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Abstract 
 

Feedback-driven changes in North Atlantic Ocean circulation are affecting marine ecosystems 

off the coast of Iceland and are predicted to have differing outcomes by 2100. In this study, data 

reflecting Icelandic fish stock distributions was compiled on a map with oceanographic 

temperature and depth in order to observe patterns of population changes with changes in ocean 

currents. After evaluating past temperature effects on demersal fish stocks, future habitat 

predictions were estimated in weaker ocean circulation scenarios. A number of assumptions were 

made in order to pinpoint a correlation between ocean temperature and fish habitat. Iceland’s 

unique location and climate offers researchers a chance to analyze changes in marine ecosystems 

that could see an uncharacteristic drop in temperature. Thus, the purpose of this study is to use 

maps to make inferences regarding oceanographic patterns, then use the inferences to 

hypothesize what the future may hold. In this study, fishing data on 4 unique demersal fish 

species from the past 19 years was compiled on a map in coordination with oceanic conditions 

within Iceland’s waters. A key hope is that future research will delve into studying the magnitude 

of atmospheric and oceanographic systems in manipulating Iceland’s marine ecosystems. With 

this, more permanent circulation records in the future can shed light on the island’s 

environmental response to changes in climate. In the study, the results revealed that ocean 

conditions and fish habitats appear to be affected by ocean circulation habits, however it is 

difficult to accurately predict a future environmental state.  

 

 

Introduction 
 

Climate change is an inevitable issue that will affect every part of the world. Iceland, a 

principally ocean-driven island, is no exception. The main question to be addressed in this study 

is how have demersal fish species responded to changing ocean currents since 2000. A secondary 

question was how circulation patterns will respond to escalating climate change, therefore 

painting a picture of fish demographics in Iceland. While statistics calculating the correlation of 

ocean currents and the locations of fish stocks were not compiled, a hope of the study was that a 

comprehensive fish stock map could demonstrate annual correlations of temperature. Fish stocks 

are fish populations that are characterized by their geographic location rather than their 

biological characteristics (Bonanomi et al., 2015). With examinations of the maps contrived, the 

maps were recalibrated to show habitat extent with temperature alterations.  

 

The study not only introduces clues for Iceland’s climactic future, but it also ponders the 

potential effects on one of Iceland’s paramount industries. Fishing has been one of Iceland’s key 

industries for hundreds of years. It has influenced where people lived, where people worked, and 

how people perceived their nature surroundings. From the days of first settlement to the mid-20th 

Century, Iceland’s fundamental source of wealth and sustenance (“History of Fisheries”). Even 

with Iceland’s recent hyper-modernization, its swell in tourism, and now-booming infrastructure, 
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the fisheries industry alone still accounted for 6% of Iceland’s total GDP in 2019 (Icelandic 

Chamber of Commerce, 2020). Even without the wealth it generates, fishing remains a 

centerpiece of culture and livelihood to the people of Iceland. The setting for this study was the 

waters surrounding Iceland in the country’s EEZ (Exclusive Economic Zone), an area that 

stretches approximately 200 miles from all coastline. Despite Iceland’s growth, the EEZ remains 

rich in nutrients and biodiversity (Icelandic Chamber of Commerce, 2020).  

 

In order to properly appraise the status of fish stocks and populations, a multitude of conditions 

must be incorporated into a proper ecosystem assessment. For one, oceanographic elements like 

temperature, salinity, and other chemical factors (i.e acidity) are responsible for alterations in 

growth and other phenological factors (Sumalia et al., 2011). In addition, primary productivity, 

nutrients, and other biological factors must also be taken into consideration. Due to the scope of 

the study, the time constriction, and the lack of data, only temperature was gauged to indicate 

fish habitat change.  

 

The waters of Iceland are hardly uniform in oceanographic conditions and characteristics. 

Significant divergence in oceanographic and environmental states of southwest and northeast 

waters exist that pertain to marine ecosystems and their biodiversity. As exhibited on the survey 

maps, demersal fish species adapt to the physical and biological variations in geographic location 

(Sumalia et al., 2011). Often the life cycle of Icelandic demersal fish occurs in coordination with 

regional changes in ocean temperature and salinity. Due to a lack of knowledge regarding 

distributions within separate regions, it is difficult to conceptualize a general population shift 

within the entirety of Iceland’s EEZ. 

 

Iceland Hydrology  

 
Currents  

 

Iceland’s geographic predicament lays the groundwork for an astonishing case study on the 

effects of extreme current polarity in the North Atlantic. It sits atop the intersection of the Mid-

Atlantic and Greenland-Scotland Ridges and exists in boundary zone of Atlantic and Arctic 

ocean waters (ICES CIEM, 2018). It is beset in the pathway of warm Gulf Stream currents 

originating from the eastern United States and cold polar currents originating from the Arctic 

(Sumalia et al., 2011).   

 

The currents around the Iceland are predominantly temperature and salinity driven, meaning that 

their movements are powered by regional differences in oceanographic conditions (Sumalia et 

al., 2011). The mixing of these waters with differing compositions makes for a series of 

upwelling and downwelling spiraling currents. They are crucial to providing nutrients to the 

organisms of the marine ecosystem, and a major reason as to why Iceland’s waters are so rich in 

biodiversity (Stefánsson et al., 1991). According to past records, periods of warm ocean water 

typically stimulate fish population growth due to an expansion in primary productivity (Mason et 

al., 2021).  

 

The currents patterns within Iceland’s waters varies very differently by area. The waters around 

Iceland are predominated by a set of local cold-tempered and hot-tempered currents. On the 
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South coast, two smaller currents flow in a circle powered by changes in temperature and 

salinity. Off the north coast, Arctic polar water mixes with remnants of Atlantic water delivered 

by the North Icelandic Irminger Current (Sumalia et al., 2011). The North tends to experience 

larger temperature and salinity variations due to the overbearing influence of Arctic 

environmental systems (Iceland Meteorological Office, 2018).  

 

The differences of the waters in the North and South of Iceland create a predominant current that 

circulates around Iceland. In both the northern and southern waters of Iceland, mixing of the 

contrasting water bodies occur. The circulating current around Iceland is vital to transporting 

heat and nutrients to different marine ecosystems surrounding Iceland. As a result, the Southern 

and Northern shelf waters in general are both mixing zones of coastal waters and deep-ocean 

waters (ICES CIEM, 2018).  

 

 
Figure 1: Map of ocean currents around Iceland using coordinates. The colors indicate the temperature of the currents with red 

being the warmest and dark blue being the coldest. Bathymetric contour lines were included to convey ocean ridges and 

continental shelves (Astthorsson et al., 2007).  

While the smaller currents around Iceland are important, the Gulf Stream, which is powered by 

temperature and salinity differences in the North Atlantic, is the main driver of the heat to high 

latitude locations such as Iceland. This current starts in the Gulf of Mexico and ends in upper 

latitudes of the North Atlantic. As seen in Figure 2, the Gulf Stream branch approaches Iceland 

and forks off into the N-Icelandic Irminger Current and begins to circulate clockwise around 

Iceland. The Gulf Stream plays a pivotal role in transporting warmer water to the southwestern 

coast of Iceland and, as a result, making Iceland’s climate more temperate and milder 

(Stefánsson et al.,1991). Its significance in the North Atlantic is immense to say the least 

(Carrington, 2021). 

 
Figure 2: Map of Gulf Stream generated on Web ArcGIS. The large red arrows indicate a warm current pattern while the large 

blue arrows indicate a cold current pattern. The strength of the surface currents were taken from annual mean strength. The light 

green arrows have a higher velocity than the blue arrows (ESRI).  

 



 4 

  

Significance of the AMOC 

 

When addressing the movement patterns of North 

Atlantic currents, it is important to acknowledge the 

presence of Atlantic Meridional Overturning 

Circulation (AMOC). AMOC acts as an agent of 

worldwide oceanic movement and is responsible for 

mild North Atlantic climate conditions and North 

Atlantic storm systems among other systems (Cheng et al., 2013). The strength of AMOC around 

Iceland is usually controlled primarily by regional oceanic temperature and density differences. 

The AMOC powers the Gulf Stream and therefore is responsible for bringing heat to the waters 

of Iceland. The AMOC is also responsible for transporting cold, deep polar water through the 

East Greenland Current to the southwest to the Labrador Sea in Canada (Sévellec et al, 2014). In 

essence, much of the mild climate conditions and high productivity areas around Iceland occur 

thanks to the presence of the AMOC.  

 

The AMOC is represented in models and graphs as an index. The units are expressed in 

Sverdrups (Sv), a measurement of the annual mean current velocity at 30°N (Cheng et al., 2013). 

In simpler words, AMOC index is a reflection of the strength of the circulation’s movement and 

velocity. AMOC typically varies on periods of around 20-30 years in North Atlantic, switching 

from a strong and weak period (Sévellec et al., 2014). The AMOC has had some regime shifts in 

the past as seen in Figure _ below. These changes have caused changes the collapse of fish 

populations. So-called Dansgaard-Oeschger (D-O) events have historically occurred within inter-

glacial periods around every 1000 years, resulting in long-term cooling effects that have 

uprooted marine ecosystems. The warm and cold phases of the DO cycles correspond to periods 

of AMOC strength and weakening, so they have been the subject of study for climatologists 

concerned about the future of ocean circulation (Sévellec et al., 2014). 

 

Climate change is predicted to cause lasting effects to the AMOC system in the North Atlantic. 

Since 1995, scientists have identified a regime shift within AMOC, causing a gradual weakening 

of the AMOC strength in the Atlantic. Scientists have hypothesized a few potential factors have 

attributed to this shift. The one predominant factor that has been hypothesized and agreed on by 

many climatologists is the increased freshwater flux of freshwater into the North Atlantic. Due to 

this influx, the freshwater significantly reduces the salinity in the ocean and disrupts the Irminger 

Current from pushing warm water to Iceland. As one might speculate, the majority of the influx 

of freshwater comes from the Greenland ice sheet. With global warming causing alarming rates 

of glacial melt, the North Atlantic freshwater influx will steadily rise in years to come (Boers et 

al., 2021). While the Intergovernmental Panel on Climate Change reports that a regime shift of 

the ocean circulation is unlikely to occur on its own, it does state that a large influx of freshwater 

influx could potentially cause a collapse of the AMOC (Boers et al., 2021). Although current 

ocean circulation models continually disagree about the presence of EWS (early warning signals) 

that predict an AMOC shutdown event, the likelihood of this scenario may still appear greater 

than previously thought.  

The significant slowing of AMOC, no matter the degree, will signify that less warm water is 

being transported to the southwest coast of Iceland. With a marine-powered climate, it is very 
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possible Iceland could see a drop in temperature and by some standards be a climate change 

benefactor. However, a fundamental change in ocean circulation could have profound effects on 

Icelandic fishing. While cold water demersal fish species such as Greenland halibut might thrive 

in a cold-watered Iceland EEZ, it is likely that warm-water demersal and pelagic species 

populations could be desolated and cease to have suitable habitat in much in the high latitudes of 

the North Atlantic.  

 

 

Iceland Fish Species 

 
Fish Species 

 

In terms of fish, the unique and nutrient-rich ocean waters around Iceland are home to a variety 

of fish species. In terms of literal fish, there are demersal species (fish that typically dwell near 

the ocean floor), flatfish species (demersal fish that have ray-like fins and swim on their side), 

redfish (deep sea rock and reef dwelling fish), and pelagic fish (small, warm water fish that move 

in large clusters and migrate long distances) (Ministry of Industry and Innovation).   

 
Figure 3: Histogram compiled by researchers at the Marine and Freshwater Institute. The box plots are representations of 

thermal habitat suitability change for the future years 2061-2080 based on a 2000-2018 record. The plots are divided into two 

separate SSP (future anthropogenic socioeconomic climate responses) scenarios and the x-axis depicts a total change in suitable 

habitat. Boxplots for the fish species are subdivided by color based on their temperature preferences (Mason et al., 2021).  

In this study, the intended focus was on three demersal fish species and one flatfish species. 

Demersal species and flatfish species tend to be easier to map because their Icelandic populations 

are often more established and more permanent than pelagic fish (Mason et al., 2021). The 

species were chosen predominantly based on the depth and temperatures of their habitat. In Dr. 

Woods’ scientific article, researchers divided up various Icelandic fish by their ocean 

temperature preferences and measured the effect of climate change on their total habitat area 

(Mason et al., 2021). Based on this, species were chosen with the hopes of being capable of 

generally summarizing the responses of all Icelandic fish that are relevant to Iceland’s fish 

industry.  

 

The first fish species that is the subject of the study is Molva dypterygia, or Blue ling. Blue ling 

is a shallow, warm water fish that is found almost exclusively along south coast and to the 

southwest of Iceland. Typically caught at a depth of about 80 meters, it is found at predominantly 
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sandy bottoms near coastline. This fish species saw a peak population amount around 2010 but 

has since declined in Iceland’s waters (“Blálanga Molva dypterygia”, 2021). The change could 

be attributed to current AMOC weakening and decrease in temperature in the southwest of 

Iceland. Comparative to the other species of fish, Blue ling is not as popular and has no historical 

significance to Iceland. However, due to its hyperdynamic population fluctuations and its new 

appearance in the region in recent years, Blue ling is an important fish to study when addressing 

climate change.  

 

 
Figure 4: The map (left) was generated using ArcGIS Online, the data was provided by the MFRI bottom trawl survey. The 

amounts of Blue ling catches were measured in kilograms per nautical mile and the heights and colors of the cylinders 

correspond with kg per naut mile value (ESRI). The graph (right) details the total annual catch of Blue ling (above) and the 

proportion of the catches divided by fishing technique using color coding. The graph was created by the Marine and Freshwater 

Institute with data from fisherman catch diaries (State of Marine Resources and Advice 2021, 2021).  

 

The second fish species that is focused on in the study is Gadus morhua, otherwise known as 

Atlantic cod. Atlantic cod is a cold-water fish that typically lives at depths of approximately 200 

meters, but depths range substantially. It is extremely abundant; it is found in all regions of 

Iceland. The densest populations appear to the north and northwest of Iceland. It is by far 

Iceland’s most popular fish (“Þorskur Gadus morhua”, 2021). Atlantic cod is known for its 

versatility and tenacity, making it able to thrive in various ocean environments. This fish species 

will likely dominant and stable even with widespread fluctuations as part of climate change, only 

harsh changes could derail Atlantic cod’s ecological dominance.  

 

 
Figure 5: The map (left) was generated using ArcGIS Online, the data was provided by the MFRI bottom trawl survey. The 

amounts of Atlantic cod catches were measured in kilograms per nautical mile and the heights and colors of the cylinders 

correspond with the kg per naut mile value (ESRI). The graph (right) illustrates the total catch of Atlantic cod in thousand tons 
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from 1955-2020. The graph was compiled by the Marine and Freshwater Institute in the 2021 Marine Resources Assessment & 

Advice Report. The bar graphs are color-coded by separate technique procedures due to Atlantic cod’s wide popularity 

(Þorskur– Cod, 2021) .  

The third fish species that is focused on in this study is Reinhardtius hippoglossoides, commonly 

known as Greenland halibut. A more infrequent fish than Atlantic cod, Greenland halibut is a 

cold water, bottom-dwelling fish typically caught at depths of around 800 meters. The main 

fishing stocks are predominantly on the far northwestern edge of Iceland’s exclusive economic 

zone (“Grálúða Reinhardtius hippoglossoides”, 2021). Greenland halibut is unique because its 

stock is assessed as a population found in Icelandic, Greenlandic, and Faroese waters (“Grálúða 

Reinhardtius hippoglossoides”, 2021). While Greenland halibut stocks have been relatively 

consistent in recent years, fears have grown that an increase in ocean temperature could cause 

them to relocate far north of Iceland.  

 

 
Figure 6: The map (left) was generated using ArcGIS Online, the data was provided by the MFRI bottom trawl survey. The 

amounts of Greenland halibut catches were measured in kilograms per nautical mile and the heights and colors of the cylinders 

correspond with the kg per naut mile value (ESRI). The graph (right) measures total annual catch in thousand tons over the past 

50 years or so. Unlike the graphs, the differences in color represent the different regions of Greenland halibut stocks. Because of 

their temperature and depth preferences, halibut linger in deeper, largely international waters (Grálúða – Greenland Halibut, 

2021).  

The last fish species that is covered in the study is Anarhichas lupus, otherwise known as 
Atlantic wolffish. Atlantic wolffish is a cold-water demersal fish typically found right outside the 

Westfjords in northwest Iceland. Atlantic wolffish prefers cool waters and is typically caught at a 

depth of 200 meters. Catches of wolffish in Icelandic waters have been stable the past 10 years or 

so (“Steinbítur Anarhichas lupus”, 2021). In the future, Iceland may see an increase in wolffish 

populations that live in closer proximity to land if temperatures decrease.  
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Figure 7: The map (left) was generated using ArcGIS Online, the data was provided by the MFRI bottom trawl survey. The 

amounts of Atlantic wolffish catches were measured in kilograms per nautical mile and the heights and colors of the cylinders 

correspond with the kg per naut mile value (ESRI). The graph (right) illustrates the total catch of Atlantic wolffish in thousand 

tons over the past 40 years. The graph was compiled by the Marine and Freshwater Institute in the 2021 Marine Resources 

Assessment & Advice Report. The bar graphs are color-coded by separate fishing technique procedures (“State of marine 

resources and advice 2021”, 2021).  

 

Methods 
 

The following study is a series of maps generated on an online geographic information systems 

(GIS) webservice called ArcGIS designed by ESRI. The data inputted into the maps was a 23-

year record of autumnal bottom trawl surveys from 1996 to 2019 executed by a research team at 

the Marine and Freshwater Institute of Iceland. It is conducted every year in the month of 

October by a research vessel that circles Iceland and travels to geolocated stations at specific 

coordinates. Measurements entail releasing a scientific bottom trawl net over a certain distance 

that catch and count fish while also collecting environmental information. At these station points, 

ecological, environmental, and statistical information was recorded by researchers and put into a 

CSV file. In total, around 220,000 data entries across the fish species Blue ling, Atlantic cod, 

Greenland halibut, and Atlantic wolffish from 1995 to 2019 were provided for the study. For the 

limited scope of this project, only the points measuring kilograms per nautical mile, bottom 

temperature, depth at the beginning of the bottom trawl, and coordinates were used in the GIS-

created maps.  

 

When generating a map of individual species’ Icelandic stocks, the coordinates were plotted to 

show the locations of the trawl stations. The data was filtered by specific species and then 

filtered again to show population extents in the years 2000, 2005, 2010, and 2019. The 

measurements of kilograms per nautical mile and the lengths of the fish were provided at each of 

the individual within each of the given years. Using the SceneViewer display on ArcGIS Online, 

cylinders were created for individual data points to indicate the weight of the catch per nautical 

mile. A standardized scale of 0-0.1 kg per nautical mile was used across all maps to accurately 

illustrate differences in total catch between species and years.  

 

When generating the Iceland Bottom Temperature maps, station points with cumulative data 

across all fish species filtered by year were plotted onto a map. Under the analysis option in web 

ArcGIS, the bottom temperatures from individual points were interpolated onto a map through 

the “interpolate points” function. The scale was created with ranges of 2°C in order to properly 

demonstrate change between years. A similar procedure was followed when generating the 
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Iceland Bottom Trawl Depth map of Iceland. Cumulative fish data across all years was compiled 

onto a singular map, then the points were interpolated using the Analysis GIS function. The 

attribute used was the beginning of the bottom trawl depth. Although not the actual depth, 

because demersal and flatfish species dwell near the bottom of the waters they live in, an 

assumption was made that the depth of the trawls is a relatively accurate depiction of the 

legitimate bathymetry surrounding Iceland (Ministry of Industry and Innovation). In addition, the 

map was color-coded to have the deepest points throughout the time record overlay the shallower 

points, and so the maximum trawl depths should provide some indication of the depth extent at 

the following coordinates. The depth scale was designed to rise exponentially by a multiple of 2 

per range in order to more accurately depict the topography of the shallow waters near the 

coastline while also encompassing depth maximums.  

 

For the Depth & Bottom Temperature maps, data was filtered by year and species and plotted 

into Web ArcGIS. The attributes bottom temperature and beginning of trawl depth were 

connected and circles with color were created for each point to exemplify both values. Uniform 

scales for temperature and depth across all maps were created to show proportional differences 

across species and years.  

 

The future climate prediction maps were mapped through a different and more elaborate process. 

The temperature climate scenarios were inferred based on knowledge gained from AMOC model 

articles. First, an identical layer with the cumulative fish data across all years was produced in 

Microsoft Excel and individual bottom temperature points were amended and recalculated with 

the specified temperature change. These amended cumulative data sheets with different 

temperature adjustments were submitted into Excel as future temperature prediction data. Next, 

the original data sheet was divided into fish species and each titled with the name of the species. 

Using Excel’s spreadsheet calculator, standard deviations for bottom temperatures across all 

years for each species were calculated. With the standard deviations for each species calculated, 

a range 1 standard deviation away in both directions was designed in order to summarize the 

average temperature and, in essence, habitat suitability for each fish species. After that, the “find 

similar locations” option under the analysis function was implemented. The “find similar 

locations” function correlated bottom temperature points from the original data sheet with the 

new bottom temperature points from each of the future prediction data sheets. Before undergoing 

the calculation, it is important to include that the original data sheet was filtered to include points 

within the habitat suitability range and from the year 2019 (to get the most relevant information). 

The calculation product was the same set of station points but measuring the correlation of the 

habitat suitability temperature range and the ocean temperatures for the future scenarios with 

SimilarityRank. The last step was to use the analysis function to interpolate the correlation points 

using their sum squared value differences (attribute calculated automatically by ArcGIS). The 

finished product is a set of maps that depict the areas of high and low habitat suitability for 

different fish species. The ranges for sum squared value differences contours were calculated 

automatically by ArcGIS and differ by year and species, but they still properly reflect population 

distributions.  

 

 

When mapping data and making conclusions, quite a few assumptions were made when 

designing this study. First, the data points collected in the MFRI autumnal survey do not reflect 



 10 

the amount of fish actually caught, they are simply areas that reflect fish stocks of Icelandic 

demersal species. However, they are taken with prior knowledge of fish stock locations and so 

they serve as a quite viable source of information on fish demographics. In addition, as 

mentioned before, the depth points used are not the actual measurements of depth but they do 

serve as reliable indicators of fish population depths and changes in ocean temperature. In terms 

of AMOC predictors, determining the exact influence of freshwater flux on AMOC strength 

remains debated, let alone how it will affect ocean temperatures around Iceland (Boers et al., 

2021). The basic temperature amendments serve as placeholders for potential future scenarios, 

and are simply designed to show how fish respond to different temperature changes.  

 

 

Results  

 
Bottom Temperature and Depth Study 
 

Using data provided by the MFRI autumn bottom trawl survey, a set of maps depicting changes 

in bottom temperature, trawl depth, and kilograms of catch per square kilometer were created. 

After generating the maps, some basic analysis on visible trends was written below.  

 

The first map generated displays a temperature map and a depth of Icelandic waters for the years 

2000, 2005, 2010, 2015, and 2019. The temperature map is to be used as a reference for overall 

temperature change and population fluctuations over the 19-year record.  

 

 
Figure 8: Both the series of the bottom temperature maps on the left and the depth map on the right were generated in ArcGIS 

online using the MFRI bottom trawl survey data. In the temperature maps, bottom temperature data points for 5 separate years 

were interpolated onto a map. On the maps, the darker the area color signifies a higher the temperature range. On the left, the 

depth data points of the bottom trawl beginning were interpolated onto a map with darker colored areas signifying a greater 

depth (ESRI). 

 

According to the maps created, bottom temperature is relatively consistent with periodic but 

natural fluctuations on a period of about 5 years. One main observation is that while the locations 

of extreme highs fluctuate, the waters to the South and West regions remain mostly warm and 
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unaltered. The following observation is a reflection of the Gulf Stream’s influence on Iceland’s 

southwest region. The variations across years seen could either be attributed to natural 

fluctuations or long-term climate effects.  

 

The northeast region, on the other hand, consistently differed from the southwest in that a more 

severe drop in ocean temperature occurred closer to land. Unlike the gradual temperature 

gradient that exists in the South, the Northeast edge of the continental plate drops off quickly. 

This could be attributed to a steeper northeast continental shelf drop but the most likely 

reasoning is that the region is inherently colder than the southwest due to the influence from the 

Arctic Ocean. Overall, the similarities reflect prior knowledge about current mixing and the 

Irminger Current’s influence within Iceland’s waters.  

 

Despite similarities, a few trends can be observed over the measured 19-year period. For one, a 

westward expansion of warmer temperatures occurred off the western coast of Iceland from 2000 

to 2010. The record reached an approximate peak of warm temperatures by the year 2010, as 

conveyed with the presence of 10-12 °C areas off the west coast. Since 2010, however, there has 

been an evident but small decrease in ocean temperature, perhaps due to the early presence of 

AMOC weakening or fluctuations in the regional atmospheric conditions.  

 

 

 

Blue Ling  

 

Maps of Blue ling catches indicate a major expansion 

of population size from the year 2000 to 2010. What 

starts as a couple of isolated deep, cold water 

populations in 2000 rapidly develops into an 

established population by 2010. During peak 

population in 2010 saw Blue ling dwelling in typically 

warmer temperatures of mixed depth off the Western 

coast and a singular pocket of fish in the Southeast. 

Since 2010, the population has slightly weakened to a 

stable but not ecologically dominant state. 

 

The rapid rise of Blue ling in Iceland’s waters can 

likely be attributed to the warming of the North 

Atlantic due to radiative forcing. Since 1995, the ocean 

has seen a considerable rise of temperatures that, until 

2016, have been well above the average from the past 

century (Boers et al.). The slight weakening of the 

population after 2010, however, could be an early 

signal of AMOC weakening and GIS freshwater flux.  

 

 

Figure 9: The series of maps describing the 

population centers of Blue ling fish stocks in 5 

separate years were created through ArcGIS Online 

using the MFRI bottom trawl survey data. Using 

color to measure temperature and circle sizes to 

indicate depth, data points were plotted to show 

Blue ling population extents over time (ESRI). 
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Atlantic Cod  

 

Maps of Atlantic cod reveal a few details regarding 

temperature and depth trends. Although the changes 

aren’t visibly obvious, it is possible to see a buildup of 

Atlantic cod populations in Iceland’s eastern and 

northeastern waters. Additionally, a strengthening of 

populations appears in temperatures areas off the west 

coast over the 19-year record. Lastly, the south coast 

sees a slight uptick of shallow, warm-water cod survey 

locations, as well.  

 

Overall, the Icelandic Atlantic cod fish stock has 

remained quite stable, if not improved, according to the 

19-year record. The successes of Icelandic Atlantic cod 

populations probably serve as a testament to the 

species’ adaptability and considerable fish quota 

enforcement efforts by the Icelandic government. 

Atlantic cod is indispensable to the Icelandic fishing 

industry, so the population is well researched and maintained. Additionally, Atlantic cod is a 

flexible species that can adapt to almost all the waters around Iceland. Any negative changes that 

were identified were likely a reflection of slight environmental variations rather than a 

momentous shift in cod population dynamics. The small increases in the south and west could 

possibly be explained by an expansion of Atlantic cod into warmer waters in order to have less 

competition for resources. In the complete opposite case, the slight density increase of Atlantic 

cod populations in the northeast could be a single example of temperature-induced population 

migration. Overall, however, the cod stock remains relatively unchanged and only far-reaching 

oceanic changes will impact stocks.  

 

 

Greenland Halibut 

 

Maps of Greenland halibut reveal some 

striking evidence for climate variation in the 

North Atlantic region. From 2000 to 2019, the 

Greenland halibut population points found in 

the northern and eastern waters of Iceland 

experienced an apparent increase in bottom 

temperature. One peculiar observation was that 

Iceland populations on the west and east coasts 

form a solid population cluster with a 

maximum southward extent around 2010. 

2010, according to the temperature maps 

created, witnessed by far the warmest 

temperatures comparatively to other years on 

record.  

Figure 10: The series of maps describing the 

population centers of Atlantic Cod fish stocks in 5 

separate years were created through ArcGIS Online 

using the MFRI bottom trawl survey data. Using 

color to measure temperature and circle sizes to 

indicate depth, data points were plotted to show 

Atlantic Cod population extents over time (ESRI).  

Figure 11: The series of maps describing the population 

centers of Greenland halibut fish stocks in 5 separate years 

were created through ArcGIS Online using the MFRI bottom 

trawl survey data. Using color to measure temperature and 

circle sizes to indicate depth, data points were plotted to show 

Greenland halibut population extents over time (ESRI).  
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Although the amount of Greenland halibut caught has remained quite consistent in recent years, 

the conditions at which they are caught have changed (“Grálúða Reinhardtius hippoglossoides”, 

2021). However, Greenland halibut catch locations demonstrate that the species prefers its ideal 

depths over its ideal temperatures. For example, while temperature increased in both the south 

and north, the size of depth symbols remained constant, signifying that halibut remained at the 

same depths despite large temperature differences.  

 

The changes in ocean temperature of the trawl stations were very significant, nonetheless. The 

increase in temperature could be due to an increase in relative ocean temperature in the Arctic 

Ocean. An increase in albedo due to ice sheet loss and atmospheric radiative forcing could be 

two attributing factors to that change.   

 

Atlantic Wolffish 

 

Maps of Atlantic wolffish have shown a unique 

population development over the 19-year 

record. Starts with locations of warm and cold 

with varying depth in 2000, the wolffish fish 

stocks have grown to stable and consistent. The 

population clusters in the north are typically 

cold and cool waters close to the coast, while 

the population clusters in the West are warmer 

but farther from the coast. One negative 

observation is that the cold-water populations 

spots in the East started to disappear. Overall, 

wolffish stocks have moved landwards and to 

more warm waters. 

 

The changes from 2000-2010 in Atlantic 

wolffish population locations in the west could 

be accredited to ideal habitat conditions closer to the coast. The strengthening in the North is 

possibly influenced by a movement of fish from cold to cool waters. Since 2010, however, the 

chain along the northwest coast started to distance itself from the coast. Based on the physical 

information presented, it appears that Atlantic wolffish enjoys the zones of mixing waters. Like 

cod, wolffish is an adaptive cool-water fish that could thrive in either Arctic or Atlantic-

dominated ocean waters.  

 

AMOC Prediction Study 
 

Ocean circulation is far from a static system. Global warming has caused and will increasingly 

cause ocean circulation to change rapidly. With increasing atmospheric temperatures due to 

growing concentrations of greenhouse gases, When the freshwater enters the ocean in the 

Irminger Basin, it significantly slows the warm water spread to coastal Europe.   

 

Figure 12: The series of maps describing the population 

centers of Blue ling fish stocks in 5 separate years were 

created through ArcGIS Online using the MFRI bottom trawl 

survey data. Using color to measure temperature and circle 

sizes to indicate depth, data points were plotted to show 

Greenland halibut population extents over time (ESRI). 
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Weakening of the AMOC since the regime shift in 1995 has already accounted for circulation 

disruptions in North. For one, the observed “cold blob” around 40°N in the Atlantic is a result of 

freshwater flooding into the path of the Gulf Stream. When this foreign water enters into the 

Gulf Stream, it hinders movement by preventing cold water from sinking to the bottom of the 

ocean. With an increase in glacial melt, it is very reasonable to expect this cold blob to grow in 

magnitude and intensity (Keil et al., 2020).  

 

 
Figure 13: The following graphs picture AMOC weakening projections using ensemble models from RCP 4.5 and 8.5 climate 

scenarios. The MOC value on the y-axis represents the AMOC stream-function value expressed as a annual-mean heat transport 

value (Cheng et al., 2013).  

Actively studying AMOC strength and the weakening that has occurred over the past century is a 

very new field of study. In fact, the AMOC record only stretches back to 2004 (Bellomo et al., 

2021). Before that, climatologists had to rely on deep ocean sedimentary records to observe 

AMOC fluctuations (Boers et al., 2021). While it has been strongly theorized that AMOC 

strength and freshwater flux have a convincing negative relationship, AMOC climate models 

have varying predictions about the future. Using CMIP-5 and CMIP-6 models, ocean current 

projections have been compared to determine the best fit future for AMOC circulation (Bellomo 

et al., 2021). Further climate model predictions have large deviations, and remain uncertain even 

in the most modern research studies.  

 

In this study, we will look at three separate future climate scenarios. They are all unique in their 

timing, severity, and environmental implications. Both the RCP 4.5 and RCP 8.5 model 

simulations predict a further decrease in AMOC strength until at least 2100. Apart from that, the 

scenarios differ greatly and major generalizations regarding ocean temperature were made due to 

the models’ inconsistency.  

 
Figure 14: A pair of graphs that predict annual-mean AMOC strength anomalies at 26.5°N in the future. The model projections 

were made using a 10-year running mean. Thick dashed lines signify large AMOC decline scenarios while the solid lines signify 

small AMOC decline future scenarios (Bellomo et al., 2021).  

Scenario 1-  CMIP-5 RCP-4.5 Models: Minor Weakening of AMOC Event 
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The first scenario is AMOC strength weakening but to a lesser degree. In order to simplify some 

confusion regarding climate models, an RCP 4.5 outcome was attached to the series of CMIP-5 

models. In a RCP4.5 scenario using CMIP-5 models, the predicted decrease in AMOC strength 

remains controversial. CMIP5 predict decreases anywhere from 4 Sv (-27%) to 10 Sv (-58%) by 

around 2100 (Bellomo et al., 2021). No matter the potential outcome, the weakening that could 

occur in this scenario is still significant and will likely have widespread effects in Iceland’s 

marine ecosystems. In any case, however, it still remains a challenge predicting what sort of 

temperature fluctuations will be felt in Iceland’s waters.  

 

Given the unpredictability of 4.5 scenarios, a mock model was produced. Because of the 

differentiation of climate models, it will be assumed that temperatures around will all increase by 

1°C. An increase in 1°C was generally estimated because a 4.5 scenario predicts a less extreme 

AMOC weakening. Given this, rapidly increasing ocean temperatures will prevail over North 

Atlantic cooling so the temperature will generally rise about 1°C by 2050.   

 
Figure 15: The following are a series of ArcGIS Online generated maps that measure habitat suitability likelihood based on 

differences between 2019 bottom temperature data points and amended data points from 2019 with a 1°C increase in bottom 

temperature. The sum squared value differences between the different temperature data sets were interpolated onto a map with 

ranges representing the correlation between the two temperature scenarios (ESRI).    

 

Scenario 2- CMIP-5 RCP-8.5 Models: Major Weakening of AMOC Event 

 

In the RCP 8.5 Scenario using CMIP-6, an increased amount of AMOC weakening creates 

different changes to fish populations. In this scenario, it is likely that large amounts of 

weakening ocean circulation will slightly outweigh the rapidly increasing temperature of the 

oceans from climate change. In some models, a weakening from an 8.5 RCP scenario can range 

anywhere from a decrease of 1.5 Sv to 30 Sv by the year 2050 (Bellomo et al., 2021). 

 

Much like the 4.5 RCP models, there is a lot of inconsistency between models so it is hard to 

accurately determine a temperature change within Iceland’s waters. However, a very rough 

estimate predicts a decrease of 0.5°C. In this instance, strong Gulf Stream weakening would 

produce a stark cooling of Icelandic waters, cancelling out the significant ocean warming 

happening worldwide. While the 0.5°C decrease may seem miniscule when visualizing total 



 16 

AMOC weakening, the temperature change is still significant and will likely have other, more 

severe ecological shifts.  

 

 
Figure 16: Figure 17: The following are a series of ArcGIS Online generated maps that measure habitat suitability likelihood 

based on differences between 2019 bottom temperature data points and amended data points from 2019 with a 0.5°C decrease in 

bottom temperature. The sum squared value differences between the different temperature data sets were interpolated onto a map 

with ranges representing the correlation between the two temperature scenarios (ESRI).   

Scenario 3- CMIP-5 RCP-8.5: AMOC Shutdown Event  

 

This is the worst-case scenario. While determined “unlikely to occur in 21st century” in the 

recent IPCC report, it is certainly still possible. Scientists hypothesize that a sudden, major 

melting event on the Greenland Ice Sheet could spur a Gulf Stream collapse. In the year 2021, 

news articles such as credible platforms such as The Guardian among others hint at a potentially 

imminent Gulf Stream shutdown (Carrington, 2021). As observed in past ocean sedimentary 

records, the point of bifurcation (point of system collapse) occurs when a large surface 

freshwater flux enters the North Atlantic in the ocean west of Greenland (Boers et al., 2021).  

 

In this scenario, the cold waters around Iceland, which typically circulate around the island will 

predominantly remain in place; the mechanism to its circulation has failed. The decrease could 

be quite significant, but, per usual, it is hard to determine an exact estimate. Based on how rapid  

ocean circulation changes are and given Iceland’s proximity to the Greenland Ice Sheet and the 

Arctic Circle, a rough estimate would be a 3°C decrease.  

 

 
Figure 18: Figure 19: The following are a series 

of ArcGIS Online generated maps that measure 

habitat suitability likelihood based on 

differences between 2019 bottom temperature 

data points and amended data points from 2019 

with a drastic 3°C decrease in bottom 

temperature. The sum squared value differences 

between the different temperature data sets were 

interpolated onto a map with ranges 

representing the correlation between the two 

temperature scenarios (ESRI).  
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Analysis 
 

Reflection on Bottom Temperature & Depth Study 

 

After physically observing and analyzing the GIS-generated maps, it is apparent that fish stocks 

have not moved in concurrence with changes in oceanic circulation from 2000 to 2010. The 

populations themselves, however, do lie in coordination with the traditional pathways of 

currents. Blue ling, a warm-water fish thrived in the southwest waters of Iceland, directly in the 

path of Gulf Stream warm water. Atlantic cod and Atlantic wolffish, cold-water demersal fish, 

mingled in areas of heavy Atlantic and Arctic ocean mixing. Greenland halibut has historically 

shifted between areas near the Irminger and East Greenlandic Currents depending on habitat 

suitability (“Grálúða Reinhardtius hippoglossoides”, 2021).  

 

With many assumptions made, there were a few inter-record trends that should be mentioned. 

For one, the area of warm temperature in the Southwest rises and contracts over the record. With 

this, all of the fish surveys reflect this change at least to some extent. According to many sources, 

the warm, Atlantic waters have dominated Arctic waters off the coasts of Iceland, providing 

evidence for a temperature increase in past decades. In the Blue ling record, the population 

pockets remained in the warmest part of the country as they settled in Iceland’s waters. 

Following a similar trajectory, the maximum population extent was in 2010 and remains 

concentrated in the warm waters to the south of Iceland.  

 

Reflection on AMOC Prediction Study 

 

After creating the AMOC prediction maps, some fascinating observations can be made. While 

only being a simplified and one-sided future prediction, a lot of inferences were fabricated 

through physical observation.  

 

In the CMIP-5 RCP 4.5 simulation, the 1°C increase forced some quite unlikely shifts. For the 

Blue ling populations centralized in the southwest, the temperature increase resulted in an 

outward expansion of Blue ling habitat suitability. The species could actually thrive in southern 

and western Iceland in the RCP 4.5 simulation. For Atlantic cod, the RCP 4.5 simulation saw the 

movement of population clusters to the northeastern coast, interestingly enough. With a 1°C 

increase, cool and relatively shallow waters become sparser, and so Atlantic cod may need shift 

to these areas in order to succeed ecologically. Greenland halibut population centers in the RCP 

4.5 scenario move away from land in the north waters from Iceland. This major change is major 

because it is quite likely that Greenland halibut venture out of the EEZ into international waters 

in order to seek suitable habitat. Atlantic wolffish exemplified similar tendencies to Atlantic cod 

with northeast similar population centers. In addition, Atlantic wolffish populations in the 

southwest are able to thrive far away from land with a uniform 1°C increase in ocean 

temperature.  

 

In the CMIP-6 RCP 8.5 simulations, the habitat suitability maps look quite different. For Blue 

ling, the populations around the country weaken and their populations become predominantly 

centralized to the southwestern region of Iceland. Atlantic cod populations are spread equally 

around Iceland and form a thick, solid ring on the map existing a considerable distance from 
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shore. Interestingly enough, the map depicting Greenland halibut habitat suitability in the RCP 

8.5 scenario is almost identical to the map in RCP 4.5 scenario. The lack of differentiation 

illustrates a theme that Greenland halibut populations are often rooted to specific geographic 

locations despite minor temperature discrepancies. Atlantic wolffish in the RCP 8.5 scenario saw 

a shift westward shift of populations in the north and a contraction of the southward extent of 

habitat off of the southwest coast.  

 

In the AMOC Shutdown event, major demographic changes for all 4 fish species transpires. For 

Blue ling, a 3°C decrease creates a hypercontraction of population that confines the species to the 

warm and shallow waters along the south and western coast. For Atlantic Cod, the major 

temperature decrease results in a westward shift away from the previous centers in the north and 

northeast waters. While a large amount of area remains inhabitable for Atlantic cod, a 3°C 

decrease forces the species to migrate to ocean that is dominated by warmer Atlantic ocean 

water. After a significant temperature decrease, Greenland halibut population clusters in the 

north and the east finally start herding towards Iceland, if not weighed down by depth 

limitations. Lastly, Atlantic wolffish will see a severe relocation to the warmest waters of Iceland 

along the south coast in an AMOC shutdown model simulation. Overall, the simplified 

predictions allow for the viewer to visualize a common trajectory path for fish species as the 

temperature continues to drop.  

 

Discussion 
 

 

The reality is that climate model predictions vary too greatly to be observed. One limitation to 

modelling accurately modelling AMOC is that the record measuring its strength has only been 

around for a short period of time. Another limitation is that scientists have unintentionally 

overlooked the state of ocean circulation and instead have focused on ocean temperature and sea 

level rise; pressing matters that are presently affecting coastal regions all over the world. Due to 

Iceland’s unique situation, warming waters are not causing an immediate threat to the island. 

Thus, only until recently, a lack of research regarding North Atlantic currents has created a 

knowledge vacuum regarding Iceland’s fisheries and marine ecosystems. Studying the influence 

of the unique ocean circulation controlling Iceland, however, could reveal important details 

regarding the future of Iceland’s climate and marine ecosystems.  

 

Using these maps, it has been confirmed that calculating long-term trends in the ocean is difficult 

and unreliable. Excluding anthropogenic sources, there are many factors in play in determining 

bottom temperatures within the realm of Iceland’s continental shelf. Between the annual natural 

variation of ocean temperature and the presence of the subpolar gyres among a multitude of 

factors, there is an element of fogginess to AMOC measurement. More research into AMOC’s 

role in Iceland’s climate needs to be conducted to make more accurate future predictions.  

 

One may think, isn’t global warming going to increase ocean temperatures not lower them? In 

general, the world’s oceans will increase in temperature. From 1995 to 2015, the ocean 

temperatures had been increasing, especially in the Southwest. According to article written by 

members of the Marine and Freshwater Institute, the waters off the Northeast coast of Iceland 

will see a significant increase in temperature in the future (Mason et al., 2021). Northeast Iceland 
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receives cold, polar Arctic water but does not receive a freshwater flux like the Atlantic waters to 

the Southwest receive. As a result, this mixture of Arctic and Atlantic will likely see increases 

that reflect overall warming due to a rapid decrease of albedo from sea ice loss. Unlike the 

Greenland ice sheet, the sea ice is not freshwater, and so its effect will not be as profound.   

 

 

 

Bigger Picture Now 

 

No matter the level of weakening in 

the years to come, AMOC weakening 

in the North Atlantic demands the 

world’s attention. Ecosystems are 

systems where everything relies on 

one another. If the populations of fish 

are changed drastically, all marine 

organisms will face potentially grave 

consequences in response to that 

change. Much like how the Gulf 

Stream current behaves, when a great 

regime shift occurs within the system, 

there is no going back; the damage is 

permanent. Isolated fish population collapses have occurred in the past due to climate-induced 

environmental patterns, but often the eradicated fish eventually return. But a worldwide, climate-

driven ecosystem regime shift could easily cause irreparable damage in a short amount of time. 

Iceland could see a major re-shifting and potential collapse of marine ecosystems with strong 

AMOC weakening (Wilson, 2020).  

 

For humans, changes in fish populations would not only be an economic issue but also a social, 

political, and cultural one. Most obviously, if cold-water or warm-water fish populations start to 

disappear from Icelandic waters, a serious economic toll could ensue. A political conflict over 

fishing rights (similar to the Iceland-Faroese Atlantic mackerel controversy) could rage if critical 

fish stocks migrated into disputed international waters or another country’s EEZ in pursuit of 

suitable habitat conditions. Fishing companies could go bankrupt. Thousands of Icelandic 

fisherman and factory workers could lose their jobs. The price for fish in supermarkets could 

skyrocket. The government might have to invest in alternative dietary options to substitute for 

Icelandic fish. But inversely, if the RCP 8.5 and AMOC Shutdown scenarios actually do come 

true, important demersal fish like Atlantic cod could prosper. In conclusion, if cold-water fish 

that were previously dropping in numbers began thriving in Icelandic marine ecosystems again, 

Iceland could an experience an uptick in economic prosperity and increase of fishing quotas.  

 

 

Within the Icelandic fishing industry, very few measures have been taken to prepare for the 

potential changes that very much could take place in a shorter time than scientists and politicians 

may realize. The most obvious “solution” to the problem of weakening Atlantic circulation is to 

reduce carbon emissions and to slow down the rate of freshwater flux into the North Atlantic. 

Figure 20: A graph of temperature and salinity measurements from a 

survey point located in the southwest of Iceland. Conducted by the Marine 

and Freshwater Institute, measurements of temperature in °C and salinity 

in PSU were taken quarterly over a 48-year record. The results indicate an 

overall increase in temperature but a small drop in temperature and 

salinity since 2010 (Iceland Meteorological Office, 2018).  
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Being a pretty unrealistic and overambitious short-term goal especially for a small island country 

like Iceland, it may be more important to focus on adaptation instead of mitigation. Iceland’s 

government excels at enforcing fishing quotas and setting the TAC (total allowable catch) for 

every fish species at an adequate amount (“History of Fisheries”. If the government studies the 

weakening of the Irminger Current and acknowledges the possibilities of both warmer and colder 

futures for Iceland, then solid fish recruitment over years could be make up for the environment-

driven population migrations.  

 

 

Conclusion 
 

An AMOC weakening event could cause a unique negative feedback loop for Iceland, but 

overall the current circulation failure would have disastrous effects worldwide. Even in Iceland, 

who is considered to be a likely “climate change winner”, permanent changes that will have 

permanent consequences for Iceland. A country with typically nutrient-rich waters, the lack of 

warm water in Iceland will create inhospitable conditions for many warm-water fish species and 

scramble the areas suitable for cold-water fish within Iceland’s waters. If many of the fish 

populations in Iceland’s EEZ collapse, negatives effects on the national economy and the local 

fishing communities could be profound.  

 

In a phone call with the captain of the Jóna Eðvalds, a pelagic bottom trawl vessel working for 

Skinney-Þinganes, a large fishing company based in Höfn, the fisherman expressed a couple of 

concerns but seemed quite optimistic for the future. Since starting at Skinney in 2006, the captain 

has noticed that Atlantic mackerel in the southeast has started moving westward towards 

Norway. Another concern he explicitly expressed was that there was some instability in regard to 

the capelin fish stock in recent years. According to the MFRI, the capelin stock plummeted due 

to an overabundance of juvenile fish, but the stock has been well maintained by the government 

and could prosper in years to come. The captain did, however, seem quite content about the 

future in fishing, referencing the emergence of new pelagic species in Iceland’s southern waters. 

Although the vessel specializes in catching pelagic fish and not demersal fish, the insight 

provides a reflection as to what Iceland fishermen think the future may hold with climate change 

becoming more prevalent (Danner, 2021).  

 

With many “losers”, there will be some “winners”. Iceland, unlike much of the world, could 

experience an unusual cold climate unlike most all of the world’s maritime countries. But with 

some pros there will likely be many cons. The currents around Iceland have weakened and will 

weaken until at least 2100. Sea level will continue to increase worldwide. A flood of climate 

refugees from severely affected countries could seek asylum in Iceland. The weakening or 

collapse of the ocean stability system could make North Atlantic marine ecosystems vulnerable 

to failure, and the ocean could experience rapid and extreme changes in nutrients and 

biodiversity. Even if climate change does “favor” Iceland, it will likely impact the country in 

ways that were previously unknown, making an unstable environment a new norm.  
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