
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Computer Science Faculty Publications Department of Computer Science 

1-13-2020 

The curious case of loops The curious case of loops 

Briana B. Morrison 

Lauren E. Margulieux 

Adrienne Decker 

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub 

 Part of the Computer Sciences Commons 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/
http://library.unomaha.edu/


The curious case of loops 

Briana B. Morrisonhttps://orcid.org/0000-0003-4260-4278, Computer Science 
Department, University of Nebraska Omaha, Omaha, NE, USA 
 
Lauren E. Margulieuxhttps://orcid.org/0000-0002-8800-2398, Department of Learning 
Sciences, Georgia State University, Atlanta, GA, USA 
 
and  
 
Adrienne Decker, Department of Engineering Education, University at Buffalo, Buffalo, 
NY, USA 
 

 

ABSTRACT  
BACKGROUND AND CONTEXT  
Subgoal labeled worked examples have been extensively researched, but the research 
has been reported piecemeal. This paper aggregates data from three studies, including 
data previously unreported, to holistically examine the effect of subgoal labeled worked 
examples across three student populations and across different instructional designs. 
OBJECTIVE  
By aggregating the data, we provide more statistical power for somewhat surprising yet 
replicable results. We discuss which results generalize across populations, focusing on 
a stable effect size for subgoal labels in programming instruction. 
METHOD  
We use descriptive and inferential statistics to examine the data collected from different 
student populations and different classroom instructional designs. We concentrate on 
the effect size across samples of the intervention for generalization. 
FINDINGS  
Students using two variations of subgoal labeled instructional materials perform better 
than the others: the group that was given the subgoal labels with farther transfer 
between worked examples and practice problems and the group that constructed their 
own subgoal labels with nearer transfer between worked examples and practice 
problems. 
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Subgoal-labeled worked examples have been effective for teaching computing 

concepts, but the research to date has been reported in a piecemeal fashion. Pieces of 

three experiments using subgoal labeled worked examples for learning loop constructs 

have been reported in various conference proceedings (Morrision, Marguliuex, & 

Guzdial, 2015; Margulieux, Morrison, Catrambone, & Guzdial, 2016; Morrison, Decker & 

Marguliuex, 2016). The current paper aggregates these pieces and reports on new data 

from the experiments to examine more holistically the effect of subgoal labeled worked 

examples across three student populations and across different instructional designs. 

The different instructional designs include the first instance of testing student-generated 

subgoal labels and the first instance of testing differing amounts of transfer between 

worked examples and practice problems, in any discipline. By aggregating data from all 

three studies, including data that has not been reported before, we provide more 

statistical and explanatory power for somewhat surprising yet replicable results. We 

discuss which results generalize across populations, focusing on a stable effect size to 

be expected when using subgoal labels in programming instruction. 

 

Literature review/background 

This section reviews the current literature for subgoal learning along with some 

background in cognitive load theory to allow for framing the studies. We first present a 

common instructional design tool, worked examples, before presenting cognitive load 

theory, as the examples given to illustrate cognitive load involve worked examples. We 

then focus on subgoal label research (in worked examples) conducted within the 

computing discipline. 

 

Worked examples 

Worked examples are a type of instructional material used to teach procedural problem-

solving processes. Worked examples give learners concrete examples of the procedure 

being used to solve a problem, showing the explicit steps in the problem-solving 

process. Eiriksdottir and Catrambone (2011) argue that learning primarily from worked 

examples may result in better initial performance as the worked examples are more 

easily mapped to the problems to be solved. They further posit, however, that learning 

from worked examples is less likely to result in retention and transfer of knowledge than 

learning from more abstract instructions. When studying worked examples, learners 

tend to focus on incidental features rather than the fundamental features of the problem. 

This occurs because the incidental features are easier to grasp for novices as they do 

not yet have the necessary domain knowledge to recognize the fundamental features of 

the worked examples (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). For example, 

when studying physics worked examples, learners are more likely to recognize that the 
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example has a ramp than that the example uses Newton’s second law (Chi et al., 1989). 

Therefore, while worked examples can improve initial performance, when learners focus 

on incidental features, they ineffectively organize and store information, leading to 

ineffective recall and transfer (Bransford, 2000). 

 

Cognitive load 

Cognitive load can be defined as the load imposed on an individual’s working memory 

by a particular learning task (van Gog & Paas, 2012). The cognitive load imposed on 

the learner can directly affect knowledge retention and performance scores. Cognitive 

Load Theory (CLT) is grounded in the human architecture of the brain, which has a 

limited capacity for working memory. All the information is processed in working 

memory before being stored in long-term memory. If the total amount of processing 

required to learn exceeds the limited capacity of working memory, then learning is 

impaired (Plass, Moreno, & Brünken, 2010). Current thinking defines two different types 

of cognitive load on a student’s working memory: intrinsic load and extraneous load 

(Kalyuga, 2011; Sweller, 2010; Sweller, van Merriënboer, & Paas, 1998; van 

Merriënboer & Sweller, 2005). 

Intrinsic load is a combination of the innate difficulty of the material being learned 

combined with the learner’s existing knowledge. For example, a conceptual 

understanding of a loop and the individual programming constructs to write a loop are 

intrinsic load for a problem that uses a loop. Extraneous cognitive load occurs when the 

learner is presented with information that does not directly contribute toward learning 

and is thus, extraneous. For example, while studying a worked example of a loop for 

calculating the average of a group of scores, the details of how a specific score is 

calculated are necessary for processing the worked example but not intrinsic to 

understanding how to solve a problem using a loop. Thus, the incidental details of 

worked examples are often extraneous. Working memory resources that are devoted to 

information that is relevant or germane to learning are referred to as germane 

resources (Sweller, Ayres, & Kalyuga, 2011). 

The intrinsic and extraneous loads may be moderated through the careful design of 

the instructional materials. The intrinsic load should be managed so that learners are 

not given too much new information to process at once. While some extraneous load is 

inevitable, instructional materials should attempt to eliminate unnecessary extraneous 

load. Worked examples, when carefully designed, can accomplish both of these goals 

(Sweller et al., 1998). 

 

Subgoal labels 
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To guide learners’ attention away from incidental details and promote deeper 

processing of worked examples for improved recall and transfer, the subgoal learning 

framework can be used to design worked examples that emphasize problem-solving 

structure. The subgoal learning framework is a strategy used predominantly in STEM 

fields to help students deconstruct problem-solving procedures into subgoals, or the 

functional parts of the problem-solving procedure, to better recognize the fundamental 

components of the problem-solving process (Atkinson, Catrambone, & Merrill, 2003). 

Subgoals can be thought of as the building blocks of procedural problem solving and 

they exist for all problem-solving procedures except the simplest ones. 

Subgoal labeling is a specific technique used to promote subgoal learning. It has 

been used to help learners recognize the fundamental structure of the problem-solving 

procedure being illustrated in a worked example (Catrambone, 1994, 1996, 1998). 

Subgoal labels are function-based instructional phrases that explain to the learner the 

purpose of that step, or subgoal, in the problem-solving process. In Figure 1, the first 

two lines of code have the subgoal label “Initialize Variables.” This label provides 

information about the purpose of that subgoal and the function behind the steps within 

it. Studies (Atkinson, 2002; Atkinson & Derry, 2000; Catrambone, 1994, 1996, 1998; 

Margulieux & Catrambone, 2014; Margulieux, Guzdial, & Catrambone, 2012) have 

consistently found that subgoal-oriented instructions improved problem-solving 

performance across a variety of STEM domains, such as programming (e.g. 

(Margulieux et al., 2012)) and statistics (e.g. (Catrambone, 1998)). 

 

Figure 1. Partial worked example illustrating subgoal labels. Subgoal labels are 

underlined.  
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Giving subgoal labels in worked examples improves learner performance while 

solving novel problems without increasing the amount of time learners spend studying 

instructions or working on problems (Margulieux et al., 2012). From a cognitive 

perspective, it is thought that subgoal labels are effective because they visually group 

the problem-solving steps within the worked examples into subgoals and give 

meaningful labels to the groups (Atkinson et al., 2003). This subgoal-labeled format 

highlights the structure of the examples, helping students to focus on the structural 

features of the problem and allows the learner to more effectively organize the 

information (Atkinson, Derry, Renkl, & Wortham, 2000). Because learners are more 

focused on the structural features of the worked example allowing more effective 

organization of the information, subgoal labels may reduce the extraneous cognitive 

load that can hinder learning but is inherent in worked examples (Renkl & 

Atkinson, 2002). 

Subgoal labels that are context-independent are the most effective type of subgoal 

labels (Catrambone, 1995, 1998). Catrambone found that learners who were given 

abstract labels (e.g. Ω) and had sufficient prior knowledge performed better than those 

who were given context-specific labels (e.g. initialize accumulation loop variables) on 

problem-solving tasks done after a week-long delay or in problems that required using 

the problem-solving procedure differently than demonstrated in the examples 

(Catrambone, 1998). Catrambone explained this finding by arguing that learners with 

sufficient prior knowledge could correctly explain to themselves the purpose of the 

abstract subgoal and that they presumably had to self-explain due to the abstract nature 

of the label. He argued that the self-explanation was more effective than providing 

context-specific labels. 

 

Self-explanation 

A common and effective type of constructive learning that might help learners 

understand subgoals is self-explanation. Self-explanation is a learning strategy in which 

students use prior knowledge and logical reasoning to make sense of new information 

and gain knowledge. A review of self-explanation studies found it is effective across a 

range of domains if the domain has logical rules with few exceptions (Wylie & 

Chi, 2014). 

Self-explanation of a worked example’s solution identifies structural features and 

reasons for the function of the problem-solving steps (Bielaczyc, Pirolli, & Brown, 1995). 

The purpose of self-explanation is similar to that of subgoal learning. By self-explaining 

worked examples, learners are more likely to recognize structural versus superficial 

features. However, learners do not often engage in self-explanation without explicit 
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prompting. Many studies (e.g. Chi et al., 1989) found that 10% or less of learners self-

explained examples without external prompting. Most of the time learners can self-

explain if they devote additional resources to the task (Wylie & Chi, 2014) and if they 

are reminded and guided to do so. Research has found little difference in the learning 

outcomes of students who self-explain on their own or are prompted to self-explain (e.g. 

Bielaczyc et al., 1995). This suggests that self-explanation itself is the cause of learning 

benefits. 

 

Parsons problems 

Before describing how subgoals have been used in computer science education, we 

should explain a type of assessment used in this research, Parsons problems. When 

learning programming, students must learn a new language – the programming 

language used to communicate instructions to the computing agent – with its own 

unique syntax. This level of intrinsic cognitive load can overwhelm the learner, so 

researchers have sought ways to eliminate or reduce the learning of programming 

language syntax (Resnick et al., 2009). For text-based programming languages, one 

way to assess student knowledge without requiring syntax knowledge is to use Parsons 

problems (Parsons & Haden, 2006). In Parsons problems, the correct code is broken 

into code fragments that students then put into the correct order with the correct 

indentation. Parsons problems require a lower cognitive load on the learner because the 

search space is limited to only the code fragments in the problem and there is no 

possibility of syntax errors. Using Parsons problems for assessment of student 

knowledge allows students without syntax knowledge of the programming language to 

demonstrate procedural problem-solving knowledge. 

 

Subgoals in computer science 

Subgoal learning was first applied to programming education in the context of an 

experimental laboratory with psychology undergrads as participants. Due to this context, 

the programming procedure being taught had to be accessible to absolute novices. 

Thus, participants were taught to create apps in Android App Inventor. In this highly 

controlled environment, subgoal-labeled worked examples were found to improve 

problem-solving performance by 8% (Margulieux et al., 2012). From that experiment, 

research has focused on testing subgoal labeled worked examples in more authentic 

programming education environments, including online learning with K-12 teachers 

(Margulieux, Catrambone, & Guzdial, 2016), a game-based K-3 setting (Joentausta & 

Hellas, 2018), and in open educational resources that crowdsource subgoal labels (Kim, 

Miller, & Gajos, 2013). Our research applies subgoal learning to an introductory 
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programming course, specifically to students who were learning to solve problems using 

while loops. 

Our first study (Study 1) (Morrison et al., 2015) tested hypotheses related to whether 

using subgoal labels to teach while loops would produce results similar to those 

achieved in other disciplines. Learning to use while loops is cognitively demanding, and 

the study proposed that using subgoal labels to help students learn would reduce the 

cognitive load imposed during learning. Because students were several weeks into an 

introductory programming course, we also recognized that they would have some prior 

knowledge that was relevant to solving the loop problems. For this reason, we 

hypothesized that students might better learn the subgoals of the procedure if they were 

prompted to self-explain the subgoals, rather than being given subgoal labels that were 

already defined. Self-explaining the subgoals, if students were able to do it, would 

encourage active learning of the subgoals and lead to deeper learning than viewing 

existing subgoal labels, which would lead to passive learning. 

To test this hypothesis, the study divided the participants into three treatment 

groups, each with its own instructional materials: learning with no subgoal labels (No 

Subgoal), learning with given pre-defined subgoal labels (Given), and asking 

participants to generate their own subgoal labels after some initial training (Generate). 

Each treatment group was then subdivided into two sections: isomorphic (near) or 

contextual (far) transfer between worked examples and practice problems (see Method-

Design for more information on transfer). Like self-explaining subgoals, contextual (far) 

transfer between worked examples and practice problems was expected to promote 

deeper learning and improve later problem-solving performance, if students could 

successfully engage in it. The contextual transfer was also expected to be highly 

cognitively demanding and perhaps unachievable for many students. 

This first study found that students who learned with subgoal labels (either given or 

generated) performed better on the code-writing assessments than those who learned 

without subgoal labels. Within the given and generated groups, the best performing 

group depended on the type of transfer between worked example and practice 

problems that they received. 

The unexpected results occurred with the given subgoal label group. Cognitive Load 

Theory predicts that learning with given subgoal labels and no contextual transfer 

should impose lower cognitive processing than learning with given subgoal labels and 

contextual transfer and thus result in better learning. The contextual transfer would 

require additional working memory to process, reducing learning. However, the results 

from the first study directly contradict this prediction. Study 1 found, unlike the other two 

treatment groups, that participants who learned with given subgoal labels and 

contextual transfer significantly outperformed the given subgoal labels with isomorphic 
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problems, completely opposite from what Cognitive Load Theory predicts. We examined 

whether this main finding was an anomaly or if it could be replicated. 

In a follow-up paper (Study 1 follow up) (Morrison, Margulieux, et al., 2016), we 

examined the performance of students on a Parsons problem assessment, after having 

learned loop problem-solving in one of the treatment groups (with no subgoal labels, 

with given subgoal labels, or generating their own subgoal labels). We found that 

students who were given subgoals performed statistically significantly better than those 

who had no subgoals or who generated their own subgoals, regardless of transfer 

condition. Participants that were given subgoal labels performed overall better than 

those that did not have subgoal labels and those that generated their own subgoal 

labels. Though participants in the generate labels and no labels conditions performed 

equally, participants who generated their own labels completed the task faster than 

those who did not receive labels. 

In Study 2 (Margulieux, Morrison, Catrambone, & Guzdial, 2016), the examination of 

the quality of the learner-generated labels from a new population of students and how 

this affected problem-solving performance was reported. Study 2 found that twice as 

many participants generated specific labels than general labels, but a larger percentage 

of participants who received contextual transfer generated general labels than those 

who had an isomorphic transfer. Participants who learned with isomorphic transfer and 

generated their own labels performed relatively well, regardless of the specificity of their 

labels. For those that learned with contextual transfer, their performance depended on 

whether they created specific or general labels. Those who created specific labels 

performed as poorly as the worst-performing group, those who received no subgoal 

labels with the contextual transfer. On the other hand, participants who created general 

labels with contextual transfer performed better than any other group. 

Study 3 (Morrison et al., 2016) paper replicated Study 1 (Morrison et al., 2015) with a 

third population of students. The results supported the findings from the previous 

studies: participants who learn by generating subgoal labels (using isomorphic worked 

example – practice problem pairs) performed the best, and statistically better than if 

they had been worked example – practice problem pairs with the contextual transfer. 

Despite the previous publications that report results of each of the three experiments 

individually, we have yet to report all of the data from these three experiments or 

examine them holistically to determine the cross-population effects of the subgoal 

labeled worked examples. This paper addresses this gap. 

 

Present study 

In this paper, we examine the effect of learning subgoals through different instructional 

methods (i.e. given labels versus generated labels compared to unlabeled) and transfer 
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distance between worked examples and practice problems (i.e. isomorphic or 

contextual transfer) across three separate, but comparable, populations. This new 

analysis of the data allows us to report findings that were excluded from previous 

conference proceedings and explore the average effect of the interventions to 

determine a stable effect size across populations. We have the following research 

questions: 

 

RQ1: How do different instructional methods of learning with subgoals (either given or 

learner generated) affect problem-solving performance? 

 

RQ2: How does transfer distance (i.e. isomorphic transfer (changing the values in a 

problem with the same context) or contextual transfer (changing the context, or cover 

story)) from worked examples to paired practice problems affect problem-solving 

performance? 

 

To measure performance, we used three different assessments: (1) four novel 

coding writing problems, (2) one Parsons problem, and (3) a post-test of five multiple-

choice questions, none of which contained the subgoal labels. The three assessments 

were chosen to represent three levels of difficulty and application of knowledge. Code 

writing was intended to be the most difficult and required students to recall the problem-

solving process from memory. The Parsons problem was intended to assess knowledge 

of the problem-solving process while allowing students to recognize, rather than recall, 

the procedure. Furthermore, students do not have to determine how to apply a 

conceptual understanding to a new context in Parsons problems because the lines of 

code are provided for them. Therefore, increasing the transfer distance between worked 

examples and practice problems might not necessarily improve Parsons problem 

performance, though it was expected to improve code-writing performance. The 

multiple-choice questions required students to trace the code and determine which 

answers containing possible outputs were correct. These questions were intended to be 

the easiest questions and a learning check to identify participants who were not 

engaging in the instruction. Additionally, we measured cognitive load related to the 

instructional materials using the (Morrison, Dorn, & Guzdial, 2014) instrument and time 

on task for both the learning period and each assessment. 

 

Method 

Design 

The experiment had two manipulations: the format of worked examples and the transfer 

distance between worked examples and practice problems. The worked example either 
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had no subgoal labels (i.e. No Subgoal), had subgoal labels created by experts 

(i.e. Given), or included a placeholder for the participant to fill in their own subgoal label 

(i.e. Generated). In the No Subgoal condition (Control Group A in the Supplementary), 

the worked example is presented in a step by step solution of how to develop the code 

solution for the problem, including code comments. In the Given condition (Subgoal 

Given, group B in the Supplementary), the worked example is the same but broken into 

groups and labeled by the subgoal associated with the task. One subgoal may include 

more than one step. Code comments were identical to the control condition. For 

the Generated condition (Subgoal Generate group C in the Supplementary), the worked 

example was broken into groups, as in the Given condition, but instead of including the 

expert-created subgoal label, a blank space was included to allow the participant to type 

in their own subgoal explaining what the pieces of code accomplished. 

The second manipulation involved the differences between the worked example and 

practice problem given to the students. As can be seen in the Supplementary (worked 

examples compared to practice problems), for the isomorphic (near) transfer problems 

the context of the problem for the worked example and the practice problem is identical, 

and only the values being manipulated change. For the contextual (far) transfer 

problems, the context of the worked example and the practice problem are different; 

however, the solution has an identical format. The experiment measured performance 

with pre- and post-tests, problem-solving tasks (both writing code and completing a 13-

step Parsons problem), self-reported cognitive load on the (Morrison et al., 2014) 

instrument, and time on task. 

 

Instructional materials 

In this study, we developed instructional materials to teach introductory programming 

students to solve programming problems using while loops. We selected the topic of 

writing indefinite loops for several reasons: (1) based on experience we know that 

students can struggle with the introduction of repetition statements, (2) while loops are 

the most general form of a repetition control structure allowing any type of loop to be 

written, and (3) teaching of this topic occurs in the early part of the term allowing us to 

reach the maximum number of students – typically before the withdrawal date for the 

term passed. 

The materials used pseudocode so that students from multiple universities and 

courses that used different programming languages could participate. Pseudocode is 

easy for students to understand regardless of the programming language that they are 

learning (Tew & Guzdial, 2011). The first two experiments started before students had 

learned to use while loops in their courses, and the third experiment was conducted 

after students had been introduced to while loops. The procedure took about two hours 
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to complete. In most cases, the experimenters conducted the experiment in a regularly 

scheduled lab for the programming courses from which they recruited participants. The 

labs were held in closed classrooms with at least one computer per student. Some 

participants completed the procedure as an at-home assignment. 

The instructional materials were three separate worked examples interleaved with a 

practice problem after each worked example. The format of the worked examples can 

be seen in the Supplementary (Worked Examples). Each worked example appeared on 

one screen, followed by the practice problem on the next screen. Students could go 

back and forth between the worked example and the practice problem during the 

instructional period. Once the student reached the assessment portion of the study, they 

could not go back to the instructional materials. 

At the beginning of the session, the experimenters introduced the study explaining 

that they would learn to solve problems using while loops and that the materials they 

received would help them to achieve this. The experimenters then gave students a link 

to a SurveyMonkey survey where all of the materials and assessments were hosted. 

Participants worked independently and could ask for help from the experimenter on 

administrative tasks (e.g. “What is my participant number?”) but not for help on the 

programming tasks (e.g. “How do I increase the loop control variable?”). Because 

students worked independently, some completed the tasks faster than others, and 

SurveyMonkey recorded how quickly each student progressed through the various 

stages of the experiment. 

 

Assessments 

After completing the instructional period with worked examples and practice problems, 

participants were asked to solve four novel problems using while loops. All the 

assessment problems required a contextual transfer from the worked examples and 

practice problems that participants used to learn the procedure. No subgoal labels 

appeared in any of the assessment problems. We scored participants’ problem-solving 

solutions to create a problem-solving score. We evaluated the solutions line-by-line 

rather than as a whole to provide more sensitivity in the score. Each correct line of code 

earned one point for a maximum score of 44 points across four questions. Lines of code 

were considered correct if they were conceptually correct, regardless of typos or syntax 

errors. Logic errors (e.g. having < rather an ≤) made the line incorrect. We decided to 

score for conceptual and logical accuracy rather than absolute accuracy because the 

participants were inexperienced programmers. 

We also measured participants’ problem-solving procedural knowledge with a 

Parsons problem. We scored participants’ Parsons problem answers for correct order. 

Because the Parsons problem had 13 pieces of code to rank order, the maximum score 



was 13. Participants earned one point for each piece of code that was in the correct 

order relative to the piece before it. For example, if a participant’s solution ranked the 

6th, 7th, and 8th pieces of code in the 7th, 8th, and 9th positions, they would lose only 

the first point because it did not follow the 5th piece of code. The 7th and 8th pieces 

would still be in order, relative to other pieces of code, and counted as correct. This 

scoring scheme was considered better than scoring for exact order because it does not 

penalize later pieces of code for earlier mistakes. 

 

Procedure 

Most participants completed the experiment during one of their lab sessions in a 

computer laboratory. Students had an option to complete an alternative assignment, but 

none selected that option. Participants worked independently, and each session 

included between 15 and 30 people. The sessions typically lasted between 1 and 1.5 h, 

depending on the rate at which participants completed the tasks. For students in the lab 

setting, a few stragglers were asked to leave at the end of 2 h due to the next class 

arriving. 

First, participants completed a demographic questionnaire and the pre-test. Next, 

they began the instructional period. The instructional period began with training. 

Participants who were going to generate their own subgoal labels received training to 

create subgoal labels (see the Supplementary – How to Make Subgoal Labels). The 

training included instructions about creating subgoal labels, examples of a subgoal 

labeled worked example, and activities to practice creating subgoal labels on simple 

algebra problems designed to be easy for any college student so that they could focus 

on creating labels. Participants who did not generate their own subgoal labels received 

training to complete verbal analogies (available in the Supplementary – Verbal 

Analogies). Verbal analogies (e.g. water: thirst: food: hunger) were considered a 

comparable task to subgoal label training because they both require analyzing text to 

determine an underlying structure. Like the subgoal label training, the analogy training 

included instructions, worked examples, and activities to practice. 

Following the training, the instructional period provided worked examples and 

practice problems to help participants learn to use while loops to solve problems. Once 

participants completed the instructional period, they started the assessment period. 

Throughout the procedure, the time taken to complete each task was recorded. A 

diagram of the entire study procedure can be seen in Figure 2. 

 

Figure 2. Complete study procedure. Items with * are provided in the Supplementary. 
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Participants 

Participants across the three experiments were 220 students recruited through 

programming courses and offered course credit for completing a lab activity as 

compensation. To account for possible effects of prior experience, participants reported 

whether they had experience with programming and/or using loops during high school 

(AP courses or otherwise) and college. Other learner characteristics that participants 

provided were gender, age, academic major, high school grade point average (GPA), 

college GPA, whether English was their primary language, number of years in college, 

self-reported comfort with computers, expected difficulty of completing the programming 

task, and prior courses in programming. Participants were randomly assigned to 

intervention conditions to avoid possible confounds caused by learner characteristics. 

To ensure that there were no confounds, learner characteristics and problem-solving 

performance were correlated using Pearson’s r for continuous learner variables and 

Spearman’s ⍴ for dichotomous learner variables. The results of these analyses are 

reported in Table 1, 2, and 3. 

 

Table 1. Learner characteristics in experiment 1 and their relationship to 

performance. (Table view) 

Learner characteristic Mean/proportion Std. 

deviation 

Correlation with problem-solving 

performance 

Gender 84% male - ⍴ = −.02, p = .90 

Age 21 4 r = −.06., p = .60 
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Learner characteristic Mean/proportion Std. 

deviation 

Correlation with problem-solving 

performance 

Major 50% CS major - ⍴ = −.03, p = .78 

High School GPA 3.40 0.58 r = −.06, p = .59 

College GPA 3.08 0.55 r = .18, p = .13 

English is primary 

language 

91% yes - ⍴ = .06, p = .61 

Years in college 2.4 1.4 r = −.03, p = .81 

Comfort with computers* 4.2 1.5 r = .46*, p < .001 

Expected difficulty of task* 4.0 1.4 r = .29*, p = .007 

Prior course in 

programming 

42% yes - ⍴ = .37*, p < .001 

*The question about comfort with computers asked student to rate how comfortable they were using a 

computer on a 7-point scale that ranged from “1 – not comfortable at all” to “7 – very comfortable.” The 

question about expected difficulty of task used a 7-point scale that ranged from “1 – very difficult” to “7 – 

very easy”. 

 

Table 2. Learner characteristics in experiment 2 and their relationship to 

performance. (Table view) 

Learner characteristics Mean/proportion Std. 

deviation 

Correlation with problem-solving 

performance 

Gender 40% male - ⍴ = .05, p = .79 

Age 22 6.9 r = .05., p = .79 

Major 23% CS major - ⍴ = .01, p = .94 

High School GPA 3.81 0.37 r = .43*, p = .02 

College GPA 3.33 0.53 r = .15, p = .42 

English is primary 

language 

91% yes - ⍴ = .32, p = .06 

Years in college 3.3 1.8 r = −.14, p = .42 

Comfort with computers* 3.5 1.2 r = .07, p = .68 

Expected difficulty of task* 3.2 1.3 r = .24, p = .17 

Prior course in 

programming 

29% yes - ⍴ = .11, p = .52 

 

Table 3. Learner characteristics in experiment 3 and their relationship to 

performance. (Table view) 

Learner characteristics Mean/proportion Std. 

deviation 

Correlation with problem-solving 

performance 

Gender 71% male - ⍴ = −.02, p = .90 

Age 19 3 r = .08., p = .46 

Major 33% New Media 

63% Game 

Design 

- ⍴ = .11, p = .30 
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Learner characteristics Mean/proportion Std. 

deviation 

Correlation with problem-solving 

performance 

High School GPA 3.61 0.32 r = .05, p = .70 

College GPA 3.47 0.62 r = −.06, p = .64 

English is primary 

language 

96% yes - ⍴ = −.15, p = .15 

Years in college 1.9 0.8 r = .06, p = .57 

Comfort with computers* 5.3 1.4 r = .52*, p < .001 

Expected difficulty of task* 4.5 1.4 r= .31*, p = .002 

Prior course in 

programming 

94% yes - ⍴ = .30*, p = .003 

 

In addition to asking students about their prior experiences with programming and 

using loops, participants completed a pre-test to measure their prior knowledge of 

solving problems using while loops. The pre-test included five multiple-choice questions 

from AP CS A exams. Participants who answered more than two questions on the pre-

test correctly were excluded from the analysis to reduce potential error because the 

instructional materials were intended for novices. Participants who did not complete all 

components of the experiment were also excluded from the analysis. The numbers of 

students excluded were relatively low and detailed in the following sections. 

 

Experiment 1 participants 

Participants were 66 students from 1 of the 4 introductory programming courses at a 

technical university in the southeast United States. The experiment occurred before 

students learned about loops in their courses. Students performed poorly on the pre-

test, M = 1.2 out of 5 points, and 32% of participants earned no points. Six students (out 

of 72, 8%) were excluded from analysis for high pre-test scores. No statistically 

significant relationships between all assessments and learner characteristics were 

found for most variables. Comfort with computers, expected difficulty of task, and taking 

a prior course, however, correlated with problem-solving performance. To ensure that 

no conditions had an advantage over the others based on these learner variables, we 

inspected the means for each of these learner variables within each condition. We 

found no meaningful differences (i.e. more than a few decimal points) among 

conditions. 

 

Experiment 2 participants 

Participants were 54 students from introductory programming courses at a different 

technical university in the southeast United States. Unlike in Experiment 1, only 23% of 

participants were computer science majors. The majority of students were taking a 

Computational Media course. Many of them were likely taking the course because the 



university requires that all students take a programming course, and this course is 

designed specifically for students not majoring in computing. This sample characteristic 

explains the relatively high average age and the number of years in college for 

participants. 

The average score on the pre-test was low, M = 1.6 out of 5, and 23% of students 

earned no points. Five students (out of 59, 8%) were excluded from analysis for high 

pre-test scores. The only learner variable that correlated with assessment scores was a 

high school GPA. The mean high school GPA for each experimental group was 

inspected to ensure that no groups had an advantage over the others. Each mean was 

within a few decimal points of the others. 

 

Experiment 3 participants 

The last site used to collect data was a technical university in the northeast United 

States. The final experiment had a larger number of participants than the first two, 100 

students. The final experiment also included students from first-semester introductory 

programming courses, like the first two experiments, and students in a second-year 

course. Collecting data from both the first-semester and second-year course in the 

computing curriculum allowed us to explore how prior knowledge impacted the results 

because the students in the second-year course would have already learned, practiced, 

and been tested on solving problems with while loops in a previous course (Study 3) 

(Morrison et al., 2016). 

In this experiment, both first-semester and second-semester students had already 

learned to use while loops. To account for prior knowledge, participants completed the 

same pre-test as Experiments 1 and 2. The average score was M = 2.3 out of 5. 

Participants were not excluded from analyses based on their pre-test scores, unlike in 

the previous two experiments. At the University for this study, students are not given 

credit for AP CS courses. This led to a large number of students in the first-semester 

course having prior programming knowledge. If we had excluded students based on 

their pre-test scores, there would not have been enough statistical power in the 

analyses. Additionally, this manuscript aggregates the effect of subgoal labels across 

different populations; having more knowledgeable students represents a unique 

population compared to the first two studies. As in Experiment 1, comfort with 

computers, expected difficulty of task, and taking a prior course correlated with problem-

solving performance. We again inspected the means for each of these learner variables 

within each condition to ensure that no condition had an inherent advantage over the 

others. No meaningful differences were found among conditions. 

 

Results 
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The data used for this paper have been partially reported in previous papers as 

independent experiments. The problem-solving, post-test, and time on task data for 

Experiment 1 were published in (Study 1) (Morrison et al., 2015). The Parsons problem 

data for Experiment 1 were published in (Study 1 follow-up) (Morrison, Margulieux, et 

al., 2016). For both Experiments 1 and 2, the problem-solving, Parsons problem, quality 

of generated labels, and time on task were published in (Study 2) (Margulieux et 

al., 2016). For Experiment 3, the problem-solving and time on task data were published 

in (Study 3) (Morrison et al., 2016). For some of the analyses reported in these papers, 

the differences among groups had meaningful effect sizes but were not statistically 

significant. By analyzing the data together, the sample size, and thus statistical power, 

will be large enough to produce reliable effect sizes and, if the differences are large 

enough, statistical significance. 

In addition to adding statistical power to our analyses, this paper will include data 

that has not been reported before due to space constraints. The new data included in 

this analysis are cognitive load data for all three experiments, Parsons problem data 

from Experiment 3, and post-test data for Experiments 2 and 3. 

For all dependent variables (i.e. problem-solving performance, post-test, Parsons 

problem, cognitive load, and time on task), we analyzed the distribution of scores for 

skewness and kurtosis to ensure normal distribution and, therefore, that parametric 

statistical tests, such as ANOVA, were appropriate. In addition, we visually inspected 

the histograms of scores for each measurement. In all cases, the skewness and 

kurtosis were within normal bounds (i.e. between −2 and 2 (Gravetter & Wallnau, 2016)) 

and histograms followed a normal distribution. Therefore, no outliers were excluded 

from analyses, and parametric tests are appropriate for analyses of the measurements. 

 

Performance data 

For our inferential statistics, we report two types of effect sizes. The first, est. ω2, is for 

only omnibus analyses (i.e. ANOVAs) and describes how much of the variation in 

scores can be attributed to the manipulation (i.e. proportion of variance accounted for, 

PVAT). For example, for the problem-solving tasks, an est. ω2 of .06 means that 6% of 

the variation in performance can be attributed to the instructional manipulations. In the 

social sciences, an est. ω2 of .06 is considered a medium-sized effect (Cohen, 1969). 

The second effect size, f or d, was used for only our post hoc analyses to describe the 

difference between groups using the standard deviation as the unit of measurement. 

For example, for the problem-solving tasks, a d of .5 would mean that the difference 

between the means of two groups is half of the standard deviation for those groups. The 

statistic d is used for t-tests, and the statistic f is used for ANOVAs and is equal to 

2d (Cohen, 1988). For example, an f of .25 is equal to a d of .5, and both indicate that 
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the difference between means is half of a standard deviation, which is considered a 

medium-sized effect (Cohen, 1969). 

 

Problem-solving score 

The main dependent variable, score on problem-solving tasks, had a maximum score of 

44. The overall mean score was 26.58, and the standard deviation was 14.05. For the 

omnibus ANOVA analyses of these data, worked example format and transfer distance 

were treated as randomly assigned variables. In addition, university, which was different 

for each experiment, was treated at a quasi-experimental variable. This nested design 

allows us to combine the data from the three experiments while still accounting for 

possible differences among universities. 

Problem-solving score depended on the interaction of the worked example format 

and transfer distance, F (2, 188) = 5.23, p = .028, est. ω2 = .08 (see Figure 3), matching 

previous results from independent experiments (Study 1, Study 2, Study 3) (Margulieux 

et al., 2016; Morrison et al., 2016, 2015). Due to the interaction, the main effects of 

worked example format and transfer distance will not be reported to avoid confusion in 

interpretation (Maxwell & Delaney, 2004). Instead, pairwise comparisons will be used as 

post hoc tests to explore the pattern of results. Exploring the effect of the university, 

there was no interaction of university and worked example format, p = .37, university 

and transfer distance, p = .65, nor university, worked example format, and transfer 

distance, p = .20. In addition, there was no main effect of university, p = .12; therefore, 

the combined data from all three universities were used for the post hoc tests. 

 

Figure 3. Performance across six groups on problem-solving (code writing) tasks. 
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For post hoc analysis, we used simple main effects. Simple main effects analyze the 

effect of one independent variable for each level of the other independent variables. For 

example, simple main effects analysis will explore the effect of worked example format 

twice, once within the isomorphic transfer and once within the contextual transfer. 

Because the worked example format had three levels, the effect is analyzed with 

pairwise comparisons among each of the levels. The full results can be found in Table 

4. The only two comparisons that were statistically significant were those within 

isomorphic transfer between given labels and generated labels and within contextual 

transfer between no labels and given labels. These results suggest that there are two 

levels of performance, low and high. The two lowest-scoring groups performed 

statistically worse than the two highest-scoring groups (see Figure 3). The two groups in 

the middle did not perform statistically different than the others, but they are numerically 

close to the lowest-scoring groups and had higher mean differences and effect sizes 

from the highest-scoring groups. Thus, we consider the two middle groups as low-

performance groups. 

 

Table 4. Pairwise comparisons evaluating simple main effect of worked example 

format. (Table view) 

Transfer 

distance 

Worked example format 

comparison 

Std. 

error 

Mean 

difference 

Significance Effect size 

(d) 

Isomorphic No Subgoal to Given 3.34 1.55 .64 .10 

No Subgoal to Generate 3.34 −4.80 .15 .37 

Given to Generate 3.52 −6.36 .02 .44 

Context No Subgoal to Given 3.01 −7.62 .01 .59 

No Subgoal to Generate 3.15 −1.49 .64 .11 

Given to Generate 3.24 6.14 .06 .47 

      

 

To further explore performance, we split the problem-solving tasks into nearer (i.e. 

switched context) and farther (i.e. deviate from exact procedural steps) transfer from the 

instructional tasks. Switched context meant that we used the same type of contextual 

transfer as we used between the worked example and practice problem pairs. In this 

case, it describes transfer between the instructional tasks (i.e. worked example and 

practice problems) and the problem-solving tasks in this assessment. Procedure 

transfer means that the procedure used to solve the problem-solving task did not follow 

the exact same steps as the instructional tasks. For example, in the instructional tasks, 

participants had to use a while loop to find an average of a list, and in the problem-

solving tasks, participants had to use a while loop to find an average of values that 

exceeded a threshold (examples can be found in the Supplementary – Worked Example 
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#1 and Assessment #2). The problem-solving task had extra steps but still used the 

same abstract procedure that was taught. 

The results did not change when comparing groups within only the nearer or farther 

transfer tasks. In both cases, there was still a statistically significant interaction with the 

same pattern of scores, F (nearer; 2, 188) = 4.04, p = .02, est. ω2 = .06, F (farther, 2, 

188) = 2.99, p = .03, est. ω2 = .05. These results suggest that the interventions had the 

same effect on problem-solving performance regardless of the type of transfer that was 

required to complete the problem-solving tasks. 

 

Parsons problem score 

The Parsons problem score was based on one Parsons problem and had a maximum 

score of 13 for putting each of the lines of code in the correct order. The overall mean 

score was 6.20, and the standard deviation was 4.27. Like for problem-solving 

performance, in the omnibus ANOVA analyses of these data, worked example format 

and transfer distance were treated as randomly assigned variables and the university 

was treated at a quasi-experimental variable. 

Parsons problem score did not have a statistically significant main effect of worked 

example format, F (2, 188) = 1.11, p = .41, est. ω2 = .03, transfer distance, F (2, 188) = 

0.15, p = .73, est. ω2 = .01, nor the interaction of the worked example format and 

transfer distance, F (2, 188) = 1.50, p = .31, est. ω2 = .03. These results align with 

results in (Study 3) (Morrison et al., 2016) but not with (Study 2) (Margulieux et 

al., 2016), which found a main effect of worked example format and concluded that 

giving subgoal labels, regardless of transfer distance, improved Parsons problem score. 

This difference in results might be due to including only one Parsons problem in our 

protocol, possibly contributing to an unreliable measurement of Parsons problem 

performance. Based on the larger sample size of both the current analysis and that 

conducted in (Study 3) (Morrison et al., 2016), we would expect that the current result is 

more reliable. Therefore, we would not conclude that giving learners subgoals labels 

necessarily results in better performance on Parsons problems after receiving 

instructional materials similar to ours. 

In the current analysis, we found a main effect of university, F (2, 188) = 10.16, p = 

.04, est. ω2 = .06. There was no interaction of university and worked example 

format, p = .11, university and transfer, p = .51, nor university, worked example format, 

and transfer, p = .22. The difference between University 1 (M = 3.7) and University 2 

(M = 4.6) was not statistically significant, t (116) = 1.35, p = .18, d = .25. In contrast, 

University 1 performed much worse than University 3 (M = 8.8), t (181) = 10.44, p < 

.001, d = 1.57. Similarly, University 2 performed much worse than University 3, t (133) = 

5.53, p < .001, d = 1.04. These results are not unexpected, though, given that the 

participants from University 3 had already learned about solving problems with loops in 
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their programming courses. It is interesting that participants from University 3 performed 

statistically better than those in the other universities on the Parsons problem but not on 

the problem-solving tasks, which were writing code tasks. This supports the notion that 

students may demonstrate problem-solving knowledge in Parsons problems even if they 

cannot in traditional code-writing problems. 

 

Post-test score 

The post-test asked participants to complete, after instruction, the same five multiple-

choice questions from the AP CS exam that they had completed prior to instruction. The 

maximum score was 5, and the mean was low, 2.40, with a standard deviation of 1.45. 

The post-test score did not have a statistically significant main effect of worked example 

format, F (2, 188) = 1.37, p = .34, est. ω2 = .03, transfer distance, F (2, 188) = 0.24, p = 

.65, est. ω2 = .01, nor the interaction of the worked example format and transfer 

distance, F (2, 188) = 1.39, p = .33, est. ω2 = .02. These results align with individual 

experiment results from (Study 1, Study 3) (Morrison et al., 2016, 2015). In addition, 

there was no main effect of university, p = .76, interaction of university and worked 

example format, p = .50, university and transfer distance, p = .85, nor university, worked 

example format, and transfer distance, p = .27. We would expect, based on the results 

of the problem-solving tasks and Parsons problem, that participants would score higher 

on this post-test. Moreover, we would expect that participants from University 3 would 

perform better on this test than other participants because they were not excluded from 

analysis due to high pre-test scores and because they had learned about loops in their 

course already. Therefore, we conclude that this post-test, perhaps because it 

measured code-tracing skill more than problem-solving skill, did not effectively measure 

performance for any of the groups of participants, and we do not include this 

assessment when considering the conclusions of the study. These results support the 

idea that code tracing is a skill separate from code writing (Harrington & Cheng, 2018; 

Kumar, 2015). 

 

Process data 

To supplement our data about performance outcomes, we collected information about 

the learning process to explore differences among groups. These data include 

perceived cognitive load during instruction and time on task during instruction and 

assessment. 

 

Cognitive load 

The cognitive load survey asked participants questions about their cognitive load 

directly after instruction to measure their perceptions of cognitive load during instruction 
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(Morrison et al., 2014). Each of the 10 questions asked participants to rate their 

perceived cognitive load (e.g. “The topics covered in the activity were very complex”) on 

a scale from “0 – not at all the case” to “10 – completely the case,” making the 

maximum score 100. The mean was 40.9 with a standard deviation of 14.6. The 

cognitive load did not have a statistically significant main effect of worked example 

format, F (2, 188) = .51, p = .63, est. ω2 = .01, transfer distance, F (2, 188) = 0.89, p = 

.43, est. ω2 = .02, nor the interaction of the worked example format and transfer 

distance, F (2, 188) = .56, p = .60, est. ω2 = .01. Furthermore, there was no main effect 

of university, p = .35, interaction of university and worked example format, p = .51, 

university and transfer distance, p = .61, nor university, worked example format, and 

transfer distance, p = .20, suggesting no differences among universities. 

These results were not previously reported for individual experiments due to space 

constraints. In this case, though, finding no statistical difference is good as it suggests 

that students did not perceive a meaningful difference in mental workload even though 

the instructions asked them to engage in different tasks. One possible explanation of 

these null results is that participants in all conditions used the same amount of mental 

resources, whether they were engaging in our prescribed learning strategy or not. We 

have no supplemental evidence to make a strong argument for this possibility. We can 

say, however, that some participants performed better than others without perceiving 

differences in mental workload. 

 

Time on task 

The total amount of time that participants spent on the experiment was recorded. This 

includes time spent studying worked examples, solving practice problems, and 

completing the assessments. The amount of time that participants spent on the task 

depended on worked example format, F (2, 188) = 8.67, p < .001, est. ω2 = .09. There 

was no effect of transfer distance, F (2, 188) = 0.55, p = .46, est. ω2 = .003, nor was 

there an interaction, F (2, 188) = 1.20, p = .30, est. ω2 = .01. Performance did not 

interact with university either, F (2, 188) = 0.63, p = .67, est. ω2 = .002. 

To explore the effect of worked example format on time on task, we used simple 

main effects analysis. Within the isomorphic transfer condition, No Subgoal participants 

completed the task faster (M = 52 min, SD = 21 min) than participants in the Given (M = 

72, SD = 27) or Generate (M = 71, SD = 29) conditions, Mean Difference = 20.1 and 

18.8 min, p = .003 and .007, d = .83 and .75, respectively. 

The Given and Generate conditions did not differ on time on task, Mean Difference = 

1.4 min, p = .85, d = .04. When considering the effect on time, it is important to 

remember that within the isomorphic transfer condition, participants who generated their 

own subgoal labels performed best, and participants without subgoal labels or who were 

given subgoal labels did not perform differently. This combination of results means that 
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participants who generated subgoal labels with isomorphic transfer took longer than 

those who did not receive subgoals, but they performed better. In contrast, participants 

who were given subgoal labels with isomorphic transfer took longer than those who did 

not receive subgoals but did not perform better. Therefore, taking longer to complete the 

task did not result in better performance for each group. 

Following a similar pattern within the context transfer condition, the No 

Subgoal participants completed the task faster (M = 59 min, SD = 25 min) than 

participants in the Given (M = 67, SD = 25) or Generate (M = 79, SD = 35) conditions, 

Mean Difference = 12.2 and 20.1 min, p = .076 and .005, d = .32 and .66, respectively. 

Though the difference between the No Subgoal and Given groups is not statistically 

significant, we argue that it is meaningfully significant, albeit small, based on the mean 

difference and d value. The Given and Generate conditions did not meaningfully differ 

on time on task, Mean Difference = 7.9 min, p = .22, d = .21. 

A piece of information to highlight from these results is that the standard deviation for 

the group who generated subgoals with the contextual transfer was 35 min, which is 

approximately 10 min more than the other groups. This means that participants in this 

condition had much more variance in the amount of time on task than those in other 

conditions. If we were to offer a post hoc explanation of this finding based on our 

observations as experimenters and exploring the data, we might argue that participants 

in this group were more likely to flounder and take an excessively long time to complete 

the experiment. This group had twice as many people as any other group who took 100 

min or longer (6 participants compared to 1–3 participants in the other groups). 

Similar to the isomorphic transfer condition, it is important to recognize that within the 

contextual transfer condition, participants who were given labels performed better than 

others. This combination of results means that participants who were given subgoal 

labels with context transfer took slightly longer than those who did not receive subgoals, 

but they performed better. Moreover, participants who generated subgoals with context 

transfer took substantially longer than those who did not receive subgoals, but they did 

not perform better. The combined results suggest that depending on the transfer 

distance and worked example format, better performance required more time on task, 

but more time on task did not guarantee better performance. 

To explore the relationship between time on task and performance more deeply, we 

examine the correlation between these two dependent variables within each group. 

Overall, there was a strong, positive relationship between performance and time on 

task, r = 0.43, p < .001, as is typical in education research. However, this relationship 

was not consistent within each experimental group (see Table 5), suggesting that 

spending longer on the task did not necessarily coincide with higher performance. The 

relationship between time on task and performance was strongest when students 

learned subgoals with isomorphic transfer between examples and practice problems or 
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when students did not learn subgoals with contextual transfer. The relationship was 

weakest when students generated subgoals with contextual transfer or when students 

did not learn subgoals with isomorphic transfer. Therefore, despite the extra time that 

students learning subgoals spent on the task, their extra effort did not consistently result 

in higher performance. As such, we conclude that the benefit of learning subgoals 

(under particular circumstances) is due to more than coaxing students to spend more 

time on task. 

 

Table 5. Correlation between time on task and performance within each experimental 

group. (Table view) 

Experimental group No subgoal Given subgoal Generate subgoal 

Isomorphic Transfer r = 0.26, p = .140 r = 0.67, p < .001 r = 0.51, p = .008 

Contextual Transfer r = 0.53, p = .001 r = 0.41, p = .011 r = 0.27, p = .186 

    

 

Discussion 

In the cumulative analysis of three studies that used the same experimental protocol 

across three groups of learners at different institutions, we found that the most effective 

instructional design interventions were those that (1) gave subgoal labeled worked 

examples with farther transfer between worked examples and practice problems or (2) 

asked students to generate subgoal labels for worked examples with nearer transfer 

between worked examples and practice problems. In our experiment, these two 

conditions performed equally, but in practice, there might be reasons to pick one over 

the other based on several factors, such as characteristics of students in the class, the 

teaching style of the instructor, or the instructional materials (e.g. curriculum or 

textbook) being used. 

The students in the class might affect whether they will successfully generate 

subgoal labels. If the students are already engaging in self-explanation (e.g. they 

answer challenging questions in class), learn concepts quickly, or are highly motivated 

to learn the content, then promoting self-explanation through the generation of subgoal 

labels might be particularly effective. When we analysed the content of the subgoals 

generated by students, we found that students who learned with contextual transfer and 

generated more generalizable subgoals performed significantly better at problem-

solving than any other group (Margulieux et al., 2016). If the students tend to be unable 

to self-explain, are otherwise struggling in the course (i.e. exhibit signs of already having 

high cognitive load), or seem unmotivated to learn, then giving subgoal labels would 

likely be more effective than asking them to generate subgoal labels. Based on whether 
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students generate or are given labels, the transfer distance between worked examples 

and practice problems can be adjusted to match the most effective conditions. 

The instructor’s teaching style could also affect how students should engage with 

subgoal labels. Based on (Margulieux & Catrambone, 2019), students who generated 

subgoal labels and received feedback on those labels performed better than students 

who generated subgoal labels without feedback. Therefore, if the instructor’s teaching 

style includes providing feedback or class discussion during which students can refine 

their generated labels, then generating labels might be more effective than given labels. 

In contrast, if the course includes a lot of independent learning without many 

opportunities for feedback or too many students for the instructor to provide individual 

feedback, then generating labels might be no different than given labels, as was the 

case in these studies. 

The last factor that might determine which type of subgoal learning best suits a 

course is the curricular materials being used in the course. If the curricular materials, 

including worked examples and practice problems, were designed by someone else, 

then the transfer distance between the worked examples and practice problems should 

determine the type of subgoal learning used. Isomorphic transfer would be best 

complemented by generating labels, and contextual transfer would be best 

complemented by given labels (Margulieux, Morrison, & Decker, 2019). 

If isomorphic transfer between worked examples and practice problems is an option 

and the instructor does not have the time or resources to identify subgoal labels for the 

procedure, then allowing learners to generate subgoal labels for themselves is a good 

option. To do this, the instructor could use subgoal label training, add a prompt at the 

end of each problem-solving step, and ask students to generate their own labels. This 

option would likely be most effective if the instructor matched features between worked 

examples (e.g. step 2 of the first example is like step 3 of the second example). 

Margulieux and Catrambone (2019) found that providing hints about which features are 

similar between worked examples helped students to perform better when they 

generated their own subgoal labels. Like the feedback described in the paragraph about 

teaching style, providing hints could further improve the problem-solving skill of learners 

who are generating their own subgoal labels. It is important to clarify that (Margulieux & 

Catrambone, 2019) found that providing both hints and feedback did not improve 

performance; therefore, if feedback or hints are provided, the instructional materials 

should provide only one or the other. 

However, if pre-defined given subgoal labels are used, the worked example – 

practice problem pairs should utilize contextual transfer to ensure maximum learning. 

As mentioned earlier, this is contradictory to what would be predicted by cognitive load 

theory. This is certainly one phenomenon that needs further research. It may be that 

with given subgoal labels and isomorphic problems students do not adequately self-
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explain the process associated with each subgoal as the steps are identical within both 

the worked example and practice problem. To ensure that students in the given subgoal 

labels with isomorphic practice problems were adequately studying the worked example 

and attempting the practice problem, we examined the student code submissions. We 

reviewed student code submissions to ensure that they were not copied from the 

worked example. We did a visual inspection and a character by character comparison 

from the student code submission to the worked example presented. We found no 

instances of an exact copy of worked example code or any student submissions more 

than 10% identical to the worked example. Also, the time spent in the instructional 

period indicates that participants spent similar amounts of time regardless if they 

received isomorphic or contextual transfer worked example – practice problem pairs. 

 

Conclusion 

In this paper, we have aggregated the data from three previous studies to take a more 

holistic view and to examine the results for generalization across populations to provide 

the most nuanced and accurate information for using subgoal-labeled instructional 

materials in the classroom. By combining the data for maximum statistical power, we 

can view effect sizes to determine which treatments are likely to yield similar results in 

the future. 

Our research into subgoal-labeled instruction in computing represents the first 

attempt in any discipline (that we are aware of) to test the generation of subgoal labels 

by participants and its effect on learning performance. We are also the first (to our 

knowledge) to vary transfer between worked examples and practice problems. By 

introducing these additional conditions into our research, we have found combinations 

which provide the most beneficial experience for the learner: 

1. 

Given subgoal labeled worked examples with farther transfer between worked examples 

and practice problems or 

2. 

Student-generated subgoal labels for worked examples with nearer transfer between 

worked examples and practice problems. 

Either condition should yield the highest performance from students. Which you 

choose to implement may depend on the conditions discussed above. 

 

Limitations 

Our results are limited to having student performance data for only a single lab during 

an introductory programming course. From this, we cannot speculate or generalize to 

what the long-term impacts are from a learning trajectory perspective. Additionally, the 



tests were conducted during a single lab session with no delayed test for knowledge 

over time. Thus, our results only speak to the immediate learning outcomes. 

Another potential limitation of this work is the necessary solitary work required of the 

participants. We asked students in a lab to work alone at their computer for 1–2 h 

without assistance from peers or instructors or teaching assistants. This condition was 

necessary for experimental integrity but is not ecologically valid for many classroom lab 

environments. While we do not expect that collaboration would negate the learning 

effects of subgoal labels, it may affect them in unpredictable ways. For example, if some 

students found similarities between the worked example and practice problem and then 

helped others in the lab, then the farther transfer intervention might become universally 

more effective than the nearer transfer intervention. In the study condition where 

students were asked to generate subgoal labels, if students were working together then 

the condition would transform from a self-explanation activity to a peer-explanation 

activity which may or may not benefit each individual student (Chi, 2009). 

 

Future work 

Current research has examined student performance in learning with only a single 

construct within an entire introductory programming course (while loops). Research has 

moved from a laboratory environment (Margulieux et al., 2012) to a single lab instance 

(Morrison, Marguliuex, & Guzdial, 2015; Marguliuex, et al., 2016; Morrison, Marguliuex, 

& Decker, 2016) Study 1, Study 2, Study 3) (Morrison et al., 2015). The next logical step 

would be to use subgoal labels throughout an entire course and measure student 

learning. This could be implemented using either of the most beneficial subgoal 

conditions. Given subgoal labels could be used as long as the worked example and 

practice problems represented further transfer. Or students could be trained to generate 

their own subgoal labels and provided with worked example-practice problems with near 

transfer, and if students receive feedback on their generated subgoal labels to ensure 

generality. 
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