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ABSTRACT  

Recent empirical results suggest that the instructional material used to teach computing 

may actually overload students' cognitive abilities. Better designed materials may 

enhance learning by reducing unnecessary load. Subgoal labels have been shown to be 

effective at reducing the cognitive load during problem solving in both mathematics and 

science. Until now, subgoal labels have been given to students to learn passively. We 

report on a study to determine if giving learners subgoal labels is more or less effective 

than asking learners to generate subgoal labels within an introductory CS programming 

task. The answers are mixed and depend on other features of the instructional 

materials. We found that student performance gains did not replicate as expected in the 

introductory CS task for those who were given subgoal labels. Computer science may 

require different kinds of problem-solving or may generate different cognitive demands 

than mathematics or science.  

Categories and Subject Descriptors  

K.3.2 [Computers and Education]: Computer and Information Science Education: 

computer science education, information systems education  

General Terms  

Measurement, Design, Experimentation  
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1. INTRODUCTION  

As educators, we want to simplify the learning process to provide the maximum results. 

As researchers, we want find empirical evidence for what exactly it means to simplify 

the learning process. One proven method for enhancing learning is to reduce 

unnecessary cognitive load on the student while they are trying to learn to solve 

problems [22]. There are several ways to reduce cognitive load, including using worked 

examples [14].  

Worked examples typically include a problem statement along with a step-by-step 

procedure for how to solve the problem. Worked examples are most effective when 

used in worked example-practice pairs [2]. In these pairs, students study a worked 

example solution and immediately practice by solving a similar problem.  

Segmenting worked examples and including subgoal labels have also been shown to be 

effective in improving learning [2]. Segmenting includes separating portions of the 

worked example to isolate each step in the process [23]. Subgoal labels are names 

given to a set of steps in the solution process allowing the user to “chunk” the 

information to ease learning [10].  

While these cognitive load reducing techniques have been empirically tested in math 

and science disciplines, we have been the first to test these with computer science 

learning [15]. Margulieux et al. [15] demonstrated learning benefits for subgoal labels 

with a drag-and-drop programming language. This paper reports on a study undertaken 

to empirically determine the effectiveness of worked examples and subgoal labels within 

introductory computer science using a more traditional textual language. Some of the 

findings confirm the results from other disciplines while some were unexpected.  

Specifically, instructional material was created to teach introductory programming 

students about the process of using and writing a while loop to solve programming 

problems. There were three treatment conditions: (1) no subgoal labels provided, (2) 

subgoal labels given, and (3) subgoal labels generated, in which students were asked to 

generate their own labels for groups of solution statements. Within each treatment 

group, participants were randomly assigned to either an isomorphic or contextual 

transfer group. In the isomorphic transfer group, the problem to be solved in the worked 

example-practice problem pair was identical to the worked example in both procedural 

steps and cover story (i.e., context). The only thing changed was the actual values of 

the numbers to be calculated. In the contextual transfer group, the problem to be solved 
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in the worked example-practice problem pair involved the same procedural steps but 

the cover story and numeric values changed. Participants’ learning was measured with 

performance on novel problem solving tasks and a post-test. Problem solving tasks 

during the assessment were different from practice problems solved as part of the 

instructions.  

The research questions to be addressed through this study were: How do students who 

generate their own subgoal labels perform compared to those who were given subgoal 

labels and those who learned without subgoal-oriented instructions? Does changing the 

context or “cover story” between the worked example and practice problem have an 

effect on learning?  

2. BACKGROUND  

In this section we review the current literature for cognitive load, worked examples, and 

subgoal labeling.  

2.1 Cognitive Load  

Cognitive load can be defined as “the load imposed on an individual's working memory 

by a particular (learning) task” [28]. The cognitive load required to comprehend 

materials directly affects how much students learn, and affects their performance scores 

on assessments related to that task. If students have to keep too many things in 

working memory in order to understand a concept, learning suffers. As designers of 

instructional material, it is our responsibility to ensure that we do not overload the 

learner's working memory where possible when presenting new material. That is, we 

should help ensure that students' attention is directed at what’s important for 

learning, rather than extraneous aspects of the material.  

The central problem identified by Cognitive Load Theory (CLT) is that learning is 

impaired when the total amount of processing requirements exceeds the limited 

capacity of working memory [20]. Currently CLT [17, 24, 26] defines two different types 

of cognitive load on a student's working memory: intrinsic load and extraneous load.  

Intrinsic load is a combination of the innate difficulty of the material being learned as 

well as the learner's characteristics [13]. Extraneous load is the load placed on working 

memory that does not contribute directly toward the learning of the material---for 

example, the resources consumed while understanding poorly written text or diagrams 

without sufficient clarity [13]. Working memory resources that are devoted to information 

that is relevant or germane to learning are referred to as ‘germane resources’ [25].  

The intrinsic and extraneous loads can be controlled through instructional design. When 

designing instructional material care should be given to eliminate any possible 

extraneous load while attempting to minimize the intrinsic load. It is believed that 

worked examples, when carefully designed, can accomplish both of these goals [24].  

2.2 Worked Examples  



Worked examples are one type of instruction used to teach procedural process to 

students for problem solving activities. Worked examples give learners concrete 

examples of the procedure being used to solve a problem.  

Eiriksdottir and Catrambone argue that learning primarily from worked examples does 

not inherently promote deep processing of concepts [12]. While it may result in better 

initial performance because examples are more easily mapped to problems, it is less 

likely result in the retention and transfer [12]. When studying examples, learners tend to 

focus on incidental features rather than the fundamental features because incidental 

features are easier to grasp and novices do not have the necessary domain knowledge 

to recognize fundamental features of examples [11]. For example, when studying 

physics worked examples, learners are more likely to remember that the example has a 

ramp than that the example uses Newton’s second law [11]. A focus on incidental 

features leads to ineffective organization and storage of information that, in turn, leads 

to ineffective recall and transfer [6].  

2.3 Subgoal Labels  

To promote deeper processing of worked examples and, thus, improve retention and 

transfer, worked examples have been manipulated to promote subgoal learning. 

Subgoal learning refers to a strategy used predominantly in STEM fields that helps 

students deconstruct problem solving procedures into subgoals, functional parts of the 

overall procedure, to better recognize the fundamental components of the problem 

solving process [1]. Subgoals are the building blocks of procedural problem solving and 

they are inherent in all procedures except the most basic.  

Subgoal labeling is a technique used to promote subgoal learning that has been used to 

help learners recognize the fundamental structure of the procedure being exemplified in 

worked examples [8–10]. Subgoal labels are function-based instructional explanations 

that describe the purpose of a subgoal to the learner. For example, in the problem in 

Figure 1 for the first two lines of code the subgoal label might read “Initialize Variables.” 

This label provides information about the purpose of that subgoal and the function 

behind the steps within it. Studies [3, 4, 8–10, 15, 16] have consistently found that 

subgoal-oriented instructions improved problem solving performance across a variety of 

STEM domains, such as programming (e.g., [15]) and statistics (e.g., [10]).  

Studies have found that giving subgoal labels in worked examples improves 

performance while solving novel problems without increasing the amount of time 

learners spend studying instructions or working on problems (e.g., [15]). Subgoal labels 

are believed to be effective because they visually group the steps of worked examples 

into subgoals and meaningfully label those groups [1]. This format highlights the 

structure of examples, helping students focus on structural features and more effectively 

organize information [2].  

By helping learners organize information and focus on structural features of worked 

examples, subgoal labels are believed to reduce the extraneous cognitive load that can 



hinder learning but is inherent in worked examples [21]. Worked examples introduce 

extraneous cognitive load because they are necessarily specific to a context, and 

students must process the incidental information about the context even though it is not 

relevant to the underlying procedure [26]. Subgoal labels can reduce focus on these 

incidental features by highlighting the fundamental features of the procedure [21]. 

Subgoal labels further improve learning by reducing the intrinsic load by providing a 

mental organization (i.e., subgoals) for storing information.  

Subgoal labels that are independent from a specific context have been the most 

effective type of subgoal labels in the past [7, 10]. Catrambone found that learners who 

were given labels that were abstract (e.g., Ω) and had sufficient prior knowledge 

performed better than those who were given labels that were context-specific (e.g., 

isolate x) on problem solving tasks done after a week long delay or in problems that 

required using the procedure differently than demonstrated in the examples [10]. 

Catrambone explained this exception by arguing that learners with sufficient prior 

knowledge were able to correctly explain to themselves the purpose of the subgoal and 

that by self-explaining the function of the subgoal--the self-explaining presumably due to 

the abstract label--was more effective than providing labels.  

3. METHOD OF STUDY  

3.1 Purpose  

Participants in introductory programming classes were given instructional material 

designed to teach them to solve programming problems using while loops. This 

common introductory programming task requires only minimal prior programming 

knowledge (arithmetic operations and Boolean expressions) to complete at a basic 

level. The study was conducted before students had formally learned about while loops 

in their courses. Participants were recruited from 4 different introductory programming 

courses at a technical university in the southeast United States and the study was 

conducted over a two week period. Because the courses teach different programming 

languages (see Table 1), pseudo-code was used in the task to make it independent 

from any one programming language.  

Table 1. Classes Participating in Study 

Programming Language Majors 

C++ Engineering 

C# Game Development 

Java Computer Science, Information Technology, Software 
Engineering, NonMajors (mostly physics and math)  

 

Pseudo-code is relatively easy for programmers to understand regardless of the 

programming languages that they know [27].The study was conducted in a closed lab 

setting with up to 30 computers in a single room. Students received an introduction to 

the study explaining that the material in the study was designed to help them learn how 



to write loops. Students were then given a URL to the first page of the study, which was 

housed in SurveyMonkey. Participants worked independently, but each session 

included between 15 and 30 people. The sessions typically lasted between 1 and 2 

hours, depending on the rate at which participants completed the tasks.  

3.2 Instructional Materials  

To learn the procedure for using while loops to solve programming problems, 

participants were given three worked examples and three practice problems. The 

worked examples and practice problems were interleaved so that after studying the first 

worked example, participants solved the first practice problem before moving on to the 

second worked example. The worked examples came in three formats, which varied 

between participants. The first format was not subgoal oriented, meaning that steps of 

the examples did not provide any information about the underlying subgoals of the 

procedure. The second format grouped steps of the example by subgoal and provided 

meaningful subgoal labels for each group as is typical in subgoal label research 

(e.g.,[15]). The third format grouped steps of the example by subgoal and provided a 

spot for participants to write generated subgoal labels for each group. Each of the 

groups was numbered as “label 1,” “label 2,” etc., and groups that represented the same 

subgoal had the same number; therefore, groups that represented subgoal 1 were 

numbered as “label 1” regardless of where in the example they appeared (see Figure 

1). Participants were told that each of the worked examples would have the same 

subgoals, and they were encouraged to update and improve upon their generated 

labels as they learned more.  

Participant groups also received different practice problems to test how contextual 

transfer may affect learning. In the isomorphic transfer condition, the procedure and 

context used to solve the worked example and practice problem were exactly the same 

but the exact values in the problem changed. For example, if a worked example asked 

participants to find the average of quiz scores with values 70, 80, and 90, then the 

practice problem asked participants to find the average of quiz scores with values 75, 

85, and 95. In the contextual transfer condition, the procedure used to solve the worked 

example and practice problem were the same except the context of the problem 

changed. For example, if a worked example asked participants to find the average of 

quiz scores, then the practice problem asked participants to find the average of money 

amounts. The contextual transfer was intended to be harder for participants to map 

concepts from the worked example to the practice problem. More difficult mapping can 

improve learning by reducing illusions of understanding caused by shallow processing 

thus inducing deeper processing of information [5, 12, 19]. However it can also increase 

cognitive load and potentially hinder learning [26].  



 

Figure 1. Partial worked example formatted with no labels, given labels, or placeholders for 

generated labels. 

After completing the instructions, participants completed novel programming tasks to 

measure their problem solving performance. We hypothesized that students who 

generated subgoal labels would learn better than those who were given the subgoal 

labels, and both groups would do better than those who had no subgoals at all. We also 

hypothesized that learners whose practice problems required contextual transfer would 

perform better than learners whose practice problems were the same context, unless 

the contextual transfer required too much cognitive load during the learning process.  

3.3 Design  

The experiment was a 3-by-2, between-subjects, factorial design: the format of worked 

examples (unlabeled, subgoal labels given, or subgoal labels generated) was crossed 

with the transfer distance between worked examples and practice problems (isomorphic 

or contextual transfer). The dependent variables were performance on the pre- and 

post-test, problem solving tasks, and time on task.  

3.4 Participants  

Participants were 66 students from a technical university in the Southeast United States 

(Table 2). Students were offered credit for completing a lab activity as compensation for 

participation. All students from these courses were allowed to participate, regardless of 

prior experience with programming or using while loops. To account for prior 

experience, participants were asked about their prior programming experience in high 

school (either regular or advanced placement courses) and college and whether they 

had experience using while loops. Other demographic information collected included 

gender, age, academic major, high school grade point average (GPA), college GPA, 



number of years in college, reported comfort with computer, expected difficulty of the 

programming task, and primary language. There were no statistical differences between 

the groups for demographic data, which is expected because participants were 

randomly assigned to treatment groups. Participants also took a multiple-choice pre-test 

to measure problem solving performance for using while loops. Average scores on the 

pre-test were low, 24% (1.2 out of 5 points), with 32% (21 out of 66) of participants 

earning no points.  

Table 2. Participant Demographics 

Age Gender GPA Major 

M=21 89% male M= 3.1/4 50%  major 

 

Many participants did not complete all tasks of the experiment. Participants received 

compensation regardless of the amount of time or effort that they devoted to the 

experiment, which might have caused low motivation in some participants. Participants 

who did not attempt all tasks were excluded from analysis. Participants who answered 

more than two questions correctly out of the five on the pre-test were excluded from 

analysis because the instructions were designed for novices. To make the group size 

equal across conditions, an assumption of general linear model analysis, randomly 

chosen participants from some groups were excluded from analysis. Based on these 

exclusion criteria, we analyzed data from 66 of the 96 participants in the experiment.  

3.5 Procedure  

An outline of the entire study is given in Table 3. After granting consent (Step 1), the 

participants completed a demographic questionnaire (Step 2) and pre-test (Step 3). The 

pre-test was comprised of multiple choice questions about while loops from previous 

Advanced Placement Computer Science exams. Because the questions were multiple-

choice, participants needed to only recognize correct answers rather than create correct 

answers.  

When participants finished the demographic questionnaire and pre-test, they began the 

instructional period (Steps 4-6). The instructional period started with training. 

Participants who generated their own subgoal labels received training on how to create 

subgoal labels. The training included expository instructions about generating subgoal 

labels and an example of a subgoal labeled worked example similar to that in Figure 1. 

Then the training asked participants to complete activities to practice generating 

subgoal labels.  

The first activity asked participants to apply the subgoal labels from the example to a 

new worked example. The second activity asked participants to generate their own 

subgoal labels for an order of operations math problem. After participants generated 

their own subgoal labels, they were given labels created by an instructional designer for 

comparison.  



Participants who did not generate their own subgoal labels received training to complete 

verbal analogies. Verbal analogies (e.g., water : thirst :: food : hunger) were considered 

a comparable task to subgoal label training because they both require analyzing text to 

determine an underlying structure. Participants who were not asked to generate their 

own labels were not given subgoal label training because it might have prompted them 

to process the instructions more similarly than would be expected to participants who 

were asked to generate their own labels, which might confound the results. Like the 

subgoal label training, the analogy training included expository instructions, worked 

examples, and activities to carry out.  

Following the training, the instructional period provided worked examples and practice 

problem pairs (Step 6) to help participants learn to use while loops to solve problems. 

The worked example format differed between subjects among three levels: unlabeled, 

subgoal labels given, and subgoal labels generated. Furthermore, the transfer distance 

between worked example and practice problem differed between subjects between two 

levels: isomorphic or contextual transfer. For a summary of the procedure during the 

instructional period, please refer to Table 3.  

Having completed the instructional period, participants were then asked to complete a 

10 item survey designed to measure cognitive load [18]. The placement of the cognitive 

load survey at this point is to ensure measurement of the actual learning process and 

not the assessment elements.  

Table 3. Study Outline 

 



Once participants completed the cognitive load survey, they started the assessment 

period (Steps 8-11). The assessment period included three types of tasks, but only the 

problem solving tasks (Step 8) will be discussed here because they are the only 

measure of novel problem solving performance. The problem solving tasks asked 

participants to use the problem-solving structure that they had learned during the 

worked example-practice problem pairs to solve four novel problems. Two of these 

problems required contextual transfer, meaning that they followed the same steps found 

in the instructions but in a different context, or cover story. The other two problems 

required both contextual and structural transfer. In these problems the context was new 

to the participants and the solution to the problem required a different structure than the 

problems found in the instructional material (e.g., the practice problem is summing 

values, the assessment is counting matching values). These tasks were intended to 

measure participants’ problem solving performance as a ‘far’ transfer. After the 

assessment period, participants completed a post-test that had the same questions as 

the pre-test to measure their learning (Step 11).  

Throughout the procedure, we recorded the time taken to complete each task. We also 

collected process data throughout the instructional period. We collected performance on 

the training activities and practice problems to ensure that participants were completing 

tasks. We also collected the labels that participants created.  

We entered into the study with the following hypotheses:  

H1. Participants who learn with subgoal labels (given or generated) will perform better 

on programming assessments and a post-test.  

H1A. Those who generate their own subgoal labels and receive multiple variations of 

the problems (contextual transfer condition) will perform the best on the assessments, 

unless dealing with transfer overloads their mental resources.  

H2. Participants who generate subgoal labels will perform better on problem solving 

tasks that require farther transfer. Those groups exposed to contextual transfer practice 

problems will perform better on transfer tasks than the isomorphic transfer groups. 

 H3. Participants who are given subgoal labels will complete the worked example-

practice problem pairs in less time than others.  

H3A. Those who generate subgoal labels and are exposed to contextual transfer 

practice problems will take the most time to complete the worked example-practice 

problem pairs.  

H4. Participants with the deepest learning, those required to generate subgoal labels, 

should spend the least time on the programming assessments than other groups.  

H4A. Participants with the most shallow learning, those with no subgoal labels and not 

exposed to contextual transfer problems, should spend the most time on the 

programming assessments.  



4. ANALYSIS AND RESULTS  

4.1 Accuracy  

We scored participants’ solutions for accuracy to generate a problem solving score. 

Participants earned one point for each correct line of code that they wrote. This scoring 

scheme allowed for more sensitivity than scoring solutions as wholly right or wrong. If 

participants wrote lines that were conceptually correct but contained typos or syntax 

errors (e.g., missing a parenthesis), they received points. We scored logic errors 

(having < rather an <=) as incorrect. We considered scoring for conceptual and logical 

accuracy more valuable than scoring for absolute syntactical accuracy because 

participants were still early in the learning process. Participants could earn a maximum 

score of 44.  

The effect of the interventions on problem solving performance depended on the 

interaction of the worked example manipulation and transfer distance manipulation. We 

found no main effect of worked example format, F (2, 60) = 2.16, MSE = 123.5, p = .13, 

est. ω2 = .07. In addition, we found no main effect of transfer distance, F (2, 60) = 0.04, 

MSE = 123.5, p = .83, est. ω2 = .001. There was, however, a statistically significant 

interaction between worked example format and transfer distance, F (2, 60) = 6.5, MSE 

= 123.5, p = .003, est. ω2 = .18, f = .31 (see Figure 2).  

In this interaction the difference between the group that was given subgoal labels with 

isomorphic transfer (M = 12.1, SD = 13.5) and the group that was given subgoal labels 

with contextual transfer (M = 25.5, SD = 11.4) was statistically significant with a large 

effect size, t (20) = -2.51, p = .021, d = 1.07. Furthermore, the difference between the 

group that generated subgoal labels with isomorphic problems (M = 25.5, SD = 8.7) and 

the group that generated subgoal labels with contextual transfer (M = 17.5, SD = 11.5) 

was not statistically significant but had a medium effect size, t (20) = 1.86, p = .077, d = 

.78. These results mean that participants who were given subgoal labels performed 

better when they had contextual transfer, and participants who generated subgoal 

labels performed better with isomorphic problems.  

We found three levels of performance, as can be seen in Figure 2. The best performing 

groups were those that were given subgoal labels with contextual transfer (M = 25.46) 

and generated subgoal labels with isomorphic problems (M = 25.55). The middle groups 

were those that received no labels with isomorphic problems (M = 18.09) and generated 

subgoal labels with contextual transfer (M = 17.46). The worst performing groups were 

those that received no labels with contextual transfer (M = 11.09) and were given 

subgoal labels with isomorphic problems (M = 12.09). The difference between the 

middle and best level of performance was not statistically significant but had a medium 

effect size, as shown by the t-test comparing groups that generated subgoal labels, t 

(20) = 1.86, p = .077, d = .78. Similarly, the difference between the middle and worst 

level of performance was not statistically significant but had a medium effect size, as 

shown by the t-test comparing groups that did not receive any subgoal labels, t (20) = 



1.56, p = .13, d = .67. Given these effect sizes, we would expect these differences to be 

statistically different with a larger sample size.  

 

Figure 2. Problem solving performance graphed with worked example format on the x-axis, 

transfer distance as separate colors, and score on the y-axis. 

 Performance on the post-test was similar to that on the pre-test. Average scores on the 

post-test were low, 31% (1.5 out of 5 points). We found no statistical differences for 

main effect of worked example format, F (2, 60) = .39, MSE = 1.29, p = .68, est. ω2 = 

.02, main effect of transfer distance, F (2, 60) = .83, MSE = 1.29, p = .37, est. ω2 = .02, 

or interaction, F (2, 60) = 1.63, MSE = 1.29, p = .21, est. ω2 = .06.  

Some demographic characteristics correlated with performance on the problem solving 

tasks. Self-reported comfort with solving programming problems, collected on a Likert-

type scale from “1 – Not at all comfortable” to “7 – Very comfortable,” correlated 

positively with performance, r = .47, p < .001. Prior experience using while loops to 

solve programming problems, collected as a “yes” or “no” question, correlated positively 

with performance, r = .29, p = .018. Higher scores on these characteristics correlated 

with higher scores on performance. We found no differences among groups on these 

characteristics; thus, these correlations are not expected to confound the results.  

4.2 Time Efficiency  

4.2.1 Time on Worked Example-Practice Pairs  

For time spent studying worked examples and solving practice problems, we found a 

main effect of worked example format, F (2, 60) = 6.55, MSE = 155.1, p = .003, est. ω2 

= .18, f = .32. We also found a main effect of transfer distance, F (2, 60) = 6.24, MSE = 

155.1, p = .015, est. ω2 = .09, f = .31. In addition, we found an interaction, F (2, 60) = 

4.48, MSE = 155.1, p = .015, est. ω2 = .13, f = .26 (see Figure 3). Based on this pattern 

of results, the interaction is likely causing the main effect of transfer distance because 

there is little difference between transfer groups except when participants generated 

subgoal labels (see Figure 3).  



 

Figure 3. Time on instructional tasks graphed with worked example format on the x-axis, transfer 

distance as separate colors, and score on the y-axis. 

4.2.2 Time on Programming Assessments  

As in the results of the problem solving tasks, we found an interaction for time spent on 

the problem solving tasks, F (2, 60) = 3.97, MSE = 71.63, p = .024, est. ω2 = .12, f = .25 

(see Figure 4). The main effect of worked example format was not statistically 

significant, F (2, 60) = .57, MSE = 71.63, p = .57, est. ω2 = .02, and we found no main 

effect of transfer distance, F (2, 60) = 1.34, MSE = 71.63, p = .25, est. ω2 = .02. This 

interaction is interesting because it almost exactly matches the pattern of problem 

solving performance so that more time on task maps to better performance. The 

exception is that the group that received no subgoal labels with isomorphic problems 

took the longest to complete the tasks but performed in the middle.  

 

Figure 4. Time on problem solving tasks graphed with worked example format on the x-axis, 

transfer distance as separate colors, and score on the y-axis. 



5. DISCUSSION  

In this section we summarize our findings related to our original hypotheses. Table 4 

contains a synopsis of all findings.  

Table 4. Summary of Findings 

Hypothesis Finding 

H1. Those with subgoal labels (given or generated) will 
perform better on programming assessments and a 
post-test. 

Partially supported - Given-
Isomorphic performed 
poorly 

H1A. Those who generate subgoal labels and have 
contextual transfer in practice problems will perform the 
best on the assessments, unless transfer overloads 
their mental resources. 

Generate-Context Transfer 
did better on the 
assessment, but not on the 
programming 

H2. Participants who generate subgoal labels and those 
exposed to contextual transfer will perform better than 
other groups on problem solving tasks that require 
farther transfer. 

Refuted 

H3. Participants who are given subgoal labels will 
complete the worked examplepractice problem pairs in 
less time than others. 

Supported 

H3A. Those who generate subgoal labels and have 
contextual transfer in practice problems will take the 
most time to complete the worked example-practice 
problem pairs. 

Supported 

H4. Participants required to generate subgoal labels, 
should spend the least time on the programming 
assessments. 

Refuted 

H4A. Participants with the most shallow learning, those 
with no subgoal labels and isomorphic practice 
problems should spend the most time on the 
programming assessments. 

Supported - No subgoal 
labels and isomorphic 
transfer took the most time.  

 

5.1 Accuracy  

5.1.1 Assessments  

Three groups performed the best on the assessments—combining the programming 

assessment and post test: those that were given subgoal labels with contextual transfer 

(Given-Context Transfer), and both groups that generated subgoal labels 

(GenerateIsomorphic and Generate-Context Transfer) (Figure 5). Interestingly, the 

Generate-Context Transfer group did better on the post-test while the Generate-

Isomorphic group performed better on the programming assessments. However the 

group that was given subgoal labels with no contextual transfer performed poorly on 

both the programming assessment and the post-test.   



 

Figure 5. Assessment Performance by Treatment Groups 

Thus we have partial support for H1. For the related hypothesis H1A, it was the case 

that the Generate-Context Transfer group performed statistically significantly better on 

the post-test assessment; they did not outperform the other groups on the programming 

assessment tasks. This may be because the generation of subgoal labels while also 

considering the contextual transfer overloaded the participants during the programming 

assessments when they were required to retrieve information from memory. However, 

performance on the post-test indicates that this group had the deepest learning when 

only considering conceptual recall and not problem solving issues.  

When the commonalities between worked examples and practice problems were 

evident, as in the isomorphic transfer conditions, generating subgoal labels might have 

encouraged deep processing of information without overloading the participants. 

Similarly, when subgoal labels are given to participants, finding commonalities between 

contextually different examples and problems might have encouraged deep processing 

of information without overloading the participants. Participants who both generated 

subgoal labels and had contextual transfer did not perform as well as these groups. It is 

possible that both generating subgoal labels and finding commonalities between 

contextually different worked examples and practice problems was too cognitively 

demanding for many of the participants, which hindered performance.  

5.1.2 Transfer Tasks  

The best performing group on the transfer tasks (programming assessments 3 and 4) 

was the group that was given subgoal labels and contextually different practice 

problems (Given-Context Transfer) (see Figure 6). However the other two groups 

receiving contextual transfer practice problems did not perform particularly well on the 

transfer programming tasks and nothing was statistically different.  

So we must refute H2. Those groups who were exposed to contextual transfer problems 

did not perform better than their isomorphic problem counterparts and this included the 

group that generated their own subgoal labels. However it should be noted that it was a 



contextual transfer group that did perform the best on the far transfer tasks – those that 

were given the subgoal labels.  

5.2 Time  

5.2.1 Worked Examples – Practice Problem Pairs  

As expected, the group that took the most time on the instructional material of the 

worked examples and practice problem pairs was the group that had to generate their 

subgoal labels and contend with contextual transfer in the practice problems (Figure 3). 

This result was statistically significant and supports H3A. However we must refute H3. 

The given subgoal label groups did not complete the worked example-practice problem 

pairs in the least amount of time. In fact, it was the non-subgoal label groups who took 

the least time in completing the worked-example practice problem pairs. This may 

indicate that they were simply reading the material for shallow understanding. Notice 

also that the group with no subgoal labels and contextual transfer (None-Context 

Transfer) did take slightly longer than the None-Isomorphic group indicating that some 

time is likely spent translating the worked example solution into a new context.  

 

Figure 6. Transfer Task Performance 

5.2.2 Assessments  

We have no support for H4 (see Figure 4). Indeed, the groups that spent the least 

amount of time on the programming assessments were the ones that received no 

subgoal labels with contextual transfer (None-Context Transfer) and the group that was 

given subgoal labels with no contextual transfer (Given-Isomorphic).  

However, we have support for H4A. It was the group that did not receive any subgoal 

labels and no contextual transfer that took the most time on the programming 

assessment tasks.  

5.3 Implications  



Groups that generated subgoal labels performed overall better than those that did not 

have subgoal labels. The pattern of results for these groups is similar, though. In both 

cases, the condition that had isomorphic problems performed better than the condition 

that had contextual transfer, quite possibly because solving the isomorphic problems 

required less cognitive load. This pattern is reversed for groups that were given subgoal 

labels. It might be the case that learners who contend with contextual transfer problems 

need help identifying the analogous subgoals of the worked examples and practice 

problems. Participants who were given subgoal labels with contextual transfer might 

have been one of the highest performing groups because they received a framework of 

meaningful subgoal labels that guided their transfer between worked examples and 

practice problems. Though participants who generated subgoals labels received 

placeholders that indicated analogous subgoals between examples and problems, 

some of their generated labels were context-specific to the problem, which would not 

likely promote transfer to a contextually-different problem. In addition, if participants 

were unsure of the labels that they generated, they might rely less on them to guide 

future problem solving.  

The most surprising result from this experiment was the group that was given subgoal 

labels and isomorphic problems was one of the worst performing groups. It could be 

that being given the labels in addition to being able to more easily recognize 

commonalities between worked examples and practice problems led to superficial 

processing of information. Because participants could solve practice problems by using 

the worked example as an isomorphic guide and because the subgoal labels explained 

the function of programming steps, participants might have been overconfident about 

their understanding of the procedure and devoted less effort to learning.  

We believe that there is an interesting interaction between the time spent during the 

instructional period and on the programming assessments that is related to 

performance. We now examine each group separately. T 

he None-Isomorphic group spent the least amount of time on the worked-example 

practice problem pairs which likely resulted in them spending the most amount of time 

on the programming assessment tasks. Their learning was most likely superficial 

learning which resulted in more thrashing when trying to solve the programming 

assessment tasks. And this group performed neither well nor poorly on the performance 

of the assessment tasks.  

The None-Context Transfer group also spent the least amount of time on the worked 

example-practice problem pairs. However, they also spent the least amount of time 

statistically on the programming assessment tasks. This may be because these 

participants gave up and quit trying. For many of our participants it became obvious that 

if they felt they did not know the answer, they simply skipped attempting the task or put 

some form of “I don’t know” for the result. While some did attempt the beginning of a 

solution-perhaps the first one or two lines of the solution, it was clear that they did not 

learn much overall.  



The Given-Isomorphic group provides us the most puzzling results. We predicted that 

the Given-Isomorphic group would do well on the assessment tasks, based on previous 

research. However, this group performed the worst on the programming assessment 

tasks. Initially we thought it might be because this group was simply copying and 

pasting the results (the worked example problem and practice problem were on the 

same survey page). However, examination of their submissions show that the 

responses were not copied as the spacing is very different in their responses, some 

only entered the specific line related to the subgoal, and some wrote solutions in their 

“native” programming language rather than the pseudo-code. In addition, this group 

spent a fair amount of time during the instructional material period indicating that they 

were actually attempting to work through the solutions.  

The Given-Context Transfer group is equally puzzling as they were among the best 

performing for the assessment tasks yet spent among the least amount of time on those 

assessments. These results are more in line with previous research – those that study 

worked examples can perform as well as those who solve problems in less time. It 

appears that this group internalized the most of the problem solving process allowing 

them to perform well on the assessments while not taking much time.  

The Generate-Isomorphic group performed as expected on the assessment tasks – 

being among the best. However this group also took among the most time on the 

programming assessment. This may mean that they did not learn the material as deeply 

as the Generate-Context Transfer group or the Given-Context Transfer group.  

The final group, the Generate-Context Transfer group behaved as expected related to 

previous research findings. They took the most amount of time while learning but also 

had among the best performance on the assessment tasks. It should be noted, 

however, that this group also had the most attrition amongst the groups (from an 

original number of 11 down to only 6 who completed the post-test). It may be that those 

who persisted until the end of the study are characteristically different than those who 

did not, so these results should be interpreted cautiously.  

We collected and analyzed cognitive load component measurements using [18], 

however the differences were not statistically significant. No group reported significantly 

higher cognitive load, even though we know that generating subgoal labels requires 

more thought and mental effort than just reading and understanding given subgoal 

labels. Likewise, contextual transfer had no effect on the cognitive load component 

measures. This may be explained because all conditions had the same amount of 

intrinsic load, or because the measurement tool is not sensitive enough to capture the 

differences in this instance. This is definitely an area that needs further exploration.  

6. CONCLUSION  

The conclusion of these experiments is the colloquial expression, “There ain’t no such 

thing as a free lunch.” There are trade-offs in the design of learning opportunities. More 

time spent in learning does result in better performance later: Time on task matters for 



learning. If you spend less time on learning, students can still perform well on 

assessments. They will have to spend more time on the assessments to do as well.  

Our findings continue to support the belief that subgoal labeling does improve learning. 

Generating those labels takes more time, and more time does result in more learning. 

However, being given labels may result in about the same amount of learning. In terms 

of efficiency (the most learning for the least amount of resources, including time), being 

given the subgoal labels may be the best option.  

Having a context shift, from the example to the practice problem, has an interaction with 

subgoal labels in a way that is hard to explain. The best performance on the 

assessments comes from giving students the subgoal labels and requiring contextual 

transfer, or having students generate the subgoal labels but using only isomorphic 

transfer from example to practice.  

The problem is that cognitive load in computer science is high due to the intrinsic nature 

of the material. Students have to keep in mind variables, their roles, their own process 

in problem-solving, and the process of the computer that they are attempting to model 

and control. While generating subgoal labels intuitively should lead to greater learning, 

there comes a point (e.g., if we add in contextual transfer) when the cognitive load of 

tracking everything makes learning difficult.  

The intrinsic cognitive load of computer science is related to the languages we use 

(e.g., the fact that textual languages require naming of data and process, and we must 

remember and use those names) and the challenge of understanding and controlling a 

computational agent other than ourselves. That kind of problem does not occur 

frequently in science, mathematics, and engineering – but occurs from the very first 

classes in computer science. Because of this intrinsic load and the differences from 

other disciplines, we need to conduct replication studies. We cannot simply assume that 

findings from these other disciplines will predict learning in computer science.  

The interventions for this study are strongly grounded in instructional design theory, and 

they were also applied in an authentic educational setting with an authentic educational 

task. Therefore, we expect that the internal and external validity of this work is high. 

However, because this study is the first experiment to use this type of task and because 

the results were different than previous work with subgoal labels, research to replicate 

these results is needed to ensure the validity of this work.  
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