# **Linguistic Portfolios**

Volume 11

Article 9

2022

# LET'S STRESS IT! INVESTIGATIONS OF SAUDI EFL TEACHERS' LEXICAL STRESS PATTERNS

Mahdi Duris Iowa State University

Ettien Koffi St. Cloud State University

Follow this and additional works at: https://repository.stcloudstate.edu/stcloud\_ling

Part of the Applied Linguistics Commons

#### **Recommended Citation**

Duris, Mahdi and Koffi, Ettien (2022) "LET'S STRESS IT! INVESTIGATIONS OF SAUDI EFL TEACHERS' LEXICAL STRESS PATTERNS," *Linguistic Portfolios*: Vol. 11, Article 9. Available at: https://repository.stcloudstate.edu/stcloud\_ling/vol11/iss1/9

This Article is brought to you for free and open access by The Repository at St. Cloud State. It has been accepted for inclusion in Linguistic Portfolios by an authorized editor of The Repository at St. Cloud State. For more information, please contact tdsteman@stcloudstate.edu.

## LET'S STRESS IT! INVESTIGATIONS OF SAUDI EFL TEACHERS' LEXICAL STRESS PATTERNS

# MAHDI DURIS AND ETTIEN KOFFI<sup>1</sup>

## ABSTRACT

Koffi (2019) investigated the acoustic correlates that Arabic L2 speakers of English use to encode lexical stress. This study replicates the same methodology and uses the same acoustic correlates and the same Just Noticeable Difference (JND) thresholds. Whereas Koffi (2019) focused on a general population of Arabic speakers of English, the current study investigates how 10 females Saudi L2 speakers of English who are college professors encode lexical stress. Do they encode lexical stress similarly or differently from the group that Koffi (2019) investigated? What does this entail for the acquisition of suprasegmentals in L2 English?

**Keywords:** Acoustic Correlates of Lexical Stress, Arabic-accented English, Just Noticeable Difference (JND), Acoustic Correlates Ranking

## **1.0 Introduction**

This investigation is a replication study of Koffi's (2019). It aims at examining whether or not Arabic L2 speakers of English of different proficiency levels encode lexical differently. In Koffi (2019) the participants were of uneven proficiency levels, but in this study, they are more proficient because they have advanced degrees in English. In fact, they teach English in college. This replication study uses an identical design as Koffi (2019). The only independent variable is the proficiency level of the participants (Walker et al., 2019).

## 2.0 A Quick Literature Review

The study of the acoustic correlates of lexical stress has a 60-year-old history. It can be traced back to Fry (1955) and (1958) who found that native speakers of American English encode lexical stress by ranking F0, intensity, and duration as follows:

F0 > Duration > Intensity

Since Fry's seminal study, many studies have investigated how the acoustic correlates of lexical stress rank in dialects of English and in other languages. For dialects of English, Keyworth (2014) found that American speakers from Minnesota encode lexical stress according to the following hierarchy:

Intensity > Duration > F0

Kochanski et al. (2005) found that British speakers also rely first and foremost on intensity. Koffi (2019) replicated Fry's methodology to investigate the encoding and ranking of lexical stress in Arabic-accented English. He uncovered the following ranking:

<sup>&</sup>lt;sup>1</sup> Authorship Responsibilities: Author 1 provided Author 2 with a preliminary version. This published version has undergone extensive revision and rewriting by Author 2. They both share equally in the rights, privileges, and responsibilities of this publication.

Linguistic Portfolios, Vol. 11 [2022], Art. 9

Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |132

Intensity (57.14%) = Duration (57.14%) > F0 (42.85%)

His ranking is different from that of Bouchhioua (2008) who found that Tunisian speakers of English ranked their acoustic correlates of lexical stress as follows:

Duration > Intensity > F0

Al-Ani (1992) replicated Fry's methodology to study how Arabic speakers rank the acoustic correlates of lexical stress in their L1 as follows:

Intensity > Duration > F0

Goldsmith (1990:158) describes Arabic as a stress-timed language like English. In Arabic, primary stress falls on "super-heavy codas, otherwise on penultimate syllables." Given that Arabic and English are both accent languages, Saudi speakers should display similar behaviors as English speakers.

#### 3.0 Participants, Data, and Methodology

As noted earlier, this study replicates Koffi (2019). The methodology and the analytical framework are the same, except for the independent variable, which is the proficiency level of the speakers. The proficiency levels of the participants in Koffi's study are unknow. However, the participants in this study have a homogeneous level of proficiency in English. They all have advanced college degrees and teach English as a Foreign Language in Saudi Arabia. Another common denominator among them is that they all learned L2 English in Saudi Arabia, and none of them had lived outside of Saudi Arabia by the time their data was collected. Table 1 provides additional sociometric information about the participants.

| N0  | NO Participants |      | Country | City of Birth | Age of Onset | Grade Level <sup>2</sup> |
|-----|-----------------|------|---------|---------------|--------------|--------------------------|
| 1.  | KSAF2           | 30   | KSA     | Riyadh        | 12           | 11                       |
| 2.  | KSAF3           | 27   | KSA     | Riyadh        | 7            | 7                        |
| 3.  | KSAF5           | 34   | KSA     | Riyadh        | 11           | 11                       |
| 4.  | KSAF7           | 35   | KSA     | Riyadh        | 5            | 11                       |
| 5.  | KSAF8           | 31   | KSA     | Riyadh        | 12           | 16                       |
| 6.  | KSAF10          | 29   | KSA     | Riyadh        | 6            | 6                        |
| 7.  | KSAF15          | 35   | KSA     | Riyadh        | 12           | 12                       |
| 8.  | KSAF18          | 34   | KSA     | Riyadh        | 6            | 12                       |
| 9.  | KSAF20          | 31   | KSA     | Riyadh        | 12           | 12                       |
| 10. | KSAF22          | 25   | KSA     | Riyadh        | 13           | 9                        |
|     | Mean            | 31.1 | NA      | NA            | 9.6          | 10.7                     |

Table 1: Participants' Sociometric Data

The participants in this study read the same Speech Accent Archive (SAA) text that those in Koffi (2019) recorded themselves reading:

<sup>&</sup>lt;sup>2</sup> Grade Level corresponds to the participants' first-time using English in a classroom

Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |133

Please call **Stella**. Ask her to bring these things with her from the store: six spoons of fresh snow peas, five thick slabs of blue cheese, and **maybe** a snack for her **brother** Bob. We **also** need a small **plastic** snake and a big toy frog for her kids. she can scoop these things into three red bags, and we will go meet her **Wednesday** at the train **station**.

The elicitation paragraph contains seven disyllabic words with a trochaic stress pattern, as listed in Table 2. A trochaic pattern means that primary stress falls on the penultimate syllable. The transcriptions used in this study are based on *Merriam-Webster Learner's Dictionary*. Thus, they represent the lexical stress patterns of General American English (GAE).

| NO | Word         | <b>IPA Transcription</b> |
|----|--------------|--------------------------|
| 1. | Stélla       | [ˈstɛlə]                 |
| 2. | máybe        | ['mebi ]                 |
| 3. | bróther      | [ˈbrʌðər ]               |
| 4. | <b>á</b> lso | [ˈəlso]                  |
| 5. | plástic      | ['plæstik ]              |
| 6. | Wédnesday    | ['wɛnzde ]               |
| 7. | státion      | [ˈsteʃən ]               |

Table 2: Seven disyllabic words and their IPA representation

Each participant was recorded with a SONY ICD-UX560F voice recorder. Thereafter, the MP3 recordings were converted to WAV mono, with a sampling frequency of 44,100 Hz. A headphone with a fixed microphone was used during the recording. The microphone is a Cardioid (unidirectional) type with a frequency response between 50 Hz and 20,000 Hz. The participant samples were later annotated and analyzed in Praat. The acoustic correlates of F0, intensity and duration were extracted, as displayed in Figure 1.

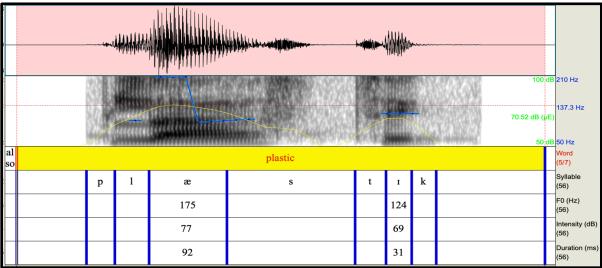



Figure 1: Annotated Spectrogram of <plastic> by KSAF3

The procedure in Figure 1 was repeated for all seven words produced by each participant. The total number of extracted tokens is 420 tokens (7 words x 2 syllables x 10 participants x 3 correlates). We note in passing that whenever Praat rendered a pitch value as "pitch undefined," a measurement of 74 Hz was used because the F0 floor in Praat is set at 75 Hz. An "undefined"

Linguistic Portfolios, Vol. 11 [2022], Art. 9 Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |134

pitch value does not mean an absence of pitch, but rather that pitch was lower than 75 Hz. This is the reason why 74 Hz was used for all instances of "pitch undefined." In the example in Figure 1, the word **<plastic>**, primary stress falls on the nucleus **[æ]** of the syllable **['plæs]**. The three acoustic correlates converge on **[æ]** to show that it carries primary stress. This is in keeping with Koffi's acoustic-based definition of lexical stress, which is stated as follows:

A syllable is deemed strong (stressed/primary) if and only if the nucleus of its F0 is  $\geq$  1 Hz higher, its intensity is  $\geq$  3 dB louder, or its duration is  $\geq$  10 ms longer than any other nucleus or nuclei in the same word (Koffi 2021:282).

When this definition is applied to a word such as  $\langle \text{plastic} \rangle$ , we see that the nucleus  $[\mathbf{x}]$  of the syllable ['plæs] carries primary stress because its F0 (175 Hz) has a higher pitch than the nucleus [I] of the syllable  $\langle \text{tic} \rangle$  (124 Hz). Since the pitch of the former is 51 Hz higher than that of the latter, we conclude that ['plæs] carries primary stress. The same goes for the intensity correlate, because  $[\mathbf{x}]$  (77 dB) is 8 dB louder than [I] (69 dB). Lastly, we know that  $[\mathbf{x}]$  (92 msec) carries primary stress because it is longer than [I] (31 msec) by 61 msec. When Just Noticeable Difference (JND) thresholds are used to gauge lexical stress, there is no need to rely on a statistical interpretation of the data because, for JNDs to be considered as valid, they must clear a minimum threshold of 75% of correct responses (Moore 2007).

#### 4.0 Findings

This study is undertaken to see if highly proficient Arabic-accented English speakers such as those in Table 1 encode lexical stress in English differently from those in Koffi (2019). The 420 tokens that they produced consist of 140 pitch tokens, 140 intensity tokens, and 140 duration tokens. They are displayed in Tables 3, 4, and 5 below.

|     |              | Sté | ella | má  | ybe | bró | ther | ál  | so  | plá  | stic | W   | édnesd | ay  | stá | tion |
|-----|--------------|-----|------|-----|-----|-----|------|-----|-----|------|------|-----|--------|-----|-----|------|
| NO  | Participants | ste | la   | may | be  | bro | ther | al  | so  | plas | tic  | we  | nis    | day | sta | tion |
| 1.  | KSAF2        | 126 | 185  | 124 | 138 | 105 | 153  | 112 | 148 | 190  | 108  | 123 | -      | 140 | 135 | 143  |
| 2.  | KSAF3        | 116 | 196  | 129 | 121 | 206 | 207  | 120 | 147 | 175  | 124  | 111 | -      | 197 | 161 | 110  |
| 3.  | KSAF5        | 123 | 108  | 157 | 128 | 113 | 109  | 143 | 190 | 127  | 131  | 137 | 162    | -   | 165 | 181  |
| 4.  | KSAF7        | 199 | 166  | 142 | 115 | 174 | 207  | 142 | 149 | 194  | 74   | 145 | 144    | 185 | 153 | 168  |
| 5.  | KSAF8        | 174 | 151  | 188 | 190 | 171 | 167  | 194 | 107 | 177  | 170  | 182 | -      | 161 | 183 | 111  |
| 6.  | KSAF10       | 200 | 163  | 161 | 121 | 197 | 195  | 117 | 124 | 105  | 113  | 114 | -      | 128 | 134 | 132  |
| 7.  | KSAF15       | 74  | 149  | 142 | 154 | 186 | 178  | 131 | 139 | 202  | 104  | 112 | 205    | 181 | 129 | 143  |
| 8.  | KSAF18       | 161 | 181  | 114 | 113 | 197 | 138  | 132 | 143 | 198  | 104  | 108 | -      | 115 | 128 | 164  |
| 9.  | KSAF20       | 207 | 195  | 200 | 192 | 183 | 192  | 188 | 120 | 160  | 74   | 105 | 133    | 207 | 105 | 110  |
| 10. | KSAF22       | 103 | 94   | 117 | 204 | 185 | 189  | 119 | 150 | 113  | -    | 108 | 208    | 150 | 125 | 145  |
|     | Mean         | 148 | 159  | 147 | 148 | 172 | 174  | 140 | 142 | 164  | 111  | 125 | 170    | 163 | 142 | 141  |

Table 4: F0 Measurements

# Duris and Koffi: LET'S STRESS IT! INVESTIGATIONS OF SAUDI EFL TEACHERS' LEXICAL S Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |135

|     |              |     | lla | máy | be | bró | ther | ál | so | plás | tic | W  | /édnes | day | stá | ition |
|-----|--------------|-----|-----|-----|----|-----|------|----|----|------|-----|----|--------|-----|-----|-------|
| NO  | Participants | ste | la  | may | be | bro | ther | al | so | plas | tic | we | nis    | day | sta | tion  |
| 1.  | KSAF2        | 79  | 73  | 73  | 69 | 77  | 70   | 76 | 72 | 72   | 62  | 75 | -      | 74  | 75  | 70    |
| 2.  | KSAF3        | 75  | 78  | 71  | 71 | 77  | 76   | 78 | 76 | 77   | 69  | 77 | -      | 74  | 72  | 72    |
| 3.  | KSAF5        | 76  | 69  | 70  | 63 | 79  | 71   | 80 | 76 | 80   | 70  | 72 | 74     | -   | 75  | -     |
| 4.  | KSAF7        | 73  | 72  | 74  | 67 | 81  | 77   | 79 | 74 | 78   | 67  | 78 | 79     | 76  | 76  | 80    |
| 5.  | KSAF8        | 68  | 63  | 62  | 64 | 67  | 63   | 70 | 58 | 68   | 54  | 64 | -      | 63  | 64  | 62    |
| 6.  | KSAF10       | 70  | 68  | 68  | 65 | 69  | 65   | 73 | 69 | 74   | 64  | 77 | -      | 77  | 75  | 68    |
| 7.  | KSAF15       | 73  | 68  | 71  | 66 | 71  | 68   | 74 | 72 | 73   | 62  | 74 | 67     | 71  | 70  | 71    |
| 8.  | KSAF18       | 69  | 67  | 69  | 63 | 69  | 66   | 67 | 69 | 67   | 62  | 75 | -      | 67  | 69  | 70    |
| 9.  | KSAF20       | 66  | 69  | 68  | 67 | 74  | 68   | 73 | 61 | 72   | 54  | 70 | 67     | 68  | 69  | 66    |
| 10. | KSAF22       | 73  | 71  | 73  | 70 | 74  | 69   | 77 | 76 | 72   | -   | 74 | 67     | 71  | 74  | 72    |
|     | Mean         | 72  | 70  | 70  | 67 | 74  | 69   | 75 | 70 | 73   | 63  | 74 | 71     | 71  | 72  | 70    |

| Table 4: Intensity Measurements |  |
|---------------------------------|--|
|---------------------------------|--|

|     |              | St  | élla | máy | ybe | bró | ther | álso |    | plástic |     | Wédnesday |     |     | státion |      |
|-----|--------------|-----|------|-----|-----|-----|------|------|----|---------|-----|-----------|-----|-----|---------|------|
| NO  | Participants | ste | la   | may | be  | bro | ther | al   | so | plas    | tic | we        | nis | day | sta     | tion |
| 1.  | KSAF2        | 90  | 212  | 120 | 68  | 72  | 70   | 72   | 93 | 103     | 29  | 82        | -   | 147 | 115     | 60   |
| 2.  | KSAF3        | 40  | 120  | 140 | 63  | 70  | 35   | 59   | 93 | 92      | 31  | 59        | -   | 144 | 169     | 92   |
| 3.  | KSAF5        | 77  | 143  | 91  | 84  | 58  | 40   | 65   | 37 | 53      | 30  | 57        | 36  | -   | 68      | 23   |
| 4.  | KSAF7        | 60  | 96   | 110 | 100 | 53  | 40   | 81   | 77 | 98      | 42  | 49        | 63  | 184 | 96      | 53   |
| 5.  | KSAF8        | 71  | 149  | 75  | 90  | 70  | 113  | 106  | 95 | 105     | 26  | 47        | -   | 218 | 117     | 61   |
| 6.  | KSAF10       | 60  | 57   | 119 | 60  | 92  | 47   | 105  | 47 | 103     | 43  | 89        | -   | 66  | 69      | 40   |
| 7.  | KSAF15       | 76  | 76   | 125 | 156 | 44  | 47   | 101  | 86 | 69      | 37  | 26        | 40  | 136 | 56      | 48   |
| 8.  | KSAF18       | 70  | 123  | 135 | 115 | 81  | 59   | 125  | 52 | 67      | 33  | 64        | -   | 133 | 83      | 49   |
| 9.  | KSAF20       | 36  | 122  | 131 | 61  | 77  | 55   | 99   | 18 | 87      | 20  | 69        | 65  | 82  | 94      | 39   |
| 10. | KSAF22       | 42  | 67   | 113 | 64  | 89  | 46   | 94   | 53 | 81      | -   | 54        | 48  | 146 | 59      | 33   |
|     | Mean         | 62  | 117  | 116 | 86  | 71  | 55   | 91   | 65 | 86      | 32  | 60        | 50  | 140 | 93      | 50   |

Table 5: Duration Measurements

## 5.1 Interpretation of the Findings and Correlate ranking

With regard to pitch, we see that it was used only 28.57% of the time to encode lexical stress. This means that F0 was used to encode lexical stress in two of seven words. We note in passing that <Wednesday> was sometimes pronounced as ['wɛ.nəz.de]. This means that it was turned into three syllables instead of two. Half of the Saudi EFL teachers inserted an epenthetic syllable [nəz]. Similarly, Koffi (2019) notes that 50% of the participants in his study did the same. This shows clearly that the pronunciation of <Wednesday> is problematic, regardless of the level of proficiency of Arabic speakers. For the intensity correlate, we see that the participants relied on it to encode lexical stress in 5 of 7 words (71.42%). They also relied on duration to encode lexical stress in 5 of 7 words (71.42%). The overall ranking of correlates is as follows:

Linguistic Portfolios, Vol. 11 [2022], Art. 9

Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |136

Intensity (71.42%) = Duration (71.42%) > F0 (28.57%)

This ranking is exactly the same as in Koffi (2019):

Intensity (57.14%) =Duration (57.14%) > F0 (42.85%)

The difference lies only in the sheer number of words. The teachers encoded lexical stress by relying on intensity and duration in 5 out of 7 words, whereas in Koffi (2019), the participants did so in 4 out 7 words. In principle, the sheer number of words does matter as much as the overall lexical strategy used to encode primary stress. The take-away from this replication study is that the speakers' level of proficiency does not seem to matter. Highly proficient speakers rank their correlates similarly as those who are less proficient. What seems to be going on here is that Arabic speakers tend to transfer the lexical encoding and ranking strategy from their native L1 into English. We draw this inference from Al-Ani's (1992) findings. Furthermore, Koffi (2019), Ani (1992), Bouchhioua (2008), and the results from this replication study converge to show that Arabic speakers do not rely on F0 to encode lexical stress. In all these studies, F0 ranks last.

#### 6.0 Summary

This replication confirms the findings in Koffi (2019). Given that the 10 females speakers of English in this study are highly proficient (they teach English in college), we conclude that the lexical stress strategy that Arabic speakers use is not correlated with their level of proficiency. Instead, it seems to have everything to do with the transfer of suprasegmental features of their L1 Arabic into their L2 English. The ranking in Al-Ani (1992) shows that Arabic speakers rely mostly on intensity to encode lexical stress. It is therefore not surprising to see that, regardless of proficiency levels, Arabic-accented English speakers depend equally on intensity and duration to encode lexical stress. The strategy that they use does not interfere with intelligibility for two reasons. First, the three acoustic correlates of stress lexical stress are co-equal. This means that any one of them can be used to encode lexical stress. Secondly, relying on intensity to encode lexical stress does not matter because, as noted by Keyworth (2014), native speakers of American English rely primarily on intensity to encode lexical stress. Kochanski et al. (2005) found that British speakers also rank intensity first.

#### **ABOUT THE AUTHORS**

**Mahdi Duris** is a Ph.D. student in Applied Linguistics and Technology at Iowa State University and a Research Assistant working with Dr. John Levis. He holds a B.S. in Management from George Mason University (2006) and an M.A. in Teaching English as a Second Language (TESL) from Saint Cloud State University in Minnesota (2020). After teaching financial literacy in Spanish, he obtained a CELTA certificate from Cambridge University (2012) to teach English as a Second Language to adults. He taught English in the Kingdom of Saudi Arabia for 5 years. His research focus includes pronunciation, acoustic phonetics and technology assisted L2 learning. He can be reached at <u>mduris@iastate.edu</u>.

**Ettien Koffi**, Ph.D. linguistics (Indiana University, Bloomington, IN) teaches at Saint Cloud State University, MN. He is the author of five books and author/co-author of several dozen articles on acoustic phonetics, phonology, language planning and policy, emergent orthographies, syntax, and translation. His acoustic phonetic research is synergetic, encompassing L2 acoustic phonetics of

Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |137

English (Speech Intelligibility from the perspective of the Critical Band Theory), sociophonetics of Central Minnesota English, general acoustic phonetics of Anyi (a West African language), acoustic phonetic feature extraction for application in Automatic Speech Recognition (ASR), Text-to-Speech (TTS), and voice biometrics for speaker verification. Since 2012, his high impact acoustic phonetic publications have been downloaded **28,515** times (analytics provided by Digital Commons) and read **13,680** times (analytics provided by Researchgate.net) as of February 2022. He can be reached at <u>enkoffi@stcloudstate.edu</u>.

#### References

- Al-Ani, S. H. (1992). Stress variation of the construct phrase in Arabic: A spectrographic analysis. *Anthropological Linguistics*, 256-276.
- Bouchhioua, N. (2008). Duration as a cue to stress and accent in Tunisian Arabic, native English, and L2 English. In *Proceedings from Speech Prosody 2008: The Fourth International Conference on Speech Prosody* (pp. 535-538).
- Fry, D. B. (1955). Duration and intensity as physical correlates of linguistic stress. *Journal of the Acoustical Society of America* 27(4): 765-768
- Fry, D. B. (1958). Experiments in the perception of stress. Language and Speech 1(2): 126-152
- Fry, D. B. (1955). Duration and intensity as physical correlates of linguistic stress. *Journal of the Acoustical Society of America* 27(4): 765-768
- Keyworth, P. (2014). *The Acoustic Correlates of Stress-Shifting Suffixes in Native and Nonnative English.* MA Thesis: St. Cloud State University.
- Kochanski, G., E. Grabe, J. Coleman, and B. Rosner. (2005). Loudness Predicts Prominence: Fundamental Frequency Lends Little. *Journal of the Acoustical Society of America* 118 (2): 1038-1054.
- Koffi, E. (2019). A template model account of lexical stress in Arabic-accented English. In J. Levis, C. Nagle, & E. Todey (Eds.), Proceedings of the 10th Pronunciation in Second Language Learning and Teaching Conference, ISSN 2380-9566, Ames, IA, September 2018 (pp. 158-167). Ames, IA: Iowa State University.
- Koffi, E. (2021). Relevant Acoustic Phonetics of L2 English: Focus on Intelligibility. CRC Press.
- Moore, B. C. (2007). Psychoacoustics. In *Springer handbook of acoustics* (pp. 459-501). Springer, New York, NY.
- Walker, R. M., Brewer, G. A., Lee, M. J., Petrovsky, N., & Van Witteloostuijn, A. (2019). Best practice recommendations for replicating experiments in public administration. *Journal* of Public Administration Research and Theory, 29(4), 609-626.

#### Linguistic Portfolios, Vol. 11 [2022], Art. 9

Linguistic Portfolios – ISSN 2472-5102 –Volume 11 – 2022 |138

| Participant | Age | Country<br>of Birth | City of<br>Birth | Cities lived<br>in KSA                | Dialect<br>ascription | Inner<br>Circle life | If yes, age<br>outside KSA | If yes,<br>English used | Age of 1st<br>Spoken<br>English | Age of 1st<br>English class | Major contribution to<br>Fluency  |
|-------------|-----|---------------------|------------------|---------------------------------------|-----------------------|----------------------|----------------------------|-------------------------|---------------------------------|-----------------------------|-----------------------------------|
| KSAF2       | 30  | KSA                 | Riyadh           | Riyadh                                | Najdi                 | -                    | -                          | -                       | 12                              | 11                          | NS Interaction                    |
| KSAF3       | 27  | KSA                 | Riyadh           | Riyadh                                | Najdi                 | -                    | -                          | -                       | 7                               | 7                           | Entertainement/ NS<br>Interaction |
| KSAF5       | 35  | KSA                 | Riyadh           | Riyadh                                | Najdi                 | -                    | -                          | -                       | 5                               | 11                          | Entertainement                    |
| KSAF7       | 34  | KSA                 | Riyadh           | Riyadh                                | Southern              | -                    | -                          | -                       | 11                              | 11                          | Sibling                           |
| KSAF8       | 31  | KSA                 | Riyadh           | Riyadh                                | Najdi                 | -                    | -                          | -                       | 12                              | 16                          | Entertainement/ NS<br>Interaction |
| KSAF10      | 29  | KSA                 | Medina           | Medina,<br>Riyadh                     | Hijazi                | -                    | -                          | -                       | 6                               | 6                           | Entertainement                    |
| KSAF15      | 35  | KSA                 | Riyadh           | Riyadh                                | Hijazi                | -                    | -                          | -                       | 12                              | 12                          | Entertainement                    |
| KSAF18      | 34  | KSA                 | Riyadh           | Riyadh                                | Najdi                 | -                    | -                          | -                       | 6                               | 12                          | Entertainement/ NS<br>Interaction |
| KSAF20      | 31  | KSA                 | Riyadh           | Jubail,<br>Jeddah,<br>Hail,<br>Riyadh | Northern              | -                    | -                          | -                       | 12                              | 12                          | School                            |
| KSAF22      | 25  | KSA                 | Jeddah           | Jeddah,<br>Riyadh,<br>Taif,<br>Tabuk  | Najdi                 | -                    | -                          | -                       | 13                              | 9                           | Entertainement/ NS<br>Interaction |

# **Appendix A: Sociometric**