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Abstract

The phylogenetic relationships of microhylid frogs are poorly understood. The first molecular phylogeny for
continental African microhylids is presented, including representatives of all subfamilies, six of the eight genera, and
the enigmatic hemisotid Hemisus. Mitochondrial 12S and 16S rRNA sequence data were analysed using parsimony,
likelihood and Bayesian methods. Analyses of the data are consistent with the monophyly of all sampled subfamilies
and genera. Hemisus does not nest within either brevicipitines or non-brevicipitines. It is possibly the sister group to
brevicipitines, in which case brevicipitines might not be microhylids. Phrynomantis and Hoplophryne potentially group
with non-African, non-brevicipitine microhylids, in agreement with recent morphological and molecular data. Within
brevicipitines, Breviceps is recovered as the sister group to a clade of Callulina+Spelaeophryne+Probreviceps. The
relationships among the genera within this latter clade are unclear, being sensitive to the method of analysis. Optimal
trees suggest the Probreviceps macrodactylus subspecies complex might be paraphyletic with respect to P. uluguruensis,
corroborating preliminary morphological studies indicating that P. m. rungwensis may be a distinct species. P. m.

loveridgei may be paraphyletic with respect to P. m. macrodactylus, though this is not strongly supported. Some
biogeographic hypotheses are examined in light of these findings.
r 2004 Elsevier GmbH. All rights reserved.
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Introduction

Microhylids are a diverse group of subterranean,
terrestrial and arboreal frogs occurring in northern
Australasia, South and Southeast Asia, sub-Saharan
Africa, Madagascar, and North and South America.
The approximately 350 nominate species are classified in
64 genera and 10 subfamilies. This is the largest number
of genera found in any amphibian family, comprising
some 15% of all frog genera (Frost 2002). The status,
composition, inter- and intrarelationships of Microhy-
lidae have not been studied in detail, and the family
remains in general poorly understood. Indeed, even the
monophyly of Microhylidae is far from established
(see below). In association with their ecological
diversity, microhylids display great morphological
variation, particularly in their cranial and pectoral
girdle structure (Parker 1934; Carvalho 1954; Blom-
mers-Schlösser 1993; Wu 1994). The inadequate state of
microhylid systematics partly stems from the lack of
comparative morphological studies. Blair (1962) sug-
gested the use of non-traditional character systems for
clarifying evolutionary relationships in frogs. More
specifically, Largen and Drewes (1989) suggested
molecular data would be useful for resolving relation-
ships among African microhylids.
The suprageneric taxonomy of Microhylidae has

barely changed since Parker’s (1934) milestone mono-
graph but, given the generally inadequate state of
current knowledge, this is unlikely to prove stable.
Currently, the eight African (excluding Madagascar)
genera are divided into three subfamilies (Frost 2002).
The African Brevicipitinae consists of twenty species in
five genera. Three of these genera (Probreviceps Parker,
Callulina Nieden, Balebreviceps Largen & Drewes) are
found in evergreen forest, whereas the remainder
(Breviceps Merrem, Spelaeophryne Ahl) are known to
also inhabit some drier habitats. Among the moist forest
genera, Probreviceps is the most speciose (3 species) and,
except for the Zimbabwean P. rhodesianus Poynton &
Broadley, is found principally in the mountain forests of
Tanzania (Howell 1993). P. macrodactylus (Nieden) is
subdivided into three subspecies (Parker 1934): P.

macrodactylus macrodactylus (Nieden) from the Usam-
bara, P. macrodactylus loveridgei Parker from the
Uluguru and Udzungwa, and P. macrodactlyus rung-

wensis Loveridge from Rungwe and the Udzungwa. The
latter two subspecies are sympatric in the Udzungwa
Mountains, suggesting that they may be separate
species. Callulina is also found throughout the Eastern
Arc Mountains, and is known from C. kreffti Nieden
and a new species from the West Usambaras (de Sá,
Loader and Channing, unpublished). Balebreviceps is
monotypic, with B. hillmani Largen & Drewes known
from the Bale Mountains, Ethiopia (Largen and Drewes
1989). The only species of Spelaeophryne, S. methneri

Ahl, is found in both low and highland areas of
southeastern Tanzania, and Breviceps (15 species) is
confined to eastern and southern Africa, being ‘‘con-
centrated in South Africa’’ (Poynton 1964; see also
Channing 2001; Minter 2003). The Indo-African Mela-
nobatrachinae comprises four species: Melanobatrachus

indicus Beddome (Western Ghats, India), Hoplophryne

rogersi Barbour & Loveridge (East Usambara, Tanza-
nia), H. uluguruensis Barbour & Loveridge (Uluguru
and Udzungwa, Tanzania), and Parhoplophryne usam-

baricus Barbour & Loveridge (East Usambara, Tanza-
nia). These species all appear to be strictly confined to
forests. The subfamily Phrynomerinae comprises five
species of Phrynomantis Peters that have a wide
distribution across savanna and woodland habitats in
sub-Saharan Africa.
Based on morphology and behaviour, Blommers-

Schlösser (1993) argued that brevicipitines are not
microhylids, but actually belong with the enigmatic
African taxon Hemisus Günther in the Hemisotidae.
Wu’s (1994) phylogenetic analysis of morphology also
found support for brevicipitines being more closely
related to Hemisus than to non-brevicipitine microhy-
lids. The currently more orthodox view that brevicipi-
tines are microhylids and only distantly related to
Hemisus was summarised by Ford and Cannatella
(1993). Recent studies of larval morphology (Haas
2003) and DNA sequence data (Biju and Bossuyt
2003; Vences et al. 2003) have reinforced the view that
Hemisus is only distantly related to a monophyletic
Microhylidae, but none of these studies sampled any
brevicipitine taxa.
The limited ability of most amphibians to disperse

across biogeographical barriers (e.g. the sea or
arid habitats) has led some workers (e.g. Savage
1973; Duellman and Trueb 1994; Bossuyt and
Milinkovitch 2001) to argue that the distribution
of amphibians reflects changes in geology and
geography at various scales, such as continental drift
and orogenesis. The current distribution of microhylids
has been interpreted as reflecting the break-up of
Gondwana (Savage 1973). At a finer scale, the high
species diversity and strong patterns of endemism
in amphibians (including microhylids) of the Eastern
Arc are thought to be intimately related to more recent
geographic events (Fjeld(a and Lovett 1993; Howell
1993).
In this paper, we present the first phylogenetic

analysis of mitochondrial DNA sequence data for
African microhylids, sampling all subfamilies and six
of the eight genera found in continental Africa. We
focus especially on brevicipitines. Hemisus is also
included, in order to explore the relationship of this
genus with microhylids. The results of phylogenetic
analyses are compared briefly with some existing
biogeographic hypotheses.
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Material and methods

Samples

A total of 27 terminal taxa were used in this study
(Table 1). Sequences for 23 terminal taxa were generated
from newly collected material from Tanzania and
Ivory Coast. These were supplemented by sequences
for 4 species obtained from GenBank (Benson et al.
1998). Although microhylids are also distributed
elsewhere in sub-Saharan Africa, collecting was con-
centrated in Tanzania because all but one genus
(Balebreviceps from the Bale Mts, Ethiopia; Largen
and Drewes 1989) of African microhylids occur there.
All species known to occur in Tanzania are represented
in this study by at least one specimen, except for
Parhoplophryne usambaricus which is known from the
single type specimen only (Barbour and Loveridge
1928). Beyond Tanzania, this study lacks intensive
sampling of Breviceps, with only one of 15 species
included. The sub-Saharan Phrynomantis is represented
by two of the five known species. The only species
of Probreviceps not included in this study is the
Zimbabwean P. rhodesianus.
Four non-African microhylids were included, includ-

ing representatives of at least two major lineages
within the family, the exclusively Madagascan
Scaphiophryninae (Scaphiophryne Boulenger) and
the more cosmopolitan Microhylinae (Microhyla Tschu-
di, Kaloula Gray). All microhylid taxa for which 12S
and 16S data are currently deposited in GenBank were
included, with the exception of the Madagascan
dyscophine Dyscophus guineti (Grandidier), for which
the available data do not match the regions sequenced
here and contain several ambiguities. In addition
to microhylids, we included the East African Hemisus

marmoratus Steindachner and West African H. suda-

nensis (Steindachner).

DNA extraction, amplification and sequencing

DNA was extracted from liver and/or thigh muscle
preserved in aqueous 95% ethanol, and purified using
phenol/chloroform extractions. The primers used in
amplification and sequencing were 12Sa and 12Sb for
the 12S rRNA gene (Kocher et al. 1989), and 16Sa and
16Sb for the 16S rRNA gene (Palumbi 1996). Successful
polymerase chain reaction (PCR) gel bands were
removed and purified. PCR products were sequenced
using an ABI 377 automated sequencer (PE Biosystems,
Warrington, UK), following the manufacturer’s proto-
cols. Each published sequence represents a consensus of
both strands. GenBank accession numbers for sequences
are given in Table 1.

Phylogenetic analysis

Sequences were aligned manually. Length differences
were resolved by inserting alignment gaps, and positions
that could not be aligned unambiguously were excluded.
Parsimony and maximum likelihood (ML) analyses
were performed with PAUP*4b6 (Swofford 1998); ML
analyses used models recommended by Modeltest 3.04
(Posada and Crandall 1998), with empirical base
frequencies. All analyses were heuristic, with 10 random
addition sequence replicates and tree bisection recombi-
nation branch swapping. Zero length branches
were suppressed. Bayesian analysis was performed
using MrBayes (Huelsenbeck and Ronquist 2001)
with a six substitution category model and empirical
base frequencies. The Markov chain Monte Carlo
search was run with four chains for 1,000,000 genera-
tions. The first 1000 generations were discarded as
‘burn-in’, and subsequent trees were sampled every 1000
generations.
Faith and Cranston’s (1991) permutation tail prob-

ability (PTP) was determined with parsimony analyses
of 99 randomisations of the data. Support for clades was
measured with bootstrap proportions (Felsenstein 1985;
1000 pseudoreplicates), and decay indices (Bremer 1988)
determined by enforcing converse topological con-
straints. The significance of length differences between
most parsimonious and suboptimal trees found in
constrained analyses was assessed using a non-para-
metric test (Templeton 1983). This test is only unbiased
when comparing trees chosen a priori, i.e. not on the
basis of their fit to the data. When trees are selected
because of their maximal fit to the data, the tests are too
liberal. Thus, we here accept the failure to reject the null
hypothesis at face value, while rejection of the null
hypothesis is interpreted more cautiously (see Wilkinson
et al. 2003). Rate heterogeneity among taxa was
investigated by performing relative rates tests using
RRTree (Robinson-Rechavi and Huchon 2000).
We chose not to include a range of putative outgroups

(e.g. ranids, hyperoliids, artholeptids, rhacophorids) for
three main reasons. First, the monophyly of, and
interrelationships among, many major groups of neoba-
trachian frogs are not well established (e.g. Ford and
Cannatella 1993; Hay et al. 1995; Haas 2003) so that
selection of specific outgroups would be somewhat
arbitrary. Second, countering this by including a broad
range of outgroups was resisted because, based on
preliminary analyses, it increases ambiguity in the
alignment and the potential for long-branch attraction.
Third, previous studies (e.g. Hay et al. 1995; Wilkinson
et al. 2003; Hertwig et al. 2004) suggest that 12S and 16S
mitochondrial data alone are unlikely to provide a
robust, well-resolved picture of higher relationships
across such a wide range of amphibian families. Thus,
we use unrooted trees to test previous hypotheses of
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Table 1. Details of Hemisus and microhylid samples used in analyses

Species Voucher Locality GenBank accession no.

1 Hemisus marmoratus MW 1856 Sali FR, Mahenge Mts., Tanzania AY531831,

Steindachner AY531854

2 Hemisus sudanensis MOR C00.1 Comoé National Park, Ivory Coast AY531830,

(Steindachner) AY531853

3 Phrynomantis microps MOR C97.1 Comoé National Park, Ivory Coast AY531832,

Peters AY531855

4 Phrynomantis bifasciatus MW 3842 Mkomazi Game Reserve, AY531833,

(Smith) Tanzania AY531856

5 Scaphiophryne brevis AF 026357,

(Boulenger) AF 215384

6 Scaphiophryne gottlebei AF 215144,

Busse & Böhme AF 215385

7 Hoplophryne uluguruensis KMH 22723 West Kilombero Scarp FR, AY531835,

Barbour & Loveridge Uzungwa Mts, Tanzania AY531858

8 Hoplophryne rogersi KMH 23364 Nilo FR, East Usambara Mts. AY531834,

Barbour & Loveridge Tanzania AY531857

9 Microhyla cf. ornate AF 249003,

(Duméril & Bibron) AF 215371

10 Kaloula taprobanica AF 249004,

Parker AF 249057

11 Breviceps mossambicus MW 1826 Sali FR, Mahenge Mts., Tanzania AY531836,

Peters AY531859

12 Breviceps mossambicus MW 1848 Sali FR, Mahenge Mts., Tanzania AY531837,

Peters AY531860

13 Spelaeophryne methneri KMH 21547 Uluguru Mountains, Milawilila FR, AY531838,

Ahl Tanzania AY531861

14 Spelaeophryne methneri MW 1850 Sali FR, Mahenge Mts., Tanzania AY531839,

Ahl AY531862

15 Callulina n. sp. MW 3215 Ambangula FR, West Usambara Mts, AY531841,

Tanzania AY531864

16 Callulina n. sp. MW 1968 Mazumbai FR, West Usambara Mts, AY531840,

Tanzania AY531863

17 Callulina kreffti KMH 23534 Nilo FR, East Usambara Mts., AY531842,

Nieden Tanzania AY531865

18 Probreviceps m. rungwensis KMH 19141 West Kilombero Scarp FR, AY531843,

Loveridge Uzungwa Mts, Tanzania AY531866

19 Probreviceps m. rungwensis KMH 18974 Ndundulu FR, Uzungwa Mts., AY531844,

Loveridge Tanzania AY531867

20 Probreviceps uluguruensis KMH 21570 Uluguru South FR, Uluguru Mts., AY531845,

(Loveridge) Tanzania AY531868

21 Probreviceps uluguruensis KMH 21577 Uluguru South FR, Uluguru Mts., AY531846,

(Loveridge) Tanzania AY531869

22 Probreviceps m. loveridgei KMH 21461 Mkungwe FR, Uluguru Mts., AY531847,

Parker Tanzania AY531870

23 Probreviceps m. loveridgei KMH 21532 Kasanga FR, Uluguru, Tanzania AY531848,

Parker AY531871

24 Probreviceps m. loveridgei KMH 22702 West Kilombero Scarp FR, AY531849,

Parker Uzungwa Mts., Tanzania AY531872

25 Probreviceps m. loveridgei KMH 22067 West Kilombero Scarp FR, AY531850,

Parker Uzungwa Mts., Tanzania AY531873

26 Probreviceps m. macrodactylus KMH 16360 Amani NR, East Usambara Mts., AY531851,

(Nieden) Tanzania AY531874

27 Probreviceps m. macrodactylus KMH 21399 Nilo FR, East Usambara Mts., AY531852,

(Nieden) Tanzania AY531875

Vouchers were identified through comparisons with published descriptions (Barbour and Loveridge 1928; Parker 1934; Laurent 1972; Poynton and

Broadley 1985; Rödel 2000) and paratype material held in the Natural History Museum, London. Voucher specimens are stored in the Zoology

department of the Natural History Museum, London (KMH and MW field series) and M.-O. Rödel’s research collection (MOR) deposited in the

Staatliches Museum für Naturkunde Stuttgart and the Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn. FR=Forest

Reserve, NR=Nature Reserve, m=macrodactylus.
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monophyly and sister-group relationships, and we
explore the implications of alternative rootings.

Results

A total of 760 aligned sites were analysed, of which
479 were constant, 44 variable but parsimony unin-
formative, and 237 parsimony informative. The data
have a parsimony PTP of 0.01, allowing rejection of the
null hypothesis that they contain no more hierarchical
structure than expected by chance alone. Relative rates
tests indicated that Spelaeophryne methneri, Hemisus

marmoratus, and Breviceps mossambicus evolved more
rapidly than the other taxa (p=0.04). There is no
significant base composition bias for any taxon, whether
or not uninformative sites are considered. Plots of
transitions vs. transversions (not shown) suggest that
saturation is not a problem with these data.
Parsimony analysis yielded three most parsimonious

trees (MPTs), which differed only in the position of the
two Uluguru samples of Probreviceps macrodactylus

loveridgei (Fig. 1). The ML analysis used the
GTR+I+G model (as recommended by both criteria
used in Modeltest). The optimal ML tree (Fig. 2) is
similar to the MPTs. Most relationships common to
parsimony and ML trees are well supported as judged
by bootstrap proportions and decay indices (Fig. 1).
Bayesian posterior probabilities are high (40.87),
perhaps unreasonably so, for all splits in the optimal
ML tree (Fig. 2), including for relationships not found
in the MPTs. A minority of the investigated splits were
not significantly better supported than alternatives, as
judged by Templeton tests (Fig. 1).

Discussion

The unrooted optimal trees recovered by parsimony
and ML (Figs. 1 and 2) are consistent with the
monophyly of all previously recognised genera, sub-
families (except Microhylinae) and families, in that the
trees can be rooted such that all these taxa are clades.
The ML tree can be rooted such that Microhylinae
(Microhyla+Kaloula) is a clade, but the corresponding
split has a low posterior probability and is not recovered
in the MPTs, which allow for this clade only as one of
the possible resolutions of a polytomy. With the
exception of the Brevicipitinae, bootstrap proportions
for the splits corresponding to the other supraspecific
taxa are high (495%).

Higher relationships

Despite uncertainty over the position of the root, we
are able to examine relationships among four main

groups: Brevicipitinae (B), Hemisus (H), Scaphiophry-
ninae (S), and the remaining, paraphyletic non-brevici-
pitine, non-scaphiophrynine microhylids (N). Ford and
Cannatella (1993) defined Scoptanura as non-scaphio-
phrynine microhylids, including brevicipitines. Our
optimal trees are inconsistent with the Scoptanura
hypothesis (H, S (B, N)). Templeton tests (po0.031)
do not require us to attribute the difference (16 steps)
between our MPTs and the best trees consistent with
Scoptanura monophyly to random sampling error. The
same is also true (po0.02) for the alternative hypothesis
(H, N (B, S)). Assuming that brevicipitines are mono-
phyletic (see below) and that Hemisus is monophyletic,
our data suggest that the Brevicipitinae is the sister
group to Hemisus, to a clade containing all non-
brevicipitine microhylids sampled here, or to a clade
including both these groups.
Given that Hemisus is only distantly related to non-

brevicipitine microhylids (Biju and Bossuyt 2003; Haas
2003; Vences et al. 2003), the implication is that if
brevicipitines are the sister group to Hemisus, then they
are not microhylids. Support for the resolution ((S,
N)(H, B)) comes from Blommers-Schlösser’s (1993) and
Wu’s (1994) phylogenetic analyses of morphology.
These tentative insights point to a need for a major
revision of microhylid classification. Additional taxon
sampling and data from other (probably nuclear) genes
and/or from more morphological systems will be needed
to further resolve phylogenetic relationships before this
can be undertaken with confidence.

Non-brevicipitine microhylids

The non-brevicipitine microhylids sampled here were
recovered as a putative clade in all analyses. The
bootstrap proportion, decay index, and posterior prob-
ability for this group are high, and Templeton tests
(p40.0339) do not compel us to attribute this support to
sampling error (Figs. 1 and 2). The position of
Hoplophryne Barbour & Loveridge within a putative
clade comprising a mixture of widely geographically
distributed, non-brevicipitine microhylids is uncontro-
versial. The similar nesting of Phrynomantis is supported
by detailed studies of morphology (Laurent 1941; Haas
2003). Noble (1931) placed Phrynomantis in its own
subfamily, not closely allied to any other microhylids.
Parker (1934) excluded Phrynomantis from Microhyli-
dae based on the presence of intercalary cartilages, a
character now known to be present in other microhylids
as well (Wu 1994). Data from larval morphology
strongly support the nesting of Phrynomantis within a
clade of non-scaphiophrynine microhylids (Haas 2003).
Savage (1973) speculated that the three extant African

microhylid subfamilies (Brevicipitinae, Melanobatrachi-
nae, Phrynomerinae) diversified prior to Gondwana
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fragmentation. In contrast, Duellman and Trueb (1994,
p. 489) argued that a brevicipitine–phrynomerine lineage
diversified only after Gondwana fragmentation. We
reject Duellman and Trueb’s hypothesis, because there is
no rooting of our optimal trees in which Phrynomantis

and brevicipitines form a clade. We are not compelled to
attribute the difference (16 steps) between our MPTs
and the best trees in which Phrynomantis and brevici-
pitines are a potential clade to sampling error (Temple-
ton test, po0.02).

ARTICLE IN PRESS

1. Hemisus sudanensis

2. Hemisus marmoratus

3. Phrynomantis microps

4. Phrynomantis bifasciatus

5. Scaphiophryne brevis

6. Scaphiophryne gottlebei

7. Hoplophryne rogersi

8. Hoplophryne uluguruensis

9. Microhyla cf. ornata

10. Kaloula taprobanica

11. Breviceps mossambicus

12. Breviceps mossambicus

13. Spelaeophryne methneri

14. Spelaeophryne methneri

15. Callulina n. sp.

16. Callulina n. sp.

17. Callulina kreffti

18. Probreviceps m. rungwensis

19. Probreviceps m. rungwensis

20. Probreviceps uluguruensis

21. Probreviceps uluguruensis

22. Probreviceps m. loveridgei

23. Probreviceps m. loveridgei

24. Probreviceps m. loveridgei

25. Probreviceps m. loveridgei

26. Probreviceps m. macrodactlyus

27. Probreviceps m. macrodactlyus
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Brevicipitines

Whether trees are rooted with Hemisus or any of the
non-brevicipitine microhylids sampled, the data pre-
sented in this paper support the monophyly of
Brevicipitinae. Quantitative support for this node is
not compelling (Figs. 1 and 2), although it is further
corroborated by morphological evidence (Parker 1934;
Blommers-Schlösser 1993; Wu 1994) and is accepted
here. Parker (1934) commented on the special nature
of the brevicipitine vomer (prevomer in Parker’s
usage) which is reduced posteriorly (post-choanally)
but bearing a large anterior and medial expansion.
Parker also noted other characters (e.g. retention of a

complete shoulder girdle) that readily distinguished
brevicipitines from all other microhylids, but further
work is required to determine derived and plesio-
morphic conditions.
Phylogenetic relationships of the genera within

Brevicipitinae have been briefly explored by Poynton
(1964, 1999), Poynton and Pritchard (1976), Largen and
Drewes (1989), and Wu (1994). As their genus names
suggest, Probreviceps and Breviceps have been thought
to be closely related, and Poynton (1999, p. 515)
proposed that Breviceps ‘‘can be derived from sylvico-
lous East African Probreviceps’’. This was based on the
observation of clinal variation in the lengths of limbs
and digits along the continuous North to South
distribution of the two genera (Poynton and Pritchard
1976). Probreviceps from Tanzania have the longest
limbs and toes, followed by P. rhodesianus (further
South, in Zimbabwe), then Breviceps (which occurs
further southwards) with the shortest. In contrast, Wu
(1994) hypothesised that Callulina and Probreviceps

comprise a clade, with successive sister groups formed
by a paraphyletic Breviceps, and Spelaeophryne. Focuss-
ing on pectoral girdle morphology, Largen and Drewes
(1989) questioned the monophyly of Probreviceps+Bre-

viceps by suggesting that Probreviceps is more closely
related to Balebreviceps (not included in our analyses).
Our analyses strongly exclude Breviceps from a clade
comprising Probreviceps, Callulina and Spelaeophryne.
Judged by the Templeton test (po0.03), it is unneces-
sary to attribute the difference (14 steps) between our
MPTs and the best trees containing a Probreviceps+
Breviceps clade to random sampling error. Despite this,
the optimal trees recovered in our analyses (Figs. 1
and 2) do not preclude the possibility that Breviceps

evolved from a Probreviceps-like ancestor, as in
Poynton’s hypothesis.
Bootstrap support for the Spelaeophryne+Calluli-

na+Probreviceps clade, and for the monophyly of the
constituent genera, is high in all analyses, although the
best trees in which Probreviceps is constrained to be
non-monophyletic do not have a significantly worse fit
to the data (Fig. 1). The relationships among these three
genera are not clearly resolved by our data, although no
analyses recovered one of the three possible resolutions,
i.e. the pairing of Callulina+Spelaeophryne. Currently,
morphological data that might provide decisive support
for one of the two competing hypotheses (in the optimal
parsimony and ML trees) are lacking. The conflict and
lack of resolution might be caused by heterogeneous
rates of molecular evolution (i.e. Spelaeophryne relative
to other brevicipitines), inadequate taxon sampling
(Balebreviceps hillmani; additional species of Breviceps),
or simply too few sequence data.
The referral of a new species to Callulina based on

morphology (de Sá, Loader & Channing, unpublished)
is strongly supported by our molecular analyses. The
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status of the Probreviceps macrodactylus complex has
not been investigated previously in a phylogenetic
context. Our analyses suggest (Figs. 1 and 2) that P.

macrodactylus is paraphyletic with respect to P.

uluguruensis, but this is poorly supported as judged by
the Templeton test (p40.21), bootstrap proportion and
decay index values (Fig. 1). Probreviceps macrodactylus

rungwensis can be distinguished from other Probreviceps

by its large tympanum and notably pointed snout (J. C.
Poynton, pers. comm.), and it perhaps represents a
distinct species. We sampled P. m. rungwensis from the
Udzungwa only, so that future sampling of this taxon
from its type locality of Rungwe (part of the Southern
Highlands rather than the Eastern Arc) is recom-
mended, particularly in light of the apparently signifi-
cant biogeographical barrier (the ‘Makambo Gap’, e.g.
Keilland 1990; Lovett 1990; Gravlund 2002) between
these regions. Limited morphological studies on P. m.

macrodactylus and P. m. loveridgei (Parker 1934;
Poynton, unpublished) and our molecular data suggest
that there are very few differences between these
subspecies, and the molecular data suggest that the
latter may be paraphyletic with respect to the former
(Figs. 1 and 2).
Tanzanian Probreviceps are confined to upland ever-

green forest of the isolated constituent blocks of the
Eastern Arc Mountains and Southern Highlands (e.g.
Howell 1993). Taken at face value, the optimal
phylogenies recovered in our analyses (Figs. 1 and 2)
suggest that divergence of lineages giving rise to extant
Udzungwa and Uluguru Probreviceps has occurred at
least twice. The combined distributional and phyloge-
netic evidence does not fit with a simple, single
vicariance/dispersal event, but is seemingly in accor-
dance with the hypothesis that climatic fluctuations have
repeatedly isolated (and reconnected) Eastern Arc
montane forests over the last 2.8 Myr and driven
speciation (e.g. see Roy 1997, and references therein).
However, we stress that the relationships on which this
is based are not well supported.
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