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Abstract

Markov models are mathematical structures that model the transition between pos-
sible states based on the probability of moving from one state to any other. Thus,
given a distribution of starting points, the model produces a chain of states that are
visited in sequence. Such models have been used extensively to generate music based
on probabilities, as sequences of states can represent sequences of notes and rhythms.
While music generation is a common application of Markov models, most existing
work attempts to reconstruct the musical style of classical Western composers. In
this thesis, we produce a series of Markov chains that model the composition of Bali-
nese gamelan gong kebyar improvisations on the reyong. This music features distinct
rules and limitations. Each of the reyong’s four players can play only some of the
gamelan’s five tones and must use specific patterns learned only by listening and
playing. And yet, the music structure also provides room for ample creativity with
improvisation. The model’s probability values come from a combination of top-down
and bottom-up techniques, making extensive use of Leslie Tilley’s work on the gram-
mar of reyong norot and example patterns from her concurrent study of musician
Dewa Ketut Alit’s improvisation. The model outputs MIDI files for audio playback
of the constructed songs. Though the model’s music lacks some of the improvisational
creative quality that humans provide, we find that our model does produce musically
interesting reyong elaborations that fit within the confines of Tilley’s grammar.
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1 Background

1.1 Markov Models

Markov chains model the transition between various states in a system that
changes over time. The chain itself is made up of discrete states. At every time
step, the model can transition from its current state to any other state with a pre-
determined and traditionally unchanging probability. The Markov property of the
model states that the probability of transitioning to the next state depends solely on
the current state. All states prior to the current one are independent from the next
state.

Thus, we can specify a Markov chain with three basic inputs: a list of possible
states, a probability distribution that gives the likelihood of starting in each state,
and a probability of transitioning from each state to every other state, including from
the state back to itself. These probabilities can be conveniently written in matrix
form, where the row indicates the current state and the column indicates the state to
be transitioned to. This is called the transition matrix of the Markov chain.

For example, say we have a Markov model with three states: A, B, and C. The
graph of the chain might look something like Fig. 1. Each node represents a discrete
state of the model. The directed edges between nodes indicate the probability of
moving from state to state. Thus, the probability of transitioning to state B given
the current state is state A is 0.25.

Figure 1: Example Markov model with 3 states: A, B, and C. The probability of
transitioning from one state to another is indicated on the directed edge between the
nodes.
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The corresponding transition matrix, P , can then be defined:

P =

A B C[ ]A 0.5 0.25 0.25
B 0.2 0.1 0.7
C 0.0 0.5 0.5

.

The values in this matrix give the probability of transitioning from the state given
by the row to the state given by the column. Thus, the probability of transitioning
to state B from state A is found in the second column of the first row.

Markov chains have been used extensively to model scenarios in which states
change over time. They can therefore be used to model music generation. By treating
notes or groups of notes as individual states and calculating the probability of moving
from one note to the next, we are able to specify a Markov chain that generates
sequences of notes. Thus, the model effectively composes its own music.

Generating music based on probabilities is not a new idea. Much work has been
done to recreate the musical style of many composers. In general, this process looks
like the following. Individual notes or rhythms make up the states of the model.
The transition probabilities are taken from a sample of music from one or more
composers. On the most basic level, each state represents one note. The probability
of transitioning between the notes can then be estimated. If the current state is C
and we want the probability of transitioning to a G, then we can count the number
of times a G follows a C in the sample music and then divide by the total number
of times a C is present. For more complex models, the states might be sequences
of notes themselves and incorporate various rhythms, with probabilities calculated
similarly. Using the probabilities, the models are transitioned to build sequences of
notes that sound similar to the composers upon which they are based. For a brief
overview of the history of these attempts, see [2].

Recently, Markov models have been combined with more advanced methods of
generating sequences, such as neural networks, as in [4], or a genetic algorithm, as in
[1]. To varying degrees of success, these mathematicians have generated music that
sounds as though it could have been produced by humans.

However, like much of the rest of music theory, this field has been dominated by
Western classical composers. Such composers certainly differ in style, but tend to
follow similar rules of Western music theory. Structures to imitate the music of other
cultures are few and far between. See, for example, the work in [9] attempting to
recreate Chinese folk music.

This work explores the possibility of modeling music that wildly differs from pre-
vious examples, that of Balinese gamelan.

1.2 Balinese Gamelan

A gamelan is an Indonesian orchestra made up of percussive instruments, each
with a unique and well-defined role in the ensemble. The reyong is a set of twelve
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gongs arranged in a line from low to high. Four players strike and dampen the gongs
with wooden sticks called panggul . See Fig. 2

Figure 2: A reyong, shown here, is a set of twelve gongs played by four players. Image
courtesy of [8].

Much like Western music, gamelan music can be classified into different genres.
This study specifically looks at the reyong’s role in the gamelan gong kebyar genre. In
this context, the reyong parts are improvisational. We further focus on one particular
style of improvisation called norot which is defined by the baseline pattern of notes
in a typical improvisation.

Because the reyong is learned by rote, the rules of the improvisations had never
been written out in the way a Western percussive part might be. Ethnomusicologist
Dr. Leslie Tilley has constructed and transcribed a grammar for reyong norot im-
provisations, found in [6]. Tilley studied the improvisations of musician Dewa Ketut
Alit. Although Alit is an expert on what is and is not good practice, these rules
cannot easily be expressed in words. Instead, Tilley transcribed Alit’s playing and
worked to classify different improvisations. See Section 1.3 below for an abbreviated
summary of these rules.

This work aims to build a series of Markov models that generate improvisations
for the reyong based on Tilley’s work. A successful model will output unique and
random improvisations that are all within the confines of the established grammar.
Unlike prior music generation approaches, our model operates outside the established
theory of Western music, instead relying on a uniquely constricting set of rules found
in no other genre or instrument.

1.3 The Grammar of Reyong Norot

The instruments in a Balinese gamelan are tuned to the pélog scale containing
five notes. These notes are not necessarily consistent between different gamelans. In
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Tilley’s study, the notes used were roughly equivalent to C#, D, E, G#, and A and
are referred to by the names ding, dong, deng, dung, and dang respectively (or, to be
concise, i, o, e, u, and a). Each of the four players of the reyong controls two to four
individual gongs. You can see which players control which notes in Fig. 3.1

Figure 3: This diagram shows the twelve gongs on a reyong. The four players are
called penyorog , pengenter , ponggang , and pemetit . Diagram courtesy of [5].

Gamelan music features melodic tones played on the calung called pokok tones.
These pokok tones are not improvised and are the same for all four players. They occur
every two beats and define the improvisation structure of the reyong. Because gamelan
music tends to be cyclic, the same sequence of pokok tones repeats throughout the
song. The improvisations on the reyong, however, differ every cycle.

In between every two pokok tones, each reyong player plays eight notes or rests.
This grouping is called a “cell”. The surrounding pokok tones define what can be
played in a cell. Thus, when talking about an individual cell, we will describe it as
the shift between the two pokok tones. For example, a cell that moves from ding to
dong is notated as an i-o shift.

Unlike in most Western music, gamelan music emphasizes the last note of a cell,
not the first. Thus, an i-o shift will start on the first note after a ding and end on a
dong on the eighth note. The next shift then necessarily shifts from dong to another
tone. To better see this, when writing a single cell, we write the previous pokok tone
in parenthesis before starting the eight notes.

For generality, Tilley uses numbers instead of note names when describing cell
patterns. Each cell is defined by two numbers. The second number, representing the
second pokok tone, is always zero, and the first number is the number of steps the
first pokok tone is above the second. So an i-o shift can be described as a 4-0 shift,
as ding is four steps above dong. If the next cell is then o-a, then it is represented as
2-0. Note that dong in the first cell was 0 but in the second cell became 2.

1The extended ranges of the penyorog and ponggang, shown with the dotted lines in Fig. 3, are
sometimes used in specific cases when improvising. For the sake of simplicity, we ignore these cases
here.
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For n 6= 0, the template pattern for an n-0 cell is

(n)//n + 1, n, n + 1, n/0, 0, 1, 0// (mod 5).

Because there are only five notes that repeat, the addition is modulo 5 (e.g. if n = 4,
then n + 1 = 0). When the pokok tone does not change, n = 0 and there is a 0-0
shift. In such a case, the template pattern is

(0)//1, 0, 1, 0/1, 0, 1, 0//.

For example, an o-a shift (2-0) is written

(2)//3, 2, 3, 2/0, 0, 1, 0//

or, using note names,
(o)//e, o, e, o/a, a, i, a//.

Fig. 4 shows some examples of these template patterns.

Figure 4: Some example template patterns. On the left, an e-o (1-0) shift. Center,
an i-u (2-0) shift. On the right, a u-u (0-0) shift. Images from [6].

Because of the limited ranges of each position (as shown in Fig. 3), a player often
cannot play the full template pattern described above. In these cases, players rest or
play alternatives to this baseline instead. In addition to playing the regular template
notes, players can play harmonies, called kempyung . Each note has a high and low
kempyung, which are three steps above and below a note, respectively. For example,
the high kempyung of ding is dung and the low kempyung is deng. At any point in the
regular pattern, a player can play the high or low kempyung in place of the regular
template note. Usually this is due to the restricted ranges of players. In other words,
players are more likely to play a kempyung tone if they do not have the template
notes. Thus, for every note in a cell’s pattern, there are three possible tones that can
be played. Players also often rest on a beat instead of playing a note at all.

Using these rules and no others, we can create a finite but large set of template
patterns that can be played. For example, consider a u-e (1-0) shift for player 1, who
has access to notes e, u, and a. They could play the template pattern,

(u)//a, u, a, u/e, e, u, e//
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(1)//2, 1, 2, 1/0, 0, 1, 0//

(t)//t, t, t, t/t, t, t, t//,

where ”t” refers to a template note. Or, taking ”h” to represent the high kempyung
and ”l” the low,

(u)//e, u, e, u/a, a, u, e//

(1)//0, 1, 0, 1/2, 2, 1, 0//

(t)//h, t, h, t/l, l, t, t//.

Another possibility is
(u)//a, u, e, u/e, a, u, e//

(1)//2, 1, 0, 1/0, 2, 1, 0//

(t)//t, t, h, t/t, l, t, t, //.

Or, using “ ” and ”r” to mean rest,

(u)// , u, a, /a, , u, e//

(1)// , 1, 2, /2, , 1, 0//

(t)//r, t, t, r/l, r, t, t//.

All of these possible patterns are considered to adhere to a broader “template,”
as Tilley puts it (although some musicians would describe it more as a baseline).
Deviating from this template is what allows the players to improvise. Tilley refers to
these as cell variations because they vary from the template.2 Many of the variations
simply shift the indices of certain notes in the template pattern. For example, rather
than a 1-0 pattern played originally as

(1)//2, 1, 2, 1//0, 0, 1, 0//,

this cell might be played as

( )//1, 1, 2, 1//0, 0, 1, 0//.

Note that the first note, which should be a 2 (or, as a kempyung, a 0 or 4), is now
played as a 1. This is a very common variation that Tilley calls a “delayed pokok
tone unison,” where the reyong’s tone echoes the pokok tone by one count.

The bulk of Tilley’s paper works through a sample of improvisations and attempts
to classify each into one or more of several types of variations, each with a unique
rule for changing the template pattern of notes. Tilley also describes how often and
under what conditions these different variations are played. For a complete list of
these variations, see her work in [6].

2In prior work, Tilley referred to cells containing variations as “deviant” cells. She has since
stopped using that language.
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2 Methods

2.1 Overview

Our generation model is constructed in three layers, described in detail below.
The first layer determines the structure of the song by selecting the sequence of
pokok tones. The second determines which variations, if any, are present in each
cell. The third and final layer selects which notes each player will play of those
within their range. Because of the lack of a large data set of reyong improvisations,
the probabilities for each layer had to be estimated slightly differently, but they all
attempt to remain faithful to the analysis done by Tilley and described above. See
Section 2.3 below for details of the probability calculations.

The completed model runs from a single Python script. It takes in user input to
determine the length of the song and then generates a sequence of notes and rests
for each of four reyong players. With the help of Python’s music21 package [7], the
sequences are stored in a MIDI file that can then be played or viewed by the user.
In order to remain authentic to the musical tradition of gamelan, the music uses a
MIDI voice containing reyong samples. This is vital to fully represent the music and
culture that was studied.

2.2 Model Details

Let T be the set of all possible reyong tones, or T = {a, e, i, o, u, rest}. Let
T̂ = T \ {rest}.

The first layer of the model determines the pattern of pokok tones from which the
players will improvise. This is a simple Markov model featuring five states, one for
each element of T̂ . See the model diagram in Fig. 5.
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Figure 5: Graph representing the Markov model in the first layer. Each state is an
element of T̂ and represents a pokok tone.

The corresponding transition matrix is

P1 =

i o e u a


i 0.00 0.18 0.36 0.09 0.36
o 0.27 0.09 0.09 0.27 0.27
e 0.19 0.31 0.19 0.00 0.31
u 0.23 0.15 0.08 0.38 0.15
a 0.12 0.06 0.35 0.24 0.24

with initial probabilities [0.2, 0.2, 0.2, 0.4, 0.0].
To incorporate the cyclic nature of gamelan music, the user can specify the number

of cells in one cycle, m, and the number of cycles in the song, p. Then the song will
contain a total of n = m ∗ p cells.

The first layer model visits m states and then repeats this sequence p times. This
first layer will thus produce a sequence of n pokok tones, x1, x2, . . . , xn, where each
xi ∈ T̂ . To finish the last cycle, a final tone, xn+1 is added, where xn+1 = x1.

While the first layer contains a single model for the whole reyong, the second layer
of the model is run four times, once for each player. This layer is a Markov model
that selects the structure/variation of each cell in a player’s improvisations. It is
completely independent from the first layer.

Recall that each cell is based on a template, //n+1,n,n+1,n/0,0,1,0//, that is
then modified by different variations. Different states in this model are represented

8



as binary arrays that encode possible variations. Thus, the model can transition
from, say, a template cell, to a delayed pokok unison cell. Combinations of different
variations are also permitted, although they are not utilized to the fullest extent here
for simplicity. This model currently features ten cell structures which are defined in
Table 1.

State # Variation Name

1 No variations (template)
2 Delayed pokok unison
3 Advanced pokok unison
4 Both 2 and 3
5 Anticipation
6 Suspension
7 Ngubeng-majalan switch
8 Kendang pattern substitution
9 Reverse norot (first half)
10 Reverse norot (second half)

Table 1: A brief description of each of the states featured in Layer 2’s Markov model.

The corresponding transition matrix is

P2 =

1 2 3 4 5 6 7 8 9 10



1 0.15 0.20 0.15 0.04 0.15 0.15 0.04 0.04 0.04 0.04
2 0.08 0.20 0.08 0.20 0.08 0.16 0.05 0.05 0.05 0.05
3 0.28 0.00 0.28 0.00 0.16 0.08 0.05 0.05 0.05 0.05
4 0.28 0.00 0.28 0.00 0.12 0.12 0.05 0.05 0.05 0.05
5 0.08 0.08 0.16 0.16 0.24 0.08 0.05 0.05 0.05 0.05
6 0.08 0.16 0.08 0.16 0.08 0.24 0.05 0.05 0.05 0.05
7 0.10 0.05 0.15 0.10 0.05 0.05 0.15 0.15 0.05 0.15
8 0.10 0.05 0.15 0.10 0.05 0.05 0.15 0.15 0.05 0.15
9 0.10 0.15 0.05 0.10 0.15 0.15 0.05 0.05 0.10 0.10
10 0.10 0.05 0.15 0.05 0.05 0.05 0.15 0.15 0.10 0.15

.

To start things off simply, the starting state is set to state 1, a basic template cell.
For each player, this second-layer model visits n cell structure states, resulting in

a sequence of cell structures ȳ1, ȳ2, . . . , ȳn, where each ȳi is a binary vector of length 8
that indicates a state of the model that was visited. The vector ȳi encodes the type(s)
of variations that exist in cell i. For example, if in cell j there was no variation, then
ȳj = [0, 0, 0, 0, 0, 0, 0, 0]. If, however, in cell k there is an advanced pokok union
variation, then that is represented by ȳk = [0, 1, 0, 0, 0, 0, 0, 0].

We now have a sequence of pokok tones x1, x2, . . . , xn+1 as well as a sequence of
binary arrays representing cell structures ȳ1, ȳ2, . . . , ȳn for each player. The next step
in the composition combines these two sequences.

First, however, a quick definition:
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Definition 1. Let x ∈ T̂ and a ∈ Z. Then x+ a = a+ x = y, where y ∈ T̂ . If a ≥ 0,
then y is a steps above x. If a < 0, then y is a steps below x. This addition is modulo
5, so adding 3 to a note is the same as adding -2.

For cell i ∈ [0, n] we define function f(xi, xi+1, ȳi) = z̄i, where z̄i is a vector of
notes in cell i. See the diagram in Fig. 6 for an overview of the function f .

Figure 6: Function f takes inputs of xi, xi+1, and ȳi and returns z̄i, a vector of notes
in cell i. The steps are described in detail below.

To begin, we get the difference between xi and xi+1. Let di equal the number
of steps that xi is above xi+1. From this difference, we can make the template cell
pattern, ūi as follows:

ūi =

{
[di + 1, di, di + 1, di, 0, 0, 1, 0] di 6= 0

[1, 0, 1, 0, 1, 0, 1, 0] di = 0

This represents the template pattern, in which no variations have occurred.
Also, we vectorize xi+1 to define x̄i+1 as a vector of length 8 with every term equal

to xi+1.
We then get the variations from ȳi. The exact definition of this step is a large

conditional based on the values in the vector ȳi. For ease of reading, we will say that
these variations can be stored in a vector v̄i and give a few simple examples. This
vector of integers represents the steps to be added or subtracted from the template
pattern, ūi.

For instance, if cell j is a cell with no variations, ȳj = [0, 0, 0, 0, 0, 0, 0, 0]. Then
v̄j = [0, 0, 0, 0, 0, 0, 0, 0], meaning there is zero variation from the template for each
note.

If, however, cell k is a cell with an advanced pokok unison variation, then ȳk =
[0, 1, 0, 0, 0, 0, 0, 0] and v̄k = [0, 0, 0, 0, 0, 1,−1, 0]. In this case, the sixth note moves
up by one step and the seventh note moves down one step.
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In the final step, we make the completed cell. Here, we can specify f as

f(xi, xi+1, ȳi) = x̄i+1 + ūi + v̄i = z̄i.

Thus, the function returns a vector of eight notes as modified by any variations. We
now have a set of n cells z̄i each containing eight notes that vary based on the cell
structure.

The third and final layer of the model no longer depends on the cell structure
or a note’s position within the cell. Thus, for ease of reading, we will modify our
notation here. Rather than continuing on with a set of n cells z̄i, we will simply use
the sequence of notes, w1, w2, . . . , w8n, where each wk is simply a note in the total
sequence. With eight notes in n cells, this sequence is now of length 8n.

The third layer takes the template notes in wk and selects the final output notes. It
contains four states that represent the possible notes that can be played: the template
note t, the high kempyung h, the low kempyung l, or a rest r. Call this set of states
S. The basic transition matrix is

P3 =

t h l r


t 0.40 0.20 0.20 0.20
h 0.40 0.20 0.20 0.20
l 0.40 0.20 0.20 0.20
r 0.50 0.25 0.25 0.00

with initial probabilities
[0.5, 0.25, 0.25, 0].

The model is based on a traditional Markov model but is modified due to the
changing limitations of the player’s range. For example, in one cell, the template
note may fall within the range, but in the next, it may not. Thus, at every time
step, the model must check to see which states are permitted. The probability of
transitioning to out-of-range states is then temporarily set to zero in the transition
matrix and the remaining probabilities are normalized before selecting the next state.
Due to this extra step, this level is not a traditional Markov model. This process is
visualized in Fig. 7 and described below.
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Figure 7: (a) Markov chain for the third layer, containing states for template, higher
and lower kempyung, and rests. If the model is currently in state r, (b) shows the
probabilities of transitioning to other states. However, if the lower kempyung tone is
out of range for a player, its probability gets zeroed out and the other probabilities
are normalized, as shown in (c).

Let R be the set of all notes in a player’s range. Define function g as

g(R, sk−1, wk) = (sk, tk),

where sk is the state in S of the kth note and tk is the corresponding output note in T .3

We begin with a row in transition matrix P3 that gives the likelihood of transitioning
to each possible next state,

[psk−1, t, psk−1, h, psk−1, l, psk−1, r].

We modify this vector as follows:

If wk 6∈ R, then psk−1, t = 0.

If wk + 3 6∈ R, then psk−1, h = 0.

If wk − 3 6∈ R, then psk−1, l = 0.

We then normalize the row vector so that it sums to 1. From there, we can use this
modified distribution of probabilities to randomly select the next state sk. Finally,
we obtain tk, the output note in T , with the following equation:

tk =


wk, sk = t

wk + 3, sk = h

wk − 3, sk = l

rest, sk = r.

3Note that this definition is defined recursively. To obtain the first state, s1, we follow much the
same process, modifying the vector of initial probabilities rather than the transition matrix.
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This returns tk, the kth note to be played in the sequence.
Repeating layers two and three for all eight notes in all n cells for each of the four

players will return a sequence of output notes and rests for each player. These lists
are added to a song and output as a MIDI file.

2.3 Probability Estimations

The transition matrices and probabilities therein shown above were calculated
in a variety of ways. The first layer is the only to feature probabilities that were
calculated bottom-up, or from actual data. Tilley’s study includes an analysis of five
songs. The likelihood of transitioning from one pokok tone to another was estimated
using the pokok tones from those songs via a maximum likelihood estimate. To find
the probability of transitioning from tone x to tone y, the number of times x was
followed by y in the data was counted, and this total was divided by the number of
times x appeared in the data at all.

For example, let’s look at the probability of transitioning from pokok tone ding
to pokok tone dong, shown in Fig. 5 to be about 0.18. To find this, we counted
the number of times ding appeared as a pokok tone in Tilley’s songs, which occurred
eleven times. We then counted the number of times a ding was followed by dong,
which only happened twice. Thus, to estimate the probability that the next state is
dong given that the current state is ding, we simply divide 2/11 ≈ 0.18.

Unfortunately, there is no existing large data set from which the probability of
transitioning between two cell structures could be estimated. Instead, the transition
probabilities were estimated top-down using information from Tilley’s work. Tilley
describes certain variations as more common than others, so the probability of tran-
sitioning to those structures was set higher. Additionally, similar variations tend
to follow after each other. The resulting transition matrix is thus rudimentary, but
would require expert opinion or a large, labeled data set to improve.

The transition probabilities for the third layer are again calculated top-down.
Tilley notes that playing the template note is more common than either kempyung, if
available. Thus, the probability of transitioning to the template note is consistently
quite higher than the other states. Additionally, reyong players never rest for two
consecutive beats in order to keep their hands moving. To model this, the probability
of transitioning from a rest back to another rest is always zero. Tilley gives no indi-
cation of either the low or high kempyung being preferred over the other, and indeed
they appear to be used the same number of times. Thus, we keep the probabilities of
moving to either kempyung state equal.

2.4 Other Details

The code base contains six Python classes and a driver script that runs the entire
process. The Markov model class makes use of the numpy package’s random.choice()
method to randomly select the next state in sequence based on the transition proba-
bilities.
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The user has the option to add pokok tones and kempli beats to the resulting
MIDI file. Since the pokok tones are generated regardless and the kempli beat is a
single note repeated, this adds no computation to the model. One key benefit of
adding these additional parts is that they give context to the reyong. On its own,
it is difficult to pick out the structure and harmony that is present in the reyong
improvisation.

The structure of the code can be seen in the flowchart in figure 8. To see the full
code base, see Appendix C.

Figure 8: Flowchart showing the general processes contained within the model.

3 Results

The model outputs the completed improvisations as a MIDI file. From there, a
voice can be added to each player in order to make the music sound authentic to an
actual gamelan. The MIDI sample was provided by [3]. A few sample songs can be
heard at this link. Note that for each song, there is a track with only the reyong and
one that also includes the pokok tones and kempli beat, which help bring out the
structure in the audio.

Let’s take a look at the score for one example output, Reyong Sample 4. Fig. 9
shows an excerpt from the beginning of the song. The entire score can be found in
Appendix A.
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Figure 9: Sample score from a generated set of reyong parts. This excerpt contains
four cells for each position on the reyong. The pokok tones and kempli beat are also
shown on the first and second line respectively.

Note that while the pokok tones are visible, the sequence of states from the other
two layers of the model are not very clear. The combination of rests and kempyung
tones make it difficult to decipher what variations were present in the cell structure.
In this sense, the model is similar to a hidden Markov model, in which the actual
states of the model are never seen, but instead some noisy emission given the states
themselves is observed.

If the model is run again, we can get an entirely different output. Fig. 10 shows
an exerpt from a second song, Reyong Sample 5, demonstrating the variability that
occurs with each unique run of the model. The complete score can be found in
Appendix B.
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Figure 10: Another example reyong song. This song features rests in between each
cycle, which can be seen in the full score in Appendix B.

Optionally, the output can add rests between cycles. When reyong is played by
itself, rests may be interspersed between cycles or cells to provide further structure
to the improvisation. In this model, the added rests help guide the listener through
the produced rhythms and provide additional variation. See Reyong Samples 5, 6,
and 7 for examples of songs with added rests.

4 Discussion

The produced model goes a long way towards recreating Tilley’s grammar, but it
is not complete. After listening to several of the sample outputs, Dewa Alit stated
that it sounds good and is a good start at generating improvisations. However, he
was also able to easily pick out parts of the output that sounded wrong. For example,
Alit said of Reyong Sample 5: “the pokok note (calung) is on ding, but [the] reyong
is on dang. This does not work for norot. I do not consider this combination [to be]
in harmony or ”ngempyung.”

Exactly why inconsistencies like this appeared is difficult to pinpoint. Several
simplifying assumptions have been made that cause the output to differ from actual
reyong improvisations. First, the model treats each position as an independent model,
generating sequences of cell structures and notes based solely on the pokok tones and
the previous note/cell. In a real gamelan, the four players listen to each other and
interact musically. They may hear ideas from each other and incorporate them into
their own variations. Tilley attempted to address this by classifying certain variations
that require collaboration between positions. Additionally, there are other variations
that are restricted to certain cell shifts and/or positions. To keep the model uniform,
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these are not included here. Furthermore, multiple variations can often occur in
the same cell for reyong players. Such functionality is possible with this model, but
has not been fully implemented due to little reference in Tilley’s work about these
stacked variations. Finally, Tilley herself was unable to classify every single cell that
Alit played into one of her variation definitions. Some notes went unexplained, and
are thus not included in our model based on her work.

However, like Alit said, this model is only a start that leaves open many op-
portunities for future work. First, to address some of the assumptions above, the
collaborative nature of the four reyong players could be addressed through additional
structure and states. Adding these additional variations would allow for more nu-
anced harmonies and structures to appear throughout the generated songs.

One of the main ways to improve the model would be to use a more data-driven
approach to calculate the transition probabilities. For all three layers, this would
rely on obtaining or creating large data sets of reyong improvisations. In the grand
scheme of gamelan music, the small subset notated by Tilley is not enough to deduce
accurate probabilities. We could further generalize the model based on input from
more musicians and/or subgenres of Balinese gamelan music.

Given a larger data set of this type, other models could also be explored to better
approximate reality. This could include employing machine learning or other artificial
intelligence techniques, which would avoid the need for humans to define the rules as
we have attempted here.

Finally, the ethics of this study should also be addressed. After all, by removing
the human aspect of the improvisation, this model has taken out a key component
of the music itself. To Alit and other musicians, the improvisations are felt rather
than learned, and this model merely copies some of that feeling. To that end, the
authors of this work are not Balinese and have never been to Bali or played in a
gamelan. The project is based on the analysis by Tilley who is also neither Balinese
nor a gamelan expert. Tilley’s work, and by extension perhaps this work, does bring
attention to the diversity of music around the globe by framing the theory of this
music in a way familiar to Westerners. On the other hand, the grammar and the
model are only approximations by outsiders who do not actually represent the people
and culture of Bali. In all, this analysis can be for good, so long as it is acknowledged
that it does not replace the actual musical background of this culture. The model,
and ethnomusicology in general, are mere approximations to learn about the music,
but are a long way away from fully conveying an understanding and appreciation of
the music and musicians.
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Glossary

calung the metallophone responsible for playing the pokok tones of the song. 4

cell a group of eight 16th notes in which the reyong improvises, beginning directly
after a pokok tone and ending on the next pokok tone. 4

gamelan an Indonesian orchestra consisting of mostly percussion instruments, in-
cluding gongs, drums, and metallophones. 2

gong kebyar a modern, secular genre of gamelan music featuring complex inter-
locking parts. 3

kempli a small gong that is used to keep time in gamelan gong kebyar music by
playing steady quarter notes on a single pitch. 14

kempyung a note that is harmonious to a given note, located either three steps
above or below the note in question. 5

norot a style of reyong improvisation that is defined by the template pattern that
alternates between the pokok tone and the tone one step above it. 3

panggul a wooden mallet with which musicians strike a gong on the reyong . 3

pemetit the highest position on the reyong, also called the fourth position. 4

pengenter the second lowest position on the reyong, also called the second position.
4

penyorog the lowest position on the reyong, also called the first position. 4

pokok the melodic baseline of gamelan music that defines the cells for the reyong
improvisations, played every two beats on the calung . 4

ponggang the second highest position on the reyong, also called the third position.
4

pélog the five-tone scale used in gamelan gong kebyar music, featuring the notes
deng, dung, dang, ding, and dong. 3

reyong a set of twelve gongs that are played by four players, featuring an improvi-
sational role in a gamelan. 2

template the idea of a standard baseline cell that can then be modified by improvi-
sations, term coined by Leslie Tilley. 5

variations changes in the standard template cell structure, sometimes referred to as
“deviations”. 6
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C Codebase

C.1 Tone.py

Tone.py contains a Python class representing a tone, used both for pokok tones as
well as notes on the reyong. It provides methods for converting between notes in the
pélog scale and notes in Western music, as well as methods for finding the kempyung
tones corresponding to a tone.

class Tone:

tones = ["i", "o", "e", "u", "a"]

# Constructor for Tone class. Takes in a toneName argument ,

which should be a

# string of value "a", "e", "i", "o", "u", or "r"

def __init__(self , toneName):

self.toneName = toneName

self.noteName = self.matchNote ()

if self.noteName == None:

raise ValueError("Incorrect input for Tone: ’" + str(

toneName) + " ’\nPlease

choose from ’a’, ’e’,

’i’, ’o’, ’u’, ’r")

# Chooses the corresponding ’western ’ notename to go with the

tone , or rest if toneName = r

def matchNote(self):

switcher = {

"i": "C#",

"o": "D",

"e": "E",

"u": "G#",

"a": "A",

"r": "rest"

}

return switcher.get(self.toneName , None)

# returns the toneName

def getToneName(self):

return self.toneName

# returns noteName

def getNoteName(self):

return self.noteName

# Creates a new tone object for the high kempyung tone

def getHighKempyung(self):

currentIndex = self.tones.index(self.getToneName ())

kempyungIndex = (currentIndex + 3) % 5

highKempyung = Tone(self.tones[kempyungIndex])

return highKempyung

# Creates a new tone object for the low kempyung tone
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def getLowKempyung(self):

currentIndex = self.tones.index(self.getToneName ())

kempyungIndex = (currentIndex - 3) % 5

lowKempyung = Tone(self.tones[kempyungIndex])

return lowKempyung

# When converted to string , want to display toneName.

def __str__(self):

return self.toneName

C.2 Cell.py

Cell.py contains two classes. One, CellStructure, is essentially a wrapper class
around an array representing the cell structure. The other, Cell, essentially performs
function f to combine layers 1 and 2 of the model. It takes in two pokok tones and
the cell structure and creates the list of notes in that cell.

import numpy as np

import Tone as tn

# Class for a cell of 8 tones

class Cell:

tones = ["i", "o", "e", "u", "a"]

# Cell constructor. Takes in starting and ending Tone objects

for the surrrounding Pokok

Tones ,

# as well as a cellStructure array , which defaults to a template

cell (all 0s)

def __init__(self , startTone , endTone , cellStructure=[0,0,0,0,0,

0,0,0,0,0]):

self.cellStructure = cellStructure

self.startTone = startTone.getToneName ()

self.endTone = endTone.getToneName ()

self.setDiff ()

self.setNumPattern ()

self.setTonePattern ()

# Given the start tone and end tone , set the difference between

the two (with wraparound)

# Is used to get the numbers of the cell (e.g. and a to i is a 4

-0 shift , so the difference is

4)

def setDiff(self):

start = None

end = None

for i in range(len(self.tones)):

if self.tones[i] == self.startTone:

start = i

if self.tones[i] == self.endTone:

end = i

self.endIdx = i
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difference = start - end

if difference < 0:

difference = difference + 5

self.difference = difference

# Once a difference is set , uses the cellStructure array to

construct a list of numbers

# of the tones in the template.

def setNumPattern(self):

n = self.difference

if n > 4:

raise ValueError("Starting tone number must be < 5")

if n != 0:

self.numList = [n+1, n, n+1, n, 0, 0, 1, 0]

else:

self.numList = [1, 0, 1, 0, 1, 0, 1, 0]

# Check for delayed pokok (0th index):

if self.cellStructure[0]:

self.numList[0] = n

#Check for advanced pokok (1st index):

if self.cellStructure[1]:

self.numList[5:7] = [1,0]

# Anticipations (2nd index):

if self.cellStructure[2]:

index = np.random.randint(1,4)

self.numList[index] = self.numList[index+1]

# Suspensions (3rd index):

if self.cellStructure[3]:

index = np.random.randint(1,4)

self.numList[index] = self.numList[index-1]

# Second -half flexibility

# Ngubeng -majalan switch (4th index)

if self.cellStructure[4]:

if n!=0:

self.numList[4] = 1

else:

self.numList[4] = 0

# Kendang Pattern Substitution (5th index)

if self.cellStructure[5]:

self.numList[4:6] = [0,1]

# reverse norot first half: (6th index)

if self.cellStructure[6]:

self.numList[0:4] = [n-1, n, n-1, n]

# second half: (7th index)

if self.cellStructure[7]:
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if n!=0:

self.numList[4:8] = [0, 0, 4, 0]

else:

self.numList[4:8] = [4, 0, 4, 0]

# And anything else not covered here

self.reduce ()

# Reduces the numlist mod 5

def reduce(self):

for i in range(8):

self.numList[i] = self.numList[i]%5

# Given the numList and the starting and ending tones , sets the

toneList (aka the sequence

# of Tone objects that form the template of the cell.)

def setTonePattern(self):

self.toneList = []

for num in self.numList:

idx = (num + self.endIdx) % 5

self.toneList.append(tn.Tone(self.tones[idx]))

# Want the string version of a cell object to return the tone

names in the toneList

def __str__(self):

string = ’[’

for tone in self.toneList:

string = string + ’ ’ + tone.getToneName ()

string = string + ’]’

return string

# Class for cell structure (basically array wrapper for numpy

purposes)

# Will be fed into Cell class to determine what the structure of the

cell should be.

class CellStructure:

def __init__(self , array):

self.structure=array

def getList(self):

return self.structure

def __str__(self):

return str(self.structure)
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C.3 MarkovModel.py

MarkovModel.py contains a class used to create and perform typical Markov model
operations, including transitioning to the next state. This class also contains the
ability to modify the transitions, as in the third level of our model.

import numpy as np

import copy

# Class for a generic Markov Model

class MarkovModel:

# Constructor takes in a list of states , a list of lists

transitionMatrix , and an

optional list of

# initial probabilities (if empty , assume all equally likely)

def __init__(self , states , transitionMatrix , initialProb=[]):

self.states = copy.deepcopy(states)

self.transitionMatrix = copy.deepcopy(transitionMatrix)

if len(initialProb) == 0:

self.initialProb = [1/len(self.states)] * len(self.

states)

else:

self.initialProb = copy.deepcopy(initialProb)

# will need to add some input validation. For now , assume

all correct

self.setStartingValue ()

# Sets the current state based on the initial probabilities

def setStartingValue(self):

self.currentState = np.random.choice(self.states , replace=

True , p=self.initialProb)

# Method to transition the model

# For normal transitions , leave modifiedProbs empty and specify

the number of transitions as n

# For modified transitions , enter the list of the row of the

current state with the new

probabilities

# which only apply to this step. For modified transitions , must

occur one at a time.

def transition(self , modifiedProbs=[], n=1):

if not modifiedProbs:

return self.normalTransition(n)

else:

return self.modTransition(modifiedProbs)

# A typical markov transition. Returns a list starting at the

current state and ending at

the most recent state.

# Then transitions one last time

# Default n=1.

def normalTransition(self , n):

memory=[self.currentState]
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for i in range(n):

currentIndex = self.states.index(self.currentState)

self.currentState = np.random.choice(self.states ,

replace=True , p=self.

transitionMatrix[

currentIndex])

memory.append(self.currentState)

self.currentState = np.random.choice(self.states , replace=

True , p=self.

transitionMatrix[

currentIndex])

return memory

# modifiedProbs is a vector of transition probabilities for the

current state’s row.

# Does not alter the transition matrix and thus does not change

future transitions.

def modTransition(self , modifiedProbs):

self.currentState = np.random.choice(self.states , replace=

True , p=modifiedProbs)

return self.currentState

# Return the current state of the model

def getCurrentState(self):

return self.currentState

# Return the transition matrix

def getTransitionMatrix(self):

return self.transitionMatrix

# Return the index at which the currentState is located in the

states list.

def getCurrentIndex(self):

return self.states.index(self.currentState)

# Return the list of states

def getStates(self):

return self.states

C.4 ModifiedMarkovModel.py

ModifiedMarkovModel.py performs most of the work in level three of our model:
creating a Markov model, checking the ranges, adjusting the probability vector, and
transitioning.

import Tone as tn

import MarkovModel as mv

import copy

# Class to get each position ’s model for actual notes being played

# Possibly consider renaming

class ModifiedMarkov:
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rangeDict = {1: ["e", "u", "a"],

2: ["i", "o", "e"],

3: ["u", "a"],

4: ["i", "o", "e", "u"]}

# Constructor takes in a playerNum from 1 to 4 as well as a

cellList (list of cells in the

song)

def __init__(self , playerNum , cellList):

self.playerNum = playerNum

self.templateList = []

for cell in cellList:

for tone in cell.toneList:

self.templateList.append(tone)

self.playerRange = self.rangeDict.get(self.playerNum)

self.model = self.getModel ()

# returns initial probability list based on which notes are

actually in range

# (and does not allow for starting on a rest ... for now)

def getInitialProbs(self):

availableStates = self.checkRange(self.templateList[0])

newProbabilities = self.replaceVector(availableStates , [0.50

, 0.25, 0.25, 0.00])

return newProbabilities

# Transitions the model one step from index i.

# Looks to see what states are available and zeros out others

def transition(self , index):

currentStateIdx = self.model.getCurrentIndex ()

oldVector = self.model.getTransitionMatrix ()[currentStateIdx

]

availableStates = self.checkRange(self.templateList[index +

1])

newVector = self.replaceVector(availableStates , oldVector)

newState= self.model.transition(modifiedProbs=newVector)

return self.convertToTone(newState , self.templateList[index

+ 1])

# Method to return a tone’s template , high , low , or rest based

on input state

def convertToTone(self , state , tone):

if state == "t":

return tone

elif state == "h":

return tone.getHighKempyung ()

elif state == "l":

return tone.getLowKempyung ()

else:

rest = tn.Tone("r")

return rest

# Main function , transitions through all indices and returns a

tuple of the toneList (list
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# of tones to be played) as well as a letterList (list of states

’t’, ’h’, ’l’, and ’r’)

# Technically can only be called once ... need to fix this so

that it works if you call it

again ...

def getFullList(self , verbose=False):

toneList = []

letterList = []

toneList.append(self.convertToTone(self.model.

getCurrentState (), self.

templateList[0]))

letterList.append(self.model.getCurrentState ())

for i in range(len(self.templateList) - 1):

toneList.append(self.transition(i))

letterList.append(self.model.getCurrentState ())

if verbose:

print("Player " + str(self.playerNum))

print("Template Notes: ", end = ’’)

print(*self.templateList)

print("Letter Names : ", end = ’’)

print(*letterList)

print("Actual Notes : ", end = ’’)

print(*toneList)

return (toneList , letterList)

# Method to check which states are within the player ’s range.

Returns a list

# of states within range.

# Note that rest ’r’ will always be in range , as will at least

one other state ,

# so always returns a list of length 2 or 3.

def checkRange(self , tone):

availableStates = ["r"]

if tone.getToneName () in self.playerRange:

availableStates.append("t")

if tone.getHighKempyung ().getToneName () in self.playerRange:

availableStates.append("h")

if tone.getLowKempyung ().getToneName () in self.playerRange:

availableStates.append("l")

return availableStates

# Takes in a list of available states as well as a probability

vector

# and returns a new vector with unavailable states zeroed out

and

# the available states normalized.

def replaceVector(self , availableStates , vector):

newVector = copy.deepcopy(vector)

if "t" not in availableStates:

newVector[0] = 0

if "h" not in availableStates:

newVector[1] = 0

if "l" not in availableStates:

newVector[2] = 0
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total = sum(newVector)

for i in range(len(vector)):

newVector[i] = newVector[i] / total

return newVector

# Creates a markov model of states "t", "h", "l", and "r"

# Note the transition probabilities - when template notes "t"

are available ,

# they are more likely to be played regardless of what comes

before.

# Also note that rests never follow other rests/

def getModel(self):

states = ["t", "h", "l", "r"]

matrix = [ [0.40, 0.20, 0.20 , 0.20],

[0.40, 0.20, 0.20, 0.20],

[0.40, 0.20, 0.20, 0.20],

[0.50, 0.25, 0.25, 0.00]

]

initial = self.getInitialProbs ()

model = mv.MarkovModel(states , matrix , initialProb=initial)

return model

C.5 Song.py

The Song class makes extensive use of the music21 package to transform our lists
of notes into MIDI objects. It contains methods for adding the pokok, kempli, and
reyong notes to the song, as well as methods for playing and saving the song as a
MIDI file.

import Tone as tn

import MarkovModel as mv

import music21 as m21

import matplotlib as plt

# Class for a song object

class Song:

# Constructor creates a score and parts for pokok tones and all

players

def __init__(self , numCells , numCycles , addRests=False):

self.numCells = numCells

self.numCycles = numCycles

self.addRests = addRests

self.fullScore = m21.stream.Score()

self.pokokPart = m21.stream.Part()

self.kempli = m21.stream.Part()

self.player1 = m21.stream.Part()

self.player2 = m21.stream.Part()

self.player3 = m21.stream.Part()

self.player4 = m21.stream.Part()
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self.fullScore.append(self.pokokPart)

self.fullScore.append(self.kempli)

self.fullScore.append(self.player1)

self.fullScore.append(self.player2)

self.fullScore.append(self.player3)

self.fullScore.append(self.player4)

# Add the initial rest so we start after the first pokok

initialRest = m21.note.Rest()

initialRest.duration.quarterLength = 0.25

self.player1.append(initialRest)

self.player2.append(initialRest)

self.player3.append(initialRest)

self.player4.append(initialRest)

# Add a single tone (pokok) to the pokok part

def addPokok(self , pokok):

# Currently putting pokoks at octave 4, but will need to

check this

noteToAdd = m21.note.Note(pokok.noteName + "4")

# Pokok tones last for two beats

noteToAdd.duration.quarterLength = 2.0

self.pokokPart.append(noteToAdd)

# if addKempli:

# self.addKempli ()

# self.addKempli ()

# Add a single kempli tone to the kempli part

def addKempli(self):

kempliToAdd = m21.note.Note("B2")

kempliToAdd.duration.quarterLength = 0.25

restToAdd = m21.note.Rest()

restToAdd.duration.quarterLength = 0.75

self.kempli.append(kempliToAdd)

self.kempli.append(restToAdd)

# Add a list of tones (pokoks) to to the pokoko part

def addPokoks(self , pokoks , addKempli=True):

#for tone in pokoks:

for i in range(len(pokoks)):

self.addPokok(pokoks[i])

if (i % self.numCells == 0) and (i != 0) and self.

addRests:

# Add a rest!

restToAdd = m21.note.Rest()

restToAdd.duration.quarterLength = 2.0

self.pokokPart.append(restToAdd)

# if addKempli:

# restToAdd = m21.note.Rest()

# restToAdd.duration.quarterLength = 2.0

# self.kempli.append(restToAdd)
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def addAllKempli(self):

for i in range(self.numCells*self.numCycles):

self.addKempli ()

if (i % self.numCells == 0) and (i != 0) and self.

addRests:

restToAdd = m21.note.Rest()

restToAdd.duration.quarterLength = 2.0

self.kempli.append(restToAdd)

self.addKempli ()

self.addKempli ()

# Add a list of tones to the player1 part

# will need to modify so that tones can be added for all parts

# currently notes are added at octave 5 but need to check on

that

# Notes are 16th notes and thus have length 0.25 ( a quarter of

a quarter )

def addNotes(self , toneList , player_num):

# get correct player:

switcher = {

1: self.player1 ,

2: self.player2 ,

3: self.player3 ,

4: self.player4 ,

}

player = switcher.get(player_num , None)

if player == None:

raise ValueError("Incorrect player number: ’" + str(

player_num) + " ’\

nPlease choose from 1,

2, 3, or 4")

for i in range(len(toneList)):

if (i % (self.numCells*8) == 0) and (i != 0) and self.

addRests:

# Add a rest!

restToAdd = m21.note.Rest()

restToAdd.duration.quarterLength = 2.0

player.append(restToAdd)

noteNameToAdd = toneList[i].getNoteName ()

octave = self.getOctave(player_num , toneList[i].

getToneName ())

if noteNameToAdd == "rest":

noteToAdd = m21.note.Rest()

else:

noteToAdd = m21.note.Note(noteNameToAdd + str(octave

))

noteToAdd.duration.quarterLength = 0.25

player.append(noteToAdd)
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# Given a player number and a tone name , returns the octave that

tone should be in

def getOctave(self , player_num , toneName):

if player_num == 1:

return 4

elif player_num == 4:

return 6

else:

return 5

# Plays the song in the local midi player

def displaySong(self):

self.fullScore.show("midi")

# Saves the song to the given filePath

def saveSong(self , filePath):

self.fullScore.write("midi", filePath)

C.6 Driver.py

Driver.py is the file that runs the full model. It prompts the user for input, creates
and transitions each layer of the model, and handles all output. To run the program,
simply run “python driver.py”.

import Tone as tn

import Cell as cl

import MarkovModel as mv

import ModifiedMarkov as mm

import Song as Song

import numpy as np

# Returns the first layer Markov Model of the different pokok tones

def getFirstModel ():

tone1 = tn.Tone(’i’)

tone2 = tn.Tone(’o’)

tone3 = tn.Tone(’e’)

tone4 = tn.Tone(’u’)

tone5 = tn.Tone(’a’)

states = [tone1 , tone2 , tone3 , tone4 , tone5]

# Transition probabilities come from bottom -up analysis from

Tilley ’s study of Alit

matrix = [ [0/11 , 2/11 , 4/11 , 1/11 , 4/11],

[3/11 , 1/11 , 1/11 , 3/11, 3/11],

[3/16 , 5/16 , 3/16 , 0/16, 5/16],

[3/13 , 2/13 , 1/13 , 5/13, 2/13],

[2/17 , 1/17 , 6/17 , 4/17, 4/17]

]

startingPitches = [1/5, 1/5, 1/5, 2/5, 0]

model = mv.MarkovModel(states ,matrix , initialProb=

startingPitches)

return model
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# Returns the second layer markov model of cell structures.

# Currently only uses delayed pokok or advanced pokok structures.

# Probabilities are super vaguely estimated top -down

def getSecondModel ():

cell0 = cl.CellStructure([0,0,0,0,0,0,0,0])

cell1 = cl.CellStructure([1,0,0,0,0,0,0,0])

cell2 = cl.CellStructure([0,1,0,0,0,0,0,0])

cell3 = cl.CellStructure([1,1,0,0,0,0,0,0])

cell4 = cl.CellStructure([0,0,1,0,0,0,0,0])

cell5 = cl.CellStructure([0,0,0,1,0,0,0,0])

cell6 = cl.CellStructure([0,0,0,0,1,0,0,0])

cell7 = cl.CellStructure([0,0,0,0,0,1,0,0])

cell8 = cl.CellStructure([0,0,0,0,0,0,1,0])

cell9 = cl.CellStructure([0,0,0,0,0,0,0,1])

# template delayed advanced both anticipation suspension second -

half1 second -half2 reverse -first

reverse -second

states = [cell0 , cell1 , cell2 , cell3 , cell4 , cell5 , cell6 , cell7

, cell8 , cell9]

matrix = [ [0.15 , 0.20 , 0.15 , 0.04 , 0.15 , 0.15 , 0.04 , 0.04 , 0.04

, 0.04],

[0.08, 0.20, 0.08, 0.20, 0.08, 0.16, 0.05, 0.05, 0.05

, 0.05],

[0.28, 0.00, 0.28, 0.00, 0.16, 0.08, 0.05, 0.05, 0.05

, 0.05],

[0.28, 0.00, 0.28, 0.00, 0.12, 0.12, 0.05, 0.05, 0.05

, 0.05],

[0.08, 0.08, 0.16, 0.16, 0.24, 0.08, 0.05, 0.05, 0.05

, 0.05],

[0.08, 0.16, 0.08, 0.16, 0.08, 0.24, 0.05, 0.05, 0.05

, 0.05],

[0.10, 0.05, 0.15, 0.10, 0.05, 0.05, 0.15, 0.15, 0.05

, 0.15],

[0.10, 0.05, 0.15, 0.10, 0.05, 0.05, 0.15, 0.15, 0.05

, 0.15],

[0.10, 0.15, 0.05, 0.10, 0.15, 0.15, 0.05, 0.05, 0.10

, 0.10],

[0.10, 0.05, 0.15, 0.05, 0.05, 0.05, 0.15, 0.15, 0.10

, 0.15]

]

initial = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

model = mv.MarkovModel(states , matrix , initialProb=initial)

return model

# Method that handles the second model to create list of cells and

add them

# to song , called once per player

def addPlayer(playerNum , totalCells , pokokList , mySong):

cellModel = getSecondModel ()

# Transition numCells -1 times to get n cell patterns

cellStructureList = cellModel.transition(n=totalCells-1)

# Loop through the CellStructure list to create the cell list of

template notes for the
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pattern

cellList = []

for i in range(totalCells):

cellToAdd = cl.Cell(pokokList[i], pokokList[i+1],

cellStructure=

cellStructureList[i].

getList ())

cellList.append(cellToAdd)

# Create a modified markov model using the cellList for each

player

player = mm.ModifiedMarkov(playerNum , cellList)

# transition the modified markov model to get the full toneList

and letterList , print them out

toneList , _ = player.getFullList(verbose=True)

# Add toneLists to the song

mySong.addNotes(toneList , playerNum)

# Main Driver for the project

if __name__ == "__main__":

numCells = int(input("Enter number of cells per cycle: "))

numCycles = int(input("Enter number of cycles: "))

addRests = False

rests = input("Rest after each cycle? (y/n): ")

if rests == "y":

addRests = True

playPokoks = False

pp = input("Play the Pokok tones? (y/n): ")

if pp == "y":

playPokoks = True

playKempli = False

pp = input("Play the Kempli beats? (y/n): ")

if pp == "y":

playKempli = True

totalCells = numCells*numCycles

mySong = Song.Song(numCells , numCycles , addRests=addRests)

pokokModel = getFirstModel ()

# Transition only numCells -1 times since last note has to be

same as first note.

pokokList = pokokModel.transition(n=numCells - 1)

# Repeat the pokoks for each cycle

for j in range(numCycles-1):

for k in range(numCells):

pokokList.append(pokokList[k])

# Add the final pokok tone as the starting tone
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pokokList.append(pokokList[0])

# Print out the list of pokok tones

print("Pokok Tones : ", end = ’’)

print(*pokokList , sep=’ ’)

# Add pokoks to song

if playPokoks:

mySong.addPokoks(pokokList)

# Add Kempli to song

if playKempli:

mySong.addAllKempli ()

# Add all four players to song (see addPlayer helper method)

for i in range(4):

addPlayer(i+1, totalCells , pokokList , mySong)

playSong = input("Play song? (y/n): ")

if playSong =="y":

# Play the song in a midi player

mySong.displaySong ()

saveSong = input("Save song? (y/n): ")

if saveSong =="y":

fileName = input("File name: ")

# Save a song to a midi file

mySong.saveSong("../../ music/%s.mid" % fileName)
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