
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

1-13-2020

The curious case of loops The curious case of loops

Briana B. Morrison

Lauren E. Margulieux

Adrienne Decker

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/
http://library.unomaha.edu/

The curious case of loops

Briana B. Morrisonhttps://orcid.org/0000-0003-4260-4278, Computer Science
Department, University of Nebraska Omaha, Omaha, NE, USA

Lauren E. Margulieuxhttps://orcid.org/0000-0002-8800-2398, Department of Learning
Sciences, Georgia State University, Atlanta, GA, USA

and

Adrienne Decker, Department of Engineering Education, University at Buffalo, Buffalo,
NY, USA

ABSTRACT
BACKGROUND AND CONTEXT
Subgoal labeled worked examples have been extensively researched, but the research
has been reported piecemeal. This paper aggregates data from three studies, including
data previously unreported, to holistically examine the effect of subgoal labeled worked
examples across three student populations and across different instructional designs.
OBJECTIVE
By aggregating the data, we provide more statistical power for somewhat surprising yet
replicable results. We discuss which results generalize across populations, focusing on
a stable effect size for subgoal labels in programming instruction.
METHOD
We use descriptive and inferential statistics to examine the data collected from different
student populations and different classroom instructional designs. We concentrate on
the effect size across samples of the intervention for generalization.
FINDINGS
Students using two variations of subgoal labeled instructional materials perform better
than the others: the group that was given the subgoal labels with farther transfer
between worked examples and practice problems and the group that constructed their
own subgoal labels with nearer transfer between worked examples and practice
problems.

ARTICLE HISTORY

Received 8 May 2019
Accepted 18 December 2019
KEYWORDS

Worked example, subgoal label, experiment, CS1

Introduction

https://orcid.org/0000-0003-4260-4278
https://orcid.org/0000-0002-8800-2398

Subgoal-labeled worked examples have been effective for teaching computing

concepts, but the research to date has been reported in a piecemeal fashion. Pieces of

three experiments using subgoal labeled worked examples for learning loop constructs

have been reported in various conference proceedings (Morrision, Marguliuex, &

Guzdial, 2015; Margulieux, Morrison, Catrambone, & Guzdial, 2016; Morrison, Decker &

Marguliuex, 2016). The current paper aggregates these pieces and reports on new data

from the experiments to examine more holistically the effect of subgoal labeled worked

examples across three student populations and across different instructional designs.

The different instructional designs include the first instance of testing student-generated

subgoal labels and the first instance of testing differing amounts of transfer between

worked examples and practice problems, in any discipline. By aggregating data from all

three studies, including data that has not been reported before, we provide more

statistical and explanatory power for somewhat surprising yet replicable results. We

discuss which results generalize across populations, focusing on a stable effect size to

be expected when using subgoal labels in programming instruction.

Literature review/background

This section reviews the current literature for subgoal learning along with some

background in cognitive load theory to allow for framing the studies. We first present a

common instructional design tool, worked examples, before presenting cognitive load

theory, as the examples given to illustrate cognitive load involve worked examples. We

then focus on subgoal label research (in worked examples) conducted within the

computing discipline.

Worked examples

Worked examples are a type of instructional material used to teach procedural problem-

solving processes. Worked examples give learners concrete examples of the procedure

being used to solve a problem, showing the explicit steps in the problem-solving

process. Eiriksdottir and Catrambone (2011) argue that learning primarily from worked

examples may result in better initial performance as the worked examples are more

easily mapped to the problems to be solved. They further posit, however, that learning

from worked examples is less likely to result in retention and transfer of knowledge than

learning from more abstract instructions. When studying worked examples, learners

tend to focus on incidental features rather than the fundamental features of the problem.

This occurs because the incidental features are easier to grasp for novices as they do

not yet have the necessary domain knowledge to recognize the fundamental features of

the worked examples (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). For example,

when studying physics worked examples, learners are more likely to recognize that the

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0015
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0012

example has a ramp than that the example uses Newton’s second law (Chi et al., 1989).

Therefore, while worked examples can improve initial performance, when learners focus

on incidental features, they ineffectively organize and store information, leading to

ineffective recall and transfer (Bransford, 2000).

Cognitive load

Cognitive load can be defined as the load imposed on an individual’s working memory

by a particular learning task (van Gog & Paas, 2012). The cognitive load imposed on

the learner can directly affect knowledge retention and performance scores. Cognitive

Load Theory (CLT) is grounded in the human architecture of the brain, which has a

limited capacity for working memory. All the information is processed in working

memory before being stored in long-term memory. If the total amount of processing

required to learn exceeds the limited capacity of working memory, then learning is

impaired (Plass, Moreno, & Brünken, 2010). Current thinking defines two different types

of cognitive load on a student’s working memory: intrinsic load and extraneous load

(Kalyuga, 2011; Sweller, 2010; Sweller, van Merriënboer, & Paas, 1998; van

Merriënboer & Sweller, 2005).

Intrinsic load is a combination of the innate difficulty of the material being learned

combined with the learner’s existing knowledge. For example, a conceptual

understanding of a loop and the individual programming constructs to write a loop are

intrinsic load for a problem that uses a loop. Extraneous cognitive load occurs when the

learner is presented with information that does not directly contribute toward learning

and is thus, extraneous. For example, while studying a worked example of a loop for

calculating the average of a group of scores, the details of how a specific score is

calculated are necessary for processing the worked example but not intrinsic to

understanding how to solve a problem using a loop. Thus, the incidental details of

worked examples are often extraneous. Working memory resources that are devoted to

information that is relevant or germane to learning are referred to as germane

resources (Sweller, Ayres, & Kalyuga, 2011).

The intrinsic and extraneous loads may be moderated through the careful design of

the instructional materials. The intrinsic load should be managed so that learners are

not given too much new information to process at once. While some extraneous load is

inevitable, instructional materials should attempt to eliminate unnecessary extraneous

load. Worked examples, when carefully designed, can accomplish both of these goals

(Sweller et al., 1998).

Subgoal labels

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0012
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0006
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0041
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0034
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0019
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0037
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0039
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0042
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0038
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0039

To guide learners’ attention away from incidental details and promote deeper

processing of worked examples for improved recall and transfer, the subgoal learning

framework can be used to design worked examples that emphasize problem-solving

structure. The subgoal learning framework is a strategy used predominantly in STEM

fields to help students deconstruct problem-solving procedures into subgoals, or the

functional parts of the problem-solving procedure, to better recognize the fundamental

components of the problem-solving process (Atkinson, Catrambone, & Merrill, 2003).

Subgoals can be thought of as the building blocks of procedural problem solving and

they exist for all problem-solving procedures except the simplest ones.

Subgoal labeling is a specific technique used to promote subgoal learning. It has

been used to help learners recognize the fundamental structure of the problem-solving

procedure being illustrated in a worked example (Catrambone, 1994, 1996, 1998).

Subgoal labels are function-based instructional phrases that explain to the learner the

purpose of that step, or subgoal, in the problem-solving process. In Figure 1, the first

two lines of code have the subgoal label “Initialize Variables.” This label provides

information about the purpose of that subgoal and the function behind the steps within

it. Studies (Atkinson, 2002; Atkinson & Derry, 2000; Catrambone, 1994, 1996, 1998;

Margulieux & Catrambone, 2014; Margulieux, Guzdial, & Catrambone, 2012) have

consistently found that subgoal-oriented instructions improved problem-solving

performance across a variety of STEM domains, such as programming (e.g.

(Margulieux et al., 2012)) and statistics (e.g. (Catrambone, 1998)).

Figure 1. Partial worked example illustrating subgoal labels. Subgoal labels are

underlined.

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0002
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0007
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0009
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0010
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/f0001.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0001
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0003
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0007
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0009
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0010
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0022
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0025
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0025
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0010

Giving subgoal labels in worked examples improves learner performance while

solving novel problems without increasing the amount of time learners spend studying

instructions or working on problems (Margulieux et al., 2012). From a cognitive

perspective, it is thought that subgoal labels are effective because they visually group

the problem-solving steps within the worked examples into subgoals and give

meaningful labels to the groups (Atkinson et al., 2003). This subgoal-labeled format

highlights the structure of the examples, helping students to focus on the structural

features of the problem and allows the learner to more effectively organize the

information (Atkinson, Derry, Renkl, & Wortham, 2000). Because learners are more

focused on the structural features of the worked example allowing more effective

organization of the information, subgoal labels may reduce the extraneous cognitive

load that can hinder learning but is inherent in worked examples (Renkl &

Atkinson, 2002).

Subgoal labels that are context-independent are the most effective type of subgoal

labels (Catrambone, 1995, 1998). Catrambone found that learners who were given

abstract labels (e.g. Ω) and had sufficient prior knowledge performed better than those

who were given context-specific labels (e.g. initialize accumulation loop variables) on

problem-solving tasks done after a week-long delay or in problems that required using

the problem-solving procedure differently than demonstrated in the examples

(Catrambone, 1998). Catrambone explained this finding by arguing that learners with

sufficient prior knowledge could correctly explain to themselves the purpose of the

abstract subgoal and that they presumably had to self-explain due to the abstract nature

of the label. He argued that the self-explanation was more effective than providing

context-specific labels.

Self-explanation

A common and effective type of constructive learning that might help learners

understand subgoals is self-explanation. Self-explanation is a learning strategy in which

students use prior knowledge and logical reasoning to make sense of new information

and gain knowledge. A review of self-explanation studies found it is effective across a

range of domains if the domain has logical rules with few exceptions (Wylie &

Chi, 2014).

Self-explanation of a worked example’s solution identifies structural features and

reasons for the function of the problem-solving steps (Bielaczyc, Pirolli, & Brown, 1995).

The purpose of self-explanation is similar to that of subgoal learning. By self-explaining

worked examples, learners are more likely to recognize structural versus superficial

features. However, learners do not often engage in self-explanation without explicit

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0025
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0002
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0004
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0035
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0008
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0010
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0010
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0043
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0005

prompting. Many studies (e.g. Chi et al., 1989) found that 10% or less of learners self-

explained examples without external prompting. Most of the time learners can self-

explain if they devote additional resources to the task (Wylie & Chi, 2014) and if they

are reminded and guided to do so. Research has found little difference in the learning

outcomes of students who self-explain on their own or are prompted to self-explain (e.g.

Bielaczyc et al., 1995). This suggests that self-explanation itself is the cause of learning

benefits.

Parsons problems

Before describing how subgoals have been used in computer science education, we

should explain a type of assessment used in this research, Parsons problems. When

learning programming, students must learn a new language – the programming

language used to communicate instructions to the computing agent – with its own

unique syntax. This level of intrinsic cognitive load can overwhelm the learner, so

researchers have sought ways to eliminate or reduce the learning of programming

language syntax (Resnick et al., 2009). For text-based programming languages, one

way to assess student knowledge without requiring syntax knowledge is to use Parsons

problems (Parsons & Haden, 2006). In Parsons problems, the correct code is broken

into code fragments that students then put into the correct order with the correct

indentation. Parsons problems require a lower cognitive load on the learner because the

search space is limited to only the code fragments in the problem and there is no

possibility of syntax errors. Using Parsons problems for assessment of student

knowledge allows students without syntax knowledge of the programming language to

demonstrate procedural problem-solving knowledge.

Subgoals in computer science

Subgoal learning was first applied to programming education in the context of an

experimental laboratory with psychology undergrads as participants. Due to this context,

the programming procedure being taught had to be accessible to absolute novices.

Thus, participants were taught to create apps in Android App Inventor. In this highly

controlled environment, subgoal-labeled worked examples were found to improve

problem-solving performance by 8% (Margulieux et al., 2012). From that experiment,

research has focused on testing subgoal labeled worked examples in more authentic

programming education environments, including online learning with K-12 teachers

(Margulieux, Catrambone, & Guzdial, 2016), a game-based K-3 setting (Joentausta &

Hellas, 2018), and in open educational resources that crowdsource subgoal labels (Kim,

Miller, & Gajos, 2013). Our research applies subgoal learning to an introductory

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0012
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0043
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0036
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0033
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0025
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0024
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0018
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0020

programming course, specifically to students who were learning to solve problems using

while loops.

Our first study (Study 1) (Morrison et al., 2015) tested hypotheses related to whether

using subgoal labels to teach while loops would produce results similar to those

achieved in other disciplines. Learning to use while loops is cognitively demanding, and

the study proposed that using subgoal labels to help students learn would reduce the

cognitive load imposed during learning. Because students were several weeks into an

introductory programming course, we also recognized that they would have some prior

knowledge that was relevant to solving the loop problems. For this reason, we

hypothesized that students might better learn the subgoals of the procedure if they were

prompted to self-explain the subgoals, rather than being given subgoal labels that were

already defined. Self-explaining the subgoals, if students were able to do it, would

encourage active learning of the subgoals and lead to deeper learning than viewing

existing subgoal labels, which would lead to passive learning.

To test this hypothesis, the study divided the participants into three treatment

groups, each with its own instructional materials: learning with no subgoal labels (No

Subgoal), learning with given pre-defined subgoal labels (Given), and asking

participants to generate their own subgoal labels after some initial training (Generate).

Each treatment group was then subdivided into two sections: isomorphic (near) or

contextual (far) transfer between worked examples and practice problems (see Method-

Design for more information on transfer). Like self-explaining subgoals, contextual (far)

transfer between worked examples and practice problems was expected to promote

deeper learning and improve later problem-solving performance, if students could

successfully engage in it. The contextual transfer was also expected to be highly

cognitively demanding and perhaps unachievable for many students.

This first study found that students who learned with subgoal labels (either given or

generated) performed better on the code-writing assessments than those who learned

without subgoal labels. Within the given and generated groups, the best performing

group depended on the type of transfer between worked example and practice

problems that they received.

The unexpected results occurred with the given subgoal label group. Cognitive Load

Theory predicts that learning with given subgoal labels and no contextual transfer

should impose lower cognitive processing than learning with given subgoal labels and

contextual transfer and thus result in better learning. The contextual transfer would

require additional working memory to process, reducing learning. However, the results

from the first study directly contradict this prediction. Study 1 found, unlike the other two

treatment groups, that participants who learned with given subgoal labels and

contextual transfer significantly outperformed the given subgoal labels with isomorphic

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032

problems, completely opposite from what Cognitive Load Theory predicts. We examined

whether this main finding was an anomaly or if it could be replicated.

In a follow-up paper (Study 1 follow up) (Morrison, Margulieux, et al., 2016), we

examined the performance of students on a Parsons problem assessment, after having

learned loop problem-solving in one of the treatment groups (with no subgoal labels,

with given subgoal labels, or generating their own subgoal labels). We found that

students who were given subgoals performed statistically significantly better than those

who had no subgoals or who generated their own subgoals, regardless of transfer

condition. Participants that were given subgoal labels performed overall better than

those that did not have subgoal labels and those that generated their own subgoal

labels. Though participants in the generate labels and no labels conditions performed

equally, participants who generated their own labels completed the task faster than

those who did not receive labels.

In Study 2 (Margulieux, Morrison, Catrambone, & Guzdial, 2016), the examination of

the quality of the learner-generated labels from a new population of students and how

this affected problem-solving performance was reported. Study 2 found that twice as

many participants generated specific labels than general labels, but a larger percentage

of participants who received contextual transfer generated general labels than those

who had an isomorphic transfer. Participants who learned with isomorphic transfer and

generated their own labels performed relatively well, regardless of the specificity of their

labels. For those that learned with contextual transfer, their performance depended on

whether they created specific or general labels. Those who created specific labels

performed as poorly as the worst-performing group, those who received no subgoal

labels with the contextual transfer. On the other hand, participants who created general

labels with contextual transfer performed better than any other group.

Study 3 (Morrison et al., 2016) paper replicated Study 1 (Morrison et al., 2015) with a

third population of students. The results supported the findings from the previous

studies: participants who learn by generating subgoal labels (using isomorphic worked

example – practice problem pairs) performed the best, and statistically better than if

they had been worked example – practice problem pairs with the contextual transfer.

Despite the previous publications that report results of each of the three experiments

individually, we have yet to report all of the data from these three experiments or

examine them holistically to determine the cross-population effects of the subgoal

labeled worked examples. This paper addresses this gap.

Present study

In this paper, we examine the effect of learning subgoals through different instructional

methods (i.e. given labels versus generated labels compared to unlabeled) and transfer

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0031
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032

distance between worked examples and practice problems (i.e. isomorphic or

contextual transfer) across three separate, but comparable, populations. This new

analysis of the data allows us to report findings that were excluded from previous

conference proceedings and explore the average effect of the interventions to

determine a stable effect size across populations. We have the following research

questions:

RQ1: How do different instructional methods of learning with subgoals (either given or

learner generated) affect problem-solving performance?

RQ2: How does transfer distance (i.e. isomorphic transfer (changing the values in a

problem with the same context) or contextual transfer (changing the context, or cover

story)) from worked examples to paired practice problems affect problem-solving

performance?

To measure performance, we used three different assessments: (1) four novel

coding writing problems, (2) one Parsons problem, and (3) a post-test of five multiple-

choice questions, none of which contained the subgoal labels. The three assessments

were chosen to represent three levels of difficulty and application of knowledge. Code

writing was intended to be the most difficult and required students to recall the problem-

solving process from memory. The Parsons problem was intended to assess knowledge

of the problem-solving process while allowing students to recognize, rather than recall,

the procedure. Furthermore, students do not have to determine how to apply a

conceptual understanding to a new context in Parsons problems because the lines of

code are provided for them. Therefore, increasing the transfer distance between worked

examples and practice problems might not necessarily improve Parsons problem

performance, though it was expected to improve code-writing performance. The

multiple-choice questions required students to trace the code and determine which

answers containing possible outputs were correct. These questions were intended to be

the easiest questions and a learning check to identify participants who were not

engaging in the instruction. Additionally, we measured cognitive load related to the

instructional materials using the (Morrison, Dorn, & Guzdial, 2014) instrument and time

on task for both the learning period and each assessment.

Method

Design

The experiment had two manipulations: the format of worked examples and the transfer

distance between worked examples and practice problems. The worked example either

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0030

had no subgoal labels (i.e. No Subgoal), had subgoal labels created by experts

(i.e. Given), or included a placeholder for the participant to fill in their own subgoal label

(i.e. Generated). In the No Subgoal condition (Control Group A in the Supplementary),

the worked example is presented in a step by step solution of how to develop the code

solution for the problem, including code comments. In the Given condition (Subgoal

Given, group B in the Supplementary), the worked example is the same but broken into

groups and labeled by the subgoal associated with the task. One subgoal may include

more than one step. Code comments were identical to the control condition. For

the Generated condition (Subgoal Generate group C in the Supplementary), the worked

example was broken into groups, as in the Given condition, but instead of including the

expert-created subgoal label, a blank space was included to allow the participant to type

in their own subgoal explaining what the pieces of code accomplished.

The second manipulation involved the differences between the worked example and

practice problem given to the students. As can be seen in the Supplementary (worked

examples compared to practice problems), for the isomorphic (near) transfer problems

the context of the problem for the worked example and the practice problem is identical,

and only the values being manipulated change. For the contextual (far) transfer

problems, the context of the worked example and the practice problem are different;

however, the solution has an identical format. The experiment measured performance

with pre- and post-tests, problem-solving tasks (both writing code and completing a 13-

step Parsons problem), self-reported cognitive load on the (Morrison et al., 2014)

instrument, and time on task.

Instructional materials

In this study, we developed instructional materials to teach introductory programming

students to solve programming problems using while loops. We selected the topic of

writing indefinite loops for several reasons: (1) based on experience we know that

students can struggle with the introduction of repetition statements, (2) while loops are

the most general form of a repetition control structure allowing any type of loop to be

written, and (3) teaching of this topic occurs in the early part of the term allowing us to

reach the maximum number of students – typically before the withdrawal date for the

term passed.

The materials used pseudocode so that students from multiple universities and

courses that used different programming languages could participate. Pseudocode is

easy for students to understand regardless of the programming language that they are

learning (Tew & Guzdial, 2011). The first two experiments started before students had

learned to use while loops in their courses, and the third experiment was conducted

after students had been introduced to while loops. The procedure took about two hours

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0030
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0040

to complete. In most cases, the experimenters conducted the experiment in a regularly

scheduled lab for the programming courses from which they recruited participants. The

labs were held in closed classrooms with at least one computer per student. Some

participants completed the procedure as an at-home assignment.

The instructional materials were three separate worked examples interleaved with a

practice problem after each worked example. The format of the worked examples can

be seen in the Supplementary (Worked Examples). Each worked example appeared on

one screen, followed by the practice problem on the next screen. Students could go

back and forth between the worked example and the practice problem during the

instructional period. Once the student reached the assessment portion of the study, they

could not go back to the instructional materials.

At the beginning of the session, the experimenters introduced the study explaining

that they would learn to solve problems using while loops and that the materials they

received would help them to achieve this. The experimenters then gave students a link

to a SurveyMonkey survey where all of the materials and assessments were hosted.

Participants worked independently and could ask for help from the experimenter on

administrative tasks (e.g. “What is my participant number?”) but not for help on the

programming tasks (e.g. “How do I increase the loop control variable?”). Because

students worked independently, some completed the tasks faster than others, and

SurveyMonkey recorded how quickly each student progressed through the various

stages of the experiment.

Assessments

After completing the instructional period with worked examples and practice problems,

participants were asked to solve four novel problems using while loops. All the

assessment problems required a contextual transfer from the worked examples and

practice problems that participants used to learn the procedure. No subgoal labels

appeared in any of the assessment problems. We scored participants’ problem-solving

solutions to create a problem-solving score. We evaluated the solutions line-by-line

rather than as a whole to provide more sensitivity in the score. Each correct line of code

earned one point for a maximum score of 44 points across four questions. Lines of code

were considered correct if they were conceptually correct, regardless of typos or syntax

errors. Logic errors (e.g. having < rather an ≤) made the line incorrect. We decided to

score for conceptual and logical accuracy rather than absolute accuracy because the

participants were inexperienced programmers.

We also measured participants’ problem-solving procedural knowledge with a

Parsons problem. We scored participants’ Parsons problem answers for correct order.

Because the Parsons problem had 13 pieces of code to rank order, the maximum score

was 13. Participants earned one point for each piece of code that was in the correct

order relative to the piece before it. For example, if a participant’s solution ranked the

6th, 7th, and 8th pieces of code in the 7th, 8th, and 9th positions, they would lose only

the first point because it did not follow the 5th piece of code. The 7th and 8th pieces

would still be in order, relative to other pieces of code, and counted as correct. This

scoring scheme was considered better than scoring for exact order because it does not

penalize later pieces of code for earlier mistakes.

Procedure

Most participants completed the experiment during one of their lab sessions in a

computer laboratory. Students had an option to complete an alternative assignment, but

none selected that option. Participants worked independently, and each session

included between 15 and 30 people. The sessions typically lasted between 1 and 1.5 h,

depending on the rate at which participants completed the tasks. For students in the lab

setting, a few stragglers were asked to leave at the end of 2 h due to the next class

arriving.

First, participants completed a demographic questionnaire and the pre-test. Next,

they began the instructional period. The instructional period began with training.

Participants who were going to generate their own subgoal labels received training to

create subgoal labels (see the Supplementary – How to Make Subgoal Labels). The

training included instructions about creating subgoal labels, examples of a subgoal

labeled worked example, and activities to practice creating subgoal labels on simple

algebra problems designed to be easy for any college student so that they could focus

on creating labels. Participants who did not generate their own subgoal labels received

training to complete verbal analogies (available in the Supplementary – Verbal

Analogies). Verbal analogies (e.g. water: thirst: food: hunger) were considered a

comparable task to subgoal label training because they both require analyzing text to

determine an underlying structure. Like the subgoal label training, the analogy training

included instructions, worked examples, and activities to practice.

Following the training, the instructional period provided worked examples and

practice problems to help participants learn to use while loops to solve problems. Once

participants completed the instructional period, they started the assessment period.

Throughout the procedure, the time taken to complete each task was recorded. A

diagram of the entire study procedure can be seen in Figure 2.

Figure 2. Complete study procedure. Items with * are provided in the Supplementary.

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/f0002.xhtml

Participants

Participants across the three experiments were 220 students recruited through

programming courses and offered course credit for completing a lab activity as

compensation. To account for possible effects of prior experience, participants reported

whether they had experience with programming and/or using loops during high school

(AP courses or otherwise) and college. Other learner characteristics that participants

provided were gender, age, academic major, high school grade point average (GPA),

college GPA, whether English was their primary language, number of years in college,

self-reported comfort with computers, expected difficulty of completing the programming

task, and prior courses in programming. Participants were randomly assigned to

intervention conditions to avoid possible confounds caused by learner characteristics.

To ensure that there were no confounds, learner characteristics and problem-solving

performance were correlated using Pearson’s r for continuous learner variables and

Spearman’s ⍴ for dichotomous learner variables. The results of these analyses are

reported in Table 1, 2, and 3.

Table 1. Learner characteristics in experiment 1 and their relationship to

performance. (Table view)

Learner characteristic Mean/proportion Std.

deviation

Correlation with problem-solving

performance

Gender 84% male - ⍴ = −.02, p = .90

Age 21 4 r = −.06., p = .60

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0001.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0002.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0003.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0001.xhtml

Learner characteristic Mean/proportion Std.

deviation

Correlation with problem-solving

performance

Major 50% CS major - ⍴ = −.03, p = .78

High School GPA 3.40 0.58 r = −.06, p = .59

College GPA 3.08 0.55 r = .18, p = .13

English is primary

language

91% yes - ⍴ = .06, p = .61

Years in college 2.4 1.4 r = −.03, p = .81

Comfort with computers* 4.2 1.5 r = .46*, p < .001

Expected difficulty of task* 4.0 1.4 r = .29*, p = .007

Prior course in

programming

42% yes - ⍴ = .37*, p < .001

*The question about comfort with computers asked student to rate how comfortable they were using a

computer on a 7-point scale that ranged from “1 – not comfortable at all” to “7 – very comfortable.” The

question about expected difficulty of task used a 7-point scale that ranged from “1 – very difficult” to “7 –

very easy”.

Table 2. Learner characteristics in experiment 2 and their relationship to

performance. (Table view)

Learner characteristics Mean/proportion Std.

deviation

Correlation with problem-solving

performance

Gender 40% male - ⍴ = .05, p = .79

Age 22 6.9 r = .05., p = .79

Major 23% CS major - ⍴ = .01, p = .94

High School GPA 3.81 0.37 r = .43*, p = .02

College GPA 3.33 0.53 r = .15, p = .42

English is primary

language

91% yes - ⍴ = .32, p = .06

Years in college 3.3 1.8 r = −.14, p = .42

Comfort with computers* 3.5 1.2 r = .07, p = .68

Expected difficulty of task* 3.2 1.3 r = .24, p = .17

Prior course in

programming

29% yes - ⍴ = .11, p = .52

Table 3. Learner characteristics in experiment 3 and their relationship to

performance. (Table view)

Learner characteristics Mean/proportion Std.

deviation

Correlation with problem-solving

performance

Gender 71% male - ⍴ = −.02, p = .90

Age 19 3 r = .08., p = .46

Major 33% New Media

63% Game

Design

- ⍴ = .11, p = .30

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0002.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0003.xhtml

Learner characteristics Mean/proportion Std.

deviation

Correlation with problem-solving

performance

High School GPA 3.61 0.32 r = .05, p = .70

College GPA 3.47 0.62 r = −.06, p = .64

English is primary

language

96% yes - ⍴ = −.15, p = .15

Years in college 1.9 0.8 r = .06, p = .57

Comfort with computers* 5.3 1.4 r = .52*, p < .001

Expected difficulty of task* 4.5 1.4 r= .31*, p = .002

Prior course in

programming

94% yes - ⍴ = .30*, p = .003

In addition to asking students about their prior experiences with programming and

using loops, participants completed a pre-test to measure their prior knowledge of

solving problems using while loops. The pre-test included five multiple-choice questions

from AP CS A exams. Participants who answered more than two questions on the pre-

test correctly were excluded from the analysis to reduce potential error because the

instructional materials were intended for novices. Participants who did not complete all

components of the experiment were also excluded from the analysis. The numbers of

students excluded were relatively low and detailed in the following sections.

Experiment 1 participants

Participants were 66 students from 1 of the 4 introductory programming courses at a

technical university in the southeast United States. The experiment occurred before

students learned about loops in their courses. Students performed poorly on the pre-

test, M = 1.2 out of 5 points, and 32% of participants earned no points. Six students (out

of 72, 8%) were excluded from analysis for high pre-test scores. No statistically

significant relationships between all assessments and learner characteristics were

found for most variables. Comfort with computers, expected difficulty of task, and taking

a prior course, however, correlated with problem-solving performance. To ensure that

no conditions had an advantage over the others based on these learner variables, we

inspected the means for each of these learner variables within each condition. We

found no meaningful differences (i.e. more than a few decimal points) among

conditions.

Experiment 2 participants

Participants were 54 students from introductory programming courses at a different

technical university in the southeast United States. Unlike in Experiment 1, only 23% of

participants were computer science majors. The majority of students were taking a

Computational Media course. Many of them were likely taking the course because the

university requires that all students take a programming course, and this course is

designed specifically for students not majoring in computing. This sample characteristic

explains the relatively high average age and the number of years in college for

participants.

The average score on the pre-test was low, M = 1.6 out of 5, and 23% of students

earned no points. Five students (out of 59, 8%) were excluded from analysis for high

pre-test scores. The only learner variable that correlated with assessment scores was a

high school GPA. The mean high school GPA for each experimental group was

inspected to ensure that no groups had an advantage over the others. Each mean was

within a few decimal points of the others.

Experiment 3 participants

The last site used to collect data was a technical university in the northeast United

States. The final experiment had a larger number of participants than the first two, 100

students. The final experiment also included students from first-semester introductory

programming courses, like the first two experiments, and students in a second-year

course. Collecting data from both the first-semester and second-year course in the

computing curriculum allowed us to explore how prior knowledge impacted the results

because the students in the second-year course would have already learned, practiced,

and been tested on solving problems with while loops in a previous course (Study 3)

(Morrison et al., 2016).

In this experiment, both first-semester and second-semester students had already

learned to use while loops. To account for prior knowledge, participants completed the

same pre-test as Experiments 1 and 2. The average score was M = 2.3 out of 5.

Participants were not excluded from analyses based on their pre-test scores, unlike in

the previous two experiments. At the University for this study, students are not given

credit for AP CS courses. This led to a large number of students in the first-semester

course having prior programming knowledge. If we had excluded students based on

their pre-test scores, there would not have been enough statistical power in the

analyses. Additionally, this manuscript aggregates the effect of subgoal labels across

different populations; having more knowledgeable students represents a unique

population compared to the first two studies. As in Experiment 1, comfort with

computers, expected difficulty of task, and taking a prior course correlated with problem-

solving performance. We again inspected the means for each of these learner variables

within each condition to ensure that no condition had an inherent advantage over the

others. No meaningful differences were found among conditions.

Results

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029

The data used for this paper have been partially reported in previous papers as

independent experiments. The problem-solving, post-test, and time on task data for

Experiment 1 were published in (Study 1) (Morrison et al., 2015). The Parsons problem

data for Experiment 1 were published in (Study 1 follow-up) (Morrison, Margulieux, et

al., 2016). For both Experiments 1 and 2, the problem-solving, Parsons problem, quality

of generated labels, and time on task were published in (Study 2) (Margulieux et

al., 2016). For Experiment 3, the problem-solving and time on task data were published

in (Study 3) (Morrison et al., 2016). For some of the analyses reported in these papers,

the differences among groups had meaningful effect sizes but were not statistically

significant. By analyzing the data together, the sample size, and thus statistical power,

will be large enough to produce reliable effect sizes and, if the differences are large

enough, statistical significance.

In addition to adding statistical power to our analyses, this paper will include data

that has not been reported before due to space constraints. The new data included in

this analysis are cognitive load data for all three experiments, Parsons problem data

from Experiment 3, and post-test data for Experiments 2 and 3.

For all dependent variables (i.e. problem-solving performance, post-test, Parsons

problem, cognitive load, and time on task), we analyzed the distribution of scores for

skewness and kurtosis to ensure normal distribution and, therefore, that parametric

statistical tests, such as ANOVA, were appropriate. In addition, we visually inspected

the histograms of scores for each measurement. In all cases, the skewness and

kurtosis were within normal bounds (i.e. between −2 and 2 (Gravetter & Wallnau, 2016))

and histograms followed a normal distribution. Therefore, no outliers were excluded

from analyses, and parametric tests are appropriate for analyses of the measurements.

Performance data

For our inferential statistics, we report two types of effect sizes. The first, est. ω2, is for

only omnibus analyses (i.e. ANOVAs) and describes how much of the variation in

scores can be attributed to the manipulation (i.e. proportion of variance accounted for,

PVAT). For example, for the problem-solving tasks, an est. ω2 of .06 means that 6% of

the variation in performance can be attributed to the instructional manipulations. In the

social sciences, an est. ω2 of .06 is considered a medium-sized effect (Cohen, 1969).

The second effect size, f or d, was used for only our post hoc analyses to describe the

difference between groups using the standard deviation as the unit of measurement.

For example, for the problem-solving tasks, a d of .5 would mean that the difference

between the means of two groups is half of the standard deviation for those groups. The

statistic d is used for t-tests, and the statistic f is used for ANOVAs and is equal to

2d (Cohen, 1988). For example, an f of .25 is equal to a d of .5, and both indicate that

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0031
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0016
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0013
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0014

the difference between means is half of a standard deviation, which is considered a

medium-sized effect (Cohen, 1969).

Problem-solving score

The main dependent variable, score on problem-solving tasks, had a maximum score of

44. The overall mean score was 26.58, and the standard deviation was 14.05. For the

omnibus ANOVA analyses of these data, worked example format and transfer distance

were treated as randomly assigned variables. In addition, university, which was different

for each experiment, was treated at a quasi-experimental variable. This nested design

allows us to combine the data from the three experiments while still accounting for

possible differences among universities.

Problem-solving score depended on the interaction of the worked example format

and transfer distance, F (2, 188) = 5.23, p = .028, est. ω2 = .08 (see Figure 3), matching

previous results from independent experiments (Study 1, Study 2, Study 3) (Margulieux

et al., 2016; Morrison et al., 2016, 2015). Due to the interaction, the main effects of

worked example format and transfer distance will not be reported to avoid confusion in

interpretation (Maxwell & Delaney, 2004). Instead, pairwise comparisons will be used as

post hoc tests to explore the pattern of results. Exploring the effect of the university,

there was no interaction of university and worked example format, p = .37, university

and transfer distance, p = .65, nor university, worked example format, and transfer

distance, p = .20. In addition, there was no main effect of university, p = .12; therefore,

the combined data from all three universities were used for the post hoc tests.

Figure 3. Performance across six groups on problem-solving (code writing) tasks.

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0013
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/f0003.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0028

For post hoc analysis, we used simple main effects. Simple main effects analyze the

effect of one independent variable for each level of the other independent variables. For

example, simple main effects analysis will explore the effect of worked example format

twice, once within the isomorphic transfer and once within the contextual transfer.

Because the worked example format had three levels, the effect is analyzed with

pairwise comparisons among each of the levels. The full results can be found in Table

4. The only two comparisons that were statistically significant were those within

isomorphic transfer between given labels and generated labels and within contextual

transfer between no labels and given labels. These results suggest that there are two

levels of performance, low and high. The two lowest-scoring groups performed

statistically worse than the two highest-scoring groups (see Figure 3). The two groups in

the middle did not perform statistically different than the others, but they are numerically

close to the lowest-scoring groups and had higher mean differences and effect sizes

from the highest-scoring groups. Thus, we consider the two middle groups as low-

performance groups.

Table 4. Pairwise comparisons evaluating simple main effect of worked example

format. (Table view)

Transfer

distance

Worked example format

comparison

Std.

error

Mean

difference

Significance Effect size

(d)

Isomorphic No Subgoal to Given 3.34 1.55 .64 .10

No Subgoal to Generate 3.34 −4.80 .15 .37

Given to Generate 3.52 −6.36 .02 .44

Context No Subgoal to Given 3.01 −7.62 .01 .59

No Subgoal to Generate 3.15 −1.49 .64 .11

Given to Generate 3.24 6.14 .06 .47

To further explore performance, we split the problem-solving tasks into nearer (i.e.

switched context) and farther (i.e. deviate from exact procedural steps) transfer from the

instructional tasks. Switched context meant that we used the same type of contextual

transfer as we used between the worked example and practice problem pairs. In this

case, it describes transfer between the instructional tasks (i.e. worked example and

practice problems) and the problem-solving tasks in this assessment. Procedure

transfer means that the procedure used to solve the problem-solving task did not follow

the exact same steps as the instructional tasks. For example, in the instructional tasks,

participants had to use a while loop to find an average of a list, and in the problem-

solving tasks, participants had to use a while loop to find an average of values that

exceeded a threshold (examples can be found in the Supplementary – Worked Example

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0004.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0004.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/f0003.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0004.xhtml

#1 and Assessment #2). The problem-solving task had extra steps but still used the

same abstract procedure that was taught.

The results did not change when comparing groups within only the nearer or farther

transfer tasks. In both cases, there was still a statistically significant interaction with the

same pattern of scores, F (nearer; 2, 188) = 4.04, p = .02, est. ω2 = .06, F (farther, 2,

188) = 2.99, p = .03, est. ω2 = .05. These results suggest that the interventions had the

same effect on problem-solving performance regardless of the type of transfer that was

required to complete the problem-solving tasks.

Parsons problem score

The Parsons problem score was based on one Parsons problem and had a maximum

score of 13 for putting each of the lines of code in the correct order. The overall mean

score was 6.20, and the standard deviation was 4.27. Like for problem-solving

performance, in the omnibus ANOVA analyses of these data, worked example format

and transfer distance were treated as randomly assigned variables and the university

was treated at a quasi-experimental variable.

Parsons problem score did not have a statistically significant main effect of worked

example format, F (2, 188) = 1.11, p = .41, est. ω2 = .03, transfer distance, F (2, 188) =

0.15, p = .73, est. ω2 = .01, nor the interaction of the worked example format and

transfer distance, F (2, 188) = 1.50, p = .31, est. ω2 = .03. These results align with

results in (Study 3) (Morrison et al., 2016) but not with (Study 2) (Margulieux et

al., 2016), which found a main effect of worked example format and concluded that

giving subgoal labels, regardless of transfer distance, improved Parsons problem score.

This difference in results might be due to including only one Parsons problem in our

protocol, possibly contributing to an unreliable measurement of Parsons problem

performance. Based on the larger sample size of both the current analysis and that

conducted in (Study 3) (Morrison et al., 2016), we would expect that the current result is

more reliable. Therefore, we would not conclude that giving learners subgoals labels

necessarily results in better performance on Parsons problems after receiving

instructional materials similar to ours.

In the current analysis, we found a main effect of university, F (2, 188) = 10.16, p =

.04, est. ω2 = .06. There was no interaction of university and worked example

format, p = .11, university and transfer, p = .51, nor university, worked example format,

and transfer, p = .22. The difference between University 1 (M = 3.7) and University 2

(M = 4.6) was not statistically significant, t (116) = 1.35, p = .18, d = .25. In contrast,

University 1 performed much worse than University 3 (M = 8.8), t (181) = 10.44, p <

.001, d = 1.57. Similarly, University 2 performed much worse than University 3, t (133) =

5.53, p < .001, d = 1.04. These results are not unexpected, though, given that the

participants from University 3 had already learned about solving problems with loops in

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029

their programming courses. It is interesting that participants from University 3 performed

statistically better than those in the other universities on the Parsons problem but not on

the problem-solving tasks, which were writing code tasks. This supports the notion that

students may demonstrate problem-solving knowledge in Parsons problems even if they

cannot in traditional code-writing problems.

Post-test score

The post-test asked participants to complete, after instruction, the same five multiple-

choice questions from the AP CS exam that they had completed prior to instruction. The

maximum score was 5, and the mean was low, 2.40, with a standard deviation of 1.45.

The post-test score did not have a statistically significant main effect of worked example

format, F (2, 188) = 1.37, p = .34, est. ω2 = .03, transfer distance, F (2, 188) = 0.24, p =

.65, est. ω2 = .01, nor the interaction of the worked example format and transfer

distance, F (2, 188) = 1.39, p = .33, est. ω2 = .02. These results align with individual

experiment results from (Study 1, Study 3) (Morrison et al., 2016, 2015). In addition,

there was no main effect of university, p = .76, interaction of university and worked

example format, p = .50, university and transfer distance, p = .85, nor university, worked

example format, and transfer distance, p = .27. We would expect, based on the results

of the problem-solving tasks and Parsons problem, that participants would score higher

on this post-test. Moreover, we would expect that participants from University 3 would

perform better on this test than other participants because they were not excluded from

analysis due to high pre-test scores and because they had learned about loops in their

course already. Therefore, we conclude that this post-test, perhaps because it

measured code-tracing skill more than problem-solving skill, did not effectively measure

performance for any of the groups of participants, and we do not include this

assessment when considering the conclusions of the study. These results support the

idea that code tracing is a skill separate from code writing (Harrington & Cheng, 2018;

Kumar, 2015).

Process data

To supplement our data about performance outcomes, we collected information about

the learning process to explore differences among groups. These data include

perceived cognitive load during instruction and time on task during instruction and

assessment.

Cognitive load

The cognitive load survey asked participants questions about their cognitive load

directly after instruction to measure their perceptions of cognitive load during instruction

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0017
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0021

(Morrison et al., 2014). Each of the 10 questions asked participants to rate their

perceived cognitive load (e.g. “The topics covered in the activity were very complex”) on

a scale from “0 – not at all the case” to “10 – completely the case,” making the

maximum score 100. The mean was 40.9 with a standard deviation of 14.6. The

cognitive load did not have a statistically significant main effect of worked example

format, F (2, 188) = .51, p = .63, est. ω2 = .01, transfer distance, F (2, 188) = 0.89, p =

.43, est. ω2 = .02, nor the interaction of the worked example format and transfer

distance, F (2, 188) = .56, p = .60, est. ω2 = .01. Furthermore, there was no main effect

of university, p = .35, interaction of university and worked example format, p = .51,

university and transfer distance, p = .61, nor university, worked example format, and

transfer distance, p = .20, suggesting no differences among universities.

These results were not previously reported for individual experiments due to space

constraints. In this case, though, finding no statistical difference is good as it suggests

that students did not perceive a meaningful difference in mental workload even though

the instructions asked them to engage in different tasks. One possible explanation of

these null results is that participants in all conditions used the same amount of mental

resources, whether they were engaging in our prescribed learning strategy or not. We

have no supplemental evidence to make a strong argument for this possibility. We can

say, however, that some participants performed better than others without perceiving

differences in mental workload.

Time on task

The total amount of time that participants spent on the experiment was recorded. This

includes time spent studying worked examples, solving practice problems, and

completing the assessments. The amount of time that participants spent on the task

depended on worked example format, F (2, 188) = 8.67, p < .001, est. ω2 = .09. There

was no effect of transfer distance, F (2, 188) = 0.55, p = .46, est. ω2 = .003, nor was

there an interaction, F (2, 188) = 1.20, p = .30, est. ω2 = .01. Performance did not

interact with university either, F (2, 188) = 0.63, p = .67, est. ω2 = .002.

To explore the effect of worked example format on time on task, we used simple

main effects analysis. Within the isomorphic transfer condition, No Subgoal participants

completed the task faster (M = 52 min, SD = 21 min) than participants in the Given (M =

72, SD = 27) or Generate (M = 71, SD = 29) conditions, Mean Difference = 20.1 and

18.8 min, p = .003 and .007, d = .83 and .75, respectively.

The Given and Generate conditions did not differ on time on task, Mean Difference =

1.4 min, p = .85, d = .04. When considering the effect on time, it is important to

remember that within the isomorphic transfer condition, participants who generated their

own subgoal labels performed best, and participants without subgoal labels or who were

given subgoal labels did not perform differently. This combination of results means that

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0030

participants who generated subgoal labels with isomorphic transfer took longer than

those who did not receive subgoals, but they performed better. In contrast, participants

who were given subgoal labels with isomorphic transfer took longer than those who did

not receive subgoals but did not perform better. Therefore, taking longer to complete the

task did not result in better performance for each group.

Following a similar pattern within the context transfer condition, the No

Subgoal participants completed the task faster (M = 59 min, SD = 25 min) than

participants in the Given (M = 67, SD = 25) or Generate (M = 79, SD = 35) conditions,

Mean Difference = 12.2 and 20.1 min, p = .076 and .005, d = .32 and .66, respectively.

Though the difference between the No Subgoal and Given groups is not statistically

significant, we argue that it is meaningfully significant, albeit small, based on the mean

difference and d value. The Given and Generate conditions did not meaningfully differ

on time on task, Mean Difference = 7.9 min, p = .22, d = .21.

A piece of information to highlight from these results is that the standard deviation for

the group who generated subgoals with the contextual transfer was 35 min, which is

approximately 10 min more than the other groups. This means that participants in this

condition had much more variance in the amount of time on task than those in other

conditions. If we were to offer a post hoc explanation of this finding based on our

observations as experimenters and exploring the data, we might argue that participants

in this group were more likely to flounder and take an excessively long time to complete

the experiment. This group had twice as many people as any other group who took 100

min or longer (6 participants compared to 1–3 participants in the other groups).

Similar to the isomorphic transfer condition, it is important to recognize that within the

contextual transfer condition, participants who were given labels performed better than

others. This combination of results means that participants who were given subgoal

labels with context transfer took slightly longer than those who did not receive subgoals,

but they performed better. Moreover, participants who generated subgoals with context

transfer took substantially longer than those who did not receive subgoals, but they did

not perform better. The combined results suggest that depending on the transfer

distance and worked example format, better performance required more time on task,

but more time on task did not guarantee better performance.

To explore the relationship between time on task and performance more deeply, we

examine the correlation between these two dependent variables within each group.

Overall, there was a strong, positive relationship between performance and time on

task, r = 0.43, p < .001, as is typical in education research. However, this relationship

was not consistent within each experimental group (see Table 5), suggesting that

spending longer on the task did not necessarily coincide with higher performance. The

relationship between time on task and performance was strongest when students

learned subgoals with isomorphic transfer between examples and practice problems or

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0005.xhtml

when students did not learn subgoals with contextual transfer. The relationship was

weakest when students generated subgoals with contextual transfer or when students

did not learn subgoals with isomorphic transfer. Therefore, despite the extra time that

students learning subgoals spent on the task, their extra effort did not consistently result

in higher performance. As such, we conclude that the benefit of learning subgoals

(under particular circumstances) is due to more than coaxing students to spend more

time on task.

Table 5. Correlation between time on task and performance within each experimental

group. (Table view)

Experimental group No subgoal Given subgoal Generate subgoal

Isomorphic Transfer r = 0.26, p = .140 r = 0.67, p < .001 r = 0.51, p = .008

Contextual Transfer r = 0.53, p = .001 r = 0.41, p = .011 r = 0.27, p = .186

Discussion

In the cumulative analysis of three studies that used the same experimental protocol

across three groups of learners at different institutions, we found that the most effective

instructional design interventions were those that (1) gave subgoal labeled worked

examples with farther transfer between worked examples and practice problems or (2)

asked students to generate subgoal labels for worked examples with nearer transfer

between worked examples and practice problems. In our experiment, these two

conditions performed equally, but in practice, there might be reasons to pick one over

the other based on several factors, such as characteristics of students in the class, the

teaching style of the instructor, or the instructional materials (e.g. curriculum or

textbook) being used.

The students in the class might affect whether they will successfully generate

subgoal labels. If the students are already engaging in self-explanation (e.g. they

answer challenging questions in class), learn concepts quickly, or are highly motivated

to learn the content, then promoting self-explanation through the generation of subgoal

labels might be particularly effective. When we analysed the content of the subgoals

generated by students, we found that students who learned with contextual transfer and

generated more generalizable subgoals performed significantly better at problem-

solving than any other group (Margulieux et al., 2016). If the students tend to be unable

to self-explain, are otherwise struggling in the course (i.e. exhibit signs of already having

high cognitive load), or seem unmotivated to learn, then giving subgoal labels would

likely be more effective than asking them to generate subgoal labels. Based on whether

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/t0005.xhtml
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026

students generate or are given labels, the transfer distance between worked examples

and practice problems can be adjusted to match the most effective conditions.

The instructor’s teaching style could also affect how students should engage with

subgoal labels. Based on (Margulieux & Catrambone, 2019), students who generated

subgoal labels and received feedback on those labels performed better than students

who generated subgoal labels without feedback. Therefore, if the instructor’s teaching

style includes providing feedback or class discussion during which students can refine

their generated labels, then generating labels might be more effective than given labels.

In contrast, if the course includes a lot of independent learning without many

opportunities for feedback or too many students for the instructor to provide individual

feedback, then generating labels might be no different than given labels, as was the

case in these studies.

The last factor that might determine which type of subgoal learning best suits a

course is the curricular materials being used in the course. If the curricular materials,

including worked examples and practice problems, were designed by someone else,

then the transfer distance between the worked examples and practice problems should

determine the type of subgoal learning used. Isomorphic transfer would be best

complemented by generating labels, and contextual transfer would be best

complemented by given labels (Margulieux, Morrison, & Decker, 2019).

If isomorphic transfer between worked examples and practice problems is an option

and the instructor does not have the time or resources to identify subgoal labels for the

procedure, then allowing learners to generate subgoal labels for themselves is a good

option. To do this, the instructor could use subgoal label training, add a prompt at the

end of each problem-solving step, and ask students to generate their own labels. This

option would likely be most effective if the instructor matched features between worked

examples (e.g. step 2 of the first example is like step 3 of the second example).

Margulieux and Catrambone (2019) found that providing hints about which features are

similar between worked examples helped students to perform better when they

generated their own subgoal labels. Like the feedback described in the paragraph about

teaching style, providing hints could further improve the problem-solving skill of learners

who are generating their own subgoal labels. It is important to clarify that (Margulieux &

Catrambone, 2019) found that providing both hints and feedback did not improve

performance; therefore, if feedback or hints are provided, the instructional materials

should provide only one or the other.

However, if pre-defined given subgoal labels are used, the worked example –

practice problem pairs should utilize contextual transfer to ensure maximum learning.

As mentioned earlier, this is contradictory to what would be predicted by cognitive load

theory. This is certainly one phenomenon that needs further research. It may be that

with given subgoal labels and isomorphic problems students do not adequately self-

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0023
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0027
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0023
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0023

explain the process associated with each subgoal as the steps are identical within both

the worked example and practice problem. To ensure that students in the given subgoal

labels with isomorphic practice problems were adequately studying the worked example

and attempting the practice problem, we examined the student code submissions. We

reviewed student code submissions to ensure that they were not copied from the

worked example. We did a visual inspection and a character by character comparison

from the student code submission to the worked example presented. We found no

instances of an exact copy of worked example code or any student submissions more

than 10% identical to the worked example. Also, the time spent in the instructional

period indicates that participants spent similar amounts of time regardless if they

received isomorphic or contextual transfer worked example – practice problem pairs.

Conclusion

In this paper, we have aggregated the data from three previous studies to take a more

holistic view and to examine the results for generalization across populations to provide

the most nuanced and accurate information for using subgoal-labeled instructional

materials in the classroom. By combining the data for maximum statistical power, we

can view effect sizes to determine which treatments are likely to yield similar results in

the future.

Our research into subgoal-labeled instruction in computing represents the first

attempt in any discipline (that we are aware of) to test the generation of subgoal labels

by participants and its effect on learning performance. We are also the first (to our

knowledge) to vary transfer between worked examples and practice problems. By

introducing these additional conditions into our research, we have found combinations

which provide the most beneficial experience for the learner:

1.

Given subgoal labeled worked examples with farther transfer between worked examples

and practice problems or

2.

Student-generated subgoal labels for worked examples with nearer transfer between

worked examples and practice problems.

Either condition should yield the highest performance from students. Which you

choose to implement may depend on the conditions discussed above.

Limitations

Our results are limited to having student performance data for only a single lab during

an introductory programming course. From this, we cannot speculate or generalize to

what the long-term impacts are from a learning trajectory perspective. Additionally, the

tests were conducted during a single lab session with no delayed test for knowledge

over time. Thus, our results only speak to the immediate learning outcomes.

Another potential limitation of this work is the necessary solitary work required of the

participants. We asked students in a lab to work alone at their computer for 1–2 h

without assistance from peers or instructors or teaching assistants. This condition was

necessary for experimental integrity but is not ecologically valid for many classroom lab

environments. While we do not expect that collaboration would negate the learning

effects of subgoal labels, it may affect them in unpredictable ways. For example, if some

students found similarities between the worked example and practice problem and then

helped others in the lab, then the farther transfer intervention might become universally

more effective than the nearer transfer intervention. In the study condition where

students were asked to generate subgoal labels, if students were working together then

the condition would transform from a self-explanation activity to a peer-explanation

activity which may or may not benefit each individual student (Chi, 2009).

Future work

Current research has examined student performance in learning with only a single

construct within an entire introductory programming course (while loops). Research has

moved from a laboratory environment (Margulieux et al., 2012) to a single lab instance

(Morrison, Marguliuex, & Guzdial, 2015; Marguliuex, et al., 2016; Morrison, Marguliuex,

& Decker, 2016) Study 1, Study 2, Study 3) (Morrison et al., 2015). The next logical step

would be to use subgoal labels throughout an entire course and measure student

learning. This could be implemented using either of the most beneficial subgoal

conditions. Given subgoal labels could be used as long as the worked example and

practice problems represented further transfer. Or students could be trained to generate

their own subgoal labels and provided with worked example-practice problems with near

transfer, and if students receive feedback on their generated subgoal labels to ensure

generality.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation 1712231 and 1712025.

Notes on contributors

Briana B. Morrison is an Assistant Professor of Computer Science at the University of

Nebraska Omaha. She has over 20 years’ experience in teaching computer science.

https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0011
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0025
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0026
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0029
https://www-tandfonline-com.leo.lib.unomaha.edu/reader/content/17f26734286/10.1080/08993408.2019.1707544/format/epub/EPUB/xhtml/index.xhtml#cit0032

She has served on the ACM SIGCSE Board and ACM Education Committee. Her

research area is CS Education where she explores cognitive load theory within learning

programming, broadening participation in computing and expanding and preparing

computing high school teachers.

Lauren E. Margulieux is an Assistant Professor of Learning Sciences at Georgia State

University. Her research interests are in educational technology and online learning,

particularly for computing education. She focuses on designing instructions in a way

that supports online students who do not necessarily have immediate access to a

teacher or instructor to ask questions or overcome problem solving impasses.

Adrienne Decker is an Assistant Professor in the Department of Engineering Education

at University at Buffalo. Her research interests are in computing education, particularly

at the introductory level. She is interested in techniques that support learning of

introductory programming material at the university level and the impact that exposure

to computing prior to university has on learners in the introductory courses.

Supplementary material

Supplemental data for this article can be accessed here.

References

Atkinson, R. K. (2002). Optimizing learning from examples using animated pedagogical
agents. Journal of Educational Psychology, 94(2), 416. Crossref.

Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding transfer in statistics:
Examining the use of conceptually oriented equations and elaborations during subgoal
learning. Journal of Educational Psychology, 95(4), 762. Crossref.

Atkinson, R. K., & Derry, S. J. (2000). Computer-based examples designed to encourage
optimal example processing: A study examining the impact of sequentially presented,
subgoal-oriented worked examples. Fourth International Conference of the Learning
Sciences. Presented at the ICLS. Ann Arbor, Michigan.

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples:
Instructional principles from the worked examples research. Review of Educational
Research, 70(2), 181–214. Crossref.

Bielaczyc, K., Pirolli, P. L., & Brown, A. L. (1995). Training in self-explanation and self-
regulation strategies: Investigating the effects of knowledge acquisition activities on
problem solving. Cognition and Instruction, 13(2), 221–252. Crossref.

Bransford, J. (2000). How people learn: Brain, mind, experience, and school. Washington,
D.C.: National Academies Press.

Catrambone, R. (1994). Improving examples to improve transfer to novel problems. Memory
& Cognition, 22(5), 606–615. Crossref. PubMed.

Catrambone, R. (1995). Aiding subgoal learning: Effects on transfer. Journal of Educational
Psychology, 87(1), 5. Crossref.

Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 22(4), 1020. Crossref.

https://doi-org.leo.lib.unomaha.edu/10.1080/08993408.2019.1707544
https://doi-org.leo.lib.unomaha.edu/10.1037/0022-0663.94.2.416
https://doi-org.leo.lib.unomaha.edu/10.1037/0022-0663.95.4.762
https://doi-org.leo.lib.unomaha.edu/10.3102/00346543070002181
https://doi-org.leo.lib.unomaha.edu/10.1207/s1532690xci1302_3
https://doi-org.leo.lib.unomaha.edu/10.3758/BF03198399
https://www.ncbi.nlm.nih.gov/pubmed/7968556
https://doi-org.leo.lib.unomaha.edu/10.1037/0022-0663.87.1.5
https://doi-org.leo.lib.unomaha.edu/10.1037/0278-7393.22.4.1020

Catrambone, R. (1998). The subgoal learning model: Creating better examples so that
students can solve novel problems. Journal of Experimental Psychology: General,
127(4), 355. Crossref.

Chi, M. (2009). Active-constructive-interactive: A conceptual framework for differentiating
learning activities. Topics in Cognitive Science, 1(1), 73–105. Crossref. PubMed.

Chi, M., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How
students study and use examples in learning to solve problems. Cognitive Science,
13(2), 145–182. Crossref.

Cohen, J. (1969). Statistical power analysis for the behavioural sciences. New York:
Academic Press.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah:
Erlbaum.

Eiriksdottir, E., & Catrambone, R. (2011). Procedural instructions, principles, and examples
how to structure instructions for procedural tasks to enhance performance, learning, and
transfer. Human Factors: the Journal of the Human Factors and Ergonomics Society,
53(6), 749–770. Crossref. PubMed.

Gravetter, F. J., & Wallnau, L. B. (2016). Statistics for the behavioral sciences. Boston, MA:
Cengage Learning.

Harrington, B., & Cheng, N. (2018). Tracing vs. writing code: Beyond the learning
hierarchy. Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (pp. 423–428). 10.1145/3159450.3159530 Crossref.

Joentausta, J., & Hellas, A. (2018). Subgoal labeled worked examples in K-3
education. Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (pp. 616–621). ACM, Baltimore, MD. Crossref.

Kalyuga, S. (2011). Cognitive load theory: How many types of load does it really
need? Educational Psychology Review, 23(1), 1–19. Crossref.

Kim, J., Miller, R. C., & Gajos, K. Z. (2013). Learnersourcing subgoal labeling to support
learning from how-to videos. In CHI’13 extended abstracts on human factors in
computing systems (pp. 685–690). ACM, Paris, France. Crossref.

Kumar, A. N. (2015). Solving code-tracing problems and its effect on code-writing skills
pertaining to program semantics. Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education (pp. 314–
319). 10.1145/2729094.2742587 Crossref.

Margulieux, L. E., & Catrambone, R. (2014). Improving problem solving performance in
computer-based learning environments through subgoal labels. Proceedings of the First
ACM Conference on Learning@ Scale Conference (pp. 149–150). ACM, Atlanta,
GA. Crossref.

Margulieux, L. E., & Catrambone, R. (2019). Finding the best types of guidance for
constructing self-explanations of subgoals in programming. Journal of the Learning
Sciences, 28(1), 108–151. Crossref.

Margulieux, L. E., Catrambone, R., & Guzdial, M. (2016). Employing subgoals in computer
programming education. Computer Science Education, 26, 1–24. Crossref.

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled instructional
material improves performance and transfer in learning to develop mobile
applications. Proceedings of the Ninth Annual International Conference on International
Computing Education Research (pp. 71–78). ACM, Auckland, New Zealand. Crossref.

https://doi-org.leo.lib.unomaha.edu/10.1037/0096-3445.127.4.355
https://doi-org.leo.lib.unomaha.edu/10.1111/j.1756-8765.2008.01005.x
https://www.ncbi.nlm.nih.gov/pubmed/25164801
https://doi-org.leo.lib.unomaha.edu/10.1207/s15516709cog1302_1
https://doi-org.leo.lib.unomaha.edu/10.1177/0018720811419154
https://www.ncbi.nlm.nih.gov/pubmed/22235535
http://10.0.4.121/3159450.3159530
https://doi-org.leo.lib.unomaha.edu/10.1145/3159450.3159530
https://doi-org.leo.lib.unomaha.edu/10.1145/3159450.3159494
https://doi-org.leo.lib.unomaha.edu/10.1007/s10648-010-9150-7
https://doi-org.leo.lib.unomaha.edu/10.1145/2468356.2468477
http://10.0.4.121/2729094.2742587
https://doi-org.leo.lib.unomaha.edu/10.1145/2729094.2742587
https://doi-org.leo.lib.unomaha.edu/10.1145/2556325.2567853
https://doi-org.leo.lib.unomaha.edu/10.1080/10508406.2018.1491852
https://doi-org.leo.lib.unomaha.edu/10.1080/08993408.2016.1144429
https://doi-org.leo.lib.unomaha.edu/10.1145/2361276.2361291

Margulieux, L. E., Morrison, B. B., Catrambone, R., & Guzdial, M. (2016). Training learners
to self -explain: Designing instructions and examples to improve problem
solving. Transforming Learning, Empowering Learners: The International Conference of
the Learning Sciences (ICLS) 2016(pp. 1). Singapore.

Margulieux, L. E., Morrison, B. B., & Decker, A. (2019). Design and pilot testing of subgoal
labeled worked examples for five core concepts in CS1. ITICSE’19: Innovation and
Technology in Computer Science Education Proceedings (pp.
7). 10.1145/3304221.3319756 Crossref.

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A
model comparison perspective (2ne ed.). New York, NY: Psychology Press.

Morrison, B. B., Decker, A., & Margulieux, L. E. (2016). Learning loops: A replication study
illuminates impact of HS courses. Proceedings of the 2016 ACM Conference on
International Computing Education Research (pp. 221–
230). 10.1145/2960310.2960330 Crossref.

Morrison, B. B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in introductory CS:
Adaptation of an instrument. Proceedings of the Tenth Annual Conference on
International Computing Education Research (pp. 131–138). Crossref.

Morrison, B. B., Margulieux, L. E., Ericson, B., & Guzdial, M. (2016). Subgoals help students
solve parsons problems. Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (pp. 42–47). 10.1145/2839509.2844617 Crossref.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and worked
examples in learning computing problem solving. Proceedings of the Eleventh Annual
International Conference on International Computing Education Research (pp. 21–
29). Crossref.

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun and effective
learning tool for first programming courses. Proceedings of the 8th Australasian
Conference on Computing Education - Volume 52 (pp. 157–163). Darlinghurst,
Australia, Australia: Australian Computer Society, Inc.

Plass, J. L., Moreno, R., & Brünken, R. (2010). Cognitive load theory. Cambridge, UK:
Cambridge University Press. Crossref.

Renkl, A., & Atkinson, R. K. (2002). Learning from examples: Fostering self-explanations in
computer-based learning environments. Interactive Learning Environments, 10(2), 105–
119. Crossref.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., …
Silverman, B. (2009). Scratch: Programming for all. Commun. Acm, 52(11), 60–
67. Crossref.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive
load. Educational Psychology Review, 22(2), 123–138. Crossref.

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory (Vol. 1). New York:
Springer-Verlag. Crossref.

Sweller, J., van Merriënboer, J. J., & Paas, F. (1998). Cognitive architecture and
instructional design. Educational Psychology Review, 10(3), 251–296. Crossref.

Tew, A. E., & Guzdial, M. (2011). The FCS1: A language independent assessment of CS1
knowledge. Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education (pp. 111–116). ACM, Dallas, TX. Crossref.

http://10.0.4.121/3304221.3319756
https://doi-org.leo.lib.unomaha.edu/10.1145/3304221.3319756
http://10.0.4.121/2960310.2960330
https://doi-org.leo.lib.unomaha.edu/10.1145/2960310.2960330
https://doi-org.leo.lib.unomaha.edu/10.1145/2632320.2632348
http://10.0.4.121/2839509.2844617
https://doi-org.leo.lib.unomaha.edu/10.1145/2839509.2844617
https://doi-org.leo.lib.unomaha.edu/10.1145/2787622.2787733
https://doi-org.leo.lib.unomaha.edu/10.1017/CBO9780511844744
https://doi-org.leo.lib.unomaha.edu/10.1076/ilee.10.2.105.7441
https://doi-org.leo.lib.unomaha.edu/10.1145/1592761.1592779
https://doi-org.leo.lib.unomaha.edu/10.1007/s10648-010-9128-5
https://doi-org.leo.lib.unomaha.edu/10.1007/978-1-4419-8126-4
https://doi-org.leo.lib.unomaha.edu/10.1023/A:1022193728205
https://doi-org.leo.lib.unomaha.edu/10.1145/1953163.1953200

van Gog, T., & Paas, F. (2012). Cognitive load measurement. In Norbert M. Seel
(Ed.), Encyclopedia of the sciences of learning (pp. 599–601). New York:
Springer. Crossref.

van Merriënboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning:
Recent developments and future directions. Educational Psychology Review, 17(2),
147–177. Crossref.

Wylie, R., & Chi, M. T. (2014). 17 the self-explanation principle in multimedia learning. In
Mayer, R. (Ed.), The cambridge handbook of multimedia learning (Cambridge
Handbooks in Psychology) (p. 413) Cambridge: Cambridge University Press. . Crossref.

https://doi-org.leo.lib.unomaha.edu/10.1007/978-1-4419-1428-6_412
https://doi-org.leo.lib.unomaha.edu/10.1007/s10648-005-3951-0
https://doi-org.leo.lib.unomaha.edu/10.1017/CBO9781139547369

	The curious case of loops
	tmp.1648758519.pdf.JZQVp

