
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Theses/Capstones/Creative Projects University Honors Program 

12-2021 

CollaborCrack: A Collaborative Password Cracking Solution for CollaborCrack: A Collaborative Password Cracking Solution for 

Windows Penetration Testing Windows Penetration Testing 

Andrew Griess 
agriess@unomaha.edu 

Follow this and additional works at: https://digitalcommons.unomaha.edu/university_honors_program 

 Part of the Information Security Commons 

Recommended Citation Recommended Citation 
Griess, Andrew, "CollaborCrack: A Collaborative Password Cracking Solution for Windows Penetration 
Testing" (2021). Theses/Capstones/Creative Projects. 159. 
https://digitalcommons.unomaha.edu/university_honors_program/159 

This Dissertation/Thesis is brought to you for free and 
open access by the University Honors Program at 
DigitalCommons@UNO. It has been accepted for 
inclusion in Theses/Capstones/Creative Projects by an 
authorized administrator of DigitalCommons@UNO. For 
more information, please contact 
unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/university_honors_program
https://digitalcommons.unomaha.edu/honors_community
https://digitalcommons.unomaha.edu/university_honors_program?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/university_honors_program/159?utm_source=digitalcommons.unomaha.edu%2Funiversity_honors_program%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


COLLABORCRACK 1

CollaborCrack: A collaborative password cracking solution for Windows penetration

testing

Andrew Griess

University of Nebraska at Omaha

Advisor: Dr. Matthew Hale

December 2021



COLLABORCRACK 2

Abstract

Cybersecurity professionals attempt to crack password hashes during penetration tests to

determine if they are strong enough. A password hash is a way to encode a password securely.

This paper describes a proof-of-concept program called CollaborCrack, a team-based password

cracking solution. CollaborCrack addresses the issues of computational complexity, remote

cracking security, duplication of work, and the cost associated with password cracking. To

address computational complexity, CollaborCrack enables remote password cracking. Remote

cracking requires additional safeguards, which CollaborCrack mitigates by storing sensitive

information locally. To reduce the duplication of work, CollaborCrack provides a shared

interface designed around collaboration and teamwork. CollaborCrack reduces costs by

decreasing the time it takes to crack groups of passwords and the number of password cracking

computers needed. CollaborCrack breaks the traditional password cracking process into two

parts: a collaboration client and collaboration server. CollaborCrack’s client serves as a shared

password cracking interface for collaborating teams. The client organizes notes and facilitates

collaboration among team members. CollaborCrack’s server increases password cracking

efficiency while eliminating duplication of effort by allowing multiple team members to submit

passwords to the same cracking server. If security professionals adopt this proof-of-concept,

CollaborCrack could establish a more efficient and collaborative password cracking experience.

Keywords: brute force, cybersecurity, password, password cracking, penetration testing, windows



COLLABORCRACK 3

1. Introduction

Passwords are ubiquitous. We use them to log into our personal computers, social media

accounts, and even our banks. Despite how critical passwords are, humans are not very good at

creating them. People generally pick passwords that are short and easy to remember, contain

common words, follow predictable patterns, or include personal information (Luyten, 2020). It

would be bad enough if people just used weak passwords, but 53 percent of people also reuse

passwords on multiple accounts, and 44 percent of people use their personal passwords at work

(“53% of People Admit They Reuse the Same Password for Multiple Accounts,” 2020).

Strong passwords are more important now than they have ever been. Computers are becoming

faster, which means guessing passwords is getting easier. For many businesses, all it takes is one

user having a weak password to enable hackers to get inside a network or increase privileges.

This means that good password practices are essential to successful businesses. Penetration

testers have been analyzing the security of companies for years. One step in this process is to try

and break into user accounts to ensure that their passwords are strong enough. To accomplish

this, penetration testers use a technique called password cracking.

In this report, I define background information necessary to understand the complexities and

importance of password cracking. Then, I explore the current process of password cracking and

describe the challenges that password crackers face. For each challenge, I propose how my

proof-of-concept program, CollaborCrack, seeks to mitigate its impact. After this, I break

CollaborCrack down into its two parts and describe how they function. Finally, I conclude on the

benefits of CollaborCrack if adapted by industry professionals.



COLLABORCRACK 4

2. Background

The following section defines the background information necessary to understand the problem

and proposed solution. This background information includes Windows domains, penetration

testing, password hashing, and password cracking.

2.1 Windows Domains

Windows is the most common operating system for a computer. In June 2021, Windows was

used by 73% of desktop computers (Liu, 2021). A Windows domain interconnects Windows

computers so that they can be centrally managed and allow users to access shared resources.

Nearly all schools and many larger businesses use Windows domains. One helpful feature of a

Windows domain is that users can log in with the same credentials on multiple systems. The

centralized management of Windows permits different permission levels for different users.

Some users may only have permission to log in to one computer, while others can remotely

administer the whole domain. Windows domains can also group users with the same level of

permissions. For example, one group could be made for students, and one group could be made

for teachers. Some groups exist by default on a windows domain. One default group is domain

admin. Domain admins have administrator rights of all domain systems and can configure

domain settings such as what type of encryption is used and what users are in what group.

Windows domains are rather complex and therefore have complicated password management.

Passwords are stored and transmitted in many different ways based on configuration and use.

Common windows credential storage methods include LM, NTLM, Net-NTLMv1, and NTLMv2

(Gombos, 2018).



COLLABORCRACK 5

2.2 Penetration Testing

Penetration testing identifies security flaws in a computer system by trying to break into it. When

testing a Windows domain, penetration testers try to increase their privileges. One way to do this

is to try and access different computer or user accounts. This process helps identify what an

attacker may be able to access. The value of an account for a penetration tester is mainly based

on what permissions they have. For instance, if a teacher's account were compromised, a

penetration tester would be able to do anything that a member of the teacher group could, such as

accessing a teacher file share. As an end goal, a penetration tester will try and access a high

privilege account on the domain to have as much access as possible. Complete access proves that

a motivated attacker could fully compromise the environment and that the company needs to

increase its security. To gain this access, penetration testers look to exploit unpatched systems,

misconfigurations, and weak passwords. Penetration testers compromise weak passwords by

stealing them from systems or collecting them as they travel on the network. Fortunately, stealing

these passwords is only the first step. Passwords typically are not stored in clear text; rather, they

are hashed.

2.3 Password Hashing

Systems should never store passwords in plaintext. If they were and the database holding the

passwords was stolen, an attacker would immediately have the passwords to every account.

Instead of storing plaintext passwords, the industry standard is that these passwords are stored as

a cryptographic hash.



COLLABORCRACK 6

A cryptographic hash is a one-way mathematical function that creates a fixed-length output

typically represented in hexadecimal. One trivial example of a hash is X MOD 2. This equals 1 if

a number X is odd and 0 if it is even. Thus, if the number 9 were entered into this function, it

would output 1. No matter what input size is used, the function will always output a 0 or a 1.

Another component of a hashing function is that it is impossible to know what was entered when

analyzing the output. This is a very simple and very bad example of a hash. More standard

hashes like SHA-256 have 2^256 possible outputs equating to around 1.1579209e+77 output

options.

Figure 1: An example of comparing an entered password against a password stored in a

database.

The first time a user logs in to an account, their password’s hash value is stored in a database.

Since password hashes are one way, every time a user enters their password, the application must

recalculate its hash value to compare it against the previously stored password hash. Figure 1

shows how this typically occurs. If the stored hash and the generated hash are equal, then the

passwords are equal.



COLLABORCRACK 7

2.4 Password Cracking

Through computational complexity, hashing functions make it incredibly difficult for penetration

testers to reverse the function. Generally, this means the only way to know which password

created a particular hash is to guess it. Guessing which password made a specific hash is called

password cracking. Depending on its speed, a modern computer can guess between 10,000 and 1

billion passwords per second (Scott, 2020). This high guess rate is why passwords must be

sufficiently long and complex. A long and complex password is far less likely to be guessed. A

penetration tester will typically test if a password is strong by comparing it against a dictionary

of the most common passwords. This type of brute force technique is called a dictionary brute

force. Then, if the password is not guessed, the tester may try a simple brute force that attempts

every possible value of length one, then length two, then length three, and so on. This type of

brute force only works on small passwords. Figure 2 shows how long this type of brute force

attack would take based on length and complexity.

Figure 2: The time it takes to brute force a password, based on length and complexity.

Note. Data from in table from security.org (How secure is my password?).



COLLABORCRACK 8

3. Why Collaboratively Crack?

This section details challenges that penetration testers face while trying to crack passwords. For

each of these challenges, I describe how the proof-of-concept program CollaborCrack addresses

these issues and strives to reduce them.

3.1 Computational Complexity

For a penetration tester to thoroughly test a password hash, they must guess enough passwords to

rule out the use of a weak password. Therefore, testing the strength of a hashed password

requires a sufficiently fast computer. However, penetration testers may not use a computer fast

enough to adequately test the password’s strength within the required time limit. Many testers

work off of laptops with weaker hardware.

CollaborCrack addresses this issue by allowing penetration testers to crack passwords on a

remote server rather than on their local machine. While not reducing the number of computations

required to brute force a password, CollaborCrack provides an extra option to penetration testers

with off-site hardware. With this, a penetration testing business would only need to have one

computer fast enough to crack passwords on instead of requiring one for every penetration tester.

3.2 Remote Password Cracking Security

When sending a password hash to a remote server to be cracked, the penetration tester must

remember what username corresponds with what password hash. It is generally inadvisable to

send a username and a password together to another location because this may introduce a

security risk. A password by itself is just a password. A username and a password together may



COLLABORCRACK 9

reveal enough information to be sensitive. This imposes an additional challenge to a penetration

tester of securely sending a password hash off-site without losing the correlated account.

CollaborCrack addresses this security risk by only transmitting the password and its hash when

communicating with the remote cracking server. Additionally, within CollaborCrack, the

username and password correlations are tracked automatically with no room for user error.

Information about a password hash, including its corresponding username, is stored locally rather

than transmitted to the password cracking server.

3.3 Duplication of Work

Password cracking has traditionally been an individual activity. Penetration testers working on a

team often struggle to have situational awareness about what their fellow testers have already

tried to crack. This can lead to duplication of work between team members - thus decreasing

team efficiency. One team member may come across a hashed password and try to crack it,

unaware that another team member has already broken it.

CollaborCrack is a tool designed around collaboration and teamwork. As a shared interface,

CollaborCrack lets any user on a team see who is trying to crack what, which can help multiple

penetration testers from duplicating work. More than just showing what passwords are being

cracked, CollaborCrack also lets users add notes about a particular password hash, such as where

it is from and what to use it for if it is cracked. Only one team member needs to run

CollaborCrack on their system during a penetration test. Letting other team members focus on

different aspects of their assessment. Additionally, by storing all of the password cracking notes



COLLABORCRACK 10

in one location, penetration testing reports are more accessible, enabling them to be written up by

one person rather than by every member. With additional research, CollaborCrack could be

expanded to generate reports for the password cracking component automatically.

3.4 Cost

Password cracking is expensive in how much time it takes and the material costs of a strong

password cracking computer. The faster a computer can crack password hashes, the more

expensive it will be.

CollaborCrack looks to reduce the time it takes to crack passwords and the number of fast

computers needed. CollaborCrack minimizes the number of fast computers by enabling different

penetration testers to use the same password-cracking computer. Using the same computer to

crack multiple password hashes barely slows it down. CollaborCrack optimizes how it cracks

multiple hashes. It groups all hashes of the same type and tries to break them at the same

time—this way, the hash value of a guess only needs to be computed once. If penetration testers

are responsible for their own password cracking, they may not crack passwords in groups.

Cracking passwords individually is slower and uses more computer power.

4. Implementation Details

What makes CollaborCrack unique from a traditional password cracker is that it operates with

two intercommunicating components. The first part is a collaboration client served to an internal

network via a website. The second part is a collaboration server that takes in password hashes



COLLABORCRACK 11

and tries to guess them. This internal component acts as a client to the remote server. Figure 3

shows how the CollaborCrack would function with one team with four members. The system

works with any number of collaboration clients and team members. The collaboration client and

server can reside on the same host if needed. This functionality can provide the advantages of

CollaborCrack without needing another computer.

Figure 3: Network diagram showing the flow of the CollaborCrack tool.

4.1 Collaboration Client

The collaboration client resides on an internal network and takes web connections from any

number of users. It is written in the programming language Python 3 and uses Flask to serve its

web pages. The first time a user attempts to connect the collaboration client, it will prompt them

to create an account, as shown in Figure 4. Once that account is created, they can log in to the

client with their credentials.



COLLABORCRACK 12

Figure 4: CollaborCrack login page.

Now, the user can join or create a team, as shown in Figure 5. In this project, a team is a

collection of users working on the same penetration test. Any team member will be able to see all

of the passwords and hashes associated with a particular test. A user can be on multiple teams.

Figure 5: CollaborCrack empty team page.

Once logged in to a team, a user can enter a team’s page. This page shows all of the hashes

submitted by users and any corresponding notes. Each hash also denotes who submitted which

hash on which date. Figure 6 depicts what a user on a team would see.



COLLABORCRACK 13

Figure 6: CollaborCrack team with multiple hashes and submitters.

When a user submits a hash to the collaborative client, it is automatically added to the queue on

the collaboration server. Then, the collaboration client will continually poll the collaboration

server to see if it has completed the client’s request to break a particular password hash. If the

password is broken, it will be displayed to the penetration tester. This collaboration client only

stores and organizes information. CollaborCrack’s password cracking ability is only as effective

as its collaboration server.

4.2 Collaboration Server

The collaboration server takes in password hash requests and attempts to crack them. The

interface for the collaboration server is straightforward. A collaboration client makes a web

request to https://<ip>/crack/<hash> where <ip> is the IP address of the server and <hash> is the

value of the hash. The collaboration server is written in Python 3 and uses Flask to run the

webserver. The server returns an Unknown Hash Type error when receiving an invalid hash. To

check if a hash is invalid, it looks at the length and character set of a hash. When a brute force is

still running on a hash, it returns the RUNNING, as shown in Figure 7.



COLLABORCRACK 14

Figure 7: Collaboration server receiving a new hash.

Once the server has finished cracking the hash, it will store the cracked hash in a database. Every

time a hash is submitted in the future, it is checked against this database. This datastore prevents

a duplication of effort by recalculating the same hash twice. After the server has time to crack the

hash shown in Figure 7, it will display the cracked password after a refresh, as shown in Figure

8.

Figure 8: Collaboration server after cracking a hash.

This interaction uses HTTPS to stay secure. This encrypts the traffic between the collaboration

client and collaboration server in the same way as almost every website. CollaborCrack does not

currently require authentication to submit a hash to be cracked. Future implementations should

include authentication to ensure resources are not wasted and that sensitive information is not

disclosed.

The collaboration server uses Hashcat to perform its password cracking. Hashcat is a highly

optimized password cracking tool commonly used in the industry for password cracking. By

using a pre-established tool to complete password cracking, CollaborCrack benefits from the

experience of many others to maximize its cracking speed. The collaboration server manages the



COLLABORCRACK 15

hashes as jobs sent to Hashcat and then waits for them to finish. Once they finish, the

collaboration server records the output into a separate file used for tracking completed attempts.

Currently, the collaboration server is configured to use a dictionary attack against any supplied

set of password hashes. This means that if the password is not within the selected wordlist, there

is no chance of cracking the hash. The collaboration server records when a password hash has

exhausted all attempts and displays that to the user, as shown in Figure 9.

Figure 9: Collaboration server after failing to crack a hash.

When receiving a password to crack, the collaboration server groups hashes of the same hash

type to be cracked together. This dramatically increases the speed of breaking a list of hashes.

CollaborCrack currently works on the common Windows hash types LM, NTLM, Net-NTLMv1,

and NTLMv2, but can be expanded to work on any hash type. If an organization had multiple

penetration testing teams, they would be able to use the same powerful computer to crack

passwords at the same time without risking data spillage or needing communication.



COLLABORCRACK 16

5. Conclusion

Password cracking is a common activity within security penetration testing methodologies.

Teams working on the same penetration test often struggle to collaborate due to technical and

tooling limitations within the industry. A particularly confounding problem for teams of

password crackers is minimizing overlap (i.e. when two tests try to crack the same password).

Overlap significantly slows down the speed of the test and wastes computing resources and

power.

CollaborCrack is a web-based tool that seeks to close this gap by facilitating team-based

cracking exercises in a way that minimizes wasted resources. CollaborCrack allows multiple

collaborating team members to submit passwords for cracking into a shared queue. This queue

keeps track of prior password cracking attempts, groups passwords of the same hash together,

and removes redundancies.

If adopted by industry professionals, the outcomes of this proof-of-concept have the potential to

make significant impacts in several areas. For team members, it can reduce the time required to

brute force during a penetration test by a factor of as much as the number of team members on a

project (e.g., a factor of 3 for a three-person team, if all team members tried to crack the same

type of password hash). This reduction saves time and significantly saves on power consumption

since CPUs and GPUs consume significant resources to crack passwords. Thus, savings have

implicit broader impacts that make security penetration testing more "green" by helping to

reduce fossil fuel consumption (vis-à-vis reduced power consumption).



COLLABORCRACK 17

References

53% of people admit they reuse the same password for multiple accounts. (2020, May 7).

Security Magazine.

https://www.securitymagazine.com/articles/92331-of-people-admit-they-reuse-the-same-

password-for-multiple-accounts

Gombos, P. (2018, February 20). LM, NTLM, Net-NTLMv2, oh my! Medium.

https://medium.com/@petergombos/lm-ntlm-net-ntlmv2-oh-my-a9b235c58ed4

How secure is my password? (n.d.). Security.org. Retrieved December 10, 2021, from

https://www.security.org/how-secure-is-my-password/

Liu, S. (2021). Desktop OS market share. Statista.

https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

Luyten, D. (2020, October 27). The human side of password security. Geant.

https://connect.geant.org/2020/10/27/the-human-side-of-password-security

Scott, B. (2020, August 17). Learning password security jargon: Brute Force Attack. Nordpass.

https://nordpass.com/blog/brute-force-attack/


	CollaborCrack: A Collaborative Password Cracking Solution for Windows Penetration Testing
	Recommended Citation

	Final Honors Thesis

