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RESEARCH ARTICLE Open Access

Risk‐of‐falling related outcomes improved
in community‐dwelling older adults after a
6-week sideways walking intervention: a
feasibility and pilot study
Andreas Skiadopoulos1 and Nick Stergiou1,2*

Abstract

Background: Aging increases fall risk and alters gait mechanics and control. Our previous work has identified
sideways walking as a potential training regimen to decrease fall risk by improving frontal plane control in older
adults’ gait. The purposes of this pilot study were to test the feasibility of sideways walking as an exercise
intervention and to explore its preliminary effects on risk-of-falling related outcomes.

Methods: We conducted a 6-week single-arm intervention pilot study. Participants were community-dwelling older
adults ≥ 65 years old with walking ability. Key exclusion criteria were neuromusculoskeletal and cardiovascular
disorders that affect gait. Because initial recruitment rate through University of Nebraska at Omaha and Omaha
community was slower than expected (3 participants∙week− 1), we expanded the recruitment pool through the
Mind & Brain Health Labs registry of the University of Nebraska Medical Center. Individualized sideways walking
intervention carried out under close supervision in a 200 m indoor walking track (3 days∙week− 1). Recruitment and
retention capability, safety, and fidelity of intervention delivery were recorded. We also collected (open-label)
walking speed, gait variability, self-reported and performance-based functional measures to assess participants’ risk-
of-falling at baseline and post-intervention: immediate, and 6 weeks after the completion of the intervention.

Results: Over a 7-month period, 42 individuals expressed interest, 21 assessed for eligibility (21/42), and 15 consented
to participate (15/21). Most of the potential participants were reluctant to commit to a 6-week intervention. Desired
recruitment rate was achieved after revising the recruitment strategy. One participant dropped out (1/15). Remaining
participants demonstrated excellent adherence to the protocol. Participants improved on most outcomes and the
effects remained at follow-up. No serious adverse events were recorded during the intervention.
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Conclusions: Our 6-week sideways walking training was feasible to deliver and demonstrated strong potential as an
exercise intervention to improve risk-of-falling outcomes in community-dwelling older adults. In a future trial, alternative
clinical tools should be considered to minimize the presence of ceiling/floor effects. A future large trial is needed to confirm
sideways walking as a fall prevention intervention.

Trial registration: ClinicalTrials.gov identifier: NCT04505527. Retrospectively registered 10 August 2020.

Keywords: Aging, Balance, Fear of falling, Gait, Stability, Variability, Lateral stepping

Background
Falls is the leading cause of injury among older adults
aged 65 years and above [1, 2]. Falling threatens functional
independence, increase disability and mortality, and finan-
cially burdens the patients and their caregivers [3–6]. Be-
sides the health concern, falls result in substantial medical
expenditures for the healthcare system, which is expected
to exceed $100 billion by 2030 in the US [7], and €45 bil-
lion by 2050 in the EU [2]. Fall prevention interventions
have been a major focus of research in recent years [8–
13]. It is a particularly pressing topic due to the increase
of the aging population and the growing awareness of the
societal burdens resulting from falls [8].

Frontal plane gait stability
The highest proportion of falls in older adults occurs
during level walking [14–17]. Maintaining walking bal-
ance in older adults is a requirement for avoiding falls.
However, with advancing aging, declines in sensorimotor
function reduce balance control during walking resulting
in increased fall risk [18–20]. As a result, interventions
able to improve walking balance and thus, decrease fall
risk in older adults are necessary [13]. An approach to
decrease fall risk in older adults is to strengthen their
capability to execute self-stable walking patterns [21–
23]. The basic premise behind training walking patterns
is to allow older adults to walk as planned in the pres-
ence of small instabilities. Based on this theoretical
framework, walking corresponds to a behavioral at-
tractor, where attractor dynamics are responsible for
walking stability [24]. As such, stable walking is based
on the passive dynamics of the musculoskeletal system
to facilitate foot placement during gait cycles. In silico
simulation and physical biped-legged models, corrobo-
rated with human walking experiments, showed that the
mechanisms that underlie foot placement mechanics rely
on the passive dynamics of the musculoskeletal system
and on the active control from the central nervous sys-
tem [25–33].
During walking, passive dynamics arises from the bio-

mechanical properties of the body and its mechanical
interaction with the environment. Practically, passive dy-
namics governs walking stability in the fore-aft direction
[24, 26, 34–36]. Nevertheless, active control from the

central nervous system governs walking stability in the lat-
eral direction [24–26]. Step width variability, expressed as
the standard deviation of the mediolateral distance be-
tween sequential left and right heel-strikes at double sup-
port, reflects the amount of active control from the
central nervous system in the frontal plane through lateral
foot placement [26]. A recent systematic review and meta-
analysis showed that older adults have higher step width
variability than younger adults [37]. In older adults, active
control is subject to subclinical declines in sensorimotor
functions, resulting in increased step width variability [27,
38–42]. Evidence has surfaced to support the link between
increased step width variability and high fall risk in older
adults [43]. Moreover, step width variability predicted fall
incidence among older adults [44].

Frontal plane gait stability training
Therefore, an intervention to improve walking stability
in older adults (and decrease fall risk, thereafter) would
be more effective if it targeted to decrease the excessive
amount of step width variability. Currently, external
stabilization devices and body weight support systems
can be used to offload the need of active control and de-
crease the amount of step width variability during walk-
ing [27, 45–48]. This has implications for walking
stability intervention in older adults, which could be di-
rected to exploit the mechanical features of gait dynam-
ics, such as motion-dependent torques [49]. Previous
studies showed that passive dynamics are less sensitive
to age-related deficiencies of active control or the lack
thereof [26, 31, 32]. For example, it was postulated that
the ability to gradually offload the need of active control
in treadmill walking through external devices can be
used in rehabilitation medicine for walking stability in
older adults [24, 45]. However, step width variability can
be decreased by increasing older adults’ ability to control
foot placement as well [47].
Recently, it has been found that active control during

walking in any direction is dependent on the direction of
progression [50, 51]. Specifically, when performing side-
ways walking, where the mediolateral direction is the
direction of progression instead of the anteroposterior,
the participants experienced a reversal of what is found
in typical forward walking; the mediolateral direction
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had a lower amount of variability than the anteroposter-
ior direction [51]. Practically, when walking laterally, side
stepping became the primary direction of progression,
and step width variability was less than step length vari-
ability. This implies that all planes of motion can benefit
from both active and passive control properties.
Exercise-based interventions attempting to improve
walking stability and reduce fall risk, would not need to
always target the mediolateral direction during typical
walking. Therefore, we suggest that adaptations from
sideways walking training could transfer to improve gait
stability during forward walking. This suggested transfer
effect, could provide an alternative intervention ap-
proach to reduce fall risk in older adults.
The objectives of this study were to (i) determine

the feasibility of implementing a novel 6-week side-
ways walking exercise intervention for older adults
and (ii) to collect preliminary evidence of efficacy of
such intervention on risk-of-falling related outcomes.
The specific feasibility objectives of the study were (i)
to determine the eligibility criteria, (ii) to evaluate the
recruitment capability and the characteristics of the
sample who expressed interest to participate in the
study, (iii) to evaluate the fidelity with which the
intervention was implemented in terms of compliance
with the protocol and adherence to the procedure
(i.e., participant and instructor fidelity), and (iv) to
evaluate the feasibility and suitability of data
collection procedures and the risk-of-falling related
outcomes measures [52]. Furthermore, it was hypoth-
esized that the intervention would improve risk-of-
falling related outcomes. It was also expected that the
intervention will result in a decrease in the amount
of step width variability and an increase in walking
speed during forward walking at post-intervention.
Moreover, the effects would be retained for 6 weeks
after the completion of the intervention.

METHODS
Design
We completed a 6-week, single-arm pilot study of a sideways
walking intervention with baseline, post-intervention, and re-
tention measurements of risk-of-falling related outcomes.
Reporting followed the Consolidated Standards of Reporting
Trials (CONSORT) statements for randomized pilot and
feasibility trials [53]. To ensure completeness of reporting,
and replication of the intervention we followed the Template
for Intervention Description and Replication (TiDieR) guide-
lines [54], which is recommended as extension on the CON-
SORT guidelines [53].

Participants
Fifteen older adults enrolled in the study. Inclusion cri-
teria were (i) ≥ 65 years, (ii) be independently residing in

the community, and (iii) ability to walk independently
without walking aid and without the help of another
person. Participants were not eligible if they (i) had a
neurological disorder or progressive neurologic condi-
tion, (ii) had a musculoskeletal disorder or injury that
could affect gait, (iii) had a surgery within the past 6
months, (iv) had a history of a cardiovascular event, and
(v) were participating in any other studies that involves
walking, balance, or exercise intervention.
Participants were recruited from 3 sources: (i) local re-

tirement community, (ii) employees of the University of
Nebraska at Omaha, and (iii) a sample of 190 older
adults from the Mind & Brain Health Labs (MBHL)
registry of the University of Nebraska Medical Center
(UNMC). The MBHL registry provided records of older
adults who met our inclusion/exclusion criteria. Between
September 2017 and March 2018, one of the authors
(AS) went to local retirement homes, fitness classes, and
libraries to talk about the research and to distribute ap-
proved flyers. Moreover, an invitation to participate to
the study was sent by email to all of the 190 members of
the MBHL registry. A notice seeking volunteers was also
announced to the university’s employees through
campus-wide email posts linked to text on university’s
website news page. Interested older adults contacted us
by email or telephone and a screening visit at the Bio-
mechanics Research Building was scheduled. Eligible
older adults were identified by one of the authors (AS),
and they asked whether they would like to participate in
the study. All participants were asked to read, under-
stand, and sign an informed consent form approved by
the Institutional Review Board of the UNMC prior to
participating in the study.

Sideways walking intervention
Before the first session, the participants were given a vis-
ual demonstration of sideways walking. Precise instruc-
tions were as such: (i) ‘keep the head up while stepping
laterally’, (ii) ‘do not cross feet at any point’, (iii) ‘feet
and legs are to be pointed in the same direction as the
body’, and (iv) ‘at no point can both feet be off the
ground’. Every session began with ‘warm-up’ exercises,
which included 200–300 m forward walking at self-
selected speed and stretching exercises at the comfort
level of the participants. After the ‘warm-up,’ the partici-
pants started the sideways walking training. The 6-week
intervention was performed at the indoor walking track
(circumference of about 200 m) of the Recreation Build-
ing of the University of Nebraska at Omaha. The 10 m
walkway was located at the straight part of the track. We
used masking tape of distinctive color to create starting
and finish lines on the track. All training sessions had a
single participant and were supervised by one of the au-
thors (AS).
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The load of the training was based on the American
College of Sports Medicine guidelines for older adults
[55], which recommend 20–30 min on 2–3 days∙week− 1

for neuromotor exercises (balance, agility, coordination
and gait). Thus, each participant was trained 3
days∙week− 1 for 6 weeks, resulting in a total of 18 sessions.
Each participant performed 6 trials∙session− 1 that were al-
ternated with a rest period of 1–3 min [55, 56]. The par-
ticipants were informed that they could choose their rest
time but should be at least 1 min but no more than 3 min.
Each trial consisted of 3 min sideways walking across a
10 m walkway changing body direction at the ends, thus
alternating lead and lag limbs. Each training session lasted
30–45 min. The first session was at the participant’s self-
selected sideways walking pace. The participants were
given instructions that they should strive to increase their
pace if they can, as they progress through the 18 sessions.
The participants were informed that they could increase
their pace at the start of each trial but may not decrease it
at the next session. The time to cover the 10 m sections in
each trial was manually recorded. Time stopped when the
leading foot crossed the finish line. The averaged recorded
time at each session was used to check participants’ adher-
ence to the intervention protocol – i.e., whether recorded
time was decreased at each consecutive training session.
The session was rescheduled when a participant reported
a level of muscle soreness or joint pain that prevented
them for maintaining the previous walking speed. When
this became evident after a session had already com-
menced, the session was curtailed but not rescheduled.
For safety reasons, sideways walking was performed next
to a horizontal handrail to grasp if required. A staff mem-
ber helping AS was standing next to the participant to rec-
ord walking time, monitor rest time, and to help as an
added safety measure.

Feasibility outcomes
To evaluate the eligibility criteria, we used the ratio of
included participants to those who did not meet the eli-
gibility criteria. Participant and instructor fidelity at the
intervention protocol was assessed by monitoring the
walking pace at all trials per session. The feasibility and
suitability of intervention outcomes was assessed by
measuring the extent of the missing data, and ceiling or
floor effects. Feasibility was measured by the ability to
recruit and retain older adults until complete the follow-
up (i.e., 6 weeks after the completion of the interven-
tion). The study was considered feasible if we were able
to recruit 3 participants∙week− 1, and if ≥ 80 % of the
sample was able to complete the follow-up.

Intervention outcomes
Intervention outcomes were walking speed, gait variabil-
ity (variability of step width, step length, stride time, and

stance time), the Timed Up and Go test (TUG), the Berg
Balance Scale (BBS), and the Falls Efficacy Scale-
International (FES-I). Walking speed is a predictor of fall
risk (when is less than 1 m·sec− 1), and of disability, mor-
tality, and adverse events in older adults [57–61].
Change in walking speed near 0.05 m·sec− 1 is small but
meaningful and change near 0.10 m·sec− 1 is substantial
[62]. Increased variability of spatial (step length and
width) and temporal (stride and stance time) gait charac-
teristics compromises gait performance and increase the
tendency of older adults to fall [63, 64]. Stance time vari-
ability is an indicator of preclinical disability mobility
(when stance time variability ≥ 0.034 sec) [65], while step
width variability ≥ 2.5 cm is considered excessive [37].
Meaningful changes are 0.25 cm for step length variabil-
ity, and 0.01 sec for stance time variability [66]. The
TUG test was designed for assessing mobility in older
adults [67], and has been used for predicting fall risk
(when > 12 sec) [57], as well as for screening for frailty
in older adults [68]. The BBS (14 items, max score: 56)
is a valid and reliable test to measure the functional bal-
ance in older adults and predicts fall risk (when < 50
points) [57, 69, 70]. The FES-I is a valid and reliable
questionnaire (16 items, max score: 64) to assess confi-
dence in the performance of activities relevant to daily
life and can be used to enhance confidence in level of
fall risk (when > 24 points) [57, 71, 72]. Additional mea-
surements included: the Mini-Mental State Examination
score (MMSE) (12 items, max score: 30) to measure cog-
nitive impairment [73]; the short form of Geriatric De-
pression Scale (GDS) (15 items, max score: 15) to assess
older adults for depression [74]; the short form of Brief
Pain Inventory score (BPI) (4 Pain severity items, max
score: 40; 7 Pain interference items, max score: 70) to
measure the impact of pain on daily functions [75]. Fur-
thermore, participants have been asked if they had sus-
tained 2 or more falls in the past year. A fall was defined
as an event that caused participants to rest on the floor.

Data collection and analysis
Data were collected at the Biomechanics Research Building
at baseline, post-intervention, and retention period (6 weeks
following completion of the intervention). The building fea-
tured a 3D motion capture system with 17 high-speed Rap-
tor cameras (Motion Analysis Corporation, Santa Rosa, CA,
US) synchronized with an instrumented treadmill (AMTI,
Watertown, MA, US). Upon arrival at the Biomechanics
Research Building the participants changed into a tight-
fitting suit. Then the participants walked for 3 min on a
treadmill at a self-chosen pace to ‘warm-up’.

Baseline evaluation
After the warming up, the participants performed the
TUG and BBS, completed the clinical questionnaires
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(FES-I, BPI, GDS, and MMSE), and were asked for previ-
ous falls. For the walking speed test, the participants
asked to self-select a treadmill walking speed based on
comfort level. The participants started walking at tread-
mill’s slowest speed and then incrementally (intervals of
0.17 m∙sec− 1) the speed was increasing until the partici-
pant stated that this was their preferred comfortable
speed. The treadmill was then increased another incre-
ment, so that the participant could confirm that the pre-
vious speed was the preferred speed. This procedure was
continued and repeated until successful confirmation
that a comfortable speed was reached. Then, retro-
reflective markers were placed at anatomical locations to
gather kinematics data during walking on the treadmill
at sampling rate of 100 Hz. The participants performed
3 trials of 3 min walking on a treadmill at their preferred
comfortable speed, alternated with 2 min of rest. Partici-
pants wore a harness during all treadmill trials.

Post‐interventionn evaluation
Following the 6-week sideways walking intervention, the
participants performed a post-intervention assessment.
The data collection mirrored the baseline assessment
with additional trials on treadmill to enable possible
comparisons to be made with speed both fixed across
sessions (at baseline preferred speed) and free to reflect
functional post-intervention differences (post-interven-
tion session using newly determined self-selected pre-
ferred speed). Participants performed 6 trials of 3 min
treadmill walking. Three trials were at the baseline speed
and the other 3 trials were at the post-intervention pre-
ferred speed. When there was not post-intervention
difference on the preferred speed, the participants per-
formed only 3 trials at the baseline speed. Participants
returned 6 weeks after the completion of the interven-
tion for the retention assessment. The data collection at
the retention mirrored the post-intervention assessment.
Additionally, one of the authors (AS) interviewed the
participants whether they continued sideways walking
training independently at home following the training
period. The answers and comments of the participants
were recorded.
We determined gait events from the filtered (low-

pass Butterworth, 6 Hz cut-off frequency) heel and
toe markers trajectories using custom MATLAB code
(v. R2019a, The MathWorks, Natick, MA, US). We
used the standard deviation of step width (mediolat-
eral distance between the locations of the sequential
left and right heel strikes), step length (anteroposter-
ior distance between the locations of the sequential
left and right heel strikes), stride time (the time be-
tween 2 consecutive ipsilateral heel strikes), and
stance time (the time from heel strike to toe off of
the same foot) to evaluate gait variability. Previous

studies suggested that within-subject standard devi-
ation of step width is more suitable to express step
width variability as the coefficient of variation is ap-
plicable only to ratio data, and the step width is con-
sidered interval data as it is not bounded by a
meaningful zero point [37, 76]. Gait parameters were
analyzed from both legs.

Sample size
A convenience sample size of 15 participants was in-
cluded. The sample size was based on feasibility. How-
ever, with 80 % power and a two-tailed alpha error of
5 % and with an estimate walking speed change of 0.1 ±
0.125 m·sec− 1 (i.e., meaningful change [62]) this sample
size could detect an effect size of ES = 0.80 (Cohen’s d
statistic). The sample size was calculated by using the
statistical program G*Power [77].

Statistical methods
The outcomes measures of walking speed, TUG, and gait
variability (step width variability, step length variability,
stance variability, and stride time variability) were analyzed
separately using a repeated measures ANOVA with Time
(baseline, post-intervention, and retention assessments) as
within factor. When sphericity was violated, a Greenhouse-
Geisser correction was applied. The average values at each
Time level were computed for the statistical analysis. If the
ANOVA revealed effects (p < 0.05), further univariate com-
parisons were performed using a planned (simple) contrast
in which all conditions were compared with the baseline. For
the ANOVA comparisons, the Cohen’s f effect size was re-
ported (f < 0.10 negligible, f < 0.25 small, f < 0.40 moderate,
otherwise large effect). Responsiveness of outcomes was re-
ported using the ES statistic, this is the mean change between
baseline and post-intervention divided by the standard devi-
ation of the measurement at baseline [78, 79] (| ES | < 0.20
negligible, | ES | < 0.50 small and | ES | < 0.80 moderate,
otherwise large effect). The ordinal outcomes of the clinical
tests (BBS, FES-I) were analyzed separately using Friedman
test, followed if needed by Wilcoxon singed-rank test. Ken-
dall’s W coefficient of concordance was used to report effect
size (W < 0.10 negligible, W < 0.25 small, W < 0.40 moderate,
otherwise large effect). Significance level was set at α= 0.05.
Statistical analyses were performed in R software Version
3.6.3 (R Foundation for statistical computing, Vienna,
Austria) [80] using the afex [81], emmeans [82], sjstats [83],
and rstatix [84] packages.

Results
The flow of participants through the study is shown in
Fig. 1. The demographics and baseline characteristics of
the 14 participants who completed the 6 weeks interven-
tion are shown in Table 1.
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Recruitment and retention capability
Enrollment started the second half of November 2017
and was completed in May 2018 (Fig. 2). Starting from
March 2017, we were able to pool participants also from
the MBHL registry enabling us to achieve study’s goal
rate (3 participants∙week− 1). In total, forty-two individ-
uals expressed interest in participating in the study, 21
of whom were unable to enroll because of schedule and
time commitments, felt not physically fit, or did not

respond to the appointment. Twenty-one individuals
were assessed for eligibility, 4 of whom were excluded
because they did not meet the eligibility criteria and 2
more because refused to participate without a stipend.
Therefore, 15 participants were enrolled (11 participants
from the MBHL registry). One participant decided not
to continue after 4 weeks of training due to personal
reasons (7 % attrition rate). There was no loss regarding
the follow-up (100 % follow-up).

Fig. 1 Participant recruitment and study enrolment flow chart (*for treadmill walking speed and gait variability outcomes, n = 12)
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Fidelity of intervention delivery
The results showed that older adults followed the in-
structions and complete the training as required by the
protocol. They got faster week by week until they
reached a threshold in their sideways walking pace on
the 4th week of intervention (Fig. 3a). On average, at the
4th week of intervention the older adults were walking
sideways 25 % faster as compared to baseline (Fig. 3b).
The increase in sideways walking speed from 4th to 6th
week was 5 %.

Safety
No serious adverse events were recorded during the
intervention. Occasionally, minor complaints relating to
stiffness, muscle soreness, or dizziness (n = 3) were re-
ported. Participants did not report any fall at any point
during the trial and follow-up periods.

Intervention outcomes
The scores of cognitive impairment (when MMSE < 25
points) [57], depression (when GDS < 6 points), [57] and
pain (when BPI: pain interference score < 4.7 points, or
BPI: pain severity score < 5.6 points) tests indicate that
fall risk at baseline could be considered low [85]
(Table 1). The outcome measures of the participants
who completed the 6-week intervention are shown in
Table 2. Nine participants improved their walking speed,

Table 1 Demographics and baseline characteristics of the 14
participants who completed the sideways walking intervention

Older adults (n = 14)

Age a 70 ± 4 years (Males 68 ± 1 years; Females: 70 ±
5 years)

Height a 164 ± 10 cm (Males 178 ± 8 cm; Females: 160 ±
8 cm)

Mass a 73 ± 16 kg (Males 74 ± 1 kg; Females: 73 ± 18 kg)

Body mass index a 27 ± 6 Kg/m2

Ethnicity 1 African American; 13 White

Sex (Females-to-
males)

11:3

Non-fallers to fallers 10:4

GDS b 0.00 ± 0.75

MMSE b 30.0 ± 0.75

BPI: Pain severity b 0.25 ± 0.69

BPI: Pain interference
b

0.00 ± 0.10

a values are mean ± standard deviation; b values are median ± interquartile
range; Abbreviations: BPI Brief Pain Inventory; GDS Geriatric Depression Scale;
MMSE Mini-Mental State Examination

Fig. 2 Progress of participant recruitment rate compared to study’s goal rate
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and 3 participants maintained the baseline walking speed
at post-intervention. TUG was consistent with low fall
risk, and FES-I indicated that they had low fear of falling.
BBS showed ceiling effects (7 participants obtained the
highest possible score; 12 participants clustered at the
highest 10 % of possible score), while FES-I showed floor
effects (3 participants obtained the lowest possible score;
10 participants clustered at the lowest 10 % of possible
score) at baseline.

Efficacy of intervention
Repeated measures ANOVA revealed that there was an
effect of Time on walking speed (F(1.21, 13.33) = 14.9,

p = 0.001, f = 1.16), step width variability (F(2, 22) = 3.59,
p = 0.045, f = 0.57), stance time variability (F(1.17,
12.92) = 5.91, p = 0.026, f = 0.73), and TUG score (F(2,
26) = 11.83, p < 0.001, f = 0.95). Friedman test showed
that there was an effect of Time on FES-I score (χ2(2) =
9.5, p = 0.009, W = 0.37). Planned contrasts revealed that
a 6-week sideways walking intervention increased walk-
ing speed (t(22) = 4.13, p < 0.001, ES = 0.82), and de-
creased step width variability (t(22) = − 2.10, p = 0.048,
ES = − 0.33), stance time variability (t(22) = − 2.88, p =
0.009, ES = − 0.73), and TUG (t(26) = − 4.10, p < 0.001,
ES = − 0.90) from baseline to post-intervention. These
results were retained 6 weeks after the completion of

Fig. 3 a Mean weekly changes on performance and b average improvement over the 6-week sideways walking intervention. Performance was
measured as the time in seconds needed to cover 10 m walking sideways during the trials (* p < 0.05; ** p < 0.01; *** p < 0.001)

Table 2 Outcome measures at each assessment and responsiveness

Variable Intervention effect Responsiveness

Baseline Post Retention Cont. Baseline-Post Cont. Baseline-Retention

Mean ± SD Mean ± SD Mean ± SD p-value EF %Δ p-value ES %Δ p-value ES

Speed (m·sec− 1) a, c 1.11 ± 0.20 1.27 ± 0.21 1.32 ± 0.25 0.001 1.16 15.7 < 0 0.001 0.82 19.3 < 0 0.001 1.03

TUG (sec) a 10.16 ± 1.51 8.79 ± 1.72 8.72 ± 0.98 < 0.001 0.95 −13.6 < 0.001 −0.90 −13.2 < 0.001 −0.95

FES-I b 19.00 ± 5.00 19.00 ± 4.00 17.00 ± 3.00 0.009 0.37 0.0 0.565 −0.11 −5.7 0.016 −0.56

BBS b 55.50 ± 1.75 56.00 ± 0.75 56.00 ± 1.00 0.580 0.04 0.0 0.673 0.29 0.0 0.357 0.29

Stance time
variability (sec) a, c

0.018 ± 0.006 0.015 ± 0.004 0.014 ± 0.005 0.026 0.73 −18.0 0.009 −0.58 −18.6 0.006 −0.73

Step width
variability (cm) a, c

2.30 ± 0.47 2.15 ± 0.36 2.12 ± 0.38 0.045 0.57 −5.7 0.048 −0.33 −6.8 0.021 −0.39

Step length
variability (cm) a, c

1.80 ± 0.43 1.60 ± 0.47 1.56 ± 0.57 0.099 0.52 −10.8 0.074 −0.48 −12.9 0.034 −0.57

Stride time
variability (sec) a, c

0.021 ± 0.006 0.018 ± 0.006 0.017 ± 0.007 0.107 0.52 −13.7 0.076 −0.56 −16.0 0.031 −0.69

a values are mean ± standard deviation; b values are median ± interquartile range; cn = 12
Abbreviations: %Δmean or median percentage change from baseline; Cont. Contrast; EF Cohen’s f or Kendall’s W index (< 0.10 negligible, < 0.25 small, < 0.40
moderate, otherwise large effect); ES effect size index (|ES| < 0.20 negligible, |ES| < 0.50 small and |ES| < 0.80 moderate, otherwise large effect
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the intervention (walking speed: t(22) = 5.16, p < 0.001,
ES = 1.03; step width variability: t(22) = − 2.49, p =
0.021, ES = − 0.39; stance time variability: t(22) = −
3.07, p = 0.006, ES = − 0.73; TUG score: t(26) = − 4.31,
p < 0.001, ES = − 0.95). Wilcoxon signed-rank test re-
vealed that FES-I decreased from post-intervention to
6 weeks after the completion of the intervention (Z =
43, p = 0.016, ES = − 0.56).

Discussion
In this study of community-dwelling older adults we
demonstrated the feasibility of the 6-week sideways
walking intervention and preliminary evidence in favor
of the efficacy of the intervention in reducing certain
risk-of-falling related outcomes.

Feasibility of intervention
Overall, the protocol was robust, and the intervention
was safe and acceptable from the participants. Low study
uptake and poor recruitment rate were the main limiting
factors. Many potential participants were reluctant to
commit to a 6-week intervention and that might have af-
fected sample characteristics. Recruitment rate improved
by expanding the recruitment pool through MBHL.
Therefore, the inclusion of community partners to assist
with recruitment should be considered. Educational ma-
terials stating clear personal benefits gained from partici-
pation could be used to promote the study in
community organizations and encourage participation.
The fact that recruitment during the winter season was
unsuccessful indicates that timing of conducting recruit-
ment and implementing intervention should be consid-
ered as well [86, 87]. Previous research showed that
weather conditions, such as cold, influences older adults’
attendance and adherence to exercise classes [88]. Of
course, such effects could not be generalized to all parts
of the US as winters in Nebraska, where this study took
place, could be more severe than other locations.
The presence of floor effects on FES-I and ceiling ef-

fects on BBS at baseline suggests that healthy function-
ing older adults were engaged in the study [89]. Thus,
the use of alternative clinical tools should also be con-
sidered. The Fullerton Advanced Balance test could be
used instead of BBS as it was designed to measure func-
tional balance in older adults [90, 91]. In our study, fear
of falling was assessed using the FES-I. Incorporating the
modified Gait Efficacy Scale [92], instead of the FES-I,
may be more appropriate to assess fear in walking-
related activities for community-dwelling older adults.
Additionally, future studies could target older adults at
high risk for falls (e.g., fallers older adults). It would be
interesting to see whether a sideways walking interven-
tion would be able to prevent falls in this population.
Moreover, it would be interesting to investigate whether

older adults with frontal plane gait instability would
benefit more from a targeted intervention of sideways
walking that is able to decrease step width variability
than other type of gait training.

Qualitative results related to the intervention
The 6 weeks sideways walking intervention was broadly
acceptable to the participants. They were motivated to
participate, and they were often trying to exercise at
home. Five participants practiced sideways walking at
home or in community. Moreover, the participant who
dropped out did not cite motivational reasons. Some of
the comments that were received were as follows:

I have retired a few months ago and this consistent
attendance on the program makes me feel good…
with energy”; “I am doing it at home, it is so funny,
everyone is watching me walking as crub! It is so
funny”; “It reminds me the ballet classes when I was
young!

Sideways walking is a simple, natural movement, and
is a minimal-cost accessible solution that could be trans-
lated easily into the real world. It requires minimal avail-
able resources. No training specialists, equipment, or
facilities are needed. Moreover, older adults can begin
the intervention on their own and without any particular
preparation, either indoors or outdoors.

Efficacy of sideways walking intervention
We were able to confirm the hypothesis that sideways
walking would improve risk-of-falling related outcomes,
and the effects would be retained for 6 weeks after the
completion of the intervention. Improvements were
noted for walking speed, TUG, stance time variability,
step width variability, and FES-I (p < 0.05). Specifically,
walking speed was more sensitive to the impact of side-
ways walking intervention than were the other out-
comes. Large ES were seen at post-intervention and 6
weeks after the completion of the intervention. These
large ES were equated with substantial clinically gains in
older adults’ gait performance (> 0.15 m·sec− 1) [62].
Walking speed at preferred pace is an important pheno-
typic marker of health and functional status [93]. Walk-
ing speed > 1.2 m·sec− 1 was found to associate with
healthier aging and exceptional life expectancy [58, 61].
TUG was sensitive to the impact of sideways walking

intervention. The large ES that were seen at post-
intervention and at follow-up indicated substantial
change over time (about 13 % from baseline). Previous
studies indicated that for claiming a ‘real’ effect over a
period of 4 weeks, TUG needs to change by more than
15 % from baseline in older adults [94], and by more
than 10.18 % in a population aged 30–74 years [95].
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TUG score at baseline (10.16 ± 1.51 sec) was at the
upper end of the range of previously reported values for
community-dwelling older adults (9.2 sec; CI95 % = 8.2–
10.2) [96]. TUG score at baseline was also greater than
the 9 sec cut-off value for future incidence of disability
[97]. Moreover, TUG more than 10 sec is associated
with increased risk of all-cause mortality [98]. Our inter-
vention reduced TUG to the lower end of the reported
range (8.79 ± 1.72 sec) [96]. Lower TUG scores reduce
the risk of all-cause mortality. A recent epidemiological
study in older adults (N = 864; deaths = 428) reported a
significant association (hazard ratio [HR]: 1.28; CI95 % =
0.96–1.71) between TUG and all-cause mortality for
those who were fastest (8.4 ± 1.2 sec) compared with
those who were slower (10.5 ± 0.5 sec) [99].
Stance time variability at baseline was less than the

0.034 sec cut-off value for future mobility disability
[65]. Sideways walking intervention decreased stance
time variability by about 18 % from baseline. This was
a moderate change in terms of ES. However, it was
not equated with a clinically meaningful change [66].
Short-term and long-term gains in step width vari-
ability were substantial in terms of ES [66]. In a re-
cently conducted meta-analysis, it was verified that
step width variability is higher in older adults than in
young adults [37]. Moreover, it was identified that step
width variability values above 2.50 cm are excessive, while
values lesser than 1.97 cm are within the normative range
[37]. Our intervention was able to lower step width vari-
ability in our older adults from an average of 2.30 cm to
2.15 cm, while at follow up was at 2.12 cm. This is a pre-
liminary evidence that sideways walking intervention can
reduce the requirements of frontal plane active control in
older adults’ gait during forward walking. Sideways walk-
ing had a moderate effect on stride time variability and
step length variability. Nevertheless, long-term gains in
step length variability were substantial in terms of ES
(0.24 cm), and close to a clinically meaningful change (≥
0.25 cm) [66].
FES-I scores at baseline indicated that participants had

relatively low fear of falling [57, 71, 72]. Floor effects
seen at baseline may have an impact on the responsive-
ness of FES-I. However, the results showed a beneficial
follow-up effect of sideways walking on FES-I. High BBS
scores at baseline supported that participants had good
functional balance with low fall risk [57, 69, 70]. The
small change in terms of ES at post-intervention indi-
cates that BBS was not responsive to the training, pos-
sibly because of the high scores at baseline, which
caused ceiling effects for this assessment.

Limitations
Although simultaneous participation in any other com-
petitive intervention was considered an exclusion

criterion, a limitation is that we did not include a wash-
out phase for those older adults who may had completed
an exercise intervention just prior to screening. Another
limitation is that during the sideways walking interven-
tion, the participants walked with the staff side-by-side.
According to a recent study, it could be an interchange
of information between older adults and staff that is ac-
complished through the matching of the fractal proper-
ties of stride intervals; the most complex system (staff)
may attract the less complex (participants), yielding in
an increase of complexity in the older adult that could
be reflected on the gait patterns [100]. We do not know
how these limitations could affect our intervention. A
washout phase should be included before baseline as-
sessment. The staff could monitor the participant walk-
ing further away.

Future research
This pilot study was conducted to support a large-scale
randomized controlled trial on the use of sideways walk-
ing to decrease risk of falling in older adults.

Conclusions
We concluded that a 6-week sideways walking is a feas-
ible exercise intervention to improve risk-of-falling re-
lated outcomes in this population and settings.
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