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Abstract—A common scenario when developing local PC appli-
cations such as games, mobile apps, or presentation software
is storing many small files or records as application data and
needing to retrieve and manipulate those records with some
unique ID. In this kind of scenario, a developer has the choice
of simply saving the records as files with their unique ID as
the filename or using an embedded on-disk key-value database.
Many file systems have performance issues when handling large
numbers of small files, but developers may want to avoid a
dependency on an embedded database if it offers little benefit
or has a detrimental effect on performance for their use case.
Despite the need for benchmarks to enable informed answers
to this design decision, little research has been done in this
area. Our contribution is the comparison and analysis of the
performance for the insert, update, get, and remove operations
and the space efficiency of storing records as files vs. using
key-value embedded databases including SQLite3, LevelDB,
RocksDB, and Berkeley DB.

Index Terms—databases, file systems, database performance

1. Introduction

A common scenario when developing local desktop
applications is the need for persisting many small files
or records as application data and needing to retrieve and
manipulate those records with some unique ID, essentially
forming a key-value store. For example, a game developer
may need to store records for each game entity or game
level or note-taking software would need to store a large
number of small text records.

In this kind of scenario, a developer has two main
choices: leveraging the file system for storage or using an
embedded key-value database. If the developer chooses to
use the file system to store the records, they can simply save
each record to disk with its unique ID as the filename. This
has the advantage of being simple to implement and adding
no extra dependencies.

However, file systems can have space and performance
issues when handling large numbers of small files [1] [2].
As an alternative to the file system, the developer can

choose to use an embedded database. However, adding a
dependency on an embedded database adds a fair amount of
technical overhead to a project and increasing overall system
complexity. If the embedded database is statically linked
with an application, it will typically increase compilation
time and executable size [3]. If it is linked dynamically,
it can complicate installation of an application as external
dependencies will need to be installed. Therefore, a de-
veloper will likely want to avoid adding a dependency on
an embedded database if their use case is not significantly
benefited by it. Despite this being a common scenario, little
research has been done comparing simple file system options
to embedded key-value databases. Our contribution is the
analysis and comparison of the performance of four popu-
lar open source embedded databases – SQLite3, LevelDB,
RocksDB, and Berkeley DB – with storing records on the
file system. This research will enable developers to make
informed decisions on what tools are best for their scenario

This paper is organized as follows. Section 2 presents
the existing research work on file system and embedded
database performance. Section 3 presents the background
knowledge behind our approach. Section 4 presents the
methodology of the research and Section 5 presents the
evaluation of the results. Section 6 presents our conclusions
and directions for future research.

2. State of the Art

There is an extent of existing research comparing various
databases [4], [5]. Additionally, there is existing research
comparing the performance of storing blob data in SQL
servers vs. the file system [6], [7]. However, most the
existing research is not recent, and is mostly focused on
database servers. Minimal research has been done on this
question in the realm of local desktop applications and
comparing the file system to embedded key-value databases
such as LevelDB, RocksDB, and Berkeley DB.

One of the few research works on comparing key-value
databases to file system is the work done by Patchigolla et.
al [8] in 2011. This research performed detailed benchmarks
on database IO performance on mobile devices vs. file IO.
The research was specifically focused on Android devices,



and the benchmarks compared SQLite and Perst embedded
databases. This research concluded that if the number of
records is less than 1,000, then using files is a good decision,
otherwise an embedded DB is a better option. We believe
extending this research into the realm of local desktop
applications and taking embedded key-value databases into
account will be valuable to future developers.

A related question to the comparison of embedded
databases and the file system, but within the scope of SQL
database servers, is whether to store large pieces of data such
as images in the database directly or on the file system.
On SQL servers, the two typical methods for this are to
either store the data directly in an SQL BLOB column or
to only store the file path in the database and save the
data as a file. A widely cited paper on this question is the
work done Sears et. al. [6] which analyzed the performance
of storing files in SQL Server as BLOBs vs. files. They
concluded that data smaller than 256KB is more efficiently
handled by database BLOBs, while the file system is better
for data larger than 1 MB. Stancu-Mara and Baumann [7]
did detailed benchmarking on BLOB handling in various
SQL database servers, including PostgreSQL and MySQL.
They benchmarked read and write for blobs of various sizes,
concluding that MySQL was the fastest at handling BLOBs.
However, both of these benchmarks were done in the late
2000s, and their conclusions may no longer be applicable
to modern systems.

There are many benchmarks comparing NoSQL
databases. For instance, Gupta et. al. compare the perfor-
mance and functionality of four NoSQL databases with
widely different focuses: MongoDB, Cassandra, Redis, and
Neo4j [4]. In other research work, Puangsaijai et. al. [5]
compare the key-value database Redis with the relational
database MariaDB for insert, update, remove, and select
operations.

Related to measuring the performance gains of using
key-value databases is research on using key-value databases
to improve performance. In this context, Tulkinbekov et. al.
[9] solve the problem of write amplification with key-value
databases. The problem of write amplification is when writes
are repeated multiple times which can lead to performance
issues and extra wear and tear on the memory. Their fix
is to introduce their own key-value store CaseDB, which
not only solves write amplification but also outperforms
LevelDB and WiscKey, a LSM-tree-based key-value store.
Similarly, Chandramouli et. al. introduced FASTER [10],
a new embedded key-value database system to improve
performance in large scale applications. Their research was
focused on improving concurrent performance on large scale
applications with millions of accesses a second.

An alternative to using key-value databases to replace
the file system, is to use key-value databases to improve the
file system itself. Specifically, Chen et al . [11] applied key-
value database technology to improve performance of the
file system. They created a file system middleware named
FILT which uses key-value database technology to achieve
up to 5.8x performance over existing file systems.

3. Underpinnings of our Approach

This section presents the fundamental concepts of our
approach as shown in Figure 1.
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Figure 1. Underpinnings of our approach

3.1. Embedded Databases

Embedded databases are databases that are included in
an application rather than as a separate server [12]. Since
they are embedded in the application itself, they do not
require a separate server or Internet access to use. Embedded
databases are meant for scenarios where an application is
storing data that is only needed on the local machine.

Some embedded databases, such as SQLite, are full
relational databases. However, simpler NoSQL alternatives
have become popular such as key-value databases. Key-
value databases only allow efficient access of each entry
by a unique key, and do not support more complex queries.
While this is restrictive, it is sufficient for many use cases
and allows the database to be much simpler and optimized.

SQLite31 is one of the most popular embedded
databases. SQLite3 is an open source C library that im-
plements an embedded SQL database engine. It it used
extensively in mobile devices, Python apps, and browsers,
among many more applications2. While SQLite is a fully
featured SQL database, for our purposes we treat it as key-
value store by just having one table with a primary key.

LevelDB3 is a open-source, key-value embedded
database sponsored by Google. As a key-value database,
it maps arbitrary binary string keys and values and does
not support SQL queries. LevelDB offers features such as
high performance, compression of data, and “snapshots” to
provide consistent read-only views of the data. LevelDB is
used in many applications including Chrome’s IndexedDB4,
Bitcoin Core5, and Minecraft Bedrock Edition6.

1. https://www.sqlite.org
2. https://www.sqlite.org/mostdeployed.html
3. https://github.com/google/leveldb
4. https://chromium.googlesource.com/chromium/src/+/a77a9a1/third

party/blink/renderer/modules/indexeddb/docs/idb data path.md
5. https://bitcoindev.network/understanding-the-data
6. https://github.com/Mojang/leveldb-mcpe

https://www.sqlite.org
https://www.sqlite.org/mostdeployed.html
https://github.com/google/leveldb
https://chromium.googlesource.com/chromium/src/+/a77a9a1/third_party/blink/renderer/modules/indexeddb/docs/idb_data_path.md
https://chromium.googlesource.com/chromium/src/+/a77a9a1/third_party/blink/renderer/modules/indexeddb/docs/idb_data_path.md
https://bitcoindev.network/understanding-the-data
https://github.com/Mojang/leveldb-mcpe


RocksDB7 is another open-source, key-value embedded
database. RocksDB is sponsored by Facebook, and is used
in much of their infrastructure. RocksDB actually started as
a fork of LevelDB, and has a similar API. Facebook found
that LevelDB did not perform well with massive parallelism
or datasets larger than RAM, so they created RocksDB with
a focus on scaling to large applications.

Berkeley DB8 is an open source embedded database
provided by Oracle. Berkeley DB advertises itself as “a
family of embedded key-value database libraries that pro-
vides scalable, high-performance data management services
to applications.” Berkeley DB is very feature rich, and
encompasses multiple different database technologies. Our
benchmark makes use of the efficient key-value API, but
Berkeley DB can also create relational SQL databases, and
use multiple different index types, among many other fea-
tures. Some programs that use Berkeley DB are Bogofilter,
Citadel, and SpamAssassin.

3.2. File System Performance

File systems can have issues when handling large num-
bers of small files. For instance, most modern file systems,
including FAT, ext3, and ext4, allocate space for files in a
unit of a cluster or block, no matter how small the file is. On
large files this is inconsequential, but if there is a very large
number of files smaller than the cluster size it can lead to
a large amount of space being wasted [1]. Directory lookup
can also take a performance hit if a large number of files
are directly under a single folder [2].

This file system performance bottleneck has led many
applications, including browsers and web caches, to use
“nested hash file structures” with files placed into interme-
diate sub-directories based on their hash [13]. This avoids
placing too many files directly under a single folder and can
improve performance. As seen in Figure 3, the top level
directory may contain folders 00 through ff, where each
sub-directory contains files whose hash digest starts with
those characters. Files would be spread evenly across all 256
sub-directories. This process can be repeated for as many
levels of nested as is required to get a reasonable number
of files in the “leaf” directories.

4. Methodology

The algorithm for the benchmark compares the storage
methods, usage patterns, generating random data for the
operations, then takes measurements of the performance.
These steps are described in detail in this section. Listing 1
shows the pseudocode outline of the algorithm used for the
benchmark. The algorithm loops over different combinations
of store type, data type (compressible text or incompressible
binary data), record size range, and record count range

7. http://rocksdb.org
8. https://www.oracle.com/database/technologies/related/berkeleydb.
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Figure 2. flat structure
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Figure 3. nested structure

1 baseMem = getPeakMem()
2

3 for each combination of
4 (storeType, dataType, size, count):
5 if averageRecordSize * count.max > 10GiB:
6 skip
7

8 resetPeakMem()
9 store = new storeType with initial data

10

11 repeat 1000 times:
12 key = newKey(store)
13 value = gen(dataType, size)
14 benchmark store.insert(key, value)
15

16 repeat 1000 times:
17 key = pickKey(store)
18 benchmark store.get(key)
19

20 repeat 1000 times:
21 key = pickKey(store)
22 value = gen(dataType, size)
23 benchmark store.update(key, value)
24

25 repeat 1000 times:
26 key = pickKey(store)
27 benchmark store.remove(key)
28 store.insert(key, gen(dataType, size))
29

30 peakMem = getPeakMem() - baseMem
31 dataSize = getDataSize(store)
32 diskSize = getDiskUsage(store)
33 spaceEfficiency = dataSize / diskSize
34

35 write measurements to file

Listing 1. Pseudocode of benchmark

(Line 3). For each combination it benchmarks 1,000 it-
erations of each of the 4 key-value operations (Lines 11,
16, 20 and 25) using a random access pattern and random
data. It then records the peak memory usage and disk space
efficiency for each combination (Lines 30 and 33). Finally
it outputs the results to a CSV file (Line 35).

4.1. Comparing Storage Methods

Four different embedded key-value databases were com-
pared, SQLite3, LevelDB, RocksDB, and Berkeley DB.

http://rocksdb.org
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://www.oracle.com/database/technologies/related/berkeleydb.html


While SQLite is a fully featured SQL database, for our
purposes we treat it as key-value database by just having
one table with a primary key column and a value column.

Then, the embedded databases were compared with two
strategies for storing key-value records on disk, flat and
nested. The flat storage strategy places all the records as
files with their key as their name under one directory, as
seen in Figure 2. The nested storage strategy uses a nested
hash file structure as described in Section 3.2 and Figure 3.
3 levels of nesting were chosen with 2 hexadecimal chars
per level. We choose a depth of 3 as it can hold up to
16,777,216 (2563) records while still keeping around 256
records in the leaf nodes, and our benchmark is only testing
up to 10,000,000 records.

As seen in Figure 4, wrappers were created for each of
the 6 different storage methods that implemented an abstract
interface that could be used by the benchmark. The wrappers
had methods for insert, update, get, and remove, and kept
count of how many records were in the database.

Store

void insert(string key, string value)
void update(string key, string value)
string get(string key)
remove(string key)
count()

SQLite3Store

LevelDBStore

RocksDBStore

BerkeleyDBStore

FlatFolderStore

NestedFolderStore

Figure 4. Class diagram of the store types

Both the SQLite and Berkeley DB C interfaces return
char* pointers that become invalid after doing another
database operation. The wrappers did a copy of the buffer
memory managed by our code. This does add some overhead
that could be avoided if a developer only needed the data
briefly and did not need to do any other database operations
until they were finished with the data. But we assume that
the most common use case will do a copy to avoid risking
dangling pointers and memory safety issues.

4.2. Comparing Usage Patterns

Multiple different usage patterns for each of the stor-
age methods were compared. 4 record size ranges were
compared, less than 1 KiB, 1 - 10 KiB, 10 - 100 KiB,
and 100 KiB - 1 MiB, and 5 record counts, 100, 1,000,
10,000, 100,000, and 1,000,000. All combinations of sizes
and counts that led to databases smaller than 10 GiB were
benchmarked (Line 5 of Listing 1).

This benchmark measured random access reads and
updates. A valuable direction for future work could be to
benchmark different access patterns.

LevelDB and RocksDB implement data compression.
Since this could have a impact on the size of the records on
disk and the cost of IO operations, both compressible text
data and incompressible random binary data were tested.
When working with compressible data both LevelDB and
RocksDB were configured to use the Snappy9 compression
algorithm. Compression was disabled when working with
incompressible data.

4.3. Generating Data

Data for values in insert and update statements was ran-
domly generated. Incompressible data was generated with
the Mersenne Twister 19937 algorithm (as in the C++ stan-
dard library) to generate pseudorandom bytes. Compressible
text was selected from 250 public domain English books
downloaded from the Gutenberg project10.

Keys were generated using a SHA-1 hash of the index,
based on order keys were inserted (Line 12 of Listing 1).
Using this method lets the benchmark choose a random key
from the store by hashing a random number in the range
[0, store.count). This will allow the benchmark to simulate
random access get (Line 17), update (Line 21), and remove
(Line 26) without storing a list of all keys inserted. This
strategy does cause a complication when benchmarking the
remove operation however. After a random remove we can
no longer assume the keys are in a continuous range. This
is easily remedied by replacing the key after each removal
to keep the keys continuous (Line 28).

4.4. Taking Measurements

For each combination of store and usage patterns we
measured multiple attributes. The primary attribute we mea-
sured was the time taken for each of the fundamental
key-value operations, insert, update, get, and remove. For
each combination we ran each operation 1,000 times and
recorded the average, minimum, and maximum values in
nanoseconds.

Since the memory usage of an application is also an
important factor of performance, we measured the peak
memory usage for each combination as well (Line 30). To
measure peak memory usage we used the Linux getrusage

syscall11. This syscall returns the peak resident set size
used by the process in kilobytes. We reset the peak memory
between configurations by using the special file /proc/self

/clear_refs12. Writing a “5” to this file resets the process’s
peak memory usage or “high water mark” measurement and
allows us to get the peak memory usage for a specific period
of time. We then subtracted a baseline measurement of the
memory usage taken at the beginning of the benchmark to
show only the memory used by the store.

9. https://google.github.io/snappy
10. https://www.gutenberg.org/
11. https://man7.org/linux/man-pages/man2/getrusage.2.html
12. https://man7.org/linux/man-pages/man5/proc.5.html

https://google.github.io/snappy
https://www.gutenberg.org/
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://man7.org/linux/man-pages/man5/proc.5.html


Another factor besides performance that may be impor-
tant for developers is the “space efficiency” of a storage so-
lution, especially if they are working with large amounts of
data or limited space. Embedded databases can add storage
overhead or, if they have compression, greatly reduce the
size used. And the file system itself can waste space when
storing many tiny files. We measured the approximate space
efficiency of each store by comparing the amount of data
put in versus the actual space taken up on disk (Line 33).
We measured space efficiency by counting the number of
bytes actually inserted into the store, and then using the du

command13 to measure the space taken on disk including
wasted block space.

4.5. Implementing the Algorithm

We choose to implement the benchmark in C++. All the
embedded databases we compared were written in C or C++
and so could be used in a C++ project. Using C++ allowed
us to compile and link the embedded databases giving us
more control over their configuration. Additionally, using
C++ ensures there is no extra overhead from the language
bindings. The benchmark is open source and the code is
available on GitHub14.

4.6. Choosing Hardware

The benchmark was run on an virtual machine provided
by Southern Adventist University. The VM ran Ubuntu
Server 21.10 and was given 2 cores of a AMD EPYC 7402P
processor, 8 GiB of DDR4 s667 MT/s RAM, and 250 GiB
of Vess R2600ti HDD.

5. Results

This section describes notable patterns and analysis of
the results of the benchmark. A condensed summary of
the results is listed in Figure 5, which lists the most ef-
ficient storage option for each usage pattern. The operation
measured and record size are listed on the vertical axis,
while data compressibility and record count are listed on the
horizontal. Each cell is color-coded by the storage option
(yellow = Berkeley DB, red = LevelDB, etc.) for ease of
reading. Combinations of record size and count that would
result in more 10 GiB of files were skipped and left blank
in the figure. The full results of the benchmark are available
on GitHub14 in CSV format, as well as an Excel spreadsheet
that imports the CSV data and shows interactive charts.

5.1. Filesystem vs DBs

The choice of when to use the file system vs. an em-
bedded database is complex and very dependent on the par-
ticular usage pattern and what types of operations are being

13. https://man7.org/linux/man-pages/man1/du.1.html
14. https://github.com/jesse-r-s-hines/KeyValueStoreBenchmark

performed. For instance, in this benchmark an embedded
database is faster when working with files smaller than 1
KiB. Berkeley DB is the fastest in most scenarios with tiny
records.

At the 1 to 10 KiB range, databases are still better in
most scenarios, though the file system is faster on get and
inserts when there are 100,000 records.

At the 10 to 100 KiB range, file system performance is
better than or very close to the database’s for get and insert
operations. RocksDB or LevelDB are faster for remove
operations with record counts less than 10,000 as long as
compression is turned off while Berkeley DB leads on the
update benchmarks.

For 100 KiB to 1 MiB records the file system is
still generally faster for get and insert operations, though
LevelDB without compression is faster for 1,000 records
or less. Berkeley DB performs well on update operations.
RocksDB without compression is fastest for removes until
about 10,000 records then the file system is faster.

As expected, the file system had poor space efficiency
on tiny records. The file system space efficiency on records
less than 1 KiB was about 12% due to the block alloca-
tion overhead, while the embedded databases were able to
compact multiple records into a single block. The baseline
storage overhead of the embedded databases appears to be
minimal, and both Berkeley DB and RocksDB were more
space efficient than the flat folder store even with only 100
records. At large sizes the differences in space efficiency
between databases and the file system are minimal, as the
wasted space at the end of each block becomes less of a
factor. However, in the case of compressible data, LevelDB
and RocksDB can use compression to get space efficiency
of up to 156% at the cost of more CPU overhead.

5.2. File System Patterns

The file system scales to large numbers of folders quite
well until about 1,000,000, 1 - 10 KiB records where the get
operation time increases 500 times for both compressible
and incompressible data. This spike does not occur on
smaller record sizes. Insert and update time is primarily
dominated by the record size factor rather than record count.

The measurements of file system operations have several
outliers. For instance, on the insert operation benchmark for
compressible, 1,000,000, 1 - 10 KiB records, the nested
folder store has a 33 times slowdown compared to in-
compressible data. Since the file system does not do any
compression, it seems unlikely that text vs. binary data
would make such a large difference and if it did it should
affect both the flat store and the nested store, which it does
not. Taking a look at the measurements, the total sum of the
1,000 repetitions was 776 ms, while the maximum record
was 707 ms. A single iteration took 90% of the time of
the benchmark. Similar spikes occurred elsewhere in file
system operations. We suspect that some operating system
factor caused intermittent stalls in file system operations,
likely involving the file system cache.

https://man7.org/linux/man-pages/man1/du.1.html
https://github.com/jesse-r-s-hines/KeyValueStoreBenchmark


Operation Record Size 100 1,000 10,000 100,000 1,000,000 100 1,000 10,000 100,000 1,000,000

< 1 KiB
Berkeley
(2μs)

Berkeley
(4μs)

Berkeley
(5μs)

Berkeley
(7μs)

Berkeley
(8μs)

Berkeley
(9μs)

Berkeley
(6μs)

Berkeley
(6μs)

Berkeley
(7μs)

Berkeley
(8μs)

1 - 10 KiB
Berkeley
(7 μs)

Berkeley
(8 μs)

Berkeley
(10 μs)

Flat FS
(22 μs)

Berkeley
(12 μs)

Berkeley
(7 μs)

Berkeley
(8 μs)

Berkeley
(9 μs)

Flat FS
(22 μs)

Berkeley
(12 μs)

10 - 100 KiB
Flat FS
(45 μs)

Flat FS
(47 μs)

Berkeley
(45 μs)

Flat FS
(45 μs)

Flat FS
(47 μs)

Berkeley
(45 μs)

Berkeley
(47 μs)

Berkeley
(95 μs)

100 KiB - 1 MiB
Flat FS

(296 μs)
Flat FS

(300 μs)
Flat FS

(296 μs)
Flat FS

(307 μs)
Flat FS

(296 μs)
Nested FS
(952 μs)

< 1 KiB
Berkeley
(1 μs)

Berkeley
(3 μs)

Berkeley
(4 μs)

Berkeley
(5 μs)

Berkeley
(6 μs)

Berkeley
(3 μs)

Berkeley
(4 μs)

Berkeley
(4 μs)

Berkeley
(6 μs)

Berkeley
(7 μs)

1 - 10 KiB
Berkeley
(6 μs)

Berkeley
(8 μs)

Berkeley
(10 μs)

LevelDB
(27 μs)

RocksDB
(35 μs)

Berkeley
(6 μs)

Berkeley
(8 μs)

Berkeley
(9 μs)

LevelDB
(19 μs)

LevelDB
(18 μs)

10 - 100 KiB
Berkeley
(45 μs)

Berkeley
(49 μs)

Berkeley
(47 μs)

Berkeley
(55 μs)

Berkeley
(44 μs)

Berkeley
(48 μs)

Berkeley
(49 μs)

Berkeley
(69 μs)

100 KiB - 1 MiB
Nested FS
(428 μs)

Nested FS
(416 μs)

Berkeley
(575 μs)

Berkeley
(520 μs)

Berkeley
(601 μs)

Berkeley
(749 μs)

<1KiB
Berkeley
(1 μs)

LevelDB
(2 μs)

Berkeley
(2 μs)

Berkeley
(3 μs)

Berkeley
(4 μs)

Berkeley
(1 μs)

LevelDB
(2 μs)

Berkeley
(2 μs)

Berkeley
(3 μs)

Berkeley
(4 μs)

1 - 10 KiB
LevelDB
(2 μs)

Berkeley
(4 μs)

Berkeley
(4 μs)

Flat FS
(7 μs)

Berkeley
(1266 μs)

LevelDB
(2 μs)

Berkeley
(4 μs)

Berkeley
(4 μs)

Flat FS
(7 μs)

SQLite
(23 μs)

10 - 100 KiB
RocksDB
(7 μs)

Flat FS
(13 μs)

Flat FS
(13 μs)

Flat FS
(12 μs)

RocksDB
(7 μs)

RocksDB
(11 μs)

Nested FS
(14 μs)

Flat FS
(12 μs)

100 KiB - 1 MiB
LevelDB
(65 μs)

LevelDB
(75 μs)

Flat FS
(68 μs)

Flat FS
(82 μs)

Nested FS
(78 μs)

Flat FS
(68 μs)

< 1 KiB
Berkeley
(1 μs)

Berkeley
(3 μs)

Berkeley
(4 μs)

LevelDB
(5 μs)

LevelDB
(5 μs)

Berkeley
(2 μs)

Berkeley
(4 μs)

Berkeley
(4 μs)

LevelDB
(5 μs)

Berkeley
(7 μs)

1 - 10 KiB
Berkeley
(6 μs)

LevelDB
(6 μs)

LevelDB
(7 μs)

LevelDB
(5 μs)

LevelDB
(4 μs)

Berkeley
(6 μs)

Berkeley
(7 μs)

Berkeley
(9 μs)

Flat FS
(20 μs)

Flat FS
(28 μs)

10 - 100 KiB
LevelDB
(7 μs)

RocksDB
(17 μs)

RocksDB
(17 μs)

Nested FS
(32 μs)

Flat FS
(23 μs)

Nested FS
(27 μs)

Flat FS
(26 μs)

Nested FS
(32 μs)

100 KiB - 1 MiB
RocksDB
(26 μs)

RocksDB
(34 μs)

Flat FS
(87 μs)

Flat FS
(87 μs)

Flat FS
(85 μs)

Flat FS
(121 μs)

< 1 KiB
SQLite
(50%)

SQLite
(56%)

LevelDB
(77%)

RocksDB
(91%)

RocksDB
(92%)

SQLite
(52%)

SQLite
(57%)

LevelDB
(85%)

RocksDB
(91%)
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Figure 5. Summary of the best storage options for each usage pattern. Cells are color-coded by store, yellow = Berkeley DB, red = LevelDB, etc.

5.3. Flat Folder vs. Nested Folder

Using the nested directory structure seems to be mostly
counter productive. In most cases the nested folder is slower
than the simpler flat structure. It was also less space effi-
cient than the flat folder store, unsurprisingly, due to the
extra directory overhead. In a few scenarios it offers some
benefits, on the remove operation at 10 - 100 KiB with
100,000 records, the nested structure is about 30% faster
than the flat and nested is faster for updates with 10 - 100
KiB sized records and a record count of 100,000.

5.4. Effects of Compression

As one would expect, compression increases the space
efficiency of the data store. The databases with built in com-

pression, LevelDB and RocksDB, were able to achieve over
150% space efficiency on compressible text data. However,
this came at the cost of notably decreased performance. The
reduced IO does not seem to make up for the extra CPU
overhead of performing the compression.

5.5. SQLite3 Patterns

SQLite scales well in most scenarios, for instance with
less than 1 KiB records the get operation is only 60% slower
at 1,000,000 records than for 100. An interesting deviation
from this is at 1,000,000, 1 KiB and 10 KiB records of
incompressible data, where SQLite take 64 times longer than
at 100,000 records. This spike does not occur when using
compressible data however. Perhaps SQLite handles text



and binary data differently in certain scenarios. The update
operation took about 20-30% long the incompressible binary
data than compressible text data. Space efficiency increased
as record size and record count increased, reaching nearly
100% at the highest sizes.

However, the constant factor is very high and SQLite
is one of the worst performing storage options. This is
unsurprising as SQLite is a full relational database and has
many more features and overheads than necessary for a
simple key-value store.

5.6. LevelDB Patterns

Compression adds significant overhead to LevelDB.
With compression turned on, performance on all operations
at large record sizes or large record counts is up to 20 times
slower than with it off. Even without compression, LevelDB
has some major performance degradation for gets starting
at 1,000,000 records for less than 1 - 100 KiB records, and
100,000 for 100 KiB to 1 MiB records as well as inserts at
the 100 KiB to 1 MiB size range and over 100,000 records.
With compression enabled, space efficiency of text data can
reach as high as 155% space efficiency.

5.7. RocksDB Patterns

Since RocksDB is a fork of LevelDB, it was expected
to see similar results. However their performance had quite
a few differences. RocksDB performance degrades signifi-
cantly at 100 KiB to 1 MiB records for all the operations,
and the performance degradation for the get operation with
large record counts and compression was more pronounced
for than in LevelDB. RocksDB did not notable performance
degradation for inserts on high record counts, unlike Lev-
elDB.

5.8. Berkeley DB Patterns

Berkeley DB is one of the best performing databases in
this benchmark. With the time of the operation increasing
slowly as count increases. However, there are some notable
spikes. At the 1 KiB - 10 KiB, 1,000,000 record benchmark
there was significant slow downs, some up to 100 times
slower, for get, update, remove operations with both com-
pressible and incompressible data.

6. Conclusions and Future Work

This benchmark showed that key-value store perfor-
mance is a complex issue that is highly dependent on a par-
ticular workload. Generally, if space efficiency is a concern,
developers should use an embedded DB instead of the file
system, particularly one with compression. If performance
is the primary concern, Berkeley DB is one of the most
performant stores on our benchmark, being the fastest or
close to it in the most cases and operations particularly for
insert and update operations. At record sizes above 10 KiB

the simple flat file system store is often the fastest option
or at least very close to matching the performance of the
embedded key-value databases.

Research examining other factors and how they affect
key-value store performance is needed. This benchmark
only ran on the ext4 file system however different file
systems, in particular the wide-spread NTFS, may have
different performance profiles. Examining the effects of
each embedded database’s configuration as well as different
access patterns, such as sequential access, would also be
valuable avenues for research. And research into key-value
store performance on different hardware, particularly SSDs
vs. HDDs is needed. Performance may also be affected by
complex caching patterns or the embedded databases run-
ning background processes such as LevelDBs background
compaction15. More research into the exact causes for the
various outliers and performance degradation’s noted in this
dataset would be valuable as well.
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