
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

8-9-2015

Subgoals, Context, and Worked Examples in Learning Computing Subgoals, Context, and Worked Examples in Learning Computing

Problem Solving Problem Solving

Briana B. Morrison

Lauren E. Margulieux

Mark Guzdial

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

 Part of the Computer Sciences Commons

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/
http://library.unomaha.edu/

Subgoals, Context, and Worked

Examples in Learning Computing

Problem Solving
Briana B. Morrison School of Interactive Computing Georgia Institute of Technology 85

5th Street NW Atlanta, GA, 30332-0760 bmorrison@gatech.edu

Lauren E. Margulieux School of Psychology Georgia Institute of Technology 654 Cherry

Street Atlanta, GA, 30332-0170 l.marg@gatech.edu

Mark Guzdial School of Interactive Computing Georgia Institute of Technology 85 5th

Street NW Atlanta, GA, 30332-0760 guzdial@cc.gatech.edu

ABSTRACT

Recent empirical results suggest that the instructional material used to teach computing

may actually overload students' cognitive abilities. Better designed materials may

enhance learning by reducing unnecessary load. Subgoal labels have been shown to be

effective at reducing the cognitive load during problem solving in both mathematics and

science. Until now, subgoal labels have been given to students to learn passively. We

report on a study to determine if giving learners subgoal labels is more or less effective

than asking learners to generate subgoal labels within an introductory CS programming

task. The answers are mixed and depend on other features of the instructional

materials. We found that student performance gains did not replicate as expected in the

introductory CS task for those who were given subgoal labels. Computer science may

require different kinds of problem-solving or may generate different cognitive demands

than mathematics or science.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information Science Education:

computer science education, information systems education

General Terms

Measurement, Design, Experimentation

Keywords

Subgoal labels; Cognitive Load; Contextual Transfer

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

mailto:bmorrison@gatech.edu
mailto:l.marg@gatech.edu
mailto:guzdial@cc.gatech.edu

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org. ICER '15, August 09-13, 2015,

Omaha, NE, USA ACM 978-1-4503-3630-7/15/08.

http://dx.doi.org/10.1145/2787622.2787744

1. INTRODUCTION

As educators, we want to simplify the learning process to provide the maximum results.

As researchers, we want find empirical evidence for what exactly it means to simplify

the learning process. One proven method for enhancing learning is to reduce

unnecessary cognitive load on the student while they are trying to learn to solve

problems [22]. There are several ways to reduce cognitive load, including using worked

examples [14].

Worked examples typically include a problem statement along with a step-by-step

procedure for how to solve the problem. Worked examples are most effective when

used in worked example-practice pairs [2]. In these pairs, students study a worked

example solution and immediately practice by solving a similar problem.

Segmenting worked examples and including subgoal labels have also been shown to be

effective in improving learning [2]. Segmenting includes separating portions of the

worked example to isolate each step in the process [23]. Subgoal labels are names

given to a set of steps in the solution process allowing the user to “chunk” the

information to ease learning [10].

While these cognitive load reducing techniques have been empirically tested in math

and science disciplines, we have been the first to test these with computer science

learning [15]. Margulieux et al. [15] demonstrated learning benefits for subgoal labels

with a drag-and-drop programming language. This paper reports on a study undertaken

to empirically determine the effectiveness of worked examples and subgoal labels within

introductory computer science using a more traditional textual language. Some of the

findings confirm the results from other disciplines while some were unexpected.

Specifically, instructional material was created to teach introductory programming

students about the process of using and writing a while loop to solve programming

problems. There were three treatment conditions: (1) no subgoal labels provided, (2)

subgoal labels given, and (3) subgoal labels generated, in which students were asked to

generate their own labels for groups of solution statements. Within each treatment

group, participants were randomly assigned to either an isomorphic or contextual

transfer group. In the isomorphic transfer group, the problem to be solved in the worked

example-practice problem pair was identical to the worked example in both procedural

steps and cover story (i.e., context). The only thing changed was the actual values of

the numbers to be calculated. In the contextual transfer group, the problem to be solved

http://dx.doi.org/10.1145/2787622.2787744

in the worked example-practice problem pair involved the same procedural steps but

the cover story and numeric values changed. Participants’ learning was measured with

performance on novel problem solving tasks and a post-test. Problem solving tasks

during the assessment were different from practice problems solved as part of the

instructions.

The research questions to be addressed through this study were: How do students who

generate their own subgoal labels perform compared to those who were given subgoal

labels and those who learned without subgoal-oriented instructions? Does changing the

context or “cover story” between the worked example and practice problem have an

effect on learning?

2. BACKGROUND

In this section we review the current literature for cognitive load, worked examples, and

subgoal labeling.

2.1 Cognitive Load

Cognitive load can be defined as “the load imposed on an individual's working memory

by a particular (learning) task” [28]. The cognitive load required to comprehend

materials directly affects how much students learn, and affects their performance scores

on assessments related to that task. If students have to keep too many things in

working memory in order to understand a concept, learning suffers. As designers of

instructional material, it is our responsibility to ensure that we do not overload the

learner's working memory where possible when presenting new material. That is, we

should help ensure that students' attention is directed at what’s important for

learning, rather than extraneous aspects of the material.

The central problem identified by Cognitive Load Theory (CLT) is that learning is

impaired when the total amount of processing requirements exceeds the limited

capacity of working memory [20]. Currently CLT [17, 24, 26] defines two different types

of cognitive load on a student's working memory: intrinsic load and extraneous load.

Intrinsic load is a combination of the innate difficulty of the material being learned as

well as the learner's characteristics [13]. Extraneous load is the load placed on working

memory that does not contribute directly toward the learning of the material---for

example, the resources consumed while understanding poorly written text or diagrams

without sufficient clarity [13]. Working memory resources that are devoted to information

that is relevant or germane to learning are referred to as ‘germane resources’ [25].

The intrinsic and extraneous loads can be controlled through instructional design. When

designing instructional material care should be given to eliminate any possible

extraneous load while attempting to minimize the intrinsic load. It is believed that

worked examples, when carefully designed, can accomplish both of these goals [24].

2.2 Worked Examples

Worked examples are one type of instruction used to teach procedural process to

students for problem solving activities. Worked examples give learners concrete

examples of the procedure being used to solve a problem.

Eiriksdottir and Catrambone argue that learning primarily from worked examples does

not inherently promote deep processing of concepts [12]. While it may result in better

initial performance because examples are more easily mapped to problems, it is less

likely result in the retention and transfer [12]. When studying examples, learners tend to

focus on incidental features rather than the fundamental features because incidental

features are easier to grasp and novices do not have the necessary domain knowledge

to recognize fundamental features of examples [11]. For example, when studying

physics worked examples, learners are more likely to remember that the example has a

ramp than that the example uses Newton’s second law [11]. A focus on incidental

features leads to ineffective organization and storage of information that, in turn, leads

to ineffective recall and transfer [6].

2.3 Subgoal Labels

To promote deeper processing of worked examples and, thus, improve retention and

transfer, worked examples have been manipulated to promote subgoal learning.

Subgoal learning refers to a strategy used predominantly in STEM fields that helps

students deconstruct problem solving procedures into subgoals, functional parts of the

overall procedure, to better recognize the fundamental components of the problem

solving process [1]. Subgoals are the building blocks of procedural problem solving and

they are inherent in all procedures except the most basic.

Subgoal labeling is a technique used to promote subgoal learning that has been used to

help learners recognize the fundamental structure of the procedure being exemplified in

worked examples [8–10]. Subgoal labels are function-based instructional explanations

that describe the purpose of a subgoal to the learner. For example, in the problem in

Figure 1 for the first two lines of code the subgoal label might read “Initialize Variables.”

This label provides information about the purpose of that subgoal and the function

behind the steps within it. Studies [3, 4, 8–10, 15, 16] have consistently found that

subgoal-oriented instructions improved problem solving performance across a variety of

STEM domains, such as programming (e.g., [15]) and statistics (e.g., [10]).

Studies have found that giving subgoal labels in worked examples improves

performance while solving novel problems without increasing the amount of time

learners spend studying instructions or working on problems (e.g., [15]). Subgoal labels

are believed to be effective because they visually group the steps of worked examples

into subgoals and meaningfully label those groups [1]. This format highlights the

structure of examples, helping students focus on structural features and more effectively

organize information [2].

By helping learners organize information and focus on structural features of worked

examples, subgoal labels are believed to reduce the extraneous cognitive load that can

hinder learning but is inherent in worked examples [21]. Worked examples introduce

extraneous cognitive load because they are necessarily specific to a context, and

students must process the incidental information about the context even though it is not

relevant to the underlying procedure [26]. Subgoal labels can reduce focus on these

incidental features by highlighting the fundamental features of the procedure [21].

Subgoal labels further improve learning by reducing the intrinsic load by providing a

mental organization (i.e., subgoals) for storing information.

Subgoal labels that are independent from a specific context have been the most

effective type of subgoal labels in the past [7, 10]. Catrambone found that learners who

were given labels that were abstract (e.g., Ω) and had sufficient prior knowledge

performed better than those who were given labels that were context-specific (e.g.,

isolate x) on problem solving tasks done after a week long delay or in problems that

required using the procedure differently than demonstrated in the examples [10].

Catrambone explained this exception by arguing that learners with sufficient prior

knowledge were able to correctly explain to themselves the purpose of the subgoal and

that by self-explaining the function of the subgoal--the self-explaining presumably due to

the abstract label--was more effective than providing labels.

3. METHOD OF STUDY

3.1 Purpose

Participants in introductory programming classes were given instructional material

designed to teach them to solve programming problems using while loops. This

common introductory programming task requires only minimal prior programming

knowledge (arithmetic operations and Boolean expressions) to complete at a basic

level. The study was conducted before students had formally learned about while loops

in their courses. Participants were recruited from 4 different introductory programming

courses at a technical university in the southeast United States and the study was

conducted over a two week period. Because the courses teach different programming

languages (see Table 1), pseudo-code was used in the task to make it independent

from any one programming language.

Table 1. Classes Participating in Study

Programming Language Majors

C++ Engineering

C# Game Development

Java Computer Science, Information Technology, Software
Engineering, NonMajors (mostly physics and math)

Pseudo-code is relatively easy for programmers to understand regardless of the

programming languages that they know [27].The study was conducted in a closed lab

setting with up to 30 computers in a single room. Students received an introduction to

the study explaining that the material in the study was designed to help them learn how

to write loops. Students were then given a URL to the first page of the study, which was

housed in SurveyMonkey. Participants worked independently, but each session

included between 15 and 30 people. The sessions typically lasted between 1 and 2

hours, depending on the rate at which participants completed the tasks.

3.2 Instructional Materials

To learn the procedure for using while loops to solve programming problems,

participants were given three worked examples and three practice problems. The

worked examples and practice problems were interleaved so that after studying the first

worked example, participants solved the first practice problem before moving on to the

second worked example. The worked examples came in three formats, which varied

between participants. The first format was not subgoal oriented, meaning that steps of

the examples did not provide any information about the underlying subgoals of the

procedure. The second format grouped steps of the example by subgoal and provided

meaningful subgoal labels for each group as is typical in subgoal label research

(e.g.,[15]). The third format grouped steps of the example by subgoal and provided a

spot for participants to write generated subgoal labels for each group. Each of the

groups was numbered as “label 1,” “label 2,” etc., and groups that represented the same

subgoal had the same number; therefore, groups that represented subgoal 1 were

numbered as “label 1” regardless of where in the example they appeared (see Figure

1). Participants were told that each of the worked examples would have the same

subgoals, and they were encouraged to update and improve upon their generated

labels as they learned more.

Participant groups also received different practice problems to test how contextual

transfer may affect learning. In the isomorphic transfer condition, the procedure and

context used to solve the worked example and practice problem were exactly the same

but the exact values in the problem changed. For example, if a worked example asked

participants to find the average of quiz scores with values 70, 80, and 90, then the

practice problem asked participants to find the average of quiz scores with values 75,

85, and 95. In the contextual transfer condition, the procedure used to solve the worked

example and practice problem were the same except the context of the problem

changed. For example, if a worked example asked participants to find the average of

quiz scores, then the practice problem asked participants to find the average of money

amounts. The contextual transfer was intended to be harder for participants to map

concepts from the worked example to the practice problem. More difficult mapping can

improve learning by reducing illusions of understanding caused by shallow processing

thus inducing deeper processing of information [5, 12, 19]. However it can also increase

cognitive load and potentially hinder learning [26].

Figure 1. Partial worked example formatted with no labels, given labels, or placeholders for

generated labels.

After completing the instructions, participants completed novel programming tasks to

measure their problem solving performance. We hypothesized that students who

generated subgoal labels would learn better than those who were given the subgoal

labels, and both groups would do better than those who had no subgoals at all. We also

hypothesized that learners whose practice problems required contextual transfer would

perform better than learners whose practice problems were the same context, unless

the contextual transfer required too much cognitive load during the learning process.

3.3 Design

The experiment was a 3-by-2, between-subjects, factorial design: the format of worked

examples (unlabeled, subgoal labels given, or subgoal labels generated) was crossed

with the transfer distance between worked examples and practice problems (isomorphic

or contextual transfer). The dependent variables were performance on the pre- and

post-test, problem solving tasks, and time on task.

3.4 Participants

Participants were 66 students from a technical university in the Southeast United States

(Table 2). Students were offered credit for completing a lab activity as compensation for

participation. All students from these courses were allowed to participate, regardless of

prior experience with programming or using while loops. To account for prior

experience, participants were asked about their prior programming experience in high

school (either regular or advanced placement courses) and college and whether they

had experience using while loops. Other demographic information collected included

gender, age, academic major, high school grade point average (GPA), college GPA,

number of years in college, reported comfort with computer, expected difficulty of the

programming task, and primary language. There were no statistical differences between

the groups for demographic data, which is expected because participants were

randomly assigned to treatment groups. Participants also took a multiple-choice pre-test

to measure problem solving performance for using while loops. Average scores on the

pre-test were low, 24% (1.2 out of 5 points), with 32% (21 out of 66) of participants

earning no points.

Table 2. Participant Demographics

Age Gender GPA Major

M=21 89% male M= 3.1/4 50% major

Many participants did not complete all tasks of the experiment. Participants received

compensation regardless of the amount of time or effort that they devoted to the

experiment, which might have caused low motivation in some participants. Participants

who did not attempt all tasks were excluded from analysis. Participants who answered

more than two questions correctly out of the five on the pre-test were excluded from

analysis because the instructions were designed for novices. To make the group size

equal across conditions, an assumption of general linear model analysis, randomly

chosen participants from some groups were excluded from analysis. Based on these

exclusion criteria, we analyzed data from 66 of the 96 participants in the experiment.

3.5 Procedure

An outline of the entire study is given in Table 3. After granting consent (Step 1), the

participants completed a demographic questionnaire (Step 2) and pre-test (Step 3). The

pre-test was comprised of multiple choice questions about while loops from previous

Advanced Placement Computer Science exams. Because the questions were multiple-

choice, participants needed to only recognize correct answers rather than create correct

answers.

When participants finished the demographic questionnaire and pre-test, they began the

instructional period (Steps 4-6). The instructional period started with training.

Participants who generated their own subgoal labels received training on how to create

subgoal labels. The training included expository instructions about generating subgoal

labels and an example of a subgoal labeled worked example similar to that in Figure 1.

Then the training asked participants to complete activities to practice generating

subgoal labels.

The first activity asked participants to apply the subgoal labels from the example to a

new worked example. The second activity asked participants to generate their own

subgoal labels for an order of operations math problem. After participants generated

their own subgoal labels, they were given labels created by an instructional designer for

comparison.

Participants who did not generate their own subgoal labels received training to complete

verbal analogies. Verbal analogies (e.g., water : thirst :: food : hunger) were considered

a comparable task to subgoal label training because they both require analyzing text to

determine an underlying structure. Participants who were not asked to generate their

own labels were not given subgoal label training because it might have prompted them

to process the instructions more similarly than would be expected to participants who

were asked to generate their own labels, which might confound the results. Like the

subgoal label training, the analogy training included expository instructions, worked

examples, and activities to carry out.

Following the training, the instructional period provided worked examples and practice

problem pairs (Step 6) to help participants learn to use while loops to solve problems.

The worked example format differed between subjects among three levels: unlabeled,

subgoal labels given, and subgoal labels generated. Furthermore, the transfer distance

between worked example and practice problem differed between subjects between two

levels: isomorphic or contextual transfer. For a summary of the procedure during the

instructional period, please refer to Table 3.

Having completed the instructional period, participants were then asked to complete a

10 item survey designed to measure cognitive load [18]. The placement of the cognitive

load survey at this point is to ensure measurement of the actual learning process and

not the assessment elements.

Table 3. Study Outline

Once participants completed the cognitive load survey, they started the assessment

period (Steps 8-11). The assessment period included three types of tasks, but only the

problem solving tasks (Step 8) will be discussed here because they are the only

measure of novel problem solving performance. The problem solving tasks asked

participants to use the problem-solving structure that they had learned during the

worked example-practice problem pairs to solve four novel problems. Two of these

problems required contextual transfer, meaning that they followed the same steps found

in the instructions but in a different context, or cover story. The other two problems

required both contextual and structural transfer. In these problems the context was new

to the participants and the solution to the problem required a different structure than the

problems found in the instructional material (e.g., the practice problem is summing

values, the assessment is counting matching values). These tasks were intended to

measure participants’ problem solving performance as a ‘far’ transfer. After the

assessment period, participants completed a post-test that had the same questions as

the pre-test to measure their learning (Step 11).

Throughout the procedure, we recorded the time taken to complete each task. We also

collected process data throughout the instructional period. We collected performance on

the training activities and practice problems to ensure that participants were completing

tasks. We also collected the labels that participants created.

We entered into the study with the following hypotheses:

H1. Participants who learn with subgoal labels (given or generated) will perform better

on programming assessments and a post-test.

H1A. Those who generate their own subgoal labels and receive multiple variations of

the problems (contextual transfer condition) will perform the best on the assessments,

unless dealing with transfer overloads their mental resources.

H2. Participants who generate subgoal labels will perform better on problem solving

tasks that require farther transfer. Those groups exposed to contextual transfer practice

problems will perform better on transfer tasks than the isomorphic transfer groups.

 H3. Participants who are given subgoal labels will complete the worked example-

practice problem pairs in less time than others.

H3A. Those who generate subgoal labels and are exposed to contextual transfer

practice problems will take the most time to complete the worked example-practice

problem pairs.

H4. Participants with the deepest learning, those required to generate subgoal labels,

should spend the least time on the programming assessments than other groups.

H4A. Participants with the most shallow learning, those with no subgoal labels and not

exposed to contextual transfer problems, should spend the most time on the

programming assessments.

4. ANALYSIS AND RESULTS

4.1 Accuracy

We scored participants’ solutions for accuracy to generate a problem solving score.

Participants earned one point for each correct line of code that they wrote. This scoring

scheme allowed for more sensitivity than scoring solutions as wholly right or wrong. If

participants wrote lines that were conceptually correct but contained typos or syntax

errors (e.g., missing a parenthesis), they received points. We scored logic errors

(having < rather an <=) as incorrect. We considered scoring for conceptual and logical

accuracy more valuable than scoring for absolute syntactical accuracy because

participants were still early in the learning process. Participants could earn a maximum

score of 44.

The effect of the interventions on problem solving performance depended on the

interaction of the worked example manipulation and transfer distance manipulation. We

found no main effect of worked example format, F (2, 60) = 2.16, MSE = 123.5, p = .13,

est. ω2 = .07. In addition, we found no main effect of transfer distance, F (2, 60) = 0.04,

MSE = 123.5, p = .83, est. ω2 = .001. There was, however, a statistically significant

interaction between worked example format and transfer distance, F (2, 60) = 6.5, MSE

= 123.5, p = .003, est. ω2 = .18, f = .31 (see Figure 2).

In this interaction the difference between the group that was given subgoal labels with

isomorphic transfer (M = 12.1, SD = 13.5) and the group that was given subgoal labels

with contextual transfer (M = 25.5, SD = 11.4) was statistically significant with a large

effect size, t (20) = -2.51, p = .021, d = 1.07. Furthermore, the difference between the

group that generated subgoal labels with isomorphic problems (M = 25.5, SD = 8.7) and

the group that generated subgoal labels with contextual transfer (M = 17.5, SD = 11.5)

was not statistically significant but had a medium effect size, t (20) = 1.86, p = .077, d =

.78. These results mean that participants who were given subgoal labels performed

better when they had contextual transfer, and participants who generated subgoal

labels performed better with isomorphic problems.

We found three levels of performance, as can be seen in Figure 2. The best performing

groups were those that were given subgoal labels with contextual transfer (M = 25.46)

and generated subgoal labels with isomorphic problems (M = 25.55). The middle groups

were those that received no labels with isomorphic problems (M = 18.09) and generated

subgoal labels with contextual transfer (M = 17.46). The worst performing groups were

those that received no labels with contextual transfer (M = 11.09) and were given

subgoal labels with isomorphic problems (M = 12.09). The difference between the

middle and best level of performance was not statistically significant but had a medium

effect size, as shown by the t-test comparing groups that generated subgoal labels, t

(20) = 1.86, p = .077, d = .78. Similarly, the difference between the middle and worst

level of performance was not statistically significant but had a medium effect size, as

shown by the t-test comparing groups that did not receive any subgoal labels, t (20) =

1.56, p = .13, d = .67. Given these effect sizes, we would expect these differences to be

statistically different with a larger sample size.

Figure 2. Problem solving performance graphed with worked example format on the x-axis,

transfer distance as separate colors, and score on the y-axis.

 Performance on the post-test was similar to that on the pre-test. Average scores on the

post-test were low, 31% (1.5 out of 5 points). We found no statistical differences for

main effect of worked example format, F (2, 60) = .39, MSE = 1.29, p = .68, est. ω2 =

.02, main effect of transfer distance, F (2, 60) = .83, MSE = 1.29, p = .37, est. ω2 = .02,

or interaction, F (2, 60) = 1.63, MSE = 1.29, p = .21, est. ω2 = .06.

Some demographic characteristics correlated with performance on the problem solving

tasks. Self-reported comfort with solving programming problems, collected on a Likert-

type scale from “1 – Not at all comfortable” to “7 – Very comfortable,” correlated

positively with performance, r = .47, p < .001. Prior experience using while loops to

solve programming problems, collected as a “yes” or “no” question, correlated positively

with performance, r = .29, p = .018. Higher scores on these characteristics correlated

with higher scores on performance. We found no differences among groups on these

characteristics; thus, these correlations are not expected to confound the results.

4.2 Time Efficiency

4.2.1 Time on Worked Example-Practice Pairs

For time spent studying worked examples and solving practice problems, we found a

main effect of worked example format, F (2, 60) = 6.55, MSE = 155.1, p = .003, est. ω2

= .18, f = .32. We also found a main effect of transfer distance, F (2, 60) = 6.24, MSE =

155.1, p = .015, est. ω2 = .09, f = .31. In addition, we found an interaction, F (2, 60) =

4.48, MSE = 155.1, p = .015, est. ω2 = .13, f = .26 (see Figure 3). Based on this pattern

of results, the interaction is likely causing the main effect of transfer distance because

there is little difference between transfer groups except when participants generated

subgoal labels (see Figure 3).

Figure 3. Time on instructional tasks graphed with worked example format on the x-axis, transfer

distance as separate colors, and score on the y-axis.

4.2.2 Time on Programming Assessments

As in the results of the problem solving tasks, we found an interaction for time spent on

the problem solving tasks, F (2, 60) = 3.97, MSE = 71.63, p = .024, est. ω2 = .12, f = .25

(see Figure 4). The main effect of worked example format was not statistically

significant, F (2, 60) = .57, MSE = 71.63, p = .57, est. ω2 = .02, and we found no main

effect of transfer distance, F (2, 60) = 1.34, MSE = 71.63, p = .25, est. ω2 = .02. This

interaction is interesting because it almost exactly matches the pattern of problem

solving performance so that more time on task maps to better performance. The

exception is that the group that received no subgoal labels with isomorphic problems

took the longest to complete the tasks but performed in the middle.

Figure 4. Time on problem solving tasks graphed with worked example format on the x-axis,

transfer distance as separate colors, and score on the y-axis.

5. DISCUSSION

In this section we summarize our findings related to our original hypotheses. Table 4

contains a synopsis of all findings.

Table 4. Summary of Findings

Hypothesis Finding

H1. Those with subgoal labels (given or generated) will
perform better on programming assessments and a
post-test.

Partially supported - Given-
Isomorphic performed
poorly

H1A. Those who generate subgoal labels and have
contextual transfer in practice problems will perform the
best on the assessments, unless transfer overloads
their mental resources.

Generate-Context Transfer
did better on the
assessment, but not on the
programming

H2. Participants who generate subgoal labels and those
exposed to contextual transfer will perform better than
other groups on problem solving tasks that require
farther transfer.

Refuted

H3. Participants who are given subgoal labels will
complete the worked examplepractice problem pairs in
less time than others.

Supported

H3A. Those who generate subgoal labels and have
contextual transfer in practice problems will take the
most time to complete the worked example-practice
problem pairs.

Supported

H4. Participants required to generate subgoal labels,
should spend the least time on the programming
assessments.

Refuted

H4A. Participants with the most shallow learning, those
with no subgoal labels and isomorphic practice
problems should spend the most time on the
programming assessments.

Supported - No subgoal
labels and isomorphic
transfer took the most time.

5.1 Accuracy

5.1.1 Assessments

Three groups performed the best on the assessments—combining the programming

assessment and post test: those that were given subgoal labels with contextual transfer

(Given-Context Transfer), and both groups that generated subgoal labels

(GenerateIsomorphic and Generate-Context Transfer) (Figure 5). Interestingly, the

Generate-Context Transfer group did better on the post-test while the Generate-

Isomorphic group performed better on the programming assessments. However the

group that was given subgoal labels with no contextual transfer performed poorly on

both the programming assessment and the post-test.

Figure 5. Assessment Performance by Treatment Groups

Thus we have partial support for H1. For the related hypothesis H1A, it was the case

that the Generate-Context Transfer group performed statistically significantly better on

the post-test assessment; they did not outperform the other groups on the programming

assessment tasks. This may be because the generation of subgoal labels while also

considering the contextual transfer overloaded the participants during the programming

assessments when they were required to retrieve information from memory. However,

performance on the post-test indicates that this group had the deepest learning when

only considering conceptual recall and not problem solving issues.

When the commonalities between worked examples and practice problems were

evident, as in the isomorphic transfer conditions, generating subgoal labels might have

encouraged deep processing of information without overloading the participants.

Similarly, when subgoal labels are given to participants, finding commonalities between

contextually different examples and problems might have encouraged deep processing

of information without overloading the participants. Participants who both generated

subgoal labels and had contextual transfer did not perform as well as these groups. It is

possible that both generating subgoal labels and finding commonalities between

contextually different worked examples and practice problems was too cognitively

demanding for many of the participants, which hindered performance.

5.1.2 Transfer Tasks

The best performing group on the transfer tasks (programming assessments 3 and 4)

was the group that was given subgoal labels and contextually different practice

problems (Given-Context Transfer) (see Figure 6). However the other two groups

receiving contextual transfer practice problems did not perform particularly well on the

transfer programming tasks and nothing was statistically different.

So we must refute H2. Those groups who were exposed to contextual transfer problems

did not perform better than their isomorphic problem counterparts and this included the

group that generated their own subgoal labels. However it should be noted that it was a

contextual transfer group that did perform the best on the far transfer tasks – those that

were given the subgoal labels.

5.2 Time

5.2.1 Worked Examples – Practice Problem Pairs

As expected, the group that took the most time on the instructional material of the

worked examples and practice problem pairs was the group that had to generate their

subgoal labels and contend with contextual transfer in the practice problems (Figure 3).

This result was statistically significant and supports H3A. However we must refute H3.

The given subgoal label groups did not complete the worked example-practice problem

pairs in the least amount of time. In fact, it was the non-subgoal label groups who took

the least time in completing the worked-example practice problem pairs. This may

indicate that they were simply reading the material for shallow understanding. Notice

also that the group with no subgoal labels and contextual transfer (None-Context

Transfer) did take slightly longer than the None-Isomorphic group indicating that some

time is likely spent translating the worked example solution into a new context.

Figure 6. Transfer Task Performance

5.2.2 Assessments

We have no support for H4 (see Figure 4). Indeed, the groups that spent the least

amount of time on the programming assessments were the ones that received no

subgoal labels with contextual transfer (None-Context Transfer) and the group that was

given subgoal labels with no contextual transfer (Given-Isomorphic).

However, we have support for H4A. It was the group that did not receive any subgoal

labels and no contextual transfer that took the most time on the programming

assessment tasks.

5.3 Implications

Groups that generated subgoal labels performed overall better than those that did not

have subgoal labels. The pattern of results for these groups is similar, though. In both

cases, the condition that had isomorphic problems performed better than the condition

that had contextual transfer, quite possibly because solving the isomorphic problems

required less cognitive load. This pattern is reversed for groups that were given subgoal

labels. It might be the case that learners who contend with contextual transfer problems

need help identifying the analogous subgoals of the worked examples and practice

problems. Participants who were given subgoal labels with contextual transfer might

have been one of the highest performing groups because they received a framework of

meaningful subgoal labels that guided their transfer between worked examples and

practice problems. Though participants who generated subgoals labels received

placeholders that indicated analogous subgoals between examples and problems,

some of their generated labels were context-specific to the problem, which would not

likely promote transfer to a contextually-different problem. In addition, if participants

were unsure of the labels that they generated, they might rely less on them to guide

future problem solving.

The most surprising result from this experiment was the group that was given subgoal

labels and isomorphic problems was one of the worst performing groups. It could be

that being given the labels in addition to being able to more easily recognize

commonalities between worked examples and practice problems led to superficial

processing of information. Because participants could solve practice problems by using

the worked example as an isomorphic guide and because the subgoal labels explained

the function of programming steps, participants might have been overconfident about

their understanding of the procedure and devoted less effort to learning.

We believe that there is an interesting interaction between the time spent during the

instructional period and on the programming assessments that is related to

performance. We now examine each group separately. T

he None-Isomorphic group spent the least amount of time on the worked-example

practice problem pairs which likely resulted in them spending the most amount of time

on the programming assessment tasks. Their learning was most likely superficial

learning which resulted in more thrashing when trying to solve the programming

assessment tasks. And this group performed neither well nor poorly on the performance

of the assessment tasks.

The None-Context Transfer group also spent the least amount of time on the worked

example-practice problem pairs. However, they also spent the least amount of time

statistically on the programming assessment tasks. This may be because these

participants gave up and quit trying. For many of our participants it became obvious that

if they felt they did not know the answer, they simply skipped attempting the task or put

some form of “I don’t know” for the result. While some did attempt the beginning of a

solution-perhaps the first one or two lines of the solution, it was clear that they did not

learn much overall.

The Given-Isomorphic group provides us the most puzzling results. We predicted that

the Given-Isomorphic group would do well on the assessment tasks, based on previous

research. However, this group performed the worst on the programming assessment

tasks. Initially we thought it might be because this group was simply copying and

pasting the results (the worked example problem and practice problem were on the

same survey page). However, examination of their submissions show that the

responses were not copied as the spacing is very different in their responses, some

only entered the specific line related to the subgoal, and some wrote solutions in their

“native” programming language rather than the pseudo-code. In addition, this group

spent a fair amount of time during the instructional material period indicating that they

were actually attempting to work through the solutions.

The Given-Context Transfer group is equally puzzling as they were among the best

performing for the assessment tasks yet spent among the least amount of time on those

assessments. These results are more in line with previous research – those that study

worked examples can perform as well as those who solve problems in less time. It

appears that this group internalized the most of the problem solving process allowing

them to perform well on the assessments while not taking much time.

The Generate-Isomorphic group performed as expected on the assessment tasks –

being among the best. However this group also took among the most time on the

programming assessment. This may mean that they did not learn the material as deeply

as the Generate-Context Transfer group or the Given-Context Transfer group.

The final group, the Generate-Context Transfer group behaved as expected related to

previous research findings. They took the most amount of time while learning but also

had among the best performance on the assessment tasks. It should be noted,

however, that this group also had the most attrition amongst the groups (from an

original number of 11 down to only 6 who completed the post-test). It may be that those

who persisted until the end of the study are characteristically different than those who

did not, so these results should be interpreted cautiously.

We collected and analyzed cognitive load component measurements using [18],

however the differences were not statistically significant. No group reported significantly

higher cognitive load, even though we know that generating subgoal labels requires

more thought and mental effort than just reading and understanding given subgoal

labels. Likewise, contextual transfer had no effect on the cognitive load component

measures. This may be explained because all conditions had the same amount of

intrinsic load, or because the measurement tool is not sensitive enough to capture the

differences in this instance. This is definitely an area that needs further exploration.

6. CONCLUSION

The conclusion of these experiments is the colloquial expression, “There ain’t no such

thing as a free lunch.” There are trade-offs in the design of learning opportunities. More

time spent in learning does result in better performance later: Time on task matters for

learning. If you spend less time on learning, students can still perform well on

assessments. They will have to spend more time on the assessments to do as well.

Our findings continue to support the belief that subgoal labeling does improve learning.

Generating those labels takes more time, and more time does result in more learning.

However, being given labels may result in about the same amount of learning. In terms

of efficiency (the most learning for the least amount of resources, including time), being

given the subgoal labels may be the best option.

Having a context shift, from the example to the practice problem, has an interaction with

subgoal labels in a way that is hard to explain. The best performance on the

assessments comes from giving students the subgoal labels and requiring contextual

transfer, or having students generate the subgoal labels but using only isomorphic

transfer from example to practice.

The problem is that cognitive load in computer science is high due to the intrinsic nature

of the material. Students have to keep in mind variables, their roles, their own process

in problem-solving, and the process of the computer that they are attempting to model

and control. While generating subgoal labels intuitively should lead to greater learning,

there comes a point (e.g., if we add in contextual transfer) when the cognitive load of

tracking everything makes learning difficult.

The intrinsic cognitive load of computer science is related to the languages we use

(e.g., the fact that textual languages require naming of data and process, and we must

remember and use those names) and the challenge of understanding and controlling a

computational agent other than ourselves. That kind of problem does not occur

frequently in science, mathematics, and engineering – but occurs from the very first

classes in computer science. Because of this intrinsic load and the differences from

other disciplines, we need to conduct replication studies. We cannot simply assume that

findings from these other disciplines will predict learning in computer science.

The interventions for this study are strongly grounded in instructional design theory, and

they were also applied in an authentic educational setting with an authentic educational

task. Therefore, we expect that the internal and external validity of this work is high.

However, because this study is the first experiment to use this type of task and because

the results were different than previous work with subgoal labels, research to replicate

these results is needed to ensure the validity of this work.

7. ACKNOWLEDGMENTS

We would like to thank the students who participated in the study and their instructors

who graciously gave us the time. We also thank the anonymous reviewers who supplied

comments which improved this paper.

This work is funded in part by the National Science Foundation under grant 1138378.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the NSF.

8. REFERENCES

[1] Atkinson, R.K., Catrambone, R., and Merrill, M.M., 2003. Aiding Transfer in

Statistics: Examining the Use of Conceptually Oriented Equations and Elaborations

During Subgoal Learning. Journal of Educational Psychology. 95, 4 (2003), 762.

[2] Atkinson, R.K., Derry, S., Renkl, A., and Wortham, D., 2000. Learning from

examples: Instructional principles from the worked examples research. Review of

educational research. 70, 2 (2000), 181–214.

[3] Atkinson, R.K. 2002. Optimizing learning from examples using animated pedagogical

agents. Journal of Educational Psychology. 94, 2 (2002), 416.

[4] Atkinson, R.K. and Derry, S.J. 2000. Computer-based examples designed to

encourage optimal example processing: A study examining the impact of sequentially

presented, subgoal-oriented worked examples. (2000).

[5] Bjork, R.A. 1994. Memory and metamemory considerations in the training of human

beings. Metacognition: Knowing about Knowing. MIT Press.

[6] Bransford, J.D., Brown, A., and Cocking, R.R., 2000. How People Learn: Brain,

Mind, Experience, and School. National Academy Press.

[7] Catrambone, R. 1995. Aiding subgoal learning: Effects on transfer. Journal of

educational psychology. 87, 1 (1995), 5.

[8] Catrambone, R. 1996. Generalizing solution procedures learned from examples.

Journal of Experimental Psychology: Learning, Memory, and Cognition; Journal of

Experimental Psychology: Learning, Memory, and Cognition. 22, 4 (1996), 1020.

 [9] Catrambone, R. 1994. Improving examples to improve transfer to novel problems.

Memory & Cognition. 22, 5 (1994), 606–615.

[10] Catrambone, R. 1998. The subgoal learning model: Creating better examples so

that students can solve novel problems. Journal of Experimental Psychology: General.

127, 4 (1998), 355.

[11] Chi, M.T., Bassok, M., Lewis, M.W., Reimann, P., and Glaser, R., 1989. Self-

explanations: How students study and use examples in learning to solve problems.

Cognitive science. 13, 2 (1989), 145–182.

[12] Eiriksdottir, E. and Catrambone, R. 2011. Procedural instructions, principles, and

examples how to structure instructions for procedural tasks to enhance performance,

learning, and transfer. Human Factors: The Journal of the Human Factors and

Ergonomics Society. 53, 6 (2011), 749–770.

[13] Leppink, J, Paas, F., van der Vleuten, C., van Gog, T., and van Merriënboer, J.,

2013. Development of an instrument for measuring different types of cognitive load.

Behavior research methods. 45, 4 (2013), 1058–1072.

 [14] Leppink, J., Paas, F., van Gog, T., van der Vleuten, C., and van Merriënboer, J.,

2014. Effects of pairs of problems and examples on task performance and different

types of cognitive load. Learning and Instruction. 30, (2014), 32– 42.

[15] Margulieux, L.E., Guzdial, M., and Catrambone, R., 2012. Subgoal-labeled

instructional material improves performance and transfer in learning to develop mobile

applications. Proceedings of the ninth annual international conference on International

computing education research (2012), 71–78.

[16] Margulieux, L.E. and Catrambone, R. 2014. Improving problem solving

performance in computer-based learning environments through subgoal labels.

Proceedings of the first ACM conference on Learning@ scale conference (2014), 149–

150.

[17] Van Merriënboer, J.J. and Sweller, J. 2005. Cognitive load theory and complex

learning: Recent developments and future directions. Educational psychology review.

17, 2 (2005), 147–177.

[18] Morrison, B.B., Dorn, B., and Guzdial, M., 2014. Measuring cognitive load in

introductory CS: adaptation of an instrument. Proceedings of the tenth annual

conference on International computing education research (2014), 131–138.

[19] Palmiter, S. and Elkerton, J. 1993. Animated demonstrations for learning

procedural computer-based tasks. Human-Computer Interaction. 8, 3 (1993), 193–216.

[20] Plass, J.L., Moreno, R., and Brünken, R., 2010. Cognitive load theory. Cambridge

University Press.

[21] Renkl, A. and Atkinson, R.K. 2002. Learning from examples: Fostering self-

explanations in computer-based learning environments. Interactive learning

environments. 10, 2 (2002), 105–119.

[22] Renkl, A. and Atkinson, R.K. 2003. Structuring the transition from example study to

problem solving in cognitive skill acquisition: A cognitive load perspective. Educational

psychologist. 38, 1 (2003), 15–22.

[23] Spanjers, I.A., van Gog, T., van Merriënboer, J., 2012. Segmentation of worked

examples: Effects on cognitive load and learning. Applied Cognitive Psychology. 26, 3

(2012), 352–358.

[24] Sweller, J., van Marriënboer, J., Paas, F., 1998. Cognitive architecture and

instructional design. Educational psychology review. 10, 3 (1998), 251–296.

 [25] Sweller, J., Ayres, P., and Kalyuga, S., 2011. Cognitive load theory. Springer.

[26] Sweller, J. 2010. Element interactivity and intrinsic, extraneous, and germane

cognitive load. Educational psychology review. 22, 2 (2010), 123–138.

[27] Tew, A.E. and Guzdial, M., 2011. The FCS1: a language independent assessment

of CS1 knowledge. Proceedings of the 42nd ACM technical symposium on Computer

science education (2011), 111–116.

[28] van Gog, T. and Paas, F., 2012. Cognitive Load Measurement. Encyclopedia of the

Sciences of Learning. Springer.

	Subgoals, Context, and Worked Examples in Learning Computing Problem Solving
	tmp.1648759927.pdf.i4ziD

