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Abstract—Studies of protein mutants in wet laboratory ex-
periments are expensive and time consuming. Computational
experiments that simulate the motions of protein with amino acid
substitutions can complement wet lab experiments for studying
the effects of mutations. In this work we present a computational
pipeline that performs exhaustive single-point amino acid sub-
stitutions in silico. We perform energy minimization as part of
molecular dynamics (MD) of our generated mutant proteins, and
the wild type, and log the energy potentials for each step of the
simulations. We motivate several metrics that rely on the energy
minimization curves of the wild type and mutant, to explore
quantitatively the effects of the mutations. Two case studies are
discussed and analyzed to showcase the utility of our approach
to identify the least and most impactful mutations.

Index Terms—Energy minimization, mutation, computational
biochemistry, structural biology

I. INTRODUCTION

The structure of a protein is determined by the sequence
of amino acids that comprise it, and how they interact with
each other and the solvent. Changing a single amino acid can
change the stability and global structure of the protein and its
substructures drastically. Performing exhaustive in vivo or in
situ laboratory experiments on physical proteins to determine
the outcome of any given mutation is infeasible, as the process
of mutating a bacteria strain, growing the culture, lysing the
cells, purifying the protein and then studying the resulting
protein, is prohibitively resource- and time-intensive. Synthet-
ically producing the protein in vitro is similarly difficult or
otherwise time-consuming.

The need for a practical computational alternative has given
rise to various methods for generating mutations in silico. To
refine protein structures that are generated in silico, energy
minimization as part of Molecular Dynamics minimizes the
potential energy of the protein by performing many slight
alterations of the biomolecule, which seeks to a find an
energetically feasible conformation.

In this work, we use our custom software to perform all
possible amino acid substitutions at a specific residue in a
protein, followed by energy minimization of the wild type and
generated protein mutant structures. We generate exhaustively

all substitutions at a single location so that we may identify
those protein variants that behave very differently from all
other mutants. Identifying the most impactful substitutions is
useful information that has relevance to drug design studies
and inferring the effects of debilitating diseases. We motivate
and present two metrics, energy turbulence and deviation from
the energy trendline, that we refer to a disparity, to provide
insights into the effects of the mutations. Our approach is not
dependent on large data sets of structural or thermodynamic
properties of mutants, nor does it require vast compute re-
sources that are common for approaches that rely on machine
learning (ML) based methods.

II. RELATED WORK

Wet lab experiments provide the gold standard for directly
measuring the effects of mutations on a protein’s stability.
Matthews et al. have studied many mutants of Lysozyme from
Bacteriophage T4 [1], [3], [14]. Unfortunately such wet lab
studies are time consuming and often expensive, requiring
specialized hardware and materials.

Computational approaches have been developed over the
years to predict the effects of mutations on protein structure
and stability. Early work relied on heuristic energy functions,
molecular dynamics simulations, and rotamer libraries [7],
[10], [17]. In our previous work we relied on rigidity analysis
to assess via a rigidity analysis approach how mutating to
glycine destabilizes a protein’s structure [8]. Machine learning,
which is a branch of artificial intelligence, that involves
algorithms that learn to make predictions from data, has also
extensively been used to infer the effects of mutations. These
efforts range from the use of Support Vector Machines [4], to
the use of Random Forest approaches [13], to our own various
efforts which relied on support vector machines, random
forests, and deep learning methods [5].

All of these, and related works, require access to data sets
of experimental or computed structural of biochemical features
of proteins and their mutants, as for example the ProTherm
and ProNIT databases that detail thermodynamic properties of
proteins and protein-nucleic acid interactions [9]. The machine



learning-based approaches also often require vast amounts of
compute resources, in part because they are statistics-based.

Understanding the effects of amino acid substitutions also
has implications in docking and related work. For example
docking approaches have been used for predicting how amino
acid substitutions affect protein complexes, as is the case with
REMC [21]. Similarly, there are efforts underway to assess
how mutations affect protein-drug complexes [20]. Some other
approaches still use free model techniques to describe protein
behavior (EdaRose [19]), while template based approaches
rely on homology modeling [12]. Certain computational meth-
ods are more effective at predicting the effects of certain
mutations, as has been the case with computational alanine
scanning in the industry for years [15].

In contrast, EMCAP is meant to be generalized to study
the substitution of any residue in a protein, without relying on
web lab data nor needing vast compute resources for machine
learning approaches.

III. MATERIALS AND METHODS

To infer which amino acid substitutions at a specific residue
location result in mutants that behave very differently from all
other mutants, EMCAP utilizes multiple steps. Mutants are
generated in silico, an off-the-shelf molecular dynamics engine
performs energy minimization of the wild type and mutants,
and several custom metrics are calculated from the energy
minimization log files to help identify which substitutions
are the most impactful. The entire compute pipeline is self
contained and is able to run on a single core computer, in
near real time.

EMCAP exhaustively generates all single amino acid sub-
stitutions at a single residue in a protein using ProMute [2].
It is able to generate the structure files for all 19 mutants
for a single residue location in minutes, using a single-core
computer. The NAMD molecular dynamics [16] engine is
used to perform the short runs of molecular dynamics. For
this work, a total of 500 steps of energy minimization are
performed, using an explicit solvent model.

A. Generating Protein Mutants

The first step of EMCAP, the MultiMutant step (Fig. 1),
generates the protein mutants. It invokes ProMute, followed
by a brief energy minimization run for each mutant. At each
time step of the energy minimization, the total energy of the
protein — wild type or mutant — as calculated by NAMD,
is retained. The energy minimization step serves to account
for any steric clashes that might have been introduced during
the mutation step, and also serves to create an energy log for
making an energy minimization curve that is later analyzed to
identify the most impactful substitutions. MultiMutant collects
the energy minimization logs of all the mutants.

B. Aggregation of Energy Curves for Mutants

The numerical analysis portion of EMCAP includes mul-
tiple sub-steps (Fig. 2). First, EMCAP collects all energy
minimization data for the specified mutations into a single

Fig. 1: MultiMutant, the first component of EMCAP. Multi-
Mutant invokes ProMute (1), which generates mutants in silico
(2), whose last step is energy minimization (EM). MultiMutant
invokes em aggregation (3), which analyzes the mutant log
files (4) to generate the EM processed logs (5).

file. For each energy step, EMCAP compares the energy of
each mutant to the energy of the wild type. The energy
disparity at every time step between a mutant and the wild
type is recorded. It is these disparity values, as well as the
raw energetics properties at each time step of the wild type
and mutant, that are analyzed.

C. Quantifying Mutant Protein Qualities

EMCAP implements several metrics to help distinguish
which amino acid substitutions, based on their energy min-
imization profiles of the mutants and the wild type, are
most unlike the other amino acid substitutions. Disparity is
the main measurement from which the other metrics are
derived. Disparity refers to the cumulative difference between
the energy potentials of a mutant protein and its wild type,
measured at each time step of energy minimization. The two
disparity measurements we found most useful are 1) Disparity
as Percentage of WT Total Potential, and 2) Weighted Dispar-
ity as Percentage of WT Total Potential. Representing these
disparities as percentages helps contextualize their significance
and thus serves as a better comparative measure when looking

Fig. 2: The analysis and graphing capabilities of EMCAP. The
individual mutants’ EM log files are collated (1), and com-
pared to the EM log file of the wild type (2). AnalyzeMetrics
tallies energy disparity metrics for each time step in the EM
log files (3), and outputs the turbulence and divergence metrics
(4). graphingMutantDisparity processed the timestep data (5)
and generates graphs of energy trendlines and outliers (8).



at different proteins. There are also two ancillary themes, di-
vergence and turbulence. Turbulence is our metric to measure
the chaotic behavior of a mutant during the course of an
energy minimization, and divergence describes how much a
given mutant diverges from the general trendline of all other
mutants generated by mutating the wild type at that residue.
The shaded regions in (c) and (d) of Figs. 4 and 6 are ±0.5
standard deviations. They indicate outliers and are not for the
purposes of calculating divergence.

1) Absolute Disparity, AD: This is the cumulative sum of
disparities between a mutated protein’s energy potential and its
wild type’s energy at each time step of energy minimization:

AD =

500∑
n=s

|EPM (n)− EPWT (n)| (1)

where n is the current time step of energy minimization, s is
the number of initial timesteps that are ignored to account
for the random seed of atom velocities and vectors in the
initial stages of energy minimization (s = 6 for all the results
presented here), while EPM (n) and EPWT (n) are the energy
potential of the mutant and wild type at time step n.

2) Disparity Ratio, DR: This is the AD and total energy
potential of the wild type, as a % of the wild type’s energy:

DR = 100 ∗
(
AD + |TPWT |
|TPWT |

− 1

)
(2)

where TPWT is the total, cumulative energy potential of the
wild type over the course of the energy minimization.

3) Weighted Disparity, WD: This determines the signifi-
cance of energy disparity between the mutant and wild type
based on the time step where it occurs, with higher importance
given to earlier time steps. A weighted figure is calculated at
every step of energy minimization, and summed:

WD =

500∑
n=s

1000− n

500
∗ |EPM (n)− EPWT (n)| (3)

4) Weighted Disparity Ratio, WDR: This is the WD and
TPWT , taken as a percentage of TPWT :

WDR = 100 ∗
(
WD + |TPWT |
|TPWT |

− 1

)
(4)

IV. RESULTS AND DISCUSSION

To demonstrate the usefulness of EMCAP, we studied
the mutations in the crystal structure of PDZ1 complexed
with APC (PDB 3RL7) [22], and mutations in PDZ2 (PDB
2BYG) [6]. PDZ1 and PDZ2 are classes of PDZ domains,
which bind the extreme C-terminus of target proteins and are
critical components of signaling and trafficking pathways [11].
We choose PDZ domains specifically because of their im-
portance in protein interactions, and thus knowing which
mutations are most impactful can provide insights to guide
mutational studies to better understand these proteins.

Fig. 3: 2BYG mutations on chain B, residue 2838.

A. PDZ Structure 2BYG

If one were to look at the energy minimization curves for
all mutants at residue 2838 for 2BYG (Figure 3), it would
not be possible to easily discern with substitutions to that
residue have the biggest effect on the PDZ domain to be able
to recover from the mutation. However, inspecting the tabular
results for the mutations to residue 2838 (Table I) reveals that
mutation to residues KLWGPL have the most impact on the
PDZ domain, while residues ACGIVQ have the least impact.
The disparity and turbulence plots for those residues are shown
in Figure 4.

B. PDZ structure 3RL7

Similar to 2BYG, inspecting the energy minimization curves
for 3RL7 (Figure 5) does not reveal which substitutions have
the biggest effects on the PDZ domain to be able to recover

TM DR WDR TO DO TG SD MED
I 1.31 1.72 201 33 D2 1 898.86 1 033.34
H 1.05 1.36 284 36 A1 1 567.81 831.52
K 3.18 4.25 338 277 A1 3 010.30 2 507.17
M 1.49 2.05 165 55 D2 2 240.08 1 178.66
L 5.75 7.77 323 303 D2 5 781.69 4 537.19
N 2.76 3.66 49 39 B 4 270.56 2 177.13
A 5.58 7.38 4 207 D1 9 398.77 4 405.03
C 5.76 7.71 34 208 C1 9 651.77 4 546.62
E 1.97 2.61 171 70 A2 2 884.56 1 556.17
D 2.52 3.14 98 42 A2 4 340.01 1 989.49
G 8.34 11.66 28 361 C2 13 756.85 6 583.37
F 0.94 1.18 130 42 D3 1 720.25 739.55
Q 1.45 1.90 52 32 B 2 398.59 1 145.53
P 28.06 48.47 69 486 C1 50 406.77 22 152.33
S 2.96 3.67 121 63 B 5 121.86 2 336.14
R 1.74 2.47 230 82 A1 2 362.11 1 370.27
T 2.85 3.52 111 56 B 4 914.00 2 253.22
W 3.69 5.18 294 301 D3 4 307.53 2 913.77
V 2.01 2.59 205 35 D1 2 942.76 1 584.31

TABLE I: Mutations to 2BYG, chain B, residue 2838;
wild type=Y. TM=Target Mutation, TO=Turbulent Outliers,
DO=Divergent Outliers, TG=Target Group, MED=Mean En-
ergy Disparity, DR=Disparity Ratio, WDR=Weighted Dispar-
ity Ratio, SD=Standard Deviation of energy values.



(a) most outliers, energy disparity (b) fewest outliers, energy disparity

(c) most outliers from general trendline (d) fewest outliers from general trendline

Fig. 4: Mutations to 2BYG residue 2838 chain B. The 3 mutations with the most (a) and fewest (b) outliers on their energy
disparity curves. The 3 mutations with the most (c), and fewest (d) outliers from the general trendline in their disparity curves.
The shaded purple regions represent ±0.5 standard deviation from the trendline.

from the mutation. However, inspecting the tabular results for
the mutations to residue 2837 (Table II) reveals that mutation
to residues FMQDL have the most impact on the PDZ domain,
while residues EPTKRN have the least impact. The disparity
and turbulence plots for those residues are shown in Figure 6.

C. Comparative Utility of Different Metrics

To explore which metrics offer a unique perspective about
the effect of an amino acid substitution, we show the top
5 disparity ratios by magnitude, top 5 weighted disparity
ratios by magnitude, top 5 outliers by casual visual inspection
of the graphed disparity curves, turbulence as described by
outliers from a mutation curve’s mean, and divergence from
the trendline as described by outliers from that trendline, for
2BYG and 3RL7 in Table III and Table IV. Proline, which
is known to be very disruptive when introduced via an amino
acid substitution [18], is identified by several of the metrics
as a very impactful substitution. However, at the 5th row of

Fig. 5: 3RL7 mutations on chain G, residue 2837.



(a) most outliers, energy disparity (b) fewest outliers, energy disparity

(c) most outliers from general trendline (d) fewest outliers from general trendline

Fig. 6: Mutations to 3RL7 residue 2837 chain G. The 3 mutations with the most (a) and fewest (b) outliers on their energy
disparity curves. The 3 mutations with the most (c), and fewest (d) outliers from the general trendline in their disparity curves.
The shaded purple regions represent ±0.5 standard deviation from the trendline.

each of those tables, there is very little consensus, indicating
that either the mutations to those two PDZ domains have very
different effects, or that the different metrics are able to discern
between biophysical effects that the mutations can have on the
PDZ domains and their interaction targets. We leave to discern
which of these is true, to future work.

V. FUTURE WORK

We envision several next steps for this work. Firstly, the
current version of EMCAP does not permit a user to fine-
tune the parameters for calculating the disparity and turbulence
metrics. Allowing such fine-tuning might permit a user to
discern better between the least- and most-impactful mutations
if upon a first run, all mutations produce minimization curves
that are visually indistinguishable. Although that didn’t happen
in our case studies of 3RL7 and 2BYG, it is possible. For
example, changing the standard deviation value might allow

to determine outliers easier that diverge from the energy
minimization trendline for all mutations. Or, changing the
factor (0.5, 1.0, 1.5, etc.) of standard deviation mentioned
in subsection C of section III might change the general type
of disparity curves that are ranked as highly divergent. For
example, consider two mutations, one with a disparity curve
that exhibits brief, wild divergences from the wild type in a
few places along the minimization curve, but otherwise closely
adheres to the trendline, and another with a disparity curve that
mirrors the trendline almost exactly but does so with a constant
offset on the y-axis. Discriminating by a low factor of standard
deviation would rank the second mutation as more divergent
than the first, as most of the points on the second line would
be considered outliers while only a few points on the first
line would fall into that category. However, discriminating by
a sufficiently high factor of standard deviation would reverse
the ranking, as the second line would fall entirely with the



TM DR WDR TO DO TG SD MED
G 7.97 10.76 91 348 C2 1 353.92 623.58
F 8.48 13.79 411 127 D3 608.54 663.58
E 11.55 17.17 49 273 A2 1 536.12 903.74
D 17.07 27.54 255 409 A2 1 173.23 1 335.41
C 6.88 9.21 90 265 C1 1 111.03 538.46
A 4.03 5.33 91 152 D1 702.79 315.11
N 9.23 15.59 306 50 B 866.00 721.52
M 13.74 22.85 365 201 D2 970.30 1 074.79
L 15.93 24.89 339 386 D2 644.91 1 245.82
K 8.31 13.17 128 43 A1 832.96 650.11
I 8.56 13.92 262 61 D2 686.39 669.12
H 5.69 7.71 93 91 A1 848.74 445.26
W 11.57 18.46 275 88 D3 1 017.49 904.92
V 8.78 13.87 129 59 D1 970.19 686.81
T 10.84 16.43 64 119 B 1 274.92 847.99
R 8.79 14.34 187 30 A1 766.99 687.30
Q 18.36 30.18 402 420 B 1 130.50 1 436.03
P 25.70 47.70 54 258 C1 6 289.72 2 010.38
Y 11.10 17.74 244 80 D3 982.34 868.04

TABLE II: Mutations on 3RL7, chain G, residue 2837;
wild type=S. TM=Target Mutation, TO=Turbulent Outliers,
DO=Divergent Outliers, TG=Target Group, MED=Mean En-
ergy Disparity, DR=Disparity Ratio, WDR=Weighted Dispar-
ity Ratio, SD=Standard Deviation of energy values.

DR WDR Visual Inspection Turbulence Divergence
P P P K P
G G L L G
C L G W L
L C W H W
A A C R K

TABLE III: EMCAP analysis of 2BYG, chain B, residue
2838. The ranking of the 5 highest (highest at top) values
for each of DR=Disparity Ratio, WDR=Weighted Disparity
Ratio, Turbulence, and Divergence.

standard deviation and would not be considered an outlier,
but the spikes in disparity on the first line would still contain
outliers.
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