
The University of Akron The University of Akron 

IdeaExchange@UAkron IdeaExchange@UAkron 

Williams Honors College, Honors Research 
Projects 

The Dr. Gary B. and Pamela S. Williams Honors 
College 

Spring 2022 

Additive Manufacturing Waste Management System - Plastic Additive Manufacturing Waste Management System - Plastic 

Extrusion Process Extrusion Process 

Gabriel Bennett 
gjb45@uakron.edu 

Lindsay Liebrecht 
The University of Akron, ll125@uakron.edu 

David Lyogky 
The University of Akron, djl123@uakron.edu 

Wilson Woods 
The University of Akron, ww52@uakron.edu 

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects 

 Part of the Polymer and Organic Materials Commons 

Please take a moment to share how this work helps you through this survey. Your feedback will 

be important as we plan further development of our repository. 

Recommended Citation Recommended Citation 
Bennett, Gabriel; Liebrecht, Lindsay; Lyogky, David; and Woods, Wilson, "Additive Manufacturing 
Waste Management System - Plastic Extrusion Process" (2022). Williams Honors College, Honors 
Research Projects. 1562. 
https://ideaexchange.uakron.edu/honors_research_projects/1562 

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela 
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University 
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, 
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more 
information, please contact mjon@uakron.edu, uapress@uakron.edu. 

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/289?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1562
https://ideaexchange.uakron.edu/honors_research_projects/1562?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


   
 

   
 

 

 

 

 

 

 

 

  Honors Research Project 

Submitted to 

The Williams Honors College 

The University of Akron 

 

 

 

 

  

Additive Manufacturing Waste System-  

Plastic Extrusion Process 

 
Gabriel J. Bennet 

Lindsay Liebrecht 

David Lyogky 

Wilson Woods 

Department of Computer & Electrical Engineering 



  DT16 

 

2 
DT16MDR.docx 

Gabriel J. Bennett’s Contribution 

 
The additive manufacturing waste system – plastic extrusion process project had a variety of 

subsystems to design. My responsibilities as the team lead involved both designing some of the 

subsystems, as well as integrating all of the subsystems together, and coordinating team meetings 

as well as the overall projects direction. I designed the overall architecture of the system, and 

constructed the main platform for the project. I integrated the motor with the main screw 

conveyor and the outer metal shell. I then integrated this shell with the heating elements, 

temperature probes, and heat shields. I also created the main power board that connected into 

David’s circuit designs. I modeled all of the 3D printed parts and integrated them into the design 

as well. This included the spooler and winder systems. The motors were then integrated with the 

electronic boards. Overall, my contribution was envisioning and building the physical system, as 

well as integrating the sensors and circuits into the main system.  



  DT16 

 

3 
DT16MDR.docx 

Additive Manufacturing Waste System-  

Plastic Extrusion Process 

 

Project Design Report 

 

 

 

 

 

Design Team 16 

Gabriel Bennett 

Lindsay Liebrecht 

David Lyogky 

Wilson Woods 

 

Dr. Shivakumar Sastry 

 

11/28/2021 

  



  DT16 

 

4 
DT16MDR.docx 

Table of Contents 

Table of Figures ............................................................................................................................................. 5 

Table of Tables .............................................................................................................................................. 6 

Table of Equations ........................................................................................................................................ 6 

Table of Pseudo Code ................................................................................................................................... 7 

Abstract ......................................................................................................................................................... 8 

1. Problem Statement ............................................................................................................................... 9 

1.1. Need: ............................................................................................................................................. 9 

1.2. Objective: ...................................................................................................................................... 9 

1.3. Background: .................................................................................................................................. 9 

1.4. Marketing Requirements ............................................................................................................ 13 

2. Engineering Analysis ........................................................................................................................... 14 

2.1. Circuits & Electronics .................................................................................................................. 14 

2.1.1. Power Analysis .................................................................................................................... 14 

2.1.2. Extruder Analysis ................................................................................................................. 16 

2.2. Cooling Tank Size Analysis........................................................................................................... 17 

2.3. System Speed Analysis ................................................................................................................ 18 

2.4. Embedded Systems ..................................................................................................................... 19 

2.5. Controls ....................................................................................................................................... 19 

3. Engineering Requirements .................................................................................................................. 20 

4. Engineering Standards Specifications ................................................................................................. 22 

4.1. Safety .......................................................................................................................................... 22 

4.2. Communication ........................................................................................................................... 22 

4.3. Design Methods .......................................................................................................................... 22 

4.4. Programming Languages ............................................................................................................. 22 

4.5. Connector Standards .................................................................................................................. 22 

5. Accepted Technical Design ................................................................................................................. 23 

5.1. Hardware Design ......................................................................................................................... 23 

5.1.1. Level 0 Hardware Block Diagrams ........................................................................................... 23 

5.1.2. Level 1 Hardware Block Diagrams ........................................................................................... 24 

5.1.3. Level 2 Hardware Block Diagrams ........................................................................................... 26 

5.1.4. Level 3 Hardware Block Diagrams ........................................................................................... 31 

5.1.5. Circuit Schematics ................................................................................................................... 32 



  DT16 

 

5 
DT16MDR.docx 

5.1.6. I2C Motor Driver #108020103 Justification ............................................................................ 37 

5.2. Software Design .......................................................................................................................... 40 

6. Mechanical Sketch .............................................................................................................................. 63 

7. Team Information ............................................................................................................................... 69 

8. Parts Lists ............................................................................................................................................ 69 

8.1. Accepted Technical Design ......................................................................................................... 69 

8.2. Budget ......................................................................................................................................... 70 

9. Project Schedules ................................................................................................................................ 71 

10. Conclusions & Recommendations .................................................................................................. 72 

11. References ...................................................................................................................................... 74 

12. Appendices ...................................................................................................................................... 75 

12.1. Data Sheets Hyperlinks ........................................................................................................... 75 

12.2. Completed Code as of 11.28.21 .............................................................................................. 77 

 

Table of Figures 

Figure 1: Level 0 Block Diagram ............................................................................................................... 23 

Figure 2: Level 1 Block Diagram ............................................................................................................... 24 

Figure 3: Level 2 Block Diagram - Microcontroller ................................................................................... 27 

Figure 4: Level 2 Block Diagram - Grinding Station ................................................................................. 27 

Figure 5: Level 2 Block Diagram - Extruding Station ................................................................................ 28 

Figure 6: Level 2 Block Diagram - Cooling Station ................................................................................... 28 

Figure 7: Level 2 Block Diagram - Spooling Station ................................................................................. 28 

Figure 8: Level 3 Block Diagram - Heating Element ................................................................................. 31 

Figure 9: Level 3 Block Diagram - Motor Driver ....................................................................................... 31 

Figure 10: Voltage Regulator Circuit.......................................................................................................... 33 

Figure 11: Voltage Regulator Circuit Simulation ....................................................................................... 34 

Figure 12: Motor Driver for Extruder Motor .............................................................................................. 34 

Figure 13: Zero-Crossing Detector Circuit ................................................................................................. 35 

Figure 14: Zero-Crossing Detector Circuit Simulation ............................................................................... 36 

Figure 15: Voltage Control for Heating Element ........................................................................................ 36 

Figure 16: Voltage Control for Heating Element Simulation ..................................................................... 37 

Figure 17: I2C Motor Driver #108020103 Top Down View ...................................................................... 37 

Figure 18: I2C Signal Converter ................................................................................................................. 38 

Figure 19: Power & Signal Interpretation (5 subcircuits from top left to bottom right referred to as c1, c2, 

etc.) ............................................................................................................................................................. 39 

Figure 20: Motor Driver Chip Actual ......................................................................................................... 40 

Figure 21: Software Level 0 block diagram ................................................................................................ 41 

Figure 22: Software Level 1 block diagram ................................................................................................ 42 



  DT16 

 

6 
DT16MDR.docx 

Figure 23: Software Level 2 block diagram. ............................................................................................... 45 

Figure 24: Software Level 2 Flowchart - User Interface Start Sequence.................................................... 46 

Figure 25: Software Level 2 flowchart - Grinding Stage. ........................................................................... 49 

Figure 26: Software Level 2 flowchart – Extrusion Stage. ......................................................................... 51 

Figure 27: Software end sequence flowchart .............................................................................................. 57 

Figure 28: Level 3 software block diagram ................................................................................................ 62 

Figure 29: SPI, I2C and Pic32 Connection Schematic ............................................................................... 63 

Figure 30: Mechanical Sketch - Extruder w/ Cooling Tank and Spooler ................................................... 64 

Figure 31: Mechanical Sketch - Extruder rendering. Isometric view. ........................................................ 65 

Figure 32: Mechanical Sketch - Overall System rendering. Isometric View .............................................. 66 

Figure 33: Mechanical Sketch - Overall System rendering. Side view ...................................................... 66 

Figure 34: Mechanical Sketch - Grinder rendering. Isometric view. .......................................................... 67 

Figure 35: Mechanical Sketch – Spooler Connecting Rod ......................................................................... 67 

Figure 36: Mechanical Sketch – Spooling Motor Stand .............................................................................. 68 

Figure : Mechanical Sketch – Motor Spooler Holder ................................................................................. 68 

Figure : Mechanical Sketch – Tension Motor Discs ................................................................................... 69 

 

Table of Tables 

Table 1: Power Table .................................................................................................................................. 15 

Table 2: Chemical Properties of Plastics .................................................................................................... 16 

Table 3: Marketing and Engineering Requirements and their justification ................................................ 20 

Table 4: Level 0 Hardware Functional Requirements ................................................................................ 23 

Table 5: Level 1 Hardware Functional Requirements ................................................................................ 24 

Table 6: Level 2 Hardware Functional Requirements ................................................................................ 29 

Table 7: Level 3 Hardware Functional Requirements ................................................................................ 31 

Table 8: Level 0 Software Function Requirements..................................................................................... 41 

Table 9: Level 1 Software Function Requirements..................................................................................... 42 

Table 10: Level 2 Software Function Requirements................................................................................... 57 

Table 11: Parts List – Accepted Technical Design ..................................................................................... 70 

Table 12: Parts List - Budget ...................................................................................................................... 71 

Table 13: Data Sheets ................................................................................................................................. 75 

 

Table of Equations 

Equation 1: RPM to linear movement s ...................................................................................................... 14 

Equation 2: Power, Torque and RPM relationship ..................................................................................... 15 

Equation 3: Hp to kW conversion ............................................................................................................... 15 

Equation 4: Variation of Ohm's Law .......................................................................................................... 15 

Equation 5: Thermal Energy ....................................................................................................................... 17 

Equation 6: Cooling Tank Volume ............................................................................................................. 17 

Equation 7: Filament length ........................................................................................................................ 18 



  DT16 

 

7 
DT16MDR.docx 

Equation 8: Velocity ................................................................................................................................... 19 

Equation 9: Finding R1 and R2 .................................................................................................................... 33 

Equation 10: Finding R2 .............................................................................................................................. 33 

 

Table of Pseudo Code 

Pseudo Code 1: User Interface Start Sequence ........................................................................................... 46 

Pseudo Code 2: Grinding Stage .................................................................................................................. 49 

Pseudo Code 3: Extrusion Stage ................................................................................................................. 52 

Pseudo Code 4: End Sequence .................................................................................................................... 57 

 

 

  



  DT16 

 

8 
DT16MDR.docx 

Abstract 

 

This report analyses and designs an additive manufacturing plastic recycling system to be 

utilized by 3D printer users to produce filament from the recycled waste. After identifying the 

key marketing and engineering requirements, a grinding and extrusion system were designed 

to meet the requirements. This is accomplished by grinding the PLA or PET plastic waste, 

heating the resulting pellets to the required melting points of the specific plastic, extruding the 

melted plastic through a specific nozzle size, cooling, and spooling the resulting filament. The 

resulting spooled filament will be viable for 3D printing applications that use a 1.75mm 

filament. The designed system is controlled by the user through a touch monitor which in turn 

contains an embedded control system that monitors speed, filament diameter and extrusion 

temperatures using sensors, actuators, and motors within the system.  

 

 Adaptable for different types of plastic due to wide temperature range 

 Operates on a standard 120V household outlet and 15A breaker 

 Built in safety system  

 Sized for a desktop office environment 

 Self-contained system that doesn’t require interference once running 

 Adaptable for various motor speed control 

(GB,LL,DL,WW) 

 

 

  



  DT16 

 

9 
DT16MDR.docx 

1. Problem Statement  

1.1. Need: 

 

3D printing is a fast-growing market with its main source of waste being PLA and ABS 

plastics. In 2019, the global additive manufacturing market grew to over $10.4 billion, 

crossing the pivotal double-digit billion threshold for the first time in its nearly 40-year 

history. (SmarTech Analysis, 2020 Additive Manufacturing Market Outlook and 

Summary of Opportunities Report). The waste is generated from failed prints and 

rejected support structures which are common occurrences for personal use. Plastic 

recycling has become one of the leading discussions of environmental protection and 

waste management. The 3D market currently does not offer an effective and affordable 

solution for handling the waste generated. To help bring awareness to this need, 

companies such as Print Your Mind 3D has offered challenges to hobbyists and 

corporations to solve this problem. Due to the continuing growth of the additive 

manufacturing market, and the constant attention on plastics and how they harm the 

environment, a solution must be found to reduce or eliminate the waste stream of 3D 

printing. (GB)  

 

1.2. Objective:  

 

Design a working model to recycle plastic materials (PET and PLA) that produces a 

viable filament that can be used in 3D printing applications. The system will include a 

grinder, extruder, and spooler to create a viable filament. A main control board will 

allow for user input and monitoring of the entire system for the duration of the filament 

batch run. (LL)  

 

1.3. Background:  

 

“I want to say one word to you. Just one word. Plastics.'' (Mr. McGuire, The Graduate). 

Plastics are an inundated part of people’s everyday lives. From gifts, to garbage, to 

grocery shopping; plastic is used in many of the everyday products people consume. A 

primary use for plastics is in the packaging of other products. This packaging is almost 

always, unilaterally, discarded upon opening said product. Plastics are highly durable 

and easily molded but are either not biodegradable or their biodegrading process takes 

years if not decades to complete. These thoughts lead to the modern-day debate that 

surrounds the mass consumption of plastic products in the face of grave environmental 

concerns. The newest addition to this age-old dilemma is none other than the 3D 

printer. (GB)  

 

Over the last several years, especially after the recent global pandemic, 3D printing has 

grown into a massive industry. This is due not only to the technology's massive range 

of applications, but its potential for reducing inventory due to being able to print on 

demand (Choong et al., 2020). One of the downsides, however, of this new up and 

coming industry is the large amount of plastic waste produced. As consumers, it is 

important to be conscious of the waste produced and available methods to recycle and 



  DT16 

 

10 
DT16MDR.docx 

reuse the scrapped prints and wasted filaments. The 3D printer allows a user to 

utilize inexpensive plastic filaments such as PLA or ABS to print a design, provided 

the design abides by the laws of physics. 3D prints do not form properly every time, 

and many attempts are often needed before a quality final product is achieved. The 

inefficiency of creating a quality print highlights the environmental dilemma and asks 

an important question: “How does one create, design, and print as many prints as 

desired without negatively impacting the environment?”. The short answer: recycling. 

What if the 3D plastic waste can be reused and recycled back into the same 3D printer? 

(GB)  

The proposed project concept will accomplish the goal of recycling 3D waste. Due to 

the current increase in popularity of 3D printing, the recycling project is highly desired 

by many in the additive manufacturing community. According to M.A. Krieger et al.:  

 

It is concluded that with the open-source 3-D printing network expanding rapidly the 

potential for widespread adoption of in-home recycling of post-consumer plastic 

represents a novel path to a future of distributed manufacturing appropriate for both the 

developed and developing world with lower environmental impacts than the current 

system. (p. 90)  

 

There have been many studies conducted to show that not only is household recycling 

for 3D printers possible, but also practical. To push this thought further, imagine also 

being able to recycle a disposable water bottle and utilize the pellets in a 3D printer. 

The proposed project will recycle and reuse plastic from a 3D printer (PLA and ABS) 

as well as PET plastics from household waste, such as disposable water bottles, by 

grinding, extrusion, and spooling into filaments that the 3D printer can use for future 

prints. (GB)  

 

Currently unused and rejected 3D printed projects are either thrown away via landfill 

or recycling centers or in some cases the failed prints, as well as other recycled plastics, 

are being upcycled by hobbyists using a homemade extrusion contraption. A quick 

internet search will produce a list of videos and articles that show how to make one of 

these contraptions using a DIY kit available for purchase or by buying the individual 

components and building from scratch. One example of a DIY project is the 

RepRapable Recyclebot (Woern et al., 2018). This project comes with all the 

instructions to make a homemade plastic recyclable extruder, but none of the tools or 

parts to make it. This makes it impractical for the average user as the average user does 

not have the skills or time to safely construct the build. Another concern with the DIY 

method is the lack of guarantee for filament quality and user safety. (DL) 

 

One of the key challenges to the proposed project will be the limitations of working 

with the melting and cooling of plastics. Plastic can be melted and reformed only so 

many times before it begins to lose its crystalline structure. This crystalline structure 

and its properties must be closely monitored to allow for the plastic structure to operate 

as the filament design requires. 3D filaments require a specific brittleness, flexibility, 

and malleability to perform as desired during the printing process. If the same material 

is recycled multiple times without additives to correct the changes in structure, the 



  DT16 

 

11 
DT16MDR.docx 

resulting filaments will degrade up to 30% after 3 cycles and 60% after 7 cycles. (Pillin 

et al., 2008; Brüster et al., 2016, as cited in Mikula et. al, 2021). Another study on the 

impacts of recycling by extrusion of plastics (Vidakis et al., 2021) found the following:  

 

...mechanical properties (of PLA filaments) overall increase until the 4th recycling 

course regarding the tensile strength, while there is an overall increase until the 3rd 

recycling course in flexural strength. Moreover, the impact strength results follow a 

similar trend as the overall increase ceases at the 3rd recycling course. (p. 10)  

 

Therefore, the amount of recycled vs fresh material used in the extrusion process will 

require monitoring to ensure the final product performs properly. Another factor in 

determining this ratio of fresh to used materials is the amount of recycled material in 

the fresh filaments from the manufacturers. “An increasing number of companies offer 

filaments from recycled PLA or ABS” (Mikula et al., 2021, p. 12323). As such, the 

amount of recycled material may be unknown from the start. A potential solution to 

this challenge can be the tracking of purchased lot numbers and creation of lot numbers 

for each recycled spool to keep track of the number of times the material has been 

recycled. Another potential solution is, “the addition of additives to the (pelletized) 

material may occur in the feed zone (of the extruder) in order to grant distinctive 

physicochemical properties to the end product, such as color, hardness, erosion 

strength, etc.” but knowing which additives to add or obtaining these additives as a 

standard consumer may not be practical (US20160107337A1). Due to the sensitive 

nature of the filament structure, mixing of plastic types (PLA, ABS, PET, etc.) is not 

possible. Therefore, sorting plastic types is each waste type may be a barrier for some 

consumers. (LL)  

 

Another limitation to the extrusion process involves the various filament colors 

available for 3D printers. The color of the recycled filament will need to be monitored 

to ensure that the extrusion process does not vary the color from the original raw 

material. If color is not monitored and more than one spool is used during the printing 

process, the final print could result in mismatched or different shades of the same color. 

Keeping this color consistency will be a challenge. (LL) 

 

The last barrier faced with current designs is the physical space that the setup requires 

to produce a viable product. Many hobbyists and home consumers do not have a large 

space to hold both their 3D printer and a recycling unit which contains a grinder, 

extruder, cooling unit, and spooler. (LL) 

 

The proposed project concept bears some similarities to existing extrusion systems in 

terms of its core mechanical processes and functionality. Like many current solutions, 

this system is focused specifically on the recycling of PLA, ABS and PET plastics. 

PLA and ABS are the current plastics of choice for consumer 3D printing while PET 

is a common household waste and, given the prevalence and suitable physicochemical 

properties of these three plastics, all are popular target materials for filament extrusion 

(Kreiger et al., 2014). In addition, the proposed extrusion mechanism consists of the 

combination of screw, cylinder, heating elements, and nozzle.  This is a commonly 



  DT16 

 

12 
DT16MDR.docx 

used configuration among systems currently in use, and its design is well-documented 

(Berchuk et al., 2016). The design proposed here seeks to incorporate mechanical and 

operational concepts that have proven successful at any scale while avoiding the pitfalls 

that have limited consumer access to a viable filament extruder. (WW)  

 

Current technologies employ a variety of sensors to ensure output quality and proper 

behavior of the system. Correct temperature of the plastic at various points and 

consistent diameter of the resulting filament are crucial. Other measurements, such as 

the feed rate at the entrance of the extruder and environment variables may also be of 

value but may not be necessary or appropriate for this system. Current designs vary in 

terms of the types of sensors used as well as the locations in which these sensors are 

placed along the line of production. A study on real-time analysis of plastic filaments 

(del Burgo et al., 2019) made use of thermistors and an analog temperature sensor to 

monitor heating and cooling processes, as well as an optical encoder to measure feed 

rate. Another system employed similar technologies for temperature measurement 

(Woern et al., 2018). In addition, an optoelectronic coupler to detect undue filament 

stretching prior to cooling has been demonstrated (Teterin et al., 2016). Filament 

diameter measurement has been accomplished with an optical micrometer (Filament 

sensor kit for 3D printers and filament extruders, 2020) as well as a photodiode array 

sensor (del Burgo et al., 2019). All these technologies are implemented, in various 

combinations, in a collection of extrusion systems that bear certain similarities to one 

another, but are quite diverse in terms of scale, precision, and cost. (WW)  

 

Among all the systems studied, sensors for filament diameter and temperature 

measurements provide a baseline for proper operation and output precision, and the 

design proposed here will accordingly employ both. Measuring the feed rate may be 

pursued as well since, while not necessary, sensors for this purpose have been 

implemented in relatively small-scale devices and can increase the reliability of the 

system (Teterin et al., 2016). Other sensors, especially those intended to monitor room 

temperature and humidity, will likely be omitted in favor of simplicity and with regard 

for budget constraints. This choice differs from many industrial and laboratory-grade 

systems, and instead bears more similarity to a DIY-type system that would be intended 

for usage more similar to that of the proposed device. (WW)  

 

In broader terms, this system differs from presently available technologies in terms of 

the cost of the system, as well as the levels of safety, filament quality, and autonomy 

relative to that cost. Industrial and laboratory filament extrusion systems are 

technologically advanced and provide a high degree of precision but are very costly, 

and thus impractical for the average individual user (Woern et al., 2018). At the 

opposite end of the spectrum small-scale, DIY-type systems lack structural integrity, 

safety, electronic controls and autonomy, and filament output quality. Beyond 

prohibitively expensive systems, these low-quality extruders are, for the most part, the 

only solution currently available to average users. DIY extruders are typically of 

suboptimal construction and have limited electronic monitoring and user control. 

Accordingly, these devices face durability issues, and pose significant safety risks, 

especially in relation to the grinding and heating mechanisms central to their operation. 



  DT16 

 

13 
DT16MDR.docx 

The system proposed here presents a middle ground between the scale and price points 

of the devices described above and will provide an affordable user experience that is 

safe, effective, and semi-autonomous. With the plethora of sensors outlined above and 

a robust embedded control system, this device will be safer, easier to monitor, and 

easier to operate than low-cost options on the market today. In contrast with the designs 

presently available, this system presents a solution to PLA and PET waste reclamation 

that is both practical and widely adoptable in the 3D printing community. (WW)  

 

There are a few patents that are relevant to the proposed design. One such patent is the 

Plastic Extrusion, Apparatus and Control, designed by Arthur William Spencer. This 

patent focuses on obtaining a more uniform extraction of filament and steady flow rate 

after being heated and run through a die. This was accomplished by maintaining a 

consistent temperature and varying the pressure accordingly (US3148231A). Another 

patent process that explores a similar problem is introduced by Xiaofan Luo and 

Zhaokun Pei. This patent explores and offers a solution to the problem of 3D printer 

filament prematurely softening in the printing nozzles by suggesting the use of certain 

polymers with “…better resistance to heat-induced softening.” (US20170066188A1). 

This is one of the major causes for the filament to jam in the nozzle during the extrusion 

process. This in turn required the extrusion process to stop, and the jam removed prior 

to operation restart. Both patents are relevant to the proposed project as both focus on 

the resulting filament being uniform and consistent. These concepts are key to creating 

a filament that has the same or better 3D print success rate as the purchased filaments 

from industry providers. (DL) 

 

1.4. Marketing Requirements 

 

The system shall: 

1. Be safe to operate for any user whether at a commercial or home application 

2. Be power efficient and can operate with standard power available in a home or 

office 

3. Produce a filament that is usable with a 3D printer 

4. Produce a high yield product from recycled materials in a reasonable amount of 

time 

5. Use recycled PLA or PET material provided by the user 

(LL)  



  DT16 

 

14 
DT16MDR.docx 

2. Engineering Analysis 

 

This section outlines the analysis completed to support the marketing and engineering 

requirements of the system. The analysis is broken up into the following sections: Circuits & 

Electronics, Cooling Tank Analysis, System Speed Analysis, Embedded Systems, and Controls. 

 

2.1. Circuits & Electronics 

 

2.1.1. Power Analysis 

 

To ensure the system design is power efficient, preliminary power calculations were 

completed. These calculations took into consideration the marketing requirement to use 

this product in a home or office with a standard 120V outlet. A successful analysis ensures 

the system can operate on a 15A breaker which is typical in these environments.  

 

The design will have multiple items drawing current that need to be considered when 

determining total current draw. These items are as follows:  

 Grinder Motor 

 Hopper Latch Motor/Actuator 

 Spooling Motor 

 Two Pulling Motors 

 Extrusion Screw Motor 

 Control Board 

 Extrusion Heating System 

 

The operating assumptions used in the Power Analysis are as follows: 

 120V outlet is used 

 Screw length to diameter ratio is 36:1 

 Screw is at maximum length of 3 feet 

 Screw will exhibit the minimum torque of 53lb-in Torque 

 Output spooling speed will be 12 ft/min 

 Grinder will operate in the same manner as a standard office paper shredder 

 Puller motors will not exceed 50 rpm (based on below rpm calculations) 

 Spooling motor will not exceed 50 rpm (based on below rpm calculations) 

 Spooling & Pulling motors will be like the FIT0492-A motor (Digikey). 

 The control board will be within the PIC32 family 

 

Further explanation of power analysis assumptions and calculations are explained in 

Table 1.  

 

Equation 1 defines a relationship between linear movement and rpm. 

 

𝑛 =
𝑠

𝜋𝐷
 

Equation 1: RPM to linear movement s 



  DT16 

 

15 
DT16MDR.docx 

Using the ratio and length assumptions, the following is calculated: 

 

  

𝐷 = 36 ∗
1

36
= 1 𝑖𝑛 

 

Next, the following is calculated using Equation 1: 

 

𝑛 =

12𝑓𝑡
𝑚

𝜋 ∗ 1𝑖𝑛 ∗
1𝑓𝑡

12𝑖𝑛

= 45.84𝑟𝑝𝑚 

 

For Spooling at 12 ft/min, and using Equation 1 with D = 1in, n is calculated to be 45.84 

rpm. Next, the Power Torque RPM relationship was defined. 

 

𝑃𝑜𝑤𝑒𝑟(𝐻𝑝) = 𝑇𝑜𝑟𝑞𝑢𝑒(𝑙𝑏 ∗ 𝑖𝑛) ∗
𝑅𝑃𝑀

63025
 

Equation 2: Power, Torque and RPM relationship 

Using Equation 2, and the previous results, and the Torque assumption, the following is 

calculated: 

 

𝑃𝑜𝑤𝑒𝑟(𝐻𝑝) = 53𝑙𝑏 ∗ 𝑖𝑛 ∗
45.84

63025
=  0.028885 

 

Using the following hp to kW conversion rate defined in Equation 3: 

 

1(𝐻𝑝) = 0.7457(𝑘𝑊) 
Equation 3: Hp to kW conversion 

𝑃𝑜𝑤𝑒𝑟(𝑘𝑊) = 0.215395𝑘𝑊 = 215.395𝑊 

 

This is the wattage for the Extruder screw’s motor. The next equation to be defined is 

Equation 4: 

 
𝑊𝑎𝑡𝑡𝑠

𝑉𝑜𝑙𝑡𝑠
= 𝐴𝑚𝑝𝑠 

Equation 4: Variation of Ohm's Law 

Using this equation will show amperage based on each of the item’s power usage. The 

results are laid out in the following table: 

  
Table 1: Power Table 

Power Item Reasoning Wattage Voltage Amps 

Grinder 

Motor 

The grinder motor will operate in the same 

manner to a paper shredder. The grinding 

necessary to pelletize plastic requires two 

200 W 120VAC 1.666 A 



  DT16 

 

16 
DT16MDR.docx 

screws spinning in tandem just like a paper 

shredder.  

Spooling 

Motor & 

Pulling 

Motors 

The Spooling and Pulling Motors will 

simply need to keep up with the same speed 

as the outflow from the nozzle which is 

45.84 RPMs as calculated previously. 

Therefore, the power wattage will be 

similar to the FIT0492-A motor as it is a 

max speed 50 RPM motor. 

5 W 12 VDC 0.42 A 

per 

motor 

Hopper 

Latch Motor 

The Latch Motor will either be servo or 

linear actuator.  

5 W 12VDC 0.42 A 

Extruder 

Heating 

These calculations are done in extensive 

detail in the next section. 

690.6 W 120VAC 6.3 A 

Extruder 

Screw 

The screw was already calculated above. 215.4 W 120VAC 1.795 A 

Control 

Board 

The control board needed for this design 

will be within the PIC32 family. 

5 W 5 VDC 1 A 

 

Totaling the amperage column of Table 1 and accounting for four 0.42 A motors, the 

following result was found: 

 

1.666𝐴 + 4 ∗ 0.42𝐴 + 6.3 + 1.795𝐴 + 1𝐴 = 12.441 𝐴𝑚𝑝𝑠 
 

The resulting amperage when totaled is approximately 12.441 Amps. Since the grinder will 

not be operating during the extrusion process, the resulting total amperage would be 

10.775. This means the system is safe to use on a 15 Amp standard household circuit. This 

includes utilizing a safety factor of 80% which is 12 amps.  

(GB, DL) 

 

2.1.2. Extruder Analysis 

 

Below are chemical properties of both PLA and PETG that are required to complete the 

analyses for the extruder. 
 

Table 2: Chemical Properties of Plastics 

 PLA PETG 

Melting Point (oC) 150-160 250-260 

Specific Heat Capacity 

(J/kg oC) 

1590 1300 

Density 1.23 1.25 

 

The following formulas are used to calculate the thermal energy required to melt both 

PLA and PETG.  

 



  DT16 

 

17 
DT16MDR.docx 

𝑃 = 𝑐𝜌𝐴𝑣𝛥𝑇 
 

Equation 5: Thermal Energy 

Where P is Power, c is specific heat capacity, ρ is density, A is area, v is velocity and T is the change in temperature 

 

Minimum Power Required to Melt 7mm pellet PLA at 160oC 

 

1590 J

kg°C
∗

1𝑘𝑔

1000𝑔
∗

1.23𝑔

𝑐𝑚3
∗

1𝑐𝑚3

1000𝑚𝑚3
∗  𝜋 ∗ (

7𝑚𝑚

2
)

2

∗
304.8𝑚𝑚

1𝑓𝑡
∗

9.25𝑓𝑡

𝑚𝑖𝑛
∗

1𝑚𝑖𝑛

60𝑠
∗ (160 − 25)𝑜𝐶 = 477.4𝑊 

 

Minimum Power Required 7mm pellet PETG at 260oC  
 

1300 J

kg°C
∗

1𝑘𝑔

1000𝑔
∗

1.25𝑔

𝑐𝑚3
∗

1𝑐𝑚3

1000𝑚𝑚3
∗  𝜋 ∗ (

7𝑚𝑚

2
)

2

∗
304.8𝑚𝑚

1𝑓𝑡
∗

9.25𝑓𝑡

𝑚𝑖𝑛
∗

1𝑚𝑖𝑛

60𝑠
∗ (260 − 25)𝑜𝐶 = 690.6𝑊 

 

As PETG requires more thermal energy to melt, the minimum power required to melt 

both plastics is 690.6W.  

(LL) 
 

2.2. Cooling Tank Size Analysis 

 

Below uses thermal heat transfer equations to determine the minimum volume of water 

required to cool the molten extruded plastic to room temperature.  

 

𝑄𝑝𝑙𝑎𝑠𝑡𝑖𝑐 =  𝑄𝑤𝑎𝑡𝑒𝑟 

 

𝑄 = 𝑚𝑐∆𝑇 
 

𝑚 =  𝜌 ∗ 𝑉 
 

𝑉𝑤 =
(𝜌𝑉𝑐∆𝑇)𝑝𝑙𝑎𝑠𝑡𝑖𝑐

(𝜌𝑐∆𝑇)𝑤
 

 
Equation 6: Cooling Tank Volume 

 Where Q is heat transfer, m is mass, c is specific heat capacity, T is temperature, ρ is density and V is volume 

Minimum volume to cool PLA 

 

𝑉𝑤

𝑡
=

1.23𝑔
𝑐𝑚3 ∗  𝜋 (

1.75𝑚𝑚
2 )

2

∗
9.25𝑓𝑡

𝑠 ∗
304.8𝑚𝑚

𝑓𝑡
∗ 

(1𝑐𝑚3)
1000𝑚𝑚3 

∗
1590𝐽
𝑘𝑔𝑜𝐶

∗
1𝑘𝑔

1000𝑔 ∗ (160𝑜𝐶 − 25𝑜𝐶))

1𝑔
𝑐𝑚3 ∗

4.184𝐽
𝑔𝑜𝐶 ∗ (30𝑜𝐶 − 25𝑜𝐶)

   

 



  DT16 

 

18 
DT16MDR.docx 

𝑉𝑤

𝑡
=

85.6𝑐𝑚3

𝑠
∗

1𝑖𝑛3

16.3871𝑐𝑚3
= 5.22

𝑖𝑛3

𝑠
 

 

Minimum volume to cool PETG 

 

𝑉𝑤

𝑡
=

1.25𝑔
𝑐𝑚3 ∗  𝜋 (

1.75𝑚𝑚
2 )

2

∗
9.25𝑓𝑡

𝑠 ∗
304.8𝑚𝑚

𝑓𝑡
∗ 

(1𝑐𝑚3)
1000𝑚𝑚3 

∗
1300𝐽
𝑘𝑔𝑜𝐶

∗
1𝑘𝑔

1000𝑔 ∗ (260𝑜𝐶 − 25𝑜𝐶))

1𝑔
𝑐𝑚3 ∗

4.184𝐽
𝑔𝑜𝐶 ∗ (30𝑜𝐶 − 25𝑜𝐶)

   

 

𝑉𝑤

𝑡
=

123.8𝑐𝑚3

𝑠
∗

1𝑖𝑛3

16.3871𝑐𝑚3
= 7.55

𝑖𝑛3

𝑠
 

 

 

Assume the system will cool the heated filament to room temperature in 5 seconds yields 

a minimum water bath size of 1”x1”x8” tank.  

(LL) 

 

2.3. System Speed Analysis 

 

Below is the analysis to determine the minimum extrusion, cooling and spooling speed 

required to produce 1kg of filament in 2 hours.  

 

𝑙 =
𝑚

𝜌𝐴
 

 
Equation 7: Filament length 

Where l is length, m is mass, ρ is density and A is cross sectional area 

PLA length of 1kg 

 

1𝑘𝑔 𝑃𝐿𝐴 ∗
𝑐𝑚3

1.23𝑔
∗

1000𝑔

1𝑘𝑔
∗

1000𝑚𝑚3

1𝑐𝑚3
∗

1

𝜋 ∗ (
1.75𝑚𝑚

2 )
2 ∗

1𝑓𝑡

304.8𝑚𝑚
= 1091 𝑓𝑡 𝑃𝐿𝐴 

 

 PETG length of 1kg 

 

1𝑘𝑔 𝑃𝐸𝑇𝐺 ∗
𝑐𝑚3

1.25𝑔
∗

1000𝑔

1𝑘𝑔
∗

1000𝑚𝑚3

1𝑐𝑚3
∗

1

𝜋 ∗ (
1.75𝑚𝑚

2 )
2 ∗

1𝑓𝑡

304.8𝑚𝑚
= 1109 𝑓𝑡 𝑃𝐸𝑇𝐺 

 

Next, the overall length of the filament is converted into a velocity based on the amount 

of time to create the desire length.  

 



  DT16 

 

19 
DT16MDR.docx 

𝑣 =
𝑙

𝑡
 

 
Equation 8: Velocity  

Where v is velocity, l is length, and t is time 

As PETG requires more length to achieve 1kg of material the minimum system run speed 

must be based on the PETG final length.  

 
1109𝑓𝑡

2ℎ𝑟
∗

1ℎ𝑟

60𝑚𝑖𝑛
=

9.25𝑓𝑡

𝑚𝑖𝑛
 

 

To achieve the engineering requirement to complete 1kg of material in 2 hours, a 9.25 

ft/min minimum extrusion speed is required.  

 (LL) 

2.4. Embedded Systems 

 

Real time tracking within the extruder system is required due to the need to adjust 

temperature and extrusion motor speeds based on the extrusion output diameter. 

Specifically related to the hot filament diameter in relation to the heating elements, the best 

controller for this project will be a 32-bit microcontroller; in particular, a device in the 

PIC32MX family. 32 bits was deemed to be the necessary word length for a variety of 

reasons, including the need for 32-bit timers and high resolution for processing sensor 

signals and driving motors. A System on Chip (SoC) device such as Raspberry Pi or the TI 

Beaglebone, which are available in 32- and 64-bit varieties, were also considered, but the 

32-bit PIC microcontroller was favored for its accompanying MBLAB Harmony 

development environment, and the device's compatibility with real-time operating systems. 

FreeRTOS will be used to implement real-time threads, priorities, and scheduling. This 

configuration of the software system is optimal for time-critical changes in heating element 

temperature and motor speed that will be necessary to the system's consistent production 

of usable filament. The RTOS is favorable over the more desktop-like, multi-tasking OS 

of the Raspberry Pi or similar devices, because the RTOS has maximum execution times 

for critical operations, low-latency interrupts, and a simple scheduler that adheres strictly 

to task priority rules. This combination of technologies makes it possible to develop a 

peripheral-intensive application that can run on a single processing unit without sacrificing 

execution time for the critical tasks of motor and temperature control. 

           (WW) 

 

2.5. Controls 

 

There will be a few key locations that will control the overall result of the product or the 

movement from one station to the next. Each of these controls will be monitored by the 

controller and decisions determined by the source code for each sensor and feedback 

control.  

 

The first necessary control to the system will relate to all the safety functions, such as the 

status of the lid to the grinder hopper, the status of all E-stops, and the necessary safety 



  DT16 

 

20 
DT16MDR.docx 

components needed for the cooling tank water and the surrounding electronics. This 

control needs to be a top priority interrupt such that in the event a safety issue occurs, the 

system shuts down immediately. All safety controls will either stop a system from starting 

or cut power to the entire system depending on the severity of risk, should the safety 

control not be in place.  

 

The second necessary control to the system will be to ensure there is enough ground pellets 

prepared before stating the extrusion system. If the weight sensor in the catching hopped 

located after the grinder does not hold a weight greater to or equal to the final spooled 

filament weight plus the yield loss, the extruder motor cannot start. This ensures a constant 

extrusion of material which is necessary to create a consistent filament.  

 

The third control relates to maintaining the diameter of the hot filament exiting the 

extruder. The filament diameter will be dependent on two factors: the temperature zone 

ranges and the screw speed. A diameter sensor must send real time feedback to the 

controller to make immediate adjustments to either the temperature zone ranges, the screw 

motor speed, or both. This will ensure the diameter maintains the tolerances specified in 

the engineering requirements. Should the diameter sensor not detect any filament, the 

extruder motor will be stopped so that trouble shooting can occur. Within this same 

control, each individual temperature zone must be monitored in real time and adjustments 

made to ensure the temperatures stay within the required temperature ranges to ensure a 

consistent melt of the pellets. 

 

The fourth control system would relate to the temperature of the heating element. The 

heating elements will have to stay at their specified temperatures during the extrusion 

process. This will be completed by controlling the amount of power being delivered to the 

coils. If it gets to hot then power will be reduced, if it gets to cool then power will be 

increased. The controlling of power will depend on a few factors such as the temperature 

of the coils and how fast the temperature is changing. This will be implemented by reading 

the temperature and then sending the appropriate response to the circuit. 

 

The final key control to the system will be the stop all processes functionality once the 

final spool weight is met. This process must be handled in a specific pattern to ensure the 

filament does not break or become too slack between the extruder and the spooler. All 

motors will need to decrease and stop at the same rate to maintain tension. The extruder 

temperature zones must be stopped in order to allow the system to cool, and the grinder 

must not be able to start again until the next production run is initiated.  

(LL) 

3. Engineering Requirements 

 
Table 3: Marketing and Engineering Requirements and their justification 

Marketing 

Requirements 

Engineering Requirements Justification 

1 1. System will have an E-stop E-stop will provide the user with the 

ability to cut power to all components 



  DT16 

 

21 
DT16MDR.docx 

2. All water from the system will 

be contained and kept away 

from all electrical components 

of the system in an event of an 

emergency.  

Isolating the water required to cool the 

filament from the electrical 

components will limit the risk of an 

electrical fire because of water contact.  

2 3. Be powered by a standard 120V 

outlet and on a 15A breaker 

A 120V outlet on a 15A breaker is a 

standard setup in most home and office 

environments. By ensuring the power 

required to the system remains below 

the 15A threshold on a 120V outlet 

will allow the system to run in most 

user locations.  

3, 5 4. Produce a spooled filament of 

1.75mm +/- 0.05mm diameter 

5. Filament spool will be between 

200g and 1kg in weight 

6. Max grinder pellet size of 7mm 

7. Extruder will operate in a 

temperature zone between 150 

oC and 300 oC   

8. Extruder screw will be at or less 

than 3 feet in length  

9. Extruder screw will maintain a 

36:1 L/D ratio  

10. Filament will spool at an 

ambient temperature 

1.75mm filament on a 1kg spool is a 

standard size for 3D printing. The 

ability to produce less than 1kg will 

allow users to make less material if the 

3D print does not require a full 1kg 

spool.  

By keeping the grinder pellet size at or 

below 7mm in size, will ensure an even 

melting of the pellets as it passes 

through the extruder.  

The melting points of PLA and PETG 

are 160oC and 260oC respectively. By 

operating in a range of 150 oC -300 oC, 

the plastics will be able to melt to be 

extruded into a filament.  

A key component of an extruder is the 

feeding screw. By keeping the screw 

length less than 3 feet ensures the 

system can be built on a standard desk 

at the user’s location.  

An extruder screw design standard has 

the length to diameter ration of 36:1.  

If the filament is not cooled after 

exiting the extruder, the filament can 

lose shape and distort the size making 

it unusable in a 3D printer.  

4 11. 1kg of filament will be produced 

in 2 hours or less time 

12. System yield will be greater 

than 90% 

An extrusion and spooling time of 1 

full roll in 2 hours ensures the user can 

complete the recycling process in a 

reasonable amount of time without 

needing to risk errors occurring during 

a longer duration which is harder to 

manage.  



  DT16 

 

22 
DT16MDR.docx 

A yield of greater than 90% ensures the 

efficiency of the system and maximizes 

the use of the recycled material.  

(GB, DL, LL, WW) 

 

4. Engineering Standards Specifications 

 

This section outlines the standards necessary to ensure this design is safe, professional, and not 

breaching any legal documentation or codes. 

 

4.1. Safety 

This system will have mechanical moving parts that could cause injury to unwary 

operators. The main extrusion screw will need to be always covered during operation. If 

the screw is exposed during operation, any foreign appendage inserted into the screw will 

cause injury. The screw operates using several thermal couples which will heat the screw 

housing to dangerously high temperatures. When unguarded, the housing could cause burns 

to unwary operators. The nozzle will also operate at a dangerous temperature and should 

not be touched until system has reached room temperature. The water bath should not be 

disturbed during operation as the heat of the bath may become mildly irritating. It is also 

unwise to disturb water near an electrical machine whilst it is still in operation. The system 

utilizes a grinding unit whic will cause severe injury to any foreign appendage inserted into 

said device. Use extreme caution when pelletizing scrap plastic. This system is designed to 

operate on a 120VAC outlet utilizing a 15A breaker system. It is important not to overload 

the system as this will flip said breaker. Ensure use of a dedicated 15A circuit for maximum 

safety.  

(GB) 

4.2. Communication 

 

I2C and SPI are serial communication protocols that will used to facilitate interaction 

between the microcontroller and peripheral devices. 

(WW) 

4.3. Design Methods 

4.4. Programming Languages 

 

The languages utilized will be C++, C, and Python. 

(WW) 

4.5. Connector Standards  

 



  DT16 

 

23 
DT16MDR.docx 

NEC codes will be followed. This code states that the standard house will operate on a 15A 

breaker system, so this fact influenced this product’s design. 

 

(GB, LL, DL, WW) 

5. Accepted Technical Design 

 

This section outlines the standards necessary to ensure this design is safe, professional, and not 

breaching any legal documentation. 

5.1. Hardware Design 

5.1.1. Level 0 Hardware Block Diagrams 

Error! Reference source not found. shows the fundamental level 0 hardware block 

diagram for the Additive Manufacturing Waste Management System – Plastic Extrusion 

Process. The system will accept recycled PLA or PET, 120 VAC, coolant (water), and user 

inputs such as plastic type and the desired weight of the filament. The output of this system 

will be spooled filament, the final weight of the spooled filament, extruder zone 

temperatures and the run time. A description of the functional requirements of this system 

is given in Table 4Error! Reference source not found. below. 

 

 
Figure 1: Level 0 Block Diagram 

Table 4: Level 0 Hardware Functional Requirements 

Module 
Additive Manufacturing Waste Management System – Plastic Extrusion 

Process 

Inputs 

 Recycled PLA or PETG 

 Power, 120V AC 

 Plastic type 

 Desired weight 

 Coolant 

Outputs 

 Spooled 1.75mm filament 

 Spooled filament weight 

 Extruder zone temperatures 

 Run time 

Functionality 

Plastic extrusion process that converts 3D printing PLA waste and household 

PET waste into spooled filaments that can then be used in the 3D printing 

process. 



  DT16 

 

24 
DT16MDR.docx 

 (GB,DL) 

5.1.2. Level 1 Hardware Block Diagrams 

Figure 2 shows the level 1 hardware block diagram for the Additive Manufacturing Waste 

Management System – Plastic Extrusion Process. The system is broken up into subsystems 

which can be seen in Figure 2. Each subsystem takes in inputs and then sends the outputs 

to the next subsystem and information back to the controller. Material is placed into the 

grinding station where it is ground up into pellets. From there, the pellets move to the 

extruding station where they are melted and turned into filament. The filament is then 

cooled in the cooling station and wound up in the spooling station. This results in the final 

product of a spooled filament. The microcontroller sends signals to each system and powers 

the sensors in them. The power supply converts the 120V AC power into usable DC and 

AC voltages. Table 5 contains the functional requirements for all the subsystems. 

 
Figure 2: Level 1 Block Diagram 

Table 5: Level 1 Hardware Functional Requirements 

Module Power Supply 

Inputs  Power, 120V AC 

Outputs  DC voltages 

 AC voltages 

Functionality Convert 120V AC wall outlet voltage to positive and negative DC output 

voltages and AC voltages to provide enough current to drive all motors and 

the microcontroller. 

Module Microcontroller 



  DT16 

 

25 
DT16MDR.docx 

Inputs 

 5V DC 

 Plastic type 

 Desired filament weight 

 Initial pellet weight 

 Extruder zone temperatures 

 Filament diameter 

 Cooling station temperature 

 Solution level in tank 

 Flow rate 

 Spooled filament weight 

Outputs 

 Spooled filament weight 

 Extruder zone temperatures 

 Run time 

 Grinder start command 

 Extruder, cooling station and spooler start command 

Functionality 
The purpose of the microcontroller is to send the start commands for the 

motors and receive sensor inputs to monitor the system. 

Module Grinding Station 

Inputs  DC and AC voltages 

 Recycled PLA or PET 

 Start command 

Outputs  Grinded pellets 

 Initial pellet weight 

Functionality Grind the input material, PLA or PET into a desired pellet size of less than 

or equal to 7mm and weigh the final pellets to make sure there is sufficient 

material for the extruding process. 

Module Extruding Station 

Inputs  DC and AC voltages 

 Grinded Pellets 

 Heating elements start command 

 AC Motor start command 

Outputs  Hot filament 

 Filament diameter 

 Extruder zone temperatures 

Functionality Convert the grinded pellets into hot filament by moving the grinded pellets 

through an extruder that contains a heating system, screw and nozzle 

resulting in a 1.75mm hot filament. 

Module Cooling Station 

Inputs  DC voltage 

 Coolant solution (water) 

 Hot filament 

 Roller DC motor start command 

Outputs  Tensioned cooled filament 

 Cooling solution temperature 



  DT16 

 

26 
DT16MDR.docx 

 Cooling solution level 

 Flow rate 

Functionality Cool the hot filament from the extruder nozzle by running it through a 

cooling solution. Attach the cooled filament between rollers to guide the 

filament for spooling. 

Module Spooling Station 

Inputs  DC voltages 

 Tensioned cooled filament 

 Spooler DC motor start command 

Outputs  Spooled filament 

 Spooled filament weight 

Functionality Spool and weigh the cooled filament. 

 

(GB,DL) 

 

5.1.3. Level 2 Hardware Block Diagrams 

Figure 3 though Figure 7 show the level 2 block diagrams for the subsystems in Figure 2. 

Each subsystem is further broken up to show the components that make up that system. 

Figure 3 shows the microcontroller block diagram. The user inputs are entered and then 

are stored in the microcontroller. The controller send signals and receives information 

about the other components in the system. Figure 4 shows the block diagram of the grinding 

station. The hopper moves the recycled material to the grinder. The grinder takes 120V AC 

and grinds the material into pellets that are less than or equal to 7mm in size. From there 

the pellets fall into another hopper with a weight sensor to ensure there is enough material 

to continue the process. From the grinding station, the pellets move onto the extruding 

station which can be seen in Figure 5. The pellets are transported through the extruder by 

a screw system and heated to the required temperature to ensure a melted state. The pellets 

melt and are forced through a nozzle at the end of the screw, producing hot filament. The 

heating element will take 120V AC along with a DC voltage from the microcontroller to 

measure the temperature. It will then produce enough heat to melt the pellets. An AC motor 

will take 120V AC to spin the screw at a controlled RPM. The filament is then cooled in 

the cooling station in Error! Reference source not found.. The holt filament goes through 

a cooling tank of water. The filament then goes through a set of rollers that help guide the 

filament to the spooling station, which can be seen in Figure 7. The rollers are powered by 

12V DC. The tensioned filament is then connected to the spooler which contains a weight 

sensor to measure the final filament weight. The DC motor that turns this spooler is 

powered by 12V DC. Error! Reference source not found. shows the functional 

requirement table for the level 2 block diagrams. 

 



  DT16 

 

27 
DT16MDR.docx 

 
Figure 3: Level 2 Block Diagram - Microcontroller 

 

 
Figure 4: Level 2 Block Diagram - Grinding Station 

 



  DT16 

 

28 
DT16MDR.docx 

 
Figure 5: Level 2 Block Diagram - Extruding Station 

 
Figure 6: Level 2 Block Diagram - Cooling Station 

 
Figure 7: Level 2 Block Diagram - Spooling Station 



  DT16 

 

29 
DT16MDR.docx 

Table 6: Level 2 Hardware Functional Requirements 

Module Hopper 

Inputs  Recycled PLA or PET 

Outputs  Recycled PLA or PET 

Functionality Hold the PLA or PET until the grinding process starts. 

Module Grinder 

Inputs  Recycled PLA or PET 

 120V AC 

 Grinder start command 

Outputs  Grinded pellets 

Functionality Grind the PLA or PET into pellets that are less than or equal to 7mm in size. 

Module Hopper/Weight Sensor 

Inputs 
 Grinded Pellets 

 DC voltage for weight sensor 

Outputs 
 Grinded pellets 

 Initial weight of the pellets 

Functionality 
Total weight of the pellets to ensure enough has been processed to achieve 

desired end filament weight. 

Module Hopper Latch DC Motor 

Inputs  12V DC 

 DC motor start command 

Outputs  Open Latch 

Functionality Open the latch to transfer the pellets from the hopper to the screw. 

Module Screw 

Inputs  Grinded pellets 

 Heat 

 Spinning shaft 

Outputs  Melted pellets 

Functionality Transport the grinded pellets through the heating element to melt the pellets. 

Module Heating Element 

Inputs  DC voltage for temperature sensor 

 120V AC 

 Heating elements start command 

Outputs  Heat 

 Extruder zone temperature 

Functionality Provide heat to the screw encasement to melt the pellets. 

Module Gear Box 

Inputs  Spinning shaft 

Outputs  Spinning shaft 

Functionality Control the RPM from the DC motor to the desired RPM to turn the screw. 

Module Screw Motor 

Inputs  DC voltage 

 Motor start command 



  DT16 

 

30 
DT16MDR.docx 

Outputs  Spinning shaft 

Functionality Spin the shaft connecting to the gear box. 

Module Nozzle 

Inputs  Melted pellets 

Outputs  Hot filament 

 Filament diameter 

Functionality Force the melted filament through a 1.75mm nozzle to get the correct size 

hot filament. 

Module Water Tank 

Inputs  Hot filament 

 Cooling Solution 

Outputs  Cooled filament 

 Cooling solution temperature 

 Cooling solution level 

Functionality Run the hot filament through a cooling solution to cool the filament to a 

desired temperature to prevent the filament from distorting. 

Module Rollers 

Inputs  Cooled filament 

 Spinning roller shafts 

Outputs  Cooled filament 

 Flow rate 

Functionality Guide the cooled filament to the spooling station and providing tension to 

prevent the filament from getting tangled or breaking. 

Module Roller DC Motor 

Inputs  12V DC 

 Roller DC motor start command 

Outputs  Spin roller shaft 

Functionality Spin the shaft connecting to the rollers 

Module Spooler Weight Station 

Inputs  Tensioned cooled filament 

 Spinning shaft 

 DC voltage for weight sensor 

Outputs  Spooled filament 

 Spooled filament weight 

Functionality Spool the filament. 

Module Spooler DC Motor 

Inputs  12V DC 

 Spooler DC motor start command 

Outputs  Spin shaft 

Functionality Spin the spooler to spool the cooled filament 

 

(GB, DL) 

  



  DT16 

 

31 
DT16MDR.docx 

5.1.4. Level 3 Hardware Block Diagrams 

 

Figure 8: Level 3 Block Diagram - Heating Element 

 

Figure 9: Level 3 Block Diagram - Motor Driver 

Table 7: Level 3 Hardware Functional Requirements 

Module Photocoupler 

Inputs  5V DC 

 120V AC 

Outputs  Zero-crossings 

Functionality Locate when the 120V AC sine wave crosses the zero axis. Isolates the 

microcontroller from 120V AC voltage 

Module PIC 34 

Inputs  Zero-crossings 

 Temperature 

 5V DC 

Outputs  Firing pulse 

Functionality Takes the current temperature of the heating element and determines how 

much power and when it should receive it to control the temperature 

Module Optocoupler 

Inputs  Firing pulse 

 120V AC 

Outputs  Firing Pulse 

Functionality Takes the firing pulse from the PIC 34 and send it to the TRIAC. Isolates the 

microcontroller from 120V AC voltage 

Module Triac 

Inputs  Firing Pulse 

 120V AC 



  DT16 

 

32 
DT16MDR.docx 

Outputs  Current 

Functionality Receives the firing pulse from the optocoupler which then activates the 

TRAIC. Completes the circuit and let the current flow through to the heating 

element 

Module Heating Element 

Inputs  Current 

Outputs  Heat 

Functionality Start heating up to the desired temperature based on the amount of power 

being sent 

Module Temperature Sensor 

Inputs  Heat 

 5V DC 

Outputs  Temperature 

Functionality Measures the temperature and send it back to the microcontroller to maintain 

desired temperature 

Module Motor Driver 

Inputs  PWM 

 12V DC 

Outputs  Voltage 

Functionality Control the speed and direction of the motor through PWM  

Module Motor 

Inputs  Volage 

Outputs  Spin shaft 

 RPM 

Functionality Receives a PWM signal and spins shaft accordingly 
 

Figure 8 shows the level 3 block diagram of the heating element. It shows the process of 

controlling the amount of power that is delivered to the heating element. This process is 

further described in more detail and with circuit schematics in the circuit schematics section 

below. Figure 9 shows the level 3 block diagram of how the motors are to be driver. Each 

motor will be connected to a motor driver. The motor driver will receive a PWM signal 

which will then activate the circuit and make the motor spin. This process is also further 

described in circuit schematics section below. Even though the motor drivers are different, 

they behave in the same manner. Table 7 shows the functional requirement table for the 

level 3 block diagrams. 

(GB, DL) 

5.1.5. Circuit Schematics 

To power the motors and the PIC34 board, a voltage regulator circuit was designed to 

output the desired DC voltages of 12V and 5V. This regulator was modeled in LTspice and 

can be seen in Figure 10 below. 



  DT16 

 

33 
DT16MDR.docx 

 
Figure 10: Voltage Regulator Circuit 

This circuit uses a 24V power supply that provides up to 5 amps of current and will be 

purchased. The capacitors C1, C3 and C5 help improve the transient response while 

capacitors C2 and C4 help reject any ripple introduced. Diodes D1 and D3 protect the 

devices against any input short circuit while D2 and D4 protect against any output short 

circuit. The 1N4007 diodes were used in the simulation because of their voltage and 

amperage ratings, but any similar diode can also be used in its place. 

 

The voltage regulator LT1085, U1 and U2, were used in the simulation. This is an 

adjustable voltage regulator that outputs the desired voltage based on the resistors 

connected to the output and the adjust nodes. The resistors R1 and R2 correlate to the 12V 

output while resistors R3 and R4 correlate to the 5V output. The values of these resistors 

were found using the equation in the data sheet for the LT1085 and can be seen in Equation 

9. This equation was rearranged to get Equation 10, which simplified the calculations. 

 

𝑉𝑂𝑈𝑇 =  𝑉𝑅𝐸𝐹 ∗ (1 +
𝑅2

𝑅1
)  

Equation 9: Finding R1 and R2 

 

(
𝑉𝑂𝑈𝑇

𝑉𝑅𝐸𝐹
− 1) 𝑅1 =  𝑅2  

Equation 10: Finding R2 

VOUT is the desired voltage while VREF is the reference voltage across R1 that the regulator 

develops and is about 1.25V. To get a voltage of 12V, R1 was chosen to be 100Ω which 

resulted R2 to be 860Ω. To get a voltage of 5V, R3 was chosen to be 100Ω which resulted 

R4 to be 300Ω. The simulation results can be seen in Figure 11 below. It shows that the 

voltage at node Vo12V reaches 12V and the voltage at node Vo5V reaches 5V. These 

voltages reach their respective voltage level and remain there. 

 



  DT16 

 

34 
DT16MDR.docx 

 
Figure 11: Voltage Regulator Circuit Simulation 

A motor driver was designed to drive the main screw motor. This driver can be seen in 

Figure 12. Only one motor driver was designed while the rest were purchased for the 

smaller motors. 

 
Figure 12: Motor Driver for Extruder Motor 

The motor is powered by the 12V DC output supplied by the voltage regulator. The diode 

D1 is placed in parallel with the DC motor to help prevent any back EMF from entering 

the circuit and possibly damaging the components. A MOSFET is used to complete the 

circuit and allow the current to flow through. The IRF3205 MOSFET, U3, was chosen 

since it provides plenty of protection against voltage and current spikes. A PWM signal 

from the microcontroller is used to adjust the on and off times of the motor, in effect 

controlling the speed of the motor. To protect the microcontroller, a 1kΩ resistor, R1, is 

placed between the microcontroller and the MOSFET gate. 

 

To power and control the temperature of the heating element, some sort of temperature 

control circuit is needed. A system was designed to detect the zero crossings of the input 



  DT16 

 

35 
DT16MDR.docx 

voltage and then send a signal to the microcontroller. This system can be seen in Figure 

13. The microcontroller would then determine the appropriate response and send a signal 

to the rest of the system. The rest of the system can be seen in Figure 15. 

 

The system in Figure 13 was designed to detect the zero crossing of the input voltage. The 

input voltage is 120V RMS 60Hz, which is equal to the voltage coming from a standard 

wall receptacle. The voltage then passed through a full bridge rectifier, U5, before entering 

the photocoupler. This converts the sine wave into only positive voltages so that the 

microcontroller can read the values. The 4N25 photocoupler, U6, is used to detect the zero 

crossings of the input voltage and then limit the voltage to 5V since the microcontroller is 

limited to 5V. It has a LED inside pulses and shines a light onto the phototransistor when 

there is current flowing through it. This causes the phototransistor to draw current that is 

proportional to the LED brightness. When the voltage approaches zero, the LED gets 

dimmer which then signal the microcontroller that the zero-crossing point is detected. 

Figure 14 below shows the rectified voltage along with the output pulse detecting the zero-

crossing point. 

 
Figure 13: Zero-Crossing Detector Circuit 



  DT16 

 

36 
DT16MDR.docx 

 
Figure 14: Zero-Crossing Detector Circuit Simulation 

The system in Figure 15 was designed to control the voltage that is being applied to the 

heating element, which in turn controls the temperature. The signal from the 

microcontroller is passed through the MOC3020 optocoupler, U8. This operates in the 

same way mentioned previously. Inside the optocoupler there is a LED which sends a 

signal to the DIAC. This in turn sends a signal to the BTA1 TRIAC gate, U7, and activates 

it, allowing the current to flow through the heating element, U9. A PWM signal was 

generated to simulate the output of the microcontroller. The results of this simulation can 

be seen in Figure 16 below. The input signal is a 120V RMS 60Hz sine wave while the 

output signal is when the heater has a voltage across it. The delay in the output voltage is 

caused by the signal sent from the microcontroller. The capacitor C1 is used to control the 

amount of voltage ripple while the inductor L1 is used to control the current ripple. 

 
Figure 15: Voltage Control for Heating Element 

 



  DT16 

 

37 
DT16MDR.docx 

 
Figure 16: Voltage Control for Heating Element Simulation 

(GB, DL) 

5.1.6. I2C Motor Driver #108020103 Justification 

 

Figure 17: I2C Motor Driver #108020103 Top Down View 

This is the motor driver utilized by both tension motors, as well as the spooling motor. This 

motor driver operates using the I2C communication protocol to communicate with said 

motors. This motor driver allows us to control the speed of the motors as well. 



  DT16 

 

38 
DT16MDR.docx 

 

Figure 18: I2C Signal Converter 

This diagram shown above is the microcontroller that converts the I2C into the logic signals 

for the driver chip. This microcontroller, #MCU-STM32F030, does this by advanced 

multivariable calculations within several transistors. It takes I2C commands, reads the data 

out of them, and uses this information to set logic lines high and low to the motor driver 

chip. This controls the state of the motor driver.  

 



  DT16 

 

39 
DT16MDR.docx 

 

Figure 19: Power & Signal Interpretation (5 subcircuits from top left to bottom right referred to as c1, c2, etc.) 

Circuit c1 is a logic level shifter. This converts from 3.3 volts to 5V Vcc for the I2C lines. 

This is to protect the MCU from overvoltage. Circuit c2 are two transistors that provide the 

ability to power another device through the I2C connector. Circuit c3 is the I2C connector 

which has SCL & SDA lines as well as output voltage and ground for optional powering 

of another device. Circuit c4 is a voltage regulator which regulates from VCC to 3.3 volts 

with decoupling capacitors to limit noise. Circuit c5 is the connector for input power with 

a diode to prevent reverse voltage.  



  DT16 

 

40 
DT16MDR.docx 

 

Figure 20: Motor Driver Chip Actual 

This motor driver chip, shown above, is #TB6612FNG. This is the actual motor driver chip 

for this motor driving circuit. This chip contains twin H-bridges to allow for two motors to 

be driven simultaneously. Each H bridge is driven by the logic signals output by the MCU. 

Each H bridge operates by 4 transistors and 4 diodes connected in an H configuration. The 

logic signals will be driven high or low to turn on or off certain transistors which in turn 

allows the motors speed and direction to be controlled. The output is a positive or negative 

voltage whose magnitude determines the speed and direction of the motor rotation.  

(GB, DL) 

5.2. Software Design 

 

This section outlines the software architecture, and defines the inputs, outputs, and 

responsibilities of each software component. 

 

The software Level 0 block diagram is shown in Figure 21. Input and output for the full 

system is displayed here. Table 8 provides the accompanying functional requirements. 

 



  DT16 

 

41 
DT16MDR.docx 

 
Figure 21: Software Level 0 block diagram 

Table 8: Level 0 Software Function Requirements 

Module 
Additive Manufacturing Waste Management System – Plastic Extrusion 

Process Controller 

Inputs 

 User enable 

 Plastic type (PLA/PET) 

 Desired output amount (kg) 

 User-measured input amount (kg) 

 Hopper lid status 

 Grinder motor speed 

 Screw motor speed 

 Roller/spindle motor speed 

 Temperature sensor data 

 Diameter sensor data 

 Velocity sensor data 

 Weight sensor data 

Outputs 
 Grinder motor control 

 Exit/Entry Controls 



  DT16 

 

42 
DT16MDR.docx 

 Heating element control 

 Screw motor control 

 Roller/spindle motor control 

 Screw motor speed 

 Roller/spindle motor speed 

Functionality 
Control heating element and motors using sensor data and user input to 

successfully extrude plastic filament. 

 

 
Figure 22: Software Level 1 block diagram 

Table 9: Level 1 Software Function Requirements 

Module Master Controller/UI 

Inputs  Plastic type (PLA or PET) 

 Desired output amount (kg) 

 User-measured input amount (kg) 

 Grinder ready 

 Grinder status 

 Collection bin status 

 Hopper lid status 

 Ground plastic weight 

 Software or mechanical failure notification 

 Extruder ready 

 Extruder status 



  DT16 

 

43 
DT16MDR.docx 

 Heating element status 

 Screw status 

 Roller/spindle status 

 Diameter sensor detect filament (Y/N) 

 Velocity sensor detect filament (Y/N) 

 Filament diameter 

 Extruded length 

 Spool weight 

Outputs  Prompts for user input and manual extrusion steps 

 Confirm plastic type 

 Confirm plastic input amount 

 User input summary 

 Statuses, warnings, error messages 

 Grinder ready 

 Grinder enable 

 Plastic input amount 

 Extruder ready 

 Extruder enable 

 Plastic type 

 Required temperature and tolerance 

 New projected yield (kg) 

 New projected length (m) 

Functionality Accept all user input and make this information available to both the user 

and the system. Provide the user with instructions and error messages 

necessary to operation. 

Module Process Controller 

Inputs  User input summary 

 Grinder enable 

 Extruder enable 

 New projected yield (kg) 

 New projected length (m) 

 Grinder collection bin weight sensor data 

 Temperature sensor data 

 Diameter sensor data 

 Spool weight sensor data 

 Diameter sensor detect filament (Y/N) 

 Velocity sensor detect filament (Y/N) 

 Screw motor speed 

 Roller/spindle motor speed 

Outputs  Grinder motor control 

 Heating element control 

 Screw motor control 

 Roller/spindle motor control 

 Entry/exit control 



  DT16 

 

44 
DT16MDR.docx 

 Entry/exit status 

 Grinder motor speed 

 Screw motor speed 

 Roller/spindle motor speed 

 Temperature sensor data 

 Diameter sensor data 

 Velocity sensor data 

 Weight sensor data 

 Diameter sensor detect filament (Y/N) 

 Velocity sensor detect filament (Y/N)  

 Grinder stage entry/exit point control 

 Software or mechanical failure notification 

 Weight sensor data 

Functionality Facilitate grinding of input material to required pellet size. Read weight 

sensor and lid safety signals and control grinding motor accordingly.  



  DT16 

 

45 
DT16MDR.docx 

 
Figure 23: Software Level 2 block diagram. 

 



  DT16 

 

46 
DT16MDR.docx 

 
Figure 24: Software Level 2 Flowchart - User Interface Start Sequence 

 
Pseudo Code 1: User Interface Start Sequence 

// Level 2 User Interface Start Sequence Pseudo Code 

// DT16 

 

// Last Revised 10.6.21 LL 

 

 

void displaySystemStatus() 

{ 

    cout ('System Status: Start Sequence'); 

} 

 

int userInputPlasticType() 

{ 

    cout('What is input plastic type?') 

    cin (str) 

    if str == PLA 

    { 

        Extemp = PLAtemp 

    } 

    else if str == PET 

    { 

        Extemp = PLAtemp 

    } 

return  Extemp 



  DT16 

 

47 
DT16MDR.docx 

} 

 

int userInputDesiredWeight() 

{ 

    cout ('The max allowable end weight is 1kg.\n') 

    cout ('The min allowable end weight is 200g.\n') 

 

    cout ('What is desired final filament weight?') 

    cin (finalWeight) 

    while finalWeight < minWeight || finalWeight > maxWeight 

    { 

        cout('Invalid Weight Entered. Please enter valid input') 

        cin(finalWeight) 

    } 

    initialWeight = finalWeight/yield 

    cout ('Inital input weight: ', initialWeight) 

    return initialWeight 

} 

 

bool inputsAccurate 

{ 

    cout ('Please review the below inputs.\n') 

    cout ('Enter Y if all correct or N if incorrect') 

    cin (correct) 

 

    if correct == 'Y' 

    { 

        cout ('System ready to start - Press START when ready') 

        return true 

    } 

    else 

    { 

        return false 

    } 

} 

 

void systemEnable(); 

 

void systemStart() 

{ 

    cout ('Start System? (Y/N)') 

    cin (start) 

    if start == y 

        startSystem(); 

    else 

        systemWait; 

} 

void startSystem(); 

 

void systemWait(); 

 



  DT16 

 

48 
DT16MDR.docx 

int main 

{ 

    displaySystemStatus(); 

    inputsAcc = false; 

    while inputsAcc == false 

    { 

        type = userInputPlasticType(); 

        initialWeight = userInputDesiredWeight(); 

        finalWeight = initialWeight * yield; 

        inputsAcc = inputsAccurate(); 

    } 

    systemEnable(); 

    systemStart(); 

    return 0; 

} 

 

The display is implemented using an inexpensive resistive touchscreen that is driven by an Arduino Uno 

(ATmega328P chip). The responsibilities of the Arduino are limited to generating graphics for the display and 

interpreting touchscreen input. The display itself is connected to the Arduino Uno board via SPI, and the 

Arduino connects to the master controller (PIC32MX470) via I2C. The I2C 2 module on the master controller 

is dedicated to display interaction, leaving the I2C 1 module free to communicate with the I2C motor 

controllers. The main loop of the Arduino display controller is shown below, and a complete listing of the 

display code is provided in the Appendix. The Arduino is not responsible for the flow of control of the overall 

software system and does not handle any signal processing. Additionally, the code for the Arduino is written to 

be as C/C++ compatible as possible, aside from the Arduino-specific graphics and touchscreen libraries, and 

implementation-specific functions for communication protocols that have equivalent implementations in 

C/C++. 

 

 



  DT16 

 

49 
DT16MDR.docx 

 

 

 
Figure 25: Software Level 2 flowchart - Grinding Stage. 

Pseudo Code 2: Grinding Stage 

// Level 2 Grinding Pseudo Code 

// DT16 

 

// Last Revised 10.6.21 LL 

 

void grindingSystemReady() 

{ 

    if status == grStart 

    { 

        grindingStart(); 

    } 

    else 

    { 

        systemWait(); 

    } 

} 

 



  DT16 

 

50 
DT16MDR.docx 

void grindingStart(); 

void grindingStop(); 

 

void systemWait(); 

void systemMove(); 

 

bool getExStatus() 

{ 

    if exStatus == true 

    { 

        status = true 

    } 

    else 

    { 

        status = false 

    } 

    return status 

} 

bool hopperReady() 

{ 

    if lidClosed == true 

    { 

        ready = true 

 

    } 

    else 

    { 

        cout('Hopper Lid Not Closed. Please close to start') 

        ready = false 

    } 

    return ready 

} 

 

bool catchHopper(); 

{ 

    if weight <= inputWeight 

    { 

        ready = true 

    } 

    else 

    { 

        ready = false 

    } 

    return ready 

} 

 

int main() 

{ 

    status = grStop(); 

    while hopper = true; 

    { 



  DT16 

 

51 
DT16MDR.docx 

        hopper = hopperReady(); 

        status = grindingStart(); 

 

        while catcher = true; 

        { 

            catcher = catchHopper() 

            status = grindingStart(); 

        } 

        status = grindingStop(); 

    } 

    if catcher == false 

    { 

        exStatus = getExStatus(); 

        if exStatus == true 

        { 

            systemMove(); 

        } 

        else 

        { 

            systemWait(); 

        } 

    } 

    return 0; 

} 

 

 
Figure 26: Software Level 2 flowchart – Extrusion Stage. 



  DT16 

 

52 
DT16MDR.docx 

Pseudo Code 3: Extrusion Stage 

// Level 2 Extruding Pseudo Code 

// DT16 

 

// Last Revised 10.6.21 LL 

 

void heatStatus() 

{ 

    while heat == false 

    { 

        heat = tempMet(); 

    } 

} 

 

void screwOn(); 

void rollerOn(); 

void spindleOn(); 

 

bool tempMet 

{ 

    temp1 = tempSensor1(); 

    temp2 = tempSensor2(); 

    temp3 = tempSensor3(); 

 

    if temp1 && temp2 && temp3 within range 

    { 

        heat1 = off; 

        heat2 = off; 

        heat3 = off; 

        status = true; 

    } 

    else 

    { 

        heat1 = on; 

        heat2 = on; 

        heat3 = on; 

        status = false; 

    } 

    return status; 

} 

 

bool weightReached() 

{ 

    weight = spoolWeightSensor; 

    if weight < finalweight 

    { 

        status = false 

    } 

    else 

    { 



  DT16 

 

53 
DT16MDR.docx 

        status = true 

    } 

    return status 

} 

 

void diameterCheck() 

{ 

    diameter = diameterSensor; 

    if diameter < target 

    { 

        increaseScrewSpeed 

        decreaseTempRanges 

    } 

    else if diameter > target 

    { 

        decreaseScrewSpeed 

        increaseTempRanges 

    } 

} 

 

int main() 

{ 

   while systemMove == false 

   { 

        systemMove = weightReached(); 

        heatStatus(); 

        screwOn(); 

        rollerOn(); 

        spindleOn(); 

        diameterCheck(); 

   } 

   return 0; 

} 

 

The software system is implemented on the PIC32MX470F512H using the FreeRTOS real-time 

operating system. In addition to the three threads (master, preparation, and extrusion) described 

previously, the extrusion thread is further divided into two more specified threads: extrusion 

input and extrusion control. Extrusion input is devoted solely to receiving and pre-processing 

sensor input, while extrusion control is dedicated to the implementation of feedback control of 

the heating element and motors using the pre-processed data provided by the extrusion input 

thread.  The master, extrusion input, and extrusion control state machines are shown below. 

These state machines execute repeatedly in a pseudo-concurrent fashion for the duration of the 

device operation. Top level control flow for all threads is handled by the master thread, which is 

also responsible for passing data to and from the display. The DataManager class is a unique 

entity within the system, whose sole instantiation is defined globally. This object is responsible 

for tracking all sensor and actuator data. When sensor input is received and actuator states are 

changed, the resulting values are passed to the DataManager object (globalDataManager) which 

updates the values and makes these updates available to the entire system. The full listing for the 

master controller state machines and source files is provided in the Appendix.  



  DT16 

 

54 
DT16MDR.docx 

 
Code Snippet: Master process state machine. 

 

 
 
  



  DT16 

 

55 
DT16MDR.docx 

Code Snippet: Extrusion Input process state machine. 

 
 

 

  



  DT16 

 

56 
DT16MDR.docx 

Code Snippet: Extrusion Control process state machine. 

 



  DT16 

 

57 
DT16MDR.docx 

 
Figure 27: Software end sequence flowchart 

Pseudo Code 4: End Sequence 

// Level 2 End Sequence Pseudo Code 

// DT16 

 

// Last Revised 10.6.21 LL 

 

int main() 

{ 

    while finalWeight = true 

    { 

        heat = off 

        screw = off 

        roller = off 

        spindle = off 

    } 

    systemStatus = End 

} 

 

Table 10: Level 2 Software Function Requirements 

Module User Interface 



  DT16 

 

58 
DT16MDR.docx 

Inputs From User 

 Plastic type (PLA or PET) 

 Desired output amount (kg) 

 Plastic input amount (kg) 

 User system enable 

From Master Controller 

 System status/ready signal 

 Ground plastic weight 

 Projected yield (from user input) 

 New projected yield (from ground plastic weight) 

 Calculated extrusion rate 

 Extruder temperature 

 Motor speeds 

 Extruded length/progress 

 Grinding Process error notification 

 Extrusion Process error notification 

 Master Controller error notification 

 

Outputs To User 

 Originating from UI Logic 

o Prompts for input and manual extrusion steps 

o Confirm plastic type (PLA/PET) 

o Confirm desired output amount (kg) 

o Confirm plastic input amount (kg) 

o Warnings, error messages 

o User input summary 

 Originating from Master Controller 
o Projected yield (kg) 

o Projected spool length (m) 

o Extruder temperature 

o Motor speeds 

o Extruded length/progress 

o Warnings, error messages 

To Master Controller 

 User input summary 

o Plastic type (PLA/PET) 

o Plastic input amount (kg) 

o System enable 

Functionality Accept all user input, provide visual feedback for that input, and pass 

necessary information to the Master Controller. Receive process 

notifications and monitoring data provided by the Master Controller. 

Module Grinding Process 



  DT16 

 

59 
DT16MDR.docx 

Inputs From Master Controller 

 Grinding process enable 

 Plastic input amount 

 Extrusion Process ready signal 

From sensors/actuators/hardware 

 Hopper lid status (open/closed) 

 Grinder motor speed 

 Weight sensor data 

 

Outputs To Master Controller 

 Grinding Process status 

o Ready 

o Grinder motor on/off 

o Collection bin full 

o Complete 

 Hopper lid open 

 Ground plastic weight (kg) 

 Software or mechanical failure 

To actuators/hardware 

 Grinder motor control 

 Entry/Exit Control 

Functionality Read weight sensor and lid safety signals, and control grinder motor. Send 

and receive process information and control signals to/from the Master 

Controller. 

Module Extrusion Process 

Inputs 

From Master Controller 

 Extrusion Process enable 

 Plastic type (PLA/PET) 

 Required temperature and tolerance 

 New projected yield (kg) (from post-grinding weight) 

 New projected spool length (m) (from post-grinding weight) 

From sensors/actuators/hardware 

 Temperature sensor data 

 Diameter sensor data 

 Weight sensor data 

 Velocity sensor data (length) 

 Screw motor speed 

 Roller and spindle motor speed 

Outputs 

To Master Controller 

 Extrusion Process Status 

o Ready 

o Heating element on/off 

o Extruder hot/cooling down 

o Screw motor on/off 

o Roller and spindle motors on/off 



  DT16 

 

60 
DT16MDR.docx 

o Diameter sensor detect filament (Y/N) 

o Velocity sensor detect filament (Y/N) 

o Complete 

 Quality/Progress Monitoring 

o Extruder temperature 

o Filament diameter 

o Extruded length 

o Spool weight 

 Software or mechanical failure 

To actuators/hardware 

 Heating element control 

 Screw motor control 

 Roller and spindle motor control 

 Screw motor speed 

 Roller and spindle motor speed 

 Entry/Exit Control 

Functionality 

Read temperature, diameter, weight, and velocity sensor signals and control 

heating element as well as screw, roller, and spindle motors. Send and 

receive process information and control signals to/from the Master 

Controller. 

Module Master Controller 

Inputs 

From User Interface 

 User input summary 

o Plastic type (PLA/PET) 

o Plastic input amount (kg) 

o System enable 

From Grinding Process 

 Grinding Process status 

o Ready 

o Grinder motor on/off 

o Collection bin full 

o Complete 

 Hopper lid open 

 Ground plastic weight (kg) 

 Grinding process software or mechanical failure 

From Extrusion Process 

 Extrusion Process Status 

o Ready 

o Heating element on/off 

o Extruder hot/cooling down 

o Screw motor on/off 

o Roller and spindle motors on/off 

o Diameter sensor detect filament (Y/N) 

o Velocity sensor detect filament (Y/N) 

o Complete 



  DT16 

 

61 
DT16MDR.docx 

 Quality/Progress Monitoring 

o Extruder temperature 

o Filament diameter 

o Extruded length 

o Spool weight 

 Extrusion Process software or mechanical failure 

Outputs 

To User Interface 

 Ground plastic weight 

 Projected yield (from user input) 

 New projected yield (from ground plastic weight) 

 Calculated extrusion rate 

 System status/ready signal 

 Extruder temperature 

 Motor speeds 

 Extruded length/progress 

 Grinding Process error notification 

 Extrusion Process error notification 

 Master Controller error notification 

To Grinding Process 

 Grinding process enable 

 Plastic input amount 

 Extrusion Process ready signal 

To Extrusion Process 

 Extrusion Process enable 

 Plastic type (PLA/PET) 

 Required temperature and tolerance 

 New projected yield (kg) (from post-grinding weight) 

 New projected spool length (m) (from post-grinding weight) 

Functionality 

Coordinate the execution of UI Start Sequence, Grinding Process, Extrusion 

Process and End Sequence. Initiate and monitor processes and facilitate 

physical interaction and communication between UI and process. 

 
  



  DT16 

 

62 
DT16MDR.docx 

 

Figure 28: Level 3 software block diagram 

 

 



  DT16 

 

63 
DT16MDR.docx 

 

 

Figure 29: SPI, I2C and Pic32 Connection Schematic 

(LL, WW) 

 

6. Mechanical Sketch 

 

This section outlines the basic mechanical sketches and models of the design. The numerical 

dimensions shown are for ratios only and are unitless.  



  DT16 

 

64 
DT16MDR.docx 

 
Figure 30: Mechanical Sketch - Extruder w/ Cooling Tank and Spooler 



  DT16 

 

65 
DT16MDR.docx 

 
Figure 31: Mechanical Sketch - Extruder rendering. Isometric view. 



  DT16 

 

66 
DT16MDR.docx 

 
Figure 32: Mechanical Sketch - Overall System rendering. Isometric View 

 

 

 
Figure 33: Mechanical Sketch - Overall System rendering. Side view 

 



  DT16 

 

67 
DT16MDR.docx 

 
Figure 34: Mechanical Sketch - Grinder rendering. Isometric view. 

 

Figure 35: Mechanical Sketch – Spooler Connecting Rod 



  DT16 

 

68 
DT16MDR.docx 

 

Figure 36: Mechanical Sketch – Spooling Motor Stand 

 

Figure 37: Mechanical Sketch – Motor Spooler Holder 



  DT16 

 

69 
DT16MDR.docx 

 

Figure 38: Mechanical Sketch – Tension Motor Discs 

 

(GB) 

7. Team Information 

 

Name Major Role 

Gabriel Bennett EE/CPE/ME Project Leader 

Lindsay Liebrecht CPE Engineering Data Manager 

David Lyogky EE Hardware Manager 

Wilson Woods CPE Software Manager 

 

8. Parts Lists 

8.1. Accepted Technical Design 

The parts list for the accepted technical design can be seen in Error! Reference source 

not found.. The selection of these parts can be seen in the above sections. The component 



  DT16 

 

70 
DT16MDR.docx 

reference designator does not correspond to any PCB design as of yet. More components 

may need to be purchased if required in the unforeseeable future. 

Table 11: Parts List – Accepted Technical Design 

Qty. Refdes Part Num. Description 

1   DM320103 PIC32MX470 Curiosity Board - master controller  

3   108020103 DC motor driver w/ I2C  

1   2050 3.5" TFT 320x480 Display 

1   A000066 Arduino Uno Board (drives TFT display) 

1   - 

LONGRUN Garden Auger Drill Bit for Post Hole 

Digger, Solid Spiral Drill Bits with 0.79" Inner 

Shaft for Powerhead -2" x 31.5" 

3   - 12V DC Motor 550RPM 

1   - 

3D Printer Nozzle, V6, Brass, 0.4mm Opening 

Diameter, for 1.75mm Diameter Filament 

1   - 

3D Printer Nozzle, V6, Brass, 0.8mm Opening 

Diameter, for 1.75mm Diameter Filament 

2   375 Magnetic Contact Switch (door sensor) 

2   4541 Strain guage load cell - 4 wire, 5kg 

3   CR40.112.01 Thermocouple probe 

1   16621 MAX6675 thermocouple SPI interface 

        

2 

U1, 

U2 

LT1085IT-

12#PBF IC REG LINEAR 12V 3A TO220-3 

5 D1-D5 1N4007-TP DIODE GEN PURP 1KV 1A DO41 

1 U3 IRF3205PBF MOSFET N-CH 55V 110A TO220AB 

1 U5 KBP206G BRIDGE RECT 1PHASE 600V 2A KBP 

3 U8 MOC3020M OPTOISOLATOR 4.17KV TRIAC 6DIP 

1 U6 4N25 OPTOISO 5KV TRANS W/BASE 6DIP 

3 U7 

BTA16-

800CW3G TRIAC 800V 16A TO220AB 

3 U9 - 

High-Temperature Heater for Pipes and Tubes 

60" Long with Wire Leads 

1 U4 - 

50:1 Metal Gearmotor 37Dx54L mm 12V (Helical 

Pinion) 

1   LRS-150-24 AC/DC CONVERTER 24V 156W 

(GB,DL,LL,WW) 
 

8.2. Budget 

Currently, the project has spent approximately $500 of the $600 budget. To remain below the budget 

maximum, motors were borrowed from the parts already owned by the university. All parts have not 

been purchased as of 11.28.21. Parts still required are sensors for velocity and filament diameter, the 

extruder pipe and insulation and parts for the grinder.  



  DT16 

 

71 
DT16MDR.docx 

Table 12: Parts List – Budget 

   Unit Total 

Qty. Part Num. Description Cost ($) Cost ($) 

1 DM320103 PIC32MX470 Curiosity Board – master controller  35.69 35.69 

3 108020103 DC motor driver w/ I2C   5.25 15.75 

1 2050 3.5” TFT 320x480 Display 39.95 39.95 

1 A000066 Arduino Uno Board (drives TFT display) 23.00 23.00 

1 - 

LONGRUN Garden Auger Drill Bit for Post Hole 

Digger, Solid Spiral Drill Bits with 0.79” Inner 

Shaft for Powerhead -2” x 31.5” 39.99 39.99 

3 - 12V DC Motor 550RPM 11.88 35.64 

1 - 

3D Printer Nozzle, V6, Brass, 0.4mm Opening 

Diameter, for 1.75mm Diameter Filament 10.45 10.45 

1 - 

3D Printer Nozzle, V6, Brass, 0.8mm Opening 

Diameter, for 1.75mm Diameter Filament 10.45 10.45 

2 375 Magnetic Contact Switch (door sensor) 3.95 7.90 

2 4541 Strain guage load cell – 4 wire, 5kg 3.95 7.90 

3 CR40.112.01 Thermocouple probe 14.98 44.94 

1 16621 MAX6675 thermocouple SPI interface 23.99 23.99 

          

2 

LT1085IT-

12#PBF IC REG LINEAR 12V 3A TO220-3 12.55 25.10 

5 1N4007-TP DIODE GEN PURP 1KV 1A DO41 0.13 0.65 

1 IRF3205PBF MOSFET N-CH 55V 110A TO220AB 1.63 1.63 

1 KBP206G BRIDGE RECT 1PHASE 600V 2A KBP 0.61 0.61 

3 MOC3020M OPTOISOLATOR 4.17KV TRIAC 6DIP 0.72 2.16 

1 4N25 OPTOISO 5KV TRANS W/BASE 6DIP 0.55 0.55 

3 

BTA16-

800CW3G TRIAC 800V 16A TO220AB 1.82 5.46 

3 - 

High-Temperature Heater for Pipes and Tubes 

60” Long with Wire Leads 40.61 121.83 

1 - 

50:1 Metal Gearmotor 37Dx54L mm 12V (Helical 

Pinion) 24.95 24.95 

1 LRS-150-24 AC/DC CONVERTER 24V 156W 22.79 22.79 
(GB,LL,DL,WW) 

9. Project Schedules 

 

Below is the project Gantt chart for the first phase of this project (Fall semester). The only 

adjustments made to the original timeline were directed by the class coordinator. All other 

timelines were met or exceeded by the design team.  

 



  DT16 

 

72 
DT16MDR.docx 

 

 

 
(LL) 

10. Conclusions & Recommendations 

 

According to the analysis that has been performed, this project will achieve its overall objective of 

recycling PLA and PET by converting the waste into a viable filament for a 3D printer. This device 

can be safely operated in a standard household or in an indoor office environment. Based on the 

grinder and extruder design, the filament created will have a highly repeatable result. This design 



  DT16 

 

73 
DT16MDR.docx 

is also very modular, allowing the user to add specialized stations such as a color pigmenting 

station, to the overall design.  

 

The power analysis shows that the system can run on its own 120V outlet with 15A breaker, 

however this system should be the only high-powered device on that 15A breaker to prevent 

overloading the breaker or creating an electrical fire and only the grinding or extruding process 

should run at a time; they should not run in tandem.  

 

For further consideration, this design is recommended to have a high-end control unit from within 

the PIC32 family such as the PIC32MX470. This design requires a real time operating system 

which the PIC32 family runs on. This system has high potential functionality and by utilizing an 

advanced control unit, these potentials will only be amplified. The PIC32 family will also allow 

for the user to expand on the functionality of the system, such as adding a plastic type and the 

necessary temperature ranges. Overall, utilizing a high-end control unit will allow for a more 

intricate design, and a more streamlined office work environment.  

 

To date, the components listed in the parts list in Error! Reference source not found. have been 

purchased and a motor drive has been designed to handle the extrusion screw. Three motor drives 

were also purchased and programed to run in tandem for the filament spooler and the tension 

control dual motor pulling motors located in the colling tank. Also completed, is a base control 

loop that can control the speed of the motors in real time as well as the code required operate the 

k type thermocouples that will be stationed within the extrusion screw to maintain the appropriate 

temperatures required to melt the plastics. The feedback from the motor drives and temperature 

probes are displayed on the control screen. 

 

To make this system realizable the project will require some more specific analysis and design 

base on the chosen parts required to build the design. The key next steps will be to identify specific 

components to fit within the general analysis parameters and to complete the parts list for 

purchasing. Missing components include the sensor for filament diameter, pipe and insulation for 

around the extrusion screw, and velocity sensor to measure speed of filament creation. Once 

specific components are chosen, a prototype design can be built to demonstrate proof of concept.  

(GB, LL, DL, WW) 
  



  DT16 

 

74 
DT16MDR.docx 

11. References 

 

Acerbo, H., Girelli, T., Palazzo, G. (2016). Method for producing a supply obtained from  

the recycling of plastic material of industrial and post-consumer residues, to be used by 

3d printers (Patent No. US20160107337A1). U.S. Patent and Trademark Office. 

https://patents.google.com/patent/US20160107337?oq=3d+filament+recycler 

Choong, Y. Y., Tan, H. W., Patel, D. C., Choong, W. T., Chen, C., Low, H. Y., . . . Chua,  

C. K. (2020). The global rise of 3D printing during the COVID-19 pandemic. Nature 

Reviews Materials, 5(9), 637-639. doi:10.1038/s41578-020-00234-3 

del Burgo, J., Damato, R., Méndez, J. A., Ramírez, A. S., Haro, F. B., & Heras, E. S.  (2019). 

Real time analysis of the filament for FDM 3D printers. Proceedings of  the Seventh 

International Conference on Technological Ecosystems for  Enhancing Multiculturality. 

doi:10.1145/3362789.3362818 

Filament sensor kit for 3D printers and filament extruders. (2020, September 1).  Retrieved 

from https://objectswithintelligence.weebly.com/ 

Kreiger, M., Mulder, M., Glover, A., & Pearce, J. (2014). Life cycle analysis of  

distributed recycling of post-consumer high density polyethylene for 3-D printing 

filament. Journal of Cleaner Production, 70, 90-96. doi:10.1016/j.jclepro.2014.02.009 

Luo, X., Pei, Z. (2017). High crystalline poly (lactic acid) filaments for material-extrusion  

based additive manufacturing (Patent No. US20170066188A1). U.S. Patent and 

Trademark Office. 

https://patents.google.com/patent/US20170066188?oq=PLA+filaments 

Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K.,  

& Witek-Krowiak, A. (2020). 3D printing filament as a second life of waste plastics—a 

review. Environmental Science and Pollution Research, 28(10), 12321-12333. 

doi:10.1007/s11356-020-10657-8 

Teterin, E., Zhuravlev, D., & Berchuk, D. (2016). Mobile extrusion machine for the  

production of composite filaments for 3D printing. 2016 2nd International  

Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 

doi:10.1109/icieam.2016.7910908 

Vidakis, N., Petousis, M., Tzounis, L., Maniadi, A., Velidakis, E., Mountakis, N., &  

Kechagias, J. D. (2021). Sustainable Additive Manufacturing: Mechanical Response of 

Polyamide 12 over Multiple Recycling Processes. Materials, 14(2), 466. 

doi:10.3390/ma14020466 

William, S.A. (1964). Plastic extrusion, apparatus and control (Patent No.  

US3148231A). US Patent and Trademark Office.  

https://patents.google.com/patent/US3148231A/en?q=plastic+extrusion&oq=plast 

ic+extrusion 

Woern, A. L., Mccaslin, J. R., Pringle, A. M., & Pearce, J. M. (2018). RepRapable  

Recyclebot: Open source 3-D printable extruder for converting plastic to 3-D  

printing filament. HardwareX, 4. doi:10.1016/j.ohx.2018.e00026 

(WW) 
  



  DT16 

 

75 
DT16MDR.docx 

12. Appendices 

12.1. Data Sheets Hyperlinks 

The datasheets for the components purchased can be seen in Table 13 below. 

 
Table 13: Data Sheets 

PIC32MX470 Curiosity Board - master controller  

https://www.mouser.com/datasheet/2/268/70005283A-1075423.pdf 

DC motor driver w/ I2C  

https://www.mouser.com/datasheet/2/744/TB6612FNG_datasheet_en_20141001-2529381.pdf 

3.5" TFT 320x480 Display 

https://www.mouser.com/datasheet/2/737/HX8357_D_DS_April2012-2488187.pdf 

Arduino Uno Board (drives TFT display) 

https://www.mouser.com/ProductDetail/Arduino/A000066?qs=sGAEpiMZZMt1iCLsaqcCFuq

Yk3NvvZsVCTWC7OL1sws%3D 

LONGRUN Garden Auger Drill Bit for Post Hole Digger, Solid Spiral Drill Bits with 

0.79" Inner Shaft for Powerhead -2" x 31.5" 

https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t

&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSW

Q9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzB

USUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY

2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1 

12V DC Motor 550RPM 

https://www.amazon.com/dp/B0925WGSKT/ref=twister_B093LDNFJX?_encoding=UTF8&t

h=1 

3D Printer Nozzle, V6, Brass, 0.4mm Opening Diameter, for 1.75mm Diameter Filament 

https://www.mcmaster.com/3695N304/ 

3D Printer Nozzle, V6, Brass, 0.8mm Opening Diameter, for 1.75mm Diameter Filament 

https://www.mcmaster.com/3695N307/ 

Magnetic Contact Switch (door sensor) 

https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/375_Web.pdf 

Strain guage load cell - 4 wire, 5kg 

https://www.digikey.com/en/products/detail/adafruit-industries-

llc/4541/12323573?s=N4IgjCBcoKwwDFUBjKAzAhgGwM4FMAaEAeygG0QAWAZnjkQF

0iAHAFyhAGVWAnASwB2AcxABfUUQBM5LrwyCABAHEMAVyF4FAGWIYAJgoDCe

LFgUBaBZQUB1Pjzw4QDUUA 

Thermocouple probe 

https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-

572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-

5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-

9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-

b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1 

MAX6675 thermocouple SPI interface 

https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-

Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=16351

91497&qsid=133-2789808-5693116&s=industrial&sr=1-

https://www.mouser.com/datasheet/2/737/HX8357_D_DS_April2012-2488187.pdf
https://www.mouser.com/ProductDetail/Arduino/A000066?qs=sGAEpiMZZMt1iCLsaqcCFuqYk3NvvZsVCTWC7OL1sws%3D
https://www.mouser.com/ProductDetail/Arduino/A000066?qs=sGAEpiMZZMt1iCLsaqcCFuqYk3NvvZsVCTWC7OL1sws%3D
https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSWQ9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzBUSUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSWQ9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzBUSUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSWQ9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzBUSUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSWQ9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzBUSUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/dp/B08KDKW53R/ref=syn_sd_onsite_desktop_283?pd_rd_plhdr=t&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUE5V0JINlNMVUFFRUomZW5jcnlwdGVkSWQ9QTA1MzU4ODE3SjlJVlEzRjFJQkcmZW5jcnlwdGVkQWRJZD1BMDc1NDI2ODFENzBUSUlNQ1Q0UVAmd2lkZ2V0TmFtZT1zZF9vbnNpdGVfZGVza3RvcCZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU&th=1
https://www.amazon.com/dp/B0925WGSKT/ref=twister_B093LDNFJX?_encoding=UTF8&th=1
https://www.amazon.com/dp/B0925WGSKT/ref=twister_B093LDNFJX?_encoding=UTF8&th=1
https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/375_Web.pdf
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4541/12323573?s=N4IgjCBcoKwwDFUBjKAzAhgGwM4FMAaEAeygG0QAWAZnjkQF0iAHAFyhAGVWAnASwB2AcxABfUUQBM5LrwyCABAHEMAVyF4FAGWIYAJgoDCeLFgUBaBZQUB1Pjzw4QDUUA
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4541/12323573?s=N4IgjCBcoKwwDFUBjKAzAhgGwM4FMAaEAeygG0QAWAZnjkQF0iAHAFyhAGVWAnASwB2AcxABfUUQBM5LrwyCABAHEMAVyF4FAGWIYAJgoDCeLFgUBaBZQUB1Pjzw4QDUUA
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4541/12323573?s=N4IgjCBcoKwwDFUBjKAzAhgGwM4FMAaEAeygG0QAWAZnjkQF0iAHAFyhAGVWAnASwB2AcxABfUUQBM5LrwyCABAHEMAVyF4FAGWIYAJgoDCeLFgUBaBZQUB1Pjzw4QDUUA
https://www.digikey.com/en/products/detail/adafruit-industries-llc/4541/12323573?s=N4IgjCBcoKwwDFUBjKAzAhgGwM4FMAaEAeygG0QAWAZnjkQF0iAHAFyhAGVWAnASwB2AcxABfUUQBM5LrwyCABAHEMAVyF4FAGWIYAJgoDCeLFgUBaBZQUB1Pjzw4QDUUA
https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1
https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1
https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1
https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1
https://www.amazon.com/CrocSee-Temperature-Sensor-Thermocouple-58-572%C2%B0F/dp/B071DW3GVQ/ref=pd_bxgy_2/146-8502997-5622903?pd_rd_w=FDg4L&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=ZCHDDT2SHZ8VPXYHPZF9&pd_rd_r=49df6fee-42b5-443c-b584-3cc3e4acfa90&pd_rd_wg=dsymH&pd_rd_i=B071DW3GVQ&psc=1
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2


  DT16 

 

76 
DT16MDR.docx 

4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB09

15MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%

2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X7

3F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB09

4JP944P%2CB09DV3YJV2 

IC REG LINEAR 12V 3A TO220-3 

https://www.analog.com/media/en/technical-documentation/data-sheets/1083ffe.pdf 

DIODE GEN PURP 1KV 1A DO41 

https://www.mccsemi.com/pdf/Products/1N4001~1N4007(DO-41).pdf 

MOSFET N-CH 55V 110A TO220AB 

https://www.infineon.com/dgdl/irf3205pbf.pdf?fileId=5546d462533600a4015355def244190a 

BRIDGE RECT 1PHASE 600V 2A KBP 

https://www.diodes.com/assets/Datasheets/ds21205.pdf 

OPTOISOLATOR 4.17KV TRIAC 6DIP 

https://www.onsemi.com/pdf/datasheet/moc3023m-d.pdf 

OPTOISO 5KV TRANS W/BASE 6DIP 

https://www.vishay.com/docs/83725/4n25.pdf 

TRIAC 800V 16A TO220AB 

https://www.littelfuse.com/~/media/electronics/datasheets/switching_thyristors/littelfuse_thyri

stor_bta16_600cw3_d_datasheet.pdf.pdf 

"High-Temperature Heater for Pipes and Tubes 60"" Long with Wire Leads" 

https://www.mcmaster.com/3641K25/ 

50:1 Metal Gearmotor 37Dx54L mm 12V (Helical Pinion) 

https://www.pololu.com/file/0J1736/pololu-37d-metal-gearmotors-rev-1-2.pdf 

AC/DC CONVERTER 24V 156W 

https://www.meanwellusa.com/upload/pdf/LRS-150/LRS-150-spec.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.amazon.com/ACEIRMC-Thermocouple-Temperature-Compatible-Raspberry/dp/B092ZCSM7J/ref=sr_1_4?dchild=1&keywords=max6675+module&qid=1635191497&qsid=133-2789808-5693116&s=industrial&sr=1-4&sres=B08LMXWYZ8%2CB00PVTH4MW%2CB092ZCSM7J%2CB01HT871SO%2CB0915MWCHR%2CB0932JKLLX%2CB096VLRH31%2CB07MDWNCFD%2CB0915D9Y9S%2CB092S76JHW%2CB07QBPGVZZ%2CB07PPRPZ6M%2CB07FZX7VPB%2CB083S9X73F%2CB07TZ7CCVL%2CB09B267DRP%2CB07FM4DGMX%2CB07WYY55RK%2CB094JP944P%2CB09DV3YJV2
https://www.analog.com/media/en/technical-documentation/data-sheets/1083ffe.pdf
https://www.mccsemi.com/pdf/Products/1N4001~1N4007(DO-41).pdf
https://www.infineon.com/dgdl/irf3205pbf.pdf?fileId=5546d462533600a4015355def244190a
https://www.diodes.com/assets/Datasheets/ds21205.pdf
https://www.onsemi.com/pdf/datasheet/moc3023m-d.pdf
https://www.vishay.com/docs/83725/4n25.pdf
https://www.littelfuse.com/~/media/electronics/datasheets/switching_thyristors/littelfuse_thyristor_bta16_600cw3_d_datasheet.pdf.pdf
https://www.littelfuse.com/~/media/electronics/datasheets/switching_thyristors/littelfuse_thyristor_bta16_600cw3_d_datasheet.pdf.pdf
https://www.pololu.com/file/0J1736/pololu-37d-metal-gearmotors-rev-1-2.pdf
https://www.meanwellusa.com/upload/pdf/LRS-150/LRS-150-spec.pdf


  DT16 

 

77 
DT16MDR.docx 

 

12.2. Completed Code as of 11.28.21 

 

Master Controller Code Listing 

 

/**************************************************************************** 

* Extruder_Controller 

* master.cpp 

* 11.18.2021 

***************************************************************************** 

#include <cstdint> 

#include <vector> 

#include <tuple> 

#include <utility> 

 

#include "config/default/peripheral/i2c/master/plib_i2c1_master.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

 

#include "master.h" 

#include "globals.h" 

#include "DataManager.h" 

#include "I2C.h" 

 

MASTER_DATA masterData; 

 

void MASTER_Initialize ( void ) 

{ 

masterData.state = MASTER_STATE_INIT; 

} 

 

void MASTER_Tasks ( void ) 

{ 

switch ( masterData.state ) 

{ 

case MASTER_STATE_INIT: 

{ 

I2C_2_Init(); 

bool appInitialized = true; 

 

if (appInitialized) 

masterData.state = MASTER_STATE_SERVICE_TASKS; 

break; 

} 

 

 

case MASTER_STATE_SERVICE_TASKS: 



  DT16 

 

78 
DT16MDR.docx 

{ 

/*  

   * TO DO: Implement process control flow state machine 

   */ 

globalDataManager.pollNumericParams(); 

globalDataManager.sendAllFreshNumericParams(); 

CORETIMER_DelayUs(50);  

break; 

} 

 

default: 

{ 

break; 

} 

} 

} 

 

/********************************End master.cpp*******************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* extrusion_input.cpp 

* 11.25.2021 

***************************************************************************** 

#include <cstdint> 

 

#include "extrusion_input.h" 

#include "config/default/peripheral/gpio/plib_gpio.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

 

#include "globals.h" 

#include "SPI.h" 

#include "TempSensor.h" 

#include "DataManager.h" 

 

float temp_1_float = 0; 

float temp_2_float = 0; 

float temp_3_float = 0; 

 

TempSensor tempSensor1(1); 

TempSensor tempSensor2(2); 

TempSensor tempSensor3(3); 

 

EXTRUSION_INPUT_DATA extrusion_inputData; 

 

void EXTRUSION_INPUT_Initialize ( void ) 



  DT16 

 

79 
DT16MDR.docx 

{ 

extrusion_inputData.state = EXTRUSION_INPUT_STATE_INIT; 

} 

 

void EXTRUSION_INPUT_Tasks ( void ) 

{ 

switch ( extrusion_inputData.state ) 

{ 

case EXTRUSION_INPUT_STATE_INIT: 

{ 

SPI_Init(); 

CORETIMER_DelayUs(50); 

bool appInitialized = true; 

 

if (appInitialized) 

extrusion_inputData.state =  

 EXTRUSION_INPUT_STATE_SERVICE_TASKS; 

 

break; 

} 

 

case EXTRUSION_INPUT_STATE_SERVICE_TASKS: 

{ 

temp_1_float = tempSensor1.readTemp(); 

globalDataManager.setNumericParam(ZONE_1_TEMP_INDEX, 

temp_1_float); 

temp_1_float = 0; 

CORETIMER_DelayUs(10); 

temp_2_float = tempSensor2.readTemp(); 

globalDataManager.setNumericParam(ZONE_2_TEMP_INDEX, 

temp_2_float); 

temp_2_float = 0; 

CORETIMER_DelayUs(10); 

temp_3_float = tempSensor3.readTemp(); 

globalDataManager.setNumericParam(ZONE_3_TEMP_INDEX, 

temp_3_float); 

temp_3_float = 0; 

CORETIMER_DelayMs(500); 

break; 

} 

 

default: 

{ 

break; 

} 

} 



  DT16 

 

80 
DT16MDR.docx 

} 

 

/*****************************End extrusion_input.cpp***************************/ 

 

 

 

/**************************************************************************** 

* Extruder_Controller 

* extrusion_control.cpp 

* 11.25.2021 

***************************************************************************** 

 

#include <cstdint> 

 

#include "extrusion_control.h" 

#include "config/default/peripheral/i2c/master/plib_i2c1_master.h" 

#include "config/default/peripheral/tmr/plib_tmr2.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

 

#include "globals.h" 

#include "DataManager.h" 

#include "I2C.h" 

#include "I2CMotor.h" 

 

const uint16_t CONTROLLER_1_I2C_ADDRESS = 0x0C; 

const uint16_t CONTROLLER_2_I2C_ADDRESS = 0x04; 

 

I2CMotor controller1(CONTROLLER_1_I2C_ADDRESS); 

I2CMotor controller2(CONTROLLER_2_I2C_ADDRESS); 

 

const uint8_t MOTOR_1_ID = 0; 

const uint8_t MOTOR_2_ID = 1; 

float current_motor_speed = 0; 

 

float current_temp_1 = 0; 

float current_temp_2 = 0; 

float current_temp_3 = 0; 

float current_diameter = 0; 

 

EXTRUSION_CONTROL_DATA extrusion_controlData; 

 

void EXTRUSION_CONTROL_Initialize ( void ) 

{ 

extrusion_controlData.state = EXTRUSION_CONTROL_STATE_INIT; 

} 

 



  DT16 

 

81 
DT16MDR.docx 

void EXTRUSION_CONTROL_Tasks ( void ) 

{ 

switch ( extrusion_controlData.state ) 

{ 

case EXTRUSION_CONTROL_STATE_INIT: 

{ 

I2C_1_Init(); 

CORETIMER_DelayMs(500); 

while(I2C_1_IS_BUSY); 

controller1.setMotorSpeed(MOTOR_1_ID, 100, -1); 

controller1.setMotorSpeed(MOTOR_2_ID, 100, 1); 

current_motor_speed = controller1.getMotorSpeed(0); 

current_motor_speed = (current_motor_speed / 255) * 100; 

globalDataManager.setNumericParam(ROLLER_SPEED_INDEX, 

current_motor_speed); 

while(I2C_1_IS_BUSY); 

controller2.setMotorSpeed(MOTOR_1_ID, 80, -1); 

current_motor_speed = controller2.getMotorSpeed(0); 

current_motor_speed = (current_motor_speed / 255) * 100; 

globalDataManager.setNumericParam(SPOOLER_SPEED_INDEX, 

current_motor_speed); 

bool appInitialized = true; 

 

if (appInitialized) 

{ 

extrusion_controlData.state = 

EXTRUSION_CONTROL_STATE_SERVICE_TASKS; 

} 

break; 

} 

 

case EXTRUSION_CONTROL_STATE_SERVICE_TASKS: 

{ 

current_temp_1 = 

globalDataManager.getNumericParam(ZONE_1_TEMP_INDEX); 

current_temp_2 = 

globalDataManager.getNumericParam(ZONE_2_TEMP_INDEX); 

current_temp_3 = 

globalDataManager.getNumericParam(ZONE_3_TEMP_INDEX); 

current_diameter = 

globalDataManager.getNumericParam(DIAMETER_INDEX); 

/*  

   * TO DO: Implement feedback control 

   */ 

} 

 



  DT16 

 

82 
DT16MDR.docx 

default: 

{ 

break; 

} 

} 

} 

 

/*******************************End extrusion_control.cpp************************/ 

 

/**************************************************************************** 

* Extruder_Controller  

* I2C.c 

* 11.18.2021 

***************************************************************************** 

 

#include "stdint.h" 

  

#include "config/default/peripheral/i2c/master/plib_i2c1_master.h" 

#include "config/default/peripheral/i2c/master/plib_i2c2_master.h" 

#include "config/default/peripheral/tmr/plib_tmr2.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

  

#include "I2C.h" 

  

void I2C_1_Init() 

{ 

    IEC1CLR = _IEC1_I2C1MIE_MASK;     // disable I2C master interrupt 

    IEC1CLR = _IEC1_I2C1BIE_MASK;     // disable I2C collision interrupt 

    I2C1CONbits.DISSLW = 1;            // disable slew rate for 100kHz 

    I2C1BRG = 235;                     // 1kHz = 235 | 4kHz = 55 

    while ( I2C1STATbits.P ); 

    I2C1CONbits.A10M = 0;              // 7-bit address mode 

    I2C1CONbits.I2CEN = 1;             // enable module 

} 

  

void I2C_2_Init() 

{ 

    IEC1CLR = _IEC1_I2C2MIE_MASK;     // disable I2C master interrupt 

    IEC1CLR = _IEC1_I2C2BIE_MASK;     // disable I2C collision interrupt 

    I2C2CONbits.DISSLW = 1;            // disable slew rate for 100kHz 

    I2C2BRG = 235;                     // 1kHz = 235 | 4kHz = 55 

    while ( I2C2STATbits.P ); 

    I2C2CONbits.A10M = 0;              // 7-bit address mode 

    I2C2CONbits.I2CEN = 1;             // enable module 

} 

  



  DT16 

 

83 
DT16MDR.docx 

void I2C_1_Wait_For_Idle(void) 

{ 

    while(I2C1CON & 0x1F); 

    while(I2C1STATbits.TRSTAT); 

} 

  

void I2C_2_Wait_For_Idle(void) 

{ 

    while(I2C2CON & 0x1F); 

    while(I2C2STATbits.TRSTAT); 

} 

  

void I2C_1_Start( void ) 

{ 

    I2C_1_Wait_For_Idle(); 

    I2C1CONbits.SEN = 1;               // initiate start condition 

    while ( I2C1CONbits.SEN );         // wait for start condition 

} 

  

void I2C_2_Start( void ) 

{ 

    I2C_2_Wait_For_Idle(); 

    I2C2CONbits.SEN = 1;               // initiate start condition 

    while ( I2C2CONbits.SEN );         // wait for start condition 

} 

  

void I2C_1_Stop( void ) 

{ 

    I2C_1_Wait_For_Idle(); 

    I2C1CONbits.PEN = 1; 

    while ( I2C1CONbits.PEN ); 

    CORETIMER_DelayUs(5); 

} 

  

void I2C_2_Stop( void ) 

{ 

    I2C_2_Wait_For_Idle(); 

    I2C2CONbits.PEN = 1; 

    while ( I2C2CONbits.PEN ); 

    CORETIMER_DelayUs(5); 

} 

  

bool I2C_1_Send_Byte( char data ) 

{ 

    while ( I2C1STATbits.TBF );        // wait if buffer is full 

    I2C_1_Wait_For_Idle(); 



  DT16 

 

84 
DT16MDR.docx 

    I2C1TRN = data;                    // pass data to transmit register  

    CORETIMER_DelayUs(5); 

    return (I2C1STATbits.ACKSTAT == 0); 

} 

  

bool I2C_2_Send_Byte( char data ) 

{ 

    while ( I2C2STATbits.TBF );        // wait if buffer is full 

    I2C_2_Wait_For_Idle(); 

    I2C2TRN = data;                    // pass data to transmit register  

    CORETIMER_DelayUs(5); 

    return (I2C2STATbits.ACKSTAT == 0); 

} 

  

char I2C_1_Get_Byte( void ) 

{ 

    I2C1CONbits.RCEN = 1;               // set RCEN, enable I2C receive mode 

    while ( !I2C1STATbits.RBF );       // wait for byte to shift into register 

    I2C1CONbits.ACKEN = 1;              // master send acknowledge 

    CORETIMER_DelayUs(5); 

    return ( I2C1RCV ); 

} 

  

char I2C_2_Get_Byte( void ) 

{ 

    I2C2CONbits.RCEN = 1;              // set RCEN, enable I2C receive mode 

    while ( !I2C2STATbits.RBF );       // wait for byte to shift into register 

    I2C2CONbits.ACKEN = 1;             // master send acknowledge 

    CORETIMER_DelayUs(5); 

    return ( I2C2RCV ); 

} 

 

/**********************************End I2C.c********************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* SPI.c 

* 11.18.2021 

*****************************************************************************/ 

#include "config/default/peripheral/spi/spi_master/plib_spi1_master.h" 

#include "config/default/peripheral/gpio/plib_gpio.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

  

#include "SPI.h" 

  

void SPI_Init( void ) 



  DT16 

 

85 
DT16MDR.docx 

{ 

    uint32_t rdata = 0U; 

    IEC1CLR = 0x8; 

    IEC1CLR = 0x10; 

    IEC1CLR = 0x20; 

    SPI1CON = 0; 

    rdata = SPI1BUF; 

    rdata = rdata; 

    IFS1CLR = 0x8; 

    IFS1CLR = 0x10; 

    IFS1CLR = 0x20; 

    SPI1BRG = 23;                             // 1MHz clock 

    SPI1STATCLR = _SPI1STAT_SPIROV_MASK; 

    SPI1CON = 0x8560;                        // PIC32 master, 16-bit mode 

} 

  

void SPI_Transfer(char data) 

{ 

    SPI1BUF = (0x00FF & data);               // pass data to buffer 

    while(!SPI1BUF);                          // wait for data to be sent out 

} 

  

/**********************************End SPI.c********************************/ 

 

/*************************************************************************** 

* Extruder_Controller 

* I2CMotor.h 

* 11.19.2021 

*****************************************************************************/ 

#ifndef I2CMOTOR_H 

#define I2CMOTOR_H 

  

#include <cstdint> 

#include <vector> 

  

class I2CMotor 

{ 

    public: 

         

        uint8_t controller_I2C_address  = 0; 

        const char CLOCKWISE = 1; 

        const char COUNTERCLOCKWISE = -1; 

         

        enum MOTOR_ID 

        { 

            MOTOR_NULL, 



  DT16 

 

86 
DT16MDR.docx 

            MOTOR_1, 

            MOTOR_2 

        }; 

         

        typedef struct 

        { 

            MOTOR_ID motor_id; 

            unsigned short current_speed; 

            short current_direction; 

        } Motor_Object; 

         

        // motor_1 and motor_2 init speed = 0, direction = clockwise 

        Motor_Object motor_1 = { MOTOR_1, 0, 1 }; 

        Motor_Object motor_2 = { MOTOR_2, 0, 1 }; 

         

        std::vector<Motor_Object> motor_objects = { motor_1, motor_2 }; 

  

        uint8_t DIRECTION_SET = 0xaa; 

        uint8_t MOTOR_DIR_BOTH_CW = 0x0a; 

        uint8_t MOTOR_DIR_BOTH_CCW = 0x05; 

        uint8_t MOTOR_DIR_M1CW_M2CCW = 0x06; 

        uint8_t MOTOR_DIR_M1CCW_M2CW = 0x09; 

        uint8_t MOTOR_SPEED_SET = 0x82; 

        uint8_t PWMFrequencySet = 0x84; 

        uint8_t MotorSetA = 0xa1; 

        uint8_t MotorSetB = 0xa5; 

        uint8_t NOTHING = 0x01; 

        uint8_t F_31372Hz = 0x01; 

        uint8_t F_3921Hz = 0x02; 

        uint8_t F_490Hz = 0x03; 

        uint8_t F_122Hz = 0x04; 

        uint8_t F_30Hz = 0x05; 

  

        // speed 0 to 255 

        unsigned char SPEED_MOTOR_1 = 0; 

        unsigned char SPEED_MOTOR_2 = 0; 

        // clockwise = 1 | counterclockwise = -1 

        int DIRECTION_MOTOR_1 = 1; 

        int DIRECTION_MOTOR_2 = 1; 

         

        I2CMotor(uint16_t i2c_address); 

        I2CMotor(const I2CMotor& orig); 

        virtual ~I2CMotor(); 

        void setPWMFrequency(); 

        float getMotorSpeed(unsigned char motor_id); 

        void setMotorDirection(uint8_t motor_directions); 



  DT16 

 

87 
DT16MDR.docx 

        void setMotorSpeed(unsigned char motor_id, unsigned short new_speed, char 

new_direction); 

        void nudgeMotorSpeedUp(unsigned char motor_id, unsigned char amount); 

        void nudgeMotorSpeedDown(unsigned char motor_id, unsigned char amount); 

        int stopMotor(unsigned char motor_id);  

}; 

  

#endif 

 

/*****************************End I2CMotor.h*********************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* I2CMotor.cpp 

* 11.19.2021 

*****************************************************************************/ 

  

#include <cstdint> 

#include <vector> 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

  

#include "I2CMotor.h" 

#include "globals.h" 

#include "I2C.h" 

  

I2CMotor::I2CMotor(uint16_t i2c_address) {} 

  

I2CMotor::I2CMotor(const I2CMotor& orig) {} 

  

I2CMotor::~I2CMotor() {} 

  

void I2CMotor::setPWMFrequency() 

{ 

    I2C_1_IS_BUSY = true; 

    I2C_1_Start(); 

    CORETIMER_DelayUs(5); 

    I2C_1_Send_Byte(controller_I2C_address << 1); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(PWMFrequencySet); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(F_3921Hz); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(NOTHING); 

    I2C_1_Stop(); 

    I2C_1_IS_BUSY = false; 

    CORETIMER_DelayMs(4); 



  DT16 

 

88 
DT16MDR.docx 

} 

  

float I2CMotor::getMotorSpeed(unsigned char motor_id) 

{ 

    return (float)motor_objects[motor_id].current_speed; 

} 

  

void I2CMotor::setMotorDirection(uint8_t motor_directions) 

{ 

    I2C_1_IS_BUSY = true; 

    I2C_1_Start(); 

    CORETIMER_DelayUs(5); 

    I2C_1_Send_Byte(controller_I2C_address << 1); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(DIRECTION_SET); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(motor_directions); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(NOTHING); 

    I2C_1_Stop(); 

    I2C_1_IS_BUSY = false; 

    CORETIMER_DelayUs(200); 

} 

  

// motor_id = 0 for motor_1 and 1 for motor_2 

void I2CMotor::setMotorSpeed(unsigned char motor_id, unsigned short new_speed, char 

new_direction) 

{ 

    motor_objects[motor_id].current_direction = new_direction; 

    if (new_speed >= 255) 

        motor_objects[motor_id].current_speed = 255; 

    else 

        motor_objects[motor_id].current_speed = new_speed; 

    // Set the direction 

    if (motor_objects[0].current_direction == 1 && motor_objects[1].current_direction == 1) 

        setMotorDirection(MOTOR_DIR_BOTH_CW); 

    if (motor_objects[0].current_direction == 1 && motor_objects[1].current_direction == -1) 

        setMotorDirection(MOTOR_DIR_M1CW_M2CCW); 

    if (motor_objects[0].current_direction == -1 && motor_objects[1].current_direction == 1) 

        setMotorDirection(MOTOR_DIR_M1CCW_M2CW); 

    if (motor_objects[0].current_direction == -1 && motor_objects[1].current_direction == -1) 

        setMotorDirection(MOTOR_DIR_BOTH_CCW); 

    // send command 

    I2C_1_IS_BUSY = true; 

    I2C_1_Start(); 

    CORETIMER_DelayUs(5); 



  DT16 

 

89 
DT16MDR.docx 

    I2C_1_Send_Byte(controller_I2C_address << 1); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(MOTOR_SPEED_SET); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(motor_objects[0].current_speed); 

    CORETIMER_DelayUs(10); 

    I2C_1_Send_Byte(motor_objects[1].current_speed); 

    I2C_1_Stop(); 

    I2C_1_IS_BUSY = false; 

    CORETIMER_DelayUs(200);     

} 

  

void I2CMotor::nudgeMotorSpeedUp(unsigned char motor_id, unsigned char amount) 

{ 

    short new_speed = motor_objects[motor_id].current_speed + amount; 

    if (new_speed >= 255) 

        new_speed = 255; 

    setMotorSpeed(motor_id, new_speed, motor_objects[motor_id].current_direction); 

} 

void I2CMotor::nudgeMotorSpeedDown(unsigned char motor_id, unsigned char amount) 

{ 

    short new_speed = motor_objects[motor_id].current_speed - amount; 

    if (new_speed <= 0) 

        stopMotor(motor_id); 

    else 

        setMotorSpeed(motor_id, new_speed, motor_objects[motor_id].current_direction); 

} 

  

int I2CMotor::stopMotor(unsigned char motor_id) 

{ 

    setMotorSpeed(motor_id, 0, 1); 

    return 0; 

} 

 

/*****************************End I2CMotor.c*********************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* TempSensor.h 

* 11.25.2021 

*****************************************************************************/ 

#ifndef TEMPSENSOR_H 

#define TEMPSENSOR_H 

  

#include <cstdint> 

  



  DT16 

 

90 
DT16MDR.docx 

class TempSensor 

{ 

    public: 

         

        TempSensor(uint8_t sensor_id); 

        TempSensor(const TempSensor& orig); 

        virtual ~TempSensor(); 

        float readTemp(); 

         

    private: 

         

        bool SPI_INITIALIZED = false; 

        bool READ_CELSIUS = false; 

        uint8_t SENSOR_ID = 0; 

}; 

  

#endif  

 

/*****************************End TempSensor.h********************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* TempSensor.cpp 

* 11.25.2021 

*****************************************************************************/ 

#include <cstdint> 

  

#include "config/default/peripheral/gpio/plib_gpio.h" 

#include "config/default/peripheral/spi/spi_master/plib_spi1_master.h" 

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

  

#include "TempSensor.h" 

#include "globals.h" 

#include "SPI.h" 

  

TempSensor::TempSensor(uint8_t sensor_id) 

{ 

    SENSOR_ID = sensor_id; 

    switch(SENSOR_ID) 

    { 

        case 1: 

            SS_TEMP_1_OutputEnable(); 

            SS_TEMP_1_Set(); 

            break; 

        case 2: 

            SS_TEMP_2_OutputEnable(); 



  DT16 

 

91 
DT16MDR.docx 

            SS_TEMP_2_Set(); 

            break; 

        case 3: 

            SS_TEMP_3_OutputEnable(); 

            SS_TEMP_3_Set(); 

            break; 

        default: 

            break; 

    }     

} 

  

TempSensor::TempSensor(const TempSensor& orig) {}  

 

TempSensor::~TempSensor() {}  

 

float TempSensor::readTemp() 

{ 

    switch(SENSOR_ID) 

    { 

        case 1: 

            SPI1CONbits.DISSDO = 1; 

            SS_TEMP_1_Clear();                        // set ss low 

            SPI_Transfer(0x00);                       // send dummy byte 

            CORETIMER_DelayUs(16);                   // wait 16 cycles for 2 bytes 

            SPI1CONbits.DISSDO = 0; 

            SS_TEMP_1_Set();                          // set ss high 

            break; 

        case 2: 

            SPI1CONbits.DISSDO = 1; 

            SS_TEMP_2_Clear();                        // set ss low 

            SPI_Transfer(0x00);                       // send dummy byte 

            CORETIMER_DelayUs(16);                   // wait 16 cycles for 2 bytes 

            SPI1CONbits.DISSDO = 0; 

            SS_TEMP_2_Set();                          // set ss high 

            break; 

        case 3: 

            SPI1CONbits.DISSDO = 1; 

            SS_TEMP_3_Clear();                        // set ss low 

            SPI_Transfer(0x00);                       // send dummy byte 

            CORETIMER_DelayUs(16);                   // wait 16 cycles for 2 bytes 

            SPI1CONbits.DISSDO = 0; 

            SS_TEMP_3_Set();                          // set ss high 

            break; 

        default: 

            break;  

    } 



  DT16 

 

92 
DT16MDR.docx 

     

    int raw_temp = SPI1BUF;                            // read incoming data from buffer 

    raw_temp >>= 3; 

    float celsius_temp = (float)raw_temp; 

    if (READ_CELSIUS == true) 

        return celsius_temp; 

    else 

        return ((celsius_temp * (9 / 5)) + 32); 

} 

 

/******************************End TempSensor.cpp*****************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* DataManager.h 

* 11.18.2021 

***************************************************************************** 

 

#ifndef DATAMANAGER_H 

#define DATAMANAGER_H 

  

#include <cstdint> 

#include <vector> 

#include <utility> 

#include <tuple> 

     

class DataManager 

{ 

    public: 

         

        const uint16_t DISPLAY_I2C_ADDRESS = 0x14; 

         

        DataManager(); 

        DataManager(const DataManager& orig); 

        ~DataManager(); 

        void setNumericParam(uint8_t index, float param); 

        void setStatusParam(uint8_t index, uint8_t param); 

        float   getNumericParam(uint8_t index); 

        uint8_t getStatusParam(uint8_t index); 

        void clearNumericParamFlag(uint8_t index); 

        void clearStatusParamFlag(uint8_t index); 

        void pollNumericParams(); 

        void pollStatusParams(); 

        void sendNumericParamI2C(uint8_t data_id, float value); 

        void sendStatusParamI2C(uint8_t data_id, uint8_t status); 

        void sendAllFreshNumericParams(); 



  DT16 

 

93 
DT16MDR.docx 

        void sendAllFreshStatusParams(); 

         

        std::vector<uint8_t>& getFreshNumericIDs(); 

        std::vector<float>&   getFreshNumericValues(); 

        std::vector<uint8_t>& getFreshStatusIDs(); 

        std::vector<uint8_t>& getFreshStatusValues(); 

  

    private: 

         

        typedef union                   // convert between float and char[4] 

        { 

            uint8_t buffer[4]; 

            float numeric_param_input; 

        } FloatToBytes; 

  

        FloatToBytes converter; 

  

        typedef enum                    // status values 

        { 

            NONE, 

            READY, 

            ON, 

            OFF, 

            OPEN, 

            CLOSED, 

            IN_PROGRESS, 

            COMPLETE 

        } STATUS; 

  

        typedef struct                    // numeric parameter object 

        { 

            const uint8_t data_index;    // index in numeric_params[] vector 

            const uint8_t data_id;       // unique identifier, read by display 

            float value;                  // numeric parameter value 

            bool is_current;             // status flag 

        } Numeric_Param; 

  

        typedef struct                    // status parameter object 

        { 

            const uint8_t data_index;    //index in status_params[] vector 

            const uint8_t data_id;       // unique identifier, read by display 

            STATUS status;               // status parameter value 

            bool is_current;             // status flag 

        } Status_Param; 

         

        const uint8_t NUMERIC_PARAM_COUNT = 12;  // length of numeric_params[] 



  DT16 

 

94 
DT16MDR.docx 

        const uint8_t STATUS_PARAM_COUNT = 4;    // length of status_params[] 

         

        // Numeric_Param objects for all numeric values to be tracked 

        Numeric_Param desired_yield     = { 0,  0x01, 0.0, false }; 

        Numeric_Param required_input    = { 1,  0x02, 0.0, false }; 

        Numeric_Param ground_weight     = { 2,  0x03, 0.0, false }; 

        Numeric_Param zone_1_temp       = { 3,  0x04, 0.0, false }; 

        Numeric_Param zone_2_temp       = { 4,  0x05, 0.0, false }; 

        Numeric_Param zone_3_temp       = { 5,  0x06, 0.0, false }; 

        Numeric_Param screw_speed       = { 6,  0x07, 0.0, false }; 

        Numeric_Param roller_speed      = { 7,  0x08, 0.0, false }; 

        Numeric_Param spooler_speed     = { 8,  0x09, 0.0, false }; 

        Numeric_Param filament_diameter = { 9,  0x0A, 0.0, false }; 

        Numeric_Param extruded_length   = { 10, 0x0B, 0.0, false }; 

        Numeric_Param projected_yield   = { 11, 0x0C, 0.0, false }; 

         

        // Status_Param objects for all status values to be tracked 

        Status_Param hopper_lid_status  = { 0, 0x10, NONE, false }; 

        Status_Param grinder_status     = { 1, 0x20, NONE, false }; 

        Status_Param preparation_status = { 2, 0x30, NONE, false }; 

        Status_Param extrusion_status   = { 3, 0x40, NONE, false }; 

  

        // vector of Numeric_Param structs 

        std::vector<Numeric_Param> numeric_params = { desired_yield, 

            required_input, ground_weight, zone_1_temp, zone_2_temp, 

            zone_3_temp, screw_speed, roller_speed, spooler_speed, 

            filament_diameter, extruded_length, projected_yield }; 

         

        // vector of Status_Param structs 

        std::vector<Status_Param> status_params = { hopper_lid_status, 

            grinder_status, preparation_status, extrusion_status }; 

         

        std::vector<uint8_t> fresh_numeric_IDs; 

        std::vector<float> fresh_numeric_values; 

        std::vector<uint8_t> fresh_status_IDs; 

        std::vector<uint8_t> fresh_status_values; 

}; 

  

#endif 

 

/******************************End DataManager.h******************************/ 

 

/**************************************************************************** 

* Extruder_Controller 

* DataManager.cpp 

* 11.18.2021 



  DT16 

 

95 
DT16MDR.docx 

*****************************************************************************/ 

#include <cstdint> 

#include <vector> 

#include <tuple> 

#include <utility> 

  

#include "config/default/peripheral/coretimer/plib_coretimer.h" 

  

#include "DataManager.h" 

#include "globals.h" 

#include "I2C.h" 

  

DataManager::DataManager() {} 

  

DataManager::DataManager(const DataManager& orig) {} 

  

DataManager::~DataManager() {}  

/** 

* DataManager::setNumericParam() 

*  

* @param index Parameter index in numeric_params[] vector 

*  

* @param value Parameter value to be added to numeric_params[] vector 

*  

* Update global DataManager numeric parameter vector 

* Values added to this vector are automatically sent via I2C to the display 

*/ 

void DataManager::setNumericParam(uint8_t index, float value) 

{ 

    numeric_params[index].value = value; 

    numeric_params[index].is_current = false; 

} 

  

/** 

* DataManager::setStatusParam() 

*  

* @param index Parameter index in status_params[] vector 

*  

* @param value Parameter value to be added to status_params[] vector 

*  

* Update global DataManager status (non-numeric) parameter vector 

* Values added to this vector are automatically sent via I2C to the display 

*/ 

void DataManager::setStatusParam(uint8_t index, uint8_t status) 

{ 

    status_params[index].status = (DataManager::STATUS) status; 



  DT16 

 

96 
DT16MDR.docx 

    status_params[index].is_current = false; 

} 

  

/** 

* DataManager::getNumericParam() 

*  

* @param index Parameter index in numeric_params[] vector 

*  

* @return Numeric parameter value stored in numeric_params[] at index 

*  

* Retrieve the numeric value stored in numeric_params[] at index 

*/ 

float DataManager::getNumericParam(uint8_t index) 

{ 

    return numeric_params[index].value; 

} 

/** 

* DataManager::getStatusParam() 

*  

* @param index Parameter index in status_params[] vector 

*  

* @return Status parameter value stored in status_params[] at index 

*  

* Retrieve the status (non-numeric) value stored in status_params[] at index 

*/ 

uint8_t DataManager::getStatusParam(uint8_t index) 

{ 

    return status_params[index].status; 

} 

  

/** 

* DataManager::clearNumericParamFlag() 

*  

* @param index Parameter index in numeric_params[] vector 

*  

* Clear flag associated with the numeric value stored in numeric_params[] 

* at index 

*  

* When flag is cleared (is_current == true) DataManager will not attempt 

* to publish parameter value to display 

*/ 

void DataManager::clearNumericParamFlag(uint8_t index) 

{ 

    numeric_params[index].is_current = true; 

} 

  



  DT16 

 

97 
DT16MDR.docx 

/** 

* DataManager::clearStatusParamFlag() 

*  

* @param index Parameter index in status_params[] vector 

*  

* Clear flag associated with the status value stored in status_params[] 

* at index 

*  

* When flag is cleared (is_current == true) DataManager will not attempt 

* to publish parameter value to display 

*/ 

void DataManager::clearStatusParamFlag(uint8_t index) 

{ 

    status_params[index].is_current = true; 

} 

  

/** 

* DataManager::pollNumericParams() 

*  

* Populate fresh_numeric_IDs[] and fresh_numeric_values[] vectors with 

* new numeric parameter ID/value pairs to be sent to display via I2C 

*  

* Clear numeric parameter is_current flag for every parameter added 

*/ 

void DataManager::pollNumericParams() 

{ 

    for (uint8_t index = 0; index < NUMERIC_PARAM_COUNT; ++index) 

    { 

        if (numeric_params[index].is_current == false) 

        { 

            fresh_numeric_IDs.push_back(numeric_params[index].data_id); 

            fresh_numeric_values.push_back(numeric_params[index].value); 

            numeric_params[index].is_current = true; 

        } 

    } 

} 

  

/** 

* DataManager::pollStatusParams() 

*  

* Populate fresh_status_IDs[] and fresh_status_values[] vectors with 

* new status parameter ID/value pairs to be sent to display via I2C 

*  

* Clear numeric parameter is_current flag for every parameter added 

*/ 

void DataManager::pollStatusParams() 



  DT16 

 

98 
DT16MDR.docx 

{ 

    for (uint8_t index = 0; index < STATUS_PARAM_COUNT; ++index) 

    { 

        if (status_params[index].is_current == false) 

        { 

            fresh_status_IDs.push_back(status_params[index].data_id); 

            fresh_status_values.push_back(status_params[index].status); 

            status_params[index].is_current = true; 

        } 

    } 

} 

  

/** 

* DataManager::sendNumericParamI2C() 

*  

* @param data_id Identifier shared by DataManager and Extruder_Display that 

* indicates the source/destination of the parameter 

*  

* @param value Numeric parameter value to be sent to the display via I2C 

*  

* Convert float value to 4 integer bytes 

*  

* Send display I2C address followed by data_id and 4 bytes of numeric data 

*/ 

void DataManager::sendNumericParamI2C(uint8_t data_id, float value) 

{ 

    converter.numeric_param_input = value; 

     

    I2C_2_IS_BUSY = true; 

    I2C_2_Start(); 

    CORETIMER_DelayUs(5); 

    I2C_2_Send_Byte(DISPLAY_I2C_ADDRESS << 1); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( data_id ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( converter.buffer[0] ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( converter.buffer[1] ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( converter.buffer[2] ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( converter.buffer[3] ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Stop(); 

    I2C_2_IS_BUSY = false; 

    converter.numeric_param_input = 0; 



  DT16 

 

99 
DT16MDR.docx 

    CORETIMER_DelayUs(100); 

} 

  

/** 

* DataManager::sendStatusParamI2C() 

*  

* @param data_id Identifier shared by DataManager and Extruder_Display that 

* indicates the source/destination of the parameter 

*  

* @param value Status parameter value to be sent to the display via I2C 

*  

* Send display I2C address followed by data_id and status which is an integer 

* byte that is translated by the display into a status parameter string value 

*/ 

void DataManager::sendStatusParamI2C(uint8_t data_id, uint8_t status) 

{ 

    I2C_2_IS_BUSY = true; 

    I2C_2_Start(); 

    CORETIMER_DelayUs(5); 

    I2C_2_Send_Byte(DISPLAY_I2C_ADDRESS << 1); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( data_id ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Send_Byte( status ); 

    CORETIMER_DelayUs(10); 

    I2C_2_Stop(); 

    I2C_2_IS_BUSY = false; 

    CORETIMER_DelayUs(100); 

} 

  

/** 

* DataManager::sendAllFreshNumericParams() 

*  

* Iterate through the fresh_numeric_IDs[] and fresh_numeric_values[] vectors 

* and send every ID + value pair to the display via I2C 

*/ 

void DataManager::sendAllFreshNumericParams() 

{ 

    for (uint8_t index = 0; index < fresh_numeric_IDs.size(); index++) 

    { 

        sendNumericParamI2C(fresh_numeric_IDs[index], fresh_numeric_values[index]); 

    } 

    fresh_numeric_IDs.clear(); 

    fresh_numeric_values.clear(); 

} 

  



  DT16 

 

100 
DT16MDR.docx 

/** 

* DataManager::sendAllFreshStatusParams() 

*  

* Iterate through the fresh_status_IDs[] and fresh_status_values[] vectors 

* and send every ID + value pair to the display via I2C 

*/ 

void DataManager::sendAllFreshStatusParams() 

{ 

    for (uint8_t index = 0; index < fresh_status_IDs.size(); index++) 

    { 

        sendStatusParamI2C(fresh_status_IDs[index], fresh_status_values[index]); 

    } 

    fresh_status_IDs.clear(); 

    fresh_status_values.clear(); 

} 

  

/** 

* DataManager::getFreshNumericIDs() 

*  

* @return fresh_numeric_IDs vector containing the identifiers of all new  

* numeric parameter values 

*/ 

std::vector<uint8_t>& DataManager::getFreshNumericIDs() 

{ 

    return fresh_numeric_IDs; 

} 

  

/** 

* DataManager::getFreshNumericValues() 

*  

* @return fresh_numeric_values vector containing every new numeric 

* parameter value  

*/ 

std::vector<float>& DataManager::getFreshNumericValues() 

{ 

    return fresh_numeric_values; 

} 

  

/** 

* DataManager::getFreshStatusIDs() 

*  

* @return fresh_status_IDs vector containing the identifiers of all new 

* status parameters 

*/ 

std::vector<uint8_t>& DataManager::getFreshStatusIDs() 

{ 



  DT16 

 

101 
DT16MDR.docx 

    return fresh_status_IDs; 

} 

  

/** 

* DataManager::getFreshStatusValues() 

*  

* @return fresh_status_values vector containing every new status 

* parameter value 

*/ 

std::vector<uint8_t>& DataManager::getFreshStatusValues() 

{ 

    return fresh_status_values; 

} 

 

/******************************End DataManager.cpp****************************/ 

 

   /*********************************************************************** 

* PLA/PET Filament Extruder 

* 10.22.2021 

* extruder_display.ino 

* User Interface Application 

*    Arduino Uno 

*    Adafruit HX8357 

***********************************************************************/ 

  

#include <SPI.h> 

#include <Wire.h> 

#include <stdint.h> 

#include "Arduino.h" 

#include "Adafruit_GFX.h" 

#include "Adafruit_HX8357.h" 

#include "TouchScreen.h" 

#include "Display.h" 

  

Display UI; 

  

union floatToBytes 

{ 

    uint8_t buffer[4]; 

    float numeric_param_input; 

}; 

  

union floatToBytes converter; 

uint8_t incoming_data_ID = 0; 

uint8_t status_param_input = 0; 

  



  DT16 

 

102 
DT16MDR.docx 

struct I2C_INT_DATA 

{ 

    uint8_t incoming_ID = 0; 

    uint8_t incoming_status = 0; 

    float incoming_value = 0; 

}; 

  

I2C_INT_DATA i2c_int_data; 

  

bool received_message = false; 

bool is_status = false; 

  

void setup() 

{ 

    Wire.begin(0x14); 

     

    /*Event Handlers*/ 

    Wire.onReceive(I2C_receive_event); 

    Wire.onRequest(I2C_request_event); 

    Serial.begin(9600); 

    byte complete = 0x07; 

    UI.tft.begin(); 

    UI.tft.setRotation(1); 

    UI.set_numeric_input_screen(UI.numeric_params, UI.desired_yield.ID); 

    UI.get_numeric_user_input(UI.numeric_params, UI.desired_yield.ID); 

    UI.required_input.VALUE = UI.desired_yield.VALUE * 1.11; 

     

    UI.set_output_screen(); 

} 

  

void loop() 

{ 

    if(received_message == true) 

    { 

        if (is_status == true) 

        { 

            UI.direct_I2C_Status_Param(i2c_int_data.incoming_ID, i2c_int_data.incoming_status); 

        } 

        else 

        { 

            UI.direct_I2C_Numeric_Param(i2c_int_data.incoming_ID, 

i2c_int_data.incoming_value); 

        } 

        i2c_int_data.incoming_ID = 0; 

        i2c_int_data.incoming_status = 0; 

        i2c_int_data.incoming_value = 0; 



  DT16 

 

103 
DT16MDR.docx 

        received_message = false; 

        is_status = false;     

    } 

     

    UI.poll_inputs(UI.numeric_params, NUMERIC_PARAM_COUNT); 

    UI.poll_inputs(UI.status_params, STATUS_PARAM_COUNT); 

} 

  

void I2C_receive_event(int howMany) 

{ 

     

    uint8_t index = 0; 

    while (Wire.available()) 

    { 

        if (index == 0) 

        { 

            i2c_int_data.incoming_ID = Wire.read(); 

            index++; 

            continue; 

        } 

        else 

        { 

            if (i2c_int_data.incoming_ID > 0x0F) 

            { 

                i2c_int_data.incoming_status = Wire.read(); 

                is_status = true; 

            } 

            else 

            { 

                converter.buffer[index - 1] = Wire.read(); 

            } 

             

        } 

        index++; 

    } 

    received_message = true; 

    i2c_int_data.incoming_value = converter.numeric_param_input; 

    converter.numeric_param_input = 0; 

} 

 

/*******************************End extruder_display.ino*************************/ 

 

/********************************************************************* 

* PLA/PET Filament Extruder 

* 10.22.2021 

* display_functions.h 



  DT16 

 

104 
DT16MDR.docx 

* User Interface Application 

*    Arduino Uno 

*    Adafruit HX8357 

***********************************************************************/ 

#ifndef DISPLAY_H 

#define DISPLAY_H 

  

#include <stdbool.h> 

#include "Arduino.h" 

#include "Adafruit_HX8357.h" 

#include "Adafruit_GFX.h" 

#include "TouchScreen.h" 

  

#define TFT_CS 10 

#define TFT_DC 9 

#define TFT_RST 8 

#define YP A2 

#define XM A3 

#define YM 7 

#define XP 8 

  

const unsigned char NUMERIC_PARAM_COUNT = 12; 

const unsigned char STATUS_PARAM_COUNT = 4; 

  

class Display 

{ 

    public: 

        /* hardware interface objects */ 

        Adafruit_HX8357 tft = Adafruit_HX8357( TFT_CS, TFT_DC, TFT_RST ); 

        TouchScreen ts = TouchScreen( XP, YP, XM, YM, 285 ); 

  

        struct Numeric_Param 

        { 

            const char* LABEL; 

            const unsigned char ID; 

            float VALUE; 

            bool IS_CURRENT; 

            const char  COLUMN; 

            const unsigned char ROW; 

        };   

        struct Status_Param 

        { 

            const char* LABEL; 

            const unsigned char ID; 

            char* VALUE; 

            bool IS_CURRENT; 



  DT16 

 

105 
DT16MDR.docx 

            const char  COLUMN; 

            const unsigned char ROW; 

        }; 

        struct X_Y 

        { 

            float x = 0.0; 

            float y = 0.0; 

        };                                                               /*____Status___________I2C Code__*/ 

        const char* STATUS_NONE  = "--";               /*  STATUS_NONE       0x00    */ 

        const char* STATUS_READY = "Ready";      /*  STATUS_READY    0x01   */                  

        const char* STATUS_ON  = "ON";                       /*  STATUS_ON            0x02    */ 

        const char* STATUS_OFF = "OFF";                     /*  STATUS_OFF           0x03    */ 

        const char* STATUS_OPEN = "Open";                 /*  STATUS_OPEN         0x04    */ 

        const char* STATUS_CLOSED  = "Closed";         /*  STATUS_CLOSED   0x05    */ 

        const char* STATUS_IN_PROGRESS  = "In Progress";                     /* 0x06 */ 

        const char* STATUS_COMPLETE     = "Complete";                         /* 0x07 */              

/****************************************************************************/ 

X_Y pr; 

Numeric_Param desired_yield     = { "Desired Yield (kg): ",     0,  0.0,     1, 'L', 60  }; 

Numeric_Param required_input    = { "Required Input (kg): ",    1,  0.0,   1,  'L',80 };                

Numeric_Param ground_weight     = { "Ground Weight (kg): ",     2,  0.0, 1, 'L', 100 }; 

Numeric_Param zone_1_temp       = { "Zone 1: ",                 3,  0.0,         1, 'R', 100 }; 

Numeric_Param zone_2_temp       = { "Zone 2: ",                 4,  0.0,         1, 'R', 120 }; 

Numeric_Param zone_3_temp       = { "Zone 3: ",                 5,  0.0,         1, 'R', 140 }; 

Numeric_Param screw_speed       = { "Screw Speed: ",            6,  0.0,         1, 'R', 160 }; 

Numeric_Param roller_speed      = { "Roller Speed: ",           7,  0.0,         1, 'R', 180 }; 

Numeric_Param spooler_speed     = { "Spooler Speed: ",          8,  0.0,         1, 'R', 200 };      

Numeric_Param filament_diameter = { "Diameter (mm): ",         9,  0.0,         1, 'R', 220 }; 

Numeric_Param extruded_length   = { "Extruded Length (m): ",    10, 0.0,         1, 'R', 240 }; 

Numeric_Param projected_yield   = { "Projected Yield (kg): ",   11, 0.0,         1, 'R', 60  }; 

Status_Param hopper_lid_status  = { "Hopper Lid Status: ", 0,  STATUS_NONE, 1, 'L', 120 };  

Status_Param grinder_status     = { "Grinder (On/Off): ",  1,  STATUS_NONE, 1, 'L', 140 }; 

Status_Param preparation_status = { "Status: ",   2,  STATUS_NONE, 1, 'L', 40  };  

Status_Param extrusion_status   = { "Status: ",                 3,  STATUS_NONE, 1, 'R', 40  };  

        const uint8_t DESIRED_YIELD_ID        = 0x01; 

        const uint8_t REQUIRED_INPUT_ID       = 0x02; 

        const uint8_t GROUND_WEIGHT_ID        = 0x03; 

        const uint8_t ZONE_1_TEMP_ID          = 0x04; 

        const uint8_t ZONE_2_TEMP_ID          = 0x05; 

        const uint8_t ZONE_3_TEMP_ID          = 0x06; 

        const uint8_t SCREW_SPEED_ID          = 0x07; 

        const uint8_t ROLLER_SPEED_ID         = 0x08; 

        const uint8_t SPOOLER_SPEED_ID        = 0x09; 

        const uint8_t DIAMETER_ID             = 0x0A; 

        const uint8_t EXTRUDED_LENGTH_ID      = 0x0B; 

        const uint8_t PROJECTED_YIELD_ID      = 0x0C; 



  DT16 

 

106 
DT16MDR.docx 

        const uint8_t HOPPER_LID_STATUS_ID    = 0x10; 

        const uint8_t GRINDER_ON_OFF_ID       = 0x20; 

        const uint8_t PREPARATION_STATUS_ID   = 0x30; 

        const uint8_t EXTRUSION_STATUS_ID     = 0x40; 

        

/****************************************************************************/ 

        Numeric_Param* numeric_params[NUMERIC_PARAM_COUNT] = { &desired_yield, 

&required_input, &ground_weight, &zone_1_temp, &zone_2_temp, &zone_3_temp, 

&screw_speed, &roller_speed, &spooler_speed, &filament_diameter, &extruded_length, 

&projected_yield };                                                   

        Status_Param* status_params[STATUS_PARAM_COUNT]    = { &hopper_lid_status, 

&grinder_status, &preparation_status, &extrusion_status }; 

        

/****************************************************************************/ 

        template <class T> void set_label_and_value(T Params_Array, unsigned char label_type); 

        template <class T> void update_output(T Params_Array, unsigned char ID); 

        template <class T> void poll_inputs(T Params_Array, unsigned char SIZE);   

        template <class T> void set_numeric_input_screen(T Params_Array, const unsigned char 

ID); 

        template <class T> void get_numeric_user_input(T Params_Array, const unsigned char ID);  

        void direct_I2C_Numeric_Param(uint8_t data_ID, float value);  

        void direct_I2C_Status_Param(uint8_t data_ID, uint8_t status);  

        void set_text(unsigned char S, unsigned short C); 

        void set_new_numeric_value(float new_value, unsigned char ID); 

        void set_new_status_value(char* new_value, unsigned char ID); 

        void set_default_background(); 

        void set_output_screen(); 

}; 

  

/* set_label_and_value() */ 

template <class T> void Display::set_label_and_value (T Params_Array, unsigned char 

label_type) 

{ 

    unsigned short text_color = 0; 

    unsigned char item_count = 0; 

    unsigned short label_cursor = 0; 

    unsigned short value_cursor = 130; 

  

    set_text(1, HX8357_CYAN); 

    tft.setCursor(0, 20); 

    tft.print("Preparation Stage"); 

    tft.setCursor(235, 20); 

    tft.print("Extrusion Stage"); 

    tft.setCursor(235, 80); 

    tft.print("Temperatures"); 

    if (label_type == 0) { item_count = NUMERIC_PARAM_COUNT; } 



  DT16 

 

107 
DT16MDR.docx 

    else { item_count = STATUS_PARAM_COUNT; } 

    set_text(1,HX8357_WHITE); 

    for (int ID = 0; ID < item_count; ID++) 

    { 

        if (Params_Array[ID]->COLUMN == 'R') { label_cursor = 235; value_cursor = 385; } 

        tft.setCursor(label_cursor, Params_Array[ID]->ROW); 

        tft.print(Params_Array[ID]->LABEL); 

        tft.setCursor(value_cursor, Params_Array[ID]->ROW); 

        tft.print(Params_Array[ID]->VALUE); 

    } 

} 

/* END set_label_and_value() */ 

  

/* update_output() */ 

template <class T> void Display::update_output( T Params_Array, unsigned char ID ) 

{ 

    unsigned short value_cursor = 130; 

    if (Params_Array[ID]->COLUMN == 'R') { value_cursor = 385; } 

    set_text(1, HX8357_WHITE); 

    tft.fillRect(value_cursor, Params_Array[ID]->ROW, 95, 15, HX8357_BLACK); 

    tft.setCursor(value_cursor, Params_Array[ID]->ROW); 

    tft.print(Params_Array[ID]->VALUE); 

    Params_Array[ID]->IS_CURRENT = true; 

} 

/* END update_output() */ 

  

/* poll_inputs() */ 

template <class T> void Display::poll_inputs(T Params_Array, unsigned char SIZE) 

{ 

    for (int ID = 0; ID < SIZE; ID++) 

        if (Params_Array[ID]->IS_CURRENT == false) { update_output(Params_Array, ID); } 

} 

/* END poll_inputs() */ 

  

/* set_numeric_input_screen() */ 

template <class T> void Display::set_numeric_input_screen(T Params_Array, const unsigned 

char ID) 

{ 

    unsigned short x_cursor = 42; 

    unsigned char row_1_item, row_2_item; 

    unsigned short bottom_label_positions[] = { 5, 115, 235, 310 }; 

    char *bottom_labels[]                   = { "Go Back", "Clear", ".", "Enter" }; 

    set_default_background(); 

    tft.setCursor(0, 20); 

    set_text(2, HX8357_WHITE); 

    tft.print(Params_Array[ID]->LABEL); 



  DT16 

 

108 
DT16MDR.docx 

    // horizontal lines 

    for (unsigned short n = 0; n < 3; n++) 

        tft.drawLine(0, 50 + (n * 90), 480, 50 + (n * 90), HX8357_WHITE); 

    for (unsigned char n = 0; n < 4; n++) 

        tft.drawLine(96 * (n + 1), 50, 96 * (n + 1), 320, HX8357_WHITE); 

    for (unsigned char i = 0; i < 5; i++) 

    { 

        tft.setCursor(x_cursor, 85); 

        tft.print(i + 1); 

        tft.setCursor(x_cursor, 175); 

        if (i != 4) { tft.print(i + 6); } 

        else { tft.print(0); } 

        x_cursor += 96; 

    } 

    for (unsigned char i = 0; i < 4; i++) 

    { 

        tft.setCursor(bottom_label_positions[i], 265); 

        tft.print(bottom_labels[i]); 

    } 

} 

/* END set_numeric_input_screen() */ 

  

/* get_numeric_user_input() */ 

template <class T> void Display::get_numeric_user_input(T Params_Array, const unsigned char 

ID) 

{ 

    unsigned char row = 0; 

    unsigned char col = 0; 

    unsigned char index = 0; 

    unsigned char decimal_index = 0; 

    unsigned short sum = 0; 

    float input_value = 0.0; 

    char button = 'n'; 

    const char *buttons[] = { "12345", "67890", "bc.en" }; 

    unsigned short text_box_cursor_x = 230; 

    set_text(2, HX8357_WHITE); 

  

    while (1) 

    { 

        TSPoint p = ts.getPoint(); 

        delay(300); 

        if (p.z > 3) 

        { 

            pr.x = (float)p.y * (480.0 / 1023.0); 

            pr.y = 320.0 - ((float)p.x * (320.0 / 1023.0)); 

            if      (pr.x < (96 - 2)) { col = 0; } 



  DT16 

 

109 
DT16MDR.docx 

            else if (pr.x > (96 + 2) && pr.x < ((96 * 2) - 2)) { col = 1; } 

            else if (pr.x > ((96 * 2) + 2) && pr.x < ((96 * 3) - 2)) { col = 2; } 

            else if (pr.x > ((96 * 3) + 2) && pr.x < ((96 * 4) - 2)) { col = 3; } 

            else if (pr.x > ((96 * 4) + 2) && pr.x < 480) { col = 4; } 

            else    { col = 1000; } 

            if      (pr.y > (50 + 2)  && pr.y < (50 + 90 - 2)) { row = 0; } 

            else if (pr.y > (50 + 90 + 2) && pr.y < (50 + (90 * 2) - 2)) { row = 1; } 

            else if (pr.y > (50 + (90 * 2) + 2) && pr.y < 320) { row = 2; } 

            else    { row = 1000; } 

            pr.x = 1000; 

            pr.y = 1000; 

            button = buttons[row][col]; 

            if (isDigit(button) || button == '.') 

            { 

                text_box_cursor_x += 12; 

                tft.setCursor(text_box_cursor_x, 20); 

                tft.print(button); 

                if (isDigit(button)) 

                    sum = (sum * 10) + (button - '0'); 

                else 

                    decimal_index = index; 

                index++; 

            } 

            else if (button == 'b') 

                return; 

            else if (button == 'c') 

            { 

                tft.fillRect(230, 20, 300, 20, HX8357_BLACK); 

                text_box_cursor_x = 230; 

                button = 'n'; 

                sum = 0; 

                index = 0; 

            } 

            else if (button == 'e') 

                break; 

        } 

    } 

    input_value = sum / pow(10, (index - decimal_index - 1)); 

    set_new_numeric_value(input_value, ID); 

} 

/* END get_numeric_user_input() */ 

       

#endif 

 

/****************************End display_functions.h***************************/ 

 



  DT16 

 

110 
DT16MDR.docx 

/*********************************************************************** 

* PLA/PET Filament Extruder 

* 10.22.2021 

* display_functions.cpp 

* User Interface Application 

*    Arduino Uno 

*    Adafruit HX8357 

***********************************************************************/ 

  

#include <SPI.h> 

#include <Wire.h> 

#include <math.h> 

#include "Arduino.h" 

#include "Adafruit_HX8357.h" 

#include "Adafruit_GFX.h" 

#include "TouchScreen.h" 

#include "Display.h" 

  

void Display::direct_I2C_Numeric_Param(uint8_t data_ID, float value) 

{ 

    bool is_status_input = false; 

    if (data_ID > 0x0F) 

        is_status_input = true; 

    unsigned char ID = 0; 

    switch(data_ID) 

    { 

        case 0x01: 

            ID = 0; 

            break;   

        case 0x02: 

            ID = 1; 

            break; 

        case 0x03: 

            ID = 2; 

            break; 

        case 0x04: 

            ID = 3; 

            break; 

        case 0x05: 

            ID = 4; 

            break; 

        case 0x06: 

            ID = 5; 

            break; 

        case 0x07: 

            ID = 6; 



  DT16 

 

111 
DT16MDR.docx 

            break; 

        case 0x08: 

            ID = 7; 

            break; 

        case 0x09: 

            ID = 8; 

            break; 

        case 0x0A: 

            ID = 9; 

            break; 

        case 0x0B: 

            ID = 10; 

            break; 

        case 0x0C: 

            ID = 11; 

            break; 

        default: 

            break; 

    } 

    set_new_numeric_value(value, ID); 

} 

  

  

void Display::direct_I2C_Status_Param(uint8_t data_ID, uint8_t status_ID) 

{ 

    unsigned char ID = 0; 

    char* status_value; 

    switch(data_ID) 

    { 

        case 0x10: 

            ID = 0; 

            break; 

        case 0x20: 

            ID = 1; 

            break; 

        case 0x30: 

            ID = 2; 

            break; 

        case 0x40: 

            ID = 3; 

            break; 

        default: 

            break; 

    } 

  

    switch(status_ID) 



  DT16 

 

112 
DT16MDR.docx 

    { 

        case 0x00: 

            status_value = STATUS_NONE; 

            break; 

        case 0x01: 

            status_value = STATUS_READY; 

            break; 

        case 0x02: 

            status_value = STATUS_ON; 

            break; 

        case 0x03: 

            status_value = STATUS_OFF; 

            break; 

        case 0x04: 

            status_value = STATUS_OPEN; 

            break; 

        case 0x05: 

            status_value = STATUS_CLOSED; 

            break; 

        case 0x06: 

            status_value = STATUS_IN_PROGRESS; 

            break; 

        case 0x07: 

            status_value = STATUS_COMPLETE; 

            break; 

        default: 

            break; 

    } 

    set_new_status_value(status_value, ID); 

} 

  

/* set_text() */ 

void Display::set_text(unsigned char S, unsigned short C) 

{ 

    tft.setTextSize(S); 

    tft.setTextColor(C); 

} 

/* END set_text() */ 

  

/* set_default_background() */ 

void Display::set_default_background() 

{ 

    tft.fillScreen(HX8357_BLACK); 

    set_text(2, HX8357_MAGENTA); 

    tft.setCursor(0, 0); 

    tft.print("PLA/PET Filament Extruder"); 



  DT16 

 

113 
DT16MDR.docx 

} 

/* END set_default_background() */ 

  

/* set_output_screen() */ 

void Display::set_output_screen() 

{ 

    set_default_background(); 

    tft.drawLine(230, 20, 230, 320, HX8357_WHITE); 

    set_label_and_value(numeric_params, 0); 

    set_label_and_value(status_params, 1); 

} 

/* END set_output_screen() */ 

  

/* set_new_numeric_value() */ 

void Display::set_new_numeric_value(float new_value, unsigned char ID) 

{ 

    if (new_value != numeric_params[ID]->VALUE) 

    { 

        numeric_params[ID]->VALUE = new_value; 

        numeric_params[ID]->IS_CURRENT = false; 

    } 

} 

/* END set_new_numeric_value() */ 

  

/* set_new_status_value() */ 

void Display::set_new_status_value(char* new_value, unsigned char ID) 

{ 

    if (new_value != status_params[ID]->VALUE) 

    { 

        status_params[ID]->VALUE = new_value; 

        status_params[ID]->IS_CURRENT = false; 

    } 

} 

/* END set_new_status_value() */ 

 

/****************************End display_functions.cpp*************************/ 

 


	Additive Manufacturing Waste Management System - Plastic Extrusion Process
	Recommended Citation

	tmp.1651692949.pdf.QJ2IT

