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ABSTRACT 

Physical layer (PHY) design in the wireless communication field realizes gratifying 

achievements in the past few decades, especially in the emerging cellular communication 

systems starting from the first generation to the fifth generation (5G). With the gradual increase 

in technical requirements of large data processing and end-to-end system optimization, 

introducing artificial intelligence (AI) in PHY design has cautiously become a trend. A deep 

neural network (DNN), one of the population techniques of AI, enables the utilization of its 

‘learnable’ feature to handle big data and establish a global system model. In this thesis, we 

exploited this characteristic of DNN as powerful assistance to implement two receiver designs in 

two different use-cases. We considered a DNN-based joint baseband demodulator and channel 

decoder (DeModCoder), and a DNN-based joint equalizer, baseband demodulator, and channel 

decoder (DeTecModCoder) in two single operational blocks, respectively. The multi-label 

classification (MLC) scheme was equipped to the output of conducted DNN model and hence 

yielded lower computational complexity than the multiple output classification (MOC) manner. 

The functional DNN model can be trained offline over a wide range of SNR values under 

different types of noises, channel fading, etc., and deployed in the real-time application; 

therefore, the demands of estimation of noise variance and statistical information of underlying 

noise can be avoided. The simulation performances indicated that compared to the corresponding 

conventional receiver signal processing schemes, the proposed AI-aided receiver designs have 

achieved the same bit error rate (BER) with around 3 dB lower SNR.  

 

Keywords: Deep Learning; Receiver Design; Multi-label Classification; Bit Error Rate
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CHAPTER 1 

INTRODUCTION 

Background 

Since the first-generation network has been launched in 1983, wireless communication 

technology has improved dramatically and entered fifth-generation (5G) rapidly in recent years 

(Ly & Yao, 2021). Numerous applications of 5G have emerged in different layers, for instance, 

massive Internet of Things (IoT), enhanced mobile broadband communication system (eMBB), 

ultra-reliable and low latency communication (URLLC) in the communication network field, as 

well as healthcare tech, assisted wearable device, financial technology, and smart home and 

transportation systems which can be effortlessly seen in our daily life in last few years (Agiwal et 

al., 2016). 5G is an enlightened application of leading-edge wireless communication on the 

physical layer (PHY) design with a few representative characteristics, such as requiring 

innumerable data, high speed and data rate, and low latency. 

Artificial intelligence (AI) tool gradually penetrates all walks of life in recent years and 

undoubtedly a widespread technique not only applied in the Computer Science field, for 

instance, visualizations, speech processing, image recognition, etc., but also rapidly utilized in 

wireless communication realm (Aldossari & Chen, 2019; O’Shea et al., 2017; Qin et al., 2019). 

However, sophisticated techniques are increasingly required numerous datasets which are 

difficult to handle manually, e.g., 5G, massive multiple-input multiple-output (MIMO) (Huang et 

al., 2019), etc. To deal with this problem, a common trend is to apply AI tools to cooperate with 

conventional algorithms in wireless communication systems. For instance, compared to the 

conventional approach of signal detection and classification, a well-trained DNN requires a 

much shorter processing time (e.g., several milliseconds) to complete the same tasks (National 
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Instruments, 2019). Machine learning (ML), a well-known application of AI technology, allows 

machines to act correspondingly through learning from numerous data without explicit 

programming (C. X. Wang et al., 2020). One of the notable implementations of ML is deep 

learning (DL) or deep neural network (DNN), which applies multiple layers in neural networks 

to classify patterns through training sample data (Marcus, 2018). 

Although existing communication algorithms have plenty of mature and optimal 

applications on communication system design, fulfilling incremental complex PHY layer designs 

with AI-assisted communication structure, like the 5G system, has the following reasons.  

• In conventional communication system structure, there are various blocks, such as 

channel coding and decoding, modulation and demodulation, equalization, etc., which are 

responsible for processing transmitted or received signals at different stages. In 

particular, these blocks usually handle their tasks individually without intervention on the 

functions of other blocks. This block structure has a significant capacity of optimizing 

performance in the current signal processing block to solve various imperfections 

producing from practical channels; however, an optimal algorithm for global system 

processing is still a challenge for researchers (Wang et al., 2017). Thus, unlike the mode 

of sub-optimal realization for conventional block by the block communication system, 

DL attracts more attention since its ability to break through the limitation of block-based 

structure to optimize the property of an end-to-end system (O’Shea & Hoydis, 2017; 

Wang et al., 2017). Furthermore, another remarkable feature of DNN is the ability to 

process a large amount of data, and hence it is robust to cope with interferences from the 

original blocks and channels. 
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• Modeling wireless communication channels mathematically with harsh conditions are 

hard to implement. In conventional communication, designing a system model relies on 

accurate mathematical modeling of each block (Qin et al., 2019). However, in practical 

scenarios, potential unknown impact in developing complex models that result in 

analytical system representation becoming strenuous (Qin et al., 2019). For example, a 

complicated channel that cannot be handled by Maxwell’s equation is hard to express 

analytically through a rigid framework, such as molecular or underwater communications 

(Farsad & Goldsmith, 2017; Wang et al., 2017). Moreover, extra nonlinearities and 

imperfections, which demand more robust signal processing algorithms to realize low 

consumption of systems, are introduced to the current system, and yet it could cause high 

computational complexity (O’Shea & Hoydis, 2017; Wang et al., 2017). In this case, 

DNN is expected since its learning algorithm can achieve the optimization of end-to-end 

performance without the requirement of an exact system model mathematically (Wang et 

al., 2017). In addition, based on concurrent structures of DNNs, low accuracy data can be 

utilized in executing DNN with low energy consumptions and high computational speed 

(O’Shea & Hoydis, 2017). 

The open systems interconnection (OSI) model is a theoretical framework and was 

developed to intuitively describe a functional network. Seven fundamental layers in the OSI 

model altogether exhibit the process of transmitting data globally (GeeksforGeeks, 2020b). In the 

wireless communication field, unlike the initial application of ML on higher layers of the OSI 

model, such as managing resources, researchers pay significant attention to DL implementation 

on PHYs (the first layer of the OSI model) (Sattiraju et al., 2019). Generally, the block-based 

design approach is fundamental at transmitter and receiver, and this approach displays an optimal 
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performance. In addition, a MIMO system can provide a wider link range and higher data 

throughput without additional transmitted power and bandwidth and hence is widely utilized in 

the communication realm (Kashyap & Bagga, 2014). However, due to the generating 

interferences and fading between each block and every channel for multiple received ends, the 

optimal performance of an end-to-end system might not be guaranteed by a block-based design 

approach. Moreover, whereas some existing algorithms of signal processing offer optimal and 

robust performance, they often entail high computational complexity. All these points motivate 

researchers in the wireless communication field to push the boundaries of throughput and bit 

error rate performance for the end-to-end system. Note that our purpose of deploying AI tools on 

physical layers is not to reinvent the conventional signal processing algorithms but to facilitate 

the supplement and perfection of existing design. 

Contributions 

The primary contributions of this thesis are enlisted as follows: 

• Developing two fully-connected DNN-based functional signal processing blocks with 

different diversity receiver cases. 

• Training these DNN models offline with various datasets that comprise different SNR 

values, different sorts of noises, channel fading, etc., and deploying the trained models in 

real-time applications. 

• Demonstrating the effectiveness of the DNN based-functional blocks by comparing BER 

performances to corresponding conventional signal processing schemes. 

Organization of The Thesis 

The remaining work is organized as follows: 
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In Chapter 2, the theoretical background of the conducted research is introduced. In this 

chapter, the process of channel coding techniques and baseband modulation is presented. 

Furthermore, equalization is illustrated for multiple antennas cases. In addition, an overview of 

DNN and multi-label classification (MLC) algorithms are given. 

In Chapter 3, we propose a fully connected DNN model with an MLC manner as a joint 

demodulator and decoder (DeModCoder). We train our DeModCoder offline through a wide 

range of SNR and apply online to investigate bit-error-rate (BER) performance. We arrange 

conventional demodulation collaborating with syndrome-based decoding algorithm, and multi-

output classification (MOC) manner as two baseline schemes to evaluate the performance of 

MLC DeModCoder. 

In Chapter 4, based on the implemented MLC-based DeModCoder and following the 

same experimental structure, we develop a joint equalizer, demodulator, and channel decoder 

(DeTecModCoder) utilizing DNN with MLC algorithm. In this work, we consider a "-diversity 

receiver system. Moreover, in addition to additive white Gaussian noise (AWGN), we introduce 

non-Gaussian noise and channel fading to the transmitted signal in order to enhance the 

robustness of the system through adding noise and interference. 

Finally, the conclusion of this thesis and future work are presented in Chapter 5.   
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CHAPTER 2 

THEORETICAL BACKGROUND 

The theoretical background is introduced in this section, including how the channel 

decoding and baseband demodulation work on the receiver side, and what type of deep neural 

network is utilized in our design. The block diagram of the digital communication system is 

shown in Figure 1. 

 

Figure 1. Block Diagram of Digital Communication System. 

Channel Coding Process 

In 1948, the channel coding technique was initiated by Claude Shannon (Costello & 

Forney, 2007).  This technique is an essential process in wireless communication systems and is 

also represented as a forward error control coding technique. Channel coding is applied in the 

digital communication stage and utilized to detect erroneous bits in order to correct them before 

modulation. Not only at the transmitter end but also at the receiver end arrange this process, 

called channel decoding. Since the potential of transmitted data bits is corrupted by various 

noise, interference, and fading, raw information bits are supposed to be protected and thus parity 
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bits, as known as redundant bits, are added to the original data bits (Faruque, 2016). Therefore, at 

the receiver end, the corresponding channel decoder can detect and correct error bits through the 

transmitted parity bits. However, extra redundancy bits cost a higher price in bandwidth (Grami, 

2016). Although we can add adequate parity bits to obtain lower enough BER, the whole 

bitstream requires more bandwidth (Faruque, 2016). Due to equitable resource allocation, it is 

crucial to balance the requirement of bandwidth and thus transmission rate is maintained under 

channel capacity (Chan, 1997).  

In order to approximately imitate a practical environment, both Gaussian and non-

Gaussian noise are considered to obtain noisy transmitted signals. Received signals, which 

spread through multiple channels, are impaired by channel fading at the received end. Within this 

process, noise and fading are two basic influences that occur in wireless communication. 

Different from the point-to-point wired communication system, the transmission process happens 

through the air with a variety of interferences for wireless communication since distortions can 

exist from single or multiple transmitters to a common receiver or multiple receivers, e.g., uplink 

or downlink of a cellular system respectively; whereas fading is the fluctuation of channel 

strength over time because of path loss, obstacles influences of weather or shadowing, and 

multipath propagation (Tse & Pramod, 2005). In particular, Rayleigh fading is a typical non-

light-of-sight component that occurred far range between transmitter and receiver (Clerckx & 

Oestges, 2013). Gaussian noise and non-Gaussian noise are regarded as mathematical noise 

models based on the distributions they are following, e.g., Gaussian noise follows Gaussian 

distribution. In Chapter 4, we consider two types of non-Gaussian noises containing generalized 

Gaussian noise (GGN) and #-mixture noise (Ahmed, 2014).  
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Hamming Code and Reed-Solomon Code 

Our experiment is to design a DNN-based MLC joint baseband processing model to 

improve BER performance and reduce computational complexity compared with syndrome 

decoding algorithms (Grami, 2016). In this research, Hamming Code and Reed-Solomon Code 

are utilized to demonstrate simulation results of conducted design.  

Hamming Code is published by Richard Hamming in 1950 (Costello & Forney, 2007). 

(%, ') Hamming code is one of the linear block codes with % length of bits and ' information 

bits, thus % − ' parity bits are mapping into the code words (Woods, 2012). With a similar 

concept of parity check method, Hamming code applies parity matrix to calculate the location of 

occurring errors and correct them(Garg, 2007). For linear block code, only ‘1’ or ‘0’ might occur 

in each bit position. Therefore, an (%, ') linear block code contains 2! possible received 7-bit 

code stream, where 2" of them are valid code bits (Parker, 2017). For instance, an (7,4) 

Hamming code exists 2# possibilities of received bit sequences, and 2$ of them are regarded as 

valid code bits. On linear block codes, an essential concept of error-correcting capability is 

Hamming distance, which is regarded as the number of positions for the differences between two 

respective codewords (Djordjevic, 2012). The minimum distance +%&! for Hamming code is 3 

(the Hamming distance is 3), which represents there exists a minimum of 3 different bits between 

transmitted code bits and other possible code words (Parker, 2017). For instance, on (7,4) 

Hamming code, every codeword has at least 3 different bits out of the other 2$ − 1 codewords, 

and it is used to correct only a single error. 

Reed-Solomon (RS) code is a linear and non-binary block code and is commonly used for 

its capacity of correcting large errors (Garg, 2007). Unlike adding parity bits for Hamming code, 

RS code is determined by multi-bit symbols, which are generated by various raw bits (Mitchell, 
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2009). Each symbol is made up of - bits. Generally, an (%, ') RS code represents % block 

lengths and ' message lengths, where % = 2% − 1, ' = % − 2/, in which / is the maximum 

number of error-corrected by each symbol (Klima et al., 2020). Therefore, 2/ parity bits are 

added to the (%, ') RS code. The minimum distance of RS code is represented as +%&! 	= 	% −

' + 1, where ' is the total amount of symbols for % lengths of code bits (Djordjevic, 2012). To 

generally overview the decoding process of RS code, we assume message polynomial 2(3), 

generator polynomial 4(3) = [(3 − 6)(3 − 6')⋯ (3 − 6'()], where / is the capacity of 

correcting error and 6 is a primitive root of Galois Fields (GF), which consists of finite elements 

(Bhaskar, 2020; Westall, 2010). If the quotient of the received signal 9(3) divided by 4(3) is 

equal to 0, there is no error emerging; otherwise, the received signal 9(3) can be formed as 

9(3) = 2(3) ⋅ 4(3) + ;(3), where ;(3) expresses error polynomial containing the information 

of error positions and the number of error (Bhaskar, 2020). It is worth mentioning that within the 

decoding stage, RS code enables to correct of multiple symbol errors. Based on symbol-based 

structure, the decoder corrects the complete symbols rather than a single error bit (Mitchell, 

2009). Therefore, for burst error correction causing by fading, (%, ') RS code shows a robust 

performance than binary code although it provides high computational complexity (Mitchell, 

2009).  

Baseband Modulation 

Normally, raw information signals with a low frequency that constitute frequencies from 

near 0	=> up to some specific low value, is called baseband signal (Sundareshan, 1992). Since 

directly transmitting multiple signals with a similar spectrum of frequency could cause 

interference, they are required to be modulated before passing channels. By modulation process, 

baseband signals are transferred to carrier waves with high frequency (Plonus, 2001). Phase Shift 
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Keying (PSK) modulators are powerful and popular digital modulators; thus, binary phase-shift 

keying (BPSK) and quadrature phase-shift keying (QPSK) collaborate with optimal equalizer 

and syndrome-based channel decoder blocks to constitute conventional scheme in this research. 

BPSK and 4-QAM 

 

Figure 2. Constellation Diagram of (a) BPSK and (b) 4-QAM.  

BPSK is the fundamental instance of PSK, which is one of the most widely applied 

bandpass modulators (Nassar, 2001). First let us assume the input signal has a form ?(/) =

@ cos(D/ + E), where phase E will affect message bits ?(/). As can be seen in Figure 2 (a), In-

phase (I) axis and Quadrature (Q) consist of a plane, called a constellation, and binary symbols 

‘1’ and ‘0’ are represented by phase-shifting of 0 to F with the same amplitude (Gallion, 2016). 

It is remarkable that the phase of signal only shifts when the binary symbol is changed, e.g., if 

binary bit changes from ‘0’ to ‘1’, the phase of carrier signal shifts 180 degrees, and thus the 

signal sensitivity for nonlinearity is drastically reduced (Gallion, 2016). For example, assuming 

bit sequence ‘001’ goes into BPSK modulator bit-by-bit, output waveform maintains @ cos(D/ +

0)) when there is no phase change between first and second bit ‘0’; in contrast, the waveform 

adjusts to @ cos(D/ + 180)) when the third bit ‘1’ enters (Nassar, 2001). BPSK modulation is 
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robust and produces good BER performances even with a low range of SNRs; therefore, it is 

capable of showing good performance in harsh environments (Lopez-Gordo & Pelayo, 2013). 

However, since the limitation of BPSK is that only 1 bit can be transmitted for each symbol, it 

may not be appropriate for high data rate requirements (Gallion, 2016).  

In Figure 2 (b), by adding two binary symbols to BPSK, we can obtain QPSK, as known 

as 4-QAM, which can carry double BPSK data rate with less sensitivity to noise (Haque et al., 

2012). In particular, PSK and QAM are different types of modulators. However, QPSK and 4-

QAM have the same points on the constellation diagram, thus they are identified as the same 

modulation scheme. Since 4-QAM simultaneously carries 2 bits over every time interval, its 

spectrum efficiency is two times higher than BPSK (Gallion, 2016). Rather than 0 to F phase 

shifting of BPSK, phase E of 4-QAM is switched to 0), 90), 180), and 270) for bit pair ‘00’, 

‘01’, ‘10’, and ‘11’, respectively (Nassar, 2001).  

Equalization for Multi-Antenna Cases 

 

Figure 3. System Structures of SISO, SIMO, MISO, and MIMO. 



12 

Figure 3 exhibits four common wireless communication systems, containing single-input 

single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output (MISO), 

and multiple-input multiple-output (MIMO). These systems are widely applied in different 

conditions of the environment. The applications of multiple antenna arrangements significantly 

break through the limitation of system coverage area and data throughput without additional 

bandwidth and power consumption (Kashyap & Bagga, 2014). However, intersymbol 

interference could be introduced to the signal at the receiver due to multipath propagation 

between different channels. Intersymbol interference, a consequence of delay spread, leads to 

being indistinguishable between transmitted signal and noise. Not only the effect of noise and 

intersymbol interference but amplifiers and mixers will further increase the possibility of bit 

error occurrence by generating nonlinear distortion (Xu et al., 2018). Based on this situation, 

various types of the equalizer, which is used to add or subtract gain over a selectable frequency 

scale (Long, 2014), are deployed to diminish the aforementioned nonlinearity and influences. On 

the other hand, accurate channel state information (CSI) is essential for massive MIMO system 

design to achieve desirable performance. However, it is difficult to execute CSI estimation and 

feedback in such a system due to the complexity of obtaining a precise channel model (H. He et 

al., 2019). In this case, these findings motivate researchers to apply machine learning techniques 

to deal with this problem. 
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Deep Neural Network and Multi-Label Classification 

 

Figure 4. Structure of Deep Neural Network. 

DNN has a powerful capability on the task of visualization processing (Mahmood et al., 

2017), and researchers also extend this powerful tool into the wireless communication field. In 

general, except input layer and output layer, DNN contains multiple hidden layers with 

parameters of weight J, bias K, and activation function L(3) (Witten et al., 2017).  As can be 

seen in Figure 4, the structure of DNN imitates the human brain consisting of massive nodes. We 

assume that the total number of input and output nodes are M and N respectively. Input and 

output data formed as a column matrix ?! and O%, where % ∈ {1,2,⋯ ,M}, - ∈ {1,2,⋯ ,N}, 

respectively. Without any calculation, the input layer passes data symbols to hidden layers, and 

the output layer receives data bits from hidden layers. At each neuron, transmitted data or signals 

are processed through an activation function, which introduces nonlinearities to the output of 

current neurons through sum the weight and adds a bias in order to have the ability to handle 

complicated tasks by improving the learning capability of NNs (GeeksforGeeks, 2020a). In this 

research, rectified linear unit (ReLU) and parametric rectified linear unit (PReLU) activation 

functions are utilized in our design. ReLU, with function L(3) = max(3, 0), gives the output 
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which is the same as input when it is a positive value, otherwise, ReLU gives 0 as the output of 

neurons. In addition, ReLU is set as a default activation function of most of NNs since it often 

attains good performance with low computational complexity and short training duration 

(Brownlee, 2019). However, in some cases, ReLU outputs 0 when given inputs maintain 

negative due to updating large weights (Brownlee, 2019). Therefore, we considered PReLU to 

further increase the performance of our model avoiding the limitation of the ReLU activation 

function. PReLU can be formed as L(3) = max(3, 63), where 6 ∈ (0,1). Instead of output 0 for 

negative value, PReLU introduces a coefficient 6 to adjust the slope of negative input values so 

that ‘dying ReLU’ occurring in ReLU can be avoided (K. He et al., 2015). Furthermore, we 

applied a simple fully connected neural network with a modified number of hidden layers and 

neurons to demonstrate the simulation results compared with our designed baseline schemes, 

which are introduced in detail in Chapter 3 and Chapter 4.  

A fully connected neural network consists of a bunch of layers that are fully connected. 

Every output of the current neuron relies on every input dimension from the previous layer. The 

reason for selecting a fully connected neural network is that there is no need to assume a 

particular input based on the “structure agnostic” characteristic of the fully connected neural 

network, e.g., the input dataset contains special noise, distortion, etc. (Ramsundar & Zadeh, 

2018).  

Whereas a common concept of conventional design is to mathematically model a system 

block-by-block, AI-based methods enable to learn from input datasets (V), which should be 

mapped to particular output datasets (W), and thus design functions of a network (Sattiraju et al., 

2019). If both input datasets V and output datasets W are required by the model to satisfy the 

function W = X(V), the manner of this model is called supervised learning (Brownlee, 2020b). In 
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our user cases, we apply a supervised learning approach to train the DNN. Thus, information bit 

sequences, which are generated from a conventional channel processing scheme, are identical to 

output datasets to train DNNs. Once trained, the output of a trained DNN can be used to compare 

with the information datasets in order to evaluate the BER performance. Therefore, we enable to 

predict output datasets from different input variables.  

In the simulation process, we applied a backpropagation algorithm to improve the 

performance of NN (M. L. Zhang & Zhou, 2006). An essential question is how we handle the 

non-continuous ReLU when we are using the backpropagation algorithm. In most of the cases, 

ReLU has a gradient, where output 1 for 3 > 0 and output 0 for 3 < 0 (Brownlee, 2019). When 

3 = 0, the ReLU function is non-continuous and non-differentiable; however, it does not mean 

that ReLU cannot be used in practice. First, when the neural network (NN) is trained, it does not 

usually occur that a local minimum value is reached for cost function, and the non-differentiable 

points are seldom; therefore, the undefined gradient is limited in a small threshold and be 

acceptable (Sarkar, 2018). Second, in the practical application of TensorFlow, instead of warning 

an error of undefined deviation, it usually returns one of the one-sided deviations (Sarkar, 2018). 

Hence, the software usually outputs 0 as the deviation of ReLU for 3 = 0 or the non-linear part 

(Brownlee, 2019), and this will not affect the calculation of the backpropagation algorithm. 

Multi-Label Classification 

 After training through hidden layers, we introduce the multi-label classification (MLC) 

method in the output layer where each label comprises of binary class using Keras from the 

TensorFlow library (Abadi et al., 2016). Based on this arrangement, transmitted data bits are 

presented obviously and used to calculate BER directly. A typical classification problem has one 

or more than one mutually exclusive class, where a set of inputs corresponds one each one of 
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them (Brownlee, 2020a). Unlike traditional classification problems, MLC generates grouping 

labels for every object (Luaces et al., 2012). These labels are not mutually exclusive with 

simultaneous requirements, and thus we can simply use binary bitstream generated from the 

MLC output layer to compare with original information bits. Therefore, the first-order strategy in 

the MLC technique is applied, where there is no need to consider coexistence for each label (M. 

L. Zhang & Zhou, 2014). 
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CHAPTER 3 

JOINT DEMODULATION AND DECODING WITH MULTI-LABEL CLASSIFICATION 

USING DEEP NEURAL NETWORKS 

Background Overview 

Artificial intelligence (AI) technologies in the physical layer of wireless communication 

systems have recently sparked a burst of interest. A range of recent research indicates that AI 

tools, such as DNNs, can improve or substitute various physical layer algorithms in transmitter 

and receiver chains (Akın et al., 2020; Qin et al., 2019; Ye et al., 2018). There is a high 

possibility to gather plenty of datasets, which used to train AI tools, because of diverse 

application fields of current communication systems, such as fifth-generation (5G) new radio 

(NR) (Dahlman et al., 2018), 802.11ax wireless LAN (Wi-Fi 6) (Y. Zhang et al., 2020), etc., 

which cause ultra-high throughput. In general, the conventional transmitter and receiver designs 

are block-based, with each block performing its task optimally and often efficiently. However, 

for different communication systems, block-based design manner may not guarantee optimal 

end-to-end performance in terms of energy efficiency, throughput, error rate, etc. Moreover, 

notwithstanding that some of the current signal processing algorithms provide robust and optimal 

performance, they often result in high computational complexity. These findings altogether 

prompted the wireless communication engineers to adopt AI techniques to push the boundaries 

of the error rate and throughput performances while limiting the complexity of operation and 

computation within a particular threshold. It is worth mentioning that the objective of deploying 

AI tools in the physical layer of wireless communications is not to replace the existing signal 

processing algorithms without a specific goal but to complement the existing design with more 
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sophisticated algorithms that may outperform the conventional design and/or alleviate the 

implementation complexity. 

It has recently become apparent that in a variety of use cases, deploying AI in 

equalization (detection), demodulation, and decoding improves performance significantly 

compared to conventional solutions. One collection of research works concentrates on assisting 

the conventional algorithms with AI techniques in order to further improve the throughput or 

minimize the error rate performance (H. He et al., 2018; Y. He et al., 2020; Nachmani et al., 

2016, 2018; Sun et al., 2020). In contrast, some researchers focus on substituting signal 

processing blocks with AI tools, such as fully connected DNN, recurrent neural network (RNN), 

convolutional neural network (CNN), autoencoder, etc. (Akın et al., 2020; Farsad & Goldsmith, 

2017; Mohammad et al., 2018; Vaz et al., 2019; H. Wang et al., 2019; Ye et al., 2018). 

DNN based channel decoder designs for linear block codes have been well investigated 

in the following research and reference therein. According to Vaz et al. (2019) to decode a (7,4) 

Hamming code, a fully connected DNN-based decoder was developed. The DNN-decoder was 

trained offline using the backpropagation algorithm and then used to decode the bitstream online 

at the receiver to retrieve the information bits. Research work from Nachmani et al. (2016, 2018) 

enhanced the belief propagation process by assigning weights to the edge of the Tanner graph for 

decoding block codes. Deep learning (DL) based bit interleaved coded modulation (BICM) 

receiver is designed by Y. He et al. (2020) for low-density parity-check (LDPC) coded direct 

current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. The 

conditional probabilities for the log-likelihood ratio (LLR) detector are first predicted using a 

non-iterative neural network (NN) assisted BICM receiver. Two iterative NN-aided BICM 
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schemes were designed to improve LLR efficiency in different flat and frequency selective 

fading channels. 

In this chapter, we design a joint baseband demodulator and channel decoder 

(DeModCoder) for a communication receiver with a fully connected DNN (Goodfellow et al., 

2016) using a multi-label classification (MLC) algorithm while incorporating binary class for 

each label (Brownlee, 2020a; Grunau et al., n.d.; M. L. Zhang & Zhou, 2006). The designed DL-

assisted (DNN based) DeModCoder is applicable for linear digital modulation schemes, e.g., 

binary-phase shift keying (BPSK), N-ary quadrature amplitude modulator (N-QAM), etc. and 

linear block codes, e.g., Hamming code, Reed Solomon (RS) code, etc. We aim to investigate 

and compare the error rate performances of the designed DeModCoder for different channel 

coding and digital modulation schemes with those obtained from conventional demodulators and 

decoding schemes. For the design phase, we consider a variety of scenarios that represent a 

variety of use cases in different wireless communication systems and standards. In addition, we 

stress that the use of MLC-based DeModCoder lessens the computational complexity compared 

to the commonly deployed multiple output classifier (MOC) scheme in the literature from 

Ahmed & Allen (2020). We train a DNN over a wide range of training symbols gathered from 

various signal-to-noise ratios (SNRs) to further diminish computational complexity and 

demonstrate the effectiveness of the designed MLC DeModCoder over the conventional 

approach and MOC DeModCoder by simulations. 

The remainder of this chapter is organized as follows. We describe the system model and 

the DL-assisted DeModCoder in Sections 3.2 and 3.3, respectively. The simulation results are 

presented in Section 3.4 and the conclusions are made in Section 3.5. 
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System Model 

 

Figure 5. A Point-to-Point Communication Link with Conventional vs. AI Based Receiver 
Processing. 

We consider a point-to-point communication system (shown in Figure 5) with a 

transmitter and a receiver, where the transmitter deploys (%*, '*) channel coding and baseband 

digital modulation before sending the transmit signal to the receiver. We assume that the 

transmitter and the receiver are perfectly synchronized1. Let us denote channel encoding specific 

parameters %	 = 	[%* and ' = ['*, where [, being an integer, represents the number of bits 

used to represent an information symbol for a given channel coding scheme2. For instance, we 

set [ = 1 and [ = log'(%* + 1) for (binary) Hamming code and RS code, respectively. The 

transmitter sends a message + containing ' information bits (e.g., ' = '* for (binary) Hamming 

code and ' = log'(%* + 1) '* for RS code) to the receiver over a noisy channel. At first, ' 

information bits are encoded with (%*, '*) linear block code and represented as 3 = X(+) with % 

bits (e.g., % = %* for (binary) Hamming code and % = log'(%* + 1) %* for RS code). Here, X(⋅) 

denotes the channel encoding techniques for linear block codes. The encoded bits are then passed 

 
1 In particular, we assume that the timing and frequency errors are estimated and corrected with appropriate signal 
processing techniques. Furthermore, we assume that the channels are estimated and equalized as well. 
2 In particular, !!-ary (! = log" !!) information symbols (for the purpose of channel coding) can be constructed 
from Galois Field (GF) 2# (Proakis & Salehi, 2001) 
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through a baseband digital modulator, e.g., BPSK, N-QAM, etc., and hence the modulated 

symbols are denoted as ? = L(3), where L(⋅) represents the baseband modulation process. It is 

worth pointing out that ? is the baseband transmitted signal taken from a finite N-ary modulation 

symbol alphabet, c.f., 4-QAM, 16-QAM, BPSK, etc. with total power ℰ{|?|'} = 2+. Note that  

ℰ{⋅} denotes statistical expectation operation. The transmitter communicates with the receiver 

over ` equal-duration transmission time intervals. The discrete-time baseband modulation model 

for a given time interval a can be expressed as  

O[a] = ?[a] + b[a], a ∈ {1,2,⋯ , `} (1) 

 where O[a] is the (complex) received signal and b[a] represents complex-valued additive white 

Gaussian noise (AWGN) with zero mean and variance c'. The received SNR is defined as d	 =

2+/c'. Note that although we consider an AWGN baseband channel model in this chapter, our 

developed MLC DeModCoder is applicable for any fading channel, where the signals at the 

receiver need to be equalized first before feeding them to the DeModCoder block.  

The received signals are grouped in blocks and fed into the DNN based MLC 

DeModCoder, which outputs the decoded message bits. It is worth noting that the designed 

DeModCoder jointly demodulates and decodes the received signal in a single module (see the 

receiver block in Figure 5), which would otherwise be demodulated and decoded in two 

consecutive (signal processing) blocks. The MLC DeModCoder is trained offline using a few 

input datasets containing O[a] and corresponding output datasets +[a] that encompass a wide 

range of SNRs. We discuss the details of the procedure in Section 3.3. 
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DL Assisted Joint Demodulation and Decoding 

In this section, we demonstrate how to develop a DL-assisted joint demodulation and 

decoding scheme. As mentioned in Section 3.2 we train a DNN with received (noisy) complex 

baseband signal as its input and transmitted information data bits as its output. 

 

Figure 6. DNN based MLC DeModCoder.  
The size of input and output training symbols for a given epoch f are gh and i jkl,(m), 
respectively for (h*, i*) linear block code and m-ary linear baseband modulation scheme. Note 

that h = h* (h = jkl,(h* + n)h*) and i = i* (i = 	 jkl,(i* + n)i*) for Hamming code (RS 

code). o{⋅} and p{⋅} denote real and imaginary parts of a complex variable. 

Design of DNN Based MLC DeModCoder 

As shown in Figure 6, the DNN is equipped with multiple labels at the output, and we 

apply the MLC scheme to train the DNN with multiple labels at the output in a supervised 

learning approach (M. L. Zhang & Zhou, 2006). By clearly defining the number of targeted 

labels as the number of nodes in the output layer, MLC can be leveraged directly from the 

inherent structure of DNN (Brownlee, 2020a). Generally, classification problems involve 
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predicting a number of classes using a single label. On the other hand, the output labels in the 

MLC system are not mutually exclusive (i.e., all output labels are functions of all inputs) and 

thus collectively represent a variety of classes. A common trend in designing the MLC problem 

is to design the output layer of DNN as an array of binary indicators. As a result, the binary 

combination of the array at the output of DNN indicates one of the classes of the given problem. 

Construction of Training Datasets: The number of epochs for the training is assumed to be q, 

where each epoch containing r number of batches. Note that r = 1 reflects all the training 

symbols to be used during a given epoch. Let us denote a set of message data bits as s- in a 

given epoch t ∈ {1, 2,⋯ , q} that the transmitter generates for the purpose of training DNN 

based MLC DeModCoder. These data bits are mapped to (channel) coded data bit sequence u- 

and then to (baseband) modulated data symbols v-, t ∈ {1, 2,⋯ , q}. Once modulated, the data 

symbols3 are then corrupted with complex-valued AWGN samples following (1) and hence we 

obtain the received sequences w-, t ∈ {1, 2,⋯ , q}. We set {w., w', ⋯ , w/} and {s., s', ⋯ , s/} 

as training input and output, respectively. 

In particular, w-, t ∈ {1, 2,⋯ , q} is represented by 

[ℜ{O.-}, ℜ{O'-},⋯ ,ℜ{O!-}, ℑ{O.-}, ℑ{O'-},⋯ , ℑ{O!-}]0, where ℜ{3} and ℑ{3} denote real and 

imaginary parts of complex variable 3. Similarly, s-, t ∈ {1, 2,⋯ , q} is represented by 

z+.-, +'-, ⋯ , +" 123$(5)-{
0
. Here, O7- and +7- are the samples of the received symbol and 

transmit information bit, respectively, where > ∈ {1,2,⋯ , %} and t ∈ {1, 2,⋯ , q}. It is worth 

mentioning that s- and w- contain ' log'N data bits and 2% data samples, respectively. Note 

that the complex-valued O7- is decomposed into real and imaginary parts and hence, the size of 

input training symbols w-, t ∈ {1, 2,⋯ , q} is 2%. For instance, in case of BPSK and 4-QAM 

 
3 ‘Symbols’ and ‘signals’ are used interchangeably in this chapter. 
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modulation schemes with (7,4) Hamming code, s- contains 4 and 8 bits, respectively. Likewise, 

w- contains 14 symbols each for BPSK and 4-QAM modulation schemes in conjunction with 

(7,4) Hamming code. In order to model an MLC-based DeModCoder, we develop a fully 

connected DNN with 2% input nodes and ' log'N output labels and train it with input and 

output training sequences. 

Training Arrangements: We now define the set of parameters for the MLC DNN block as 

|⃗8 = {~.8 , ~'8 , ⋯ , ~98 , E.8 , E'8 , ⋯ , E98} for a given hidden layer ℎ ∈ {1,2,⋯ ,ℋ}. Here, Å 

represents the total number of neurons in hidden layer ℎ and ℋ denotes the total number of 

hidden layers. Note that ~ and E denote the weight and bias factor, respectively. The training 

datasets w- and s- are used to train the MLC DeModCoder while optimizing |⃗ 	=

{|⃗., |⃗', ⋯ , |⃗ℋ} as following: 

|∗ = argmin Ö(s-, sÜ-) (2) 

Where Ö is a binary cross-entropy loss function (Grunau et al., 2018) and sÜ- is the estimation of 

s- that is the output of the considered MLC DeModCoder. We deploy the softmax activation 

function at the output layer for MLC (Goodfellow et al., 2016), and optimize (2) with the 

assistance of training data while using the stochastic gradient descent approach and the 

backpropagation algorithms (Adam optimizer, etc.) (Goodfellow et al., 2016). 

Deployment of Interference Model: Note that the trained DNN based MLC DeModCoder is 

deployed online for joint demodulation and decoding. The received signals {O[a], O[a +

1],⋯ , O[a + % − 1]} are fed into the MLC DeModCoder that provides {+á., +á', ⋯ , +á" 123$(5)} at 

its output. Here, +á< denotes the decoded bit for transmitted data bit +<, where à ∈

{1,2,⋯ , ' log'(N)}. 
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Variants of MLC DeModCoder 

Based on the structure of the DNN model and its training approach, we consider two 

different variants of MLC DeModCoder. 

1) MLC Variant 1 -- Single NN DeModCoder with MLC: In this case, we train a single 

DNN over a large dataset and apply MLC. This dataset contains the input and output 

training samples over a wide range of d. 

2) MLC Variant 2 -- Multiple NN DeModCoder with MLC: In this case, while applying 

MLC, we train a DNN for each SNR value. Therefore, we create â DNN and train them 

individually for â values of d before being deployed in real-time data demodulation and 

decoding. 

Baseline Schemes 

In order to compare the performance of deployed MLC DeModCoder with conventional 

algorithms, we consider two baseline schemes as follows: 

1) Baseline Scheme 1: In this baseline scheme, we consider the conventional baseband 

demodulation scheme and syndrome-based channel decoding algorithm (Proakis & 

Salehi, 2001). Note that we include this algorithm to compare the performance of DNN 

with the conventional robust signal processing algorithms. 

2) Baseline Scheme 2: In this baseline scheme, we use MOC instead of MLC and hence 

define it as MOC DeModCoder. Note that while designing a DNN based MOC 

DeModCoder, we use a single label to represent a single information word at its (DNN) 

output that results an integer number (representing a class) within a range from 0 to 2" −

1. Therefore, the MOC DeModCoder contains N labels at the output. In contrast to MLC, 

DNN based MOC can be implemented with 2" output nodes, where each node represents 
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a unique class. Consequently, unlike MLC, the number of output nodes for MOC grows 

exponentially with '. For instance, in case of a (7,4) Hamming code and BPSK 

modulation scheme, 16 (binary) output nodes can indicate either the presence or the 

absence of 16 classes.  

Simulation Result 

In this section, we evaluate the bit error rate (BER) performances of the proposed DNN-

based MLC DeModCoder for joint processing of demodulation and channel decoding and 

compare them with the baseline schemes. We demonstrate the results for linear baseband 

modulation schemes, BPSK and 4-QAM, and for linear block channel coding schemes, 

Hamming code and RS code. In particular, we consider (7,4) Hamming code and (7,3) RS code 

throughout the simulation results. It is worth mentioning that the conducted study can be 

extended for any higher-order baseband modulation schemes, e.g., 64-QAM, 256-QAM, 1024-

QAM, etc., and advanced linear block codes, e.g., low-density parity-check (LDPC) codes, etc. 

We consider the following scenarios based on the combinations of baseband modulation and 

channel coding schemes. 

1) Scenario 1: BPSK modulation and (7,4) Hamming code 

2) Scenario 2: QPSK modulation + (7,4) Hamming code 

3) Scenario 3: BPSK modulation + (7,3) RS code (with 3 bits of information symbols) 

4) Scenario 4: QPSK modulation + (7,3) RS code (with 3 bits of information symbols) 

We design our simulation platform in Python framework with Tensorflow/Keras modules 

in order to develop DNN based MLC and MOC DeModCoders (Abadi et al., 2016). For all the 

considered scenarios, we generate 10= realizations of data bits and noise samples for training 

purposes and another set of 10= realizations of random data bits and noise samples for the 
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purpose of validation. Moreover, for non-NN-based demodulation and decoding, 10= 

independent realizations of random data bits and noise samples are generated for performance 

evaluation. In addition, we create the training datasets through Monte-Carlo simulations. It is 

worth mentioning that we can collect practical datasets from the field experiments in a live 

network or from the controlled environment in a lab setup and thus use the data in training the 

NN. Recall that for complex-valued training samples, we extract in-phase and quadrature 

components and include both of them for the input training sequences. For instance, in case of a 

7-points complex-valued input training sample (for a given realization), we take both in-phase 

and quadrature components and hence, consider 14-points real-valued input training samples. 

We consider the AWGN channel throughout the simulations and obtain BER for a range of d 

(from -10 dB to 10 dB). 
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Number of Hidden Layers and Neurons in DNN 

 

Figure 7. BER vs. Average SNR (dB) for DNN-Based MLC DeModCoder for Scenario 1 
and Scenario 3.  
Here, ãH-åN in the legend represents ã hidden layers and å neurons in each hidden layer used in 

DNN. 

Considering there is no explicit computational method in DNN to calculate the optimal 

number of total hidden layers in the network and neurons for each layer, thus we experimentally 

set up them on trials and errors. In Figure 7, we show the BER for different sets of hidden layers 

and neurons for the proposed DNN-based MLC DeModCoder. In particular, we consider 

Scenario 1 (upper figure) and Scenario 3 (lower figure) to demonstrate the effect of BER based 

on selecting a different number of parameters for DNN. We observe for both mentioned 
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scenarios of conducted DeModCoder, the performance is improved with increasing the number 

of hidden layers and neurons (hence, decreased the BER). It is worth mentioning that the rate of 

improvement is higher for a smaller number of DNN parameters. It is (experimentally) 

noticeable that after a certain threshold value, increasing the number of layers and neurons does 

not significantly reduce the BER. As a result, we select the number of hidden layers and neurons 

in each layer based on the performance-complexity trade-off, aiming for a reasonable (BER) 

performance while limiting the number of parameters in NN within a certain threshold. 

Moreover, we also notice that the number of hidden layers and neurons we choose for one set of 

modulation and coding schemes might not be a good match for other modulation and coding 

schemes. In particular, we observe that two hidden layers and 50 neurons in each layer is a 

reasonably good fit for Scenario 1. On the other hand, two hidden layers with 100 neurons each 

show good BER performance. 

Training a Single NN vs. Training Multiple NNs Over a Range of SNR 

 Scenario 1 Scenario 2  Scenario 3 Scenario 4 

  Variant 
SNR 

Single 
NN 

Multiple 
NNs 

Single 
NN 

Multiple 
NNs 

Single 
NN 

Multiple 
NNs 

Single 
NN 

Multiple 
NNs 

-10 0.31653 0.3157 0.372833 0.3725 0.284931 0.2795 0.354325 0.3163 
-8 0.268308 0.2674 0.343408 0.3432 0.2462 0.2448 0.328937 0.2722 
-6 0.206868 0.2062 0.302393 0.3016 0.184702 0.1832 0.293766 0.2862 
-4 0.135308 0.1345 0.24801 0.2477 0.115314 0.1127 0.253123 0.2477 
-2 0.066615 0.0659 0.183185 0.1827 0.048026 0.0396 0.205187 0.1521 
0 0.02077 0.0204 0.110293 0.1101 0.005723 0.0032 0.134886 0.088 
2 0.00208 0.0014 0.046163 0.0456 0.000847 0.00053 0.032511 0.023511 
4 5.75E-05 7.00E-05 0.01466 0.0144 5.33E-05 2.53E-05 0.007033 0.005833 
6 0 0 0.00179 0.0011 4.00E-06 1.00E-06 0.000102 3.2E-05 
8 0 0 4.50E-05 2.50E-05 0 0 0 0 
10 0 0 4.00E-06 3.00E-06 0 0 0 0 

Table 1: BER vs. Average SNR (dB) for DNN-Based MLC DeModCoder Using Single and 
Multiple NNs for 4 Scenarios. 
For each one of 4 scenarios, the comparison of BER performances for single NN and multiple 

NNs are presented over every even value of SNR (dB), where SNR value with a range from -10 

to 10 dB. 



30 

 

Figure 8. BER vs. Average SNR (dB) for DNN-Based MLC DeModCoder Using Single and 

Multiple NNs. 

We display the BER for all the considered scenarios while using DNN-based MLC 

DeModCoder and the comparative results are presented in both Table 1 and Figure 8. We 

consider two different cases for training the DNN in each scenario. In one case, we consider a 

single NN and train it offline over a wide range of d, whereas the other case considers â DNNs 

for â different values of d. For all considered scenarios, we observe that the performance gaps 

between the two cases are very small. In particular, the gap between Scenario 1 and 2 is 

insignificant, whereas the gap is less than 0.2 dB and 0.1 dB for Scenario 3 and 4 respectively. 

Note that for a given scenario, we maintain the same number of hidden layers and neurons in 
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each layer to guarantee a fair comparison of performance. It is worth mentioning that 

implementing a single trained NN online requires a smaller footprint (in practical hardware 

setup) and thus results in lower computational complexity compared to developing multiple NNs 

in a device with the same form factor. Essentially, we evaluated the performances with 10= 

number of realizations, but the capability of these data might not be sufficient for calculating 

such a small number for the missing points. In order to obtain results beyond those data points, 

we were supposed to run simulations for a long time by applying a larger dataset, probably more 

than one day. However, we ran all the simulations on Google Colab, which provides a maximum 

of 12 hours runtime (Google, n.d.). Therefore, we were not able to obtain a specific result 

beyond a certain threshold. 

Comparative Performances Among Different DeModCoders 

 Scenario 1 Scenario 2 

 

Scenario 3 Scenario 4 

      Object 
SNR Proposed Baseline1 Proposed Baseline1 Proposed Baseline1 Proposed Baseline1 

-10 0.31653 0.33205 0.372833 0.38067 0.284931 0.33796 0.354325 0.3163 
-8 0.268308 0.29044 0.343408 0.35081 0.246201 0.29591 0.328937 0.2722 
-6 0.206868 0.24131 0.302393 0.31377 0.184702 0.24168 0.293766 0.2862 
-4 0.135308 0.18486 0.24801 0.26877 0.115314 0.17329 0.253123 0.2477 
-2 0.06662 0.12557 0.183185 0.21529 0.048026 0.097122 0.205187 0.1521 
0 0.02077 0.072817 0.110293 0.15684 0.005723 0.033661 0.134886 0.088 
2 0.00208 0.03348 0.046163 0.099142 0.000847 0.005596 0.032511 0.023511 
4 5.75E-05 0.01078 0.01466 0.0516 0.000054 0.0002699 0.007033 0.005833 
6 0 0.002043 0.00179 0.019998 4.00E-06 1.33E-05 0.000102 3.2E-05 
8 0 0.000158 4.50E-05 0.005135 0 0 0 0 
10 0 5.00E-06 4.00E-06 0.000648 0 0 0 0 

Table 2: BER vs. Average SNR (dB) for Proposed and Baseline Scheme 1 for 4 Scenarios. 
For each one of 4 scenarios, the comparison of BER performances for our proposed MLC 

DeModCoder and Baseline Scheme 1 are presented over every even value of SNR (dB), where 

SNR values with a range from -10 to 10 dB. 
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Figure 9. BER vs. Average SNR (dB) for Proposed and Baseline Scheme 1 for Scenario 1 
and Scenario 2. 
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Figure 10. BER vs. Average SNR (dB) for Proposed and Baseline Scheme 1 for Scenario 3 

and Scenario 4. 

In Figure 9 and Figure 10, we compare the BER performances of our proposed DNN 

based MLC DeModCoder with baseline scheme 1, which utilize conventional baseband 

demodulator (BPSK for Scenario 1 and 3 and QPSK for Scenario 2 and 4) cooperating with 

syndrome based channel decoder for Hamming (Scenario 1 and 2) and RS coding (Scenario 3 

and 4) schemes (Proakis & Salehi, 2001). Table 2 shows precise data for 4 scenarios captured 

from simulation results. We set two hidden layers and 50 neurons in each layer for both Scenario 

1 and 2. However, in case of Scenario 3 and 4, we consider two hidden layers and 100 neurons in 

each layer. We observe that over a mid and high range of d, MLC DeModCoder outperforms 

baseline scheme 1. The performance gap between these two manners is comparatively large for 
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(7,4) Hamming code than (7,3) RS code. In particular, for scenarios 1 and 2, MLC DeModCoder 

showed an SNR improvement of approximately 4 dB and 3.5 dB over baseline scheme 1 for 

Scenario 1 and 2, respectively to achieve a BER of 10>?. However, for Scenario 3 and 4, these 

SNR improvements are roughly 1 and 1.2 dB, respectively. 

 

Figure 11. BER vs. Average SNR (dB) for Proposed and Baseline Scheme 2 for Scenario 1 

and Scenario 3. 

In Figure 11, we compare the BER performance of the proposed MLC DeModCoder with 

baseline scheme 2, which deploys MOC DeModCoder. Recall that MOC DeModCoder results in 

higher computational complexity compared to MLC DeModCoder, where the number of output 

nodes is ç(2") and ç(') for MOC and MLC DeModCoder, respectively, ' expresses the 

number of information bits. From the upper graph of Figure 11, we observe that for Scenario 1, 
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MLC DeModCoder shows around 4 dB SNR improvement in the mid and high value of d. In 

case of Scenario 3, MOC performs better over low and mid values of the considered range of 

SNRs with approximately 4 dB SNR difference. However, MLC outperforms MOC with roughly 

2 dB SNR improvement for high values of SNR.  

Conclusion 

In this paper, we developed a DNN-based MLC DeModCoder, which jointly 

demodulates and decodes the received data at the receiver. The DeModCoder can be trained 

offline in a supervised learning manner exploiting a training dataset that captures a wide range of 

SNR values. Once trained, the DNN can be deployed online without requiring the exact SNR 

value to be known. Note that this finding helps the system designers to avoid the additional effort 

of estimation of noise variance and calibrating parameters for data decoding as a single trained 

DNN is sufficient to perform joint demodulation and decoding over a wide range of SNRs. We 

have demonstrated the effectiveness of the proposed DNN based MLC DeModCoder compared 

to two baseline schemes by simulations. In particular, MLC DeModCoder outperforms the 

conventional demodulator and syndrome-based decoder over a wide range of SNRs. 

Furthermore, the MLC DeModCoder shows lower BER than MOC DeModCoder in the high 

SNR region. Note that MLC DeModCoder exhibits lower computational complexity compared to 

MOC DeModCoder, especially for high code rates. The research outcomes in this paper will 

motivate further investigations of joint demodulation and decoding for other channel coding 

techniques, e.g., convolutional, Turbo, Polar, LDPC codes, etc.  
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CHAPTER 4 

JOINT BASEBAND PROCESSING WITH MULTI-LABEL CLASSIFICATION USING 

DEEP NEURAL NETWORKS 

Background Overview 

Recently, mobile communication technology has achieved gratifying accomplishments 

exhibiting the huge potential of development, e.g., fifth-generation (5G) mobile networks 

(Dahlman et al., 2018). The advancement of technology is accompanied by an increase in 

requirements of technical support. For instance, the capabilities of supporting multi-users and 

transmitting large data are fundamental and key demands for 5G technology. Multiple-input 

multiple-output (MIMO) plays a significant role in the application of 5G since it enables 

transmission of high data rate and increasing channel capacity (Kashyap & Bagga, 2014). In the 

MIMO system, the limitation of connection range can be avoided by overwhelmingly decreasing 

transmitted energy consumption and additional bandwidth demand. In general, no matter the 

number of transmitters, multiple receivers related to multiple channels, and hence transmitted 

signals are impaired by intersymbol interference, a common type of multipath fading. An 

equalizer is equipped at the receiver end to recuperate signals by handling these undesired 

influences. Moreover, a conventional communication system is block-based, where each block 

applies robust and optimal algorithms, e.g., baseband modulation block, channel coding block, 

amplifiers, equalizers, etc. However, in practice, components of each block might produce 

nonlinear distortions and noise to the transmitted signals. As a result, the optimal end-to-end 

performance may not be guaranteed. By contrast, DNN enables to deal with global tasks based 

on its structure and has the ability to process a large amount of data. Therefore, researchers 
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increasingly utilize the DL approach as assistance to develop a DNN based baseband processing 

system.  

In the research from Ye & Li, 2017, a deep learning based joint equalization and 

decoding algorithm was proposed to combat channel distortions in frequency selective fading 

channels. It was demonstrated that the joint processing of equalization and decoding can 

outperform the conventional MMSE-based successive cancellation decoding approach. 

According to Xu et al., 2018, a cascaded equalizer and decoder were designed with CNN and 

DNN, respectively. In particular, a CNN equalizer compensates for the distortion of a channel 

while a DNN decodes the transmit bit sequence. It was demonstrated that developing CNN and 

DNN jointly for joint equalization and decoding shows significant performance improvements 

over the conventional Gaussian process for classification (combined with successive 

cancellation). According to Hu et al., 2019, an RNN based equalizer and decoder was designed 

that yields even better performance than the proposed CNN+DNN based receiver proposed by 

Xu et al., 2018. A preliminary study on DL architectures for channel estimation and detection in 

MIMO systems with low-resolution receivers has been conducted in the research by Klautau et 

al., 2019. 

In this chapter of the thesis, we develop a joint equalizer, demodulator, and decoder 

(DeTecModCoder) with a fully connected DNN that applies the MLC algorithm (Brownlee, 

2020; Grunau et al., 2018; M. L. Zhang & Zhou, 2006). The developed functional 

DeTecModCoder receives the noisy signal at its input that is impaired by different wireless 

fading channels and Gaussian and non-Gaussian noise and interference and hence produces data 

bitstream at its output. Each output label at the MLC DeTecModCoder possesses a binary class. 

The multiple labels at the output of the DeTechModCoder collectively represent a block of 
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recovered data words. This designed DNN based DeTecModCoder is applicable for flat-fading 

wireless channel models, linear digital modulation schemes, e.g., binary phase-shift keying 

(BPSK), N-ary quadrature amplitude modulator (N-QAM), etc., and linear block codes, e.g., 

Hamming code, Reed Solomon (RS) code, etc. Moreover, we train the functional DeModCoder 

block in such a way so that it shows robust performance over Gaussian and different non-

Gaussian noise and interference. We leverage bit error rate (BER) as the performance metric and 

investigate the BER performances of the proposed receiver for a number of scenarios following 

the recent wireless communication standards, e.g., 5G NR, Wi-Fi 6, etc. Our objective is to reap 

the benefits offered by AI tools to push the boundaries of end-to-end BER performance and to 

alleviate the real-time computational complexity by designing a single functional block that can 

show robust performance in diversified harsh conditions. 

The highlights of the contributions made in this chapter of the thesis are as follows: 

• We develop a fully connected DNN-based single functional DeTecModCoder block that 

jointly combines (equalizes), demodulates, and decodes the signals received at multiple 

antennas for a receive-diversity system. The developed framework applies MLC to detect 

the data word at the output of the DNN model. 

• The DNN model is trained offline with versatile datasets that incorporate different signal-

to-noise ratio (SNR) values, different types of Gaussian and non-Gaussian noises, etc. 

Once trained, the inference model is applied in real-time for joint data detection, channel 

equalization (receiver combining), and baseband demodulation. 

• Our trained model is robust enough to process the data for different noisy environments 

and a wide range of SNR values without requiring the real-time estimation of noise co-

variance and statistical information of underlying noise. 
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The rest of the paper is organized as follows. We describe the system model and the DL-

assisted DeTecModCoder in Sections 4.2 and 4.3, respectively. The simulation results are 

presented in Section 4.4 and the conclusions are made in Section 4.5. 

System Model 

 

Figure 12. Multiple Receiver Communication Links with Conventional vs. AI-Based 

Receiver Processing. 

We consider a single-input-multiple-output (SIMO) baseband communication system 

with a single antenna at the transmitter and multiple antennas at the receiver. In particular, " 

receive antennas at the receiver creates "-diversity branches, as shown in Figure 12. The 

transmitter is equipped with a channel encoder and a baseband modulator in a cascaded fashion. 

The channel encoder applies (%é, 'è) linear block coding (LBC) scheme, where %é and 'è  represent 

the data-bit lengths for the codeword and the data word, respectively.  We assume that the 

transmitter and the receiver are perfectly synchronized. In other words, the timing and frequency 

errors are estimated and calibrated with appropriate signal processing techniques. Let us denote 

channel encoding specific parameters % = v%é  and ' = v'è , where v being an integer, represents 
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the number of bits used to represent an information symbol for a given channel coding scheme4. 

For instance, we set [ = 1 and [ = log'(%é + 1) for (binary) Hamming code and RS code, 

respectively. The transmitter sends a message ê containing ' information bits (e.g., ' = 'è  for 

(binary) Hamming code and ' = log'(%é + 1)' for RS code) to the receiver over a noisy 

channel. At first, ' information bits are encoded with (%é, 'è) linear block code and represented as 

3 = X(ê) with % bits (e.g., % = %é  for (binary) Hamming code and % = log'(%é + 1)%é for RS 

code). Here, X(⋅) denotes the channel encoding techniques for linear block codes. The encoded 

bits are then passed through a baseband digital modulator, e.g., BPSK. N-QAM, etc., and hence 

the modulated symbols are denoted as ? = L(3), where L(⋅) represents the baseband modulation 

process. The transmitter communicates with the receiver over ` equal-duration transmission time 

intervals. 

The discrete-time complex-baseband communication model for a given time interval a 

can be expressed as  

O⃗& = ëd	ℎí⃗ &?& +bíí⃗ & , (3) 

where O⃗&, ℎí⃗ &, and bíí⃗ & denote M × 1 received signal, channel gain, and noise vectors, respectively. 

Moreover, d denotes the average signal-to-noise ratio (SNR) per receive antenna and ?& 

represents the transmitted baseband modulated symbol, which can be taken from a finite N-ary 

symbol alphabet î, c.f., N-QAM, etc. In a given slot a, the +-th elements of O⃗&, ℎí⃗ &, and bíí⃗ & are 

represented by O⃗@,&, ℎí⃗ @,&, and bíí⃗ @,&, respectively. 

The small-scale flat-fading channel gain of the +-th diversity branch can be represented 

by ℎ@,& ≜ ñ@,&;B%,', where magnitude ñ@,& and phase E@,& are mutually independent. E@,& is 

 
4 In particular, '!-ary (' = log" '′) information symbols (for the purpose of channel coding) can be constructed 
from Galois Field (GF) 2( (Proakis & Salehi, 2001). 
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uniformly distributed in (−F, F] and ñ@,& can follow different (fading) distributions, e.g., 

Rayleigh, Rician, Nakagami--, Nakagami-à, etc. We assume that the fading across different 

diversity branches can be statistically independent but are not necessarily identically distributed. 

The noise samples b@,& are independent across the diversity branches and can follow Gaussian 

and non-Gaussian distributions. Relevant examples of non-Gaussian noise include #-mixture 

noise, 6-stable noise, generalized Gaussian noise (GGN), CCI, etc. (Ahmed, 2014; Georgiou et 

al., 1999; Zhu et al., 2019).  

The received signals are grouped in blocks and fed into the proposed DNN based MLC 

DeTecModCoder, which outputs the decoded message bits. It is worth clarifying that the 

designed MLC DeTecModCoder processing block jointly equalizes (detect), demodulates, and 

decodes the received signal in a single module (see the receiver block in Figure 12), which 

would otherwise be equalized, demodulated, and decoded in three consecutive (signal 

processing) blocks. The MLC DeTecModCoder is trained offline using a number of input 

datasets containing O&, and corresponding output datasets ℎ& that encompasses a wide range of 

SNRs. We discuss the details of the training procedure in Section 4.3. 

DL Assisted Joint Baseband Processing 

In this section, we demonstrate the components of DL-aided MLC joint equalizer, 

demodulator, and decoding scheme. Recall that the DNN is trained through received noisy 

baseband signals and transmitted message bits as its input and output datasets, respectively. 
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Figure 13. DNN-Based MLC DeTecModCoder. 
The size of input and output training symbols for a given epoch ó are g × ghò and i jkl,(m), 
respectively for (hô, iö) linear block code and m-ary linear baseband modulation scheme. Note 

that h = hô (h = jkl,(hô + n)hô) and i = iö (i = jkl,(iö + n)iö) for Hamming code (RS code). 

oõ{⋅} and pú{⋅} express real and imaginary parts of a complex variable. 

DNN Based MLC DeTecModCoder Architecture 

The proposed DNN is trained in a supervised learning manner and presented in Figure 

13, where MLC is deployed at its output with multiple labels (M. L. Zhang & Zhou, 2006). 

Different from the common classification task, where a single label correlates with multiple 

classes, the output labels of MLC are not mutually exclusive. In addition, for the MLC method, 

the number of output nodes in a DNN can be nominated as the number of targeted labels by the 

structural characteristic of DNN (Brownlee, 2020a). In this case, the output nodes of the DNN 

can combinedly express a sequence of binary symbols. 
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Training Datasets Configuration: In order to gather training datasets of DNN-based MLC 

DeTecModCoder, we assume that within the training process, every epoch involves 2 batches, 

and the total number of epochs is ù. In particular, the complete training datasets are applied for a 

single epoch when 2 = 1. Assuming that a set of message bits sequence generated by the 

transmitter is regarded as ℛ< in a given epoch à ∈ {1,2,⋯ , ù}. These data sequences are 

progressively passed channel coding block and baseband modulation block with mapped 

bitstreams u< and v<, à ∈ {1,2,⋯ , ù}, respectively. Following equation (3), the modulated 

signals are impaired with AWGN, GNN, or #-miture noise. Then the noisy signals w< are 

transmitted through " number of diverse branches, cooperated with channel gain ℋ@,<, and 

hence our received signals are represented as ü@,<, à ∈ {1,2,⋯ , ù}, + ∈ {1,2,⋯ , "}. The sets of 

digital signals {w.,., w.,', ⋯ , wC,D ,ℋ.,.,ℋ.,', ⋯ ,ℋC,D} and {ℛ., ℛ', ⋯ , ℛD} are arranged as our 

training input and output datasets, respectively. 

Note that the input data sequence ü@,<, + ∈ {1,2,⋯ , "} and à ∈ {1,2,⋯ , ù}, consists of 

real parts ℜ†{3} and imaginary parts ℑ°{3} for a complex variable 3, and hence ü@,< can be 

denoted as 

zℜ†¢OC,.<£, ℜ†¢OC,'<£,⋯ ,ℜ†¢OC,-<£, ℑ°¢OC,.<£, ℑ°¢OC,'<£,⋯ , ℑ°¢OC,-<£, ℜ†¢ℎC,.<£, ℜ†¢ℎC,'<£,⋯ ,

ℜ†¢ℎC,-<£, ℑ°¢ℎC,.<£, ℑ°¢ℎC,'<£,⋯ , ℑ°¢ℎC,-<£{
0
, where O@,7< represents the sample of 

received signals and ℎ@,<7 expresses the channel gain, + ∈ {1,2,⋯ , "}, > ∈ {1,2,⋯ , %} and à ∈

{1,2,⋯ , ù}. The considered output training sets ℛ<, à ∈ {1,2,⋯ , ù}, has a similar composition 

zê.< , ê'< , ⋯ , ê" 123$(5)<{
0
, where ℎ7< denotes the sample of transmitted data streams, > ∈

{1,2,⋯ , %} and à ∈ {1,2,⋯ , ù}. It is worth noting that the number of data bits for ü@,< and ℛ< 

are 2 × 2%+ and ' log'(N), respectively. Specifically, O@,7< is a complex number comprising 
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real and imaginary parts, as well as the signals are in +-th diversity branch, thus the combination 

of received signals has 2%" data bits. In addition, the flat-fading channel gain ℎ@,7< has the same 

size of O@,7<. By jointly combining received signals with channel gain, we obtain our input 

training sets with the size 2 × 2%". For instance, assuming that a set of message bits is processed 

by (7,4) Hamming code with BPSK modulator to a 2-received antennas system, ü@,< and ℛ< 

consist of 4 and 56 bits, respectively. Therefore, we equip 2 × 2%+ nodes at input layer and 

' log'(N) output labels at the output layer for a fully connected DNN to deploy a DNN-based 

MLC DeTecModCoder. 

Parameters of DNN: Within a given hidden layer § ∈ {1,2,⋯ , ℒ}, an MLC-based DNN can be 

defined as ¶⃗E = {ß.E , ß'E , ⋯ , ß9E , ®.E,®'E , ⋯ , ®9E}, where ß and ® represent weight and bias for 

each neuron, respectively. Here, ℒ is the total number of hidden layers and each layer contains 

Å number of neurons. We feed input and output training datasets ü@,< and ℛ< to train the MLC 

DeTecModCoder in order to optimize ¶⃗ = {¶., ¶', ⋯ , ¶ℒ} as the following equation: 

¶∗ = argmin4(ℛ< , ℛ′<), (4) 

where 4 denotes a function of binary cross-entropy loss (Grunau et al., 2018), and ℛ′< gives the 

approximation of output sequence ℛ<. Within hidden layers, we apply the ReLU activation 

function for most of the realizations; however, we select the PReLU activation function instead 

for the realizations with ‘dying ReLU’ (Brownlee, 2019; K. He et al., 2015). At the output layer 

of MLC DeTecModCoder, we deploy sigmoid activation function (Ramachandran et al., 2018) 

and optimize function (4); meanwhile, stochastic gradient descent manner (e.g. Adam 

optimization, etc.) and backpropagation algorithms are used in training the DNN model 

(Goodfellow et al., 2016). 
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Arrangement of Interference Model: Recall that the proposed DNN-based MLC 

DeTecModCoder is trained offline and then applied in real-time to jointly combine equalization, 

demodulation, and decoding blocks. Based on this structure, we feed received signals 

{O.,& , O.,&G., ⋯ , O.,&G!>., ⋯ , OC,& , OC,&G., ⋯ , OC,&G!>., ℎ.,& , ℎ.,&G., ⋯ , ℎ.,&G!>., ⋯ , ℎC,& , 

ℎC,&G., ⋯ , ℎC,&G!>.} as the input of the MLC DeTecModCoder generating {ê.
*, ê'

*, ⋯ , ê" 123$(5)
* } 

as the output, where ê+* expresses the decoded data bit corresponded to the transmitted 

information bit ê+, ? ∈ {1,2,⋯ , ' log'(N)}. 

Patterns of MLC DeTecModCoder  

Considering the training method for DNN with its flexible structure, we tend to make 

some variations for the proposed MLC DeTecModCoder before deploying them online. 

Following are three different mentioned variants. 

1) MLC Pattern 1 - MLC DeTecModCoder with Single NN: In this pattern, we utilize a 

large dataset to train only a single DNN. Here, both input and output datasets over a 

wide range of SNR values d compose the large training datasets. 

2) MLC Pattern 2 - MLC DeTecModCoder with Low Diversity NN: In this pattern, we 

evenly divide d into three ranges of SNR values. For each range of divided d, we train 

one DNN using MLC, and hence we finally obtain three trained MLC-based DNNs.  

3) MLC Pattern 3 - MLC DeTecModCoder with Multiple NN: In this pattern, we train an 

MLC-based DNN for every SNR value. In other words, let us assume that d contains ™ 

number of SNR values, and hence we train ™ number of DNNs individually. 

Baseline Scheme 

For the purpose of evaluating performances for conducted MLC DeTecModCoder, we 

arrange a baseline scheme based on conventional algorithms. Within this baseline scheme, we 
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consider the fundamental baseband processing blocks, including the optimal maximum 

likelihood equalization algorithm, conventional baseband demodulation, and syndrome-based 

channel decoding algorithm (Proakis & Salehi, 2001). These conventional signal processing 

algorithms are robust; thus, they are recognized as a reliable standard to evaluate the 

performances of DNN. 

Simulation Result 

In this section, the BER performances obtained by the designed DNN-based MLC 

DeTecModCoder are evaluated for joint processing of equalization, demodulation, and channel 

decoding, and compared with the two arranged baseline schemes. In our experimental module, 

we utilize linear block codes for channel coding techniques, containing Hamming code and RS 

code, especially (7,4) Hamming code and (7,3) RS code, and linear digital modulation 

techniques, including BPSK and 4-QAM. It is worth noting that the implemented research can be 

developed and extended to other advanced linear block codes, such as low-density parity check 

(LDPC) codes, etc. and baseband modulation techniques with higher order, such as 64-QAM, 

256-QAM, 1024-QAM, etc. Moreover, we investigate the performance of joint DeTecModCoder 

for MIMO cases, especially for 2 receive antennas (Rx2) and 4 receive antennas (Rx4). 

Combining baseband modulation and channel coding, we consider the following for scenarios 

for both Rx2 and Rx4. 

• Scenario 1: (7,4) Hamming code + BPSK modulation  

• Scenario 2: (7,4) Hamming code + QPSK modulation 

In order that our design is based on DNN-based MLC DeTecModCoders, we apply 

Pandas and NumPy libraries in Python framework with Tensorflow/Keras modules to design the 

simulation platform (Abadi et al., 2016). It is vital to develop common benchmarks and open 
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datasets in order to compare the performances of different AI tool-based algorithms. While this 

is a standard concept in other technical fields, it is not common in wireless communication 

networks. The reason behind this different trend is that the communication systems involve man-

made signals that can be precisely generated artificially in a Monte-Carlo simulation framework 

while adhering to communication standards and protocols.  

We consider two different scenarios of multiple-output antenna cases, two sets of 10= 

realizations including random data bits and noise samplings are generated as experimental group 

and control group, respectively. In order to evaluate performance, we generate another collection 

of 10= independent realizations containing random data bits and noise samplings for non-NN-

based demodulator and decoder. In particular, practical training datasets can be gathered through 

field experiments from live networks or through controlled environments from laboratories. 

Therefore, we can utilize the practical datasets to train the NN.  

Training Different Diversity NNs Over a Range of SNR 

 Scenario 1  Scenario 2 

      Variant 
 SNR Single NN Low Diversity 

NNs Multiple NNs  Single NN Low Diversity 
NNs Multiple NNs 

-10 0.256805 0.2524075 0.25018  0.326065 0.304525 0.2148 
-8 0.2097575 0.2068075 0.20973  0.2901425 0.272955 0.1917625 
-6 0.162055 0.16175 0.164715  0.248605 0.24097 0.16273 
-4 0.118465 0.12172 0.11806  0.2034025 0.20951 0.13007 
-2 0.0823975 0.076785 0.0754875  0.157465 0.1495075 0.086115 
0 0.0565675 0.0435425 0.0412625  0.11304 0.1013875 0.0448875 
2 0.0392975 0.0276975 0.0139675  0.0751975 0.065945 0.012275 
4 0.0287225 0.0201675 2.35E-03  0.04558 0.045275 0.0035175 
6 0.0228625 0.0011875 0.000455  0.0259975 0.013355 0.00121 
8 0.021115 0.0005525 0.00019  0.015325 0.0038025 9.30E-04 

Table 3: BER vs. Average SNR (dB) for Scenario 1 and Scenario 2 Using Single, Low 
Diversity and Multiple NNs for Rx2. 
For scenario 1 and scenario 2 at Rx2, the comparison of BER performances for Single NN, Low 

Diversity NNs, and Multiple NNs are presented over every even value of SNR (dB), where SNR 

values with a range from -10 to 8 dB. 
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Figure 14. BER vs. Average SNR (dB) for Scenario 1 and Scenario 2 Using Single, Low 
Diversity and Multiple NNs for Rx2. 

In Figure 14, we present the BER performance for Scenario 1 and Scenario 2 using DNN-

based MLC DeTecModCoder, and the corresponding data are listed in Table 3. For each 

scenario, we consider three different cases to train the DNN. In the first case, we create a single 

NN and train it offline over a wide range of d. In the second case, we generate three NNs, where 

each NN is trained over 
.

?
 total values of d. For the last case, ™ number of NNs are utilized for ™ 

different d values. For both Scenarios 1 and 2, we observe that increasing the number of NNs, 

the performances show an upward trend; that is, BER decreases with compressing diversity in 

training symbols. In practice, for low values of SNR, three diversity receiver patterns show 

similar BER. However, comparing the BER performance from single NN to low diversity NN 
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cases for a high range of SNR values, the BER improves approximately from 10>' to 10>? and 

from 10>..= to 10>..I for Scenario 1 and Scenario 2, respectively. From low diversity NN to 

multiple NN cases, the BER performances present the rough improvements from 10>? to 10>?.= 

and from 10>' to 10>?, respectively. In order to ensure the accuracy of simulation results, we 

used the same number of hidden layers and neurons in each layer for a given scenario. In 

particular, the results for multiple NNs were showed are just for demonstration purposes. That is 

true that if we apply multiple NNs, there is a requirement for exact SNR values to be known. But 

our purpose of showing BER performances of multiple NNs was just to compare the proposed 

algorithm using one single NN. The results here are different from the simulation result in 

Chapter 3. In the comparison outcomes of Chapter 3, when we have not considered channel 

fading and equipped equalizer, the result of training one single NN and multiple NNs presented 

similar performance. By contrast, as shown in Table 3 and Figure 14, when the complexity of the 

system increased by considering fading channel and applying equalizer to combat the 

impairment caused by channels, the BER performance captured from one single NN and multiple 

NNs showed a large gap and did not close as result in Chapter 3. 
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Performances Comparison Under Different Noises Among Different 

DeTecModCoders 

 

Figure 15. BER vs. Average SNR (dB) for The Proposed and Baseline Scheme for Scenario 
1 and Scenario 2 under AWGN for Rx2 and Rx4. 

In Figure 15, we compare the BER performances of the proposed DNN-based MLC 

DeTecModCoder with the baseline scheme under AWGN for both Rx2 and Rx4 cases. Recall 

that in the baseline scheme, we apply optimal maximum likelihood equalizer, conventional 

baseband modulator (BPSK for Scenario 1 and QPSK for Scenario 2), and syndrome-based 

channel decoder for Hamming code (Proakis & Salehi, 2001). In case of Scenario 1 for all noise 

configurations, we consider 2 hidden layers and 100 neurons in each layer with 500 epochs and 

64 batch sizes for Rx2; whereas 2 hidden layers and 150 neurons in each layer with 500 epochs 
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and 64 batch size for Rx4. In case of Scenarios 2 for all noise configurations, we arrange to 

consider 2 hidden layers and 100 neurons in each layer with 500 epochs for Rx2; whereas 2 

hidden layers and 150 neurons in each layer with 1000 epochs and 128 batch size for Rx4. We 

observe that MLC DeTecModCoder under AWGN outperforms the baseline scheme over a mid 

and high range of d. To achieve BER of 10>?, the performance gaps exhibit approximately 5 dB 

and 4 dB of SNR improvements over the baseline scheme for Scenario 1 at Rx2 and Rx4, 

respectively. However, these SNR improvements show approximately 5 dB for Scenario 2 at 

both Rx2 and Rx4. This finding indicates that training a single NN over a wide range of SNR 

values is enough for real-time data recovery. Essentially, deploying a single trained NN online 

have much lower computational complexity without the requirement of exact SNR values. 
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Figure 16. BER vs. Average SNR (dB) for The Proposed and Baseline Scheme for Scenario 

1 and Scenario 2 under ´-Mixture Noise for Rx2 and Rx4. 

In Figure 16, we compare the BER performances of the proposed DNN-based MLC 

DeTecModCoder with the baseline scheme under #-mixture noise for both Rx2 and Rx4 cases. 

The parameters of NN that we utilized here are the same as in the AWGN case. We observe the 

performance gaps are comparatively larger than AWGN configurations. To achieve BER of 

10>'.=, the SNR improvements present approximately 10 dB over baseline scheme for Scenario 

1 at both Rx2 and Rx4; while showing roughly 4 dB and 8 dB for Scenario 2 in order to achieve 

BER of 10>' at Rx2 and Rx4, respectively. 
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 Scenario 1  Scenario 2 

  Object 
  
SNR 

Rx2 
Proposed 

Rx2 
Convention 

Rx4 
Proposed 

Rx4 
Convention  

Rx2 
Proposed 

Rx2 
Convention 

Rx4 
Proposed 

Rx4 
Convention 

-10 0.224895 0.25749 0.2873725 0.31731  0.15093 0.18245 0.2106575 0.25877 
-8 0.1848525 0.21129 0.253445 0.27746  0.105 0.1306 0.164875 0.20915 
-6 0.14083 0.1637 0.21126 0.23316  0.06322 0.084733 0.12005 0.15679 
-4 0.1013175 0.11858 0.17003 0.1861  0.030285 0.048325 0.07463 0.10733 
-2 0.065615 0.07984 0.1287725 0.13966  0.0058325 0.024753 0.0337675 0.066208 
0 0.03549 0.050197 0.0890225 0.09781  0.001015 0.011033 0.00355 0.036135 
2 0.0147225 0.028795 0.0562325 0.063387  0.0002875 0.00419 0.0011925 0.016815 
4 0.00236 0.015595 0.029975 0.038055  7.75E-05 0.001325 0.000425 0.006985 
6 0.000845 0.007875 0.012835 0.02156  4.50E-05 0.0003675 0.0001 0.0024 
8 0.0003175 0.003905 0.002855 0.011468  0 8.75E-05 0.0001525 0.0006925 
10 0.000195 0.0017325 0.001255 0.005665  0 1.00E-05 0 0.000185 

Table 4: BER vs. Average SNR (dB) for The Proposed and Baseline Scheme for Scenario 1 
and Scenario 2 under GGN for Rx2 and Rx4. 
For scenario 1 and scenario 2 at Rx2 and Rx4, the comparison of BER under GGN has presented 

performances for proposed DeTecModCoder and conventional algorithm over every even value 

of SNR (dB), where SNR values with a range from -10 to 10 dB. 
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Figure 17. BER vs. Average SNR (dB) for The Proposed and Baseline Scheme for Scenario 
1 and Scenario 2 under GGN for Rx2 and Rx4. 

In Figure 17, we compare the BER performances of the MLC DeTecModCoder with the 

baseline scheme under GNN for both Rx2 and Rx4 cases. The figure is generated through the 

data sequences in Table 4. In this case, we are using the same parameters of NN as the AWGN 

case. Similar to the results for #-mixture noise, MLC DeTecModCoder under GGN also 

outperforms the baseline scheme over a mid and high range of d. The difference is that the 

performance gaps here are not that large. In order to reach 10>' BER value, for Scenario 1, the 

SNR improves roughly 2 dB and 2.5 dB for Rx2 and Rx4, respectively; by contrast for Scenario 

2, the increasing SNR is around 2 dB for Rx2 and 3.5 dB for Rx4. 
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Conclusion 

In this chapter, we developed a DNN-based MLC DeTecModCoder at the received end 

that jointly equalizes, demodulates, and decodes the received data bits. We trained this MLC 

DeTecModCoder offline by applying a supervised learning approach over a versatile large 

number of SNR values. This trained model can be deployed in real-time applications without the 

exact information of underlying noise. We considered a baseline scheme to evaluate the 

performance of the proposed DNN model under different types of noise and channel fading, and 

hence the proposed model is robust enough to process the data in different practical environment 

conditions. We demonstrated the effectiveness of the developed MLC DeTecModCoder by 

representing the SNR improvements compared to the conventional schemes. Moreover, we 

indicated that in order to increase performance (by reducing BER), it is adoptable to decrease the 

diversity in training symbols. The outcomes of this chapter motivated us to further attempt more 

complicated baseband processing techniques jointly, e.g., MMSE equalizer, Turbo, LDPC codes, 

etc. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

Conclusion 

In this thesis, we proposed DNN-based MLC receiver designs, which jointly combined 

partial signal processing blocks at the received end, and developed them for both single and 

multiple antenna cases. By the setup of versatile diversity branches at the received end, we 

indicated that diminishing the diversity of training symbols can be helpful to reduce the BER. 

The objective of applying the MLC approach at the output layer was that compared to the MOC 

approach, the computational complexity was decreased from ç(2") to ç('), where ' is the 

number of information bits. Furthermore, the design model was trained offline in a supervised 

learning approach through a training dataset gathered over a wide range of SNRs, various 

Gaussian and non-Gaussian noise, and channel fading. Once trained, the DNN model was 

deployed in real-time signal processing without knowing SNR values. This finding showed that 

our proposed DNN-based MLC receiver design model has the ability of baseband processing in 

noisy conditions without the requirements of accurate information for underlying noise and SNR 

values. Simulation results demonstrated that BER performances generated from developed 

intelligent schemes outperformed those from the corresponding conventional schemes with 

approximately 3 dB SNR improvements. 

Future Works 

Although our current design presents efficient performance compared to several 

conventional block-based systems, we observed that only applying fully connected DNN may 

not guarantee the robust performance provided by more complicated and accurate conventional 

algorithms. In addition, the statistical datasets we applied are not practical data despite the 
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simulation data and practical data are close enough. Thus, we plan to extend our idea of AI-aided 

MLC baseband design in following potential directions incorporating timing and frequency 

errors. First, instead of linear block codes, we could apply more advanced channel coding 

techniques, e.g., convolutional, Polar, Turbo codes, etc. Second, in this research, we utilized 

conventional approaches of encoding and modulation, and focus on receiver design. The further 

investigation could be a joint transmitter and receiver design; that is, a framework of 

autoencoder-based joint transmitter and receiver, and hence we could have more control on 

transmission process. Third, we could explore the application of the MLC approach to solving 

other problems in the PHY design, e.g., digital precoding, etc., as well as in modulation 

classification problems, e.g., user grouping, antenna selection, etc.  
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APPENDIX B: ACRONYMS 

5G Fifth Generation 

IoT Internet of Things 

IoV Internet of Vehicles 

M2M Machine to Machine 

D2D Device to Device  

PHY Physical Layer  

AI Artificial Intelligence 

SISO Single-input Single-output 

SIMO Single-input Multiple-output 

MISO Multiple-input Single-output 

MIMO Multiple-input Multiple-output 

ML Machine Learning 

DL Deep Learning 

DNN Deep Neural Network 

SNR Signal-to-noise Ratio 

MLC Multi-label Classification 

MOC Multi-output Classification 

BER Bit Error Rate 

DeModCoder Joint Demodulator and Channel Decoder 

DeTecModCoder Joint Detector (Equalizer), Demodulator, and Channel Decoder 

AWGN Additive White Gaussian Noise 

GGN Generalized Gaussian Noise 
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RS code Reed-Solomon Code 

PSK Phase Shift Keying 

BPSK Binary Phase Shift Keying 

QPSK Quadrature Phase Shift Keying 

QAM Quadrature Amplitude Modulation 

CSI Channel State Information 

ReLU Rectified Linear Unit 

PReLU Parametric Rectified Linear Unit 

NR New Radio 

RNN Recurrent Neural Network 

CNN Convolutional Neural Network 

BICM Bit Interleaved Coded Modulation 

LDPC Low Density Parity Check 

DCO-OFDM 

Direct Current-Biased Optical Orthogonal Frequency Division 

Multiplexing 

LLR Likelihood Ratio 

MMSE Minimum Mean Squared Error 

Rx2 2 Received Antennas 

Rx4 4 Received Antennas 
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APPENDIX C: TOOLS AND SERVICE CONFIGURATIONS  

 

Figure 18. Tools and Cloud Services Using to Train NN. 

As presented in Figure 18, all of our user-cases were designed based on Google 

Collaboratory (Colab) (Chamier et al., 2020), where insert datasets store in Google Drive 

(Harkous & Aberer, 2017). We applied Pandas and NumPy libraries in the Python framework 

with Tensorflow/Keras modules to implement simulations in our research (Abadi et al., 2016; 

Raschka et al., 2020). Furthermore, the free computing resources that we applied in Google 

Colab contains a 2.2 GHz Intel Xeon dual-core central processing unit (CPU) with 12.69 GB 

available random-access memory (RAM) and 107.72 GB Colab disk storage, and those 

configurations were gathered using methods written from Bakarola, 2021. 
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 APPENDIX D: PARAMETERS OF SYSTEM MODEL  

 

Figure 19. Parameters of System Model. 

Figure 19 presents a sample model for the scenario of Reed-Solomon Code and QPSK at 

Rx2. Here, we first defined a system model, where arranged 2 hidden layers and 200 neurons at 

each layer applying the PReLU activation function. When the training process started, the model 

was trained in a supervised learning manner and using a backpropagation algorithm with 500 

epochs and 64 batch sizes for each epoch.  

 

 

 

 

 

 

 

 

 

 

APPENDIX E: SUPPLEMENTARY PROCESS OF TRAINING 
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Figure 20. Sample Process of Training a Single NN. 

A sample process of training a single NN is presented in Figure 20. First, for each SNR 

over a certain range of SNR values, we gathered received data symbols and transmitted data bit 

sequences from CSV file which stored in Google Drive (Harkous & Aberer, 2017), and those 

two types of data symbols were fed into big input and output training sets, respectively. After the 

system model was trained, another combination of received symbols and transmitted data bits 

were fed into the trained model to test the performance of our proposed design.  

 

 

 

 

APPENDIX F: SUPPLEMENTARY DATA INFORMATION 
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• All the codes and data can be found in the following link from Google Drive, containing 

codes of simulation for every user-case, input and output datasets for different types of 

noise, and the simulation results: 

https://drive.google.com/drive/folders/1JLj5OeHw2cvIJFF5s1aPlxsBDZ_spWzm?usp=s

haring 

• Note that the results we obtained are not the termination of our work. For some 

considered cases, such as Reed-Solomon Code with QPSK at Rx4 case, we have not 

acquired a good performance yet. One of the potential reasons is my limited computing 

resources of simulation, for instance, the maximum runtime of Google Colab is 12 hours. 

If they were trained for a longer amount of time, such as one day or two days, the results 

may show improved performance. 
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