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Abstract: 

Background & Introduction: Campylobacter is one of the most common foodborne bacteria in 

the United States, accounting for 48 million infections each year. Campylobacter infections can 

arise from consuming contaminated food, especially poultry, water, or contact with infected 

animals. Due to its strong seasonality, cases peaking in the summer and declining in the winter, 

potential relationships between climate and campylobacter have been analyzed. 

Methods: Weekly campylobacter surveillance data was obtained from the Connecticut 

Department of Public Health for 2000 through 2018. Historical and projected temperature and 

precipitation data were also gathered from the National Oceanic and Atmospheric 

Administration. A statistical analysis was conducted examining the relationship between weekly 

campylobacter cases and climate variables. A hierarchical Autoregressive Integrated Moving 

Average (ARIMA) model was also estimated using this weekly data and projected climate data 

to estimate the future burden of campylobacter by county in Connecticut.  

Results: The Poisson regression analysis showed a statistically significant relationship between 

weekly campylobacter cases and temperature at all lags, 0-8, but only a significant relationship 

with precipitation at lag 5. The optimal ARIMA model determined by lowest AIC score 

predicted with 87% accuracy future campylobacter infections by county in Connecticut. The 

model showed no increase in cases projected from 2019 through 2050. 

Discussion: Even with a projected increase in temperature and precipitation in the future because 

of climate change, campylobacter cases were not found to significantly increase. However, this 

analysis assumes a climate scenario in which the increase in global temperature will remain 

below 3° C through 2100. This analysis also did not consider probable increases in antimicrobial 

resistance and the recent decline in poultry consumption in the United States. 
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Background & Introduction: 

The CDC estimates that approximately 48 million people each year are infected with a 

foodborne illness in the United States. Campylobacter specifically accounts for 1.5 million of 

these infections. However, as this estimate accounts for only laboratory-confirmed cases, the 

actual incidence of campylobacter in the United States is estimated to be as high as 1% of all 

Americans annually (C.D.C). The underestimate is largely attributed to the low mortality rate 

and self-limiting nature of the illness (Weisent, et al., 2014). Infection has been shown to stem 

from exposures such as consuming contaminated meat, particularly poultry, drinking untreated 

water, or having direct contact with animals who are infected with the pathogen. Symptoms of 

campylobacter most commonly include diarrhea, vomiting, fever, and stomach cramps (C.D.C). 

Most of those infected will recover from a campylobacter infection without antibiotics, but 

antibiotics are prescribed in some situations, particularly for individuals at high risk for severe 

illness, such as those with underlying medical conditions or compromised immune systems 

(C.D.C.).  

There have been seasonal variations found with respect to campylobacter infections that 

suggest it may be sensitive to changes in climate. Peaks in cases usually occur in late spring and 

summer, with cases at their lowest in the winter (Kuhn, et al., 2020). However, the determinants 

of this seasonal pattern are still unknown (Louis, et al., 2005) (Lake, et al., 2019). While much 

research has been conducted regarding potential causes of the seasonality, no definitive 

conclusions have been drawn. Research investigating possible environmental factors such as 

temperature, precipitation, humidity, and extreme climate events has yielded inconsistent results. 

In contrast, research of the association between climate factors and other foodborne bacteria, 
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such as salmonella, has shown stronger relationships (Kuhn, et al., 2020) (McMichael, 

Woodruff, & Hales, 2006) (Lal, et al., 2013).  

Current research studies assessing the relationship between campylobacter infections and 

climatic factors have not only differed in their conclusions, but also their methods. A study 

quantifying the link between ambient temperature and campylobacter cases in Germany found a 

positive association for Campylobacter jejuni using a negative binomial regression model (Yun, 

et al., 2016). However, another study utilizing negative binomial regression in Canada found a 

small, not statistically significant association (Allard, et al., 1990). Poisson regression models 

used in Northern European countries also found positive associations between campylobacter 

cases and temperature, as well as heavy precipitation events (Kuhn, et al., 2020) (Sari Kovats, et 

al., 2005), while a New Zealand study using a similar Poisson regression model found no link 

between temperature and the seasonality of campylobacter (Spencer, et al., 2012). Kuhn et al., 

however suggested that while a Poisson regression model might be valid in some geographic 

locations, it might not be a valid approach for other locations (Kuhn, et al., 2020). Additional 

research has been conducted utilizing more advanced models for time series data, such as 

wavelet analysis and Autoregressive Integrated Moving Average (ARIMA) models. One study, 

employing the former approach, found changes in temperature predicted one-third of 

campylobacter cases in England and Wales, with a less pronounced relationship with rainfall 

(Djennad, et al., 2019). A New Zealand study using an ARIMA model accounting for seasonality 

found an association with temperature for salmonella infections but failed to find a significant 

relationship for campylobacter (Lal, et al., 2013). 

While most research into campylobacter and climate has looked at European countries, 

Australia, New Zealand, and Canada, much less research has been conducted on this potential 
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relationship in the United States. Existing research in the United States has been limited to 

specific geographies. One study assessed the campylobacter and climate relationship in the state 

of Georgia, concluding a positive relationship with temperature, but a negative relationship with 

precipitation, as cases increased in drought circumstances (Weisent, et al., 2014). Another study, 

in Maryland, only assessed extreme heat and precipitation events. While extreme precipitation 

was positively associated with campylobacter infections, it was only so for coastal regions of the 

state. Extreme heat was less associated, only a significant factor during La Niña periods (Soneja, 

et al., 2016). A comprehensive study of a range of climate factors including temperature, 

humidity, and surface water variables such as river levels, river temperature, and pH, was 

conducted solely for Philadelphia County. Campylobacter was associated with increased average 

temperature, as well as humidity and the temperature of the nearby Delaware River, a source of 

drinking water for Philadelphia (White, et al., 2009). 

Even though current research on the relationship between climate and campylobacter has 

generated inconsistent results, more research is needed, especially in different geographic 

regions and utilizing potentially more advanced models, to provide a clearer picture of this 

relationship. With a documented link between climate change and the potential effects on food- 

and water-borne diseases (Sterk, et al., 2013), quantifying these effects could aid in mitigating 

infections in the future. Even though campylobacter infections are typically not deadly, the high 

incidence and potential increase of infections could have a substantial impact on healthcare 

systems (Louis, et al., 2005). As surface temperatures around the globe are expected to rise in the 

coming decades, so is the frequency of severe weather events.  

In Connecticut, campylobacter is a reportable illness, requiring both physicians and 

laboratories to report cases to the Connecticut Department of Public Health (DPH) and the local 
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health department (LHD). Connecticut currently experiences approximately 700 cases of 

campylobacter per year, with a total population of roughly 3.5 million. The state of Connecticut 

experiences a continental climate with an average annual high temperature of 82.55°F in the 

summer and an average low temperature of 19.9 in the winter (Visit CT). Both averages are 

higher than the U.S. average overall. Connecticut also experiences higher than average 

precipitation, totaling approximately 50 inches per year, compared to the U.S. average of 38 

inches (CT.gov; NOAA). The objective of this analysis is to create a model for campylobacter 

infections in Connecticut based on historical temperature and precipitation data and employ this 

model to project cases of campylobacter in Connecticut using projected climate data.  

Methods: 

Campylobacter Data 

Surveillance of reportable foodborne illnesses, including campylobacter, is conducted in 

Connecticut through the Foodborne Pathogens Active Surveillance Network (FoodNet), in 

partnerships with the Yale Emerging Infections Program (EIP), Connecticut Department of 

Public Health (DPH), and the Centers for Disease Control and Prevention (CDC). Cases are 

detected by either polymerase chain reaction (PCR) and/or culture diagnostic laboratory testing 

from stool, urine, or blood samples. All reported cases are entered into the Connecticut 

Electronic Disease Surveillance System (CTEDSS), which houses laboratory testing information, 

demographic information, as well as data collected by interview conducted by the Yale EIP or 

LHDs. Campylobacter case data from 2000-2018 were used for this analysis, excluding those 

cases who reported international travel, restricting to only domestically acquired cases. An 

individual’s specimen collection date (week number, month, and year) as well as county of 
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residence were used to link the case to the corresponding temperature and precipitation for that 

week and county in Connecticut.  

Cases over time by county were visualized to examine the geographical burden of disease 

across the state. The seasonality of campylobacter was also assessed over time by comparing the 

number of cases by week of the year over the entire time period of the data from 2000-2018, in 

order to determine whether there have been any shifts and/or expansion of the historical seasonal 

period of campylobacter cases in Connecticut over time.  

Climate Data 

 Both historical and projected climate data were available publicly from the National 

Climatic Data Center at the National Oceanic and Atmospheric Administration (NOAA). 

Historical daily average temperature and daily total precipitation observations were collected for 

each county in Connecticut and then aggregated to obtain weekly averages. The relationship 

between campylobacter cases and temperature and precipitation observations at differing lags 

from 0 weeks through 8 weeks was analyzed by using a Poisson regression model. This 

preliminary analysis assessed the statistical significance of each lag for both temperature and 

precipitation to determine the optimal lag of most significance to be used in the model. 

Projected weekly average temperature and precipitation was used based on the 

Representative Concentration Pathway (RCP) 4.5 scenario, which assumes radiative forcing 

stabilizes at 4.5 watts per meter squared (W/m2) by the year 2100. This scenario has been 

thought to be the most likely situation and assumes carbon dioxide (CO2) emissions will begin to 

decline by 2045. RCP 4.5 is an intermediate scenario, with more stringent possibilities of RCP 

1.9, 2.6 and 3.4 requiring global temperature increases to not exceed 3°C, and worsening 

scenarios of RCP 6, 7, and 8.5 accounting for less interventions allowing global temperatures to 
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rise by more than 3° C. Assuming the most likely scenario of RCP 4.5 allows for the forecasted 

results to also be those of the most likely scenario. This projected data was sourced for years 

2019-2050.   

Autoregressive Integrated Moving Average (ARIMA) Model 

Autoregressive Integrated Moving Average (ARIMA) models are a type of regression 

analysis that offer an approach to modeling and forecasting time series data based on historical 

data. This makes it an optimal choice of model to assess campylobacter time series data by 

geographical region. There are three approaches for calculating forecasts of hierarchical time 

series data (1) bottom-up, (2) top-down, (3) middle-out, and (4) optimal reconciliation. For this 

analysis, we use the optimal reconciliation method as it produces more accurate forecasts, in 

large part due to its increased complexity. To examine the relationship between climate variables 

and campylobacter cases in Connecticut, we utilized a seasonal hierarchical ARIMA model, 

considering the seasonality of campylobacter as well as creating a hierarchical structure to assess 

the trends of the data by county, with the most aggregated level that of the entire state.  

 ARIMA terms were estimated using the Box-Jenkins method. The first step was to assess 

the stationarity of the data, which was done by plotting the mean and range of the data against 

one another and calculating the Pearson’s correlation coefficient. If the mean and range are 

correlated, the data is not stationary. Using log-transformed data can result in stationarity, 

however, and the data were log-transformed, with a constant of 1 added to the data prior to log 

transformation to avoid the undefined result of log(0). The predicted data was then de-

transformed to estimate the raw case numbers. The Pearson’s correlation coefficient was then re-

calculated showing no correlation and indicating the data were now stationary.  
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 The next step was to determine the (p, d, q) and (P, D, Q) values for the model by 

plotting the autocorrelation function (ACF) and partial autocorrelation function (PACF). The p, 

d, q values denote the AR (p), I (d), and MA (q) terms in the ARIMA model. The AR term 

contains the relationship of one observation to a certain number (p) of previous observations. 

The I term (d) denotes the amount of differencing to occur to create a stationary dataset. Since, 

the data was already stationary from the log transformation, we set this value equal to 0. Finally, 

the MA term (q) represents the relationship between one observation and the residual error. 

Additionally, the P, D, Q values denote the seasonal ARIMA terms, which can account for 

consistent seasonality in the data. Because the log-transformed data were stationary, the 

differencing term (d) was set to 0. Multiple variations of these terms were considered, and the 

best fit model was selected based on the lowest Akaike Information Criterion (AIC) score.  

The historical weekly average temperature and precipitation values were included in the 

model as external regressors and assessed at different lags. The optimal model was then fitted to 

the first fourteen years of campylobacter data (the training set) and prediction values for the final 

five years of data (the testing set) were generated and compared to the observed number of 

campylobacter cases during these five years, to assess the fit of the model. 

Forecasting Hierarchical Time Series 

 Campylobacter cases per Connecticut county were combined into a hierarchical time 

series data type, creating a top level that includes the total cases in Connecticut for each week 

from week 1, 2000 to week 52, 2018. The second level contained each county’s case data by 

week. Historical temperature and precipitation were used again as external regressors for the 

historical campylobacter data; we incorporated these at the best-fit lag identified by the ARIMA 

model with the lowest AIC score, as well as from the Poisson regression analysis. Both methods 
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identified the same optimal lag time. The projected temperature and precipitation were also 

included in the forecast as the external predictors (at the best-fit lag) for the predicted  

campylobacter case values. These forecasts were then generated, mapped, and assessed for 

historical accuracy by examining both the Mean Absolute Percentage Error (MAPE) and the 

Mean Absolute Scaled Error (MASE).  

Results: 

 The burden of campylobacter infections in Connecticut in the 21st century was 

concentrated in the most populated counties, as expected, with Fairfield, New Haven, and 

Hartford counties accounting for more than three-quarters of all cases statewide (Figures 1 & 2). 

Litchfield, Middlesex, New London, Tolland, and Windham counties, therefore, have historically 

made up a minority of reported cases. When observing cases across years by week of the year to 

assess seasonality, the seasonality of the campylobacter data remained strong over time, with a 

distinct peak in the summer weeks occurring between late May to early September (Figure 3). 

The average number of cases by week from 2000-2009 and from 2010-2018 is also shown in 

Figure 3. While the average has not changed during the beginning of the year, there has been an 

increase at the peak of the season (approximately week 27) in more recent years compared to 

2000-2009. From 2010-2018 there was also larger peaks in cases later in the year, showing that 

any increase in cases is occurring either during the summer season or late in the year during the 

winter season.  
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Figure 1. Time Series of Campylobacter Cases in Connecticut, by County (2000-2018) 
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Figure 2. Total Campylobacter Cases by County, 2000-2018 
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Figure 3. Seasonality of Campylobacter, 2000-2018 
 

The preliminary Poisson regression analysis showed a statistical significance for 

temperature at every lag, 0-8 weeks. However, precipitation was found to only be statistically 

significant at a lag of 5 weeks. At a lag of 5 weeks, the incidence rate ratios (IRR) for 

temperature and precipitation were 1.018 and 1.024, respectively. A 1° increase in temperature 

was associated with a 1.8% increase in campylobacter cases. Similarly, a 1-inch increase in 

precipitation was associated with a 2.4% increase in campylobacter cases (Table 1).  
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Lag (weeks) Regressor Coefficient IRR 95% CI P-value 

0 
Temperature 0.021 1.022 (0.020, 0.023) <2e-16 
Precipitation 0.012 1.012 (-0.008, 0.032) 0.244 

1 
Temperature 0.021 1.021 (0.020, 0.022) <2e-16 
Precipitation 0.003 1.003 (-0.017, 0.023) 0.756 

2 
Temperature 0.021 1.021 (0.020, 0.022) <2e-16 
Precipitation 0.011 1.011 (-0.009, 0.022) 0.279 

3 
Temperature 0.020 1.020 (0.019, 0.021) <2e-16 
Precipitation 0.016 1.016 (-0.005, 0.036) 0.126 

4 
Temperature 0.019 1.020 (0.018, 0.021) <2e-16 
Precipitation 0.005 1.005 (-0.015, 0.025) 0.615 

5 
Temperature 0.018 1.018 (0.017, 0.020) <2e-16 
Precipitation 0.024 1.024 (0.004, 0.044) 0.019 

6 
Temperature 0.017 1.017 (0.016, 0.018) <2e-16 
Precipitation -0.002 0.998 (-0.022, 0.019) 0.879 

7 
Temperature 0.016 1.016 (0.014, 0.017) <2e-16 
Precipitation -0.008 0.992 (-0.029, 0.012) 0.441 

8 
Temperature 0.014 1.014 (0.012, 0.015) <2e-16 
Precipitation 0.016 1.016 (-0.004, 0.036) 0.118 
Table 1. Poisson Regression Analysis of Lagged External Regressors 

Utilizing the Box-Jenkins approach to assess stationarity of the data, the mean and range 

of cases was somewhat positively correlated with a correlation coefficient of 0.622. By log-

transforming the data, however, this correlation was removed, and the log of cases was then used 

in the model going forward. In determining the ARIMA terms, the autocorrelation (ACF) and 

partial autocorrelation (PACF) plots showed the need for both AR and MA terms (Figure 4). 

Based on the ACF and PACF plots, an AR term was needed at p lags. The p term was estimated 

from the PACF plot where lags of 1 through 5 were found to be significant. The ACF plot also 

indicated a potential MA term at q lags. Because these plots also show spikes at annual lags (52 

weeks), possible seasonal AR and MA terms were also included in the model. Evaluating several 

models with differing AR and MA terms, from 1 to 5, and including seasonal AR and MA terms, 

the best fit seasonal ARIMA model with the lowest AIC score was found to be ARIMA (3,0,3) 

(1,0,1) [52] (Table 2).  
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External regressors of temperature and precipitation for the accompanying week were 

also evaluated in the model at differing lags, from 0 to 8 weeks. The best-fit model included 

temperature and precipitation lagged five weeks behind the reporting of campylobacter cases 

(Table 2), matching the results from the Poisson regression analysis (Table 1). In addition to the 

AIC score, the model was also evaluated by fitting the chosen ARIMA model to the first 

fourteen years of cases and then using the fitted model to predict the final five years of the 

historical data. When compared with the observed data from 2000-2013, the predicted values for 

2014-2018 showed the model to be a good fit (Figure 5). The mean absolute percent error  

 

Figure 4. Autocorrelation (ACF) and partial autocorrelation (PACF) plots of log-transformed 
Campylobacter cases. 
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(MAPE) for the model was 13.04, indicating an approximate 13% error between the observed 

and predicted values, and resulting in the model being 86.96% accurate. 

ARIMA Terms AIC Score 
(3,0,3) (1,0,1) 911.86 
(4,0,1) (1,0,1) 912.71 
(4,0,3) (1,0,1) 913.78 
(4,0,4) (1,0,1) 912.05 
(5,0,5) (1,0,1) 913.18 

(3,0,3) (1,0,1) + external regressor (lag=0) 893.04 
(3,0,3) (1,0,1) + external regressor (lag=1) 889.89 
(3,0,3) (1,0,1) + external regressor (lag=2) 893.94 
(3,0,3) (1,0,1) + external regressor (lag=3) 901.77 
(3,0,3) (1,0,1) + external regressor (lag=4) 887.36 
(3,0,3) (1,0,1) + external regressor (lag=5) 878.2 
(3,0,3) (1,0,1) + external regressor (lag=6) 881.86 
(3,0,3) (1,0,1) + external regressor (lag=7) 884.63 
(3,0,3) (1,0,1) + external regressor (lag=8) 895.52 

Table 2. Potential ARIMA Models 

Figure 5. Model Fit, Observed vs. Predicted 

Using the forecasted temperature and precipitation for future years 2019 through 2050 as 

external predictors, the best fit ARIMA model was used to predict cases of campylobacter by 

each county in the hierarchical time series. The optimal reconciliation (combination) method was 
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used for the model resulting in estimating cases with both the bottom-up and top-down strategies 

(Figure 6). Overall, the model predicts 17,352 cases during the forecast period in Connecticut, 

with Fairfield County having the most cases (Table 3).  

Figure 6. Projected Campylobacter Cases by County, 2019-2050 

 

County 
Total Cases  
(2019-2050) 

Average Cases  
per Year  

(2019-2050) 

Average Cases 
per Year  

(2000-2018) 
Connecticut 17,352.61 542.79 548.74 

Fairfield 5,397.61 168.60 178.05 
Hartford 3,239.71 101.56 118.42 

Litchfield 879.02 27.54 29.26 
Middlesex 678.15 21.25 28.47 

New Haven 3,416.31 107.28 121 
New London 846.26 26.51 34.68 

Tolland 545.51 17.09 22.16 
Windham 462.15 14.47 16.68 

Table 3. Forecasted Campylobacter Cases, 2019-2050 
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Discussion/Limitations: 

 The main objective of this analysis was to determine that, given the overall rise in 

temperature and precipitation that is likely to occur over the next several decades because of 

climate change, what impact will this have on the burden of campylobacter in Connecticut. This 

analysis found that campylobacter cases are highly correlated with the temperature and 

precipitation five weeks prior to the specimen collection date of a case. However, even with this 

correlation, cases of campylobacter are not projected to increase, on average, across the state 

through 2050. Counties that currently have a high burden of illness will continue to experience a 

similar burden in the coming decades.  

 Even though it is estimated that the underreporting multiplier for campylobacter in the 

United States is approximately 30, resulting in hundreds of thousands of cases not reported 

annually, because this model assumes this underreporting factor remains constant over time, the 

accuracy of the model is not affected (Wagenaar & Havelaar, 2013) (Scallan, et al., 2011). 

However, the total number of campylobacter cases both observed historically and in the future in 

the population can be estimated with this multiplier. In addition, the most significant time lag 

between temperature and precipitation and the specimen collection of a reported campylobacter 

case was found to be five weeks. Because specimen collection date is collected for all confirmed 

campylobacter cases in Connecticut, this measure was used for case identification. 

Unfortunately, symptom onset date is not collected for all cases, as it relies on either physician 

reported onset dates or successful contact of the case by either the Yale EIP or the LHD to gather 

this information. Even when collected from the case, self-reported symptom onset dates can be 

less accurate and prone to poor recall. If complete symptom onset dates would have existed for 
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all cases, this would have potentially resulted in different, possibly shorter, time lags between the 

timing of a case and the climate drivers. 

 The weekly availability of the campylobacter data was able to produce a more detailed 

analysis than that of previous analyses relying on monthly or annual data. However, the 

availability of daily data would have been able to provide a more granular analysis over the time 

period. Even though this analysis did not find a significant increase in cases over time, the study 

did not account for antimicrobial resistance changes. With evidence that higher prevalence of 

antimicrobial resistance is associated with higher temperatures, future campylobacter cases could 

potentially prove harder to treat (MacFadden, et al., 2018). Even though most cases are not 

treated with antibiotics, high-risk individuals such as those of older age and/or with 

compromised immune systems often rely on antibiotics to clear their infection. This could prove 

more difficult with the increasing surface temperatures over the next few decades, resulting in 

more prolonged infections and higher hospitalizations. 

 In addition, one of the largest sources of campylobacter infections stems from consuming 

undercooked and/or contaminated poultry products. In the United States, consumption of chicken 

has increased drastically compared to that of other meat such as beef or pork, which have been 

decreasing over time. Since 1970, consumption per capita of chicken has grown by 160%, while 

beef and pork have decreased by 31% and 6%, respectively (Tonsor & Lusk, 2021). Because this 

consumption of chicken is only projected to grow, the risk of contamination may increase as 

poultry farming attempts to keep up with demand, and environmental policies to ensure safe 

products could fall behind. This threat, and its impact on the burden of campylobacter infections 

in the future, warrants further analysis. Climate change does not only directly correlate to 

disease, but can also impact indirect channels, such as antimicrobial resistance and food supply 
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safety. To reduce the effect that worsening climate change might have on foodborne illnesses, 

intervention in multiple sectors is imperative. Further research is needed in better understanding 

how climate change, and our inability to properly respond and prevent its consequences, can 

keep foodborne diseases on the rise in the United States. 
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