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Abstract 

 

 Computational infeasibility of exact methods for solving genetic linkage analysis 

problems has led to the development of a new collection of stochastic methods, all of 

which require the use of Markov chains.  The purpose of this work is to investigate the 

complexities of missing data in pedigree analysis using the Monte Carlo Markov Chain 

(MCMC) method as compared to the exact results.  Also, we attempt to determine an 

association between missing data in a familial pedigree and the convergence to 

stationarity of a descent graph Markov chain implemented in the stochastic method for 

parametric linkage analysis.   

    

In particular, we will implement the stochastic method to solve a pedigree problem for a 

disease trait, in order to look at the associated problems with missing data from the 

pedigree, and investigate the deviation between the MCMC method and the exact results.  

Using the method for maximum autocorrelation and bounding of the second largest 

eigenvalue, we will study the effects of missing data on the convergence rate and the 

accuracy of the MCMC method in solving the pedigree analysis problem.  Finally, we 

will use the computational implementation of SimWalk2 to study the convergence rate 

and accuracy of the MCMC method for the disease Episodic Ataxia.    

 

The implementation of the MCMC method through SimWalk2 for the disease gene 

Episodic Ataxia found evidence to suggest that both the efficiency and accuracy of the 

method may be severely reduced by an increase in missing data in the pedigree.  Certain 

variations of model parameters influenced the ability of the method to produce accurate 

results, but the most crucial of the variables studied was the level of missing information 

from the pedigree itself.  This can be seen as a detriment to the implementation, as 

pedigree information is very often missing from the model.  Further research in this topic 

would need to include the implementation of this method on more genetic parameters and 

differing pedigree variations.  Also, it might be of interest to look into possible ways to 

combat the effects of missing data on the MCMC method. 
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Genetic Terminology 

 
The following definitions of genetic terminologies are as found in [36]. 

• Allele:  one of a pair of alternative forms of a gene that occur at a given locus in a 

chromosome  

• Autosome: any chromosome that is not a sex chromosome 

• Codominant Alleles: alleles that produce independent effects when heterozygous 

• Dominance: a condition in which one member of an allele pair is manifested to 

the exclusion of the other 

• Gene: a unit of inheritance (DNA) located in a fixed position on a chromosome; a 

hereditary determinant of a specific biological function 

• Genotype: the genetic constitution (gene makeup) of an organism 

• Genetic Heterogeneity: similar phenotypes occurring due to different mutations 

or recombinations 

• Heterozygote: an organism with unlike members of any given pair or series of 

alleles that consequently produces unlike gametes 

• Homozygote: an organism with like members of any given pair or series of 

alleles that consequently produces like gametes 

• Homologous Chromosomes: chromosomes that occur in pairs and are generally 

similar in size and shape, one having come from the male parent and the other 

from the female parent 

• Linkage: a relationship among genes in the same chromosome – such genes tend 

to be inherited together 

• Locus: a fixed position on a chromosome that is occupied by a given gene or one 

of its alleles 

• Meiosis: the process by which the chromosome number of a reproductive cell 

becomes reduced to half the somatic number, resulting in the formation of 

gametes in humans    

• Pedigree: a table, chart, or diagram representing the ancestry of an individual 

• Penetrance: the percentage of individuals that show a particular phenotype 

among those capable of showing  

 ix



• Phenocopy: an environmentally-induced, nonhereditary variation in an organism, 

closely resembling a genetically-determined trait 

• Phenotype: the observable characteristics of an organism 

• Recessive: a term applied to one member of an allelic pair lacking the ability to 

manifest itself when the other or dominant member is present 

• Recombination: the production of gene combinations not found in the parents by 

the assortment of nonhomologous chromosomes and crossing over between 

homologous chromosomes during meiosis.  For linked genes, the frequency of 

recombination can be used to estimate the genetic map distance  

 x



1.  Introduction 

 
1.1 Early Genetic Foundations 

Modern genetics began with Mendel, who postulated his two laws as a probability model, 

[22].  The following summarizes Mendel’s laws: 

 

a. Everyone has two genes controlling a given trait, one from the mother and   

one from the father. 

b. When an individual has an offspring, a copy of a randomly chosen gene from 

the individual’s two genes segregates to the offspring. 

c. Gene segregation is independent of the other parent, independent for each 

child, and independent for each trait (or locus). 

 

Following the rediscovery of Mendel’s work in 1900, scientists discovered that the 

independence of segregation for different loci was not strictly valid.  Instead, there are 

groups of traits that are linked, and the genes controlling them tend to be inherited as a 

group, not independently.  Soon after, geneticists associated this linkage (or dependence) 

with the actual structure of the chromosome [37].   

According to [11], and citing the work of Sturtevant in 1913, patterns of 

combinations of inherited genes are best explained by a linear arrangement of genes for 

different traits.  The latter created the first gene ordering inference on which many 

linkage studies are still based today.  [11], and a host of many others, extended this 

mathematical model, defining the distance along a chromosome as the expected number 

of recombination events.  Thus, the relationship between physical distance on a 

chromosome and the statistical measure of linkage between genetic loci was developed.     

 

1.2  Linkage Analysis 

In linkage analysis, cosegregation of two or more loci (genes or traits) is examined to 

determine whether they more frequently segregate independently, according to Mendel’s 

laws, or tend to be inherited together.  It is most likely that if the loci segregate together, 

they reside in close proximity to one another.  Thus, the ability to determine 
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 independent or dependent segregation determines the relative location of the loci.  

Alleles of genes residing on the same chromosome should segregate together at a rate that 

is related to the distance between them on the chromosome.   

The measure of genetic linkage is the recombination fraction (θ ), which is the 

probability that a parent will produce a recombinant offspring.  Recombination occurs 

when homologous chromosomes cross over, and nonrecombination occurs when the 

parental type remains intact.  Since multiple crossovers can occur between two loci, an 

even number of such crossovers appears the same as a nonrecombination event.  

Fortunately, multiple crossovers are very rare between closely linked genes, and thus will 

not impact the final results in such cases.     

Recombination fractions range between 0 and 0.5, where 0=θ  indicates “complete” 

linkage and 5.0=θ  indicates no linkage.  It should be noted that the unit of measurement 

for genetic linkage is the centiMorgan (cM), and that one map unit corresponds to one 

centiMorgan (or 1% recombination).  Small values of θ  are equivalent to actual map 

distances, and so recombination fractions are additive over small distances.  For larger 

distances, this is not the case because multiple crossovers occur with more frequency, and 

mapping functions must be implemented in order to convert recombination frequencies 

into actual map distance.   

In the most simplistic form, linkage analysis is reduced to counting recombinants and 

nonrecombinants – as found in the methodology for most experimental animals.  

However, in humans, this is not feasible.  Long generation time, the inability to control 

matings, the inability to control study participation, and the inability to dictate key 

exposures and environmental conditions cause linkage analysis to depend extensively on 

both simple and sophisticated statistical methods [10].   

Up to this point, linkage analysis has been described in a general manner, but it is 

important to recognize that there are several different types of linkage analysis, and the 

statistical method needed depends upon the type of linkage analysis being completed.  

For the purpose of this work, the only type of linkage analysis involved is parametric 

linkage analysis.  Given a marker map and any pedigree with partial genotyping of 

marker loci and a trait, parametric linkage analysis involves the calculation of the  
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likelihood (LOD) of a trait segregating with a marker.  The defining property of 

parametric linkage analysis is that the genetic model is known.   

 

1.3 Components of the Genetic Model 

There are certain components of the genetic model that determine the localization and 

linkage patterns of a gene.  These include the inheritance pattern of the trait locus 

(whether it is dominant or recessive, sex-linked or autosomal), the trait allele frequency 

(whether the trait is common or rare), and the trait allele penetrance (the probability that 

an unaffected individual is unaffected because he is a non-gene carrier or a non-penetrant 

gene carrier).   Other factors that influence linkage analysis studies are the frequency of 

phenocopies in the population being studied, marker allele frequencies, and mutation 

rates within the genes being studied [10].   

One of the most complicating factors in parametric linkage analysis studies is the 

phase information of members of the pedigree.  In heterozygote individuals, there are two 

different phases for a particular locus in a genotype: coupling and repulsive.  For 

example, given a locus one with alleles A and B and a locus two with alleles 1 and 2, the 

individual having genotype AB12 has two possible phases: the coupling phase   

C = A1 | B2, where A and 1 are inherited together and B and 2 are inherited together, or 

the repulsive phase R = A2 | B1, where A and 2 are inherited together and B and 1 are 

inherited together.  If it is not known whether the individual has a coupling or repulsive 

phase, then the individual exhibits linkage phase unknown status; otherwise, he/she 

exhibits linkage phase known status.  When linkage phase is unknown, the complexity of 

the statistical calculations increases dramatically [10].    

 

1.4 LOD Score Analysis 

LOD score analysis is a likelihood-based parametric linkage approach used to estimate 

the recombination fraction and significance of the evidence for linkage.  The LOD score 

was first defined by [23] as a logarithmic function of the odds for linkage.  The likelihood 

(L) of observing a particular configuration of a disease and a marker locus in a family is 

calculated assuming no linkage ( 5.0=θ ), and this likelihood is then compared to the 

likelihood of observing the same configuration of the loci within the family, assuming  
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varying degrees of linkage over a selected range of recombination frequencies 

( 5.00 <≤θ ).  The two-point LOD score involves linkage between only two loci (i.e. a 

disease locus and a marker locus)  and is expressed as    

 

⎥
⎦

⎤
⎢
⎣

⎡
=
=

=
)5.0|(

)|(log)( 10 θ
θ

pedigreeL
xpedigreeLxz , where 5.00 <≤ x .    

 
In LOD score analysis, the null hypothesis (Ho) assumes that 5.0=θ , or that there is no 

linkage, while the alternate hypothesis (HA) assumes that the disease and the marker loci 

are linked.  To demonstrate linkage, there must be evidence of cosegregation that can 

support the rejection of the null hypothesis.  The likelihood function is given by 

, where R is the number of recombinant offspring, NR is the number of 

nonrecombinant offspring, and 

NRRL )1( θθ −=

NRRN +=  is the total number of offspring.  The two-

point LOD score for a phase-known pedigree then becomes 
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and for a phase-unknown pedigree, we have   
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Note that since recombination fractions may differ between males and females, LOD 

scores may also be computed using a sex-specific recombination fraction (given that a 

maximal one is known).  Generally, female recombination is greater than male 

recombination, except in certain telomeric regions of some chromosomes [10].   

For a single pedigree, we can define the maximum likelihood estimate for the 

recombination fraction to be 
RNR

R
+

=θ , and compute the maximum LOD score.  

However, in order to sum LOD scores across all families in the study, it is necessary to  
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compute the LOD scores for varying values of the recombination fraction.  This yields 

the maximum LOD score for all families in the study, and allows for a more accurate 

representation of the likelihood for linkage [23].  Sums of LOD scores of 3.0 or greater 

are indicative of linkage and scores of -2.0 or less are indicative of no linkage.  Values 

between -2.0 and 3.0 are considered inconclusive and require additional family data [10].    

These criteria, originally suggested by Morton, are based on probabilities of type I (α) 

and type II (β) errors.  In this case, α refers to the probability of concluding that there is 

linkage between the tested loci, when in fact linkage does not exist, leading to the 

rejection of a true null hypothesis.  Also, β refers to concluding that there is no linkage, 

when in fact linkage does exist, leading to the acceptance of a false null hypothesis.  So 

to guard against false positive evidence for linkage in the data, the conservative value of 

 was chosen for concluding that there was significant evidence supporting 

linkage, [23].       

0.3≥z

There are several advantages of LOD score analysis over other methods. For 

example, statistically, it is more powerful than any nonparametric method, utilizing every 

family member’s phenotypic and genotypic information, and provides both an estimate of 

the recombination fraction and a statistical test for linkage and genetic heterogeneity, 

[10].   

 

1.5  Multipoint Linkage Analysis 

Once a disease gene is mapped to a particular region of the chromosome, the goal 

becomes one of positioning the disease locus on the known marker map.  In the method 

of location scores, it is necessary to evaluate and plot the joint likelihood of the disease 

and marker genotypes as a function of the position of the disease locus.  A location score 

is an extension of the two-point LOD score, acting as a multipoint LOD score.  Instead of 

testing linkage of a disease trait with a single marker, a location score tests linkage 

between the disease trait with an entire map of markers.   An origin is arbitrarily fixed 

and the map distance d is now measured relative to that origin.  The multipoint LOD 

score, or location score, is defined to be   

 

    
)(
)(log)( 10 ∞

=
L

dLdz ,
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where L(d) denotes the likelihood that the trait locus is located at a distance d  on a fixed 

map consisting of several markers, and L(∞) indicates the likelihood that the trait locus is 

not on the map (or no linkage).     

Location scores have two major advantages over the two-point LOD score analysis 

that cause them to be the method used in this work.  The first is that multipoint linkage 

analysis results are less sensitive to the uninformative or missing genotype at any single 

marker, so that this type of analysis can extract more of the total inheritance information 

from the family.  Second, the multipoint LOD score approach can be used to pinpoint a 

disease-gene location in the mapping of a Mendelian disorder [15].  Usually, this is 

achieved by the computation of many location scores on a fixed map, as is used in the 

computational implementation of this work.  

 

1.6  Factors that Can Affect Linkage Analysis 

Parametric linkage analysis is based on a prespecified genetic model.  The LOD score is a 

function of both the recombination fraction and the genetic model.  If the genetic model 

is wrong, the true picture of linkage is disguised, leading to either false positive or 

negative evidence for linkage or for the true location [10].     

The impact of misspecified genetic parameters on the LOD score is complicated and 

depends on several factors, such as the true underlying disease model, the pedigree 

structures, and the parameters that are misspecified and extent of misspecification.  We 

explain several of these factors in what follows: 

 

• Misspecification of disease allele frequency  

 

In the case of no linkage, there is little difference in the mean maximum LOD 

score.  In the case of linkage, however, the mean maximum LOD score decreases 

whenever the disease allele frequencies are underestimated or overestimated.  An 

increased disease allele frequency may have an impact on the LOD score in two 

ways: either increasing the probability of affected parents being homozygous or 

increasing the probability that the disease allele is introduced into the pedigree 

through married-in individuals instead of through a single founder.  Nonetheless,  
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when the frequency is varied at a “reasonable” range, the impact of 

misspecification of the disease allele frequency on the LOD score and on the 

estimate of the recombination fraction is usually small [10].   

  

• Misspecification of disease allele penetrance 

 

As long as incomplete penetrance is included in the genetic model, 

misspecification of disease penetrance has a small impact on the LOD score when 

there is either linkage or no linkage.  As the ratio of penetrances between allele 

carriers and non-allele carriers decreases, the mean maximum LOD score 

decreases, since a low ratio decreases the certainty of whether an affected 

individual is an allele carrier and an unaffected individual a non-allele carrier.  

However, when there is some degree of phenocopy (phenotypes that are due to 

some other etiology than the true genotype) and incomplete penetrance, selection 

of a low ratio is a conservative strategy.  Since the clinical phenotype is complex 

and often confounded by phenocopies, variable expresivity, and penetrance, the 

complete elimination of phenotypic misspecifications is not feasible [10].   

 

• Misspecification of disease dominance 

 

In general, misspecification of disease dominance has a large impact on the LOD 

score.  This effect is particularly serious when a dominant disease is misspecified 

as a recessive disease.  For example, when a disease that is inherited in a 

dominant fashioned is analyzed under a recessive model, the random segregation 

of alleles from the non-disease-allele-carrying parent will be scored (half the 

time) as a recombination between the disease and marker locus.  In addition, the 

affected parent will be considered homozygous for the disease locus, and thus, 

uninformative for linkage.  A misspecified disease dominance has little impact on 

LOD score when there is no linkage [10].   
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• Misspecification of marker allele frequency  

 

Misspecified marker allele frequencies do not always have a large impact on the 

mean maximum LOD score.  When there are many family members without 

genotype data, incorrect estimates of marker allele frequencies can have a large 

impact on the LOD score.  The sensitivity is directly related to the allele 

frequency distribution and to the number of ungenotyped founders (those without 

parents) in the pedigree.  The genotype for each ungenotyped founder must be 

estimated and the population allele frequencies are used.  When the parents or 

grandparents are not available for genotyping, the probability that the allele was 

present only in the line of descent is calculated from the allele frequencies.  If the 

allele is quite common, there is an increased probability that parents are 

homozygous for that allele or that married-in family members may have 

transmitted the allele, and thus there is little evidence for linkage [10].   

 

In this work, we will use the aforementioned biological and statistical information to look 

at a particular area of the parametric linkage analysis problem.  The remainder of this 

work is divided into the following chapters.  In Chapter 2, we introduce an exact method 

for computing LOD and location scores, the Elston-Stewart algorithm, and discuss the 

disease Episodic Ataxia (EA) as it relates to analysis by this exact method.  We establish 

in Chapter 3 the MCMC method as discussed in [32], and look at the properties needed 

for convergence of the Markov chain.  Chapter 4 develops the mathematical foundations 

for the convergence analysis to be applied to the MCMC implemetation of Episodic 

Ataxia.  Chapter 5 discusses the implementation of the MCMC method by SimWalk2, a 

genetics software, for the disease gene Episodic Ataxia, as it relates to location scores and 

the rate of convergence.  We conclude in Chapter 6 with a summary of results and 

recommendations, and outline possible areas for further research.     
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2.  The Elston-Stewart Algorithm and Episodic Ataxia 
 

The Elston-Stewart algorithm is an exact method used to determine the likelihood scores 

for a given pedigree [3].  Despite the computational disadvantages of using an exact 

method in parametric linkage analysis, the Elston-Stewart algorithm is still highly 

influential and widely used for computing LOD and location scores [37].      

 

2.1 The General Problem 

Given a pedigree and phenotypic information about some (or all) of the people in the 

pedigree, we wish to determine the probability of the observed data, given some 

probability model for the transmission of alleles.  The probability of the observed data is 

composed of three types of probability functions: founder probabilities, penetrance 

probabilities, and transmission probabilities.   

Founders are those individuals whose parents are not in the pedigree.  Thus, 

probabilities assigned to their genotypes are not based on other members of the pedigree.  

Instead, these probabilities are computed by assuming the Hardy-Weinberg equilibrium 

of population genetics [3].  At a biallelic locus with alleles A and a and corresponding 

probabilities p and q, respectively, possible genotypes will exhibit the following 

frequencies under the Hardy-Weinberg principle:    

 

   Genotype  Frequency 

   AA     2p

       Aa pq2

       aa 2q

 

These predicted frequencies are the terms in the expansion of the binomial expression 

and are referred to as the Hardy-Weinberg genotype frequencies.  The key 

assumption underlying the Hardy-Weinberg principle is that members of the population 

mate at random with respect to the genes under study.  Then with random mating and no 

differential survival or reproduction among the members of the population, the  

2)( qp +
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Hardy-Weinberg genotype frequencies persist generation to generation, yielding a 

condition referred to as the Hardy-Weinberg equilibrium.  For loci having more than two 

alleles, this principle, although still valid, now requires a multinomial expansion to 

determine the genotypic frequencies [36].  Since the loci of a founder are treated as 

independent, the probability of the multi-locus genotype of founder K is  

 
    , )(...)()()( 21 n

KKKK xPxPxPxP ⋅⋅⋅=

 
corresponding to the  loci.         n

The penetrance probability is the probability of the phenotype given the genotype.  

Since there is not a one-to-one relationship between genotype and phenotype, this 

penetrance probability plays an important role in linkage calculations.  For example, in a 

dominant disease with complete penetrance, i.e. for homozygous dominant or 

heterozygous individuals, the penetrance probability is given by 

, and for homozygous recessive individuals,the penetrance 

probability is given by 

1)|( =genotypephenotypeP

0)|( =genotypephenotypeP .  For a recessive disease with 

incomplete penetrance, a homozygous recessive individual has penetrance probability 

.  The penetrance probability  can be due to sex-

dependent, age-dependent, or environment-dependent factors.   

1)|(0 << genotypephenotypeP

Finally, the transmission probability is the probability of a child having a certain 

genotype given the parents’ genotypes.  This can be expressed as , where 

, , and  denote the genotypes of a child, male parent, and female parent, 

respectively.  By splitting the ordered genotype x

),|( FMC xxxP

Cx Mx Fx

C into the maternal allele xCM and the 

paternal allele xCF, the transmission probability becomes  

 
)|()|(),|( FCFMCMFMC xxPxxPxxxP ⋅= .   

 
Recall that the inheritance from each parent is independent and genotypes of different 

children are independent given the genotypes of their parents.  In this way, transmission 

probabilities follow Mendel’s first law of inheritance [3].  
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Now given these probabilities, a general formula for the likelihood calculation can be 

expressed as 

   
∑ ∑∏ ∏ ∏⋅⋅=

1 },,{

)|(),|()(...)(
g g f MFC i

iiMFCf
n

gxPgggPgPL θ ,  

 
where  is the probability of a founder f  having a particular genotypic 

configuration ,  is the transmission probability, and  is the 

penetrance probability for an individual.    

)( fgP

),|( MFC gggP )|( ii gxP

  

2.2  Calculating a Likelihood Using the Elston-Stewart Algorithm 

Taking into account all of the information mentioned in section 2.1, the goal of this 

section is to calculate the likelihood of data in order to determine linkage between two or 

more loci.  As stated previously, the likelihood of the data is the probability of the 

observed data given certain values for the unknown recombination fractions.   

Consider that person i has an ordered phenotype  and a multi-

locus genotype .  Then for a pedigree with m people, the likelihood of the data can be 

expressed as  

),...,,( 21 n
iiii xxxx =

ig

∑==
g

gxPxPL ),()()(θ  = ∑
g

gPgxP )()|( ,     

 
where and ),...,( 21 mxxxx = ),...,,( 21 mgggg = .  Using the Elston-Stewart 

algorithm, the likelihood function is computed recursively, starting with the most recent 

generation and working backwards to the most remote.  The advantage of the method is 

that the likelihood for an individual can be computed first, and the resulting likelihood 

then attached as a factor for the computation of his/her parent’s likelihood.  The 

individual is no longer needed in the computations that follow.  Thus the likelihood of the 

pedigree with m individuals can be expressed as  

∑ ∑∏
=

=
i mg g

ii

m

i
i gPgxPL ...)|()|(...)(

1

θ , 
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where  denotes the phenotype and  denotes the genotype of individual i and 

 represents the probability of genotype  given his parents’ genotypes, or the 

population genotype frequency, in the case that the former is unknown.  

ix ig

...)|( igP ig

 

2.3  Episodic Ataxia 

Episodic Ataxia (EA) is a rare genetic disorder affecting the central nervous system.  

Affected individuals experience attacks of generalized ataxia brought on by physical or 

emotional stress, with normal or near-normal neurological function between the attacks.  

It is considered to be caused by an autosomal dominant disease gene on the 12p13 

chromosome.  [21] describes the localization of a gene for EA to the chromosome 12p13, 

where the authors used the methods of molecular biology, and the computational 

implementation Fastlink, which uses the Elston-Stewart algorithm.  The study presented 

evidence that a gene for EA maps to human chromosome 12p, localized to the region 

between S372 and the KCNA5/S99 cluster, [21].  This was later refined using a pedigree 

in which all 29 members were available for typing, see Figure A1 in Appendix A. Using 

the same Elston-Stewart method, the pedigree was analyzed and the LOD scores were 

computed against a marker map of nine 12p markers.  Figure A2 in Appendix A shows a 

plot of the LOD score between the Episodic Ataxia gene and the marker S372 at various 

recombination fractions.  This pedigree does not prove linkage, though it is strongly 

suggested.   

Finally, the location scores were computed and analysis resulted in the conclusion 

that the Episodic Ataxia gene resides on the interval from S372 to pY2/1.  The figure on 

the overleaf shows a plot of the location score curve for Episodic Ataxia versus the 12p 

markers, which illustrates that in the region between S372 and pY2/1, the location scores 

rise above the level of three [21].  Thus, the implementation of the Elston-Stewart 

algorithm suggests that the Episodic Ataxia gene resides in the region between the 

markers S372 and pY2/1, where the largest location score was found to be 3.560.                         
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  Fig. 2.1 Location Score Curve for Episodic Ataxia Versus 12p Markers 

  

Comparison of the commonly-used algorithms (i.e. Elston-Stewart, Lander-Green-

Kruglyak, and MCMC algorithms) indicate that large pedigrees considering only a small 

number of loci can be analyzed easily using the Elston-Stewart algorithm and small 

pedigrees considering a large number of loci are analyzed easily using the Lander-Green-

Kruglyak algorithm (not discussed in this work).  See Table C1 in Appendix C.  

Nonetheless, both of the exact methods have serious limitations when the number of loci 

and pedigree members are large, and so stochastic (Markov Chain Monte Carlo) methods 

were developed.  The above analysis requires extensive computational time and strength, 

and thus, the MCMC method for this linkage problem is implemented to improve 

accuracy and efficiency.   
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3.  A Markov Chain Monte Carlo Method For Computing  

     LOD and Location Scores 
 

Stochastic methods in pedigree analysis have enabled geneticists to handle computations 

that were previously intractable by standard deterministic methods, [15].  Without any 

loss of generality, we discuss the basic and relevant principles of Markov chains in what 

follows.    

 

3.1  Markov Chain Preliminaries 

 

3.1.1  Defining a Markov Chain  

A chain is a discrete time process in which the random variable  undergoes a sequence 

of changes at a sequence of times or steps. This discrete random variable assumes values 

 where the actual outcomes are called the states of the system, and are denoted 

by .  If random variables  and  make a transition between the values 

 and  at the th step, then the system has moved from state  to 

state .  

tX

,...2,1=i

,...)2,1( =iEi tX 1+tX

iX t = jX t =+1 )1( +t iE

jE

A Markov Chain has the property that the probability that iX t =  depends only on the 

previous state of the system [4].  That is, 

 
)|(),...,|( 1001 iXjXPiXiXjXP tttt ====== −− . 

 
Note that the probabilities are nonnegative and that since the process must make a 

transition into some state (which could be itself) at each step, we have a one-step 

transition probability, denoted by 

 
ijtt KiXjXP === − )|( 1 . 

 
Let K denote the matrix of one-step transition probabilities , so that  ijK
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It should be noted that the transition probability described above has the following 

property:  

∑
=

∀=
n

j
ij iK

1

,1 . 

Moreover, if there is a distribution π  such that if state π~tX , then π~1+tX , the 

distribution is called a stationary, or equilibrium,  distribution.  For a Markov process, 

stationarity is achieved when  

∑
=

∀=
n

i
jiji jK

1
,ππ . 

  

We can now extend this one-step probability matrix to an t-th step probability matrix 

defining  to be the probability that a process in state i will be in state j after t 

transitions.   

t
ijK

 

3.1.2. Communication and Classification of States 

State j is said to be accessible from state i if it is possible that the process will ever enter 

state j.  In other words, state j is accessible from state i if and only if , for some 

.  If two states i and j are accessible from each other, then states i and j are 

said to communicate, and two states that communicate are said to be in the same class.  A 

Markov chain is called irreducible if there is only one class, that is, if all states 

communicate, [28]. 

0>t
ijK

0,,0 ≥≥ jit

Also, we classify each state according to whether reentry into that state is possible 

once the state has been abandoned.  For any state i, we let  denote the probability that, 

starting in state i, the process will ever reenter state i. State i is said to be recurrent if  

if
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1=if  and transient if .  Thus, if a process begins its journey in a recurrent state, 

not only is its return to that state assured, but also, because of Markov properties, that 

process will return to state i infinitely often, [4]. 

1<if

If state i is recurrent, then, more specifically, it is called positive recurrent if, starting 

in i, the expected time until the process returns to state i is finite. According to [4], it can 

be shown that in a finite-state Markov chain, all recurrent states are positive recurrent.   

 

3.1.3  Periodicity and Ergodicity 

State i  has period d if  whenever t is not divisible by d, and d is the largest integer 

with this property.  For example, if starting in state i, a process can reenter state i only at 

times 3, 6, 9, 12, . . . , then state i has period 3.  Also, a state that has period one is called 

aperiodic, and if positive recurrent, is ergodic.  If all states in a Markov chain are 

ergodic, then the chain is described as an ergodic chain, [28].   

0=t
ijK

 

3.2  Methodology of the MCMC Process 

The location score, for a location d, provides the relative likelihood that a trait locus is at 

d.  If you let T represent the trait phenotype data and M represent the marker genotype 

data, then for a trait location d, the location score is 

 
  ∑=

i
iidd MGPGTPMTP )|()|()|( ,  

 
where Gi is the complete gene flow configuration of the marker loci.  It is obvious that 

this is an expectation, where  

 
∑=

i
iidid MGPGTPGTPE )|()|())|(( .   

 
This conditional probability  

 

∑ ∩
∩

=

j
j

i
i MGP

MGP
MGP

)(
)(

)|(    
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sums over all underlying complete genetic states that are consistent with the data.  The 

factor ∑  found in this conditional probability is the normalizing factor, 

equivalent to .  Deterministic methods must calculate this sum, but a stochastic 

method is not restricted in this manner.  Instead, the stochastic methods are used to find a 

good estimate of this likelihood, in which one can sample at random from all possible 

configurations in proportion to their individual likelihood and then average the sampled 

values.  In fact, as the number of random samples increases this estimate must come 

arbitrarily close to the exact value, for any distribution of the .  Thus, the 

location score becomes 

∩
j

j MGP )(

)(MP

)|( MGP i

 

∑
=

=
n

k
kdd GTPnMTP

1
)|()/1()|( ,  

 
where each of the n configurations  is sampled in proportion to its likelihood, 

.  This strategy takes into account that a relative handful of the configurations 

might be very likely, and although the others are possible, they are not very likely.  In 

order to sample the underlying complete configurations  in proportion to their 

likelihoods, Markov Chain Monte Carlo procedures are used [32].              

kG

)|( MGP kd

kG

 

3.3 Descent Graph Markov Chain Method for Linkage Analysis 

 

3.3.1  MC State Space 

To apply the MCMC method to the analysis of human pedigree data, we must choose an 

appropriate state space and a mechanism for moving between neighboring states of the 

space.  Given our goal of computing location scores, the state space must capture gene 

flow at multiple marker loci.  Note that the state space will omit mention of the trait 

locus; this locus will be handled somewhat differently.  The states of our space are rather 

complicated graphs describing the gene flow in a pedigree at the participating marker 
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loci.  It will suffice to focus on a single pedigree because location scores are computed 

pedigree by pedigree.  We explain the mechanism of this process in what follows.     

Suppose that we observe marker phenotypes at l loci of a pedigree with p people of 

whom f are founders.  A genetic descent state completely specifies the gene flow within 

the pedigree at these loci.  Gene flow can be separated into two parts: the paths that the 

founder genes take as they descend through the pedigree and the allelic form assumed by 

each of the founder genes.  The paths of the gene flow in a genetic descent state 

constitutes a genetic descent graph, possessing 2lp nodes, each of which is a particular 

combination of locus, person, and source.  If we think of a gene occupying each node, 

then the source of the node gives whether the gene is maternal or paternal in origin.  

Rooted at each founder node there is a directed tree incorporating exactly those nodes in 

the genetic descent graph that inherit the corresponding founder gene.  This genetic 

descent tree forms a connected component of the genetic descent graph, and in all, there 

are 2lf descent trees. The following figures give the gene flow in a fully typed pedigree.       

   
Fig. 3.1(a) Conventional Pedigree Representation Fig. 3.1(b) Descent State for Gene Flow 

 
A descent state at a locus determines an ordered genotype for each and every person 

in the pedigree.  Some descent states are consistent with the observed phenotypes of the 

pedigree, and some are not.  Those that are consistent with the observed phenotype 

information are considered legal descent states.  If a descent graph is consistent with at 

least one legal descent state, then the descent graph is legal; otherwise, it is illegal.  

Obviously, the collection of descent graphs is much smaller than the collection of descent 

states.  This is one reason for preferring descent graphs to descent states as points of the 

state space.  The size of the state space is further diminished by allowing only legal 

descent graphs.  One final level of abstraction is that of founder tree graph.  The nodes of 
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the founder tree graph are the descent trees of the descent graph.  This level provides a 

method for keeping track of how founder alleles are constrained in a coupled manner by 

the observed marker phenotypes in the pedigree.  Two nodes of the founder tree graph are 

connected by an edge if and only if the two corresponding descent trees pass through the 

same typed locus of some person in the pedigree.  Thus, two descent trees associated with 

different loci cannot be connected in this manner [32].   

  
3.3.2 The descent graph Markov Chain  

The set of descent graphs over a pedigree becomes a Markov chain if we incorporate 

transition rules for moving between the descent graphs.  The most basic transition rule, 

generally known as rule T0, switches the origin of an arc descending from a parent to a 

child from the paternal maternal node to the paternal paternal node, or vice versa.  The 

figure shown below depicts an example of this type of transition.   

 
        Fig 3.2 Example of Transition Rule T0 

 

From the basic rule T0, other composite rules are designed to make more radical 

changes in an existing descent graph, and consequently speed up the circulation of the 

chain.  Transition rule T1, example shown in the figure below, begins by choosing person 

i and locus l.  It then performs a T0 transition at each node determined by a child of i, the 

locus l, and the sex of i.  Thus every child of i who previously inherited i’s maternal gene 

now inherits i’s paternal gene and vice versa. 

 

      
   Fig. 3.3 Example of Transition Rule T1 
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The second composite transition rule has two variations: T2a and T2b, as shown in the 

examples below.  Each variation begins by choosing a locus l and a couple i and j with 

common children.  Four different descent subtrees are rooted at the parents i and j.  Rule 

T2a exchanges the subtree rooted at the maternal node of i with the subtree rooted at the 

maternal node of j; it similarly exchanges the paternally rooted subtrees of i and j.   

 

 
   Fig. 3.4 Example of Transition Rule T2a 

 
Rule T2b exchanges the maternally rooted subtree of i with the paternally rooted subtree 

of j and vice versa.   

 

 
   Fig 3.5 Example of Transition Rule T2b 

 
It should be noted, that after swapping subtrees, there are paternally derived genes 

flowing to maternal nodes and vice versa.  Adjustments must be made in the children and 

grandchildren to correct these illegal patterns of gene flow.  Also, only the paths 

descending through the children shared with the chosen spouse are pertinent and not any 

children coming from additional spouses. 

One complication in constructing the Markov chain on legal descent graphs is that 

two states may not communicate in the presence of three or more alleles per marker.  The 

following figure describes how two descent graphs fail to communicate.   
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       Fig. 3.6 Failure of Descent Graphs A and C to Communicate 

 
In this figure, Graph A and Graph C are said to not communicate.  Graphs A and C are 

both legal descent graphs, but you cannot move from A to C because B, the intermediate 

step, is illegal.  To solve this problem, it is necessary to “tunnel through” illegal descent 

graphs by taking multiple transitions per step of the Markov chain.  In applications, a 

random number of transitions per step of the Markov chain are employed in order to pass 

through illegal descent graphs on the way between legal descent graphs.  To maintain 

reversibility of the Markov chain, it is necessary that, within a step, independent choices 

are made for both the sequence of transition rules invoked and the sequence of people 

and sources to which these transitions are applied [32]. 

 

3.3.3 Likelihood of a Descent Graph 

The equilibrium distribution π of our Markov chain should match the distribution of legal 

descent graphs  conditioned on the observed marker genotypes M of the pedigree.  

Because the normalizing factor  is irrelevant in applying the Metropolis algorithm 

(as we will do later), it suffices to calculate the joint probabilities  as opposed 

to the conditional probabilities , in order to calculate the location score.  

Ĝ

)(MP

)ˆ( MGP ∩

)|( MGP
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The joint likelihood of a descent graph and a marker genotype vector M can be 

written as a sum of the joint likelihoods of M and all descent states G consistent with the 

gene flow specified byG .  That is,  

Ĝ

ˆ

 
)()ˆ( ∑̂

∩→

=∩
MGG

GPMGP ,      

 
where denotes consistency between G and both  and M.  Under Hardy-

Weinberg and linkage equilibrium for linked markers, the probability P(G) reduces to the 

product of the founder allele frequencies involved in the descent state G, and the 

recombination fractions and their complements for the adjacent intervals separating the 

markers.  Designating the founder allele frequency Prior(G) and the transmission 

probability Trans(G), the previous likelihood function becomes 

MGG ∩→ ˆ Ĝ

 
∑

∩→

⋅=∩
MGG

GiorGTransMGP
ˆ

)(Pr)ˆ()ˆ( .      

 
This result comes from the fact that all compatible descent states  exhibit the 

same transmission pattern, and Trans(G) depends only on the descent graphG  and not on 

the particular representative chosen from the set of 

GG ˆ→

ˆ

{ }MGGG ∩→ ˆ: .  To further 

simplify the formula, the connected components of the founder tree graph are 

labeled , and for a given consistent descent statemCCC ,...,, 21 { }MGGG ∩→ ˆ: , the 

vector of alleles assigned to component Ci are labeled ai.  Then since each founder gene 

is sampled independently,  

 

∏
=

=
m

i
iaPGior

1

)()(Pr ,         

 
where , a∏=

j
iji aPaP )()( ij being the components of the allele vector ai.  By 

construction, the founder genes assigned to different components do not impinge on one 

another.  That is, the set of founder genes consistent withG  and M is drawn from the ˆ
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 product of the sets  of legal allele vectors for the components , 

respectively.  So that applying the distributive rule to the above equation yields 

mSS ,...,1 mCCC ,...,, 21

 

∑ ∏
∩→ =

=
MGG

m

i
iCPGior

ˆ 1

)()(Pr ,      

 
where .  Note that a set S∑

∈

=
ii Sa

ii aPCP )()( i contains either all, one, two, or no allele 

vectors.  When Si contains all allele vectors, 1)( =∑
∈ ii Sa

iaP , and when Si contains no allele 

vectors, .  If S0)( =∑
∈ ii Sa

iaP i contains either one or two allele vectors, the product formula 

 is applicable.  These results now give the equation ∏=
j

iji aPaP )()(

 

∏
=

⋅=∩
m

i
iCPGTransMGP

1

)()ˆ()ˆ( .     

 
and can be used in the computation of the location scores [32]. 

  

3.3.4 Computing the Location Score 

Previously, we discussed in section 3.2 how location scores are used to position a trait 

locus relative to an existing set of mapped markers.  Without loss of generality, suppose 

the unknown trait position is denoted by d, the trait phenotypes for a pedigree by T, and 

the marker genotypes by M.  For a trait location, the location score is the expectation 

 
∑=

i
iidd MGPGTPMTP )|()|()|( ,    

 

where Gi is a complete gene flow configuration of the marker loci.  The point of this 

MCMC method is to speed up the calculations by sampling from all possible underlying 

configurations in proportion to their likelihood and then taking the average of these 

values.  So if we consider the sequence of descent graphs generated by running nGG ˆ,...,ˆ
1
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the Markov chain, as the underlying configurations, then the sample average 

∑
=

n

i
idn GTP

1

1 )ˆ|(  will approximate  well for sufficiently large n, [15].      )|( MTPd

 

3.3.5 Constructing the Markov Chain 

In order to create a Markov chain using the aforementioned transition rules that will have 

the correct equilibrium distribution, the Metropolis algorithm is implemented.  This 

algorithm consists of two different stages: the proposal stage and the acceptance stage.  In 

the proposal stage, the number and type of transitions, and the pivot nodes are chosen.  

The probability that  is the proposed next descent graph given that  is the current 

descent graph is expressed as , and is called the proposal probability for 

moving from descent graph to descent graph .  Because a single step can consist of 

an unlimited number of transitions, it is possible to move from any legal descent graph to 

any other legal descent graph in one step.  Thus, all entries of the proposal 

matrix

jĜ iĜ

)ˆ|ˆ( ijij GGPq =

iĜ jĜ

{ }ijqQ =  will be positive.  The acceptance stage occurs once a step  to  is 

proposed.  At this point, it is accepted with the Metropolis probability  

iĜ jĜ
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On the basis of this criterion, a more likely descent graph is always accepted, and an 

illegal descent graph is always rejected.  A less likely but still legal descent graph is 

sometimes accepted and sometimes rejected.  Then the transition probability of moving 

from  to  is  iĜ jĜ
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Since the proposal matrix Q has all positive entries, the matrix { }ijKK =  is also 

positive on the set of all legal descent graphs.  Due to this property, the Markov chain on 

the legal descent graphs is irreducible and aperiodic.  Properties of detailed balance and 

reversibility will be discussed in what follows [32]. 

 

3.3.6   Detailed Balance and Overall Balance 

When there is the same probability of arriving at a certain state j as departing from it, or  

 
   jijiji KK ππ = , 

 
this is referred to as the detailed balance or reversibility.   

 

Lemma 3.1: Given that and ∞→t π→tx , whereπ  is the stationary distribution of the 

Markov chain, the Metropolis method above guarantees the detailed balance 

jijiji KK ππ = , where  is a transitional probability from state i to state j.   ijK

 

Proof: The original Metropolis algorithm [42] enables us to write ),1min(
i

j
ijK

π
π

= .  

Hence, 
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  jij Kπ=        Δ 

 

Further, the detailed balance guarantees the overall balance   

∑ ∑
≠ ≠

=
ij ji

ijijij KK ππ ,  

as can be seen in the next proof. 
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Lemma 3.2: Given that  and ∞→t π→tx , whereπ  is the stationary distribution of the 

Markov chain, the detailed balance jijiji KK ππ =  guarantees the overall balance 

 of the Markov chain.    ∑ ∑
≠ ≠

=
ij ji

ijijij KK ππ    

 
Proof:   

    ∑ ∑
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+==
n

i ji
jjjijiijij KKK

1

ππππ

   ∑
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ijijjjj KK πππ  

   ∑
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ij ij ji

ijijijjij KKK πππ  

Therefore, , which gives the overall balance  [42].   Δ ∑ ∑
≠ ≠

=
ij ji

ijijij KK ππ

The properties of the descent graph Markov chain method, as described above, will 

be used in the convergence analysis to follow.  It should be noted that the MCMC method 

yields a Markov chain that is irreducible, aperiodic, and symmetric (i.e. ), as 

shown in the previous sections.  These properties will be necessary for much of the 

analysis in the next section.  

jiij KK =
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4.  Convergence Analysis of the MCMC Method 

 

Although the application of a MCMC algorithm can prove most useful in linkage 

analysis, it is still necessary to assess the validity of this stochastic technique – most 

importantly, perhaps, the convergence of the proposed estimators to the true limit.  In 

order to do this, we need to analyze the transition matrix of our Markov chain.   

 

4.1 Transition Matrix of the Markov Chain 

The transition probabilities )|( 1 iXjXPK ttij === − developed in section 3.3.5 control 

the progress of the Markov chain.  We define the marginal distribution of  to be 

, where 

tX
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or as expressed in matrix notation, where   It is easy to see 

that  

,1KPP tt −= ).,...,( 1
t

n
tt PPP =

 
,... 0221 tttt KPKPKPP ==== −−  
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∞→t ),...,,( ′= πππtK ∞→t , and consequently, that the 

Markov chain has reached stationarity [43].  

 

4.2   Eigen Analysis of the Transition Matrix    

Suppose that we define , where Idiag 2/12/1)( ππ ≡ I  is the identity matrix.  From the 

reversibility property, we have jijiji KK ππ =  and multiplying both sides by 
jiππ
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j
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j

i KK
π
π

π
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Proposition 4.1: Let  matrix M  be such that ,  then M is 

also symmetric.  

2/12/1 )()( −⋅⋅≡ ππ diagKdiagM

 
Proof:  
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ij
j

i
ij

j

i
jijijijiij KKIKIdiagKdiagM ⋅=⋅=⋅⋅⋅⋅=⋅⋅= −−

π
π

π
π

ππππ 2/1

2/1
2/12/12/12/1 )()(

On the other hand, 

ji
i

j
ji

i

j
ijijijijji KKIKIdiagKdiagM ⋅=⋅=⋅⋅⋅⋅=⋅⋅= −−

π
π

π
π

ππππ 2/1

2/1
2/12/12/12/1 )()(

 Since ji
i

j
ij

j

i KK
π
π

π
π

= , we have ,jiij MM =  and M is symmetric.   Δ 

Finally, note that 

 

  
( ) ( )

2/12/1

2/12/12/12/1

)()(
)()()()(

−

−−

⋅⋅=

⋅⋅⋅⋅⋅⋅⋅=

ππ

ππππ

diagKdiag
diagKdiagdiagKdiagM

t

t

  

Now assume that ∑
=

′=′∧=
n

i
ii qqQQM

1
,λ  and ∑

=

′=′∧=
n

i
ii

t
i

tt qqQQM
1
λ , where Q is an 

arbitrary matrix such that ),...,( 1 nqqQ = , ),...,( 1 nqqQ ′′=′ , and .QQIQQ ′==′   Generally, 

the set ),...,( 1 nqq is defined to be a basis, and as such for any vector ),...,( 1 nvvv = , 

∑
=

=
n

i
ii qqvv

1
, . 

Proposition 4.2: For a basis ),...,( 1 nqq  and any vector ),...,( 1 nvvv = , ∑
=

=
n

i
ii qvv

1

2 . 

Proof: 

 ∑
=

⋅++⋅+⋅==
n

i
nnnnnii qqvvqqvvqqvvqqvv

1
1221111 ),,...,(...),,...,(),,...(,  

qqvqvqvqqvqvqvqqvqvqv nnnnnn )...(...)...()...( 21222221111211 ++++++++++++=

 2
21

2
221

2
121 )...(...)...()...( nnnn qvvvqvvvqvvv ++++++++++++=  

∑
=

=
n

i
ii qv

1

2           Δ

 28



 

If we define iii qvu = , or ),,...,,( 1 nqvqvu = , then uQv = , or vQu 1−= .  

 

Proposition 4.3: Let nλλλ ≥≥≥ ...21 be the eigenvalues of the transition matrix K, and 

),...,( 1 ′= nuuu  be defined as above, then the maximal eigenvalue 1λ is achieved when 
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If we normalizeu  to a unit length so that, 1||
1

2 == ∑
=

n

i
iuu , than all 1≤iu , and 

the maximal eigenvalue 1λ is achieved when )0....,,0,1( ′=u  and 

11 )0,...,0,1(),...,( qqquQ n =′⋅= .  Thus at this point, 1quQv == .    Δ 

 
Similarly, the ratio achieves its second largest eigenvalue 2λ  when )0,...0,1,0(=u  

and 2quQv == .   

 

4.2.1 The Maximal Eigenvalue for the Transition Matrix 

Previously, v  was defined to be any vector.  Let us now define it as 
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implying that the maximal eigenvalue assumes a unit value. 
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Then the ratio becomes 
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and that when the maximal eigenvalue 1λ  is realized, then )0,...,0,1(=u  and the 

ratio 1λ=R .  Since the maximum value of the ratio is one, we have 1λ =1.  Δ 

 32



4.2.2   The Transition Matrix Yielding Stationarity 

Using Cauchy’s Inequality, it has been realized that 1≤R .  And 1=R  only when 

, as in that case )()( 1+= tt XhXh
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Theorem 4.1:  As  , or the Markov chain reaches equilibrium. ∞→t , ),...,,( ′= πππtK

 
Proof: 

Recall from proposition 4.1 that,  
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By definition of M, 
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Thus , as ),...,,( ′= πππtK ∞→t .      Δ  

 

The proof above shows that after a sufficiently long time, K reaches the equilibrium 

state; that is ππ =⋅K .  Thus, under the Metropolis algorithm, the Markov chain will 

eventually reach its stationary distribution [43].  
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4.3 Rate of Convergence of a Markov Chain 

Now that we have shown that the Markov Chain will reach its stationary distribution after 

a given amount of time, we are really interested in how much time is necessary to attain 

stationarity.  In other words, what is the rate of convergence?  From the previous 

analysis, when 1λ =1 and 12 ≤λ , )  as ,...,( ′→ ππtK ∞→t .  How fast this result is 

attained depends on the value of 2λ .  If 12 ≈λ , then the convergence rate will be very 

slow.   

 

4.3.1 Bound on Convergence 
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Combining these results, we now have 1−≥nλ . 
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4.3.2 Convergence Analysis with Maximum Autocorrelation 

We are primarily interested in the value of 2λ  in order to determine the rate of 

convergence.  Recall that the ratio (from our previous analysis) achieves its second 

largest value 2λ  when 2qv = .  In this case, 1qv ⊥ , meaning that 0, 1 =〉〈 qv .  That is,   
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second largest eigenvalue can be denoted by the correlation coefficient for  and 
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By definition, if Y1 and Y2 are random variables with means μ1 and μ2, respectively, the 

covariance of Y1 and Y2 is expressed as )])([(),( 221121 μμ −−= YYEYYCov .  Hence,  
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being the correlation between and .       Δ )( tXf )( 1+tXf

 
According to [12], on the spectral analysis of Markov chains, an irreducible Markov 

chain has an eigenvalue 11 =λ  with multiplicity 1.  Moreover, if 1−=nλ , the Markov 

chain is periodic, and aperiodic if 1−>nλ .  Therefore, the convergence rate will be 

determined strictly from  [43].  Since the MCMC method of [32] 

yields an irreducible, aperiodic, and symmetric Markov chain, these conditions 

concerning 

|)|,max( 2 nλλλ =∗

2λ  and nλ  are the focus of the analysis for rate of convergence.  Note that a 

correlation coefficient measures the linear relationship between two random variables.  

Usually, the stronger the correlation, the less randomness there is, and the slower the 

convergence.  
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Proposition 4.5: For an irreducible Markov chain the second largest eigenvalue satisifies 
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Consider a change of variables such that  
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This is the convergence rate expressed in terms of the ratio between the first step size and 

the total length [43].   We already know that 12 <λ , but if we can show that  
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ij ij
ijijijiji KffBff πππ 22 )()( , 
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where B is a constant, then we will be able to write out a general format for the rate of 

convergence [43].   

 

4.3.3  Dirichlet Form 

Assume that π~0Y  and .  Now consider the form of the equation   iji KYY ~| 0
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A Dirichlet form as defined in [2] is expressed as  
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where G is a finite group, ϕ  is an arbitrary function, Y is chosen from G according to 

uniform measure, π is the probability distribution on G, and is the transition kernel of 

the random walk {Y

πP

n}.  When Y0 and Y1 are real-valued random variables with the same 

distribution,  
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4.3.4   The Poincaré Inequality and Results 

Consider the graph with vertex set X defined to be the set of legal descent graphs, where 

{i, j} is an edge if and only if 0),( >=≡ jijiji KKjiQ ππ .  For each pair of descent 

graphs , define Xji ∈, ijγ  to be a path from descent graph i to descent graph j.  Paths 

may have repeated vertices but a given edge may occur at most once in a given path.  

Finally, denote the collection of paths (one for each ordered pair i, j) by .  Irreducibility 

guarantees that such paths will exist, but the quality of the estimate depends on the 

selection of .  Path length is then defined, for each

Γ

Γ Γ∈ijγ , to be  

where the sum is over the edges in the path and 
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Here, , where  is the oriented edge in a path from  to .  The 

inequality is Cauchy-Schwarz, and the final sum is over all oriented edges in the graph.  
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giving the desired result that BfffV ⋅≤ ),()( πε .   

 
Now using,    
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4.4   Bound for Convergence Rate 

The proposition above is a discrete analog of the classical method of Poincaré for 

estimating the spectral gap of the Laplacian on a domain, [2].  According to [29], this 

proposition is revised as follows 

 

For an irreducible Markov chain,  the second largest eigenvalue satisifies B
1

2 1−≤λ , 

where .   ∑
∈

−=
ije

jiije eQB
γ

ππγ ||)(max 1

 

The latter proposition uses the same notation as does the former proposition, with the 

only exception that || ijγ  denotes the number of edges in the path ijγ , [2].  This bound is 

sometimes easier to use, and can be more effective than the previous bound.  For random 

walks on graphs, as we have in our case, the bounds presented previously coincide, and it 

is the revised form that will be implemented in this work.   
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5.  Implementation of SimWalk2 for the Disease Gene Episodic Ataxia 

 

SimWalk2 is a statistical genetics computer application for haplotype, parametric linkage, 

non-parametric linkage, identity by descent, and mistyping analyses on any size of 

pedigree.  SimWalk2 uses the MCMC method as found in [32].  See also [34, 35].  The 

software for parametric linkage analysis requires five input files, namely, the map, locus, 

pedigree, and penetrance data files, and the input control file.   

 

5.1 Methodology 

For the purposes of this work, the map data file, consisting of the marker loci and the 

recombination fractions between them, and the input control file, which contains the 

instructions for the software, will remain the same in each of the trials.  Alterations will 

be made to the locus data file, concerning disease allele frequency, the penetrance data 

file, and the pedigree data file.  Input data files B1, B2, and B3 in Appendix B show the 

data files used in this analysis.  The analysis considered the following four different 

variations of the pedigree. 

 

a.    Original Pedigree (No Missing Individuals) 

b. Pedigree A (Four Missing Individuals – Two Founders (F) and Two     

Nonfounders (NF)) 

        Missing Individuals:  2001(F), 103(F), 1000(NF), 115(NF) 

c.     Pedigree B (Ten Missing Individuals – Five Founders and Five Nonfounders) 

       Missing Individuals:  2001(F), 103(F), 1002(F), 199(F), 1011(F), 1000(NF),  

         115(NF), 9003(NF), 1010(NF), 1(NF)  

d.    Pedigree C (Thirteen Missing Individuals – Five Founders and Eight 

Nonfounders) 

       Missing Individuals:  2001(F), 103(F), 1002(F), 199(F), 1011(F), 1000(NF),      

    115(NF), 9003(NF), 1010(NF), 1(NF), 113 (NF),   

    9097(NF), 9006(NF) 
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The analysis also considered the following variations of parameters: Disease Allele 

Frequency and Penetrances: 

 

        

Variation Name  Allele 1  Allele 2 

Locus 1 (Orig.) 0.99990  0.00010 

Locus 2  0.90000  0.10000 

Locus 3  0.85000  0.15000  

Locus 4  0.70000  0.30000 

Locus 5  0.60000  0.40000 
 Table 5.1  Variation of Parameters for Allele Frequency 

 

           

    Affection   Genotypes   
      Variation Name       1/1      1/2       2/2   

Pen 1 (Orig.) 101  0.99900 0.01000 0.01000  

  201  0.00100 0.99000 0.99000  

Pen 2  101  0.90000 0.10000 0.10000  

  201  0.10000 0.90000 0.90000 

Pen 3  101  0.80000 0.10000 0.10000 

  201  0.20000 0.90000 0.90000 

Pen 4  101  0.90000 0.15000 0.01000 

  201  0.10000 0.85000 0.99000 

Pen 5  101  0.80000 0.20000 0.20000 

   201  0.20000 0.80000 0.80000 
Table 5.2 Variation of Parameters for Penetrance 

 

Affection is used in this file to denote normal (101) and affected alleles (201) in an 

individual.  Similarly, the genotypic alleles 1 and 2 correspond to the normal/wild type 

and affected alleles, respectively. 
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For each pedigree above, the following trials were completed using SimWalk2,  

            

Case Parameters Case Parameters Case Parameters 
1 Locus 1, Pen 1 6 Locus 1, Pen 2 11 Locus 3, Pen 4 
2 Locus 2, Pen 1 7 Locus 1, Pen 3 12 Locus 3, Pen 5 
3 Locus 3, Pen 1 8 Locus 1, Pen 4 13 Locus 4, Pen 2 
4 Locus 4, Pen 1 9 Locus 1, Pen 5 14 Locus 4, Pen 4 
5 Locus 5, Pen 1 10 Locus 3, Pen 2 15 Locus 4, Pen 5 

 

Table 5.3 Trials for SimWalk2 

 
Cases 1 through 5 investigate the effects of varying only the allele frequencies, while 

assuming accurate penetrance values.  Cases 1 and 6 through 9 vary the penetrance 

values, while assuming accurate allelic frequencies.  Finally, cases 10 through 15 

investigate the most severe examples of variations in both allelic frequencies and 

penetrance values. 

The computational implementation provides results in the form of a location 

corresponding to the largest location score, and the bound for the rate of convergence.  

Other results are available corresponding to information such as the location scores for all 

other points on the marker map and log likelihoods for the trait and markers only, but are 

not used in this study.  See Tables C2 and C19 in Appendix C for the results.   

 

5.2  Statistical Analysis of SimWalk2 Results    

In this work, we are interested in two different aspects of the MCMC implementation.  

First, we want to investigate the accuracy of the MCMC method when faced with missing 

data in the model – particularly, individual missing data from the pedigree, disease allele 

frequency, and penetrance.  Since we know the exact results for Episodic Ataxia from the 

Elston-Stewart implementation, it is possible to compare the results from the MCMC 

method.  For this study, we will consider five different variables: pedigree only, pedigree 

and disease allele frequency, pedigree and penetrance, and finally, pedigree and two 

combinations of disease allele frequency and penetrance.  For the case in which only the 

data missing from each pedigree is considered, a single factor analysis of variance was 

performed to determine whether the null hypothesis that all of the pedigrees have the 

same mean location position on the chromosome is rejected or not.  For the same data  
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parameters, a second single factor analysis of variance was performed to determine 

whether the null hypothesis that all of the pedigrees have the same mean location score is 

rejected or not.  Since this analysis includes the exact results, missing data pedigrees are 

compared to the true result in an effort to determine the accuracy of the MCMC method 

for pedigrees missing data.     

The second case considered missing data in the pedigrees as well as variations in the 

disease allele frequency, deviating from the known disease allele frequency.  For this 

case, a two-factor analysis of variance was performed to determine whether the null 

hypothesis that all of the pedigrees have the same mean location position is rejected or 

not, while considering the effects of the disease allele frequency on the method.  

Similarly, this analysis was performed for the location score.   

The third case considered missing data in the pedigrees as well as variations in the 

penetrance values.  Case four and case five considered missing data in the pedigrees as 

well as variations in both the allele frequency and the penetrance values.  As with the 

second case, two-factor analysis of variances were performed for both location position 

and location scores.   

 

5.2.1 Accuracy of MCMC Method for Missing Data in Pedigree 

The pedigrees range from no missing individual data to a great amount of missing data 

(original pedigree  pedigree A  pedigree B  pedigree C).  By inspection of the raw 

output, it is clear that when using the original pedigree, the method most consistently 

chose the true location position for the EA gene.  With the exception of the last case, case 

15, all of the positions fall within one centiMorgan of the true position.  See Table C2 in 

the appendix.  Further inspection reveals that eight of the trials resulted in location scores 

greater than the cut-off value of three, and four others suggest strong evidence that the 

gene is at the corresponding location position.  Inspection of pedigrees A and B both 

reveal that the most likely location position is within a one cM region surrounding the 

position 6.6609 (between S372 and pY2/1).  Analysis of pedigree A reveals that five of 

the trials resulted in location scores greater than three, and four others suggest strong 

evidence that the gene is at the corresponding location position.  
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The results of pedigree A show only slight inaccuracies as compared to the results of the 

original pedigree.  Pedigree B, which has a greater level of missing data, has zero 

location scores above the cut-off value of three and only one location score suggests 

strong evidence that the gene is at the corresponding location position.  Thus, while the 

MCMC method seems to find the true region of localization of the EA gene, there is no 

supporting evidence (i.e. location score to support linkage) that suggests that the region is 

correct.  Thus, this analysis returns inconclusive results.  Finally, inspection of pedigree 

C reveals that the location position of the EA gene is within a 1 cM region between the 

pY2/1 and pY21/1 markers.  Thus, in the most severe case of missing data in the 

pedigree, the method finds the wrong location for the EA gene.  Nonetheless, analysis of 

pedigree C results in a location position within 3cMs (or 3% recombination) of the true 

position.  Inspection of the marker map places that position in between the subsequent 

markers.  Thus, for this pedigree, the result is inaccurate by less than 3%.  Further, the 

location scores for pedigree exceed the cut-off level of three only once, but there are three 

other location scores that provide strong evidence that the gene is at the corresponding 

location position.      

The results above suggest that as missing data in the pedigree increases the level of 

accuracy decreases.  Nonetheless, it is not a dramatic decrease in accuracy – the location 

position remains accurate and consistent throughout the first three pedigrees, while only 

the significance of the support for this position decreases.  At extreme levels of missing 

data, the location position becomes inaccurate, and the significance of support for this 

incorrect result increases.  While the method is unable to pinpoint the exact location 

when there is a great amount of missing data, it is still able to get within range of the true 

value and with a significant level of support.   

      

5.2.2   Accuracy of MCMC Method for Variations of Parameters 

Inspection of the location scores by variation in disease allele frequency, in Table C7 in 

the appendix, suggests that there is little influence from variation in disease allele 

frequency.  All of the location scores where disease allele frequency was varied in both 

the original pedigree and pedigree A remained above the level of three.  Also, many of  
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the location scores in pedigree C suggest strong evidence of the location corresponding to 

these location scores.   

With variation in penetrance values only, there are only five out of twenty location 

scores above the cutoff value of three, as seen in Table C8 of the appendix.  Many of the 

remaining location scores do not suggest evidence of localization for the EA gene.  

Moreover, when there are combinations of disease allele frequency and penetrance value 

variations, location scores are greatly reduced.  The final most severe combination of 

variations in allele frequency and penetrance values resulted in zero location scores 

exceeding the cut-off level of three.  In fact, many of the location scores did not even 

exceed two.   

In conclusion, this inspection of the location scores for varying parameters provides 

strong evidence to suggest that the variation in disease allele frequency had very little 

influence on the accuracy of the MCMC method, whereas, the variation in penetrance 

had significant influence on the accuracy of the method.  Most importantly, however, is 

that a combination of variation in disease allele frequency and penetrance can cause 

location scores to decrease dramatically to the point in which no conclusion may be 

reached about the location of the gene.  All results for location position and location score 

classified by the variation of parameters are shown in Appendix C Tables C3 through 

C10.              

 

5.2.3 ANOVA Results for MCMC Accuracy 

The analysis of variance results for both location scores and location positions provide 

further evidence to suggest that missing data does have a significant effect on the 

accuracy of the MCMC method.  Note that all ANOVA were completed with 05.0=α ; 

that is, we rejected the null hypothesis when 05.0<p .   In the case of location scores, all 

of the cases discussed previously resulted in the rejection of the null hypothesis.  This 

means that the location scores found through the implementation of SimWalk2 for the 

different pedigrees are not equivalent, regardless of the variation in parameters or lack 

thereof.  The conclusion, then, is that missing data in the pedigree, variations in allele 

frequency or penetrance values, or any such combination, leads to dramatic deviations in 

the location score.  The table found below gives the data summary and ANOVA results 
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for the single-factor analysis of location score for data missing only from the pedigree.  

Recall that the EXACT group refers to analysis of this pedigree using the Elston-Stewart 

algorithm and not by SimWalk2.  All other two – factor ANOVA results for varying 

parameters is found in Appendix C, Tables C11 through C14.  

 

Groups Count Sum Average Variance   

EXACT  15 53.4 3.56 0   

ORIGINAL 15 45.656 3.0437333 0.2431305   

PEDIGREE A 15 39.544 2.6362667 0.3504515   

PEDIGREE B 15 24.778 1.6518667 0.5232488   

PEDIGREE C 15 29.226 1.9484 0.8389665   

       

       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Pedigrees 36.5737646 4 9.1434411 23.375226 2.678E-12 2.5026594 

Within Pedigrees 27.3811632 70 0.3911595    

       

Total 63.954928 74         
   

Table 5.4 Data Summary and ANOVA Results for Location Score 

 

   In the case of location positioning, there are three cases in which we do not reject the 

null hypothesis that the mean location positions are equal.  For the variables disease allele 

frequency only and both combinations of variations in disease allele frequency and 

penetrance values, the results suggest that we should not reject the null hypothesis.  This 

indicates that the MCMC method’s ability to determine location position is not nearly as 

dependent on the missing parameters.  The missing data in the pedigree still had a 

dramatic effect on the accuracy of the location positioning.  Therefore, the conclusion is 

that missing data in the pedigree or variation in the penetrance values alone, leads to 

dramatic deviations in the location positioning, while variation in the disease allele 

frequency or combinations of variations in the disease allele frequency and penetrance 

values do not lead to dramatic deviations.  The table found on the overleaf gives the data 

summary and ANOVA results for the single-factor analysis of location position for data 

missing only from the pedigree.  All other two – factor ANOVA results for varying 

parameters is found in Appendix C, Tables C15 through C18. 
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             Groups Count Sum Average Variance   

EXACT 15 99.9135 6.6609 3.25E-14   
ORIGINAL 15 105.8738 7.0582533 0.4140553   

A 15 104.2451 6.9496733 0.0884348   
B 15 103.9357 6.9290467 0.0802295   

C 15 128.9748 8.59832 0.2155355   

       

ANOVA             

Source of Variation SS df MS F P-value F crit 

Between Pedigrees 35.916008 4 8.979002 56.24143 3.79E-21 2.5026594 
Within Pedigrees 11.175572 70 0.159651    

       

Total 47.09158 74         
   

Table 5.5 Data Summary and ANOVA Results for Locational Position 

 

The analysis completed by SimWalk2 provides evidence of several important aspects 

of parametric linkage analysis with missing data in the model.  First, the degree of 

inaccuracy seems to be directly correlated to the level of missing pedigree data.  As the 

individual pedigree data decreases, the accuracy of both the location score and the 

location positioning decreases.  Also, variations of the variables in the genetic model lead 

to inaccuracies within the results.  Finally, the ANOVA results yield evidence that 

missing data causes dramatic decreases in accuracy with respect to the localization of the 

disease gene (EA) and its support for linkage. 

 

5.3 Analysis of Convergence Results 

In Section 4, a theoretical analysis of convergence for a Markov chain was presented, 

utilizing a bound on the second largest eigenvalue of the transition matrix.  We restate 

here without proof, the proposition as in Section 4.4. 

 

Proposition: For an irreducible Markov chain,  the second largest eigenvalue satisfies 

B
1

2 1−≤λ , where   

∑
∈

−=
ije

jiije eQB
γ

ππγ ||)(max 1 .   

Given the convergence parameter B, the bound on the second largest eigenvalue can then 

be computed, and a comparison between the rates of convergence can be made.   
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As 2λ  approaches a unit value, the rate of convergence becomes increasingly slower.  

Thus, larger values of B indicate a smaller ratio of one-step length to total length (of the 

chain), and a decrease in the rate of convergence.       

 

5.3.1 Convergence Results 

Several different aspects of the convergence bound were considered in this work.  First, 

the range and mean for the bound on convergence for each of the pedigrees was looked 

at, and their values were as follows: 

        

Pedigree  Range   Mean  

Original Pedigree 0.2427 – 0.4704 0.3355 

Pedigree A  0.2612 – 0.4525 0.3644 

Pedigree B  0.3998 – 0.5026 0.4658 

Pedigree C  0.5604 – 0.6155 0.5957  
  Table 5.6 Convergence Bounds Results 

 

Inspection of these values indicates that missing data in the pedigree does cause a 

decrease in the rate of convergence.  The original pedigree had the smallest convergence 

bound, indicating that no missing data allows the Markov chain to reach stationarity more 

efficiently than when missing data is introduced into the pedigree.  Pedigree A, which 

contained the least amount of missing data, had a very similar convergence result, having 

almost an identical range of values.  The mean bound for convergence was only slightly 

greater for pedigree A.  This suggests that a small amount of missing data does not have a 

significant impact on the rate of convergence of the Markov chain.   

As expected, however, pedigrees B and C both had elevated bounds on their rates of 

convergence.  The drastic increase in the convergence rate for pedigree B suggests that 

the introduction of variations in parameters induced a decrease in the convergence rate of 

the Markov chain.  Pedigree C, which contained the greatest amount of missing 

information, had the most severe decrease in the convergence rate.  The mean bound on 

convergence for pedigree C was nearly twice that of the original pedigree, and its range 
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fell entirely outside of the other pedigrees’ ranges for convergence bounds.  This analysis 

provides evidence that as the missing data from the pedigree increases, the rate of 

convergence dramatically decreases.       

 

5.3.2 Convergence Results by Parameters 

Next, we looked at the impact of the variation in parameters (i.e. disease allele frequency 

and penetrance values) on the rate of convergence for these pedigrees. 

 

              Original Pedigree   A     B     C   

  Avg. CP Avg. CR   Avg. CP Avg. CR   Avg. CP Avg. CR   Avg. CP Avg. CR

Pen 1.35 0.2589 Pen 1.4918 0.3275 Pen 1.7818 0.4371 Pen 2.3925 0.5859 

Locus 1.5287 0.3367 Locus 1.5585 0.3562 Locus 1.8846 0.4688 Locus 2.507 0.601 

Both 1 1.5585 0.3565 Both 1 1.6603 0.3963 Both 1 1.9867 0.4966 Both 1 2.3975 0.5822 

Both 2 1.7047 0.4128 Both 2 1.6966 0.4076 Both 2 1.9034 0.474 Both 2 2.5897 0.6139 
 
Table 5.7 Convergence Bounds with Variation of Parameters 

 

The results shown give the average convergence parameter (Avg. CP) and bound on 

convergence (Avg. CR) for each of the pedigrees broken down by a particular variation 

in parameters.  As can be seen from the table above, the variation in disease allele 

frequency only had the least effect on the convergence bounds, and thus, the least effect 

on the convergence rate of the Markov chain.  Variation in the penetrance values alone 

and the first combination of variation in disease allele frequency and penetrance values 

had a very similar effect on the convergence rates.  This suggests that the variation in 

disease allele frequency in the first combination had little to no effect on the convergence 

rate.  As such, the variation in penetrance values combined with missing data in the 

pedigree has a significant effect on the rate of convergence of the Markov chain.  Finally, 

the last combination of variations of allele frequency and penetrance values, which was 

the most dramatic deviation from the original parameters, caused the greatest decrease in 

the convergence rate of the MCMC process.  This analysis provides evidence to suggest 

that as the variations of parameters increase, the rate of convergence decreases. 
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6.  Conclusion 

 

This work investigates the complexities of missing data in pedigree analysis using the 

Markov Chain Monte Carlo (MCMC) method as compared to the exact results.  We 

developed the biological and mathematical problems to be analyzed, and in particular, 

described the MCMC method for parametric linkage analysis as created by [32].  The 

theoretical results of the MCMC method and convergence of a Markov chain using a 

maximum autocorrelation procedure and eigenvalue analysis were described in order that 

they could be implemented in a latter section of this work.  Finally, a computational 

application SimWalk2 was used to examine the concrete properties of convergence and 

accuracy of the MCMC method as seen for the disease gene Episodic Ataxia (EA).   

In the case in which everything about the disease gene within a pedigree is known, 

the MCMC method can be expected to be a statistically significant estimate of the exact 

likelihood for linkage between the disease locus and marker loci.  Our implementation of 

SimWalk2 involved three different missing data parameters, namely, disease allele 

frequency, penetrance, and pedigree members.  We have looked at how misspecification 

of disease allele frequency, misspecification of disease penetrance, and missing members 

of the observed pedigree, influenced both the accuracy of the MCMC method and the 

convergence of the Markov chain being implemented.  The output variables of interest 

were the location position on the chromosome of the EA gene, the corresponding location 

score, and the bound on convergence of the MCMC method.   

As expected, the analysis suggests that the more severe the missing data, the greater 

the inaccuracy of the method, and the slower the convergence of the Markov chain.  

Considering only missing data from the pedigrees (i.e. assuming correct disease allele 

frequency and penetrance values), larger numbers of members missing from the pedigree 

caused the harshest cases of inaccuracy and decreased convergence rates.  In fact, this 

missing data variable was the most influential in determining the correct location position 

and location score.  Nonetheless, the MCMC method performed better than would be 

expected of an exact method under similar missing data conditions.  The most dramatic 

inaccuracy was attained at a rate of only 3% deviation from the true value.  The analysis 

of the misspecified parameters, that is, disease allele frequency and penetrance, indicated 
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that misspecification of disease allele frequency had very little influence on the accuracy 

of the MCMC method, while penetrance had a significant influence, particularly in 

combination with data missing from the pedigree or severe misspecification of disease 

allele frequency.   

Convergence analysis gave a similar result.  Missing data from the pedigree had a 

great impact on the convergence rate of the Markov chain being implemented in this 

method; the more severe the missing data, the slower the convergence.  When the 

misspecification of disease allele frequency and penetrance values are considered, 

misspecification of penetrance appeared to have the least impact on the rate of 

convergence.  Combinations of misspecification of disease allele frequency and 

penetrance had the greatest impact on the rate of convergence.  Thus, it is expected that 

as these parameters deviate further from their true values, the rate of convergence 

decreases dramatically as well.   

Further research into this area of study should include the implementation of this 

method on more genetic parameters and differing pedigree variations.  Along these lines, 

a comparison of an exact method to the MCMC method, using the corresponding genetic 

software, at each point on the chromosome would be a useful tool in determining the 

accuracy of each method when faced with missing data in the model.  Also, it would be 

of interest to look into possible ways to combat the effects of missing data on the MCMC 

method.             
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APPENDIX A 
 
Fig. A1 
Pedigree for Episodic Ataxia Analysis  
 

 
 
Fig. A2 
Plot of LOD Score for EA vs. Marker S372  
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APPENDIX  B 
 
Input Data B1     Input Data B2 
Marker Map Data File for EA   Input Control Data File for EA 
 
EA      01      
  0.5000     2 
S91 
        0.0100     02 
S100      22 
        0.0100 
CACNL1A1     03 
        0.0300     Episodic Ataxia (EA) pedigree: LOD score 
S372 
        0.0300     09 
pY2/1      MAP.DAT 
        0.0100 
pY21/1      10 
        0.0100     LOCUS.DAT 
KCNA5 
        0.0100     11 
S99      PEDIGREE.DAT 
        0.0100 
S93      12 

F  
      M 
 

      13                        
Y                         

 
18                        
1                         

    
19                        
PEN.DAT  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 61



 
 
Input Data B3 
Original Pedigree (No Missing Data) 
 
(I5,2X,A8) 
(3A5,1X,2A1,(T19,3(A8),:)) 
   29        20 
    1 1001 1000 M   2       3/  1   3/  6  
                    9/ 10   5/  3   6/  2  
                    3/  7   3/  2   1/  3  
                    6/  4   201 
 1001           M   1       3/  1   3/  3  
                    9/  9   5/  4   6/  6  
                    4/  3   4/  3   5/  1  
                    6/  6   101 
 1000 2002 2001 F   2       1/  3   4/  6  
                   10/ 10   2/  3   1/  2  
                    7/  7   3/  2   6/  3  
                    4/  7   201 
  100 1001 1000 M   1       1/  1   3/  4  
                    9/ 10   5/  2   6/  1  
                    4/  7   3/  3   1/  6  
                    6/  7   101 
 2002           M   1       1/  1   1/  4  
                    9/ 10   2/  2   1/  5  
                    5/  7   3/  4   4/  6  
                    4/  7   101 
 2001           F           3/  2   6/  5
               
                    10/ 7   3/  2   2/  1                                     8/  9   2/  3   6/  5  
                    7/ 10   2/  4   3/  5                                     5/  5   4/  4   4/  4  
                    4/  4            
 1002 2002 2001 M   1       1/  2   4/  5  
                   10/  7   2/  2   1/  1  
                    7/ 10   3/  4   6/  5  
                    4/  7   101 
 1006 2002 2001 F   2       1/  3   4/  6  
                   10/ 10   2/  3   1/  2  
                    7/  7   3/  2   6/  3  
                    4/  7   201 
 1007           M   1       3/  3   4/  6  
                    1/  8   2/  3   6/  6       
                    4/  7   2/  4   3/  6  
                    3/  4   101 
 1008 2002 2001 F   2       1/  3   1/  6  
                    9/ 10   2/  3   5/  2  
                    5/  7   4/  2   4/  3  
                    4/  4   201 
 1009           M   1       1/  2   3/  3  
                    2/  9   2/  3   1/  1  
                    4/  5   1/  2   2/  5  
                    1/  2   101 
  199           F   1       4/  4   3/  3             9005    1  104 F   2       3/  1   6/  4  
                    9/ 10   3/  4   2/  5  
                    4/  9   3/  3   4/  4  
                    1/  2   101 
 1010 2002 2001 F   2       1/  3   1/  6  
                    9/ 10   2/  3   5/  2  
                    5/  7   4/  2   4/  3  
                    4/  4   201 
 1011           M   1       3/  3   2/  4                       
                    9/  8   3/  3   1/  6                 
                    4/  5   1/  4   3/  4                 
                    4/  4   101 
  102 1001 1000 M   2       3/  3   3/  6  
                    9/ 10   4/  3   6/  2  
                    4/  7   4/  2   5/  3  
                    6/  4   201 

  103           F   1       2/  1   3/  2  
                   10/ 10   4/  3   6/  6  
                    4/  3   3/  1   6/  4  
                    4/  6   101 
  104           F   1       3/  1   4/  3  
                    9/  9   3/  2   6/  6  
                   10/  5   1/  1   8/  7  
                    6/  3   101 
  113 1007 1006 F   2       3/  3   6/  4  
                    1/ 10   3/  2   6/  1  
                    4/  7   2/  3   6/  3  
                    4/  7   201 
  114 1007 1006 F   2       3/  3   6/  6  
                    8/ 10   3/  3   6/  2  
                    4/  7   2/  2   3/  3  
                    4/  4   201 
  115 1009 1008 M   2       1/  3   3/  6  
                    9/ 10   3/  2   1/  2  
                    4/  7   2/  2   5/  3  
                    1/  4   201 
  116 1011 1010 M   2       3/  3   2/  6  
                    9/ 10   3/  3   1/  2  
                    4/  7   1/  2   3/  3  
                    4/  4   201 
  117 1011 1010 F   1       1/  3   4/  1  

                    4/  4   101 
 9099  100  199 M   1       1/  4   3/  3            
                    9/  9   5/  3   6/  2  
                    4/  4   3/  3   1/  4  
                    6/  1   101 
 9098  100  199 F           1/  4   4/  3            
                   10/ 10   2/  4   1/  5  
                    7/  9   3/  3   6/  4  
                    7/  2   
 9097  100  199 M   1       1/  4   3/  3            
                    9/  9   5/  3   6/  2  
                    4/  4   3/  3   1/  4  
                    6/  1   101 
 9003  102  103 M   2       3/  2   6/  2  
                   10/ 10   4/  3   2/  6  
                    7/  4   2/  3   3/  4  
                    4/  6   201 
 9004  102  103 M   1       3/  1   6/  3  
                   10/ 10   3/  3   6/  6  
                    4/  3   4/  1   5/  6  
                    4/  6   101 

                   10/  9   3/  3   2/  6  
                    7/  5   2/  1   3/  7  
                    4/  6   201 
 9006    1  104 M           1/  1   3/  4  
                    9/  9   5/  3   6/  6  
                    3/  5   3/  1   1/  7       
                    6/  6      
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Output Data File B4  
Original Pedigree (No Missing Data) 
 
Episodic Ataxia (EA) pedigree: LOD score 
  
Overall Location Scores from SimWalk2   
MENDEL version 3.35 by Ken Lange is used in the computation of these results 
  
  
This file contains the location scores calculated using ALL pedigrees. 
These location scores are directly comparable to multipoint LOD scores. 
All location scores and log-likelihoods are in log10 units. 
  
All the parameters used to set up this run, including the marker map 
and penetrance model, if any, are listed at the end of this file. 
  
The following tables are comma-delimited to facilitate graphing these results. 
  
The first table below lists the largest location score found in the 
analysis of each pedigree individually. (Only the pedigrees within 
this run are listed.) Also listed for each pedigree is the first 
position that had this score, given in distance (in sex-average Haldane cM) 
from the first marker in this study. 
  
        ,            ,                  ,      LARGEST      ,                    
PEDIGREE,  PEDIGREE  ,     POSITION     ,  LOCATION SCORE   ,                    
NUMBER ,    NAME    ,   in Haldane cM  ,  when alpha=1.00  ,                    
  
 001    ,  20        ,6.6609    , 3.609       ,                    
  
  
The remaining results in this file are calculated by combining 
ALL the pedigrees in this study (including any previous runs that 
were 'continued' into this run). 
  
The overall log-likelihood considering ONLY THE TRAIT is:       -8.554 
  
The overall log-likelihood considering ONLY THE MARKERS is:   -342.330 
  
The following table lists the overall location scores for positions 
(measured in sex-average Haldane cM) throughout the specified markers. 
  
 MARKER ,  POSITION  , LOCATION SCORE ,                , MAX HETEROGEN  ,  ALPHA 
  NAME  , Haldane cM ,   alpha=1.00   ,                , LOCATION SCORE ,  VALUE 
  
        ,   -49.9999 ,       1.546    ,                ,       1.546    ,   1.00 
        ,   -45.0000 ,       1.698    ,                ,       1.698    ,   1.00 
        ,   -40.0000 ,       1.859    ,                ,       1.859    ,   1.00 
        ,   -35.0000 ,       2.030    ,                ,       2.030    ,   1.00 
        ,   -30.0000 ,       2.208    ,                ,       2.208    ,   1.00 
        ,   -25.0000 ,       2.390    ,                ,       2.390    ,   1.00 
        ,   -20.0000 ,       2.574    ,                ,       2.574    ,   1.00 
        ,   -15.0000 ,       2.751    ,                ,       2.751    ,   1.00 
        ,   -10.0000 ,       2.905    ,                ,       2.905    ,   1.00 
        ,    -5.0000 ,       2.993    ,                ,       2.993    ,   1.00 
        ,    -0.0001 ,       2.790    ,                ,       2.790    ,   1.00 
S91      
        ,     0.0001 ,       2.790    ,                ,       2.790    ,   1.00 
        ,     0.1010 ,       2.768    ,                ,       2.768    ,   1.00 
        ,     0.2020 ,       2.745    ,                ,       2.745    ,   1.00 
        ,     0.3030 ,       2.721    ,                ,       2.721    ,   1.00 
        ,     0.4041 ,       2.695    ,                ,       2.695    ,   1.00 
        ,     0.5051 ,       2.667    ,                ,       2.667    ,   1.00 
        ,     0.6061 ,       2.638    ,                ,       2.638    ,   1.00 
        ,     0.7071 ,       2.606    ,                ,       2.606    ,   1.00 
        ,     0.8081 ,       2.572    ,                ,       2.572    ,   1.00 
        ,     0.9091 ,       2.534    ,                ,       2.534    ,   1.00 
        ,     1.0100 ,       2.494    ,                ,       2.494    ,   1.00 
S100     
        ,     1.0102 ,       2.494    ,                ,       2.494    ,   1.00 
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        ,     1.1111 ,       2.489    ,                ,       2.489    ,   1.00 
        ,     1.2122 ,       2.485    ,                ,       2.485    ,   1.00 
        ,     1.3132 ,       2.480    ,                ,       2.480    ,   1.00 
        ,     1.4142 ,       2.475    ,                ,       2.475    ,   1.00 
        ,     1.5152 ,       2.471    ,                ,       2.471    ,   1.00 
        ,     1.6162 ,       2.466    ,                ,       2.466    ,   1.00 
        ,     1.7172 ,       2.460    ,                ,       2.460    ,   1.00 
        ,     1.8182 ,       2.455    ,                ,       2.455    ,   1.00 
        ,     1.9193 ,       2.450    ,                ,       2.450    ,   1.00 
        ,     2.0202 ,       2.444    ,                ,       2.444    ,   1.00 
CACNL1A1 
        ,     2.0204 ,       2.444    ,                ,       2.444    ,   1.00 
        ,     2.3296 ,       2.429    ,                ,       2.429    ,   1.00 
        ,     2.6390 ,       2.412    ,                ,       2.412    ,   1.00 
        ,     2.9484 ,       2.393    ,                ,       2.393    ,   1.00 
        ,     3.2578 ,       2.373    ,                ,       2.373    ,   1.00 
        ,     3.5672 ,       2.351    ,                ,       2.351    ,   1.00 
        ,     3.8765 ,       2.327    ,                ,       2.327    ,   1.00 
        ,     4.1859 ,       2.300    ,                ,       2.300    ,   1.00 
        ,     4.4953 ,       2.272    ,                ,       2.272    ,   1.00 
        ,     4.8047 ,       2.241    ,                ,       2.241    ,   1.00 
        ,     5.1139 ,       2.208    ,                ,       2.208    ,   1.00 
S372     
        ,     5.1141 ,       2.209    ,                ,       2.209    ,   1.00 
        ,     5.4234 ,       3.199    ,                ,       3.199    ,   1.00 
        ,     5.7328 ,       3.428    ,                ,       3.428    ,   1.00 
        ,     6.0422 ,       3.539    ,                ,       3.539    ,   1.00 
        ,     6.3515 ,       3.593    ,                ,       3.593    ,   1.00 
        ,     6.6609 ,       3.609    ,                ,       3.609    ,   1.00 
        ,     6.9703 ,       3.591    ,                ,       3.591    ,   1.00 
        ,     7.2797 ,       3.533    ,                ,       3.533    ,   1.00 
        ,     7.5891 ,       3.415    ,                ,       3.415    ,   1.00 
        ,     7.8984 ,       3.170    ,                ,       3.170    ,   1.00 
        ,     8.2077 ,       1.506    ,                ,       1.506    ,   1.00 
pY2/1    
        ,     8.2079 ,       1.499    ,                ,       1.499    ,   1.00 
        ,     8.3088 ,       1.503    ,                ,       1.503    ,   1.00 
        ,     8.4098 ,       1.506    ,                ,       1.506    ,   1.00 
        ,     8.5109 ,       1.508    ,                ,       1.508    ,   1.00 
        ,     8.6119 ,       1.509    ,                ,       1.509    ,   1.00 
        ,     8.7129 ,       1.510    ,                ,       1.510    ,   1.00 
        ,     8.8139 ,       1.509    ,                ,       1.509    ,   1.00 
        ,     8.9149 ,       1.508    ,                ,       1.508    ,   1.00 
        ,     9.0159 ,       1.506    ,                ,       1.506    ,   1.00 
        ,     9.1169 ,       1.503    ,                ,       1.503    ,   1.00 
        ,     9.2178 ,       1.499    ,                ,       1.499    ,   1.00 
pY21/1   
        ,     9.2180 ,       1.499    ,                ,       1.499    ,   1.00 
        ,     9.3190 ,       1.503    ,                ,       1.503    ,   1.00 
        ,     9.4200 ,       1.506    ,                ,       1.506    ,   1.00 
        ,     9.5210 ,       1.508    ,                ,       1.508    ,   1.00 
        ,     9.6220 ,       1.509    ,                ,       1.509    ,   1.00 
        ,     9.7230 ,       1.510    ,                ,       1.510    ,   1.00 
        ,     9.8240 ,       1.509    ,                ,       1.509    ,   1.00 
        ,     9.9250 ,       1.508    ,                ,       1.508    ,   1.00 
        ,    10.0261 ,       1.506    ,                ,       1.506    ,   1.00 
        ,    10.1271 ,       1.503    ,                ,       1.503    ,   1.00 
        ,    10.2280 ,       1.499    ,                ,       1.499    ,   1.00 
KCNA5    
        ,    10.2282 ,       1.499    ,                ,       1.499    ,   1.00 
        ,    10.3291 ,       1.503    ,                ,       1.503    ,   1.00 
        ,    10.4301 ,       1.506    ,                ,       1.506    ,   1.00 
        ,    10.5311 ,       1.508    ,                ,       1.508    ,   1.00 
        ,    10.6321 ,       1.509    ,                ,       1.509    ,   1.00 
        ,    10.7331 ,       1.510    ,                ,       1.510    ,   1.00 
        ,    10.8342 ,       1.509    ,                ,       1.509    ,   1.00 
        ,    10.9352 ,       1.508    ,                ,       1.508    ,   1.00 
        ,    11.0362 ,       1.506    ,                ,       1.506    ,   1.00 
        ,    11.1372 ,       1.503    ,                ,       1.503    ,   1.00 
        ,    11.2381 ,       1.499    ,                ,       1.499    ,   1.00 
S99      
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        ,    11.2383 ,       1.499    ,                ,       1.499    ,   1.00 
        ,    11.3392 ,       1.500    ,                ,       1.500    ,   1.00 
        ,    11.4402 ,       1.499    ,                ,       1.499    ,   1.00 
        ,    11.5413 ,       1.498    ,                ,       1.498    ,   1.00 
        ,    11.6423 ,       1.496    ,                ,       1.496    ,   1.00 
        ,    11.7433 ,       1.493    ,                ,       1.493    ,   1.00 
        ,    11.8443 ,       1.489    ,                ,       1.489    ,   1.00 
        ,    11.9453 ,       1.484    ,                ,       1.484    ,   1.00 
        ,    12.0463 ,       1.479    ,                ,       1.479    ,   1.00 
        ,    12.1473 ,       1.473    ,                ,       1.473    ,   1.00 
        ,    12.2483 ,       1.466    ,                ,       1.466    ,   1.00 
S93      
        ,    12.2485 ,       1.466    ,                ,       1.466    ,   1.00 
        ,    17.2484 ,       2.832    ,                ,       2.832    ,   1.00 
        ,    22.2484 ,       2.809    ,                ,       2.809    ,   1.00 
        ,    27.2484 ,       2.680    ,                ,       2.680    ,   1.00 
        ,    32.2484 ,       2.517    ,                ,       2.517    ,   1.00 
        ,    37.2484 ,       2.342    ,                ,       2.342    ,   1.00 
        ,    42.2484 ,       2.166    ,                ,       2.166    ,   1.00 
        ,    47.2484 ,       1.993    ,                ,       1.993    ,   1.00 
        ,    52.2484 ,       1.827    ,                ,       1.827    ,   1.00 
        ,    57.2484 ,       1.669    ,                ,       1.669    ,   1.00 
        ,    62.2483 ,       1.520    ,                ,       1.520    ,   1.00 
  
  
 For alpha = 1.00,  the largest overall location score is:      3.609 
                              at position (in Haldane cM):      6.6609 
  
 On the alpha grid, the largest overall location score is:      3.609 
                              at position (in Haldane cM):      6.6609 
                      obtained by using an alpha value of:      1.000 
  
________________________________________________________________________________ 
  
                      Episodic Ataxia (EA) pedigree: LOD score 
  
                      Recombination Statistics from SimWalk2 2.91 
  
  
 Here, for each marker interval, is the number of recombinations observed 
 and the number expected, given the total number of meioses & the interval size. 
  
 The 'observed value' listed below is the average over all pedigrees that were 
 sampled during the MCMC phase. Thus, this value is an estimate of the average 
 over all possible configurations each weighted by its likelihood, i.e., 
 given the data, this is our best estimate of the true value. 
  
 We also estimate the p-value for these observations, i.e., the probability that 
 one would observe this many recombination events OR MORE within this interval, 
 again given the total number of meioses & the interval size. A very small 
 p-value indicates that the number of observed recombinations would be more 
 consistent with a larger recombination distance for this marker interval. 
 Similarly, a p-value close to 1 indicates that the user-specified recombination 
 distance for this interval should be re-evaluated and perhaps made smaller. 
 Such extreme p-values are flagged when they appear. 
  
  
 The total number of pedigrees actually analyzed here:              1 
 The total number of meioses contained in these pedigrees:         40 
  
 Since the user-specified recombination distances are sex-independent, 
 we report the combined female and male recombination statistics. 
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 OVERALL RECOMBINATION STATISTICS 
  
  
 POSITION   MARKER     RECOMB.   RECOMBINATION EVENTS   SIGNIFICANCE    INTERVAL 
Haldane cM   NAME     FRACTION    OBSERVED & EXPECTED     (P-VALUE)      NUMBER  
  
    0.000   S91      
                       0.01000       0.173      0.400      0.87444          1 
    1.010   S100     
                       0.01000       0.158      0.400      0.88566          2 
    2.020   CACNL1A1 
                       0.03000       0.917      1.200      0.73621          3 
    5.114   S372     
                       0.03000       2.716      1.200      0.16373          4 
    8.208   pY2/1    
                       0.01000       0.418      0.400      0.69082          5 
    9.218   pY21/1   
                       0.01000       1.030      0.400      0.31689          6 
   10.228   KCNA5    
                       0.01000       0.006      0.400      0.99585   ##!    7 
   11.238   S99      
                       0.01000       0.137      0.400      0.90131          8 
   12.248   S93      
  
  
 ##! indicates a p-value which is so large that one should reconsider whether 
     the specified recombination fraction for this interval is too large! 
  
________________________________________________________________________________ 
  
Model at the trait locus named: EA       
  
 ALLELE                         FREQUENCY 
  1                              0.99990 
  2                              0.00010 
  
 PHENOTYPE                      COMPATIBLE ORDERED GENOTYPES 
  1                             1/1       1/2       2/2      
  1                                       2/1                
  2                             1/1       1/2       2/2      
  2                                       2/1                
  
 PHENOTYPE/LIABILITY            PENETRANCES FOR UNORDERED GENOTYPES: 
        CLASS                     1/1          1/2          2/2     
         101                     0.999000     0.010000     0.010000 
         201                     0.001000     0.990000     0.990000 
  
Marker Map: 
  
POSITION (Haldane cM)    MARKER        RECOMBINATION RATES     INTERVAL  
   FEMALE  &   MALE       ORDER         FEMALE  &   MALE        NUMBER   
    0.000      0.000    S91      
                                       0.01000    0.01000          1 
    1.010      1.010    S100     
                                       0.01000    0.01000          2 
    2.020      2.020    CACNL1A1 
                                       0.03000    0.03000          3 
    5.114      5.114    S372     
                                       0.03000    0.03000          4 
    8.208      8.208    pY2/1    
                                       0.01000    0.01000          5 
    9.218      9.218    pY21/1   
                                       0.01000    0.01000          6 
   10.228     10.228    KCNA5    
                                       0.01000    0.01000          7 
   11.238     11.238    S99      
                                       0.01000    0.01000          8 
   12.248     12.248    S93      
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 APPENDIX C 
 
Table C1 

Comparison of Algorithms 
 

ALGORITHM  PROGRAMS SOLUTION SIZE RESTRICTIONS 

ELSTON – STEWART FASTLINK EXACT VARIES: ABT 8 LOCI 

 LINKAGE  (LESS WITH LOOPS) 

 MENDEL   

 VITESSE   

LANDER-GREEN-KRUGLYAK ALLEGRO EXACT ABT 20 PEOPLE 

 GENEHUNTER  (2n - f ) < 20 

 MENDEL   

 MERLIN   

MARKOV CHAIN MONTE CARLO LOKI ESTIMATE MUCH LARGER 

 SIMWALK2  > 1000 INDIVIDUALS 

   > 1000 LOCI 

ALGORITHM INCREASE IN COMPUTATIONAL TIME WITH INCREASE IN: 

 PEOPLE MARKERS MISSING DATA 

ELSTON – STEWART LINEAR EXPONENTIAL SEVERE 

LANDER-GREEN-KRUGLYAK EXPONENTIAL LINEAR MODEST 

MARKOV CHAIN MONTE CARLO LINEAR LINEAR MILD 
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Table C2 
SimWalk2 Raw Accuracy Results 
 

  Case Position Lgst Location Score   Case Position Lgst Location Score 

Original Pedigree       Pedigree A       

 1 6.6609 3.609  1 6.6609 3.291 

 2 6.6609 3.597  2 6.6609 3.258 

 3 6.6609 3.59  3 6.6609 3.241 

 4 6.6609 3.563  4 6.6609 3.185 

 5 6.6609 3.537  5 6.6609 3.143 

 6 6.9703 3.265  6 6.9703 2.954 

 7 7.2797 2.783  7 7.2797 1.86 

 8 6.6609 3.176  8 6.6609 2.863 

 9 7.2797 2.397  9 7.2797 1.436 

 10 6.9703 3.084  10 6.9703 2.76 

 11 6.9703 2.939  11 6.9703 2.634 

 12 7.2797 2.414  12 7.2797 2.126 

 13 6.9703 2.876  13 6.9703 2.543 

 14 6.9703 2.714  14 6.9703 2.412 

 15 9.2178 2.112  15 7.5891 1.838 

  AVG 7.058253333 3.043733333   AVG 6.949673333 2.636266667 

Pedigree B       Pedigree C       

 1 6.6609 2.718  1 8.2079 3.291 

 2 6.6609 2.442  2 8.2077 2.992 

 3 6.6609 2.353  3 8.2077 2.892 

 4 6.6609 2.168  4 8.2077 2.669 

 5 6.6609 2.079  5 8.5109 2.553 

 6 6.9703 1.745  6 8.2077 1.677 

 7 7.2797 0.282  7 8.2077 0.259 

 8 6.6609 1.63  8 8.2077 1.537 

 9 6.9703 0.161  9 8.2077 0.146 

 10 6.9703 1.843  10 9.2178 2.255 

 11 6.9703 1.781  11 8.9149 2.175 

 12 7.2797 1.28  12 9.2178 1.537 

 13 6.9703 1.623  13 9.1169 1.992 

 14 6.9703 1.586  14 9.1169 1.948 

 15 7.5891 1.087  15 9.2178 1.303 
  AVG 6.929046667 1.651866667   AVG 8.59832 1.9484 
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Table C3 
Pedigree Analysis by Parameter Allele Frequency for Locational Position 
 

LOCUS EXACT ORIGINAL A B C 
LOCUS 1 6.6609 6.6609 6.6609 6.6609 8.2079 
LOCUS 2 6.6609 6.6609 6.6609 6.6609 8.2077 
LOCUS 3 6.6609 6.6609 6.6609 6.6609 8.2077 
LOCUS 4 6.6609 6.6609 6.6609 6.6609 8.2077 
LOCUS 5 6.6609 6.6609 6.6609 6.6609 8.5109 

 
 
Table C4 

Pedigree Analysis by Parameter Penetrance for Locational Position 
 

PENETRANCE EXACT ORIGINAL A B C 
PEN 1 6.6609 6.6609 6.6609 6.6609 8.2079 
PEN 2 6.6609 6.9703 6.9703 6.9703 8.2077 
PEN 3 6.6609 7.2797 7.2797 7.2797 8.2077 
PEN 4 6.6609 6.6609 6.6609 6.6609 8.2077 
PEN 5 6.6609 7.2797 7.2797 6.9703 8.2077 

 
 
Table C5 

Pedigree Analysis by Parameters Allele Frequency and Penetrance for Locational 
Position 
 

PARAMETERS EXACT ORIGINAL A B C 
LOCUS 3, PEN 2 6.6609 6.9703 6.9703 6.9703 9.2178 
LOCUS 3, PEN 4 6.6609 6.9703 6.9703 6.9703 8.9149 
LOCUS 3, PEN 5 6.6609 7.2797 7.2797 7.2797 9.2178 

 
 
Table C6 

Pedigree Analysis by Parameters Allele Frequency and Penetrance (Severe Case) for 
Locational Position 
 

PARAMETERS EXACT ORIGINAL A B C 
LOCUS 4, PEN 2 6.6609 6.9703 6.9703 6.9703 9.1169 
LOCUS 4, PEN 4 6.6609 6.9703 6.9703 6.9703 9.1169 
LOCUS 4, PEN 5 6.6609 9.2178 7.5891 7.5891 9.2178 
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Table C7 

Pedigree Analysis by Parameter Allele Frequency for Location Score 
 

LOCUS EXACT  ORIGINAL A B C 
LOCUS 1 3.56 3.609 3.291 2.718 3.291 
LOCUS 2 3.56 3.597 3.258 2.442 2.992 
LOCUS 3 3.56 3.59 3.241 2.353 2.892 
LOCUS 4 3.56 3.563 3.185 2.168 2.669 
LOCUS 5 3.56 3.537 3.143 2.079 2.553 

 
 
Table C8 

Pedigree Analysis by Parameter Penetrance for Location Score 
 

PENETRANCE EXACT  ORIGINAL A B C 
PEN 1 3.56 3.609 3.291 2.718 3.291 
PEN 2 3.56 3.265 2.954 1.745 1.677 
PEN 3 3.56 2.783 1.86 0.282 0.259 
PEN 4 3.56 3.176 2.863 1.63 1.537 
PEN 5 3.56 2.397 1.436 0.161 0.146 

 

 

Table C9 

Pedigree Analysis by Parameters Allele Frequency and Penetrance for Location Score 
 

PARAMETERS EXACT ORIGINAL A B C 
LOCUS 3, PEN 2 3.56 3.084 2.76 1.843 2.255 
LOCUS 3, PEN 4 3.56 2.939 2.634 1.781 2.175 
LOCUS 3, PEN 5 3.56 2.414 2.126 1.28 1.537 

 

 

Table C10 

Pedigree Analysis by Parameters Allele Frequency and Penetrance (Severe Case) for 
Location Score 
 

PARAMETERS EXACT ORIGINAL A B C 
LOCUS 4, PEN 2 3.56 2.876 2.543 1.623 1.992 
LOCUS 4, PEN 4 3.56 2.714 2.412 1.586 1.948 
LOCUS 4, PEN 5 3.56 2.112 1.838 1.087 1.303 
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Table C11 

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency for Location Score 
 

SUMMARY Count Sum Average Variance   

LOCUS 1 5 16.469 3.2938 0.1254437   

LOCUS 2 5 15.849 3.1698 0.2259602   

LOCUS 3 5 15.636 3.1272 0.2672887   

LOCUS 4 5 15.145 3.029 0.3655935   

LOCUS 5 5 14.872 2.9744 0.4167978   

       

EXACT  5 17.8 3.56 0   

ORIGINAL 5 17.896 3.5792 0.0008412   

A 5 16.118 3.2236 0.0035038   

B 5 11.76 2.352 0.0626105   

C 5 14.397 2.8794 0.0832643   

ANOVA             

Source of Variation SS df MS F P-value F crit 

Allele Frequency 0.31105976 4 0.0777649 4.2931525 0.0150593 3.0069174 

Pedigree 5.31451616 4 1.328629 73.34934 4.392E-10 3.0069174 

Error 0.28981944 16 0.0181137    

Total 5.91539536 24         

 
Table C12  

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in 
Penetrance for Location Score 
 

SUMMARY Count Sum Average Variance     

PEN 1 5 16.469 3.2938 0.1254437   

PEN 2 5 13.201 2.6402 0.7660037   

PEN 3 5 8.744 1.7488 2.1833467   

PEN 4 5 12.766 2.5532 0.8456157   

PEN 5 5 7.7 1.54 2.1676355   

       

EXACT  5 17.8 3.56 0   

ORIGINAL 5 15.23 3.046 0.21805   

A 5 12.404 2.4808 0.6258547   

B 5 6.536 1.3072 1.1627587   

C 5 6.91 1.382 1.636039     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Penetrance 10.1683548 4 2.5420887 9.2388045 0.0004572 3.0069174 

Pedigree 19.9497264 4 4.9874316 18.126002 8.618E-06 3.0069174 

Error 4.4024548 16 0.2751534    

Total 34.520536 24         
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Table C13  

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency and Penetrance for Location Score 
 

SUMMARY Count Sum Average Variance     

LOCUS 3, PEN 2 5 13.502 2.7004 0.4557823   

LOCUS 3, PEN 4 5 13.089 2.6178 0.4718697   

LOCUS 3, PEN 5 5 10.917 2.1834 0.7963658   

       

EXACT 3 10.68 3.56 0   

ORIGINAL 3 8.437 2.8123333 0.1242583   

A 3 7.52 2.5066667 0.1126493   

B 3 4.904 1.6346667 0.0953023   

C 3 5.967 1.989 0.154828     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Parameters 0.77135853 2 0.3856793 15.220366 0.0018758 4.4589683 

Pedigree 6.69335373 4 1.6733384 66.03628 3.646E-06 3.8378545 

Error 0.20271747 8 0.0253397    

Total 7.66742973 14         

 

 

Table C14  

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency and Penetrance (Severe Case) for Location Score 
 

SUMMARY Count Sum Average Variance     

LOCUS 4, PEN 2 5 12.594 2.5188 0.5730627   

LOCUS 4, PEN 4 5 12.22 2.444 0.57539   

LOCUS 4, PEN 5 5 9.9 1.98 0.9474415   

       

EXACT 3 10.68 3.56 0   

ORIGINAL 3 7.702 2.5673333 0.1620573   

A 3 6.793 2.2643333 0.1406103   

B 3 4.296 1.432 0.089611   

C 3 5.243 1.7476667 0.1487803     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Parameters 0.85199413 2 0.4259971 14.809314 0.0020453 4.4589683 

Pedigree 8.15345293 4 2.0383632 70.861428 2.776E-06 3.8378545 

Error 0.23012387 8 0.0287655    

Total 9.23557093 14         
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Table C15 

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency for Locational Position 
 

SUMMARY Count Sum Average Variance     

LOCUS 1 5 34.8515 6.9703 0.4786418   

LOCUS 2 5 34.8513 6.97026 0.478518048   

LOCUS 3 5 34.8513 6.97026 0.478518048   

LOCUS 4 5 34.8513 6.97026 0.478518048   

LOCUS 5 5 35.1545 7.0309 0.6845   

       

EXACT 5 33.3045 6.6609 1.42109E-14   

ORIGINAL 5 33.3045 6.6609 1.42109E-14   

A 5 33.3045 6.6609 1.42109E-14   

B 5 33.3045 6.6609 1.42109E-14   

C 5 41.3419 8.26838 0.018379992     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Allele Frequency 0.01470399 4 0.003676 1 0.436207616 3.006917382 

Pedigree 10.3359678 4 2.58399195 702.9360922 9.40787E-18 3.006917382 

Error 0.05881597 16 0.003676    

Total 10.4094878 24         

 
 
Table C16 

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in 
Penetrance for Locational Position 
 

SUMMARY Count Sum Average Variance     

PEN 1 5 34.8515 6.9703 0.4786418   

PEN 2 5 35.7795 7.1559 0.36366258   

PEN 3 5 36.7077 7.34154 0.306244128   

PEN 4 5 34.8513 6.97026 0.478518048   

PEN 5 5 36.3983 7.27966 0.334956448   

       

EXACT 5 33.3045 6.6609 1.42109E-14   

ORIGINAL 5 34.8515 6.9703 0.09572836   

A 5 34.8515 6.9703 0.09572836   

B 5 34.5421 6.90842 0.067009852   

C 5 41.0387 8.20774 8E-09     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Penetrance 0.5896174 4 0.14740435 5.308892107 0.006464877 3.006917382 

Pedigree 7.40384309 4 1.85096077 66.66391507 9.0099E-10 3.006917382 

Error 0.44424892 16 0.02776556    

Total 8.43770941 24         
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Table C17    

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency and Penetrance for Locational Position 
 

SUMMARY Count Sum Average Variance     

LOCUS 3, PEN 2 5 36.7896 7.35792 1.098934572   

LOCUS 3, PEN 4 5 36.4867 7.29734 0.835605428   

LOCUS 3, PEN 5 5 37.7178 7.54356 0.947758638   

       

EXACT 3 19.9827 6.6609 0   

ORIGINAL 3 21.2203 7.07343333 0.031909453   

A 3 21.2203 7.07343333 0.031909453   

B 3 21.2203 7.07343333 0.031909453   

C 3 27.3505 9.11683333 0.030582803     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Parameters  0.16459406 2 0.08229703 7.479145442 0.014743539 4.458968306 

Pedigree 11.4411663 4 2.86029157 259.9430017 1.68889E-08 3.837854479 

Error 0.08802827 8 0.01100353    

Total 11.6937886 14         

 
 
Table C18 

Two-Factor ANOVA Summary for Missing Data in a Pedigree and Variation in Allele 
Frequency and Penetrance (Severe Case) for Locational Position 
 

SUMMARY Count Sum Average Variance     

LOCUS 4, PEN 2 5 36.6887 7.33774 1.007139788   

LOCUS 4, PEN 4 5 36.6887 7.33774 1.007139788   

LOCUS 4, PEN 5 5 40.2747 8.05494 1.270462023   

       

EXACT 3 19.9827 6.6609 0   

ORIGINAL 3 23.1584 7.71946667 1.683752083   

A 3 21.5297 7.17656667 0.127637813   

B 3 21.5297 7.17656667 0.127637813   

C 3 27.4516 9.15053333 0.003393603     

ANOVA             

Source of Variation SS df MS F P-value F crit 

Parameters 1.71458613 2 0.85729307 3.160153905 0.097398111 4.458968306 

Pedigree 10.9687099 4 2.74217748 10.10821526 0.003230117 3.837854479 

Error 2.17025649 8 0.27128206    

Total 14.8535525 14         

 



Table C19 

SimWalk2 Raw Convergence Results 
 

 Original Pedigree Pedigree A Pedigree B Pedigree C 
Case CP(B) CR CP(B) CR CP(B) CR CP(B) CR 

1 1.3374 0.2523 1.5713 0.3636 1.832 0.4541 2.4218 0.5871 
2 1.333 0.2498 1.5596 0.3588 1.9475 0.4865 2.4376 0.5898 
3 1.3484 0.2584 1.3535 0.2612 1.7583 0.4313 2.4901 0.5984 
4 1.3204 0.2427 1.4376 0.3044 1.6661 0.3998 2.2352 0.5748 
5 1.4107 0.2911 1.5368 0.3493 1.7053 0.4136 2.3779 0.5795 
6 1.4099 0.2907 1.4514 0.311 1.8298 0.4535 2.5108 0.6017 
7 1.5313 0.347 1.462 0.316 1.8613 0.4627 2.5374 0.6059 
8 1.4769 0.3229 1.619 0.3823 1.899 0.4734 2.5283 0.6045 
9 1.8882 0.4704 1.6888 0.4079 2.0007 0.5002 2.5366 0.6058 

10 1.5429 0.3519 1.5676 0.3621 2.0104 0.5026 2.2749 0.5604 
11 1.4627 0.3163 1.6457 0.3924 1.952 0.4877 2.4014 0.5836 
12 1.6699 0.4012 1.7677 0.4343 1.9976 0.4994 2.5162 0.6026 
13 1.6658 0.3997 1.7231 0.4197 1.8245 0.4519 2.6008 0.6155 
14 1.6657 0.3997 1.5402 0.3507 1.9031 0.4745 2.5793 0.6123 
15 1.7827 0.4391 1.8264 0.4525 1.9827 0.4956 2.5891 0.6138 

AVG 1.52306 0.335547 1.58338 0.364413 1.87802 0.465787 2.46916 0.595713 
 

 
 
 
 
 

 75


	Convergence Analysis of MCMC Method in the Study of Genetic Linkage with Missing Data
	Recommended Citation

	Table of Contents
	Introduction
	Elston-Stewart Algorithm and EA
	MCMC Method for Computing LOD and Location Scores
	Convergence Analysis of MCMC Method
	Implementation of SimWalk2 for EA
	Conclusion

