive event times was used to 

calculate inter-beat interval (IBI) and inter-tap interval (ITI) time series. Previous 

analyses of the task of tapping in time to heterochronous stimuli have produced varied 

results regarding task performance. Whereas Torre et al. (2013) found that participants 

were successful in consistently synchronizing their taps to the beats of heterochronous 

stimuli possessing a range of variability scalings, Stephen et al. (2008) contrastingly 

found participants unable to reliably maintain synchronization. Given these mixed 

results, we conservatively assumed in our analysis the possibility that participants’ 

performances may not be reliably phase locked with the stimuli in the investigated 

coordination task. Our analysis of coordination task data was designed assuming the 

possibility that coordination between taps and beats may not be reliable, and that taps 

and beats may differ in number. Potential causes of taps differing in number from beats 

include measurement error (i.e. taps not being registered by the force sensor), absence 

of coordination (i.e. participants not performing the task), and poor coordination (i.e. 

taps not being phase locked to beats). To remove biases on the calculation of standard 

deviation (SD) and scaling exponent a due to measurement errors and absences of 

coordination ITIs greater than 0.75 s (1.5 x mean IBI) and less than 0.25 s (0.5 x mean 

IBI) were excluded from our analyses. These outliers were removed from the time 

series and replaced with missing values. The SD of IBIs and ITIs were calculated either 

globally, for all measured intervals in the trial (SDall), or locally, for a subset of interval 

time series points. Two measures of the magnitude of local variability were calculated 

by measuring SD in time series windows of either 30 (SD30) or 100 (SD100) 



consecutive points. The calculation was performed at all possible window locations and 

an average over window locations was evaluated. 

 Coordination between beats and taps was quantified using an analysis of 

discrete relative phase (DRP) (Jeka, 1992; Diedrich and Warren, 1995). Importantly, 

DRP analysis does not assume a 1:1 mapping between beats and taps, or require the 

determination of a unique beat-to-tap mapping when the number of taps is not equal to 

the number of beats. In DRP the timing of taps is evaluated as a fraction of the time 

between the preceding and succeeding beats. This fraction is expressed in the range 

0°–360°. To identify regions of poor coordination DRP values were unwrapped (Byblow 

and Chua, 1998) so that the rate of change in DRP could be continuously evaluated. 

For this analysis the unwrapped DRP time series was smoothed using a seven-point 

moving average, interpolated using a cubic spline fit, and low pass filtered with a cutoff 

of 0.1 Hz (solid gray line in Fig. 4B). Regions where the absolute rate of change of this 

time series exceeded 30°/s were identified and counted as instances of loss of 

coordination. 

HbO2 time series were measured relative to pre-task HbO2 values. This value 

was determined by averaging 5 s of data prior to the start of each trial. Following Eke 

and Herma ́n (1999), the HbO2 time series were not filtered so as not to affect the 

temporal structure contained in the signal.  

For DFA each time series was integrated (i.e., cumulatively summed) prior to 

analysis. This step is performed as DFA works on the diffusive property of fractional 

Brownian motions. In the DFA of each time series, the time series was broken into bins 

of a size (n). Local linear trends were computed within each bin, and the root mean 

square variation around this linear trend was calculated. The root mean square variation 

was then averaged across all bins yielding a summary score F. The process was 

repeated for a ranges of bin sizes allowing the magnitude of fluctuations for each bin 

size (F(n)) to be plotted as a function of bin size in log–log coordinates. The slope of this 

function is the scaling exponent a and was estimated by calculating the slope of 

regression line fitted to the data across a particular range of bin sizes (Fig. 7). 

In the analysis of IBIs and ITIs, DFA was performed on 210 intervals taken from 

the middle of each trial. Following Damouras et al. (2010), small and large bin sizes 

were excluded from the estimates of the exponent a. Bin size ranges of 10–51, 51–256, 

and 10–256 intervals were used to produce estimates of a for each trial spanning 

shorter (ashort), longer (along), and shorter and longer (aall) timescales respectively. In 

the analysis of ITIs, identified outliers were replaced with missing values in an attempt 

to preserve the temporal order of the time series. This method has been shown to 

produce reliable estimates of the exponent a even under extreme dilution of samples 

(Mirzayof and Ashkenazy, 2010). In DFA, persistent structure yields a > 0.5. Anti-

persistent structure yields a < 0.5, while a = 0.5 denotes an absence of nested temporal 

dependencies. In the analysis of HbO2, DFA was performed on 213 intervals taken from 

the middle of each trial. Bin size ranges were selected to approximately match the 



scaling ranges selected in the DFA analysis of IBIs and ITIs. This resulted in bin size 

ranges of 50–255, 255–1280, and 50–1280 samples that were used to produce 

estimates of the exponent a spanning shorter (ashort), longer (along), and shorter and 

longer (aall) timescales. The a exponents of HbO2 time series were calculated for each 

trial and for each fNIRS channel. The a exponents in ROIs were calculated by 

averaging the a’s of the four channels in each ROI. 

 

Statistical analysis 

Each of the separate variables involved in each planned statistical analysis were 

inspected. Histograms were used to assess the consistency of the data in each 

variable, and to detect outliers that might suggest that errors in measurement had 

occurred, or that subjects were not actually performing the task. A team member with 

expertise in Biostatistics, reviewed tests of normality (e.g. Shapiro–Wilk tests) and 

normality plots (e.g. Q–Q plots), to determine departures from normality that would 

make the use of general linear model analyses inappropriate. In such cases, 

appropriate non-parametric tests were performed, and histograms are presented in the 

figure. 

During our inspections of mean ITI data we discovered evidence suggesting that 

one participant was not performing the task (i.e. they were not coordinating their tapping 

with the beats of the metronomes). This participant had mean ITIs of 0.36, 0.35, 0.36, 

and 0.41 s in the IM, HMa=0.5, HMa=1.0, and HMa=1.5, coordination task conditions 

respectively that markedly differed from the other participants (compare Fig. 6A). We 

removed this participant from all analyses. 

 

RESULTS 

Were task-specific changes in cortical HbO2concentrations detectible? 

For the tap/no-tap task, contralateral side measurements of HbO2 concentrations 

were greater during the tapping test periods than the no-tapping baseline periods. This 

was the case for both the sensorimotor ROI, F(1, 15) = 17.50, p < .001, gp = .54 and the 

motor ROI, F(1, 15) = 17.50, p < .001, gp = .54 (Fig. 3A). No such changes were 

observed on the ipsilateral side for either the sensorimotor ROI, F(1, 15) = 1.31, p = .27, 

gp = .27, or the motor ROI, F(1, 15) = 2.84, p = .11, gp = .16 (Fig. 3B). These results 

confirm that the measurement of cortical HbO2 concentrations at the chosen ROIs were 

sensitive to the performance of thumb to index finger tapping and to the laterality of the 

task (i.e. right-handed tapping). 

 

What were the properties of uncoordinated (self-paced) tapping? 



The mean ITI in the self-paced tapping baseline condition was 0.505 s (SD = 

0.128). As anticipated, the chosen mean IBI of the stimuli (0.5 s) approximated the 

participants self-selected ITIs. The magnitudes of global variability (SDall), and local 

variability over window sizes of 100 (SD100) and 30 (SD30) intervals was 0.110 s (SD = 

0.126), and 0.046 s (SD = 0.020) and 0.044 s (SD = 0.019) respectively. The fractal 

scaling of ITIs, measured as aall, ashort, and along exponents, was 0.752 (SD = 0.153), 

0.694 (SD = 0.149), and 0.802 (SD = 0.225) respectively. No difference was observed 

between ashort and along (F(1, 16) = 4.16, p = .06). All observed a exponents exhibited 

a persistent fractal scaling structure (a > 0.5) consistent with previous investigations of 

observed scaling structures for it is during self-paced tapping (Gilden et al., 1995; 

Delignie`res et al., 2004; Torre et al., 2011). 

 

Fig. 3. Differences in mean HbO2 concentrations for the tapping test period relative to the no-tapping 

baseline period (test – baseline) observed in the tap/no-tap task for a contralateral ROIs and B) Ipsilateral 

ROIs. 

 

Was tapping coordinated with the auditory stimuli? 

In the coordinated tapping task, the number of taps produced by participants did 

not consistently equal to the number of presented beats. As shown in Fig. 4, instances 

of both the number of taps exceeding the number of beats and the number of taps being 

fewer than the number of beats were observed. The percentage of total trial duration 

with ITIs greater than 0.75 s (1.5 x mean IBI) was 1.62%. ITIs greater than 0.75 s were 

classified as absences of coordination due to either an absence of tapping or a failure in 



the measurement of tapping. To minimize the biasing on investigated measures 

resulting from absences of coordination, ITIs greater than 0.75 s were replaced by 

missing values in the analysis of ITI a exponents and variability magnitudes. 

To quantify poor beat–tap coordination (as opposed to an absence of task 

performance) instances of smooth phase wrapping were identified by evaluating a 

criterion rate of change of unwrapped DRP (Fig. 5A). On average, 4.4 instances of 

phase wrapping were identified on each experimental trial. Of the identified wraps 

86.4% possessed a negative rate of change of DRP (Fig. 5A, top graph), suggesting the 

frequency of taps was greater than the frequency of beats during these episodes. 

 

Fig. 4. The distribution of ratios of the number of produced taps (#taps) to number of stimulus beats (# 

beats) in coordination task trials. 

The measure of percentage of each trial exhibiting phase wrapping was not 

normally distributed (Fig. 5B). Median percentages were 0.64%, 1.24%, 1.17%, and 

0.70% across the IM, HMa=0.5, HMa=1.0, and HMa=1.5, coordination task conditions 

respectively. Although no significant effect of coordination task condition was observed, 

v2(3) = 0.56, p = .91, it is worthy of note that the pattern of these results matches that of 

the local variability of IBI and ITI (Fig. 5). This hints at a relationship between the 

magnitude of local variability and the stability of coordination. 

 

What were the properties of the auditory stimuli? 

The audio signal played to participants was analyzed to determine if the 

designed properties of the stimuli were preserved in playback during the coordination 

task trials. Analysis of the audio signal revealed the mean IBIs were not normally 

distributed (Fig. 6A). Medians values for the IM, HMa=0.5, HMa=1.0, and HMa=1.5, 

conditions were 0.500, 0.500, 0.501, and 0.489 s respectively, suggesting that the mean 

IBIs for each of the auditory stimuli were close to designed value of 0.5 s. Numerically 

small, yet significant, differences in mean IBI were observed, v2(3) = 45.00, p < .001. 

Dunn’s pairwise post hoc tests with Bonferroni’s corrections for multiple testing revealed 

that HMa=1.5 differed from each of the other conditions.  



The standard deviations of IBIs in each trial were not normally distributed (Fig. 

6B, C). In the IM condition, the median SDall of IBIs was 0.005 s. In the HMa=0.5, 

HMa=1.0, and HMa=1.5, conditions, median values were, 0.021, 0.021, and 0.021 s 

respectively. An effect of auditory stimulus condition was observed, v2(3) = 28.84, p < 

.001. Dunn’s pairwise post hoc tests with Bonferroni’s corrections for multiple testing 

revealed that the IM condition differed from each of the HM conditions. Effects of 

auditory stimulus condition were observed for both measures of local variability 

magnitude, SD30, v2(3) = 45.00, p < .001, and SD100, v2(3) = 45.00, p < .001. For 

SD30, median values were 0.005, 0.021, 0.014, and 0.007 s, in the IM, HMa=0.5, 

HMa=1.0, and HMa=1.5 conditions respectively. For SD100, median values were 0.005, 

0.021, 0.015, and 0.009 s, in the IM, HMa=0.5, HMa=1.0, and HMa=1.5 conditions 

respectively. For both SD30 and SD100 measures, Dunn’s pairwise post hoc tests with 

Bonferroni’s corrections for multiple testing revealed that IM differed from HMa=0.5, 

HMa=1.0 conditions, and that HMa=0.5 and HMa=1.5 conditions differed. These results 

capture the reduction in local, but not global, variability across the HM stimuli with 

increasing degree of persistent structure. 

 

Fig. 5. Phase wrapping. (A) Time series plots of the discrete relative phase (DRP) of taps relative to beats 

revealing instances of negative phase wrapping (top) and positive phase wrapping (bottom). 

Correspondence in time of beats (gray circles) and taps (black crosses) during the phase wraps are 

shown below each DRP time series plot. (B) Distributions of the percentages of each trial that phase 

wrapped was observed. 

The measures of IBI variability scaling were not normally distributed (Fig. 7). For 
aall, median values were 0.021, 0.505, 0.992, and 1.401, in the IM, HMa=0.5, HMa=1.0, 

and HMa=1.5 conditions respectively. An effect of auditory stimulus condition was 

observed, v2(3) = 45.00, p < .001. Dunn’s pairwise post hoc tests with Bonferroni’s 

corrections for multiple testing revealed differences between IM and HMa=1.0, IM and 

HMa=1.5, and HMa=0.5 and HMa=1.5 stimulus conditions. This pattern of results was 

reproduced for both ashort and along measures. For ashort, median values were 0.040, 

0.483, 0.918, and 1.347, in the IM, HMa=0.5, HMa=1.0, and HMa=1.5 conditions 

respectively. An effect of auditory stimulus condition was observed, v2(3) = 45.00, p < 

.001. Dunn’s pairwise post hoc tests with Bonferroni’s corrections for multiple testing 



 

Fig. 6. Distributions of means and standard deviations of auditory stimuli inter-beat intervals. 

revealed differences between IM and HMa=1.0, IM and HMa=1.5, and HMa=0.5 and 

HMa=1.5 stimulus conditions. For along, median values were 0.006, 0.533, 1.111, and 

1.436, in the IM, HMa=0.5, HMa=1.0, and HMa=1.5 conditions respectively. An effect of 

auditory stimulus condition was observed, v2(3) = 45.00, p < .001. Dunn’s pairwise post 

hoc tests with Bonferroni’s corrections for multiple testing revealed differences between 

IM and HMa=1.0, IM and HMa=1.5, and HMa=0.5 and HMa=1.5 stimulus conditions. 

Measures of ashort and along were found to differ, Z = 3.41, p < .001. These analyses 

suggest that while the differences in the a’s of the auditory stimuli appear to be 

respectively compressed and enlarged in the measurement of lower and higher scaling 

ranges, the designed pattern of the scaling exponents was reliably preserved within 

each of the two scaling ranges considered. 

 

Fig. 7. Distributions of the variability scaling exponents of inter-beat intervals. 

 



Did the properties of tapping match the properties of the auditory stimuli? 

The measure of mean ITI was not normally distributed (Fig. 8). For mean ITI, 

median values were 0.500, 0.500, 0.501, and 0.489, in the IM, HMa=0.5, HMa=1.0, and 

HMa=1.5 conditions respectively. Differences in mean ITI were observed across 

auditory stimulus conditions, v2(3) = 38.78, p < .001. Dunn’s pairwise post hoc tests 

with Bonferroni’s corrections for multiple testing revealed that HMa=1.5 differed from 

each of the other conditions. The observed pattern of the mean ITIs mirrors the pattern 

of small but consistent differences in mean IBIs observed in the stimuli. 

All measures of the ITI variability magnitudes differed as function of IM and HM 

conditions (Fig. 9B), SDall, F(3, 45) = 6.71, p < .001, gp = .31, SD30, F(3, 45) = 7.14, p 

< .001, gp = .32, SD100, F(3, 45) = 6.10, p < .001, gp = .29. For SDall, direct 

comparison of the means (Bonferroni-adjusted for multiple comparisons, p < .05) 

revealed that the IM condition differed from each of the HM conditions. For both SD30 

and SD100, IM differed from HMa=0.5 and HMa=1.0 conditions. For the SDall measure, 

HM conditions did not differ from each other. By contrast for SD30, a difference 

between HMa=0.5 and HMa=1.5 was observed. The general pattern of results for ITI 

variability magnitudes matched what was observed in the analysis of IBI variability 

magnitudes (Fig. 9A). 

 

Fig. 8. Distribution of the variability scaling exponents of inter-tap intervals. 

The aall values for ITIs differed as a function of auditory stimulus condition, 

F(1.45, 21.77) = 100.39, p < .001, gp = .87 (Fig. 10B). The ordering of the means 

mirrored that of the IBIs of the stimuli (Fig. 10A). Direct comparison of the means 

(Bonferroni-adjusted for multiple comparisons, p < .05) revealed that all IM and HM 

conditions differed from one another. A combined analysis of ashort and along (see) 

revealed an interaction effect of the scaling range (i.e. ashort vs. along) and auditory 

stimuli, F(3, 45) = 84.67, p < .001, gp = .85, as well as main effects of both the scaling 



range F(1, 15) = 313.27.18, p < .001, gp = .95, and the auditory stimulus, F(1.42, 21.25) 

= 96.16, p < .001, gp = .87. 

The observed interaction effect captures the expected compression of 

differences across auditory stimulus conditions for ashort, as well as an ordering of 

means that does not match that of the stimuli. Separate analyses for ashort and along 

revealed main effects of auditory stimulus condition for both the ashort, F(3, 45) = 30.53, 

p < .001, gp = .67, and along, F(1.69, 25.34) = 113.32, p < .001, gp = .88. For ashort, a 

direct comparison of the means revealed all auditory stimulus conditions to differ. In 

contrast for along, all IM and HM conditions were observed to differ, and the ordering of 

the means mirrored that of the stimuli. 

 

Fig. 9. Coordination task standard deviations (SDs) for auditory stimulus conditions. SD is calculated 

globally over the whole trial (SDall), and locally over window sizes of 100 intervals (SD100) and 30 

intervals (SD30) for (A) inter-beat intervals (IBIs) and (B) inter-tap interval (ITIs). 

 

 

Fig. 10. Scaling exponent a from DFA for (A) inter-beat intervals (IBIs) and (B) inter-tap intervals (ITIs). a 

is evaluated for scaling regions of 10–255 (aall), 10–51 (ashort), and 51–255 (ashort) intervals. 

 



As hypothesized, the matching of ITI variability scaling to that of the auditory 

stimuli was only clearly observed for the longer timescale ranges of the DFA analysis 

(compare Fig. 6A, B). This pattern of results is also shown in Fig. 11 which depicts the 

fitting of regression lines to the DFA diffusion plots from each condition for a single 

participant. 

 

Did the properties of neural dynamics match those of tapping and auditory 

stimuli? 

Given the absence of reliable baselines for each trial in the coordination task, the 

effect of conditions on mean HbO2 concentrations was not investigated. Variability 

magnitudes of HbO2 concentration calculated over the whole trial (SDall), and within 

local windows matched for temporal length to 30 IBIs (SD30), and 100 IBIs (SD100), 

revealed a main effect of ROI, F(1, 15) = 6.86, p < .05, gp = .31, F(1, 15) = 5.10, p < 

.05, gp = .25 and F(1, 15) = 6.57, p < .05, gp = .30 respectively. In each case magnitude 

of variability for the sensorimotor ROI was greater than the motor ROI. An interaction of 

ROI side and auditory stimulus condition was observed for SDall, F(3, 45) = 3.409, p < 

.05, gp = .19 (Fig. 12A), but not for SD30 or SD100 (Fs < 1). This increase in global 

variability magnitude without a corresponding increase in local variability is consistent 

with increased time series persistence. 

Given the results observed for ITIs (Fig. 10B), we predicted that variability scaling 

entrainment between HbO2 concentrations and the auditory stimuli would only be 

observable on long scaling ranges of the DFA analysis. Separate analyses for both 
ashort and along revealed an interaction of ROI side and auditory stimulus condition for 
along, F(3, 45) = 5.10, p < .01, gp = .25 (Fig. 12C), but not for ashort, F < 1 (Fig. 12B). 

Inspection of Fig. 12B suggests that there was a difference between those auditory 

stimulus conditions possessing persistent variability scaling structure (HMa=1.0 and 

HMa=1.5) and those not possessing persistent variability scaling structure (IM and 

HMa=0.5), for the contralateral ROIs. Separate analyses for both ashort and along with 

ROI side and persistence as independent variables revealed an interaction of ROI side 

and persistence for along, F(1, 15) = 7.21, p < .05, gp = .33, but not for ashort, F(1, 15)  

= 1.33, p = .27, gp = .08. 

 

DISCUSSION 

In this study the task of task of tapping finger and thumb to a variable beat was 

investigated. We tested the hypothesis that the scaling of variability magnitudes in the 

fluctuations of tap-to-tap intervals and the fluctuations of associated neural dynamics, 

would become drawn toward (i.e. entrained to) the variability scaling structure of the 

auditory stimuli. The IBIs of the auditory stimuli were matched for mean and global 

standard deviation but varied in variability scaling structures. Participants tasked with 



 

Fig. 11. Fluctuation functions from DFA for IBIs (top) and ITIs (bottom) of one participant (data matched to 

Fig. 1). Thick gray lines show regression line fits for short (dashed line) and long (solid line) regions. The 

slope of these regression lines is used to determine ashort and along respectively. 

coordinating to these stimuli became entrained not only to the frequency of stimulus, but 

also to the variability scaling structure of the stimulus. Consistent with the findings of 

Marmelat et al. (2014), the entrainment of ITI variability scaling to the IBI variability 

scaling of the stimulus was dependent upon the scaling range evaluated in the DFA 

analysis. Specifically, only ITI variability scaling evaluated within longer scaling ranges 

was found to mirror the pattern of changes in variability scalings that varied across the 

auditory stimuli, as well as to approximate the variability scaling values of the auditory 

stimuli. The dependence of our results upon the timescales evaluated in the DFA 

analysis suggests the existence of distinct scaling regions. This interpretation is 

reinforced by the pattern evident in the diffusion plots in Fig. 7. Distinct scaling regions 

have been observed for varied measures of human activity including the fluctuations of 

postural control (Collins et al., 1995), heart beats (Peng et al., 1993; Pittman-Polletta et  

al., 2013), and cerebral hemodynamics (Eke et al., 2006). In each of these cases, the 

observation of distinct scaling values, and scaling regions, has been interpreted as 

resulting from the interaction of control processes/mechanisms operating at particular 

scales. 

Event-based models of temporal synchronization propose mechanisms of cycle-

to-cycle adjustments, made with respect to either the IBIs and beat–tap asynchronies of 

external event stimuli (Torre et al., 2013), or with respect to internally generated beats 

(i.e. rhythmic neural dynamics) such as in the case of continuation tapping tasks (Wing 



and Kristofferson, 1973; Vorberg and Wing, 1996; Vorberg and Schulze, 2002). Anti-

persistent scaling structure present for shorter time-scales of variability scaling analyses 

is taken to be indicative of short range event-based corrective mechanisms (Torre and 

Delignie`res, 2008; Marmelat et al., 2014). In the case of continuation tapping tasks, 

variability scaling is observed to possess anti-persistent scaling structure at shorter 

timescales, and persistent structure at longer timescales (Yamada, 1995; Chen et al., 

2002; Delignie`res et al., 2004; Madison, 2004). In tasks in which tapping is 

synchronized to the beat of an IM stimuli, anti- persistent scaling structure is evident for 

both shorter and longer timescales (Torre and Delignie`res, 2008). The tendency in our 

results for ITI variability scaling evaluated at shorter timescales to tend toward  

antipersistence or an absence of persistence, is consistent with event-based corrective 

mechanisms being implicated in the studied coordination task. 

 

 

Fig. 12. Effects of auditory stimulus condition and ROI side for measures of variability magnitude (A), and 

variability scaling measured at short (B) and long (C) time scale ranges of the DFA analysis. 

Measures of HbO2 levels in sensorimotor and motor cortical areas were studied 

as indicators of brain activity dynamics. Variability scaling was observed in HbO2 levels. 

As hypothesized, the variability scaling of HbO2 fluctuations in both investigated ROIs 

was drawn toward the variability scaling values of the constructed auditory stimuli. This 

result parallels the recent findings of Lin et al. (2016). They studied the task of  

perceptually discriminating auditory metronomes that differed with respect to the 

variability scaling of their pitch fluctuations. They observed that the variability scaling 

structure of both slow cortical potentials and a-oscillation amplitudes, measured via 

MEG, predicted subjects’ discrimination performance in the auditory task. Both findings 

suggest that complex auditory stimuli—and by extension environmental events—

engage the central nervous system at the level of variability scaling structure. 

The variability scaling entrainment of HbO2 fluctuations was observed only at the 

long timescales of the DFA analysis, matching the pattern of results for ITI fluctuation 



variability scaling. The shared timescale-dependencies of HbO2 fluctuations with motor 

output fluctuations, rather than with auditory stimuli fluctuations, suggest that the role of 

the investigated ROIs was sensory–motor rather than sensory. 

Consistent with a dynamical systems perspective on complex adaptive behavior 

(Chiel and Beer, 1997; Delignie`res and Marmelat, 2013; Harrison and Stergiou, 2015) 

we have assumed here that dynamical processes operating at various time scales 

underly the effective coordination of body, nervous-system, and environment. We have 

also assumed that the underlying dynamical processes that are implicated in the studied 

task will affect the variability structure that is quantified by DFA analysis. Various 

mechanisms have been put forward as potential bases for variability scaling 

entrainment. Simulations by Torre et al. (2013) reveal that autoregressive models of 

event-based corrective adjustments can produce ITI entrainment to isochronous stimuli, 

and heterochronous stimuli possessing both persistent and non-persistent structure. 

Fine et al. (2015) has shown that in tasks that involve the coordination of elements with 

oscillatory dynamics (i.e. without discrete events), variability scaling entrainment 

depends upon the frequency/phase entrainment dynamics of coupled oscillatory 

systems. Lastly, Stephen and Dixon (2011) consider that variability scaling entrainment 

should be conceived as a product of multiplicative cascade dynamics, entailing a 

coordination of fluctuations among multiple time scales. This viewpoint fits most closely 

with the notion of complexity matching and suggests more global mechanisms, such as 

that of ‘‘1/f resonance” between connected complex networks (Aquino et al., 2011). 

Auto-correlation analyses of ITI time series and beat-tap asynchrony time series, as well 

as cross-correlation analyses of IBI and ITI time series, have been used in previous 

studies to provide insight into the process of dynamical modulation implicated in 

coordinating action to isochronous stimuli (e.g. Torre and Delignie`res, 2008). Such 

analyses were not performed presently due to the inherent autocorrelative structure of 

the heterochronous stimuli investigated, as well as complications arising from high level 

of tapping performance variability observed. With respect to the issue of performance 

variability, instances of phase wrapping made it impossible to determine a 1:1 beat-to-

tap correspondence. Consequently, hypotheses regarding the implication of specific 

cycle-to-cycle adjustment processes could not be evaluated directly. 

Neural mechanisms underlying variability scaling entrainment are suggested by 

neural resonance theory (Large and Snyder, 2009). This theory proposes that neural 

rhythms in the neural networks underlying both rhythm perception and coordination 

become synchronized to acoustic rhythms (Large et al., 2015; Nozaradan et al., 2016). 

Additional neural mechanisms of variability scaling entrainment are potentially 

implicated in the known sensitives of the investigated motor cortex and sensorimotor 

cortical areas. BOLD indicators of activity in these areas have been observed to be 

affected by the intensity of simple manual motor tasks (Kuboyama et al., 2004; Shibuya 

et al., 2008; Shibusawa et al., 2009), the frequency of coordinated manual actions 

(Obrig et al., 1996; Kuboyama et al., 2004, 2005; Brigadoi et al., 2012), and the relative 

phase of coordinated effectors in bimanual rhythmic coordination tasks (Oullier et al., 



2005). These dependencies may offer a rudimentary mechanism for understanding the 

observed entrainment of HbO fluctuations. 

Whether the presently observed variability scaling entrainment is taken to be 

driven by short range or more global mechanisms, the variability scaling entrainment in 

the studied measures suggest distant functional connectivity between neural activity, 

body movement, and environmental event structure, as well as the possibility of mutual 

responsiveness to multiscaled dynamics between these functional subsystems. Mutual 

responsiveness is of theoretical significance for understanding adaptive behavior, that 

is, for understanding the ability of behavior to be adapted to the demands of the 

situation in which it is embedded. The primary theoretical significance of multiscale 

entrainment and responsiveness is that the meaningfulness of environmental 

encounters spans a wide range of spatial and temporal scales. Consequently, across 

nervous system, body, and environment, behavior at any scale is only functional to the 

extent that it is adaptively situated with respect to levels above and acts to situate the 

levels below (Turvey and Fonseca, 2014; Harrison and Stergiou, 2015). 

Understanding the specific form of functional connectivity underlying the 

presently revealed entrainment of fluctuation magnitudes may benefit from some 

changes and refinements of the presently adopted methods. Auditory–motor event-

based synchronization is known to be supported by a network of functionally connected 

cortical and subcortical neural regions (Chen et al., 2008b). This network is believed to 

include the dorsal lateral prefrontal cortex, pre-supplementary motor area, inferior 

parietal lobule, and cerebellum lobule VI, and dorsal premotor cortex. Expanding the 

analysis across these regions may reveal that variability scaling structures are 

constrained in ROI-specific ways. This prediction is motivated by measure-specific 

variability scaling effects observed in studies of motor coordination (Coey et al., 2013; 

Terrier et al., 2005). Our analysis was also limited by the lack of beat-to-tap 

correspondence. Reliable beat to tap correspondence supports additional measures of 

sensorimotor synchronization that are revealing of underlying timing mechanisms in the 

cycle-to-cycle dynamics of coordination (Repp, 2005). Beat-to-tap correspondence may 

be improved by attempting to increase the motivation and alertness of participants. The 

incorporation of EEG measures would allow the neural dynamics unfolding at multiple 

timescales to be separated out and distinctly evaluated, including those of cycle-to-cycle 

movement dynamics (Nozaradan et al., 2013). Given such an analysis it would be 

fruitful to investigate auditory stimuli in which variability is selectively manipulated at 

specific timescales. 

Of last note, in contrast to the analysis of ITIs, the observed magnitudes of 

changes of variability scaling values across conditions for HbO2 levels did not 

approximate those of either the ITI or the IBI variability scaling values. Moreover, the 

range of variation across conditions for HbO2 level variability scaling values was 

significantly compressed compared to the other measures. This compression and 

shifting is not evident in recent EEG studies designed to examine variability scaling 



(Smit et al., 2013), thus the basis for these data qualities may be due our use of HbO2 

as a measure, or our choices regarding HbO2 data post-processing. 
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