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Simplified Portfolio Optimization Using Cramer’s Rule in Excel 
 
The matrix algebra associated with finding minimum variance portfolio weights, mapping 
the efficient frontier, and determining the tangency portfolio weights is greatly simplified 
in Excel by applying Cramer’s Rule.  Only a scant knowledge of linear algebra is necessary 
for producing a very intuitive presentation for a multi-asset portfolio.  The technique is 
very easily replicated for an assignment or for providing a classroom resource. 
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INTRODUCTION 

An optimal portfolio can be constructed such that the portfolio’s variance is 

minimized or overall reward per unit of risk is maximized given a vector of assets’ 

historical return, risk, and return correlation data. The asset weights within these portfolios 

can be found using a Lagrange multiplier method, with one of the conditions being that 

asset weights in the portfolio sum to 1 (i.e., 100%). This optimization process can be 

intuitively and efficiently presented in Excel by making use of Cramer’s rule and the 

=MDETERM function that returns the matrix determinant of an array. 

In this paper, we first provide a brief overview of Cramer’s rule, and highlight how 

linear algebra, presented effectively, greatly simplifies the optimization problem. Next, we 

provide an application of Cramer’s rule by determining the minimum variance portfolio 

wieghts, efficient frontier weights, and the tangency portfolio weights given three risky 

assets and a risk-free security.  

A REVIEW OF CRAMER’S RULE 

Cramer’s Rule can be found in most basic linear algebra texts (e.g. Strang, 2020, 

Simmons, 1987 provides a very good numerical application).  Basically, given an equal 

number of non-redundant equations for a set of variables, solutions for the variables can be 

found using matrix determinants.  For example, suppose there are three unknown variables 

X1, X2, and X3 and three equations: 

(𝑎# × 𝑋#) + (𝑏# × 𝑋)) + (𝑐# × 𝑋+) = 𝑑#     (1) 

(𝑎) × 𝑋#) + (𝑏) × 𝑋)) + (𝑐) × 𝑋+) = 𝑑)     (2) 

(𝑎+ × 𝑋#) + (𝑏+ × 𝑋)) + (𝑐+ × 𝑋+) = 𝑑+     (3) 

Convert the equations into matrices (ABC, X, and D): 



 3 

 ABC    X    D    
               
 a1 b1 c1    X1    d1    
 a2 b2 c2  ×  X2  =  d2   (4) 
 a3 b3 c3    X3    d3    

 
Create matrices DBC, ADC, and ABD, in which the column matrix D is substituted for the 

first (column of ai), second (column of bi), and third column (column of ci) respectively. 

DBC  ADC  ABD   
                   
 d1 b1 c1    a1 d1 c1    a1 b1 d1    
 d2 b2 c2    a2 d2 c2    a2 b2 d2    (5) 
 d3 b3 c3    a3 d3 c3    a3 b3 d3    

 
By using determinants (“det”) for matrices ABC, DBC, ADC, and ABD, solutions for X1, 

X2, and X3 can be found based on Cramer’s Rule: 

X1 = det(DBC) ÷ det(ABC)        (6) 

X2 = det(ADC) ÷ det(ABC)        (7) 

X3 = det(ABD) ÷ det(ABC)        (8) 

 A determinant does have a geometric/spatial interpretation, however, that will not 

be important for our purposes.  Further, calculation of the determinant can be found in the 

earlier references for linear algebra and in the appendix.  Calculating the determinant will 

not be necessary for our purposes because Excel has a function, =MDETERM( ), that will 

perform the calculation.  What is important is the structure/method of finding the solution 

for the unknown variables based on Cramer’s Rule and how to structure the portfolio math 

to apply Cramer’s Rule. 

 Arnold (2002) based on Roll (1977) demonstrates the optimization criteria for 

finding minimum variance portfolio weights, tangency portfolio weights (however, Bitten-

Jones’ method , 1999, will be used here), and for mapping the efficient frontier.  Arnold 
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and Nixon (2021) develop methods in Excel to perform these calculations using matrix 

inversion techniques.  By applying Cramer’s Rule, the method illustrated in this paper 

avoids using matrix inversion.  

 In the next three successive sections, Cramer’s Rule will be applied to solve for 

minimum variance portfolio weights, mapping the efficient frontier, and finding the 

tangency portfolio weights.  The fourth section concludes the paper. 

MINIMUM VARIANCE PORTFOLIO WEIGHTS: 

 In Table 1, information is provided for three risky securities (A, B, and C) and a 

risk-free security. 

Table 1: Information for Three Risky Securities (A, B, and C) and a Risk-free 
Security 

 
Security: Mean: Standard Deviation: Variance: 

A 5.00% 25.00% 0.0625 
B 6.00% 34.00% 0.1156 
C 7.00% 48.00% 0.2304 

Risk-free 1.00% 0.00% 0.0000 
 
Correlations (CORR) and Covariances (COV): 
CORR (A,B): 0.600 COV (A,B): 0.0510 
CORR (A,C): 0.400 COV (A,C): 0.0480 
CORR (B,C): 0.500 COV (B,C): 0.0816 

 
Based on Arnold (2002), the weights for the minimum variance portfolio can be 

found using the following equation with a Lagrange condition for the portfolio weights 

summing to 1 (i.e., 100%). 

L = (WA)2 × Variance (A) + (WB)2 × Variance (B) + (WC)2 × Variance (C)2 

+ 2 × WA × WB × Covariance (A, B) + 2 × WA × WC × Covariance (A, C) 

+ 2 × WB × WC × Covariance (B, C) + λ [ WA  + WB + WC – 1]   (9) 
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After taking the partial derivatives relative to each weight (WA, WB, and WC) and relative 

to the Lagrange multiplier (λ), the following matrices are generated based on setting each 

partial derivative equation to zero1: 

VCOVL-ABC  WL  Z   
                
 V(A) C(A,B) C(A,C) 1    WA    0    
 C(A,B) V(B) C(B,C) 1  ×  WB  =  0   (10) 
 C(A,C) C(B,C) V(C) 1    WC    0    
 1 1 1 0    λ    1    

 
 To implement Cramer’s Rule, substitute column matrix Z into the first column of 

VCOVL-ABC to create the square matrix VCOVL-ZBC: 

VCOVL-ZBC       
                
 0 C(A,B) C(A,C) 1            
 0 V(B) C(B,C) 1           (11) 
 0 C(B,C) V(C) 1            
 1 1 1 0            

 

Substitute column matrix Z into the second column of VCOVL-ABC to create the square 

matrix VCOVL-AZC: 

VCOVL-AZC       
                
 V(A) 0 C(A,C) 1            
 C(A,B) 0 C(B,C) 1           (12) 
 C(A,C) 0 V(C) 1            
 1 1 1 0            

 

Substitute column matrix Z into the third column of VCOVL-ABC to create the square 

matrix VCOVL-ABZ: 

 

       
                                                
1 Set to zero to find the minimum variance portfolio weights. Note that V(X) is the variance of X and 
C(X,Y) is the covariance between X and Y) 



 6 

VCOVL-ABZ 
                
 V(A) C(A,B) 0 1            
 C(A,B) V(B) 0 1           (13) 
 C(A,C) C(B,C) 0 1            
 1 1 1 0            

 

Apply the determinants of the matrices to find the minimum variance portfolio weights: 

WA = det(VCOVL-ZBC) ÷ det(VCOVL-ABC)     (14) 

WB = det(VCOVL-AZC) ÷ det(VCOVL-ABC)     (15) 

WC = det(VCOVL-ABZ) ÷ det(VCOVL-ABC)     (16) 

  In Table 2, the associated Excel sheet provides the minimum variance portfolio 

weight calculations associated with the securities in Table 1 and applying equations (10) 

through (16). 

Table 2: Excel Solution for Minimum Variance Portfolio Weights 
 

 A B C D E F G H I 
1  Mean: STDEV: VAR:      
2 Sec. A: 5.00% 25.00% 0.0625  CORR(A,C): 0.600 C(A,B): 0.0510 
3 Sec. B: 6.00% 34.00% 0.1156  CORR(A,B): 0.400 C(A,C): 0.0480 
4 Sec. C: 7.00% 48.00% 0.2304  CORR(B,C): 0.500 C(B,C): 0.0816 
5 Risk-free: 1.00% 0.00% 0.0000      
6          
7 VCOVL-ABC       
8  A B C L  Z   
9  0.0625 0.0510 0.0480 1  0   
10  0.0510 0.1156 0.0816 1  0   
11  0.0480 0.0816 0.2304 1  0   
12  1 1 1 0  1   
13          
14 VCOVL-ZBC        
15  Z B C L  Weight A: 83.05% 
16  0 0.0510 0.0480 1  Weight B: 12.44% 
17  0 0.1156 0.0816 1  Weight C: 4.52% 
18  0 0.0816 0.2304 1     
19  1 1 1 0     
20          
21 VCOVL-AZC        
22  A Z C L     
23  0.0625 0 0.0480 1     
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24  0.0510 0 0.0816 1     
25  0.0480 0 0.2304 1     
26  1 1 1 0     
27          
28 VCOVL-ABZ        
29  A B Z L     
30  0.0625 0.0510 0 1     
31  0.0510 0.1156 0 1     
32  0.0480 0.0816 0 1     
33  1 1 1 0     
STDEV: standard deviation 
VAR: variance 
CORR (X,Y): Correlation (X,Y) 
C(X,Y): Covariance (X,Y) 
 
Cell I15: =MDETERM(B16:E19) / MDETERM(B9:E12) 
Cell I16: =MDETERM(B23:E26) / MDETERM(B9:E12) 
Cell I17: =MDETERM(B30:E33) / MDETERM(B9:E12) 

This file can be downloaded from: https://scholarship.richmond.edu/finance-faculty-publications/XX/ 
 
As one can see in Table 2, the Excel programing is minimal and the minimum variance 

portfolio weights for Security A, Security B, and Security C are: 83.05%, 12.44%, and 

4.52% respectively. 2 

EFFICIENT FRONTIER PORTFOLIO WEIGHTS 

Based on Arnold (2002), the weights for a portfolio on the efficient frontier that 

generate a return of “K” can be found using the following equation with two Lagrange 

conditions: portfolio weights summing to 1 (i.e., 100%) and a portfolio mean set to a return 

of “K”. 

L = (WA)2 × Variance (A) + (WB)2 × Variance (B) + (WC)2 × Variance (C)2  

+ 2 × WA × WB × Covariance (A, B) + 2 × WA × WC × Covariance (A, C) 

+ 2 × WB × WC × Covariance (B, C) + λ [ WA  + WB + WC – 1]  

+ δ [ K – (WA × Mean(A)) – (WB × Mean (B)) – (WC × Mean (C))]   (17) 

                                                
2 For those readers interested in a refresher regarding the calculation of determinants, the calculation for the 
determinant of VCOVL-ABC and VCOVL-ZBC are included in the Appendix. 
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After taking the partial derivatives relative to each weight (WA, WB, and WC) and relative 

to the Lagrange multipliers (λ and δ), the following matrices are generated based on setting 

each partial derivative equation to zero:3 

 VCOVLG-ABC  WLG  K   
                 
 V(A) C(A,B) C(A,C) 1 M(A)    WA    0    
 C(A,B) V(B) C(B,C) 1 M(B)  ×  WB  =  0   (18) 
 C(A,C) C(B,C) V(C) 1 M(C)    WC    0    
 1 1 1 0 0    λ    1    
 M(A) M(B) M(C) 0 0    δ    K    

 

To implement Cramer’s Rule, substitute column matrix K into the first column of 

VCOVLG-ABC to create the square matrix VCOVLG-KBC: 

 VCOVLG-KBC       
                 
 0 C(A,B) C(A,C) 1 M(A)            
 0 V(B) C(B,C) 1 M(B)           (19) 
 0 C(B,C) V(C) 1 M(C)            
 1 1 1 0 0            
 K M(B) M(C) 0 0            

 

Substitute column matrix K into the second column of VCOVLG-ABC to create the square 

matrix VCOVLG-AKC: 

 VCOVLG-AKC       
                 
 V(A) 0 C(A,C) 1 M(A)            
 C(A,B) 0 C(B,C) 1 M(B)           (19) 
 C(A,C) 0 V(C) 1 M(C)            
 1 1 1 0 0            
 M(A) K M(C) 0 0            

 

                                                
3 Here, partial derivatives are set to zero to find the weights for the efficient frontier portfolios. Note that 
V(X) is the variance of X, C(X,Y) is the covariance between X and Y, and M(X) is the mean of X. 
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Substitute column matrix K into the third column of VCOVLG-ABC to create the square 

matrix VCOVLG-ABK: 

 VCOVLG-ABK       
                 
 V(A) C(A,B) 0 1 M(A)            
 C(A,B) V(B) 0 1 M(B)           (20) 
 C(A,C) C(B,C) 0 1 M(C)            
 1 1 1 0 0            
 M(A) M(B) K 0 0            

 

Apply the determinants of the matrices to find the minimum variance portfolio weights: 

WA = det(VCOVLG-KBC) ÷ det(VCOVLG-ABC)     (21) 

WB = det(VCOVLG-AKC) ÷ det(VCOVLG-ABC)     (22) 

WC = det(VCOVLG-ABK) ÷ det(VCOVLG-ABC)     (23) 

 In Table 3, the associated Excel sheet provides the weight calculations for a 

portfolio on the efficient frontier with a mean of 5.70% (i.e. K = 5.70%) based on the 

securities in Table 1 and applying equations (18) through (23). 

Table 3: Excel Solution for Efficient Frontier Portfolio Weights for a Specific 
Portfolio Mean 

 
 A B C D E F G H I 

1  Mean: STDEV: VAR:      
2 Sec. A: 5.00% 25.00% 0.0625  CORR(A,C): 0.600 C(A,B): 0.0510 
3 Sec. B: 6.00% 34.00% 0.1156  CORR(A,B): 0.400 C(A,C): 0.0480 
4 Sec. C: 7.00% 48.00% 0.2304  CORR(B,C): 0.500 C(B,C): 0.0816 
5 Risk-free: 1.00% 0.00% 0.0000      
6          
7 VCOVLG-ABC        
8  A B C L G  K  
9  0.0625 0.0510 0.0480 1 5.00%  0  
10  0.0510 0.1156 0.0816 1 6.00%  0  
11  0.0480 0.0816 0.2304 1 7.00%  0  
12  1 1 1 0 0  1  
13  5.00% 6.00% 7.00% 0 0  5.70%  
14          
15 VCOVLG-KBC        
16  A B C L G  Weight A: 50.71% 
17  0 0.0510 0.0480 1 5.00%  Weight B: 28.57% 
18  0 0.1156 0.0816 1 6.00%  Weight C: 20.71% 
19  0 0.0816 0.2304 1 7.00%    
20  1 1 1 0 0    
21  5.70% 6.00% 7.00% 0 0    
22          
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23 VCOVLG-AKC        
24  A B C L G    
25  0.0625 0 0.0480 1 5.00%    
26  0.0510 0 0.0816 1 6.00%    
27  0.0480 0 0.2304 1 7.00%    
28  1 1 1 0 0    
29  5.00% 5.70% 7.00% 0 0    
30          
31 VCOVLG-ABK        
32  A B C L G    
33  0.0625 0.0510 0 1 5.00%    
34  0.0510 0.1156 0 1 6.00%    
35  0.0480 0.0816 0 1 7.00%    
36  1 1 1 0 0    
37  5.00% 6.00% 5.70% 0 0    
STDEV: standard deviation 
VAR: variance 
CORR (X,Y): Correlation (X,Y) 
C(X,Y): Covariance (X,Y) 
 
Cell I15: =MDETERM(B17:F21) / MDETERM(B9:F13) 
Cell I16: =MDETERM(B25:F29) / MDETERM(B9:F13) 
Cell I17: =MDETERM(B33:F37) / MDETERM(B9:F13) 
 
This file can be downloaded from: https://scholarship.richmond.edu/finance-faculty-publications/XX/ 

 

Changing “K” to various values will map out the efficient frontier, see Table 4. 

Table 4: The Efficient Frontier Based on Securities from Table 1 
 

 
Portfolio 
Mean: 

Portfolio 
Standard 
Deviation: 

Portfolio 
Sharpe 
Ratio: 

 
 

Weight A: 

 
 

Weight B: 

 
 

Weight C: 
6.00% 29.21% 17.119% 30.73% 38.55% 30.73% 
5.90% 28.17% 17.393% 37.39% 25.22% 27.39% 
5.80% 27.25% 17.616% 44.05% 31.90% 24.05% 
5.70% 26.44% 17.774% 50.71% 28.57% 20.71% 
5.60% 25.77% 17.851% 57.38% 25.25% 17.38% 
5.50% 25.24% 17.830% 64.04% 21.92% 14.04% 
5.40% 24.86% 17.699% 70.70% 18.60% 10.70% 
5.30% 24.64% 17.452% 77.36% 15.27% 7.36% 
5.20% 24.58% 17.086% 84.03% 11.95% 4.03% 
5.10% 24.69% 16.608% 90.69% 8.62% 0.69% 
5.00% 24.95% 16.029% 97.35% 5.30% -2.65% 

Sharpe Ratio = (portfolio return – risk-free rate) ÷ Standard deviation of portfolio 
 
The tangency portfolio is located on the efficient frontier where the Sharpe ratio is 
maximized (in bold and italic in the table).  The actual tangency portfolio is where the 
portfolio mean is 5.57%.  The exact weights for the tangency portfolio will be found in 
the next section. 
 
The “approximate” minimum variance portfolio is indicated with bold.  Notice how the 
standard deviation increases with portfolio returns above and below it.  The exact 
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minimum variance portfolio has a mean return of 5.21% when applying the portfolio 
weights from Table 2. 

 
Again, the Excel programming is minimal and if programmed appropriately, 

changing cell H13 within the spreadsheet (i.e. the value for “K”) will produce the different 

portfolio combinations that produce the efficient frontier. Additionally, a simple scatterplot 

connected with a smooth curve can graphically depict the portfolios presented in Table 4. 

The y-axis presents the return figures from the “Portfolio Mean” column of Table 4 while 

the x-axis presents the values in the “Portfolio Standard Deviation” column of Table 4. 

Producing and interpreting this figure might be left to the student as an exercise. Here, the 

minimum variance portfolio is clear: the portfolio where the curve reaches furthest to the 

left is the portfolio with the lowest risk. Note the return (y) and risk (x) values of this 

portfolio are about equal to the “approximate” minimum variance portfolio in Table 4.  

 

Figure 1: A Graph of the Efficient Frontier  

To insert the graph in Excel: Insert > Charts > Scatter with Smooth Line and Markers  
 

 



 12 

TANGENCY PORTFOLIO WEIGHTS 

 Based on Arnold (2002), a risk-free security can be introduced as a fourth security 

in the previous analysis.  The risk-free security will have a variance of zero and its 

covariance with any risky security is also zero.  However, Bitten-Jones (1999) finds the 

weights of the tangency portfolio through a regression routine that Arnold and Nixon 

(2021) equate to as having a Lagrange condition of the portfolio risk premium being equal 

to 1 when minimizing the portfolio variance.4 

L = (WA)2 × Variance (A) + (WB)2 × Variance (B) + (WC)2 × Variance (C)2 

+ 2 × WA × WB × Covariance (A, B) + 2 × WA × WC × Covariance (A, C) 

+ 2 × WB × WC × Covariance (B, C)  

+ λ [ 1 – WA(Mean (A) – RF) – WB(Mean (B) – RF) – WC(Mean (C) – RF)]  (24) 

After taking the partial derivatives relative to each weight (WA, WB, and WC) and relative 

to the Lagrange multiplier (λ), the following matrices are generated based on setting each 

partial derivative equation to zero5: 

VCOVRP-ABC  WRP  T   
                
 V(A) C(A,B) C(A,C) RP(A)    WA    0    
 C(A,B) V(B) C(B,C) RP(B)  ×  WB  =  0   (25) 
 C(A,C) C(B,C) V(C) RP(C)    WC    0    
 RP(A) RP(B) RP(C) 0    λ    1    

 
 To implement Cramer’s Rule, substitute column matrix T into the first column of 

VCOVRP-ABC to create the square matrix VCOVRP-TBC: 

 

       

                                                
4 The risk premium is the mean return less the risk-free rate. 
5 The partial derivates are set to zero to find the tangency portfolio weights. Note that V(X) is the variance 
of X, C(X,Y) is the covariance between X and Y, and RP(X) = Mean (X) less risk-free rate. 
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VCOVRP-TBC 
                
 0 C(A,B) C(A,C) RP(A)            
 0 V(B) C(B,C) RP(B)           (26) 
 0 C(B,C) V(C) RP(C)            
 1 RP(B) RP(C) 0            

 

Substitute column matrix T into the second column of VCOVTP-ABC to create the square 

matrix VCOVRP-ATC: 

VCOVRP-ATC       
                
 V(A) 0 C(A,C) RP(A)            
 C(A,B) 0 C(B,C) RP(B)           (27) 
 C(A,C) 0 V(C) RP(C)            
 RP(A) 1 RP(C) 0            

 

Substitute column matrix T into the third column of VCOVRP-ABC to create the square 

matrix VCOVRP-ABT: 

VCOVRP-ABT       
                
 V(A) C(A,B) 0 RP(A)            
 C(A,B) V(B) 0 RP(B)           (28) 
 C(A,C) C(B,C) 0 RP(C)            
 RP(A) RP(B) 1 0            

 

Apply the determinants of the matrices to find the portfolio weights: 

WA = det(VCOVRP-TBC) ÷ det(VCOVRP-ABC)     (29) 

WB = det(VCOVRP-ATC) ÷ det(VCOVRP-ABC)     (30) 

WC = det(VCOVRP-ABT) ÷ det(VCOVRP-ABC)     (31) 

These portfolio weights are set to include the weight of the risk-free security.  To 

adjust to the tangency portfolio weights, one has to re-apportion the above portfolio 

weights in the following manner: 
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WA-TAN = WA ÷ (WA + WB + WC)       (32) 

WB-TAN = WB ÷ (WA + WB + WC)       (33) 

WC-TAN = WC ÷ (WA + WB + WC)       (34) 

In Table 5, the associated Excel sheet provides the tangency portfolio weight 

calculations associated with the securities in Table 1 and applying equations (25) through 

(34). 

Table 5: Excel Solution for Tangency Portfolio Weights 
 

 A B C D E F G H I 
1  Mean: STDEV: VAR:      
2 Sec. A: 5.00% 25.00% 0.0625  CORR(A,C): 0.600 C(A,B): 0.0510 
3 Sec. B: 6.00% 34.00% 0.1156  CORR(A,B): 0.400 C(A,C): 0.0480 
4 Sec. C: 7.00% 48.00% 0.2304  CORR(B,C): 0.500 C(B,C): 0.0816 
5 Risk-free: 1.00% 0.00% 0.0000      
6          
7 VCOVRP-ABC       
8  A B C RP  T   
9  0.0625 0.0510 0.0480 4.00%  0   
10  0.0510 0.1156 0.0816 5.00%  0   
11  0.0480 0.0816 0.2304 6.00%  0   
12  4.00% 5.00% 6.00% 0  1   
13          
14 VCOVL-TBC        
15  T B C RP   Weight A: 1299.45% 
16  0 0.0510 0.0480 4.00%   Weight B: 530.56% 
17  0 0.1156 0.0816 5.00%   Weight C: 358.23% 
18  0 0.0816 0.2304 6.00%     
19  1 5.00% 6.00% 0  Weight A-TAN: 59.38% 
20       Weight B-TAN: 24.25% 
21 VCOVL-ATC     Weight C-TAN: 16.37% 
22  A T C RP     
23  0.0625 0 0.0480 4.00%     
24  0.0510 0 0.0816 5.00%     
25  0.0480 0 0.2304 6.00%     
26  4.00% 1 6.00% 0     
27          
28 VCOVL-ABT        
29  A B T RP     
30  0.0625 0.0510 0 4.00%     
31  0.0510 0.1156 0 5.00%     
32  0.0480 0.0816 0 6.00%     
33  4.00% 5.00% 1 0     
STDEV: standard deviation 
VAR: variance 
CORR (X,Y): Correlation (X,Y) 
C(X,Y): Covariance (X,Y) 
 
Cell I15: =MDETERM(B16:E19) / MDETERM(B9:E12) 
Cell I16: =MDETERM(B23:E26) / MDETERM(B9:E12) 
Cell I17: =MDETERM(B30:E33) / MDETERM(B9:E12) 
 
Cell I19: = I15 / SUM(I15:I17) 
Cell I20: = I16 / SUM(I15:I17) 
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Cell I21: = I17 / SUM(I15:I17) 

This file can be downloaded from: https://scholarship.richmond.edu/finance-faculty-publications/XX/ 

 

 The Excel programming is still very minimal even with the inclusion of an 

additional step.  When compared to the portfolio weights in Table 4 for the maximum 

Sharpe ratio portfolio, one can see the subtle difference between the table and the actual 

tangency portfolio.  The tangency portfolio has an actual portfolio mean of 5.57% with a 

standard deviation of 25.59% and a Sharpe ratio of 17.855% compared to the earlier 

approximate portfolio mean of 5.60% with a standard deviation of 25.77% and a Sharpe 

ratio of 17.851%. 

CONCLUSION 

Cramer’s Rule with the =MDETERM( ) function greatly reduces the necessary 

calculations for portfolio optimization and can easily be extended to more than three risky 

securities (possibly as an assignment).  When compared to Arnold (2002) and Arnold and 

Nixon (2021), much of the math regarding optimization disappears which may not be 

advantageous for a more advanced course.  However, for a course that features the use of 

the results from an optimization rather than actually performing the optimization, these 

methods become very useful and practical.  

 The methods can be demonstrated during a live or virtual class very easily and 

then potentially supplied as a resource.  Actual data can be downloaded from internet 

resources or Bloomberg and readily applied to the spreadsheet templates. 
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APPENDIX: CALCULATING A DETERMINANT 
 
There are two common approaches for calculating a determinant: using cofactors in a 

recursive manner and the “basket weaving” technique, also known as Sarrus’ Rule.  The 

latter is more illustrative, but can only be used for 2 × 2 and 3 × 3 square matrices. 

 For a 2 × 2 matrix, the determinant is a fairly simple calculation:    

              
 a1 b1              (A1) 
 a2 b2            

 
The determinant is (a1 × b2) – (b1 × a2)      (A2)  
 

For a 3 × 3 square matrix the “basket weaving” techniques starts by repeating the 

first two columns after the third column of the matrix. 

               
 a1 b1 c1  a1 b1         
 a2 b2 c2  a2 b2        (A3) 
 a3 b3 c3  a3 b3         

 

Define “right diagonals,” RD1 = a1 × b2 × c3 (in bold), RD2 = b1 × c2 × a3 (in italic), and 

RD3 = c1 × a2 × b3 (in bold-italic) in equation (A4). 

             
 RD1: RD2: RD3:            
 a1 b1 c1  a1 b1         
 a2 b2 c2  a2 b2        (A4) 
 a3 b3 c3  a3 b3         

 
Define “left diagonals,” LD1 = c1 × b2 × a3 (in bold), LD2 = a1 × c2 × b3 (in italic), and LD3 

= b1 × a2 × c3 (in bold-italic) in equation (A5). 

             
   LD1:  LD2: LD3:         
 a1 b1 c1  a1 b1         
 a2 b2 c2  a2 b2        (A5) 
 a3 b3 c3  a3 b3         
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The determinant is [RD1 + RD2 + RD3] – [LD1 + LD2 +LD3]   (A6) 

 Because the basket weaving technique is limited to 2 × 2 and 3 × 3 matrices only, 

the determinant of a 4 × 4 matrix requires the use of cofactors.  A cofactor is a smaller 

matrix within a larger matrix and can be used recursively to reduce a large matrix into 

many 3 × 3 or 2 × 2 matrices depending on the complexity of the 4 × 4 matrix.  Consider 

a 4 × 4 matrix and choose a particular value inside the matrix, say a1. 

 a1 b1 c1 d1            
 a2 b2 c2 d2            
 a3 b3 c3 d3           (A7) 
 a4 b4 c4 d4            

 
The cofactor for a1 is the 3 × 3 matrix in bold.  The 3 × 3 matrix that is the cofactor consists 

of columns and rows that do not match the column or row of the value selected within the 

4 × 4 matrix (i.e. a1 in this case).  In a similar manner, cofactors of 3 × 3 matrices can be 

found for a2, a3, and a4: 

 a1 b1 c1 d1            
 a2 b2 c2 d2            
 a3 b3 c3 d3           (A8) 
 a4 b4 c4 d4            

 

 a1 b1 c1 d1            
 a2 b2 c2 d2            
 a3 b3 c3 d3           (A9) 
 a4 b4 c4 d4            

 

 a1 b1 c1 d1            
 a2 b2 c2 d2            
 a3 b3 c3 d3           (A10) 
 a4 b4 c4 d4            

 
The determinant for a 4 × 4 matrix becomes: 
 
a1 × determinant of the cofactor of a1  
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– a2 × determinant of the cofactor of a2  
+ a3 × determinant of the cofactor of a3 
– a4 × determinant of the cofactor of a4      (A11) 
 

 The above techniques can be applied the  VCOVL-ABC and VCOVL-ZBC 

matrices in Table 2.  Following equation (A11), the determinant for VCOVL-ABC is: 

 

 0.0625 0.0510 0.0480 1            
 0.0510 0.1156 0.0816 1            
 0.0480 0.0816 0.2304 1           (A12) 
 1 1 1 0            

 
0.0625 × determinant of the cofactor of a1 
– 0.0510 × determinant of the cofactor of a2  
+ 0.0480 × determinant of the cofactor of a3 
– 1 × determinant of the cofactor of a4      (A13) 
 
Using the basket weaving technique, the determinants of the 3 × 3 cofactor matrices can 

be calculated and the determinant of the 4 × 4 matrix can them be computed. 

0.0625 × (-0.182800) – 0.0510 × (-0.151800) + 0.0480 × (0.031000) – 1 × (0.010755)  
= -0.012950       

(A14) 
 
Again, following equation (A11), the determinant for VCOVL-ZBC is: 
 
 0 0.0510 0.0480 1            
 0 0.1156 0.0816 1            
 0 0.0816 0.2304 1           (A15) 
 1 1 1 0            

 
0 × determinant of the cofactor of a1 
– 0 × determinant of the cofactor of a2  
+ 0 × determinant of the cofactor of a3 
– 1 × determinant of the cofactor of a4 = – 1 × determinant of the cofactor of a4 (A16) 
 
Because only one cofactor remains, it is easy to demonstrate the calculations for the 

determinant of the cofactor using the basket weaving technique. 
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RD1 = 0.0510 × 0.0816 × 1 = 0.004162 
RD2 = 0.0480 × 1 × 0.0816 = 0.003917 
RD3 = 1 × 0.1156 × 0.2304 = 0.026634 
LD1 = 1 × 0.0816 × 0.0816 = 0.006659 
LD2 = 0.0510 × 1 × 0.2304 = 0.011750 
LD3 = 0.0480 × 0.1156 × 1 = 0.005549 
 
Determinant of the cofactor: 
 
(0.004162 + 0.003917 + 0.026634) – (0.006659 + 0.011750 + 0.005549) = 0.010755 
 
           (A17) 
 
Determinant of VCOVL-ZBC based on equation (A16): 
 
-1 × (0.010755) = -0.010755        (A18) 
 
Based on equation (14), the minimum variance portfolio weight for Security A is:  

WA = det(VCOVL-ZBC) ÷ det(VCOVL-ABC) 
 
WA = (-0.010755) ÷ (-0.012950) = 83.05%      (A19) 
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