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1 Introduction

In economics, the pricing decision of the firm is typically modeled as the firm choosing

a single price (or quantity) to maximize a known objective. In reality, large firms are not

unitary decision makers. Rather, they are usually comprised of teams, each responsible

for a particular sub-decision. Prices are often set through complex optimization systems

designed around the organizational structure of the firm. One team might manage procure-

ment and inventory, another team specializes in demand predictions, and an additional team

monitors competitive response. Each team delivers its specific input to the entity determin-

ing price. For example, major airlines pioneered the use of pricing optimization algorithms

and operationalized these systems by delegating the decision rights for each of multiple

pricing inputs to distinct teams. Other industries, notably hotels, cruises, car rentals, enter-

tainment venues, and retail, have adopted features of the airline pricing model. Given the

prevalence and durability of this type of organizational structure, we may expect that eco-

nomic forces lead to pricing outcomes that are “as if” each firm centrally chooses prices,

as commonly modeled in economics.

In this paper we study organizational team inputs and pricing decisions by leveraging

a data partnership with a large international air carrier based in the United States.1 The

granularity of the data allows us to understand how the decisions of individual teams affect

prices without needing to assume that prices are optimally set. We document that the pric-

ing at a sophisticated firm—one that employs advanced optimization techniques and relies

heavily on automation—is subject to miscoordination and multiple biases. To quantify how

biases affect the allocation of scarce capacity, we estimate a model of airline demand using

sales and search information and contrast our predictions with the firm’s (biased) forecasts.

In counterfactuals, we show that if one team addresses its own “frictions” in isolation, out-

comes are largely unchanged. Moreover, we show that teams do not optimally account for

biases introduced by other teams, that is, inputs are not second-best optimal for the firm.

Finally, we estimate a significant reallocation of surplus would result if teams corrected bi-

1The airline has elected to remain anonymous.
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ases and coordinated on their pricing inputs. Leisure consumers would benefit from lower

prices in advance, and business customers would face significantly higher fares.

We begin by discussing airline pricing practices and the decision rights of the orga-

nizational teams involved in pricing in Section 2. The organization structure is vertical;

decisions are passed along to the next team as an input. The first team (the network plan-

ning department) decides where to fly and assigns initial capacities. We do not model these

decisions. The next team (the pricing department) takes the network as given and is respon-

sible for choosing a menu of discrete possible prices consumers may face as well as ticket

restrictions, e.g., advance purchase discounts. A final team (the revenue management de-

partment) is responsible for the demand forecast and for the choice of the pricing algorithm

which combines all inputs. The algorithm selected does not actually decide price, rather,

it allocates the amount of inventory to sell at each discrete price level. That is, “pricing”

involves both prices (as decided by the pricing department) and quantities (as decided by

the revenue management department). We discuss the information used by teams when

deciding their inputs. Using job listings, we show that all major airlines have similar or-

ganizational structures and team responsibilities. Therefore, we believe our discussion and

subsequent empirical findings likely hold for the airline industry broadly and perhaps for

other industries that have adopted similar pricing technologies and organizational struc-

tures.

We introduce the data in Section 3. In addition to observing prices and quantities, we

also observe granular demand forecasts, the demand model, outputs of the pricing and allo-

cation algorithms, the optimization code itself, and clickstream data that detail all consumer

interactions on the airline’s website. The core data cover hundreds of thousands of flights

spanning hundreds of domestic origin-destination pairs.

In Section 4, we provide evidence of pricing biases and miscoordination. Within teams,

we show that the revenue management (RM) department maintains persistently biased fore-

casts over two years of data. The RM department has also chosen a pricing algorithm that is

inherently biased. The selected algorithm does not consider cross-price elasticities, mean-
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ing flights are priced independently. Across teams, we show teams’ input decisions lead to

pricing frictions, where changes in marginal (opportunity) costs do not lead to price adjust-

ments. Although this naturally arises due to the use of coarse pricing, or “fare buckets”, in

the industry, the fact that opportunity costs sometimes adjust by hundreds of dollars without

triggering a price adjustment suggests a mismatch between the fares chosen by the pricing

department and demand fundamentals.

We present two forms of miscoordination. We show there is a “glitch” in that the pricing

algorithm sometimes allocates inventory to fares that do not exist. This occurs because the

pricing team has not informed the RM team that these fares have been removed from the

menu. This affects 11% of observations. More importantly, we show that the fare choices

of the pricing department are often “too low.” When the fare choices are combined with

the forecast, the RM department observes that some fares are assigned on the inelastic side

of the RM department’s demand estimates. Because of the way inventory is allocated by

the pricing algorithm, it is possible that suboptimally low fares receive positive allocations.

We find that prices offered to consumers are on the inelastic side of the RM department’s

forecasts in one third of the data sample. We observe no instances in which the pricing

department removes these low fares from the system.

We document that pricing biases affect all routes, regardless of market structure, and

are even more pronounced in competitive markets (larger forecast bias and more frequent

“inelastic prices” based on the RM department’s forecasts of residual demand). Due to

the additional complexity of modeling competitive interaction, our subsequent analysis

concentrates on routes where our carrier is the only airline providing nonstop service.

In the second stage of our analysis, we examine the pricing inputs using a structural

approach. We estimate a model of consumer demand using a recently proposed demand

methodology (Hortaçsu, Natan, Parsley, Schwieg, and Williams, 2021). In Section 5, we

consider a model in which “leisure” and “business” travelers arrive according to inde-

pendent and time-varying Poisson distributions in discrete time. Consumers know their

preferences and solve discrete choice maximization problems. Each short-lived consumer
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chooses among the available flight options or an outside option.

We estimate the model using consumer search and bookings data. Aggregate search

counts calculated from the clickstream data inform the overall arrival process, and we

identify the price coefficient using instrumental variables (see Section 6). The estimates,

presented in Section 7, reveal meaningful variation in demand, with a general increase in

search for travel as the departure date approaches and substantial changes in the overall

price sensitivity of consumers over time.

We then estimate “firm beliefs” about demand by matching the RM department’s fore-

casts to our demand model in Section 8. This allows us to flexibly recover the preference

parameters consistent with the RM department’s demand predictions. We find that firm

beliefs do not sufficiently distinguish between business and leisure willingness to pay and

features too little change in the mix of arriving customers toward the departure date. Firm

beliefs understate the heterogeneity in preferences within and across routes.

In Section 9, we perform counterfactual analyses using a pricing algorithm that closely

follows the heuristic that the firm uses in practice. We show that if the RM department uses

an unbiased forecast, with fare menus unchanged, or, if the pricing department aligned

its pricing menus to the RM department’s biased forecasts, the pricing algorithm selects

very similar inventory allocations. Consequently, outcomes are largely unchanged. We

also consider outcomes as if the firm centrally chooses prices. With an unbiased forecast

and fare menus tailored to this forecast, we estimate that prices charged to early-arriving

leisure passengers would fall, and late-arriving business travelers would face higher prices.

We find that revenue increases upward of 18% for some markets, and dead-weight loss may

rise by over 10%.

Our results establish that teams are not best responding to the (biased) inputs of other

teams—that is, outcomes are not near second-best optimal for the firm. We show that if

the upstream team, the pricing department, were given unbiased demand estimates, the de-

partment could alter its fare menu choices—holding the RM department inputs fixed—and

achieve 95% of the gap to the first-best outcome for the firm. In a second counterfactual,
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we show that holding the pricing department’s fare inputs fixed, the RM department could

improve overall revenue to 33% of the gap to the first-best outcome by manipulating its cur-

rent demand forecasts. This requires substantially more biased forecasts to counteract that

the pricing algorithm commonly allocates capacity to suboptimally lower fares inputted by

the pricing department.

We close by discussing potential explanations for our findings. Although we cannot

establish a causal link for the biases we explore, we argue that performance metrics, in-

cluding a focus on load factors, limited transfer of information across teams, and limited

experimentation are likely mechanisms. We rule out some explanations. For example, we

argue that teams are not intentionally distorting pricing inputs so that the pricing algorithm

considers long-run demand because of the algorithm choice, forecasting model, and fore-

cast bias across types of tickets sold. Another hypothesis is that the firm manipulates inputs

due to long-term competitive reasons; however, we argue the presence of (even more pro-

nounced) biases in competitive markets suggests managers are not attempting to deter entry

with limit pricing.

1.1 Related Literature

Our findings that prices are neither first nor second-best optimal for a large U.S. firm sup-

port classic theories in organizational economics which posit that coordination on comple-

mentary tasks may be difficult in practice (Milgrom and Roberts, 1990, 1995; Siggelkow,

2001). Although the adoption of information technology (IT) can increase productivity

when complementary organizational and management practices are implemented alongside

these investments (Bresnahan, Brynjolfsson, and Hitt, 2002; Bloom, Sadun, and Van Reenen,

2012), firms may not adopt technologies that increase productivity or revenues (Atkin,

Chaudhry, Chaudry, Khandelwal, and Verhoogen, 2017; Sacarny, 2018).2 In our con-

text, the airline has adopted advanced IT, however, pricing biases prevent the carrier from

achieving outcomes as if prices were centrally determined, absent frictions.

2Brynjolfsson and Milgrom (2012) provide an overview of this and related work.
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Our analysis of biases introduced within teams complements studies on miscalibrated

firm expectations (Massey and Thaler, 2013; Akepanidtaworn, Di Mascio, Imas, and Schmidt,

2019; Ma, Ropele, Sraer, and Thesmar, 2020), and our analysis of biases introduced across

teams allows us to explain deviations from optimal behavior shown in other settings (Blake,

Nosko, and Tadelis, 2015; Levitt, 2016; Dubé and Misra, 2021). Our emphasis on misco-

ordination of pricing inputs highlights the problem of “implementation” as described in

Gibbons and Henderson (2012). That is, prices are known to frequently be set on the in-

elastic side of (the RM department’s own estimates) of demand, removing these too low

fares is necessary to optimize on price, but managers have not implemented changes to

correct this bias. We compare current outcomes to the scenario devoid of pricing biases

but we note that this outcome may not be achievable if the cost of communication is high.

Dessein and Santos (2006) examine a related team-theoretic model theoretically.

The data allow us to directly measure pricing frictions, as observed marginal cost

changes may not lead to price adjustments. These price rigidities have been argued to occur

in other industries, including DellaVigna and Gentzkow (2019) and Hitsch, Hortaçsu, and

Lin (2021) in retailing, Huang (2021) in peer-to-peer markets, Ellison, Snyder, and Zhang

(2018) in online retailing.

Finally, we contribute to a large empirical literature on the airline industry, e.g., McAfee

and Te Velde (2006); Li, Granados, and Netessine (2014); Puller, Sengupta, and Wiggins

(2015); Aryal, Murry, and Williams (2021); Williams (2021), without imposing that prices

are optimally set. We quantify the welfare effects of dynamic pricing in airline markets

using heuristics used in the industry (Littlewood, 1972; Belobaba, 1987, 1989; Brumelle,

McGill, Oum, Sawaki, and Tretheway, 1990; Belobaba, 1992; Wollmer, 1992).
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2 Organizational Structure and Division Responsibilities

We study the US airline industry, an industry that directly supports over two million jobs

and contributes over $700 billion to the US economy.3 In 2019 alone, 811 million passen-

gers flew within the United States.4 In addition to being an important industry in its own

right, airlines have influenced the development of pricing technologies that are now used in

other sectors—for example, in hospitality, retailing, and entertainment and sports events.

Although the sophistication of these technologies has improved, many of the original yield

management ideas described in McGill and Van Ryzin (1999) and Talluri and Van Ryzin

(2004) remain in place today.

Fares at our air carrier depend on the actions of managers in several distinct depart-

ments. The organizational structure is vertical as decisions become increasingly granular,

taking all previous departments’ decisions as given. These decentralized decisions involve

little coordination, as evidenced by their internal documentation, discussions with man-

agers, and the data we describe below.

First, the network planning department decides the network, flight frequencies, and

capacity choices. These decisions depend on operational constraints, traffic patterns, slot

restrictions, and government approvals. We take the capacity constraints as given and do

not endogenize network planning decisions. Having observed the network, the pricing de-

partment then sets a discrete menu of fares and fare restrictions for all possible itineraries.5

Finally, the revenue management (RM) department maintains the demand forecast and op-

timizes remaining inventory over the fares set by the pricing department. The diagram

in Figure 1 depicts organizational boundaries involved with pricing decisions. In Online

Appendix A, we use job listings to show that all major airlines are organized in this way.

The pricing team has two core responsibilities. The first is to facilitate the transmission

3See https://www.iata.org/en/iata-repository/publications/economic-reports/the-united-states–value-of-aviation/. July 1, 2021.
4See https://www.bts.gov/newsroom/2019-traffic-data-us-airlines-and-foreign-airlines-us-flights-final-full-year. July 1, 2021.
5Each filed fare contains an origin, destination, filing date, class of service, routing requirements, and

other ticket restrictions. A common fare restriction decided by the pricing department is an advance purchase
discount, which specifies an expiration date for a discounted fare to be purchased by. These discounts are
commonly observed 7, 14, and 21 days before departure.
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Figure 1: Division Responsibilities at all Airlines

Network Planning
Routes Served

Frequencies
Capacities

Pricing
Fares

Fare Restrictions

RM
Demand Analysis /

Forecast
Pricing Algorithm

Note: Key departments, responsibilities, and decision-making process at all airlines.

of fares through distribution channels so that consumers can retrieve and purchase tickets

online. It is our understanding that this is a labor intensive process and involves real menu

costs, as carriers are charged a small fee for each fare adjustment. The second core re-

sponsibility (and objective) is to assess the airline’s current fare positions relative to market

conditions—including own connecting fares and competitor fares—and file fare updates.

These decisions are made without the use of demand forecasts. Instead, the pricing team

uses information on own historical fares and fares filed by other airlines for similar markets.

The RM department is responsible for allocating remaining inventory over time. It has

decision rights over demand estimates, flight forecasts, and the pricing algorithm. The

department does not have control over the fare and initial capacity decisions. The RM

department aims to maximize revenues and closely monitors flight-level load factors and

revenue yield as performance statistics (see Section 9.4 for additional details).

The forecasting model used by RM predicts flight-level bookings at granular intervals,

e.g., quantity demanded by day before departure and price. The pricing algorithm chosen

by the RM department is designed to maximize short-run, flight-level revenues. We observe

exactly how the firm allocates remaining inventory (and hence, prices) over time. In our

empirical analysis, we select a pricing algorithm that closely approximates the actual opti-

mization tool. The heuristic we select is Expected Marginal Seat Revenue (EMSR-b). We

provide additional details of the EMSR-b in Online Appendix B and outline the important

features of the algorithm here. EMSR-b simplifies dynamic pricing problems with finite

capacity and a deadline by assuming that all future demand will arrive tomorrow. The key

trade-off, therefore, is to offer seats today versus reserve them for tomorrow. Given all of
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the pricing inputs, it calculates the opportunity cost of a seat and then assigns the number of

seats it is willing to sell at each price level. Lowest priced units are assumed to sell first. If

expected future demand is high, it will restrict inventory at lower prices today. This raises

the distribution of fares offered. When capacity is relatively unconstrained, the algorithm

will allocate more capacity to lower fares.

Figure 2: Fare Bucket Availability and Lowest Available Fare

020406080100120
Days Before Departure

Bucket1
Bucket2
Bucket3
Bucket4
Bucket5
Bucket6
Bucket7
Bucket8
Bucket9

Bucket10
Bucket11
Bucket12

Fa
re

 B
uc

ke
t

Lowest Available Price

Note: Image plot of fare availability over time as well as the active lowest available fare. Bucket1 is the least expensive bucket; Bucket12
is the most expensive bucket. The color depicts the magnitude of prices—blue are lower fares, red are more expensive. White space
denotes no fare availability. The white line depicts the lowest available fare.

To emphasize how the inputs come together in pricing, we show fare menu choices

and the resulting pricing decision for an example flight in Figure 2. On the vertical axis,

we note the discrete set of fares set by the pricing department, with bucket one being the

least expensive and bucket twelve being the most expensive. Little variation in color over

days from departure for a given bucket shows that the bucket prices themselves are mostly

fixed. However, in the bottom right of the graph, the white space shows that the pricing

department has restricted the availability of the lowest fares close to the departure date.

Given all pricing inputs, the white line marks the lowest available price (LAP), or the

lowest price with allocated inventory, by the pricing algorithm.

The pricing algorithm is influenced by all pricing inputs (initial capacity, prices, and the

forecast) and it need not provide a good approximation to solving the dynamic program.

For example, one could imagine removing the pricing department by simply inputting fares
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in dollar increments, e.g., $150, $151, and so on. Because of the way the algorithm de-

termines inventory allocations, granular fares can actually introduce distortions and yield

worse outcomes relative to the use of coarse pricing. We show that fare menus greatly

affect the pricing algorithm performance in Section 4 and Section 9.

The algorithm code and accompanying documentation detail what is included and ex-

cluded from optimization. All flights, regardless of market structure, flight frequencies,

etc., are priced using the same algorithm. All forms of auxiliary revenue, including bag-

gage fees and upgrade charges, are not considered when prices are determined.

3 Data and Summary Analysis

We use data provided by a large international air carrier based in the United States. To

maintain anonymity, we exclude some data details. We do not study all routes served by the

airline due to data size constraints; instead, we select over 400 routes. In Online Appendix

C, we discuss route selection. On average, the routes we study have a higher fraction of

nonstop traffic, fewer flights per day, and smaller total capacity compared to the air carrier’s

overall network. Nonetheless, our descriptive analyses cover a diverse set of routes in terms

of competition, seasonality, frequencies, and traffic flows. The sample contains large “trunk

routes” between major cities as well as routes from major metropolitan areas to small cities.

We focus solely on domestic flights.

3.1 Data Tables

We combine several data sources, which we refer to as: (1) bookings, (2) inventory, (3)

search, (4) fares, and (5) forecasting data.

(1) Bookings data: The bookings data contain details for each purchased ticket, re-

gardless of booking channel, e.g., the airline’s website, travel agency, etc. Key variables

included in these data are the fare paid, the number of passengers involved, the particular

flights included in the itinerary, the booking channel, and the purchase date. Our analysis
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concentrates on nonstop, economy class tickets.

(2) Inventory data: The inventory data contain the decisions made by the pricing algo-

rithm. Inventory allocation is conducted daily. The data include the number of seats the

airline is willing to sell for each fare class in economy and remaining capacity. We also

observe output from the pricing algorithm, including the opportunity cost of a seat.

(3) Search data: We observe all consumer interactions on the airline’s website for

two years. The clickstream data include any interactions or impressions that a consumer

has on the website including, but not limited to, search queries, bookings, referrals from

other websites, and the sets of flights that appear on every page the consumer visits. We

link consumers across search sessions using a combination of web cookie(s) and login

information tracked by the air carrier.

(4) Filed fares data: The filed fares data contain the decisions made by the airline’s

pricing department. A filed fare contains the price, fare class, and all ticket restrictions,

including any advance purchase discount requirements.

(5) Forecasting data: The RM department forecasts current and future demand at gran-

ular levels. The current-period forecast correspond to an economist’s definition of demand,

i.e., quantity demanded for various prices, and future demand forecasts predict future book-

ings for given a particular forecasting period, i.e., quantity demand t days before departure

as predicted s > t days before departure. The firm maintains separate forecasts for “busi-

ness” and “leisure” travelers. An algorithm classifies all search and bookings to these

classifications. We also observe all managerial adjustments to the forecasts.

3.2 Data Summary

Table 1 provides a basic summary of the nearly 300,000 flights / 400 routes in our cleaned

sample. We focus on the last 120 days before departure due to the overwhelming sparsity

of search and sales observations earlier in the booking horizon.

Average flight fares in our sample are $201, with large dispersion across routes and over

time. Typically, prices for a particular flight adjust nine times and double in 120 days. Many
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Table 1: Summary Statistics

Data Series Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 201.3 139.4 163.3 88.0 411.1
Num. Fare Changes 9.3 4.2 9.0 3.0 17.0
Fare Change | Inc. 50.4 73.0 31.2 2.2 164.5
Fare Change | Dec. -53.0 75.5 -32.2 -175.2 -4.3

Bookings
Booking Rate-OD 0.2 0.7 0.0 0.0 1.0
Booking Rate-All 0.6 1.4 0.0 0.0 3.0
Load Factor (%) 82.2 21.4 90.0 36.0 102.0

Searches
Search Rate 1.9 4.8 0.0 0.0 9.0

Summary statistics for the data sample. Fares are for nonstop flights only. The booking rates are for non-award, direct travel on nonstop
flights and for all traffic on nonstop flights, respectively. The number of passengers denotes the number of passengers per booking. The
ending load factor includes all bookings, including award and connecting itineraries. The search rate is for origin-destination queries at
the daily level.

price adjustments occur at specified times, such as after expiration of advance purchase

(AP) discount opportunities. However, over 60% of price adjustments occur before the

first set of AP fares expires.

In our sample, the average load factor is 82.2%. Although overselling is possible, we

abstract from this possibility because we do not observe denied boarding/no show infor-

mation. Our notion of capacity will be actual plane capacity plus the number of seats the

airline is willing to sell over capacity (if any)—the observed “authorized” capacity.

3.3 Empirical Facts that Motivate Demand Assumptions

We summarize search and purchase patterns to motivate some of our demand assumptions.

The bookings data suggest that unit demand is a reasonable assumption. The average

passengers per booking is 1.3. In addition, the bookings data confirm that overwhelmingly,

consumers purchase the lowest available fare even though several fares may be offered at

any point in time. We find that 91% of consumers purchase the lowest available fare. We

verify that special fares, such as corporate or government discounts, are very rare in the

routes studied. These fares are much more common in international markets.
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Bookings and searches are sparse, which motivates using a model that accounts for low

daily demand. We find that 60-80% of observations have zero observed searches. The

fraction of zero sales is even higher (80% zeros). Zeros are not just present because we

focus on nonstop demand. The fraction of zero sales for any itinerary involving a particular

flight ranges between 40 and 80%.

We adopt a two-type consumer model, corresponding to “leisure” and “business” trav-

elers, because that is how the firm forecasts demand.

Figure 3: Search and Booking Facts to Motivate Demand Model
(a) CDF of Same Itin. Searches
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(b) CDF of Similar Itin. Searches
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(c) Channel Booking Distributions
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(a) Empirical CDF of the number of days from departure searchers appear for a given itinerary. (b) Empirical CDF of the number of
departure dates a given searcher looks for. (c) Percentage of bookings, across days from departure, for each channel. Direct refers to
bookings that occur on the air carrier’s website, OTAs are bookings made on online travel agencies, and Agency are bookings made
through travel agencies.

We use the clickstream data to explore consumer search patterns. We “daisychain” the

data, meaning we link searches across devices and cookies whenever possible. We inves-

tigate the tendency for consumers to return to search for tickets, conditional on not being

referred to the airline from other websites. In Figure 3-(a), we plot the CDF of number of

times that consumers search for the same itinerary across days. 90% of consumers search

for an itinerary (OD-DD pair) once. Panel (b) shows the CDF for the number of different

departure dates (for the same OD) that consumers search over. 82% of customers search a

single departure date. The average time lag between searches for different departure dates

is 45 days, which likely suggests different purchasing opportunities (different trips).

Figure 3-(c) shows the the distribution of bookings within channel (direct, OTAs, and

agency) over days before departure. The distribution of bookings for tickets purchased on

OTAs, or online travel agencies, very closely follows the distribution of bookings via the di-
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rect channel. However, they do not coincide. The agency curve—which includes corporate

travel bookings—is more concentrated closer to departure. This motivates adjusting for

unobserved searches differently over time (see Section 6.1). Note that Figure 3-(c) shows

some bunching in bookings immediately before advance purchase opportunities expire. Al-

though this may suggest consumers strategically time their purchasing decisions—they are

forward looking—we find evidence that supports certain time periods simply have higher

demands. Using the search data, we split the sample into two groups, one that includes

routes that never have 7-day AP requirements, and one that includes these requirements.

We find that search activity (and purchases) bunch at the 7-day AP requirement, regardless

of their existence. Because arrivals increase regardless of price changes, we maintain the

commonly used assumption that the market size is not endogenous to price. To account

for this bunching in our model, we flexibly estimate arrivals as a function of days from

departure and the departure date.

4 Pricing Biases

In this section, we provide evidence of pricing biases and miscoordination among teams

managing pricing inputs.

4.1 Pricing Biases within Organizational Teams

Using Persistently Biased Forecasts

We begin by discussing pricing biases introduced by a single team.

The demand forecasts maintained by the RM department are persistently biased in two

years of data. In Figure 4, we plot the RM department’s forecasts of demand remaining

along with realized future sales remaining. The lines decrease over time because fewer

sales remain. On average, the forecasts are biased upwards from the true distribution of

bookings for nearly the entire booking horizon. For the median observed forecast, the

forecast is 10% higher than actual future demand, which is equivalent to predicting an extra
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2.5 seats will be sold. Although the average forecast is biased upward, suggesting prices

may be too high, the forecasts are also misaligned with observed demand at different prices

(panel b). Low-fare transactions are underforecasted by 20%, and high-fare transactions are

overforecasted by 10%.6 This suggests the forecasting model does not accurately reflect

underlying demand.

Figure 4: Firm Forecasting and Realized Sales
(a) Forecasting Bias Time Series
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Note: Forecasts and future sales are normalized by the aircraft’s total coach capacity. Plots show 7-day moving average to smooth across
strong day of week effects in the forecast sample. (a) Raw and managerial adjusted forecast of future demand compared to realized sales.
(b) Average forecast bias for observations at differing fare levels.

We also observe all managerial adjustments to the forecasts, which are also plotted

in Figure 4-(a). We find that manager adjustments reduced overall forecast bias, but the

improvement is small in magnitude relative to the total absolute bias. Manager adjustments

tend to deflate the forecasts for all flights for a given route (or routes) rather than react

to individual flight realizations. These adjustments do not reduce forecast bias across the

types of tickets (prices) sold.

Forecasts are biased for all routes in the sample, and we do not find evidence that

the firm is allocating more resources to reduce forecast bias in higher revenue generating

routes. To the contrary, we find that routes with nonstop competitors feature slightly larger

forecasting bias compared to single carrier routes. The frequency of managerial adjust-

ments is similar across routes.
6Low fares refer to the bottom 3 fare classes; high fares refer to the top 3 classes.
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Not Accounting for Cross-Price Elasticities

Reviewing the algorithm code, we confirm that the RM department has selected a pricing

heuristic that does not internalize substitution to own products—for example, across cabins

or to other flights—as well as substitution to other products, including all competitor flights.

Therefore, another bias introduced within a team is that the RM department has selected

a biased pricing algorithm that abstracts from cross-price elasticities. We use output from

the pricing algorithm to demonstrate how this bias affects pricing decisions.

Figure 5: Shadow Value and Price Response to Bookings with Multiple Flights
(a) Shadow Value
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Note: (a) The orange line denotes the average change in shadow value for a flight with bookings. The blue line is the average change to
shadow value when a sale occurs for the substitute product. (b) This panel depicts the same as panel a, but instead of changes in shadow
value it depicts changes in price.

We select observations that satisfy the following conditions: (i) the firm offers two

flights a day; (ii) we include periods where demand is not being reforecasted (the observed

spikes in Figure 6); (iii) the total daily booking rate is low (less than 0.5); and (iv) one

flight receives bookings and the other flight does not. By considering markets where the

total booking rate is low, we can apply theoretical results of continuous time (as well as a

discrete time approximation) pricing models. In Figure 5-(a), we plot the average change

in shadow values (opportunity costs) for the flights that receive bookings and for the flights

that do not receive bookings (the substitute option) using flexible regressions. In standard

dynamic pricing models, every time a unit of capacity is sold, prices jump. This is also true

in environments with multiple products—any sale causes all prices to increase. Figure 5-(a)

confirms substitute shadow values are unaffected by bookings. Panel (b) shows that there
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is no price response.7

4.2 Pricing Biases across Organizational Teams

Pricing Frictions

Figure 6 demonstrates a pricing bias introduced across organizational teams. In panel (a),

we plot the fraction of flights that experience changes in price or shadow value (as reported

by the pricing algorithm) over time. The figure establishes that airline pricing is subject

to pricing frictions in that costs change at a much higher frequency than do prices. This

occurs because the pricing department assigns a discrete set of potential fares (fare buckets)

for each route. This naturally creates a pricing friction because marginal costs may change

by $1 but the next fare may be $20 more expensive. Our analysis suggests this friction

is significantly more important. In panel (b), we run a flexible regression of the change in

costs on an indicator function of a price adjustment occurring. As the figure shows, changes

in marginal costs exceeding $100 only lead to price adjustments with 20% probability.

This suggests a mismatch between the fares set by the pricing department and underlying

demand fundamentals for the routes in our sample.

Figure 6: Fare Adjustments in Response to Shadow Value Changes
(a) Fare vs. Shadow Price Changes
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Note: (a) The fraction of flights that experience changes in the fare or the shadow value of capacity over time. (b) The probability of a
fare change, conditional on the magnitude of the shadow value change.

7We quantify the impacts of this bias in Online Appendix E.
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Figure 6-(a) shows noticeable spikes that occur at seven day intervals. This arises be-

cause the RM department has chosen to reforecast demand on a 7-day interval. Outside of

these periods, remaining inventory is reoptimized without updating future demand expecta-

tions.8 The process of reforcasting demand leads to a larger fraction of flights experiencing

a change in the value of remaining capacity.

4.3 Miscoordination in Pricing Inputs

Allocating Inventory to Fares that do not Exist

One form of miscoordination present in the firm’s pricing decisions is that the pricing

department does not necessarily ensure that the RMdepartment has the correct set of active

fares inputted into the pricing algorithm. Although this form of miscoordination can be

seen as a “glitch," its presence and prevalence suggests barriers in sharing information

across teams.

Examining the menu of active fares (set by the pricing department) and the resulting

inventory allocations (managed by the RM team), we observe inventory allocations to fares

that do not exist. This affects 11.7% of observations. The most consequential form of this

type of miscoordination is when the pricing algorithm allocates inventory to a fare lower

than what is actually possible. For example, suppose there are two fares, at $50 and $100.

The pricing algorithm may allocate seats to the $50 fare, but if that fare does not actually

exist, the realized price will be $100. Consequently, the realized fare will be higher than

what the pricing algorithm expects.9 We find that 71.2% of these “phantom allocations”

occur to fares that are lower than the realized lowest available fare.

Smaller routes and routes with seasonal service are most affected by phantom allo-

cations. 32.6% of routes feature persistent phantom allocations to at least one fare class

throughout the entire data sample. We observe no actions that address this form of misco-

8We explore the idea of reforecasting/learning in Online Appendix E.
9Moreover, the pricing system never observes this allocation error because fare validation occurs after

inventory allocation.
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ordination.

Pricing on the Inelastic Side of the Demand Curve

A second form of miscoordination that we observe in the data is that the pricing department

often files fares that are too low according to the RM department’s forecast. Although

having some fares (within the menu) on the inelastic side of demand may seem innocuous,

the chosen pricing algorithm cannot prevent allocating inventory to “too low” fares. This

leads to mispricing—known to the RM department—yet we observe no instances where

this miscoordination is corrected.

We provide a simple example to illustrate mispricing before presenting our evidence.

Example: Suppose the airline has 15 seats to sell over two days. Demand in the first

period is equal to Q1(p1) = 10−10p1, and demand in the second period is Q2(p2) = 10−p2.

If the firm maximized revenues, using standard methods, we see that the capacity constraint

would not bind, and optimal prices are equal to (p1, p2) = (0.5, 5).

This outcome can also be achieved with separate pricing and RM departments and a

pricing algorithm: The pricing department assigns prices to be {0.5, 5} and {5}, and the

RM department “forecasts” demand to be the functions above. Importantly, commonly

used inventory management algorithms, including EMSR-b, only restrict inventory today

(first period) to ensure that future demand can be satisfied tomorrow (second period). Be-

cause only 5 seats are needed tomorrow, it will allocate all seats to the price of 0.5 today.

Tomorrow, the price will be 5—which can be viewed as an advance-purchase discount..

Instead, suppose the pricing department does not coordinate with the RM group and set

prices equal to {.2, .5, 5} and {5}. Because all first-period prices leave sufficient capacity

available for the second period, EMSR-b will allocate all seats at the lowest price in the

first period, which is now 0.2. This implies that the suboptimal price of 0.2 will be chosen

even though the optimal price, 0.5, is included in the fare menu.

This simple example demonstrates a feature of the data that we observe often. Using the
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RM department’s current-period demand forecasts, we calculate the elasticity of demand,

[(Q1−Q2)/Q2]/[(P1−P2)/P2], using the observed price as the base price along with the next

higher fare.10 We find that 34% of flight observations are priced on the inelastic side of the

demand forecasts estimated by the RM department. This is an example of the problem of

implementation (Gibbons and Henderson, 2012), as the problem is identified, the solution

is known, yet managers have not corrected this form of miscoordination.

We observe the (hashed) identities of the revenue management and pricing analysts

involved in managing pricing inputs for each market, which allows us to explore if this

form of miscoordination is limited to certain markets and/or analyst teams. We estimate

regressions of the form I(elasticity >−1)r,i = X r,iβ+ur,i , where X contains team identifiers

as well as route characteristics. Although we find statistically significant differences across

analyst teams, even the best teams are associated with setting “inelastic prices” 30% of

the time. Higher traffic routes tend to have a larger percentage of inelastic prices. We

conclude that miscoordination is widespread and not isolated to particular analyst teams

and/or routes.

5 Empirical Model of Air Travel Demand

In order to quantify the welfare effects of pricing biases, we need to estimate a model of

air travel demand. We utilize both the demand model and estimation approach of Hortaçsu,

Natan, Parsley, Schwieg, and Williams (2021). We consider the demand for nonstop flights.

The definition of a market is an origin-destination (r ), departure date (d ), and day before

departure (t ) tuple. The booking horizon for each flight j leaving on date d is t ∈ {0, ..., T }.
The first period of sale is t = 0, and the flight departs at T . In each of the sequential

markets t , arriving consumers choose flights from the choice set J (r, t , d ) that maximize

their individual utilities, or select the outside option, j = 0.

10We also compute the arc elasticity, [(Q1−Q2)/(Q1+Q2)/2]/[(P1−P2)/(P1+P2)/2]. Using the arc elasticity,
we find 52% of observations are priced on the inelastic side of the demand curve.
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5.1 Utility Specification

Arriving consumers are one of two types, corresponding to leisure (L) travelers and busi-

ness (B ) travelers. An individual consumer is denoted as i and her consumer type is denoted

by ℓ ∈ {B , L}. The probability that an arriving consumer is a business traveler is equal to γt .

We incorporate two assumptions to greatly simplify the demand system. First, we assume

that consumers are not forward looking and do not strategically choose flights based on

remaining capacity, C j ,t ,d . This avoids the complication that consumers may choose a less

preferred option in order to increase the chances of securing a seat. Second, we assume that

when demand exceeds remaining capacity for a particular flight, random rationing ensures

the capacity constraint is not violated.

We assume that the indirect utilities are linear in product characteristics and given by

(suppressing the r subscript; all parameters are route specific)

ui , j ,t ,d =

 X j ,t ,dβ −pj ,t ,dαℓ(i )+ξ j ,t ,d + ϵi , j ,t ,d , j ∈ J (t , d )

ϵi ,0,t ,d , j = 0
,

where X j ,t ,d denote product characteristics other than price pj ,t ,d . Consumer preferences

over product characteristics and price are denoted by
�
β ,αℓ
�
ℓ∈{B ,L}. For notational par-

simony, we commonly refer to the collection {αB ,αL} as α. The term ξ j ,t ,d denotes an

unobservable that is potentially correlated with price, and ϵi , j ,t ,d is an unobserved ran-

dom component of utility and is assumed to be distributed according to a type-1 extreme

value distribution. All consumers solve a straightforward utility maximization problem;

consumer i chooses flight j if, and only if,

ui , j ,t ,d ≥ ui , j ′,d ,t , ∀ j ′ ∈ J ∪{0}.

The distributional assumption on the idiosyncratic error term leads to analytical ex-

pressions for the individual choice probabilities of consumers (Berry, Carnall, and Spiller,

2006). In particular, the probability that consumer i wants to purchase a ticket on flight j
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is equal to

s i
j ,t ,d =

exp
�
X j ,t ,dβ −pj ,t ,dαℓ(i )+ξ j ,t ,d

�
1+
∑

k∈J (t ,d ) exp
�
Xk ,t ,dβ −pk ,t ,dαℓ(i )+ξk ,t ,d

� .
Since consumers are one of two types, we define s L

j ,t ,d be the conditional choice probability

for a leisure consumer (and s B
j ,t ,d for a business consumer). Integrating over consumer

types, we have

s j ,t ,d = γt s B
j ,t ,d + (1−γt )s

L
j ,t ,d .

5.2 Arrival Processes and Integer-Valued Demand

We assume both consumer types arrive according to time-varying Poisson distributions. By

explicitly modeling consumer arrivals, we can rationalize low or even zero sale observa-

tions. Specifically, we assume: (i) arrivals are distributed Poisson with rate λt ,d , (ii) arrivals

are independent of price (as argued in Section 3.3); (iii) consumers have no knowledge of

remaining capacity; (iv) consumers solve the above utility maximization problems. With

these assumptions, conditional on prices and product characteristics, demand for flight j is

equal to

q̃ j ,t ,d ∼ Poisson
�
λt ,d · s j ,t ,d

�
.

With the random rationing assumption, demand may be censored, i.e., q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©
.

6 Estimation

6.1 Empirical Specification

Because consumer arrivals are observed at the t , d level, we cannot estimate the arrival

process at the same granularity. Instead, we estimate the arrival process assuming a multi-

plicative relationship between day before departure and departure dates using the following

specification,

λt ,d = exp(λt +λd ).
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We pursue this parameterization because searches tend to increase over time (λt ) but there

are also strong departure-date effects (λd ). These parameters are route-specific.

In an ideal world, we observe all searches and estimate arrival rates using the sum of all

leisure and business searches, i.e., AL
t ,d +AB

t ,d . However, we do not observe all searches—

for example, a consumer that searches and purchases through a travel agency will result in

an observed purchase without an observed search. Figure 3-(a) motivates adjusting for un-

observed searches differently over time. We use the distributions of bookings and searches

by passenger type as determined by the passenger-type classifier. Using properties of the

Poisson distribution, we assign

AL
t ,d ∼ Poisson(λt ,d (1− γ̃t )/ζ

L
t ),

AB
t ,d ∼ Poisson(λt ,d γ̃t /ζ

B
t ),

where γ̃t is the firm’s beliefs over the probability of business (see Section 8 for more de-

tails), and ζℓt is the fraction of bookings that do not occur on the direct channel for each

consumer type.11 That is, we use the relative fraction of L (B ) sales and searches across

channels to scale up L (B ) arrivals. This logic follows the simpler case with a single con-

sumer type: if searches account for 20% of total bookings, and we assume unobserved

searches follow the same underlying demand distributions, we can scale up estimated ar-

rival rates by 5×. As we are concerned about the accuracy of this assignment algorithm,

we conduct robustness to this specification in Online Appendix D.2.12

We assume consumer utility is given by

ui , j ,t ,d =β0−αℓ(i )pj ,t ,d +FE(Time of Day j )+FE(Week)+FE(DoW)+ξ j ,t ,d + ϵi , j ,t ,d ,

where "FE" denotes fixed effects for the variable in parentheses. The flexibility in the utility

11We use time intervals early on because of sparsity in searches and sales. The largest time window
is composed of 14 days. Closer to the departure date, the intervals become length one. We smooth the
calculated fractions using a fifth order polynomial approximation.

12An earlier version of this paper did not use the classifier and simply scaled up arrivals by the percentage
of non-direct bookings. We obtained quantitatively similar demand estimates.
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and arrival process specifications allows for rich substitution patterns, including seasonality

effects, day-of-week effects, etc.

We parameterize the probability an arrival is of the business type as

γt =
exp
�

f (t )
�

1+exp
�

f (t )
� ,

where f (t ) is an orthogonal polynomial basis of degree five with respect to days from de-

parture. This specification allows for non-monotonicites while producing values bounded

between zero and one.13

6.2 Estimation Procedure

We use a hybrid-Gibbs sampler to estimate route-specific parameters. With Poisson ar-

rivals, we can rationalize zero-sale observations while maintaining a Bayesian IV corre-

lation structure between price and ξ. Our approach builds upon the estimation procedure

developed by Jiang, Manchanda, and Rossi (2009) by incorporating search, Poisson de-

mand, and censored demand. Additional details on the estimation procedure can be found

in Online Appendix D.1. A complete treatment can be found in Hortaçsu, Natan, Parsley,

Schwieg, and Williams (2021).

6.3 Identification and Instruments

One difficulty in estimating a model with aggregate demand uncertainty is separably iden-

tifying shocks to arrivals from shocks to preferences. We address this complication by

using search data. Conditional on market size, preference parameters are identified using

13We allow for the distribution of the random effects in demand, ξ and the residual of the pricing equation
υ (see Online Appendix for details), to vary by days before departure. We partition the distributions of shocks
into four blocks of time. Within each block, each flight at the j , t , d level receives a demand shock drawn
from a joint normal distribution, with the distributions themselves varying across blocks. This flexibility in
the distribution of demand shocks allows us to capture observed varying managerial intervention in pricing
over time. If we estimate the model with demand shocks exogenous to price, we estimate demand to be
slightly more inelastic compared to this specification that allows for price endogeneity.
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the same variation commonly cited in the literature on estimating demand for differentiated

products using market-level data. The flight-level characteristic parameters are identified

from the variation of flights offered across markets, and the price coefficients are identified

from exogenous variation introduced by instruments.

We use the carrier’s shadow price of capacity as reported by the pricing algorithm,

advance purchase indicators, and total number of inbound or outbound bookings from a

route’s hub airport as our demand instruments.14 Online Appendix D outlines the Bayesian-

IV procedure. The advance purchase indicators account for the fact that prices typically

adjust in situations where the opportunity cost is not observed to change (see Figure 6).

The total number of inbound or outbound bookings to a route’s hub airport captures the

change in opportunity cost for flights that are driven by demand shocks in other markets.

For example, for a flight from A to B , where B potentially provides service elsewhere and

is a hub, we use all traffic from B onward to other destinations C or D . We assume demand

shocks are independent across markets, so shocks to B → C and B → D are unrelated to

demand for A → B . Thus, a positive shock to onward traffic, out of hub B , will raise the

opportunity cost of serving A→ B →C or A→ B →D . This propagates to price set on the

A→ B leg. Note that these instruments are relevant even if the teams that set prices are not

optimally responding to information and each others’ actions. We are assuming only that

prices tend to react to marginal cost and exogenous capacity changes.

7 Demand Estimates

We select a subset of routes for estimation (39 ODs) where our air carrier is the only airline

providing nonstop service. Our estimation sample includes routes with varying market

characteristics, including flight frequency, importance of seasonality, and percentage of
14For a route with origin O and destination D , where D is a hub, the total number of outbound bookings

from the route’s hub airport is defined as the following;
∑K

i=1 QD ,D ′ . Where QD ,D ′ is the the total number
of bookings in period t , across all flights, for all K routes where the origin is the original route’s destina-
tion. If the route’s origin is the hub, we calculate the total number of inward bound bookings, which equals∑K

i=1 QO ′,O . Where QO ′,O is the total bookings from all K routes where the original routes origin is the
destination.
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nonstop and non-connecting traffic. Online Appendix C discusses the estimation sample in

more detail.

Figure 7: Model Estimates for Example Route
(a) Model vs. Data Search
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(b) Model vs. Empirical Sales
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(c) Pr(Business) over Time
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(d) Demand Elasticities over Time
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Note: The horizontal axis of all plots denotes the negative time index, e.g. zero corresponds to the last day before departure. (a)
Normalized model fit of searches with data searches. (b) Model fit of product shares with empirical shares. (c) Fitted values of γt over
time, along with the probability a consumer is business conditional on purchase. (d) Mean product elasticities over time.

We first present results for an example route that demonstrates demand patterns we then

confirm hold more broadly. For our example route, 88% of observations have zero product

sales. It is not unusual to have so many zeros. The number of nonstop flights varies

over the calendar year; typically, one or two flights are offered. In Figure 7-(a), we show

that our arrival rates closely match the scaled up arrival data. Note that arrival rates are

increasing toward the deadline. Panel (b) shows model and data booking rates over time.

Model bookings closely follow the data and show a common pattern that purchases tend to

increase as prices rise. This suggests demand becomes more inelastic, which we confirm

in the bottom panels. Panel (c) reports our estimates of the probability of a business-type
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consumer. We find a significant change in the composition of arriving consumers over time.

This pattern is consistent with the airline demand estimates in Williams (2021). Recall that

consumer types describe preferences, but not necessarily the reason for travel. In panel (d),

we plot average own-flight price elasticities. Demand elasticities start at -2.1 and increase

past -1.0 closer to the departure date.

Table 2: Demand Estimates Summary across Markets

Parameter Mean Std. Dev. Median 25th Pctile. 75th Pctile.

Monday Arrivals 3.653 2.882 2.645 1.484 5.432
Tuesday Arrivals 3.001 2.260 2.030 1.352 4.827
Wednesday Arrivals 3.274 2.433 2.075 1.472 5.127
Thursday Arrivals 3.785 2.760 2.650 1.685 5.685
Friday Arrivals 4.395 3.432 2.995 2.007 6.119
Saturday Arrivals 3.085 2.412 2.175 1.285 4.490
Sunday Arrivals 4.286 3.393 3.426 1.764 6.466

Day of Week Spread 32.53 19.61 28.19 17.55 39.81
Flight Time Spread 74.99 59.29 45.45 34.70 95.95
Week Spread 52.35 61.90 35.12 21.98 56.62

Intercept -1.095 1.274 -0.777 -1.405 -0.509
αB 0.286 0.167 0.277 0.165 0.376
αL 1.764 0.736 1.834 1.169 2.199

Note: Spread refers to the dollar amount a leisure consumer would pay to move from the least preferred time or day offered to the most
preferred time or day of week. Arrival parameters refer to the variation in search across flight departure day of the week.

In Table 2, we report variation in demand estimates across routes. The top panel shows

average arrival rates for different days of the week. The interquaratile ranges across routes

confirm that average arrivals tend to be low. Friday and Sunday tend to be the busiest

travel days for the routes in our estimation sample. The next panel describes the spread

in willingness to pay (in dollars) for a leisure consumer to switch between the most and

least-preferred option (day of the week, time of the day, week of the year). Time of day

preferences tend to be stronger than day of week preferences. Consumers generally prefer

morning and late afternoon departure times. We estimate that some weeks have system-

atically higher demands than other weeks. This is not true for all routes, and it does not

always reflect seasonal variation in demand.

27



In Figure 8-(a), we plot arrival rates for the mean route as well as the interquartile

range over routes. Although levels of arrivals vary—the interquartile range spans more

than a doubling of arrivals—overall, search increases as the departure date approaches.

In addition, demand tends to become significantly more inelastic over time, even though

prices tend to rise. This is shown in panel (b), which shows average own-price elasticities

for the mean, median, and interquartile range over routes. The drop off in elasticities close

to the departure date mostly reflect very significant price increases after crossing advance

purchase discount opportunities.

Figure 8: Aggregate Arrivals and Elasticities
(a) Arrivals
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(a) Estimated arrival rates aggregated over all 39 routes. (b) Estimated Own Price Elasticity of demand aggregated over all 39 routes.

Within our estimation sample, we estimate a mean elasticity of -1.05. We find that 56%

of routes have inelastic demand at some point before departure. 82% of routes feature at

least 10% of markets (departure date, days before departure) with inelastic demand. Just

above half of the routes have inelastic demand on average. Inelastic demand tends to occur

close to the departure date. We find that 85% of routes have inelastic demand in the final ten

days before departure. We find no correlation between elasticity and number of searches

for the route. In fact, although many of the inelastic routes tend to be routes from a large

city to smaller regional cities, we find that the smallest and largest routes by search volume

have elastic demand.

In Online Appendix D.2, we discuss demand estimates under alternative scaling param-
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eters. Our findings are quantitatively similar under these alternative specifications.

8 Firm Beliefs about Demand

With our demand estimates in hand, we now ask, What does the firm believe demand

looks like? To answer this question, we recover the preference parameters that best match

the RM department’s demand forecasts.

We proceed in two steps. First, we recover “firm beliefs” on the arrival processes. We

assume the RM department uses the same model of consumer arrivals and that the total

intensity of demand is the same as our estimates, i.e., λt ,d = λtλd . However, we allow the

composition of arriving customers to vary over the booking horizon. For every route, we

calibrate γt as

γbeliefs
t =

∑
ArrivalsB

t∑
ArrivalsB

t +
∑

ArrivalsB
t

,

where ArrivalsB
t is the total number of arrivals classified as business for route r (L is sim-

ilarly defined) using the passenger classification algorithm. With these estimates, firm be-

liefs on the arrival processes are λtλdγ
beliefs
t for business passengers, and λtλd (1−γbeliefs

t )

for leisure traffic. We label these Poisson distribution rates λ̃B
t ,d and λ̃L

t ,d .

Second, we recover preferences using the forecasts. These data are the predictions of

sales quantities at the flight, departure date, passenger type, price, and day before departure.

Whereas our previous analysis used the aggregate forecast (see Section 4.3), here we use

the forecasts at the consumer-type level, ℓ ∈ {L , B }.
We assume the RM department also uses a Poisson demand model, with the same

specification as ours. Because the algorithm selected by the RM department considers

single-product demand, we consider a single-product setting when recovering beliefs. We

consider the unconstrained, cumulative forecast,

Q̃ ℓ
j ,k ,t ,d :=
∑
k ′≥k

E Q ℓ
j ,k ′,t ,d .

29



which is the forecast of (uncensored) unit sales at a price of k for consumer type ℓ. This

forecast coincides to the definition of demand in economics, i.e., quantity demanded for

a given price level. We assume the forecasting model assigns λ̃ℓt ,d as the arrival process

for each flight j ∈ Jd .15 Our assumptions allow us to match the forecasting data to its

corresponding model counterpart,

Q̃ ℓ
j ,k ,t ,d = λ̃

ℓ
t ,d s ℓj ,k ,t ,d (·).

If we take logs of the equation above and subtract the log of the outside good share, we can

use the inversion of Berry (1994) to obtain the following estimation equation

log

�
Q̃ ℓ

j ,k ,t ,d

λ̃t ,d

�
− log(s ℓ0,t ,d ) = log(s ℓj ,k ,t ,d )− log(s ℓ0,t ,d ) = δ̃

ℓ
j ,k ,t ,d . (1)

This is only possible because the forecasting data is at the consumer-type level, which

allows us to avoid using the contraction mapping in Berry, Levinsohn, and Pakes (1995)

and Berry, Carnall, and Spiller (2006). Moreover, the inversion allows us to impose similar

restrictions imposed in our model, i.e., the only difference in mean utility across consumer

types is on the price coefficient.16

Defining the left-hand side of Equation 1 above as δ̃, we obtain a linear estimating

15Instead, we could assume arrivals are λ̃ℓt ,d /J , so that each flight receives 1/J of arrivals. This increases
product shares and results in consumers estimated to be more price insensitive.

16We must also confront a data limitation in that our forecasting data is not necessarily at the t level, but
rather, at a grouping of t s the firm uses for decision making. The number of days in a grouping varies.
We address this data feature in the following way. Note that our demand model does not have t -specific
parameters—preferences do not vary by day before departure. Therefore, if Q̃ ℓ is the forecast for consumer
type i for multiple periods, the model analogue to this is

Q̃ ℓ·,t ∗ =
∑
t ∈t ∗
λ̃ℓ·,t s ℓ·,t (·) =
�∑

t ∈t ∗
λ̃ℓ·,t
�

s i· (·).

We can simply sum over the relevant time indices for arrival rates because the time-index does not enter
within-consumer type shares, and the forecasting data assumes a constant price within a grouping of time.
This is important because we can then define consumer-type product shares as

Q̃ ℓ·,t ∗∑
t ∈t ∗ λ̃

ℓ·,t
= s ℓ(·).
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equation of the form

δ̃= X β̃ − α̃p +ξ+u ,

where β̃ , α̃B , α̃L are preferences to be estimated. We include our estimated ξ in the model,

which is the mean of the posterior for that observation taken from our estimates. Thus,

this approach also estimates a "ξ" that also differs across consumer types through u . We

set these residuals equal to zero after recovering firm beliefs. These assumptions do not

greatly impact our findings.

Figure 9: Firm Beliefs on Demand
(a) Market Shares
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(c) Expected demand
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(d) Flight Elasticities
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Note: (a) Comparison of product shares across consumer types, over time. (b) Estimates of γt versus those calculated using the passenger
assignment algorithm. (c) Forecasted demand across consumer types, over time. (d) Comparison of own-price elasticities over time. (b)
and (d) contain the 25th and 75th percentiles. Results are reported averaging over all observations in the data.

Thus, we obtain the following inversion,

log

�
Q̃ ℓ·,t ∗∑
t ∈t ∗ λ̃

ℓ·,t

�
− log(s ℓ0 ) = log(s ℓ)− log(s ℓ0 ) = δ̃

ℓ. (2)
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In Figure 9 we show that our demand estimates (Model E) are quite different than those

recovered from the forecasting data (Model B). In panel (a) we plot product shares for both

passenger types over time. Model B results in consumer types being “closer together” than

under Model E, with leisure travelers being more price inelastic than under our estimates.

In panel (b), we plot the probability that an arriving customer is a business traveler. Model

E places more mass on business travelers and produces larger changes in the types of con-

sumers arriving over the booking horizon. Model B suggests a significant drop in business

consumer arrivals very close to departure. Panel (c) highlights that Model B inflates early

arriving demand and understates business passenger demand close to departure. Finally,

in panel (d), we plot own-price elasticities over time. Model E produces elasticities that

are increasing (toward zero) as γt increases, whereas Model B results in mostly constant

elasticities that then drop close to departure. This is due to both the probability of business

declining close to departure and prices increasing substantially.

Overall, the two models are quite different. Model B yields more compressed demand

elasticities where aggregate demand is more inelastic well in advance of the departure

date than compared to Model E. This is driven by the upward bias in the forecasting data

along with reduced variance in the forecasts across flights (relative to bookings). Model E

suggests that there is more heterogeneity in demand across both flights and routes, with a

more pronounced change in the overall price sensitivity of arriving consumers over time.

8.1 How compatible are the pricing and RM departments’ decisions?

Before turning to counterfactuals, we revisit the notion of miscoordination in that the fare

choices of the pricing department are misaligned to the demand predictions by the RM

department. We consider a simple scenario: Suppose capacity were sufficiently large so

that capacity costs are zero. In this scenario, the dynamic pricing problem collapses to

a static pricing problem. What would be the revenue maximizing price? The optimal

price—according to the RM department’s forecasts—sets marginal revenue equal to zero,

or M R Model B(p ) = 0. This price identifies the lowest price that the firm should ever charge
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under Model B demand because scarcity would only increase the price.

We solve for the revenue maximizing price with zero capacity costs and compare these

prices to the observed fares. We find that only 49.6% of observations involve fare menus

where the minimum menu price exceeds the price that solves M R Model B(p ) = 0. Although

we find that 85.1% of filed fares are higher than the lowest price that should ever be charged

(higher fare classes are more expensive), 29.8% of observed prices are below the optimal

price if capacity were unconstrained. These results match our descriptive evidence that

fares are often too low, particularly close to departure when the booking rate increases as

fares increase.

9 Empirical Analysis of Pricing Inputs

We quantify the impacts of the pricing biases we have documented on welfare through

several counterfactuals. We explore three questions: (1) How does correcting biases indi-

vidually affect welfare; (2) What are first-best optimal outcomes for the firm, (3) Are teams

best responding to the (biased) inputs of other teams?

Our baseline model approximates current practices. We use the demand estimates based

on the RM department’s forecasts (Model B) and the observed fare choices by the pricing

department to compute baseline fares, allocations, revenues, and consumer surplus. We

then consider two counterfactuals that investigate biases within teams and miscoordination

as discussed in Section 4. First, we address forecasting bias by replacing Model B demand

estimates with the Model E demand estimates. We leave the pricing menus unaltered.

Second, to address miscoordination between teams, we tailor the pricing menus set by

the pricing department to Model B demand estimates. To implement this counterfactual,

we eliminate the ability for the pricing algorithm to choose any fare below M R Model B =

0.17 This addresses the miscoordination described in Section 4 and Section 8.1 that the
17We have also implemented this counterfactual by setting the first fare equal to the price that solves

M R = 0 using the Model B demand estimates. We then increase fares by scaling prices from 1× to 2.5× the
minimum price spanning the number of observed buckets for each route. The results are similar.
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pricing team often files fares that are on the inelastic side of the RM department’s forecasts

(according to Model B). We leave the forecast set to Model B in this counterfactual.

These counterfactuals do not necessarily coincide with “second-best” outcomes for the

firm, or where teams best respond to the biased inputs/processes of the other team. We

explore the second best in Section 9.3. We also simulate a “first-best” outcome, where

pricing is centralized under a single team that uses Model E demand estimates with fare

menus tailored to the Model E demand forecast. These menus are derived by first solving

M R Model E = 0. This defines the lowest price on the menu. We then increase fares by scaling

prices from 1× to 2.5× the minimum price spanning the number of observed buckets for

each route.

One bias not addressed in these counterfactuals is that the pricing algorithm itself is

also biased. We perform additional counterfactuals that allow for cross-price elasticities in

a model of dynamic pricing in Online Appendix E.

9.1 Counterfactual Implementation

For each counterfactual, we simulate flights based on the empirical distribution of observed

remaining capacity 120 days before departure. For each vector of initial remaining capaci-

ties, we then draw preferences and arrival rates given our demand estimates (Model E). We

simulate 10,000 flights for each combination of initial capacity and the drawn preference

parameters. Like our demand model, we do not endogenize connecting (or flow) bookings.

Therefore, we handle connecting bookings through exogenous decreases in remaining ca-

pacity, based on Poisson rates estimated using connecting bookings.18 Consumers are as-

sumed to arrive in a random order within a period. If demand exceeds remaining capacity,

consumers are offered seats in the order they arrive. Therefore, if the lowest-priced fare has

a single seat and is sold immediately, the next arriving consumer within a period is offered

18Alternatively, we could subtract off observed connecting bookings from the initial capacity condition.
However, this constrains initial capacity and results in higher prices than what we observe in the data.
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the next least-expensive fare.19

9.2 Welfare Comparison

We report counterfactual results in Table 3 where we aggregate over all flights and routes.

Our baseline model—used to approximate present day airline pricing practices—is shown

in the first row. Here, we use the demand model based on the firm’s forecasts (Model

B), and the observed fares filed by the pricing team. We normalize the outcomes in this

baseline to 100% for all welfare measures (leisure and business consumer surplus, quantity

sold, revenues, and welfare).

Table 3: Counterfactual Estimates and a Comparison to Present Practices

Counterfactual C SL C SB Q R e v W

1) Observed Fares, Model B Forecast 100.0 100.0 100.0 100.0 100.0

2) Observed Fares, Model E Forecast 99.9 99.8 99.7 101.9 100.6

3) Altered Fares to Model B Forecast 69.4 102.7 85.4 93.0 97.3

4) Altered Fares to Model E Forecasts 121.0 64.1 92.3 118.6 86.6
Note: In counterfactual (1), we approximate current pricing practices. Counterfactual (2) and (3) address a single organizational team
bias, but leave others in place. Finally, in counterfactual (4), we consider a scenario in which RM and pricing department decisions are
coordinated.

In Row 2 of Table 3, we investigate the impact of correcting the bias in the RM depart-

ment’s demand forecasts, while preserving the coordination problem with the pricing team.

To do this, we simulate outcomes keeping the filed fares at their observed levels, but replac-

ing Model B demand estimates with Model E demand estimates. We find that total welfare

under this counterfactual is within 0.6% of the calculated welfare for the benchmark case

in Row 1. This occurs because the pricing algorithm generally expects that future demand

19Note that this differs from our demand model where all consumers are assumed to pay the same price
within a period. However, because arrival rates are low, consumers very rarely pay different prices in our
simulations. This is consistent with the data as well. We remove seven markets from our analysis that are
estimated to have inelastic demand throughout time. These markets feature very low arrival rates and a very
high percentage of zeros (over 95%). Our results are robust to including these routes, though the average
revenue gains are over 5% higher with the inelastic routes included.
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can be accommodated with remaining capacity under both Model E and Model B demands.

Therefore, the opportunity cost of capacity estimated within the pricing algorithm is suffi-

ciently low such that the algorithm typically allocates units to the lowest filed fare. Because

the fare menus are the same in both counterfactuals, the lowest filed fare is made available

in both cases. As a result, fixing the forecast in isolation does not affect market outcomes.

Row 3 addresses the miscoordination problem between the fare menu choices and

Model B forecasts. Recall that in Section 8.1, we found that prices are commonly set

on the inelastic side of the RM department’s demand estimates (Model B). We find that

removing fares on the inelastic side of the Model B forecasts actually reduces overall rev-

enues by 7%. Although this finding may appear counterintuitive, recall that in this scenario

fares are aligned to a biased forecast. Our results show that coordinating fares could actu-

ally provide worse outcomes for the firm (as well as consumers). We find that for 44% of

the routes in the sample, revenues increase in this counterfactual. For over 56% of routes,

revenues are within 1% of the baseline scenario. For the remainder of routes, and in partic-

ular, for a few routes that cater heavily to leisure customers, we find that current prices are

actually too high (in terms of comparing M R = 0 under Model B and Model E). Removing

the lowest fares on the menu exacerbates the problem of pricing too high, particularly well

in advance of the departure date. In this counterfactual, we estimate that leisure consumer

surplus would decline by 30.6%, and business consumer surplus would only increase by

only 2.7%. Coordination without addressing all biases reduces overall welfare by 2.7%.

In Row 4, we consider a “first-best” scenario, where the firm uses the unbiased forecast

(Model E) in conjunction with price menus coordinated to that unbiased forecast. This

counterfactual represents the “as if” scenario where pricing is centrally decided at the firm.

We estimate a significant reallocation of capacity compared to the benchmark case. The

reason is that passenger types are further apart in terms of preferences according to Model

E estimates. Because capacity is often not constrained, in this counterfactual fares early

on tend to fall. Fares close to departure are much higher because business customers have

higher willingness to pay according to Model E (see Figure 9. This leads to lower transacted
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prices among leisure consumers, increasing leisure consumer surplus. Business consumer

surplus falls sharply. Revenues would increase by 18% due to increased price targeting.

Overall dead-weight loss would also rise in the markets studied.

9.3 Second Best Outcomes for the Firm

Our results establish that market outcomes are largely unchanged if a team corrects its own

bias in isolation. We now ask: How close are current inputs to the second-best optimal

inputs for the firm? We consider two scenarios. The first investigates how the upstream

team—the pricing department—can correct for downstream forecast bias introduced by

the RM department. In this scenario, we assume that the pricing department knows the

Model E demand estimates and adjusts their fare menus (using the same process as in

Section 9.1). These menu adjustments are made knowing that the RM department will use

the biased Model B forecasts along with the pricing heuristic.

We also investigate the second-best outcome for the firm in which the RM department

adjusts their forecast, holding upstream fare decisions by the pricing department fixed.

Because the RM department typically scales up or down the forecast for an entire route

with a scaling parameter, we implement this counterfactual in a similar way. We have the

RM department solve for inventory allocations using ESMR-b and the Model B forecast

scaled up uniformly by a scaling parameter χ . We consider χ ∈ {1.0, 1.25, ..., 13.75}. For

each χ , the RM department solves for inventory allocations using the manipulated forecast

and then simulates flights according to the non-manipulated, Model B forecast. The optimal

χ is the scaling factor that maximizes expected revenues. For example, if the menus set by

the pricing department tend to feature fares that are too low for Model B demand, the RM

department can scale up/boost the forecast to inflate opportunity costs. This will raise the

distribution of fares offered We use the Model B forecast in this counterfactual because it

uses information currently within the firm, and thus, is perhaps more realistic in terms of

being implementable.

Results for these two counterfactuals appear in Table 4, which are also normalized to
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Table 4: Counterfactual Estimates of Second-Best Outcomes for the Firm

Counterfactual C SL C SB Q R e v W

5) Pricing Department uses Model E forecast 122.5 64.0 92.7 117.6 86.4

6) RM Department manipulates Model B forecast 77.7 94.0 89.7 106.2 97.2
Note: In Row 5 we consider a counterfactual in which the pricing department adjusts their fare menus according to Model E forecasts,
and the RM department uses the Model B forecast when determining inventory allocations. In Row 6 we consider the counterfactual in
which the RM department adjusts the Model B forecast using a single scaling parameter (up/down), and the pricing department keeps
the fare menus constant.

observed practices (Row 1 of Table 3). We find that the second-best outcomes for the firm

are not close to current outcomes. For example, if the pricing department best responded

to the forecasting bias introduced by the RM department, we estimate that revenues would

close 95% of the gap between Row 1 and Row 4 of Table 3. The fact that this second-best

outcome is so close to the first-best outcome highlights the importance of the pricing menu

decisions of the upstream team (the pricing department). We find that properly accounting

for the average change in willingness to pay over time in the pricing menu decisions is sig-

nificantly more important than having a pricing algorithm that also reoptimizes in response

to demand shock realizations. As a result, market segmentation is the driving force for

price adjustments rather than responding to scarcity.

In contrast, we find that if the RM department best responded to the misalignment

between the pricing department’s fare menus and Model B demand (see Row 6 of Table 4),

the forecast should be significantly more biased in order to raise the distribution of fares

offered. The average optimal χ is 7.5, with a standard deviation of 5.4. The optimal

adjustment to the current demand model goes against observed practices in that analysts

tend to deflate the forecast (see Figure 4). The second-best outcome is to inflate the forecast

more. Averaging across routes, we find that significantly more biased forecasts would

close 33% of the gap between Row 1 and Row 4. This number is substantially lower than

the other second-best outcome (95%) because inflating opportunity costs across the entire

booking horizon is less effective at targeting specific consumer groups with higher prices.

Note that leisure consumer surplus declines in this scenario, relative to Row 5, and business

consumer surplus is relatively high compared to Row 5.
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9.4 Discussion

In all counterfactuals except one, the firm would be better off if teams adjusted their pricing

inputs. This raises a natural question: Why have economic forces not led to different

outcomes in multiple years of data? Although we cannot establish a causal link to the

pricing biases we explore, the data, code, and supporting documentation suggest some

likely mechanisms.

One potential mechanism is that firms are concerned about non-revenue metrics which

would tend to lead to low prices. Our estimates of the first-best (and second-best) optimal

outcome would lead to a reduction in tickets sold. This conflicts with metrics airlines

commonly emphasize in public reports. We collect and process all airline earning calls

between 2013 and 2019. In over half the calls, all major airlines emphasize load factor,

or the percentage of seats occupied. Of course, maximizing load factor is not the same as

maximizing revenues.

Load factors are also emphasized internally along with metrics on forecasting bias. Our

counterfactual that investigates the second-best outcome if the RM department manipulated

its forecast to account for the coordination problem is feasible (e.g., it does not require a

new forecasting model), but firm norms may prevent its implementation. Not only does

meeting load factor targets puts downward pressure on prices—in the opposite direction

of the second-best results—we found that the optimal scaling factor χ averages 7.5. It is

unlikely that managers would accept forecasts that are biased upwards of 750%, when they

are trying to reduce error.

In addition to performance metrics, another likely mechanism for the persistent pricing

biases is the lack of information transmission across teams. Our descriptive evidence sug-

gests miscoordination is never addressed in a two year data sample even though both an

issue and fix are known to one team within the firm. It could be that the costs of improving

coordination and aligning input decisions are especially high. For example, we observe that

only 1.6% of prices are adjusted by the pricing department. Perhaps realigning team infor-

mation sets and decision processes makes observed outcomes “optimal” in the presence of
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substantial organizational costs.

We also note that the clickstream data suggest limited experimentation at the firm.

Without experimental variation, managers may be unable to measure the substantial dif-

ferences in willingness to pay across consumer types as our demand estimates suggest.

We observe an identifier for consumers subject to experiments as well as a code to denote

unique experiments. The number of experiments run, and the number of consumers subject

to experiments, is very low.

We argue that some mechanisms are less plausible. Although it may be that the firm

has long-run demand considerations in mind when determining prices (supporting lower

prices), we note that the RM forecasts and the algorithm objective focus on short-run de-

mand and revenues, respectively. Moreover, sometimes the forecasts of neighboring de-

partures dates are adjusted in response to demand shocks—again highlighting short-run

considerations (see Online Appendix E for an example). It is unclear why long-run de-

mand estimates would yield persistently biased upward forecasts that in general understate

(overstate) the number of low (high) priced tickets sold. Related to long-run demand, an-

other reason to offer lower fares is to reward customers for loyalty. However, the data

establish that more expensive tickets tend to be purchased by more loyal customers. If a

large fraction of “business” customers do not pay for their tickets out of their own wal-

let, current mileage programs allow customers to reach status faster by purchasing more

expensive tickets.

Another mechanism we argue is less likely to explain our findings is that the firm rec-

ognizes additional revenues are possible through increased market segmentation, but the

firm is strategically choosing to offer lower prices as a response to the threat of a entry

(Goolsbee and Syverson, 2008; Sweeting, Roberts, and Gedge, 2020). We view this as

implausible because the biases we document in Section 4 affect all markets and are even

more pronounced in markets with competition. It is unclear why a firm would also price

on the inelastic side of demand when already facing direct competitors.
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10 Conclusion

In this paper, we study pricing at a large U.S. airline where distinct organizational teams

manage specific pricing inputs. We provide evidence of pricing biases and miscoordina-

tion. To quantify the welfare effects of these pricing biases, we estimate a structural de-

mand model and conduct counterfactual experiments using a pricing heuristic that closely

approximates what the firm uses in practice. We show that addressing pricing biases within

teams individually does not substantially change market outcomes. Although biases are

not reinforcing, they are not perfectly offsetting. Observed outcomes differ from optimal

second-best outcomes for the firm. Finally, we show that if teams correct and coordinate

on algorithm inputs, we find a significant reallocation of capacity across consumer types.

Leisure consumers would benefit from lower fares, but business travelers would face sig-

nificantly higher fares. Revenues would increase, but so would dead-weight loss.
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A All US Airlines have the same Organizational Structure

Our description of airline pricing is not unique to the airline we study—all airlines have

the same organizational structure and use similar pricing techniques. We show this by

collecting job postings information for all the major carriers in the U.S.20 We confirm

that Alaska, American, Delta, JetBlue, Southwest, and United have a network planning,

pricing, and revenue management department. As an example, JetBlue Airlines job post-

ings show that the firm has three teams related to pricing: Future Schedules, Revenue

Management-Pricing, and Revenue Management-Inventory. Job details delineate team re-

sponsibilities. The Revenue Management department at JetBlue has two separate teams,

Pricing and Inventory. The Pricing team has ownership over fares by “monitoring indus-

try pricing changes filed through a clearinghouse throughout the day, and determining and

executing JetBlues response.”21 The Inventory team uses “inventory controls to determine

the optimal fare to sell at any given moment in time to maximize each flights revenue.”22

American Airlines managers describe how inventory controls are implemented in Smith,

Leimkuhler, and Darrow (1992)—they outline EMSR-b. Because all carriers have the same

organizational structure and use similar algorithms, we believe our analysis characterizes

the entire industry, rather than the perspective from a single firm.

B Details on the Pricing Heuristic, EMSR-b

We approximate the solution to a dynamic pricing (DP) problem using a well-known

heuristic in operations research, Expected Marginal Seat Revenue-b or EMSR-b (Belob-

aba, 1987). The heuristic was developed in order to avoid solving highly complex dynamic

pricing problems. The heuristic simplifies the firm’s decision in each period by aggregating

all future sales before the deadline into a single future period. It also simplifies the demand

system to be for only a single product, so competitive effects cannot be considered. We

20Screenshots of the job postings are available on request.
21See https://careers.jetblue.com/job/Long-Island-City-Analyst-Revenue-Management-NY-11101/737962800/. July 1, 2021.
22See https://careers.jetblue.com/job/Long-Island-City-Analyst-Revenue-Management-NY-11101/737962800/. July 1, 2021.
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describe this process below and show how to incorporate Poisson demand in EMSR-b. It is

important to note that EMSR-b provides an allocation over a given finite set of prices, in-

stead of providing the optimal price itself given any state of the world. EMSR-b associates

each price with a fare-class then chooses a maximal number of sales that can be made to

each fare-class. This means that consumers may face different prices within a single pricing

period when one class is closed and a higher priced class opens.

B.1 Littlewood’s Rule

EMSR-b is a generalization of Littlewood’s rule, which is a simple case where a firm prices

two time periods uses two fare classes. A firm with a fixed capacity of goods (seats) wants

to maximize revenue across two periods, where leisure (more elastic) consumers arrive

in the first period and business (less elastic) consumers arrive in the second period. The

firm sets a cap on the number of seats b it is willing to sell in the first period to leisure

passengers. This rule returns a maximum number of seats for leisure when the price to

both leisure and business customers has already been decided; it does not determine optimal

pricing.

The solution equates the price of a seat sold in the first period (to leisure travelers) to the

opportunity cost of lowering capacity for sales in the second period (to business travelers).

Given prices pL , pB , capacity C , and the arrival CDF of business travelers FB , Littlewood’s

rule equates the fare ratio to the probability that business class sells out. The fare ratio is

the marginal cost of selling the seat to leisure (the lower revenue pL ) which is set equal to

the marginal benefit—the probability that the seat would not have sold if left for business

customers only. Littlewood’s rule is given by

1− FB (C − b ) =
pL

pB
.

This equation can then be solved for b , the maximum number of seats to sell to leisure

customers in period one. This solution is exact if consumers arrive in two separate groups
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and there are only two time periods and two consumer types.

B.2 EMSR-b Algorithm

The EMSR-b algorithm (Belobaba, 1987) extends Littlewood’s rule to multiple fare levels

or classes. For each fare class, all fare classes with higher fares are aggregated into a single

fare-class called the “super-bucket.” Once this bucket is formed, Littlewood’s rule applies,

and can be done for each fare class iteratively. Rather than just comparing leisure and

business classes, the algorithm now weights the choice of selling a lower fare-class ticket

against an average of all higher fare classes.

We apply the algorithm for K sorted fare-classes such that p1 > p2 > ...> pK . Each fare

class has independent demand with a distribution Fk . Under our specification, the demand

for each fare class is distributed Poisson with mean µk that is given by future arrivals times

the share of the market exclusive to that bucket.

The super-bucket is a single-bucket placeholder for a weighted average of all higher

fare-class buckets. Independent Poisson demand simplifies this calculation, as the sum of

independent Poisson distributions is itself Poisson. The mean of the super-bucket is the sum

of the mean of each higher fare-class bucket. The price of the super-bucket is a weighted

average of the price of each higher-fare class, using the means as the weight.

For each fare class, Littlewood’s Rule is then applied with the fare-class taking the

place of leisure travel, and the super-bucket in place of business travel. It is assumed that

all future arrivals appear in a single day. The algorithm then describes a set of fare-class

limits bk that define the maximum number of sales for each class before closing that fare

class. We denote the remaining capacity of the plane at any time by C . The algorithm uses

the following pseudo-code:
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for t > 2 do

for k ← K to 1 by −1 do
i) Compute un-allocated capacity Ck ,t =C −∑K

i=k bi ,

ii) Construct the super-bucket

µs b =
k−1∑
i=1

µi , ps b =
1

µs b

k−1∑
i=1

piµi , Fs b ∼ Poisson(µs b ),

iii) Apply Littlewood’s Rule using the super-bucket distribution as the demand for

business

Ck ,t − bk =min
§

Fs b
−1
�

1− pk

ps b

�
, Ck ,t

ª
.

end

end
In the case where t = 1, dynamics are no longer important, so there is no longer a need

to trade off based on the opportunity cost. As a result, we limit the fare of the highest

revenue class to all remaining capacity, and set limits of all other classes to zero.

B.2.1 Fare Class Demand

What remains is computing the mean µk for each fare class bucket. We detail the process

in this section. Demand in each market is an independent Poisson with arrival rate exp(λt
t +

λd
d )s j (p ). Note that this p is a vector of the prices of all flights in the market. We assume

that the firm believes other flights will be priced at their historic average over the departure

date and day before departure. This allows us to construct a residual demand function s j (pj )

that is a function of the price of the current flight only. We will treat this as the demand for

the flight at a given bucket’s price for the remainder of this section.

Each fare class has a set price pk , at any time t , departure date d we will see exp(λt
t +

λd
d ) arrivals, of which s (pk ) are willing to purchase a fare for bucket k . However, s (pk−1)

are willing to purchase a fare for bucket k−1 as well, since they will buy at the higher price
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pk−1. Only exp(λt
t +λ

d
d )
�
st (pk )− st (pk−1)

�
are added by the existence of this fare class with

price pk < pk−1. Note that this is a flow quantity—the amount of purchases in time t , but

EMSR-B requires stock quantities: How many will purchase over the remaining lifetime

of the sale?

What is the distribution of future purchases then? Each day t is an independent Poisson

process split by the share function. Independent split Poisson processes are still Poisson,

so we may compute the mean of purchases solely in a fare class by summing arrivals over

future time t , and taking the difference in shares between price pk and pk−1. For time t

and departure date d , the stock demand for fare-class k is given by

t∑
i=1

exp(λt
i +λ

d
d )
�
st (pk )− st (pk−1)

�
,

where st (p0) = 0 for notational parsimony.

This demand distribution is only used to compute the super-bucket demand distribution.

Note that we only include future stock demand in the super bucket, and thus only sum

arrivals until time t −1. For fare-class k . The super bucket’s stock demand is given by

µs b =

�
t−1∑
i=1

exp(λt
i +λ

d
d )si (pk−1)

�
ps b =

1

µ

k−1∑
j=1

pj

t−1∑
i=1

exp(λt
i +λ

d
d )
�
si (pj )− si (pj−1)
�

.

The updated pseudo-code for the EMSR-b algorithm is:
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for t > 2 do

for k ← K to 1 by −1 do
i) Compute un-allocated capacity Ck ,t =C −∑K

i=k bi (t ),

ii) Construct the super-bucket

µs b =

�
t−1∑
i=1

exp(λt
i +λ

d
d )

�
si (pk−1),

ps b =
1

µs b

k−1∑
j=1

pj

t−1∑
i=1

exp(λt
i +λ

d
d )
�
s (pj )− s (pj−1)
�

,

Fs b ∼ Poisson(µs b ),

iii) Apply Littlewood’s Rule using the super-bucket distribution as the demand for

business.

Ck ,t − bk (t ) =min
§

Fs b
−1
�

1− pk

ps b

�
, Ck ,t

ª
.

end

end
For t = 1 we continue to allocate the highest revenue fare class to the entire remaining

capacity. Note that for this allocation rule, bk (t , d ) is a function of time since the arrivals are

changing over time. This policy can be computed for each time t and remaining capacity

c , for all departure dates d and arrival rates λ.

C Route Selection

We use publicly available data to select markets to study. The DB1B data are provided

by the Bureau of Transportation Statistics and contain a 10% sample of tickets sold. The

DB1B does not include the date purchased nor the date traveled and is reported at the

quarterly level. Because the DB1B data contain information solely for domestic markets,
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we limit our analysis to domestic markets as well. Furthermore, we use the air carrier’s

definition of markets to combine airports within some geographies.

Figure 10: Nonstop, One-stop and Connecting Traffic
Destination

Origin One-stop

Connecting

Note: We use the term nonstop to denote the sold black line, or passengers solely traveling between
�
Origin, Destination

�
. Unless

otherwise noted, we will use directional traffic, labeled O →D . Non-directional traffic is specified as O ↔D . The blue, dashed lines
represent passengers flying on O ↔D , but traveling to or from a different origin or destination. Finally, one-stop traffic are passengers
flying on O ↔D , but through a connecting airport.

We consider two measures of traffic flows when selecting markets: traffic flying nonstop

and traffic that is non-connecting. Both of these metrics are informative for measuring

the substitutability of other flight options (one-stop, for example) as well as the diversity

of tickets sold for the flights studied (connecting traffic). Figure 10 provides a graphical

depiction of traffic flows in airline networks that we use to construct the statistics. We

consider directional traffic flows from a potential origin and destination pair that is served

nonstop by our air carrier. The first metric we calculate is the fraction of traffic flying

from O → D nonstop versus one or more stops. This compares the solid black line to the

dashed orange line. Second, we calculate the fraction of traffic flying from O →D versus

O →D →C . This compares the solid black line to the dashed blue line.

Figure 11 presents summary distributions of the two metrics for the markets (ODs) we

select. In total, we select 407 ODs for departure dates between Q3:2018 and Q3:2019. The

top row measures the fraction of nonstop and connecting traffic for tickets sold by our our

carrier. The left plot shows that, conditional on the air carrier operating nonstop flights

between OD, an overwhelming fraction of consumers purchase nonstop tickets instead of

purchasing one-stop connecting flights. The right panel shows that fraction of consumers

who are not connecting to other cities either before or after flying on segment OD. There is
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Figure 11: Route Selection Using Bureau of Transportation Statistics Data
(a) Within Airline Fraction Nonstop
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(b) Within Airline Fraction Non-Connecting
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(c) All Airlines Fraction Nonstop
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(d) All Airlines Fraction Non-Connecting
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Note: Density plots over the fraction of nonstop traffic and the fraction of non-connecting traffic for the selected routes using DB1B data.
"Within" means passengers flying on our air carrier. "Total" means all air carriers on a given origin-destination pair. Within nonstop and
total nonstop coincide if our carrier is the only carrier flying nonstop.

significant variation across markets, with the average being close to 50%.

Figure 12: DB1B Comparison
(a) DB1B OD Traffic Comparison
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(b) DB1B OD Fare Comparison
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Note: (a) A scatter plot of the fraction nonstop and fraction non-connecting for all origin-destination pairs served by our air carrier. The
blue dots show selected markets; the orange dots show non-selected markets. (b) Kernel density plots of all fares in the DB1B data for
our air carrier; the blue line shows the density for our selected markets.
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The bottom panel repeats the statistics but replaces the denominator of the fractions

with the sum of traffic flows across all air carriers in the DB1B. Both distributions shift to

the left because of existence of competitor connecting flights and sometimes direct com-

petitor flights. In nearly 75% of the markets we study, our air carrier is the only firm

providing nonstop service. Our structural analysis will only consider single carrier mar-

kets.

In Figure 12-(a), we show a scatter plot of the fraction of nonstop traffic and the fraction

of non-connecting traffic for all origin-destination pairs offers by our air carrier in the

DB1B. The orange dots depict routes non-selected markets and the blue dots show the

selected markets. We see some dispersion in selected markets, however this is primarily

on non-connecting traffic. An overwhelming fraction of the selected markets have high

nonstop traffic, although this is true in the sample broadly. Essentially, conditional on

the air carrier providing nonstop service, most passengers choose nonstop itineraries. In

Figure 12-(b) we show the distribution of purchased fares in the DB1B for our carrier along

with our selected markets. The distribution of prices for the selected sample are slightly

shifted to the right, which makes sense since we primarily select markets where the air

carrier is the only airline providing nonstop service.

C.1 Estimation Sample Comparison

Our estimation sample contains 39 markets. Compared to the overall sample, these routes

tend to be smaller in terms of total number of passengers, larger in terms of percentage

of nonstop and non-connecting passengers, and nonstop service is provided only by our

air carrier. We report percentage differences between our estimation routes and the entire

sample for key characteristics below in Table 5. Figure 13 shows a two-way plot of the

fraction of nonstop and non-connecting traffic for the routes selected for estimation relative

to the entire sample.
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Table 5: Estimation Routes Comparison

Characteristic Percentage Difference from Mean

Number of Nonstop Passengers -38.8%
Total Number of Passengers -33.4%
Number of Local Passengers -37.7%
Fraction of Traffic Nonstop 1.02%
Fraction of Traffic Non-Connecting 5.91%

Note: Statistics calculated using the DB1B data for the years 2018-2019.

Figure 13: Route Estimation Selection using DB1B Data
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Note: A scatter plot of the fraction nonstop and fraction non-connecting for all origin-destination pairs served by our air carrier. The
blue dots show markets used for estimation; the orange dots show non-selected markets.

D Additional Details on Demand Estimation

D.1 Demand Estimation Procedure

We provide an overview on the implementation details of each stage the MCMC routine for

demand parameter estimation. Simultaneously drawing from the joint distribution of our

large parameter space is infeasible, therefore, we use a Hybrid Gibbs sampling algorithm.

The algorithm steps are shown below. At each step of the posterior sampler, we sequen-

tially draw from the marginal posterior distribution groups of parameters, conditional on

other parameter draws. Where conjugate prior distributions are unavailable, we use the

Metropolis-Hastings algorithm, a rejection sampling method that draws from an approx-

imating candidate distribution and keeps draws which have sufficiently high likelihood.

Additional detail can be found in Hortaçsu, Natan, Parsley, Schwieg, and Williams (2021).
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1: for c = 1 to C do
2: Update arrivals λ (Metropolis-Hastings)
3: Update shares s (·) (Metropolis-Hastings)
4: Update price coefficients α (Metropolis-Hastings)
5: Update consumer distribution γ (Metropolis-Hastings)
6: Update linear parameters β (Gibbs)
7: Update pricing equation η (Gibbs)
8: Update price endogeneity parameters Σ (Gibbs)
9: end for

Algorithm 1: Hybrid Gibbs Sampler

Sampling Arrival Parameters

We start the sampling procedure by drawing from the posterior distribution of arrival pa-

rameters, λt ,d . The posterior is derived by defining the joint likelihood of arrivals for each

consumer type and quantities sold, conditional on product shares. Recall that arriving con-

sumers have likelihood based on their type:

AL
t ,d ∼ Poisson(λt ,d (1− γ̃t )ζ

L
t ),

AB
t ,d ∼ Poisson(λt ,d γ̃t ζ

B
t ),

where γ̃t is the probability a consumer is of the business type as derived from the pas-

senger assignment algorithm, and ζℓt is the fraction of bookings that do not occur on the

direct channel for each consumer type (leisure and business). The purchase likelihood is a

function of shares and arrivals and is equal to

q̃ j ,t ,d ∼ Poisson
�
λt ,d · s j ,t ,d

�
,

q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©
.

This directly accounts for censored demand due to finite capacity. Since arrivals are re-

stricted to be non-negative, we restrict the set of fixed effects by transforming the multi-

plicative fixed effects to be of the form λt ,d = exp
�
Wt ,dτ
�
. We select a log-Gamma prior
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for τ. We sample from the posterior distribution by taking a Metropolis-Hastings draw

from a normal candidate distribution.

Sampling Shares and Utility Parameters

Updating shares. We treat product shares as unobserved, since the market size may

be very small and lead to irreducible measurement error. We use data augmentation to

treat shares as a latent parameter that we estimate. Conditional on all other parameters

(λ,α,γ,β ,η,Σ), product shares are an invertible function of the demand shock, ξ. If we

conditioned additionally on ξ, shares would be a deterministic function of data and other

parameter draws. Instead, we leverage the stochastic nature of ξ, which we explicitly pa-

rameterize. The distribution of unobserved ξ is the source of variation for constructing a

conditional likelihood for shares:

ξ j ,t ,d = f −1
�
s j ,t ,d |β ,α,γ, X
�

υ j ,t ,d = pj ,t ,d −Z ′j ,t ,dη

 ���κ= k ∼N iid(0,Σk )

such that Σk =

σ2
k ,11 ρk

ρk σ2
k ,22

 .
Here, κ is a mapping from days to departure t to an interval (block) of time. That is,

the pricing error and the demand shock have a block-specific joint normal distribution.

Conditional on the pricing shock υ, the distribution of ξ, fξ j ,t ,d
(·), is

ξ
���υ,κ= k ∼N
�
ρkυ

σ2
k ,11

,σ2
k ,22−

ρ2
k

σ2
k ,11

�
.

The density of shares is then given by the transformation fs j ,t ,d
(x ) = fξ j ,t ,d

�
f −1(x )
�·��Jξ j ,t ,d→s j ,t ,d

��−1
,

where Jξ j ,t ,d→s j ,t ,d
is the Jacobian matrix of model shares with respect to ξ. To produce the

full joint conditional likelihood of shares, we also include the mass function for sales,

which are a product of shares and arrivals:
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∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11

 (λt ,d s j ,t ,d )q j ,t ,d exp(−λt ,d s j ,t ,d )

q j ,t ,d !

 · ��Jξ→s

��−1
,

where ϕ(·) is the standard normal density function. We draw from the posterior based on a

uniform prior distribution and normal candidate Metropolis-Hastings draws.

Updating price coefficients, αB ,αL . We construct the conditional likelihood (and thus

the conditional posterior distribution) for α = (αB ,αL ) in a similar manner to the product

shares. For any candidate value of price sensitivity, we recover a residual ξ, invert the

demand system, and recover a likelihood. Conditional on λ, shares, η, β , and Σ, we

compute the distribution of ξ and determine the likelihood of a particular draw of α, given

by ∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11


 · ��Jξ→s

��−1
,

where ϕ(·) is the standard Normal density function. We impose a log-Normal prior on α,

and impose αB < αL to avoid label-switching. To draw from the conditional posterior, we

take a Metropolis-Hasting step using a normal candidate distribution.

Updating the distribution of consumer types, γ. We allow for the mix of consumer

types to change over the booking horizon t . We define γ from a sieve estimator of the

booking horizon t , and we sample the sieve coefficients, ψ, according to

γt =Logit
�
G (t )′ψ
�

,

where G (t ) is a vector of Bernstein polynomials. The logistic functional form ensures that

the image of γ in the interval (0,1). The inversion procedure used to construct the likelihood
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is similar to α and shares. It yields a likelihood for sieve coefficients ψ of the form

∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11


 · ��Jξ→s

��−1
.

We use a uniform prior onψ, and we sample from the posterior with a Metropolis-Hastings

step using a normal candidate draw.

Updating remaining preferences, β . To sample the remaining preferences that are

common across consumer types, we impose a normal prior on β , with mean β̄0 and vari-

ance V0. We adjust for price endogeneity to conduct a standard Bayesian regression. Define

δ j ,t ,d = X j ,t ,dβ + ξ j ,t ,d , which is evaluated at the ξ computed in the prior step. We nor-

malize each component of δ by subtracting the expected value of ξ and dividing by its

standard deviation. The normalized equations have unit variance and are thus conjugate to

the normal prior. Let σk ,2|1 =
s
σ2

k ,22− ρ2
k

σ2
k ,11

be the variance of ξ conditional on υ and Σ.

We center and scale δ:

δ j ,t ,d − ρκt

σ2
κt ,11
υ

σκt ,2|1
=

1

σκt ,2|1
X j ,t ,d β̄ +U β

j ,t ,d ,

where U β ∼N (0,1). Then, the posterior distribution of β isN (βN , VN ), where

βN = (X̂
′X̂ +V0

−1)
−1 �

V0
−1β0+ X̂ ′δ̂
�

,

VN = (V0
−1+ X̂ ′X̂ )−1

,

X̂ j ,t ,d =
X j ,t ,d

σκt ,2|1
,

δ̂=
δ j ,t ,d − ρκt

σ2
κt ,11
υ

σκt ,2|1
.

Given this normalization, we can draw directly from the conditional posterior distribution

of β using a Gibbs step.
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Sampling Price-Endogeneity Parameters

Updating pricing equation, η. We use a linear pricing equation of the form

pj ,t ,d = Z j ,t ,dη+υ j ,t ,d .

Conditional on shares, λ, γ, α, and β , ξ is known. Therefore, we use the conditional

distribution of υ given ξ to perform another Bayesian linear regression in a similar manner

to β . We impose a Normal prior and normalize prices. Define σκt ,1|2 =
s
σ2
κt ,11− ρ2

κt

σ2
κt ,22

. It

follows that
pj ,t ,d − ρκt

σκt ,22
ξ j ,t ,d

σκt ,1|2
=

1

σκt ,1|2
X j ,t ,d η̄+U η

j ,t ,d ,

where U η ∼N (0,1). Just as we did for β , we can draw from the posterior of η from a linear

regression with unit variance. This step allows us to directly sample from the posterior of

η rather than using a Metropolis-Hastings step.

Updating the price endogeneity parameters, Σ. We flexibly model the joint distribution

of ξ and υ by allowing for a route-specific, time-varying correlation structure. We divide

the booking horizon into four equally sized 30-day periods, and each block is indexed k .

We restrict the price endogeneity parameters Σ, which determine the joint distribution of

ξ,υ, to be identical within these blocks. Within each block, the pricing and demand residual

follow the same joint distribution. We draw the variance of this normal distribution with a

typical Inverse-Wishart parameterization. Our prior for Σk is I W (ν, V ) where k refers to

the block. Define the vector Yk = (υ,ξ) to be the collection of residual pairs conditional on

block k , and Yk ∼N (0,Σk ). The posterior for the covariance matrix Σk is then

Σk ∼ I W (ν+nk , V +Y ′k Yk ).

Block k has nk observations. This Gibbs step is repeated for each block k , and we sample

directly from the conditional posteriors of Σ.
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D.2 The Impact of the Scaling Factor on Demand Estimates

We consider alternative specifications on our scaling factor ζ in order to understand how

changes in imputed market size affect our demand estimates. Our biggest concern is that

our scaling factor may understate the presence of price-sensitive consumers who primarily

shop with online travel agencies. For each route, we adjust our leisure scaling factor by

multiplying the original scaling factor by 1.5, 2, 3, 5 and 10. We find that between 1.5 to

3 times the original scaling factor, our demand estimates are largely unchanged. For larger

scaling factors—between 5 and 10—we find that demand becomes less price sensitive far

from departure and more price sensitive close to departure. The parameters most affected

by this scaling are the parameters governing the probability of business, γ. As we scale

up the leisure arrival process, our estimated probability of business falls. The change in

consumer types over time is reduced, however, we still estimate average elasticities to be

similar to the baseline model.

E Additional Counterfactuals

EMSR-b is a heuristic and is itself biased (Wollmer, 1992) because it does not consider sub-

stitute products. To account for substitutes, we also consider counterfactuals where prices

are determined by solving a dynamic pricing problem. We follow the dynamic pricing (DP)

problem in Williams (2021), where a firm selects a price for each flight from a discrete set

of prices that maximizes its current and expected future profits. We assume that the firm

solves

Vt (Ct , pt ) =max
p∈Pt

�
Re

t (Ct , pt )+EVt+1(Ct+1, pt+1 |Ct , pt )
�

,

where Ct is the vector of remaining capacity for each flight offered in that time period, pt

is the vector of prices the firm selects, and R e
t (Ct , pt ) is the firm’s expected flow revenue.

These value functions are specific to a route and departure date.

We consider two versions of the DP. We first simulate pricing for each flight indepen-
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dently, assuming other flights will be priced at the lowest priced fare. This is analogous to

how we proceed with EMSR-b. We then consider a multi-product DP and limit ourselves

to |J |= 2 due to the dimensionality of the more complicated environments. Our DP results

are thus based on a selected set of routes (and departure dates). We use the coordinated fare

menus derived under Model B and Model E as inputs. These fares may not be optimal in

the multi-product setting.

Table 6: Counterfactual Estimates under an Alternative Pricing System
Counterfactual C SL C SB Q R e v W

1) Pricing heuristic EMSR 100.0 100.0 100.0 100.0 100.0

2) Single-J Dynamic Pricing 95.0 99.0 98.5 100.6 99.6

3) Multi-J Dynamic Pricing 93.4 97.2 101.5 100.9 98.8
Note: In counterfactual (1) prices are set using EMSR-b with Model E and the coordinated price menus. Counterfactual (2), endoge-
nously sets prices for each flight independently using the DP. Finally, counterfactual (3) we jointly set prices of all products in the same
market using the DP.

In Table 6, we compare Row 4 of Table 9 to models of dynamic pricing that also use

these inputs. We report two rows after our EMSR-b results corresponding to the situation

where the firm optimizes flight prices individually and one in which the firm prices flights

jointly. Outcomes are normalized to ESMR-b. We estimate marginally lower consumer sur-

plus and slightly higher revenues under dynamic pricing. These results are not due to the

discrete nature of prices—implementing a continuous-price version for single flight mar-

kets yields quantitatively similar results. Overall, we find that accounting for cross-price

elasticities results in a marginally higher revenues and lower consumer surplus compared

to EMSR-b. These effects are relatively small compared to correcting forecasting bias and

coordinating fares to the correct demand curves using the pricing heuristic.

One concern with Model E is that it assumes the firm knows preferences and arrivals

rates in advance. The forecasting data allow us to explore learning about demand. We

find that with the current system, reactions to “surprises” occur too little and too late. In

particular, demand forecasts respond to demand surprises with delay, leading to missed

opportunities both for the flight in question, but also for future flights which are mistakenly
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thought to be over-(or under-) demanded.

Figure 14: Reacting to Surprises: A Conference Example
(a) Average Load Factor

050100150200250300
Days From Departure

0

20

40

60

80

100

Lo
ad

 F
ac

to
r

t-14
t-7
Conference Date (t)
t+7

(b) Fares

050100150200250300
Days From Departure

100
150
200
250
300
350
400
450

Fa
re

s

(c) Forecasted Demand Remaining

050100150200250300
Days From Departure

0

50

100

150

200

250

Fo
re

ca
st

ed
 D

em
an

d

Note: All plots contain data series for flights departing the date of a large conference (which moves both location and dates each year)
and the corresponding flights in the surrounding weeks of the conference. (a) Shows the average load factor across flights (b) Contains
the average lowest available fares across flights (c) Has the average total expected seats to sell at a given point in time unconstrained by
the remaining capacity.

To demonstrate how the firm updates its beliefs about demand, in Figure 14 we show av-

erage load factors, fares, and forecasted demand remaining for a particular route-departure

date. This departure date is special because it involves a conference which alternates both

date and location each year. In addition to flights on the conference date, we include in-

formation for flights on this route one week before and after the conference date for com-

parison. As shown in panel (a), as soon as the location and date of the conference is

announced, around 200 days from departure, there is a sudden jump in load factor. The

firm’s revenue management software responds with delay (over a month) to the sudden

jump in bookings. Prices eventually increase dramatically as seen in panel (b). Panel (c)

shows that the forecasting algorithm, having observed the conference shock, then inflates

the forecast of remaining demand for the following week—to higher levels than the confer-

ence date. That is, the algorithm incorrectly believes the next week will now also involve a

conference. However, in panel (a) we see that the flights a week later contain no surprises—

bookings follow a similar pattern as other dates. Consequently, fares are too high for the

non-conference flights and too low for a conference flights.

Instead of directly incorporating how the RM department updates its forecasts toward

the departure date, we consider an alternative, simpler model where the firm has “persis-

tently average beliefs,” or where the firm prices according to avg(λ) and avg(β ). The firm
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knows γ and α in this counterfactual. This behavioral model need not provide a good ap-

proximation to the actual learning environment but it allows us to investigate if our findings

are driven by the firm knowing all preferences in advance. We find that even with average

beliefs, results are similar to scenario (4) in Table 3, with a 15% increase in revenues.

Essentially, knowing the average change in willingness to pay over time is very impor-

tant, much more so than variation in preferences and arrival rates across departure dates.

Correcting beliefs about the average shape and evolution of demand—when paired with

coordinated fare options—is the key driver of the welfare effects in our counterfactuals.
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