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Phylogenetic signal and the utility of 12S and 16S mtDNA in frog phylogeny
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2 and A. Haas
1

Abstract
Genes selected for a phylogenetic study need to contain conserved information that reflects the phylogenetic history at the specific taxonomic level
of interest. Mitochondrial ribosomal genes have been used for a wide range of phylogenetic questions in general and in anuran systematics in
particular. We checked the plausibility of phylogenetic reconstructions in anurans that were built from commonly used 12S and 16S rRNA gene
sequences. For up to 27 species arranged in taxon sets of graded inclusiveness, we inferred phylogenetic hypotheses based on different a priori
decisions, i.e. choice of alignment method and alignment parameters, including/excluding variable sites, choice of reconstruction algorithm and
models of evolution. Alignment methods and parameters, as well as taxon sampling all had notable effects on the results leading to a large number
of conflicting topologies. Very few nodes were supported in all of the analyses. Data sets in which fast evolving and ambiguously aligned sites had
been excluded performed worse than the complete data sets. There was moderate support for the monophyly of the Discoglossidae, Pelobatoidea,
Pelobatidae and Pipidae. The clade Neobatrachia was robustly supported and the intrageneric relationships within Bombina and Discoglossus
were well resolved indicating the usefulness of the genes for relatively recent phylogenetic events. Although 12S and 16S rRNA genes seem to
carry some phylogenetic signal of deep (Mesozoic) splitting events the signal was not strong enough to resolve consistently the inter-relationships
of major clades within the Anura under varied methods and parameter settings.
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Introduction

Most contemporary studies in frog systematics have readily
assimilated molecular techniques or rely exclusively on them.

The application of molecular techniques has given stimulating
impulses to frog and amphibian phylogenetics (e.g. De Sá and
Hillis 1990; Hedges and Maxson 1993; Hillis et al. 1993; Hay
et al. 1995; Ruvinsky and Maxson 1996; Graybeal 1997; Feller

and Hedges 1998; Richards and Moore 1998; Garcia-Paris and
Jockusch 1999; Clough and Summers 2000; Emerson et al.
2000; Vences et al. 2000; Zardoya and Meyer 2001). In

particular, fragments of the mitochondrial 12S and 16S genes
have been used ubiquitously and continue to be used in frogs,
as well as other vertebrate and invertebrate groups (e.g.

Mattern and McLennan 2000; Buckley et al. 2002; Leaché and
Reeder 2002). Both genes have been applied at various
hierarchical levels of frog phylogeny ranging from intrageneric

relationships (e.g. Dawood et al. 2002) to the relationships of
the major clades within the Anura (e.g. Hay et al. 1995). On
the geological time scale these studies address splitting events
covering recent Cenozoic times and deep Mesozoic events,

respectively (Sanchiz 1998). Controversial views on the resol-
ving power of mitochondrial rRNA sequences were presented
early on (Mindell and Honeycutt 1990; Dixon and Hillis 1993).

Yet, the usefulness of the genes to address questions specif-
ically in frog evolution at different hierarchical levels has not
been demonstrated.

The alignment of homologous positions within orthologous
genes is pivotal in phylogenetic studies of nucleotide
sequences. Particularly, the alignment of highly divergent

non-protein coding sequences such as rRNAs causes prob-
lems with regard to the determination of reliable positional
homologies (Simon et al. 1994; Lutzoni et al. 2000). The
rRNA sequences can vary considerably in length because of

numerous insertions and deletions in fast evolving parts of
the genes. Maximum parsimony (MP) and maximum likeli-
hood (ML) methods both depend on correctly homologized

positions as represented in the data matrix. The rRNA genes
are characterized by regions of highly conserved secondary

structure motifs as well as stretches with high rates of
sequence evolution (Mindell and Honeycutt 1990; Dixon and
Hillis 1993; Simon et al. 1994). In the fast evolving regions
indels can cause difficulties in sequence alignments. Different

approaches have been proposed to improve the alignment of
ambiguously aligned regions: secondary structure-based align-
ments (Orti et al. 1996; Titus and Frost 1996; Wiens and

Reeder 1997), and parsimony-based, or optimization align-
ments (Wheeler 1996, 1999; Lutzoni et al. 2000; Wheeler
2001). Ambiguously aligned regions have either been excluded

altogether from phylogenetic analysis (Gatesy et al. 1993;
Leaché and Reeder 2002), coded as missing data, or differ-
entially weighted to reduce the detrimental effect of uncertain

positional homologies (e.g. Wheeler et al. 1995; Zardoya and
Meyer 2001). These different approaches may lead to incon-
sistent results in subsequent phylogenetic reconstructions
(Vogler and DeSalle 1994; Giribet and Wheeler 1999; Lutzoni

et al. 2000).
The phylogenetic signal in 12S and 16S genes with respect to

anurans is investigated in this study. The evolution of major

clades of frogs presumably took place from 200 to 140 Mio
years ago according to the fossil record (Sanchiz 1998). In the
light of their long evolutionary history anurans are a good

model to test the resolving power of ribosomal genes. Despite
many previous studies, large parts of the presumed phylogeny
of the Anura are unresolved (Ford and Cannatella 1993) or
controversial (Hay et al. 1995). Ascaphids, discoglossids,

pipids and pelobatoids are generally considered groups that
stem from early splitting events in frog evolution (Sanchiz
1998). The status of the Discoglossidae and Pelobatoidea,

however, is uncertain; several alternative phylogenetic hypo-
theses have been proposed (Ford and Cannatella 1993; Hay
et al. 1995; Haas 1997, 2003; Maglia 1998), some based on the

genes in question (Hay et al. 1995).
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We ask whether these genes can be properly applied over a
wide spectrum of evolutionary time to answer questions in frog
systematics. As there is no objective criterion to choose

between alternative approaches, the effects of various a priori
decisions of phylogenetic analysis by us on its actual outcome
are explored; e.g. the choice of taxa, the alignment method and

alignment parameter settings, inclusion/exclusion and weight-
ing, as well as the choice of reconstruction algorithm and
models of evolution.

Materials and Methods

Choice of taxa

The set of species examined and the use of species versus higher taxa as
terminals in phylogenetic analyses can have tremendous effects on
phylogenetic inference (Lecointre et al. 1993; Yeates 1995; Bininda–
Emonds et al. 1998; Graybeal 1998; Hillis 1998; Grandcolas and
D’Haese 2001). Although single species are commonly used as
representatives for species-rich taxa in phylogenetic studies (Hay et al.
1995; Zardoya and Meyer 2000), broader species samples should, in
general, lead to more robust hypotheses (Graybeal 1998; Hillis 1998),
e.g. amending the problem of long branch attraction (Felsenstein 1978;
Swofford et al. 1996). In order to assess the genes� phylogenetic signal
for relatively recent splitting events, particularly representatives of the
Discoglossidae are used for this study. In Europe, Alytes, Bombina and
Discoglossus underwent speciation likely during the Tertiary (Maxson
and Szymura 1979, 1984; Sanchiz 1998). Taxa relevant to the issue of
the basal branching pattern within the Anuran were combined with
them (e.g. archeobatrachians sensu Reig 1958). Choice of taxa was
inspired by the concept of hierarchical sampling (Graybeal 1993).
Accession (GenBank) numbers of sequences examined are summarized
in Appendix 1.
In order to explore the effects of taxon sampling on the alignment

procedures and the phylogenetic reconstruction three taxon sets were
built (see Appendix 2) with graded inclusiveness. Taxon group 1
comprises Dipnoi, Sphenodon and Lissamphibia; group 2 includes
species representing the Lissamphibia with a caudate, anurans, and a
caecilian; whereas group 3 was restricted to discoglossids as ingroup
and selected other anurans as outgroup.

Molecular characters and techniques

Muscle tissue of freshly alcohol preserved specimens was excised.
Standard proteinase K/PCI. DNA extraction protocols were applied
(Maniatis et al. 1982; Hillis et al. 1996). An approximately 400-bp 12S
rRNA segment and an approximately 500-bp 16S rRNA segment were
amplified using polymerase chain reaction (PCR; Palumbi 1996).
Primers were selected according to Goebel et al. (1999): 16S L2a
5¢TCGAACTTAGAGATAGCTGGTT3¢; 16S H17 5¢GCGAATGTT
TTTGGTAAACA3¢; 12S A-L 5¢AAACTGGGATTAGATACCCCA
CTAT 3¢; 12S B-H 5¢GAGGGTGACGGGCGGTGTGT3¢. These
primers correspond to position 2490–2910 (12SrRNA) and 3458–3963
(16SrRNA) of the Xenopus laevis mitochondrial genome (Roe et al.
1985; Gen-Bank no.: M10217). The following PCR temperature cycles
were found most efficient in a Robocycler Gradient 96 (Stratagene, La
Jolla, California). 12S primers: one cycle (3 min/94�C, 1 min/47�C,
1 min/72�C), followed by 35 cycles (1 min/94�C, 1 min/47�C, 1 min/
72�C). 16S primers: 1 cycle (3 min/94�C, 45 s/55�C, 1 min/72�C);
followed by 5 cycles (1 min/94�C, 45 s/55�C, 1 min/72�C); followed by
30 cycles (1 min/94�C, 45 s/53�C, 1 min/72�C).
We extracted PCR products from agarose gel electrophoresis using

two methods. First, excision of gel pieces containing the DNA with
subsequent standard PCI/chloroform extraction technique and preci-
pitation (Maniatis et al. 1982; Hillis et al. 1996). Secondly, trapping of
PCR products in a PEG (15% polyethylene glycol) filled gel well
during electrophoresis (Hillis et al. 1996).
Purified templates were sequenced in both directions with the

Thermo Sequenase Cycle Sequencing Kit (Amersham Pharmacia
Biotech, Amersham, UK) and 5¢ IRD800 labelled primers (manufac-
turer’s manual LiCor, Lincoln, Nebraska). Sequences were read with a

Li-Cor 4000 sequencer (LiCor, Lincoln, Nebraska). Forward and
reverse raw sequences were matched with bioedit 5.0.6 (Hall 1999) and
gendoc 2.6 (Nicholas and Nicholas 1997) software. Equivocal
positions of the consensus sequences were inspected visually and
corrected manually using the original chromatogram files. See
Appendix 1 for GenBank accession numbers.
To assess the presumed secondary structure of the sequenced gene

stretches we computed the folded structure under given thermody-
namic parameters using the Mfold energy-minimization method
(folding temperature 25�C; Zuker and Stiegler 1981; Jaeger et al.
1990; Mathews et al. 1999). For this approach we used the complete
GenBank sequences for both genes in Ichthyophis bannanicus, Rana
catesbeiana and Xenopus laevis as reference taxa (Appendix 1).

Alignment

All 12S and 16S rRNA sequence data were combined in a single data
matrix and analysed simultaneously. It was assumed that both 12S and
16S fragments, evolved along the same underlying topology (Buckley
et al. 2002), because of their common evolutionary fate as parts of the
ribosome, as well as the mitochondrial genome. Both 12S and 16S have
similar patterns of high among-site rate variation (Simon et al. 1994;
Orti et al. 1996).
Two different methods were used for data analyses. First, a one-step

procedure (Sankoff and Rousseau 1975; Wheeler 1996) implemented in
the software poy 2.0 (Gladstein and Wheeler 1996). It seeks in a
combined analysis (via optimization steps of the nucleotide data) for
the tree topology, which is based on the most parsimonious alignment
under given parameters (Wheeler 2001). Secondly, a two-step proce-
dure of initial alignment with clustal x and subsequent phylogenetic
reconstruction. In order to identify and delimit ambiguous regions, the
sequences were aligned four times with clustal x 1.8.1. (Thompson
et al. 1994; Higgins et al. 1996; Thompson et al. 1997) applying four
different sets of multiple alignment parameters: Gap Opening Penalty
(GOP) 15/Gap Extension Penalty (GEP) 6.6; GOP 10/GEP 5; GOP
20/GEP 5; and GOP 5/GEP 4. Ambiguously aligned positions were
identified by eye and excluded manually using bioedit. The remaining
alignment (one in each taxon group) is dubbed CLUSTAL X �CE�
herein, �E� for excluded.
In a second approach, all sites were retained and three alignments

with various gap cost were generated using clustal x (multiple
alignment parameters: �CA�: GOP 15/GEP 5; �CB�: GOP 5/GEP 4;
�CC�: GOP 20/GEP 5). Separate analyses were run for gap coding as
either fifth character state or missing data.
Finally, in addition to the separate analyses of alignments clustal x

CA, CB, and CC, these alignments were concatenated in a single large
matrix. In essence, this procedure weighs sites differentially during tree
search depending on their variability of positional homology (Wheeler
et al. 1995; Lutzoni et al. 2000).
Outputs of the alignment programs were imported and prepared for

phylogenetic analyses in MacClade 4.0 (Maddison and Maddison
2000).
The clustal x CA alignment of taxon group 1 was used to compute

pairwise distance measures (distance, number of substitutions) with
mega 2.01 software (Kumar et al. 2001). �Complete deletion� of gaps
option was in effect and the TN (Tamura and Nei 1993) model of
sequence evolution was used for calculating distances (parameter
determined with modeltest 3.06, Posada and Crandall 1998).

Tree reconstruction

Maximum parsimony
The parsimony analyses were performed with paup 4.0b8 software
(Windows Version; Swofford 1998). Initially equally weighted parsi-
mony was applied. Gaps were coded alternatively as fifth character
state, assuming that insertions and deletions also represent informative
evolutionary changes (Simmons and Ochoterena 2000; Simmons et al.
2001) or as missing data. The shortest trees were sought by heuristic
search method (10 000 random addition replicates, TBR branch
swapping, MulTree in effect). Bootstrap and jackknife (50% deletion)
analyses were performed with 2000 replicates (heuristic search, TBR,

mtDNA utility and phylogenetic signal in frogs 3



10 random additions respectively) to infer branch robustness (Hedges
1992).
Phylogenetic information of transversions was explored separately

by re-coding all characters as pyrimidine or purine bases and gaps as
missing data (transversion parsimony, Swofford et al. 1996). Addi-
tionally, we used a step matrix for the MP analyses with weights for
each transformation step according to their frequency distribution
within the data matrix (determined with modeltest). Substitution
costs applied: transversions 4, purine transition 2, pyrimidine trans-
ition 1 and indels 2.

Maximum likelihood
modeltest was used to determine parameter settings and models of
sequence evolution for the different alignments. The ML analyses were
performed with tree-puzzle 5.0 (Strimmer and von Haeseler 1996). It
uses the heuristic quartet-puzzling algorithm to compute likelihood
trees. The TN and the HKY85 (Hasegawa et al. 1985) models were
selected in separate analyses of each aligned data set, because the GTR
model (general time reversible; Lanave et al. 1984; Rodriguez et al.
1990; Yang 1994) is not implemented in tree-puzzle. Parameters of
the models of sequence evolution and rate heterogeneity were
estimated by tree-puzzle based on a neighbour-joining tree and the
exact likelihood function. The number of replicates of the quartet-
puzzling algorithm was set to 10 000. We selected a model of among-
site rate heterogeneity of substitutions that consisted of one invariable
rate and eight variable rates with gamma distribution.

Bayesian approach
The Bayesian methodology as implemented in MrBayes 2.01 (Huel-
senbeck 2000) estimates the posterior probabilities of the best set of
trees for a given model of sequence evolution (Rannala and Yang
1996; Yang and Rannala 1997; Huelsenbeck and Ronquist 2001). The
GTR model with eight classes of substitution rates and gamma
distribution (GTR + I + gamma) was used; model parameters were
estimated by MrBAYES. Analyses were initiated with random starting
trees. Additional settings following Huelsenbeck et al. (MrBAYES
documentation): program estimated base frequencies; 500 000 gener-
ations with four independent Markov Chains were started; every 100th
generated topology was saved; the first 500 generated topologies were
excluded from the final 50% majority rule consensus tree. In the
output files it was controlled whether the Markov chains had become
stationary for their log-likelihood scores with 1000 samples and
excluded further topologies if necessary. In a further search the
parameters were set identical to those of tree-puzzle runs to compare
the results of both methods. For that approach, the clustal x

alignment without variable aligned positions and the HKY85 model
were used.

One-step analysis with poy

In poy’s optimization alignment approach (Wheeler 1996), alignment
of sequences and tree reconstruction are performed simultaneously.
Commands followed Gladstein and Wheeler (1996): (i) Diagnose
(prints branch length and apomorphy list derived from a search), (ii)
Impliedalignment (generates a topology specific multiple alignment
based on the synapomorphy scheme), (iii) Random 100 (causes 100
random addition sequence searches (build through swapping) to be
performed), (iv) Multibuild 10 (makes 10 random addition sequence
builds on slave nodes, the best ones are submitted to branch
swapping), (v) Maxtrees 5 (set maximum trees held in buffers to five),
(vi) Slop 2 (check all tree length which are within �n� 10th of a per cent
of the current minimum value), (vii) Checkslop 5 (checks all tree
lengths that are within �n� 10th of a per cent of the current minimum
length using an additional tbr branch swapping round), (viii) Tbr (tbr
branch swapping), (ix) Nospr (suppresses spr branch swapping), (x)
Randomizeoutgroup (randomize the outgroup in (iii) Random and (iv)
Multibuild), and (xi) Quick (branch swapping only on minimal-length
trees, analogous to -steepest descent in paup). Gap costs were set to 1,
2, 4 and 8, respectively. Furthermore, the jackboot routines of poy

(Gladstein and Wheeler 1996) were used: -Jackboot -Random 200 -
Quick -Randomizeoutgroup -Maxtrees 10 -Tbr -Nospr; 50% majority
rule consensus trees were computed with consense in phylip 3.6
(Felsenstein 1989).
Results of analyses were plotted with treeview 1.61 (Page 1996).

Results

Secondary structure

Comparisons of the complete 12SrRNA sequences of Ichthyo-
phis bannanicus, Rana catesbeiana and Xenopus laevis (Gen-
Bank) showed that differences in the primary structure entail

significant differences in the putative secondary structure as
inferred from computer folding models. Few positions form
highly conserved homologous motifs of the secondary struc-

ture in the three taxa. At various sites the computer models
reconstructed unpaired bases within conserved regions that
otherwise form predominantly helical stems. Some of the
paired stem and the unpaired loop regions were shifted in

position related to changes in the primary structure. Compar-
ison of these three taxa alone, thus, did not support the notion
that secondary structure of rRNA is largely fixed in taxa with

highly divergent primary sequences. Furthermore, changes of
folding temperature (20, 30�C) in separate runs resulted in
different models of secondary structure.

Alignments

The various alignment procedures resulted in data matrices

that differed with regard to positional homology hypotheses,
the number of variable characters, and the number of
parsimony informative characters. The comparison is sum-

marized in Tables 1 and 2. Varying the alignment parameters
(gap cost) in each of the alignment procedures gave different
and unique alignments. Each of the gap cost regimes applied in

clustal x, e.g. yielded alternative primary homology hypo-
theses that resulted in different phylogenetic reconstructions.
The same effect was evident in the comparison of the implied

alignments of POY searches under different parameters. Taxon
sampling also had a significant effect of on the outcome of
alignments as detailed in Tables 1 and 2.

Congruent nodes in multiple analyses

We sought for nodes with universal support (Tables 3–5) in the

n-dimensional space of solutions (Wheeler 1995; Phillips et al.
2000) from all analyses. In all cases, genera represented by
more than one species were recovered as monophyletic entities

with high support values (Alytes, Bombina, Discoglossus,
Limnodynastes, Pelodytes, Rana). The node Limnodynas-
tes + Rana (representatives of Neobatrachia) was well sup-

ported in all analyses. Within discoglossid frogs, methods that
resolved intrageneric relationships consistently supported the
clades [Discoglossus montalentii + (D. galganoi + D. pic-

Table 1. Alignments with clustal x. CA, CB and CC represent
alignments under different gap cost schemes (see text for further
information)

CA CB CC CE

G tp vp ip tp vp ip tp vp ip tp vp ip

1 928 689 573 996 748 589 941 666 551 485 270 199
2 915 643 516 953 672 524 913 644 522 542 293 205
3 878 415 308 882 406 302 876 424 312 689 249 166

CE, the alignment without the ambiguously aligned positions. Char-
acterization of the differences: tp, total number of positions of a given
alignment; vp, number of variable positions; ip, number of parsimony
informative positions (tested in paup).
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tus + D. sardus)] and Bombina bombina + B. variegata. The
signal for Alytes + Bombina in species groups 1 and 2 was
weak. The monophyly of the Pelobatoidea, Pipidae and
Discoglossidae was suggested in results from multiple param-

eter settings and analysis methods. Similarly, within the
Pelobatoidea the family Pelobatidae (s. str., i.e. Pelo-
bates + Leptobrachium) was supported.

In all analyses of taxa group 2 the monophyly of the Anura
was robustly supported (Table 4). Yet, analyses of both groups
1 and 2 resulted in numerous conflicting hypotheses of

relationships concerning the major anuran clades (deep splits).
Nodes connecting major clades were mostly weakly supported
in robustness tests or by likelihood values. For example, the

relationships of Ascaphus appear completely undetermined by
these data sets. Its position in the respective topology was
highly sensitive to choice of parameters for alignment as well
as reconstruction method (ML, MP).

In the two-step procedures, fewer conflicting topologies were
derived for species group 3 (discoglossids, Ascaphus, Pelodytes)
than for the two more inclusive taxon samples, probably due

to the exclusion of highly divergent sequences in some of their
species. In almost all group 3 analyses (except for POY, gap
cost 4 and 8), the Discoglossidae was monophyletic and the

genus Discoglossus was the sister-group of Alytes + Bombina
(Fig. 2, Table 5).
The robustness of these phylogenetic hypotheses (group 3)

was assessed by changing the composition of the outgroup. In

two sets of analyses Pelodytes caucasicus was replaced by either
Xenopus orPelobates and combinedwithAscaphus as outgroup.
Three clustal x alignments were performed (parameters as in

CA, CB, CC) for each of the outgroup changes and subjected to
MP PAUP analyses. In comparison with the original group 3
analyses, some nodes were sensitive to the composition of the

outgroup. With Ascaphus and Xenopus as outgroup, the
bootstrap values supporting the Discoglossidae (Table 7) were
lower; furthermore, the relationships between Alytes, Bombina

and Discoglossus were unresolved. Discoglossidae was mono-
phyletic in only oneof the three cases (CA,CB,CC) and the node
Alytes + Bombina received substantially lower support than in
original group 3 analyses (Table 7), whereas with Ascaphus and

Pelobates as outgroup.

Reconstruction with POY

Each of the 12 searches with poy found most parsimonious
solutions with different topologies and different implied

alignments. The jackboot test of poy supported only few

nodes robustly in taxon groups 1 and 2, and some of the group
3 analyses (Tables 3–5).
For taxon group 1, gap cost 1 and 2 gave topologies that

differed only in the alternative nodes Archaeobatrachia and

Neobatrachia + Pipidae (Table 3). Most of the nodes of these
topologies were congruent with other results. In contrast, gap
cost 4 and 8 resulted in highly implausible nodes, e.g.

Lepidosiren + Ambystoma + Ichthyophis as sister group of
the Neobatrachia or Alytes + [Neobatrachia + (Lepidosi-
ren + Ambystoma + Ichthyophis)].

For taxon group 2, the different gap cost settings each
resulted in one most parsimonious solution. Among them, the
topology based on gap cost 4 had more nodes congruent with

two-step analyses (Table 4) than the other gap cost settings.
Among other results, gap cost 1 suggested the clade Discog-
lossus + (Ascaphus + Pelobatoidea), whereas with gap cost
set to 2, Ascaphus was resolved within discoglossids [Asca-

phus + (Alytes + Discoglossus)], and, finally for gap cost 8
the clade Ascaphus + Pipidae was the sister-group of Bom-
bina + Pelobatoidea.

Finally, in taxon group 3 analyses, each of gap cost 1 and 2
gave only one most parsimonious tree, both of identical
topology (Table 5). Yet, six different minimum length trees

were found in searches with gap cost set to 4, the resulting
strict consensus was highly unresolved. Only two shortest
topologies were found with gap cost setting 8. In their
consensus, the Discoglossidae were paraphyletic [Pelo-

dytes + (Alytes + Discoglossus)] at the exclusion of Bombina.

Maximum parsimony PAUP

PAUP. Alignment parameters in clustal x had a clear effect on
the resulting topologies when ambiguously aligned positions

and gaps were included in the data matrix. The resulting
topologies of these alignments contained conflicting and
weakly supported hypotheses of anuran relationships with

respect to deep splits in particular. Yet, certain subclades
(Fig. 3, Tables 4 and 5) were highly supported in consensus
trees. Nodes resolved under MP phylogenetic reconstructions
were mostly robust, no matter if gaps were coded as additional

fifth character state or as missing data.
The concatenated alignments CABC resulted in increased

resolution and higher node support in comparison with

analyses dealing with the three alignments separately. In MP
analyses of group 1, the combined alignment resulted in 90
minimal-length trees. Their 50% majority rule consensus tree

was highly resolved, with early all of the nodes having high

Table 2. Implied alignments of
poy (IAP), tested with paup.
OA GC 1, 2, 4, 8: optimization
alignment with gap cost 1, 2, 4, 8

Group 1 Group 2 Group 3

Alignment tp vp ip tp vp ip tp vp ip

OA GC 1 1215 981 642 1090 810 568 941 447 304
OA GC 2 1064 843 587 980 710 524 906 431 307
OA GC 2 1065 845 589
OA GC 4 1009 845 616 955 722 535 904 434 313
OA GC 4 903 431 311
OA GC 8 983 833 655 949 736 592 901 468 337

Characterization of the differences: tp, total number of positions of a given alignment (homology lines);
vp, number of variable positions; ip, number of parsimony informative positions (tested in paup). Note,
that this table contains only implied alignments, which differed in number of homology lines from
alignments of equal parsimonious solutions. With gap cost two and group 1 as well as with gap cost four
and group 3 more than one alignment based on the same most parsimonious topology was found.

mtDNA utility and phylogenetic signal in frogs 5
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bootstrap support (Table 3). The search with group 2 yielded
109 equally parsimonious trees with less-resolved consensus

and bootstrap trees. Yet, those consensus nodes found had
high support values (Table 4).
The exclusion of ambiguously aligned positions not only

reduced the number of informative characters (Table 1), but
also led to low plausibility of the reconstructed topologies in
all analyses of groups 1 and 2. In all iterations of clustal x

alignments the excision of ambiguously aligned positions

increased the number of conflicting trees and reduced the
resolution in majority rule bootstrap topologies. MP analysis
of species group 1 found seven minimum-length trees (ambi-

guous excluded). Their strict consensus topology contained
arrangements in stark conflict with well-established phylo-
genetic hypotheses, e.g. reconstructing a paraphyletic Anura, a

clade consisting of Sphenodon + Leptobrachium positioned
within the Anura, and a sister-group relationship of Asca-
phus + Neobatrachia. In analyses of species group 2 one most
parsimonious tree was found (monophyletic Archaeobatrachia,

Ascaphus + Pelobatoidea). The support for deep divergence
events in these alignments was weak.
Overall, the lower rate of transversions should lead to better

resolution of deep divergence events because of low saturation
effects. Yet, when using transversions alone, we obtained
consensus trees with reduced resolution in bootstrapping (no

intrageneric resolution) and highly unlikely topologies (Sphen-
odon + Leptobrachium andAscaphus + Scaphiopuswithin the
Pelobatoidea). Differential weighting of transformations (step-

matrix) within the species group 1 data set resulted in slightly
increased numbers of resolved nodes with >50% bootstrap
and jackknife support. Yet, the most parsimonious topologies
were similar to equally weighted parsimony and in conflict with

Fig. 1. Study design and methods
applied

Table 6. Proportion of unresolved quartets in the ML analyses with
tree-puzzle (see text). Tree searches under HKY85 model were
performed only with clustal x alignment CE (ambiguous positions
excluded)

Data set HKY85 TN

Group 1
CA 12.8
CB 10.7
CC 10.8
CABC 2.7
CE 14.0 14.2

Group 2
CA 15.3
CB 9.3
CC 12.6
CABC 3.3
CE 12.5 13.5

Group 3
CA 6.5
CB 5.1
CC 5.5
CABC 1.8
CE 9.3 8.7

Fig. 2. For species group 3, all analyses reconstructed largely identical
topologies, except for alternative subclades indicated by grey nodes
and dashed lines

mtDNA utility and phylogenetic signal in frogs 9



well-established hypotheses of amphibian relationships. In
species group 2, differential weighting caused lower resolution
in the test procedures as compared with equal weights.

Influence of taxon sampling on alignment and phylogenetic

reconstruction

We tested the influence of taxon sampling by comparing
prealignment taxon exclusion to postalignment taxon exclu-
sion. The first case simply equals group 2 and group 3 analyses.

The second case was prepared by aligning group 1 data and
subsequently reducing the species to match the species com-
position of groups 2 and 3. We used clustal x alignments

(CA, CB, CC) and analysed the data with MP in paup under
described parameters (heuristic search, bootstrapping). The
results of group 2 derived from the two approaches were

clearly different (Table 4). Some nodes were highly sensitive to
taxon sampling, e.g. Archaeobatrachia, and the topology
within the Discoglossidae. In group 3, the comparison between

the topologies of the postalignment reduction and initial group
3 alignments yielded no differences in the consensus topology,
yet, node support (bootstrap) for Alytes + Bombina dropped
from 94–99 to 62–74, respectively.

Maximum likelihood

We used the clustal x alignments CA, CB, CC, CABC and
CE, respectively, as data matrices for tree-puzzle and
MrBayes tree searches.

tree-puzzle. In tree-puzzle branch support values >70%
were considered robust. Only nodes with support >50% were
considered and shown in the resulting tree topologies. tree-

puzzle also computes the percentage of unresolved quartets.
This percentage is an indicator for the suitability of the data for
the explored phylogenetic problem (Strimmer and von Haes-
eler, tree-puzzle Manual).

The relatively high percentages of unresolved quartets in
taxa groups 1 and 2 (Table 6) seem to indicate that the
sequence data and parameters applied were not appropriate

to resolve the phylogenetic problem. The ratio of unresolved
quartets was lower and the obtained trees were more resolved
with alignments derived from the smallest taxa set, group 3.

The lowest proportions of unresolved quartets were deter-
mined in the concatenated alignments CABC from all groups.
The topologies reconstructed by tree-puzzle from clustal x

alignments under HKY85 and TN models were identical. Only

the branch support values of internal nodes differed slightly.
Furthermore, the quartet puzzling trees of these alignments of
species groups 1 and 2 were highly polytomous (Tables 3 and 4).

Using the clustal x alignments CE some of the few recon-
structed nodes based on the species group 1 were considered
highly unlikely (paraphyletic Amphibia, Sphenodon + Lep-

tobrachium, located within the anura, are monophyletic).

MRBAYES

The topology derived from clustal x CE alignments (ambi-
guous sites excluded) of group 1 was implausible (Anura
paraphyletic and a clade Sphenodon + Leptobrachium within
the Pelobatoidea with high support). The consensus topology

derived from species group 2 was not resolved with regard to
anuran higher clades (Fig. 4). When clustal x alignments
(CA, CB, CC, CABC, ambiguous sites included) were analysed

with Bayesian inference method, the majority rule consensusT
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Fig. 4. Majority rule consensus
tree of 4500 generated topologies
of the Bayesian analysis (mrbayes)
of clustal x alignment (ambigu-
ously aligned positions excluded);
species group 2

Fig. 3. Summary of the MP ana-
lyses based on clustal x align-
ments (CA, CB, CC) of species
group 1 under different gap costs.
Majority rule tree from bootstrap
(BS) and jack-knife (JK) runs. The
strict consensus of all most-parsi-
monious trees and the consensus
tree from jackknife analyses were
identical in topology. White nodes
and dashed lines indicate those
alternative arrangements in which
analyses of species group 2 devi-
ated from analyses of group 1
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trees of groups 1 and 2, respectively, showed considerably

more resolved nodes and higher support values (Fig. 5,
Tables 3 and 4).
Quartet puzzling resolved a lower number of nodes as

compared with Bayesian analyses. The former seemed more
conservative in reconstructing nodes from weak phylogenetic
signal. Yet, the resulting topologies from both methods were
similar for most of their robust nodes. In both tree-puzzle

and MrBayes, the choice of a sequence evolution model (GTR
or HKY 85 in MrBayes, TN or HKY 85 in tree-puzzle) had
only minor effects on node support (Table 3–5), without

changing the topologies.

Discussion

Secondary structure

RNA secondary structure has been used in different steps of

phylogenentic studies (Wheeler and Honeycutt 1988; Simon
et al. 1994; Kjer 1995; Orti and Meyer 1997). The phylogen-
entic approach of inferring secondary structure has been

applied repeatedly (de Sá and Hillis 1990; Dixon and Hillis
1993; Alves-Gomes et al. 1995; Kjer 1995; Titus and Frost
1996; Orti and Meyer 1997; Kjer et al. 2001). In this procedure
the inference of potential secondary structure motifs depends

on the recognition of similarity in the primary structure

(Armbruster 2001; Shull et al. 2001). If secondary structure

was largely fixed across even distantly related taxa, it could
potentially serve as a template for alignments (Kjer 1995;
Hancock and Vogler 2000). Yet, there is a high degree of

uncertainty about the errors caused by comparing distantly
related species with very different primary structures. Muta-
tional processes such as slippage could be agnostic with respect
to secondary structure. Also, substitutions within helical stems

may not necessarily require a compensatory substitution in the
complementary base, if compensated by a shift from a stem to
a loop motif (Hancock and Vogler 2000). In contrast to the

phylogenetic approach, computer models for RNA folding
according to minimized free energy are methodologically
independent from alignment. Yet, the real secondary structure

may still deviate from the minimal free energy model because
of other unaccounted constraints (Zuker and Stiegler 1981;
Severini et al. 1996). Different energy optimization algorithms
may compute different secondary structures from the same

data and rely on unrealistic fixed temperatures (Armbruster
2001). As a result of considerably variation in the primary
structures of the three model species (Xenopus laevis, Rana

catesbeiana, Ichthyophis bannanicus) and temperature depend-
ent variation of models, our computations yielded no reliable
secondary structures that were usable for the improvement of

alignments or differential weighting schemes.

Fig. 5. Majority rule consensus
tree of 4500 generated topologies
of the Bayesian analysis (mrbayes)
of alignment CABC (clustal x,
concatenated alignments CA, CB,
CC); species group 1
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Alignment of ribosomal genes

Highly variable rRNA regions cause sequence length differ-
ences (Indels) among taxa and require gap insertions in
alignments. The scope of taxon sampling directly influences the

alignment process. Our results, among others (e.g. Wägele and
Staniek 1995), indicate the significant influence alignments of
ribosomal sequence data have on the results of subsequent

phylogenetic reconstructions. Numerous nodes in our topol-
ogies were highly sensitive to choice of alignment parameters
and methods. In two-step procedures (Fig. 1) and for a given

alignment, different reconstruction methods yielded similar
topologies that also had comparable bootstrap and likelihood
support. The robustness of the phylogenetic signal depended
first and foremost on the primary homology hypotheses of

nucleotide positions. The reduced taxon sample in group 3
allowed alignment with low ambiguity and yielded topologies
with few conflicts, whereas substantial conflicts in topologies

prevailed in the larger taxon sets stemming from more
ambiguities in their alignments. Furthermore, different recon-
struction methods (MP, ML) found the same unlikely nodes,

e.g. Sphenodon + Leptobrachium, Ascaphus + Pelobatoidea,
when the same ambiguous alignment was put in.
The exclusion of gap sites and the coding of gaps as missing

data have been discussed as solutions to the dilemma of

ambiguously aligned positions (Lutzoni et al. 2000; Cognato
and Vogler 2001). Coding gaps as missing data does not solve
the more fundamental problem of ambiguous positions,

because positional homology remains uncertain (Lutzoni et al.
2000). Also, gaps are a class of potentially informative
characters states (Giribet and Wheeler 1999; Lutzoni et al.

2000; Simmons and Ochoterena 2000; Simmons et al. 2001).
Coding gaps as either missing data or as a fifth character state
had little general effect on inferred topologies in our study.

Although, some indels, when coded as fifth character state,
were identified as apomorphic character states for certain
clades (e.g. Bombina, Neobatrachia).
The de facto down-weighting of variable aligned positions in

the concatenated alignments led to higher resolution in consen-
sus trees (see also Wheeler et al. 1995). This effect could be
explained by, first, the higher number of parsimony informative

characters that improve the resolution in the phylogenetic
hypotheses, and secondly, the implicit weighting in concaten-
ated alignments could reflectmore appropriately the relations in

substitution rates between fast- and slow-evolving sites.
In our data, resolution decreased with the exclusion of

ambiguous positions (see also Cerchio and Tucker 1998;

Giribet and Wheeler 1999; Lutzoni et al. 2000; Shull et al.
2001). The shortened sequences did not contain enough
informative sites to maintain resolution. Different methods of
recognition, delimiting and exclusion of ambiguous regions can

introduce subjectivity and lead to conflicting topologies (Lut-
zoni et al. 2000). Yet, it is not clear to what extent the signal in
highly variable regions is perturbed as a result of saturated

substitutions and/or false hypothesis of primary homology.
The one-step procedure of poy provides an alternative to

distance-based alignment procedures and subsequent tree

search (Shull et al. 2001). Although, the method of combined
analysis via optimization alignment deviates from the general
principle of creating primary hypotheses of homology and
subsequent independent tests of these hypotheses in phylo-

genetic reconstruction (De Pinna 1991; Simmons and Ochot-
erena 2000). Like all other current methods, poy requires the

a priori specification of alignment parameters (gap cost).
Setting gap cost is subjective; models for the evolution of
insertions and deletions are not available (Kluge 1999;

Hancock and Vogler 2000; Simmons and Ochoterena 2000).
Parsimony-based alignment programs do not test ranges of
gap cost in the search for the globally most parsimonious

alignment (Shull et al. 2001).
In both one-step and two-step procedures, the variation of

parameters and methods for alignment and tree reconstruction
lead to numerous conflicting phylogenetic hypotheses. We

found no general rule of thumb for setting �correct� gap cost.
In poy, for instance, low gap cost led to more congruent nodes in
taxon groups 1 and 3, butmore conflicting nodes in taxon group 2.

Suitability of the sequence data

In ribosomal genes, the rate of substitution is site-specific
(loops versus stems, domains of tertiary structure of rRNA
molecules; Simon et al. 1994). Ribosomal genes should contain

information from old splitting events in their conserved
regions while fast evolving parts should be useful to resolve
more recent events, e.g. intraspecific or intrageneric (Simon
et al. 1994). In our study, generally better resolved topologies

were obtained when fast evolving sites were included. The
degree of noise (saturated sites, wrong homologies) and its
mode of distribution (randomly or non-randomly; see Naylor

and Brown 1998) is unknown a priori; yet, the phylogenetic
signal in noisy data sets may be detectable. (Wenzel and Sidall
1999; Broughton et al. 2000; Simmons et al. 2001; Simmons

et al. 2002). Otherwise hidden support (Cognato and Vogler
2001) can emerge from the combined analysis of nucleotide
stretches with unequal rate of evolution. �Noise� in the sense of
homoplasious characters can contribute to resolution of
phylogenetic hypotheses, if an adequate number of terminal
taxa were included (Simmons et al. 2002), but resolving deep
divergence events requires true signal unmasked by multiple

substitutions (Wägele et al. 1999; Wägele and Misof 2001).
In the 12S and 16S sequences examined, genetic distance and

substitution plots indicate a high degree of saturation, no

matter if the highly variable positions are included or not
(Figs 6, 7). Even in the most conserved sequence regions, the
phylogenetic information was disturbed by multiple substitu-

tions, as was indicated by the non-linear slope of transitions
and transversions (Fig. 7). We assume that the ambiguities of
primary homology assessment of large parts of the sequences
and noise in the data (in relation to the taxon sample)

accounted for the numerous conflicting results and the high
sensitivity of the phylogenetic hypotheses to different param-
eter settings. Particularly, ambiguities in primary homology

assessment contribute to the extensive n-dimensional space of
possible solutions. The preference of particular sets of analysis
parameters remains subjective. Therefore, the use of such

highly divergent ribosomal sequences must be considered
carefully with respect to the phylogenetic problem in question.
Although, the monophyly of the Lissamphibia and the

Anura were supported in numerous analyses, our results
suggest that for deep splitting events within the Anura the
ambiguities in alignments and phylogenetic reconstruction
limit the suitability of the gene fragments examined in frog

phylogeny (contrary to Hedges and Maxson 1993; Hay et al.
1995; Feller and Hedges 1998). The search for topologies that
resolve the basal branching pattern in anurans was sensitive to
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rather small changes in the conjectured homology of nucleo-
tide positions. The limited resolving power of the data could be

a consequence of high rates of evolution in both genes or
different rates of substitutions between taxa (Simon et al. 1994),
possibly responsible for the robust support of Limnodynas-

tes + Rana. Moreover, it could also be an effect of long
branch attraction between taxa with a long history of isolated
evolution, such as Ascaphus (Swofford et al. 1996; Huelsenbeck
1997; Wiens and Hollingsworth 2000). Such effect is indicated

by the varying position of Ascaphus in the space of topologies,
or the clade Sphenodon + Leptobrachium in some topologies.
A further cause could be a fast radiation of early anurans

relative to the substitution rate of our sequences.
We found a robust hypothesis of relationships for species

group 3. In the more inclusive groups 1 and 2, the phylogenetic

signal seems to be weak for Mesozoic anuran cladogenesis (see
also Simon et al. 1994).

Phylogenetic conclusions

The monophyly of the Anura is well supported by numerous
apomorphic characters of adults and larvae (Duellman and

Trueb 1986; Ford and Cannatella 1993; Haas 1997, 2001,

2003). Previous studies of molecular data corroborated this
hypothesis (Hedges and Maxson 1993; Hillis et al. 1993; Hay
et al. 1995; Feller and Hedges 1997). The Anura was clearly

supported in nearly all of our species group 2 analyses but not
in group 1 analyses, which encompassed highly divergent
outgroup taxa. We could not reconstruct congruent and robust

phylogenetic relationships between the major clades within the
Anura. The major clades represented by our taxa likely have
split long time ago and long times of separate evolution may
have obscured signal.

Previous analyses of molecular data, although in some cases
with low support, argued for the monophyly of the Archae-
obatrachia consisting of Ascaphus, Leiopelma, Discoglossidae,

Pelobatidae (s. lato), Pipidae, Pelodytidae and Rhinophrynidae
(Hedges and Maxson 1993; Hay et al. 1995; Feller and Hedges
1997). Ford and Cannatella (1993); Hillis et al. (1993) and

Haas (1997, 2003) identified archeobatrachians as a paraphy-
letic group. In our study, there was weak support in only some
analyses for the Archaeobatrachia (see Tables 4 and 5). We

consider 12S and 16S sequences not suitable to answer this
question.
The Pipidae is a well-supported clade within the Anura

(Sokol 1977; de Sá and Hillis 1990; Cannatella and de Sá 1993;

Ford and Cannatella 1993; Hay et al. 1995; Feller and Hedges
1998; Haas 2003). In our analyses, the monophyly of the
Pipidae was robustly supported in many analyses under a

broad range of methods and parameter settings.
Numerous studies treated discoglossids as natural group

(e.g. Duellman 1975; Laurent 1979; Duellman and Trueb 1986;

Sanchiz 1998). Alytes and Barbourula have not been included
in previous molecular studies. Nearly all possible arrangements
of discoglossid genera, including paraphyly, had their advo-

cates in previous studies (Lanza et al. 1975; Feller and Hedges,
1998; Maxson and Szymura 1979, 1984; Ford and Cannatella
1993; Hay et al. 1995). In our study, Alytes + Bombin-
a + Discoglossus (monophyletic Discoglossidae) was robustly

supported in many of the analyses. Our results obtained from
species groups 1 and 2 were ambiguous with regard to
intradiscoglossid relationships, whereas analyses of species

group 3 gave robust support for a clade Alytes + Bombina
within a monophyletic and robustly supported Discoglossidae.
Yet, changing the outgroup composition led to conflicting

hypotheses and weakened support for the monophyly of
Discoglossidae and Alytes + Bombina (Table 7). The gene
sequences used could not solve the case convincingly.
The Pelobatoidea traditionally includes the Pelodytidae and

the Pelobatidae s. lato (Duellman 1975; Duellman and Trueb
1986; Ford and Cannatella 1993; Lathrop 1997; Maglia 1998;
Sanchiz 1998). The Pelobatidae s. lato includes the Pelobat-

inae (Pelobates, Spea, Scaphiopus), Megophryinae and the
extinct Eopelobatinae (Duellman and Trueb 1986; Maglia
1998; Sanchiz 1998). Overall, there was support for the

monophyly of the Pelobatoidea in a number of analyses. The
Pelobatidae s. str. containing the Eurasian genera Pelobates
and Leptobrachium, however, was a well-supported clade. The

North American Scaphiopus and the European Pelobates
never formed a monophyletic group in our analyses, in
contrast to traditional groupings. The results did not resolve
the relationships within the Pelobatoidea unambiguously with

regard to scaphiopodids, pelodytids and the Eurasian Pelo-
batidae.
The monophyly of the Neobatrachia, comprising the

majority of extant frogs, is widely accepted and supported by
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morphological and molecular evidence (Duellman and Trueb
1986; Ford and Cannatella 1993; Hedges and Maxson 1993;
Hillis et al. 1993; Hay et al. 1995; Ruvinsky and Maxson 1996;

Feller and Hedges 1998; Sanchiz 1998). Despite only two
neobatrachians genera were included in the present samples,
the clade Limnodynastes + Rana was robust under a wide

range of conditions.

Conclusions

Owing to the complexity of alignments of highly divergent
RNA sequences, the current lack of models for the evolution
of indels, and the various approaches for phylogenetic

reconstruction it is necessary to explore the n-dimensional
space of analysis parameters and phylogenetic hypothesis. The
space of parameter dependent topologies should be searched

for universally supported nodes. Such procedure will lead to
rather conservative hypotheses (see also Wheeler 1995; Whi-
ting et al. 1997; Phillips et al. 2000). The search for robust

phylogenetic hypotheses makes us considerably more cautious
than previous workers to infer the early phylogeny of frogs
from 12S to 16S ribosomal genes. Our analyses gave a
heterogenous and rather complex picture of noise versus

signal. Noise in the data and particularly uncertainties of
primary homology necessarily produced numerous conflicting
results. Only very few nodes were supported universally under

a wide range of a priori decisions and analysis paths.
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Zusammenfassung

Phylogenetisches Signal und Eignung von 12S und 16S mtDNA für die
Phylogenie der Froschlurche

Zur Anwendung in einer phylogenetische Analyse müssen die
ausgewählten Gene konservierte und detektierbare Information
zum untersuchten phylogenetischen Niveau enthalten. Ribosomale
Gene des Mitochondriums wurden für ein breites Spektrum phylo-
genetischer Fragestellungen bei verschiedenen Gruppen und insbe-
sondere bei Froschlurchen eingesetzt. Wir untersuchten die Frage,
ob Rekonstruktionen der Anuren-Phylogenie, basierend auf 12S und
16S rRNA Gensequenzen, plausibel sind. An einer Auswahl von 27
Arten, arrangiert in Taxa-Gruppen abgestufter Hierarchie, rekon-
struierten wir phylogenetische Hypothesen unter verschiedenen, a
priori festgelegten Bedingungen. Dazu gehörten die Auswahl ver-
schiedener Alinierungsmethoden und—parameter, der Umgang mit
variabel alinierten Positionen, die Auswahl der Algorithmen zur
Baumkonstruktion sowie die Auswahl alternativer Modelle der
Sequenzevolution. Die Methoden und Parameter der Alinierung
und der Rekonstruktion, sowie die Auswahl der Taxa, hatten
bedeutenden Einfluss auf die Resultate. Daraus resultierte eine große
Anzahl alternativer Topologien, in denen nur sehr wenige Knoten in
allen Analysen Unterstützung fanden. Ausschluss variabel alinierter
Positionen ergaben Topologien mit niedrigem Grad der Auflösung.
Die Sequenzen enthielten ein gewisses Signal für die Monophylie

von Discoglossidae, Pelobatoidea, Pelobatidae und Pipidae. Der
Knoten Neobatrachia wurde deutlich unterstützt. Die robuste
Auflösung intragenerischer Phylogenien von Bombina und Discog-
lossus weisen auf eine besondere Eignung der Gene für die
Untersuchung junger Aufspaltungsereignisse hin. Obwohl 12S und
16S rRNA-Gene eine heterogene Unterstützung für wenige frühe
(mesozoische) phylogenetische Ereignisse zeigten, war das Signal
nicht geeignet, um die Beziehungen der Taxa höherer Ordnung der
Anura unter variierten Parametern und Analysemethoden konsistent
aufzulösen.
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Appendix 1

GenBank accession numbers off all sequences examined.

AJ numbers refer to our own sequencing

Species 12S 16S

Alytes muletensis AJ440758 AJ440797
Alytes obstetricans AJ440759 AJ440798
Ambystoma mexicanum Y10947 Y10947
Ascaphus truei X86225, AJ440760 X86293, AJ440799
Bombina maxima AJ440761 AJ440800
Bombina bombina AJ440762 AJ440801
Bombina orientalis AJ440763 AJ440802
Bombina variegata AJ440764 AJ440803
Discoglossus galganoi AJ440765 AJ440804
Discoglossus montalentii AJ440766 AJ440805
Discoglossus pictus X86235, AJ440767 AJ440806
Discoglossus sardus AJ440768 AJ440807
Ichthyophis bannanicus Y10949 Y10949
Lepidosiren paradoxa Z48715 Z48715
Leptobrachium spec. AJ440769 AJ440808
Limnodynastes dorsalis AF261250 AF261268
Limnodynastes peronii AJ440770 AJ440809
Neoceratodus forsteri AF302933 AF302933
Pelodytes caucasicus AJ440771 AJ440810
Pelodytes punctatus X86236, AJ440772 AJ440811
Pelobates fuscus AJ440773 AJ440812
Pipa carvalhoi AJ440774 AJ440813
Rana catesbeiana X12841 X12841
Rana nigrovittata AJ440775 AJ440814
Scaphiopus couchii AJ440776 AJ440815
Sphenodon punctatus L28076 L28076
Xenopus laevis M10217 M10217, AJ440816

Appendix 2

Composition of the Taxon Groups (see text for further

explanation)

Group 1 (Lissamphibia, Amniota, Dipnoi)
Alytes muletensis, Alytes obstetricans, Ambystoma mexicanum,

Ascaphus truei, Bombina bombina, Bombina maxima, Bombina
orientalis, Bombina variegata, Discoglossus galganoi, Discog-
lossus montalentii, Discoglossus pictus, Discoglossus sardus,

Ichthyophis bannanicus, Lepidosiren paradoxa, Leptobrachium
sp., Limnodynastes dorsalis, Limnodynastes peronii, Neocerat-
odus forsteri, Pelobates fuscus, Pelodytes punctatus, Pelodytes
caucasicus, Pipa carvalhoi, Rana catesbeiana, Rana nigrovittat-

a, Scaphiopus couchi, Sphenodon punctatus, Xenopus laevis.

Group 2 (Lissamphibia)

Alytes muletensis, Alytes obstetricans, Ambystoma mexicanum,
Ascaphus truei, Bombina bombina, Bombina maxima, Bombina
orientalis, Bombina variegata, Discoglossus galganoi, Discog-

lossus montalentii, Discoglossus pictus, Discoglossus sardus,
Ichthyophis bannanicus, Leptobrachium sp., Limnodynastes
dorsalis, Limnodynastes peronii, Pelobates fuscus, Pelodytes
punctatus, Pelodytes caucasicus, Pipa carvalhoi, Rana catesbei-

ana, Rana nigrovittata, Scaphiopus couchi, Xenopus laevis.

Group 3 (Discoglossidae + Ascaphus, Pelodytes)

Alytes muletensis, Alytes obstetricans, Ascaphus truei, Bombina
bombina, Bombina maxima, Bombina orientalis, Bombina
variegata, Discoglossus galganoi, Discoglossus montalentii,

Discoglossus pictus, Discoglossus sardus, Pelodytes caucasicus.
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